WorldWideScience

Sample records for background radiation

  1. Cosmic Tachyon Background Radiation

    CERN Document Server

    Tomaschitz, R

    1999-01-01

    The equilibrium statistical mechanics of a background radiation of superluminal particles is investigated, based on a vectorial wave equation for tachyons of the Proca type. The partition function, the spectral energy density, and the various thermodynamic variables of an ideal Bose gas of tachyons in an open Robertson-Walker cosmology are derived. The negative mass square in the wave equation changes the frequency scaling in the Rayleigh-Jeans law, and there are also significant changes in the low temperature regime as compared to the microwave background, in particular in the caloric and thermal equations of state.

  2. Ultraviolet Background Radiation (Preprint)

    Science.gov (United States)

    1991-03-01

    importance is that the sky may be truly outstandingly black in the far ultraviolet, offering a "dark site " that is unprecedented in astronomy...Estimated spectral energy distribution of the night-sky background near the zenith at an excellent ground-based site on a moonless night and in a...1977. Ap. J. Suppl. 33:451 31. Henry, R. C. 1981. Ap. J. Lett. 244: L69 32. Henry, R. C. 1981. 16th Rencontre de Moriond, ed. J. Tran Thanh Van, p

  3. Ultraviolet Background Radiation

    Science.gov (United States)

    Henry, R. C.; Murthy, J.

    1993-12-01

    The UVX experiment was carried on the Space Shuttle Columbia between 1986 January 12 and 19 (STS-61C). Several ultraviolet spectrometers were used to obtain measurements of the diffuse ultraviolet background at 8 locations in the sky. We have reanalysed the UVX measurements of the surface brightness of the diffuse ultraviolet background above b = 40 using the dust-scattering model of Onaka & Kodaira (1991), which explicitly takes into account the variation of the source function with galactic longitude. The range of allowed values of interstellar grain albedoJa, and scattering asymmetry parameter g, is considerably expanded over those of a previous analysis. The new chi square probability contours come close to, but do not include, the values of a and g found for the interstellar grains by Witt et al. (1992) using the Ultraviolet Imaging Telescope (UIT) on the Astro mission. If we hypothesize in additon to the dust-scattered light an extragalactic component, of 300 1 100 photons cm-2 s-1 sr-1 A-1, attenuated by a cosecant b law, the new reduction of the UVX data gives complete consistency with the Witt et al. determination of the optical parameters of the grains in the ultraviolet. This work was supported by United States Air Force Contract F19628-93-K-0004, and by National Aeronautics and Space Administration grant NASA NAG5-619. We are grateful for the encouragement of Dr. Stephan Price, and we thank Dr. L. Danly for information. Onaka, T., & Kodaira, K. 1991, ApJ, 379, 532 Witt, A. N., Petersohn, J. K., Bohlin, R. C., O'Connell, R. W., Roberts, M. S., Smith, A. M., & Stecher, T. P. 1992, ApJ, 395, L5

  4. Teaching about Natural Background Radiation

    Science.gov (United States)

    Al-Azmi, Darwish; Karunakara, N.; Mustapha, Amidu O.

    2013-01-01

    Ambient gamma dose rates in air were measured at different locations (indoors and outdoors) to demonstrate the ubiquitous nature of natural background radiation in the environment and to show that levels vary from one location to another, depending on the underlying geology. The effect of a lead shield on a gamma radiation field was also…

  5. Electromagnetic wave collapse in a radiation background.

    Science.gov (United States)

    Marklund, Mattias; Brodin, Gert; Stenflo, Lennart

    2003-10-17

    The nonlinear interaction, due to quantum electrodynamical (QED) effects between an electromagnetic pulse and a radiation background, is investigated by combining the methods of radiation hydrodynamics with the QED theory for photon-photon scattering. For the case of a single coherent electromagnetic pulse, we obtain a Zakharov-like system, where the radiation pressure of the pulse acts as a driver of acoustic waves in the photon gas. For a sufficiently intense pulse and/or background energy density, there is focusing and the subsequent collapse of the pulse. The relevance of our results for various astrophysical applications are discussed.

  6. Gravitational Instability in Radiation Pressure Dominated Backgrounds

    CERN Document Server

    Thompson, Todd A

    2008-01-01

    I consider the physics of gravitational instabilities in the presence of dynamically important radiation pressure and gray radiative diffusion, governed by a constant opacity, kappa. For any non-zero radiation diffusion rate on an optically-thick scale, the medium is unstable unless the classical gas-only isothermal Jeans criterion is satisfied. When diffusion is "slow," although the dynamical Jeans instability is stabilized by radiation pressure on scales smaller than the adiabatic Jeans length, on these same spatial scales the medium is unstable to a diffusive mode. In this regime, neglecting gas pressure, the characteristic timescale for growth is independent of spatial scale and given by (3 kappa c_s^2)/(4 pi G c), where c_s is the adiabatic sound speed. This timescale is that required for a fluid parcel to radiate away its thermal energy content at the Eddington limit, the Kelvin-Helmholz timescale for a radiation pressure supported self-gravitating object. In the limit of "rapid" diffusion, radiation do...

  7. Background radiation measurement with water Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bertou, X., E-mail: bertou@cab.cnea.gov.a [CONICET/CNEA, Centro Atomico Bariloche (Argentina); Observatorio Pierre Auger, Av. San Martin Norte 304, 5613 Malarguee (Argentina)

    2011-05-21

    Water Cherenkov Detectors have the nice property of being mostly calorimeters for cosmic ray induced electrons and photons, while providing a clear signal for muons. At large energy deposited in the detector, they observe small extended air showers. This makes them interesting detectors to study the background of cosmic ray secondaries. Using low threshold scaler counters, one can follow the flux of cosmic rays on top of the atmosphere, and/or study atmospheric effects on the cosmic ray shower development. In this paper, background data from the Pierre Auger Observatory are presented. These data are searched for short time-scale variation (one second scale, as expected from Gamma Ray Bursts), and larger time-scale variations, showing modulation effects due to Solar activity (Forbush decreases). Rapid changes in the background flux are also observed during the crossing of storms over the 3000 km{sup 2} of the ground array.

  8. Is natural background or radiation from nuclear power plants leukemogenic

    Energy Technology Data Exchange (ETDEWEB)

    Cronkite, E.P.

    1989-01-01

    The objective in this review is to provide some facts about normal hemopoietic cell proliferation relevant to leukemogenesis, physical, chemical, and biological facts about radiation effects with the hope that each person will be able to decide for themselves whether background radiation or emissions from nuclear power plants and facilities significantly add to the spontaneous leukemia incidence. 23 refs., 1 tab.

  9. EPR dosimetry of radiation background in the Urals region

    Energy Technology Data Exchange (ETDEWEB)

    Shishkina, E.A.; Degteva, M.O.; Shved, V.A. [Urals Research Center for Radiation Medicine, 48-A Vorovsky, Chelyabinsk 454076 (Russian Federation); Fattibene, P.; Onori, S. [Istituto Superiore di Sanita and Istituto Nazionale di Fisica Nucleare (Italy); Wieser, A. [GSF, Forschungszentrum fuer Umwelt und Gesundheit, Ingolstaedter Landstr (Germany); Ivanov, D.V.; Bayankin, S.N. [Institute of Metal Physics, Russian Academy of Sciences (Russian Federation); Knyazev, V.A.; Vasilenko, E.I.; Gorelov, M. [ZAO, Closed Corporation ' Company GEOSPETSECOLOGIA' (Russian Federation)

    2006-07-01

    Method of Electron Paramagnetic Resonance is extensively applied to individual retrospective dosimetry. The background dose is unavoidable component of cumulative absorbed dose in the tooth enamel accumulated during the lifetime of donor. Estimation of incidental radiation dose using tooth enamel needs in extraction of background dose. Moreover, the variation of background doses in the population is a limited factor for reliable detection of additional irradiation especially for low dose level. Therefore the accurate knowledge of the natural background radiation dose is a critical element of EPR studies of exposed populations. In the Urals region the method applies for such two large cohorts as the workers of Mayak (Ozersk citizens) and Techa River riverside inhabitants (rural population). Current study aimed to investigate the Urals radiation background detected by EPR spectrometry. For this aim two group of unexposed Urals residents were separated, viz: citizens of Ozersk and rural inhabitants of Chelyabinsk region. Comparison of two investigated territories has demonstrated that from the point of view of radiation background it is impossible to assume the Urals population as uniform. The reliable difference between the urban and rural residents has been found. The average background doses of Ozersk donors is in average 50 mGy higher than those detected for rural residents. The individual variability of background doses for Osersk has been higher than in the rural results. The difference in background dose levels between two population results in different limits of accidental dose detection and individualization. The doses for 'Mayak' workers (Ozyorsk citizens) can be classed as anthropogenic if the EPR measurements exceed 120 mGy for teeth younger than 40 years, and 240 mGy for teeth older than 70 years. The anthropogenic doses for Techa River residents (rural population) would be higher than 95 mGy for teeth younger than 50 years and 270 mGy for

  10. On the omnipresent background gamma radiation of the continuous spectrum

    Science.gov (United States)

    Banjanac, R.; Maletić, D.; Joković, D.; Veselinović, N.; Dragić, A.; Udovičić, V.; Aničin, I.

    2014-05-01

    The background spectrum of a germanium detector, shielded from the radiations arriving from the lower and open for the radiations arriving from the upper hemisphere, is studied by means of absorption measurements, both in a ground level and in an underground laboratory. The low-energy continuous portion of this background spectrum that peaks at around 100 keV, which is its most intense component, is found to be of very similar shape at the two locations. It is established that it is mostly due to the radiations of the real continuous spectrum, which is quite similar to the instrumental one. The intensity of this radiation is in our cases estimated to about 8000 photons/(m2s·2π·srad) in the ground level laboratory, and to about 5000 photons/(m2s·2π·srad) in the underground laboratory, at the depth of 25 m.w.e. Simulations by GEANT4 and CORSIKA demonstrate that this radiation is predominantly of terrestrial origin, due to environmental gamma radiations scattered off the materials that surround the detector (the "skyshine radiation"), and to a far less extent to cosmic rays of degraded energy.

  11. Alternative application for the radiation background in the development of the atlas database of atmospheric radiation

    CERN Document Server

    De la Hoz, Ivan Arturo Morales

    2014-01-01

    Nowadays radiation is one of the variables to be considered in the environmental forecasting and it is meaningful in the increase of global warming, together greenhouse effect. The radiation considered by the meteorological organizations depends on the World Radiometric Reference (WRR), the World Standard Group (WSG), addressed by the World Meteorological Organization (WMO). This work is based on the cosmic microwave background, as a variable to be estimated in order to get information about the incident radiation in the Earth's atmosphere, as a valuable and meaningful contribution in the building of the radiation atlas by the (UPME) and (IDEAM). Due to the fact that the variables considered are ultraviolet and infrared radiation, ozone column, direct radiation and diffuse radiation, the last two get the global radiation, and are the only ones to be evaluated by the national meteorological organizations in the country. The study of the cosmic background radiation as a research project will provide data which ...

  12. Scalar Radiation in the Background of a Naked Singularity

    CERN Document Server

    Dey, Anshuman; Sarkar, Tapobrata

    2013-01-01

    We study scalar radiation spectra from a particle in circular orbit, in the background of the Janis-Newman-Winicour (JNW) naked singularity. The differences in the nature of the spectra, from what one obtains with a Schwarzschild black hole, is established. We also compute the angular distribution of the spectra.

  13. Background radiation effects and hazards in planetary instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Gillian [Space Research Centre, Michael Atiyah Building, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, (United Kingdom)]. E-mail: gib@star.le.ac.uk; Sims, Mark R. [Space Research Centre, Michael Atiyah Building, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, (United Kingdom); Fraser, George [Space Research Centre, Michael Atiyah Building, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, (United Kingdom); Klingelhoefer, Goestar [Institut fuer Anorganische und Analytische Chemie, Johannes-Gutenberg-Universitaet, Staudinger Weg 9, 55128 Mainz (Germany); Bernhardt, Bodo [Institut fuer Anorganische und Analytische Chemie, Johannes-Gutenberg-Universitaet, Staudinger Weg 9, 55128 Mainz (Germany); Davidson, Andrew [EADS Astrium, Gunnels Wood Road, Stevenage SG1 2AS, (United Kingdom)

    2006-08-01

    Recent and proposed future planetary missions are becoming increasingly concerned with detailed geochemical assessment, often in a bid to ascertain the presence of water and life supporting geochemical systems. The instruments involved may use some kind of radioactive source, e.g. X-ray fluorescence spectrometry, Moessbauer spectrometry, neutron scattering. Having radioactive sources on a lander/rover poses various potential problems, in regard to both safety to personnel involved in the building of the instrument and to radiation effects on spacecraft structure and on other instruments. Indeed background radiation effects from one instrument may dominate measurements in another resulting in loss of scientific performance. Drawing on experience with the Beagle 2 probe which contained two instruments with radioactive sources, we present a discussion on the management of radiation hazards and background effects posed by radioactive sources for such planetary missions.

  14. Study of radiation background at the north crossing point

    Institute of Scientific and Technical Information of China (English)

    MO Xiao-Hu; QIN Qing; QU Hua-Min; WANG Yi-Fang; XU Jin-Qiang; ZHANG Tian-Bao; ZHANG Jian-Yong; ZHANG Qing-Jiang; Achasov Mikhail; CAI Xiao; FU Cheng-Dong; Harris Fred; LIU Qian; Muchnoi Nikolay

    2011-01-01

    Understanding the radiation background at the north crossing point (NCP) in the tunnel of BEPCII is crucial for the performance safety of the High Purity Germanium (HPGe) detector, and in turn of great significance for long-term stable running of the energy measurement system. Therefore, as the first step, a NaI(Tl) detector is constructed to continuously measure the radiation level of photons as background for future experiments. Furthermore, gamma and neutron dosimeters are utilized to explore the radiation distribution in the vicinity of the NCP where the HPGe detector will be located. Synthesizing all obtained information, the shielding for neutron irradiation is studied based on model-dependent theoretical analysis.

  15. Suppressing Background Radiation Using Poisson Principal Component Analysis

    CERN Document Server

    Tandon, P; Dubrawski, A; Labov, S; Nelson, K

    2016-01-01

    Performance of nuclear threat detection systems based on gamma-ray spectrometry often strongly depends on the ability to identify the part of measured signal that can be attributed to background radiation. We have successfully applied a method based on Principal Component Analysis (PCA) to obtain a compact null-space model of background spectra using PCA projection residuals to derive a source detection score. We have shown the method's utility in a threat detection system using mobile spectrometers in urban scenes (Tandon et al 2012). While it is commonly assumed that measured photon counts follow a Poisson process, standard PCA makes a Gaussian assumption about the data distribution, which may be a poor approximation when photon counts are low. This paper studies whether and in what conditions PCA with a Poisson-based loss function (Poisson PCA) can outperform standard Gaussian PCA in modeling background radiation to enable more sensitive and specific nuclear threat detection.

  16. Background radiation measurements at high power research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ashenfelter, J. [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Balantekin, B. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Baldenegro, C.X. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Band, H.R. [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Barclay, G. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Bass, C.D. [Department of Chemistry and Physics, Le Moyne College, Syracuse, NY 13214 (United States); Berish, D. [Department of Physics, Temple University, Philadelphia, PA 19122 (United States); Bowden, N.S., E-mail: nbowden@llnl.gov [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Bryan, C.D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Cherwinka, J.J. [Physical Sciences Laboratory, University of Wisconsin, Madison, WI 53706 (United States); Chu, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Classen, T. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Davee, D. [Department of Physics, College of William and Mary, Williamsburg, VA 23187 (United States); Dean, D.; Deichert, G. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Dolinski, M.J. [Department of Physics, Drexel University, Philadelphia, PA 19104 (United States); Dolph, J. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Dwyer, D.A. [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Fan, S. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); and others

    2016-01-11

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  17. The Effects of the Ionizing Radiation Background on Galaxy Evolution

    CERN Document Server

    Hambrick, D Clay; Naab, Thorsten; Johansson, Peter H

    2009-01-01

    We find that the amount and nature of the assumed ionizing background can strongly affect galaxy formation and evolution. Galaxy evolution simulations typically incorporate an ultraviolet background which falls off rapidly above z=3; e.g., that of Haardt & Madau (1996). However, this decline may be too steep to fit the WMAP constraints on electron scattering optical depth or observations of intermediate redshift (z ~ 2-4) Ly-alpha forest transmission. As an alternative, we present simulations of the cosmological formation of individual galaxies with UV backgrounds that decline more slowly at high redshift: both a simple intensity rescaling and the background recently derived by Faucher-Giguere (2009), which softens the spectrum at higher redshifts. We also test an approximation of the X-ray background with a similar z-dependence. We find for the test galaxies that an increase in either the intensity or hardness of ionizing radiation generically pushes star formation towards lower redshifts: although overa...

  18. Background Radiation Measurements at High Power Research Reactors

    CERN Document Server

    Ashenfelter, J; Baldenegro, C X; Band, H R; Barclay, G; Bass, C D; Berish, D; Bowden, N S; Bryan, C D; Cherwinka, J J; Chu, R; Classen, T; Davee, D; Dean, D; Deichert, G; Dolinski, M J; Dolph, J; Dwyer, D A; Fan, S; Gaison, J K; Galindo-Uribarri, A; Gilje, K; Glenn, A; Green, M; Han, K; Hans, S; Heeger, K M; Heffron, B; Jaffe, D E; Kettell, S; Langford, T J; Littlejohn, B R; Martinez, D; McKeown, R D; Morrell, S; Mueller, P E; Mumm, H P; Napolitano, J; Norcini, D; Pushin, D; Romero, E; Rosero, R; Saldana, L; Seilhan, B S; Sharma, R; Stemen, N T; Surukuchi, P T; Thompson, S J; Varner, R L; Wang, W; Watson, S M; White, B; White, C; Wilhelmi, J; Williams, C; Wise, T; Yao, H; Yeh, M; Yen, Y -R; Zhang, C; Zhang, X

    2016-01-01

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including $\\gamma$-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  19. THE MYSTERY OF THE COSMIC DIFFUSE ULTRAVIOLET BACKGROUND RADIATION

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Richard Conn [Henry A. Rowland Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218 (United States); Murthy, Jayant [Indian Institute of Astrophysics, Bengaluru (India); Overduin, James; Tyler, Joshua, E-mail: henry@jhu.edu, E-mail: jmurthy@yahoo.com, E-mail: joverduin@towson.edu, E-mail: 97tyler@cardinalmail.cua.edu [Department of Physics, Astronomy and Geosciences, Towson University, Towson, MD 21252 (United States)

    2015-01-01

    The diffuse cosmic background radiation in the Galaxy Evolution Explorer far-ultraviolet (FUV, 1300-1700 Å) is deduced to originate only partially in the dust-scattered radiation of FUV-emitting stars: the source of a substantial fraction of the FUV background radiation remains a mystery. The radiation is remarkably uniform at both far northern and far southern Galactic latitudes and increases toward lower Galactic latitudes at all Galactic longitudes. We examine speculation that this might be due to interaction of the dark matter with the nuclei of the interstellar medium, but we are unable to point to a plausible mechanism for an effective interaction. We also explore the possibility that we are seeing radiation from bright FUV-emitting stars scattering from a ''second population'' of interstellar grains—grains that are small compared with FUV wavelengths. Such grains are known to exist, and they scatter with very high albedo, with an isotropic scattering pattern. However, comparison with the observed distribution (deduced from their 100 μm emission) of grains at high Galactic latitudes shows no correlation between the grains' location and the observed FUV emission. Our modeling of the FUV scattering by small grains also shows that there must be remarkably few such ''smaller'' grains at high Galactic latitudes, both north and south; this likely means simply that there is very little interstellar dust of any kind at the Galactic poles, in agreement with Perry and Johnston. We also review our limited knowledge of the cosmic diffuse background at ultraviolet wavelengths shortward of Lyα—it could be that our ''second component'' of the diffuse FUV background persists shortward of the Lyman limit and is the cause of the reionization of the universe.

  20. Measurement of background gamma radiation in the northern Marshall Islands.

    Science.gov (United States)

    Bordner, Autumn S; Crosswell, Danielle A; Katz, Ainsley O; Shah, Jill T; Zhang, Catherine R; Nikolic-Hughes, Ivana; Hughes, Emlyn W; Ruderman, Malvin A

    2016-06-21

    We report measurements of background gamma radiation levels on six islands in the northern Marshall Islands (Enewetak, Medren, and Runit onEnewetak Atoll; Bikini and Nam on Bikini Atoll; and Rongelap on Rongelap Atoll). Measurable excess radiation could be expected from the decay of (137)Cs produced by the US nuclear testing program there from 1946 to 1958. These recordings are of relevance to safety of human habitation and resettlement. We find low levels of gamma radiation for the settled island of Enewetak [mean = 7.6 millirem/year (mrem/y) = 0.076 millisievert/year (mSv/y)], larger levels of gamma radiation for the island of Rongelap (mean = 19.8 mrem/y = 0.198 mSv/y), and relatively high gamma radiation on the island of Bikini (mean = 184 mrem/y = 1.84 mSv/y). Distributions of gamma radiation levels are provided, and hot spots are discussed. We provide interpolated maps for four islands (Enewetak, Medren, Bikini, and Rongelap), and make comparisons to control measurements performed on the island of Majuro in the southern Marshall Islands, measurements made in Central Park in New York City, and the standard agreed upon by the United States and the Republic of the Marshall Islands (RMI) governments (100 mrem/y = 1 mSv/y). External gamma radiation levels on Bikini Island significantly exceed this standard (P = <0.01), and external gamma radiation levels on the other islands are below the standard. To determine conclusively whether these islands are safe for habitation, radiation exposure through additional pathways such as food ingestion must be considered.

  1. Radiative feedback from an early X-ray background

    CERN Document Server

    Glover, S C O; Glover, Simon C.O.; Brand, Peter W.J.L.

    2003-01-01

    The first generation of stars (commonly known as population III) are expected to form in low-mass protogalaxies in which molecular hydrogen is the dominant coolant. Radiation from these stars will rapidly build up an extragalactic ultraviolet background capable of photodissociating H2, and it is widely believed that this background will suppress further star formation in low-mass systems. However, star formation will also produce an extragalactic X-ray background. This X-ray background, by increasing the fractional ionization of protogalactic gas, promotes H2 formation and reduces the effectiveness of ultraviolet feedback. In this paper, we examine which of these backgrounds has the dominant effect. Using a simple model for the growth of the UV and X-ray backgrounds, together with a detailed one-dimensional model of protogalactic chemical evolution, we examine the effects of the X-ray backgrounds produced by a number of likely source models. We show that in several cases, the resulting X-ray background is str...

  2. Nature of the Background Ultraviolet Radiation Field at High Redshifts

    Indian Academy of Sciences (India)

    Archana Samantaray; Pushpa Khare

    2000-06-01

    We have tried to determine the flux of the ultraviolet background radiation field from the column density ratios of various ions in several absorption systems observed in the spectra of QSOs. We find that in most cases the flux is considerably higher than what has been estimated to be contributed by the AGNs. The excess flux could originate locally in hot stars. In a few cases we have been able to show that such galactic flux can only contribute a part of the total required flux. The results suggest that the background gets a significant contribution from an unseen QSO population.

  3. Study of Natural Background Radiation around Gurvanbulag Uranium Deposit Area

    Science.gov (United States)

    Enkhbat, N.; Norov, N.; Bat-Erdene, B.; Khuukhenkhuu, G.; Otgooloi, B.

    2009-03-01

    In this work, we will show the study of natural background radiation level around the Gurvanbulag (GB) uranium deposit area in the eastern part of Mongolia. We collected environmental soil samples from 102 points around GB Uranium deposit. Collected samples were measured by HPGe gamma spectrometer at Nuclear Research Center, National University of Mongolia. The averaged activity concentrations of Ra-226, Th-232, K-40, and Cs-137 were 37.1, 29, 939, and 17.7 Bq/kg, respectively.

  4. Non-spherical structures and the microwave background radiation

    Energy Technology Data Exchange (ETDEWEB)

    Argueso, F.; Martinez-Gonzalez, E. (Universidad de Cantabria, Santander (Spain). Dept. de Fisica Moderna)

    1989-06-15

    We study the influence of homogeneous spheroidal structures on the large angular-scale microwave background radiation (MBR) anisotropies. We consider these structures as linear perturbations on an Einstein-de Sitter Universe. By comparing our calculations with the dipole and quadrupole measurements, we draw some conclusions about the existence and properties of these elongated or flattened lumps (or voids) around us. Useful analytical approximations for the quadrupole generated by such structures are also given when they are inside the horizon. (author).

  5. CERN-derived analysis of lunar radiation backgrounds

    Science.gov (United States)

    Wilson, Thomas L.; Svoboda, Robert

    1993-01-01

    The Moon produces radiation which background-limits scientific experiments there. Early analyses of these backgrounds have either failed to take into consideration the effect of charm in particle physics (because they pre-dated its discovery), or have used branching ratios which are no longer strictly valid (due to new accelerator data). We are presently investigating an analytical program for deriving muon and neutrino spectra generated by the Moon, converting an existing CERN computer program known as GEANT which does the same for the Earth. In so doing, this will (1) determine an accurate prompt neutrino spectrum produced by the lunar surface; (2) determine the lunar subsurface particle flux; (3) determine the consequence of charm production physics upon the lunar background radiation environment; and (4) provide an analytical tool for the NASA astrophysics community with which to begin an assessment of the Moon as a scientific laboratory versus its particle radiation environment. This will be done on a recurring basis with the latest experimental results of the particle data groups at Earth-based high-energy accelerators, in particular with the latest branching ratios for charmed meson decay. This will be accomplished for the first time as a full 3-dimensional simulation.

  6. Vertebrate radiations of the Jehol Biota and their environmental background

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhonghe

    2004-01-01

    @@ Significant progress has been made in recent years in the studies of various groups of the Jehol Biota, particularly concerning the origin of birds and their flight as well as the evolution of Early Cretaceous birds, dinosaurs, mammals, insects and flowering plants[1-5]. As a result, the Jehol Biota has become well known to both the scientific community and the public. The studies on the Jehol Biota also revealed the patterns and processes of the evolutionary radiations of many major groups of Early Cretaceous animals and plants, such as the earliest known radiation of angiosperms and birds, early differentiation of mammals and many Cretaceous dinosaurian groups. Notably, the radiations of the Jehol vertebrates share some similar patterns attributable to the particular environmental background. For instance, the Jehol vertebrate radiations are highlighted by the presence of abundant arboreal adaptations and herbivorous forms, thus closely linked to the forest environments. In addition, the differentiation of habitats and diets is also characteristic of the evolutionary radiations of pterosaurs, dinosaurs, birds and mammals in the Jehol Biota.

  7. Assessment of Radiation Background Variation for Moving Detection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James Christopher [Los Alamos National Laboratory; Rennie, John Alan [Los Alamos National Laboratory; Toevs, James Waldo [Los Alamos National Laboratory; Wallace, Darrin J. [Los Alamos National Laboratory; Abhold, Mark Edward [Los Alamos National Laboratory

    2015-07-13

    The introduction points out that radiation backgrounds fluctuate across very short distances: factors include geology, soil composition, altitude, building structures, topography, and other manmade structures; and asphalt and concrete can vary significantly over short distances. Brief descriptions are given of the detection system, experimental setup, and background variation measurements. It is concluded that positive and negative gradients can greatly reduce the detection sensitivity of an MDS: negative gradients create opportunities for false negatives (nondetection), and positive gradients create a potentially unacceptable FAR (above 1%); the location of use for mobile detection is important to understand; spectroscopic systems provide more information for screening out false alarms and may be preferred for mobile use; and mobile monitor testing at LANL accounts for expected variations in the background.

  8. Radiometer system to map the cosmic background radiation

    Science.gov (United States)

    Gorenstein, M. V.; Muller, R. A.; Smoot, G. F.; Tyson, J. A.

    1978-01-01

    A 33-GHz airborne radiometer system has been developed to map large angular scale variations in the temperature of the 3 K cosmic background radiation. A ferrite circulator switches a room-temperature mixer between two antennas pointing 60 deg apart in the sky. In 40 min of observing, the radiometer can measure the anisotropy of the microwave background with an accuracy of plus or minus 1 mK rms, or about 1 part in 3000 of 3 K. The apparatus is flown in a U-2 jet to 20 km altitude where 33-GHz thermal microwave emission from the atmosphere is at a low level. A second radiometer, tuned to 54 GHz near oxygen emission lines, monitors spurious signals from residual atmospheric radiation. The antennas, which have an extremely low side-lobe response of less than -65 dB past 60 deg, reject anisotropic radiation from the earth's surface. Periodic interchange of the antenna positions and reversal of the aircraft's flight direction cancel equipment-based imbalances. The system has been operated successfully in U-2 aircraft flown from NASA-Ames at Moffett Field, Calif.

  9. Cosmic Rays Induced Background Radiation on Board of Commercial Flights

    CERN Document Server

    Pinilla, S; Núñez, L A

    2015-01-01

    The aim of this work is to determine the total integrated flux of cosmic radiation which a commercial aircraft is exposed to along specific flight trajectories. To study the radiation background during a flight and its modulation by effects such as altitude, latitude, exposure time and transient magnetospheric events, we perform simulations based on Magnetocosmics and CORSIKA codes, the former designed to calculate the geomagnetic effects on cosmic rays propagation and the latter allows us to simulate the development of extended air showers in the atmosphere. In this first work, by considering the total flux of cosmic rays from 5 GeV to 1 PeV, we obtained the expected integrated flux of secondary particles on board of a commercial airplane during the Bogot\\'a-Buenos Aires trip by point-to-point numerical integration.

  10. Far Infrared Spectrometry of the Cosmic Background Radiation

    Science.gov (United States)

    Mather, J. C.

    1974-01-01

    I describe two experiments to measure the cosmic background radiation near 1 mm wavelength. The first was a ground-based search for spectral lines, made with a Fabry-Perot interferometer and an InSb detector. The second is a measurement of the spectrum from 3 to 18 cm{sup -1}, made with a balloon-borne Fourier transform spectrometer. It is a polarizing Michelson interferometer, cooled in liquid helium, and operated with a germanium bolometer. I give the theory of operation, construction details, and experimental results. The first experiment was successfully completed but the second suffered equipment malfunction on its first flight. I describe the theory of Fourier transformations and give a new understanding of convolutional phase correction computations. I discuss for infrared bolometer calibration procedures, and tabulate test results on nine detectors. I describe methods of improving bolometer sensitivity with immersion optics and with conductive film blackening.

  11. Biological effects of background radiation: mutagenicity of 40K

    Energy Technology Data Exchange (ETDEWEB)

    Gevertz, D.; Friedman, A.M.; Katz, J.J.; Kubitschek, H.E.

    1985-12-01

    The naturally occurring radioactive isotope 40K is the single largest contributor to the internal background radiation dose in living organisms. We examined cell growth and mutation rate or frequency in several strains of Escherichia coli in (i) media containing the natural content of 40K, (ii) media containing potassium from which essentially all of the 40K had been removed by isotope separation, and (iii) media highly enriched in 40K. Growth rates (doubling times) were identical in the present or absence of 40K. In more than 40 chemostat experiments, we were unable to detect any significant differences in mutation rate to bacteriophage T5 resistance or in mutation frequency to valine resistance or tryptophan prototrophy attributable to 40K. We conclude that, in the bacterial systems we have studied, 40K does not make a significant contribution to spontaneous mutation.

  12. Characterization of the radiation background at the Spallation Neutron Source

    Science.gov (United States)

    DiJulio, Douglas D.; Cherkashyna, Nataliia; Scherzinger, Julius; Khaplanov, Anton; Pfeiffer, Dorothea; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Kanaki, Kalliopi; Kirstein, Oliver; Ehlers, Georg; Gallmeier, Franz X.; Hornbach, Donald E.; Iverson, Erik B.; Newby, Robert J.; Hall-Wilton, Richard J.; Bentley, Phillip M.

    2016-09-01

    We present a survey of the radiation background at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, TN, USA during routine daily operation. A broad range of detectors was used to characterize primarily the neutron and photon fields throughout the facility. These include a WENDI-2 extended range dosimeter, a thermoscientific NRD, an Arktis 4He detector, and a standard NaI photon detector. The information gathered from the detectors was used to map out the neutron dose rates throughout the facility and also the neutron dose rate and flux profiles of several different beamlines. The survey provides detailed information useful for developing future shielding concepts at spallation neutron sources, such as the European Spallation Source (ESS), currently under construction in Lund, Sweden.

  13. Radioactivity in the groundwater of a high background radiation area.

    Science.gov (United States)

    Shabana, E I; Kinsara, A A

    2014-11-01

    Natural radioactivity was measured in groundwater samples collected from 37 wells scattered in an inhabited area of high natural background radiation, in a purpose of radiation protection. The study area is adjacent to Aja heights of granitic composition in Hail province, Saudi Arabia. Initial screening for gross α and gross β activities showed levels exceeded the national regulation limits set out for gross α and gross β activities in drinking water. The gross α activity ranged from 0.17 to 5.41 Bq L(-)(1) with an average value of 2.15 Bq L(-)(1), whereas gross β activity ranged from 0.48 to 5.16 Bq L(-)(1), with an average value of 2.60 Bq L(-)(1). The detail analyses indicated that the groundwater of this province is contaminated with uranium and radium ((226)Ra and (228)Ra). The average activity concentrations of (238)U, (234)U, (226)Ra and (228)Ra were 0.40, 0.77, 0.29 and 0.46 Bq L(-)(1), respectively. The higher uranium content was found in the samples of granitic aquifers, whereas the higher radium content was found in the samples of sandstone aquifers. Based on the obtained results, mechanism of leaching of the predominant radionuclides has been discussed in detail.

  14. A Cosmic Microwave Background Radiation Polarimeter Using Superconducting Bearings

    CERN Document Server

    Hanany, S; Johnson, B; Jones, T; Hull, J R; Ma, K B

    2003-01-01

    Measurements of the polarization of the cosmic microwave background (CMB) radiation are expected to significantly increase our understanding of the early universe. We present a design for a CMB polarimeter in which a cryogenically cooled half wave plate rotates by means of a high-temperature superconducting (HTS) bearing. The design is optimized for implementation in MAXIPOL, a balloon-borne CMB polarimeter. A prototype bearing, consisting of commercially available ring-shaped permanent magnet and an array of YBCO bulk HTS material, has been constructed. We measured the coefficient of friction as a function of several parameters including temperature between 15 and 80 K, rotation frequency between 0.3 and 3.5 Hz, levitation distance between 6 and 10 mm, and ambient pressure between 10^{-7} and 1 torr. The low rotational drag of the HTS bearing allows rotations for long periods of time with minimal input power and negligible wear and tear thus making this technology suitable for a future satellite mission.

  15. On the radiative and thermodynamic properties of the cosmic radiations using COBE FIRAS instrument data: I. Cosmic microwave background radiation

    Science.gov (United States)

    Fisenko, Anatoliy I.; Lemberg, Vladimir

    2014-07-01

    Using the explicit form of the functions to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies v 1≤ v≤ v 2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60-600 GHz frequency interval at the temperature T=2.72548 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude T amp=3.358 mK. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The expressions for new astrophysical parameters, such as the entropy density/Boltzmann constant, and number density of CMB photons are obtained. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at redshift z≈1089 are calculated.

  16. Human exposure to high natural background radiation: what can it teach us about radiation risks?

    Energy Technology Data Exchange (ETDEWEB)

    Hendry, Jolyon H; Sohrabi, Mehdi; Burkart, Werner [Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna (Austria); Simon, Steven L [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Wojcik, Andrzej [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Cardis, Elisabeth [Centre for Research in Environmental Epidemiology (CREAL), Municipal Institute of Medical Research (IMIM-Hospital del Mar) and CIBER Epidemiologia y Salud Publica - CIBERESP, Barcelona (Spain); Laurier, Dominique; Tirmarche, Margot [Radiobiology and Epidemiology Department, Radiological and Human Health Division, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses (France); Hayata, Isamu [National Institute of Radiological Sciences, Chiba (Japan)], E-mail: jhendry2002uk@yahoo.com

    2009-06-01

    Natural radiation is the major source of human exposure to ionising radiation, and its largest contributing component to effective dose arises from inhalation of {sup 222}Rn and its radioactive progeny. However, despite extensive knowledge of radiation risks gained through epidemiologic investigations and mechanistic considerations, the health effects of chronic low-level radiation exposure are still poorly understood. The present paper reviews the possible contribution of studies of populations living in high natural background radiation (HNBR) areas (Guarapari, Brazil; Kerala, India; Ramsar, Iran; Yangjiang, China), including radon-prone areas, to low dose risk estimation. Much of the direct information about risk related to HNBR comes from case-control studies of radon and lung cancer, which provide convincing evidence of an association between long-term protracted radiation exposures in the general population and disease incidence. The success of these studies is mainly due to the careful organ dose reconstruction (with relatively high doses to the lung), and to the fact that large-scale collaborative studies have been conducted to maximise the statistical power and to ensure the systematic collection of information on potential confounding factors. In contrast, studies in other (non-radon) HNBR areas have provided little information, relying mainly on ecological designs and very rough effective dose categorisations. Recent steps taken in China and India to establish cohorts for follow-up and to conduct nested case-control studies may provide useful information about risks in the future, provided that careful organ dose reconstruction is possible and information is collected on potential confounding factors.

  17. Human exposure to high natural background radiation: what can it teach us about radiation risks?

    Science.gov (United States)

    Hendry, Jolyon H; Simon, Steven L; Wojcik, Andrzej; Sohrabi, Mehdi; Burkart, Werner; Cardis, Elisabeth; Laurier, Dominique; Tirmarche, Margot; Hayata, Isamu

    2009-06-01

    Natural radiation is the major source of human exposure to ionising radiation, and its largest contributing component to effective dose arises from inhalation of (222)Rn and its radioactive progeny. However, despite extensive knowledge of radiation risks gained through epidemiologic investigations and mechanistic considerations, the health effects of chronic low-level radiation exposure are still poorly understood. The present paper reviews the possible contribution of studies of populations living in high natural background radiation (HNBR) areas (Guarapari, Brazil; Kerala, India; Ramsar, Iran; Yangjiang, China), including radon-prone areas, to low dose risk estimation. Much of the direct information about risk related to HNBR comes from case-control studies of radon and lung cancer, which provide convincing evidence of an association between long-term protracted radiation exposures in the general population and disease incidence. The success of these studies is mainly due to the careful organ dose reconstruction (with relatively high doses to the lung), and to the fact that large-scale collaborative studies have been conducted to maximise the statistical power and to ensure the systematic collection of information on potential confounding factors. In contrast, studies in other (non-radon) HNBR areas have provided little information, relying mainly on ecological designs and very rough effective dose categorisations. Recent steps taken in China and India to establish cohorts for follow-up and to conduct nested case-control studies may provide useful information about risks in the future, provided that careful organ dose reconstruction is possible and information is collected on potential confounding factors.

  18. High Precision Cosmology with the Cosmic Background Radiation

    Science.gov (United States)

    Farhang, Marzieh

    In this thesis we investigate the two cosmic epochs of inflation and recombination, through their imprints on the temperature and polarization anisotropies of the cosmic microwave background radiation. To probe the early universe we develop a map-based maximum-likelihood estimator to measure the amplitude of inflation-induced gravity waves, parametrized by r, from the cosmic microwave background (CMB) polarization maps. Being optimal by construction, the estimator avoids E-B mixing, a possible source of contamination in the tiny B-mode detection, the target of many current and near future CMB experiments. We explore the leakage from the E- to the B-mode of polarization by using this estimator to study the linear response of the B-mode signal at different scales to variations in the E- mode power. Similarly, for various observational cases, we probe the dependence of r measurement on the signal from different scales of E and B polarization. The estimator is used to make forecasts for Spider-like and Planck-like experimental specifications and to investigate the sky-coverage optimization of the Spider-like case. We compare the forecast errors on r to the results from a similar multipole-based estimator which, by ignoring the mode-mixing, sets a lower limit on the achievable error on r. We find that an experiment with Spider-like specifications with fsky ˜ 0:02--0:2 could place a 2sigma r ≈ 0:014 bound (˜ 95% CL), which rises to 0:02 with an ℓ-dependent foreground residual left over from an assumed efficient component separation. For the Planck-like survey, a Galaxy-masked ( fsky = 0:75) sky would give 2sigmar ≈ 0:015, rising to ≈ 0:05 with the foreground residuals. We also use a novel information-based framework to compare how different generations of CMB experiments reveal information about the early universe, through their measurements of r. We also probe the epoch of recombination by investigating possible fluctuations in the free electron fraction Xe

  19. Radiation Background and Attenuation Model Validation and Development

    Energy Technology Data Exchange (ETDEWEB)

    Peplow, Douglas E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Santiago, Claudio P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-05

    This report describes the initial results of a study being conducted as part of the Urban Search Planning Tool project. The study is comparing the Urban Scene Simulator (USS), a one-dimensional (1D) radiation transport model developed at LLNL, with the three-dimensional (3D) radiation transport model from ORNL using the MCNP, SCALE/ORIGEN and SCALE/MAVRIC simulation codes. In this study, we have analyzed the differences between the two approaches at every step, from source term representation, to estimating flux and detector count rates at a fixed distance from a simple surface (slab), and at points throughout more complex 3D scenes.

  20. Influence on cell proliferation of background radiation or exposure to very low, chronic gamma radiation. [Paramecium tetraurelia; Synechococcus lividus

    Energy Technology Data Exchange (ETDEWEB)

    Planel, H.; Soleilhavoup, J.P.; Tixador, R.; Richoilley, G.; Conter, A.; Croute, F.; Caratero, C.; Gaubin, Y.

    1987-05-01

    Investigations carried out on the protozoan Paramecium tetraurelia and the cyanobacteria Synechococcus lividus, which were shielded against background radiation or exposed to very low doses of gamma radiation, demonstrated that radiation can stimulate the proliferation of these two single-cell organisms. Radiation hormesis depends on internal factors (age of starting cells) and external factors (lighting conditions). The stimulatory effect occurred only in a limited range of doses and disappeared for dose rates higher than 50 mGy/y.

  1. Mapping the exposure of the Brazilian population to natural background radiation - cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rochedo, Elaine R.R., E-mail: elaine@ird.gov.br [Instituto de Radioprotecao e Dosimetria (lRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Salles, Krause C.S.; Prado, Nadya M.C., E-mail: krausesalles@yahoo.com.br, E-mail: nadya@ime.ib.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The main objective of this work is to statically and graphically describe the exposure of the Brazilian population to natural background radiation. in this stage, doses due to cosmic rays is being assessed based on sea level dose rates, corrected by latitude and altitude, according to the model recommended by UNSCEAR. In this work, the doses were estimated for ali Brazilian municipalities with more than 100.000 inhabitants. The 253 municipalities selected for this study include about 52% of the Brazilian population. Average dose rate was estimated to be about 50 n Sv/h with a variation coefficient of 31%. The estimated doses have shown a strong influence of altitude on dose rates, with a correlation coefficient of 0,998 for ao exponential fit. This result confirms previous studies that show a large effect of the altitude 00 exposure from cosmic radiation. Considering the same occupation and shielding conditions used by UNSCEAR as global averages, average annual dose was estimated to be 0,37 (0,24 - 0,76) mSv/y, very close to UNSCEAR worldwide average of 0,38 (0,3 - 1,0) mSv/y. (author)

  2. Dark energy and the cosmic microwave background radiation

    Science.gov (United States)

    Dodelson, S.; Knox, L.

    2000-01-01

    We find that current cosmic microwave background anisotropy data strongly constrain the mean spatial curvature of the Universe to be near zero, or, equivalently, the total energy density to be near critical-as predicted by inflation. This result is robust to editing of data sets, and variation of other cosmological parameters (totaling seven, including a cosmological constant). Other lines of argument indicate that the energy density of nonrelativistic matter is much less than critical. Together, these results are evidence, independent of supernovae data, for dark energy in the Universe.

  3. Modeling Background Radiation in our Environment Using Geochemical Data

    Energy Technology Data Exchange (ETDEWEB)

    Malchow, Russell L.; Marsac, Kara [University of Nevada, Las Vegas; Burnley, Pamela [University of Nevada, Las Vegas; Hausrath, Elisabeth [Uniiversity of Nevada, Las Vegas; Haber, Daniel [University of Nevada, Las Vegas; Adcock, Christopher [University of Nevada, Las Vegas

    2015-02-01

    Radiation occurs naturally in bedrock and soil. Gamma rays are released from the decay of the radioactive isotopes K, U, and Th. Gamma rays observed at the surface come from the first 30 cm of rock and soil. The energy of gamma rays is specific to each isotope, allowing identification. For this research, data was collected from national databases, private companies, scientific literature, and field work. Data points were then evaluated for self-consistency. A model was created by converting concentrations of U, K, and Th for each rock and soil unit into a ground exposure rate using the following equation: D=1.32 K+ 0.548 U+ 0.272 Th. The first objective of this research was to compare the original Aerial Measurement System gamma ray survey to results produced by the model. The second objective was to improve the method and learn the constraints of the model. Future work will include sample data analysis from field work with a goal of improving the geochemical model.

  4. The Cosmic Background Radiation circa nu2K

    CERN Document Server

    Bond, J R; Prunet, S; Ade, P; Balbi, A; Bock, J J; Borrill, J; Boscaleri, A; Coble, K; Crill, B P; De Bernardis, P; Farese, P; Ferreira, P; Ganga, K; Giacometti, M; Hanany, S; Hivon, E; Hristov, V V; Iacoangeli, A; Jaffe, A; Lange, A; Lee, A; Martinis, L; Masi, S; Mauskopf, P D; Melchiorri, A; Montroy, T; Netterfield, C B; Oh, S; Pascale, E; Piacentini, F; Rabii, B; Rao, S; Richards, P; Romeo, G; Ruhl, J E; Scaramuzzi, F; Sforza, D M; Smoot, G F; Stompor, R; Winant, C; Wu, P

    2000-01-01

    We describe the implications of cosmic microwave background (CMB) observations and galaxy and cluster surveys of large scale structure (LSS) for theories of cosmic structure formation, especially emphasizing the recent Boomerang and Maxima CMB balloon experiments. The inflation-based cosmic structure formation paradigm we have been operating with for two decades has never been in better shape. Here we primarily focus on a simplified inflation parameter set, {omega_b,omega_{cdm},Omega_{tot}, Omega_\\Lambda,n_s,\\tau_C, \\sigma_8}. Combining all of the current CMB+LSS data points to the remarkable conclusion that the local Hubble patch we can access has little mean curvature (Omega_{tot}=1.08\\pm 0.06) and the initial fluctuations were nearly scale invariant (n_s=1.03\\pm 0.08), both predictions of (non-baroque) inflation theory. The baryon density is found to be slightly larger than that preferred by independent Big Bang Nucleosynthesis estimates (omega_b=0.030\\pm 0.005 cf. 0.019\\pm 0.002). The CDM density is in th...

  5. The cosmic background radiation circa {nu}2K

    Energy Technology Data Exchange (ETDEWEB)

    Bond, J. Richard; Pogosyan, Dmitry; Prunet, Simon

    2000-01-01

    We describe the implications of cosmic microwave background (CMB) observations and galaxy and cluster surveys of large scale structure (LSS) for theories of cosmic structure formation, especially emphasizing the recent Boomerang and Maxima CMB balloon experiments. The inflation-based cosmic structure formation paradigm we have been operating with for two decades has never been in better shape. Here we primarily focus on a simplified inflation parameter set, {l_brace}{omega}{sub b}, {omega}{sub cdm}, {omega}{sub tot}, {omega}{sub {lambda}}, n{sub s}, {tau}{sub C}, {sigma}{sub 8}{r_brace}. Combining all of the current CMB+LSS data points to the remarkable conclusion that the local Hubble patch we can access has little mean curvature ({omega}{sub tot} = 1.08 {+-} 0.06) and the initial fluctuations were nearly scale invariant (n{sub s} 1.03 {+-} 0.08), both predictions of (non-baroque) inflation theory. The baryon density is found to be slightly larger than that preferred by independent Big Bang Nucleosynthesis estimates ({omega}{sub b}-{omega}{sub b}h{sup 2} 0.030 {+-} 0.005 cf. 0.019 {+-} 0.002). The CDM density is in the expected range ({omega}{sub cdm} 0.17{+-}0.02). Even stranger is the CMB+LSS evidence that the density of the universe is dominated by unclustered energy akin to the cosmological constant ({omega}{sub {lambda}} = 0.66 {+-} 0.06), at the same level as that inferred from high redshift supernova observations. We also sketch the CMB+LSS implications for massive neutrinos.

  6. Cancer Mortality Among People Living in Areas With Various Levels of Natural Background Radiation

    Directory of Open Access Journals (Sweden)

    Ludwik Dobrzyński

    2015-07-01

    Full Text Available There are many places on the earth, where natural background radiation exposures are elevated significantly above about 2.5 mSv/year. The studies of health effects on populations living in such places are crucially important for understanding the impact of low doses of ionizing radiation. This article critically reviews some recent representative literature that addresses the likelihood of radiation-induced cancer and early childhood death in regions with high natural background radiation. The comparative and Bayesian analysis of the published data shows that the linear no-threshold hypothesis does not likely explain the results of these recent studies, whereas they favor the model of threshold or hormesis. Neither cancers nor early childhood deaths positively correlate with dose rates in regions with elevated natural background radiation.

  7. On the radiative and thermodynamic properties of the extragalactic far infrared background radiation using COBE FIRAS instrument data

    CERN Document Server

    Fisenko, Anatoliy I

    2014-01-01

    Using the explicit form of the function to describe the average spectrum of the extragalactic far infrared background (FIRB) radiation measured by the COBE FIRAS instrument in the 0.15 - 2.4 THz frequency interval, the radiative and thermodynamic properties, such as the total emissivity, total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, pressure, enthalpy density, and internal energy density are calculated. The calculated value of the total intensity received in the 0.15 - 2.4 THz frequency interval is 13.6 nW m^-2 sr^-1, and comprises about 19.4 % of the total intensity expected from the energy released by stellar nucleosynthesis over cosmic history. The radiative and thermodynamic functions of the extragalactic far infrared background (FIRB) radiation are calculated at redshift z = 1.5.

  8. Human exposure to high natural background radiation: what can it teach us about radiation risks?

    OpenAIRE

    Jolyon H Hendry; Simon, Steven L.; Wojcik, Andrzej; Sohrabi, Mehdi; Burkart, Werner; Cardis, Elisabeth; Laurier, Dominique; Tirmarche, Margot; Hayata, Isamu

    2009-01-01

    Natural radiation is the major source of human exposure to ionising radiation, and its largest contributing component to effective dose arises from inhalation of 222Rn and its radioactive progeny. However, despite extensive knowledge of radiation risks gained through epidemiologic investigations and mechanistic considerations, the health effects of chronic low-level radiation exposure are still poorly understood. The present paper reviews the possible contribution of studies of populations li...

  9. Cosmic background radiation anisotropy in an open inflation, cold dark matter cosmogony

    Science.gov (United States)

    Kamionkowski, Marc; Ratra, Bharat; Spergel, David N.; Sugiyama, Naoshi

    1994-01-01

    We compute the cosmic background radiation anisotropy, produced by energy-density fluctuations generated during an early epoch of inflation, in an open cosmological model based on the cold dark matter scenario. At Omega(sub 0) is approximately 0.3-0.4, the Cosmic Background Explorer (COBE) normalized open model appears to be consistent with most observations.

  10. Radiation background simulation and verification at the LHC and its upgrades.

    CERN Document Server

    Dawson, I; The ATLAS collaboration

    2012-01-01

    The high collision rates at the new energy regime of the LHC gives rise to unprecedented radiation environments, especially in the inner regions of the experiments. Deleterious effects of radiation on the experiments include: damage to detectors and electronics; fake backgrounds in the selection and reconstruction of interesting physics events; single event upsets causing disruption in the data readout; radio-activation of components making access for maintenance difficult. High fidelity codes such as FLUKA and GEANT4 are necessary for simulating the complex radiation backgrounds in detail. The results can then be used for predicting detector system behaviour and performance over the lifetime of the project. In this talk the following will be covered: First the Monte Carlo tools used to simulate the radiation backgrounds will be discussed, which include the transport codes FLUKA and GEANT4, as well as the collision event generators PHOJET and PYTHIA. Examples of the predictions at the ATLAS experiment will be...

  11. DNDO Report: Predicting Solar Modulation Potentials for Modeling Cosmic Background Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Behne, Patrick Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-08

    The modeling of the detectability of special nuclear material (SNM) at ports and border crossings requires accurate knowledge of the background radiation at those locations. Background radiation originates from two main sources, cosmic and terrestrial. Cosmic background is produced by high-energy galactic cosmic rays (GCR) entering the atmosphere and inducing a cascade of particles that eventually impact the earth’s surface. The solar modulation potential represents one of the primary inputs to modeling cosmic background radiation. Usosokin et al. formally define solar modulation potential as “the mean energy loss [per unit charge] of a cosmic ray particle inside the heliosphere…” Modulation potential, a function of elevation, location, and time, shares an inverse relationship with cosmic background radiation. As a result, radiation detector thresholds require adjustment to account for differing background levels, caused partly by differing solar modulations. Failure to do so can result in higher rates of false positives and failed detection of SNM for low and high levels of solar modulation potential, respectively. This study focuses on solar modulation’s time dependence, and seeks the best method to predict modulation for future dates using Python. To address the task of predicting future solar modulation, we utilize both non-linear least squares sinusoidal curve fitting and cubic spline interpolation. This material will be published in transactions of the ANS winter meeting of November, 2016.

  12. DNDO Report: Predicting Solar Modulation Potentials for Modeling Cosmic Background Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Behne, Patrick Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-08

    The modeling of the detectability of special nuclear material (SNM) at ports and border crossings requires accurate knowledge of the background radiation at those locations. Background radiation originates from two main sources, cosmic and terrestrial. Cosmic background is produced by high-energy galactic cosmic rays (GCR) entering the atmosphere inducing a cascade of particles that eventually impact the earth’s surface. The solar modulation potential represents one of the primary inputs to modeling cosmic background radiation. Usosokin et al. formally define solar modulation potential as “the mean energy loss [per unit charge] of a cosmic ray particle inside the heliosphere…” Modulation potential, a function of elevation, location, and time, shares an inverse relationship with cosmic background radiation. As a result, radiation detector thresholds require adjustment to account for differing background levels, caused partly by differing solar modulations. Failure to do so can result in higher rates of false positives and failed detection of SNM for low and high levels of solar modulation potential, respectively. This study focuses on solar modulation’s time dependence and seeks the best method to predict modulation for future dates using Python. To address the task of predicting future solar modulation, we utilize both non-linear least squares sinusoidal curve fitting and cubic spline interpolation. This material will be published in transactions of the ANS winter meeting of November, 2016.

  13. Experimental study of variations in background radiation and the effect on Nuclear Car Wash sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Church, J; Slaughter, D; Norman, E; Asztalos, S; Biltoft, P

    2007-02-07

    Error rates in a cargo screening system such as the Nuclear Car Wash [1-7] depend on the standard deviation of the background radiation count rate. Because the Nuclear Car Wash is an active interrogation technique, the radiation signal for fissile material must be detected above a background count rate consisting of cosmic, ambient, and neutron-activated radiations. It was suggested previously [1,6] that the Corresponding negative repercussions for the sensitivity of the system were shown. Therefore, to assure the most accurate estimation of the variation, experiments have been performed to quantify components of the actual variance in the background count rate, including variations in generator power, irradiation time, and container contents. The background variance is determined by these experiments to be a factor of 2 smaller than values assumed in previous analyses, resulting in substantially improved projections of system performance for the Nuclear Car Wash.

  14. On the radiative and thermodynamic properties of the Cosmic Microwave Background radiation using COBE FIRAS instrument data

    CERN Document Server

    Fisenko, Anatoliy I

    2014-01-01

    Use formulas to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, pressure, enthalpy density, and internal energy density in the finite range of frequencies are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60 - 600 GHz frequency interval at the temperature T = 2.728 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant are calculated. In the case of the dipole spectrum, the constants a and the Stefan-Bol...

  15. Evaluation of High Level Environmental Background Radiation Areas and its Variation in Ramsar

    Directory of Open Access Journals (Sweden)

    Tayyeb Allahverdi Pourfallah

    2012-03-01

    Full Text Available Introduction The exposure of human beings to ionizing radiation from natural sources is a continuing and inescapable feature of life on earth. For most individuals, this exposure exceeds that from all man-made sources combined. Materials and Methods In this study, the annual effective dose in high level environmental background radiation areas (HLEBRAs of northern city of Ramsar in Iran was determined. For dosimetry, a gamma radiation dosimeter was used. Measurements were performed in more than 90 points in five districts with HLEBR around and near hot springs. Results In some areas, the annual effective dose from outdoor external gamma radiation in HLEBRAs (30 mSv/y exceeded the annual effective dose limit for radiation workers. Our results are evident that the population dose from normal background radiation in HLEBRAs is 200 times higher than corresponding values in Ramsar sea shore. To estimate the cosmic ray contribution, dose measurements were performed on the sea surface one km off the sea shore. Conclusion The observed differences over locations and measured doses between this study and the others revealed the dynamic nature of this phenomenon, and necessitate performing the periodic studies in these areas. Moreover, cytogenetic and immunologic researches for studying the long term effects of these high level environmental radiations on the residents of these HLEBRAs are necessary.

  16. Lower Bound on the Cosmic TeV Gamma-ray Background Radiation

    CERN Document Server

    Inoue, Yoshiyuki

    2015-01-01

    The Fermi gamma-ray space telescope has revolutionized our understanding of the cosmic gamma-ray background radiation in the GeV band. However, investigation on the cosmic TeV gamma-ray background radiation still remains sparse. Here, we report the lower bound on the cosmic TeV gamma-ray background spectrum placed by the cumulative flux of individual detected extragalactic TeV sources including blazars, radio galaxies, and starburst galaxies. The current limit on the cosmic TeV gamma-ray background above 0.1 TeV is obtained as $3\\times10^{-8} (E/100~{\\rm GeV})^{-0.6} \\exp(-E/2000~{\\rm GeV})~{\\rm [GeV/cm^2/s/sr]} < E^2dN/dE < 1\\times10^{-7} (E/100~{\\rm GeV})^{-0.5}~{\\rm [GeV/cm^2/s/sr]}$, where the upper bound is set by requirement that the cascade flux from the cosmic TeV gamma-ray background radiation can not exceed the measured cosmic GeV gamma-ray background spectrum (Inoue & Ioka 2012). Two nearby blazars, Mrk 421 and Mrk 501, explain ~70% of the cumulative flux at 0.8-4 TeV, while extreme blaza...

  17. On the radiative and thermodynamic properties of the cosmic radiations using COBE FIRAS instrument data: II. Extragalactic far infrared background radiation

    Science.gov (United States)

    Fisenko, Anatoliy I.; Lemberg, Vladimir

    2014-07-01

    Using formula to describe the average spectrum of the extragalactic far infrared background (FIRB) radiation measured by the COBE FIRAS instrument in the 0.15-2.4 THz frequency interval at mean temperature T=18.5 K, the radiative and thermodynamic properties, such as the total emissivity, total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure are calculated. The value for the total intensity received in the 0.15-2.4 THz frequency interval is equal to 13.6 nW m-2 sr-1. This value is about 19.4 % of the total intensity expected from the energy released by stellar nucleosynthesis over cosmic history. The radiative and thermodynamic functions of the extragalactic far infrared background (FIRB) radiation are calculated at redshift z=1.5.

  18. Fluctuations of the microwave background radiation in the adiabatic and entropic theories of galaxy formation

    Energy Technology Data Exchange (ETDEWEB)

    Doroshkevich, A.G.; Zel' dovich, Y.B.; Syunyaev, R.A.

    1978-09-01

    The evolution of adiabatic and nonisentropic density perturbations during the hydrogen recombination era in the universe and the temperature fluctuations of the microwave background radiation generated at that period have been calculated numerically. The results support the principal estimates and conclusions given in a 1970 analysis of the problem.

  19. Measurement of the cosmic background radiation temperature at 6. 3 cm

    Energy Technology Data Exchange (ETDEWEB)

    Mandolesi, N.; Calzolari, P.; Cortiglioni, S.; Morigi, G.

    1984-06-15

    We present results of a measurement of the cosmic background radiation temperature at a wavelength of 6.3 cm. We obtained the value T/sub CBR/ = 2.71 +- 0.20 K. This is in good agreement with, and has a smaller error than, any previous measurement at equal or longer wavelengths.

  20. A Flat Universe from High-Resolution Maps of the Cosmic MicrowaveBackground Radiation

    Energy Technology Data Exchange (ETDEWEB)

    de Bernardis, P.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill,J.; Boscaleri, A.; Coble, K.; Crill, B.P.; De Gasperis, G.; Farese, P.C.; Ferreira, P.G.; Ganga, K.; Giacometti, M.; Hivon, E.; Hristov, V.V.; Iacoangeli, A.; Jaffe, A.H.; Lange, A.E.; Martinis, L.; Masi, S.; Mason,P.; Mauskopf, P.D.; Melchiorri, A.; Miglio, L.; Montroy, T.; Netterfield,C.B.; Pascale, E.; Piacentini, F.; Pogosyan, D.; Prunet, S.; Rao, S.; Romeo, G.; Ruhl, J.E.; Scaramuzzi, F.; Sforna, D.; Vittorio, N.

    2000-04-28

    The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K Cosmic Microwave Background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole {ell}{sub peak} = (197 {+-} 6), with an amplitude DT{sub 200} = (69 {+-} 8){mu}K. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favored by standard inflationary scenarios.

  1. Radiation-Hydrodynamical Collapse of Pregalactic Clouds in the Ultraviolet Background

    CERN Document Server

    Kitayama, T; Umemura, M; Susa, H; Ikeuchi, S

    2000-01-01

    To elucidate the effects of the UV background radiation on the collapse of pregalactic clouds, we implement a radiation-hydrodynamical calculation, combining one-dimensional spherical hydrodynamics with an accurate treatment of the radiative transfer of ionizing photons. Both absorption and scattering of UV photons are explicitly taken into account. It turns out that a gas cloud contracting within the dark matter potential does not settle into hydrostatic equilibrium, but undergoes run-away collapse even under the presence of the external UV field. The cloud center is shown to become self-shielded against ionizing photons by radiative transfer effects before shrinking to the rotation barrier. Based on our simulation results, we further discuss the possibility of H2 cooling and subsequent star formation in a run-away collapsing core. The present results are closely relevant to the survival of subgalactic Population III objects as well as to metal injection into intergalactic space.

  2. Many-body heat radiation and heat transfer in the presence of a nonabsorbing background medium

    Science.gov (United States)

    Müller, Boris; Incardone, Roberta; Antezza, Mauro; Emig, Thorsten; Krüger, Matthias

    2017-02-01

    Heat radiation and near-field radiative heat transfer can be strongly manipulated by adjusting geometrical shapes, optical properties, or the relative positions of the objects involved. Typically, these objects are considered as embedded in vacuum. By applying the methods of fluctuational electrodynamics, we derive general closed-form expressions for heat radiation and heat transfer in a system of N arbitrary objects embedded in a passive nonabsorbing background medium. Taking into account the principle of reciprocity, we explicitly prove the symmetry and positivity of transfer in any such system. Regarding applications, we find that the heat radiation of a sphere as well as the heat transfer between two parallel plates is strongly enhanced by the presence of a background medium. Regarding near- and far-field transfer through a gas like air, we show that a microscopic model (based on gas particles) and a macroscopic model (using a dielectric contrast) yield identical results. We also compare the radiative transfer through a medium like air and the energy transfer found from kinetic gas theory.

  3. On the population of primordial star clusters in the presence of UV background radiation

    CERN Document Server

    MacIntyre, M A; Thomas, P A; Intyre, Michael A. Mac; Santoro, Fernando; Thomas, Peter A.

    2006-01-01

    We use the algorithm of Cole et al. (2000) to generate merger trees for the first star clusters in a Lambda CDM cosmology under an isotropic UV background radiation field, parametrized by J_21. We have investigated the problem in two ways: a global radiation background and local radiative feedback surrounding the first star clusters. Cooling in the first halos at high redshift is dominated by molecular hydrogen, H_2 - we call these Generation 1 objects. At lower redshift and higher virial temperature, T_vir > 10^4K, electron cooling dominates - we call these generation 2. Radiation fields act to photo-dissociate H_2, but also generate free electrons that can help to catalyse its production. At modest radiation levels, J_{21}/(1+z)^3 ~ 10^{-12}-10^{-7}, the nett effect is to enhance the formation of Generation 1 star-clusters. At higher fluxes the heating from photo-ionisation dominates and halts their production. With a realistic build-up of flux over time, the period of enhanced H_2 cooling is so fleeting as...

  4. Probing the Light Speed Anisotropy with respect to the Cosmic Microwave Background Radiation Dipole

    CERN Document Server

    Gurzadyan, V G; Kashin, A L; Margarian, A T; Bartalini, O; Bellini, V; Castoldi, M; D'Angelo, A; Didelez, J P; Salvo, R D; Fantini, A; Gervino, G; Ghio, F; Girolami, B; Giusa, A; Hourany, E; Knyazyan, S; Kuznetsov, V E; Lapik, A; Levi-Sandri, P; Llères, A; Mehrabyan, S S; Moricciani, D; Nedorezov, V; Perrin, C; Rebreyend, D; Russo, G; Rudnev, N; Schärf, C; Sperduto, M L; Sutera, M C; Turinge, A

    2005-01-01

    We have studied the angular fluctuations in the speed of light with respect to the apex of the dipole of Cosmic Microwave Background (CMB) radiation using the experimental data obtained with GRAAL facility, located at the European Synchrotron Radiation Facility (ESRF) in Grenoble. The measurements were based on the stability of the Compton edge of laser photons scattered on the 6 GeV monochromatic electron beam. The results enable to obtain a conservative constraint on the anisotropy in the light speed variations \\Delta c(\\theta)/c < 3 10^{-12}, i.e. with higher precision than from previous experiments.

  5. Rydberg atom detection of the temporal coherence of cosmic microwave background radiation

    CERN Document Server

    Tscherbul, Timur V

    2013-01-01

    Rydberg atoms immersed in cold blackbody radiation are shown to display long-lived quantum coherence effects on timescales of tens of picoseconds. By solving non-Markovian equations of motion with no free parameters we obtain the time evolution of the density matrix, and demonstrate that the blackbody-induced temporal coherences manifest as quantum beats in time-resolved fluorescence intensities of the Rydberg atoms. A measurable fluorescence signal can be obtained with a cold trapped ensemble of 1e8 Rydberg atoms subject to 2.7 K cosmic microwave background radiation (CMB), allowing for novel insights into previously unexamined quantum coherence properties of CMB.

  6. Prospects of detecting gravitational background radiation by Doppler tracking interplanetary spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Bertotti, B.; Carr, B.J.

    1980-03-15

    We examine the theoretical and experimental prospects of detecting a low-frequency, continuous, stochastic background of gravitational waves by Doppler tracking interplanetary spacecraft. From a theoretical standpoint, such a background may have been generated by various postgalactic processes or by pregalactic black hole formation; there could also exist a primordial background which goes back to the beginning of the universe. We review the characteristic frequency and density ranges which one might anticipate for these backgrounds. From an experimental standpoint, one's ability to detect a background is limited by the finite length of the record available and by an imperfect knowledge of the spectrum of various sources of noise. The fundamental contribution to the noise comes from the clock which regulates the frequency of the tracking waves. If one uses a hydrogen maser clock, this noise becomes progressively less important with decreasing frequency: one might hope to detect a critical density of background radiation at frequencies below 10/sup -2/ Hz and a background with 10/sup -4/ times the critical density at frequencies below 10/sup -5/ Hz. It is encouraging that some of the sorts of background which we anticipate from theoretical considerations fall within the observable regime. We discuss the extent to which other sources of noise may exceed the clock noise and the degree to which they can be eliminated.

  7. Quantum Larmor radiation from a moving charge in an electromagnetic plane wave background

    CERN Document Server

    Nakamura, Gen; 10.1142/S0217751X12501424

    2012-01-01

    We extend our previous work [Phys. Rev. D83 045030 (2011)], which investigated the first-order quantum effect in the Larmor radiation from a moving charge in a spatially homogeneous time-dependent electric field. Specifically, we investigate the quantum Larmor radiation from a moving charge in a monochromatic electromagnetic plane wave background based on the scalar quantum electrodynamics at the lowest order of the perturbation theory. Using the in-in formalism, we derive the theoretical formula of the total radiation energy from a charged particle in the initial states being at rest and being in a relativistic motion. Expanding the theoretical formula in terms of the Planck constant \\hbar, we obtain the first-order quantum effect on the Larmor radiation. The quantum effect generally suppresses the total radiation energy compared with the prediction of the classical Larmor formula, which is a contrast to the previous work. The reason is explained by the fact that the radiation from a moving charge in a monoc...

  8. Probing reionization with the cross power spectrum of 21 cm and near-infrared radiation backgrounds

    CERN Document Server

    Mao, Xiao-Chun

    2014-01-01

    The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from the high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then the intensity of NIR background is estimated by collecting emission from stars in the first-light galaxies. On large scales, we find the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolut...

  9. Fluctuations in the High-Redshift Lyman-Werner and Lyman-alpha Radiation Backgrounds

    CERN Document Server

    Holzbauer, Lauren N

    2011-01-01

    We use a new method to model fluctuations of the Lyman-Werner (LW) and Lyman-alpha radiation backgrounds at high redshift. At these early epochs the backgrounds are symptoms of a universe newly lit with its first stars. LW photons (11.5-13.6 eV) are of particular interest because they dissociate molecular hydrogen, the primary coolant in the first minihalos. By using a variation of the halo model, we efficiently generate power spectra for any choice of radiation background. We find that the LW power spectrum typically traces the matter power spectrum at large scales but turns over at the scale corresponding to the effective `horizon' of LW photons (~100 comoving Mpc), unless the sources are extremely rare. The series of horizons that characterize the Lyman-alpha flux profile shape the fluctuations of that background in a similar fashion, though those imprints are washed out once one considers fluctuations in the brightness temperature of the 21-cm signal. The Lyman-alpha background strongly affects the redshi...

  10. A shallow underground laboratory for low-background radiation measurements and materials development

    Science.gov (United States)

    Aalseth, C. E.; Bonicalzi, R. M.; Cantaloub, M. G.; Day, A. R.; Erikson, L. E.; Fast, J.; Forrester, J. B.; Fuller, E. S.; Glasgow, B. D.; Greenwood, L. R.; Hoppe, E. W.; Hossbach, T. W.; Hyronimus, B. J.; Keillor, M. E.; Mace, E. K.; McIntyre, J. I.; Merriman, J. H.; Myers, A. W.; Overman, C. T.; Overman, N. R.; Panisko, M. E.; Seifert, A.; Warren, G. A.; Runkle, R. C.

    2012-11-01

    Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters-water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This paper describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. We conclude by presenting measurement targets and future opportunities.

  11. A Shallow Underground Laboratory for Low-Background Radiation Measurements and Materials Development

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, Craig E.; Bonicalzi, Ricco; Cantaloub, Michael G.; Day, Anthony R.; Erikson, Luke E.; Fast, James E.; Forrester, Joel B.; Fuller, Erin S.; Glasgow, Brian D.; Greenwood, Lawrence R.; Hoppe, Eric W.; Hossbach, Todd W.; Hyronimus, Brian J.; Keillor, Martin E.; Mace, Emily K.; McIntyre, Justin I.; Merriman, Jason H.; Myers, Allan W.; Overman, Cory T.; Overman, Nicole R.; Panisko, Mark E.; Seifert, Allen; Warren, Glen A.; Runkle, Robert C.

    2012-11-08

    Abstract: Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths worldwide houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This manuscript describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. We conclude by presenting measurement targets and future opportunities.

  12. A shallow underground laboratory for low-background radiation measurements and materials development

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, C. E.; Bonicalzi, R. M.; Cantaloub, M. G.; Day, A. R.; Erikson, L. E.; Fast, J.; Forrester, J. B.; Fuller, E. S.; Glasgow, B. D.; Greenwood, L. R.; Hoppe, E. W.; Hossbach, T. W.; Hyronimus, B. J.; Keillor, M. E.; Mace, E. K.; McIntyre, J. I.; Merriman, J. H.; Myers, A. W.; Overman, C. T.; Overman, N. R. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States); and others

    2012-11-15

    Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters-water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This paper describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. We conclude by presenting measurement targets and future opportunities.

  13. A shallow underground laboratory for low-background radiation measurements and materials development.

    Science.gov (United States)

    Aalseth, C E; Bonicalzi, R M; Cantaloub, M G; Day, A R; Erikson, L E; Fast, J; Forrester, J B; Fuller, E S; Glasgow, B D; Greenwood, L R; Hoppe, E W; Hossbach, T W; Hyronimus, B J; Keillor, M E; Mace, E K; McIntyre, J I; Merriman, J H; Myers, A W; Overman, C T; Overman, N R; Panisko, M E; Seifert, A; Warren, G A; Runkle, R C

    2012-11-01

    Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters-water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This paper describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. We conclude by presenting measurement targets and future opportunities.

  14. Primordial Gravitational Waves and Rescattered Electromagnetic Radiation in the Cosmic Microwave Background

    CERN Document Server

    Kim, Dong-Hoon

    2016-01-01

    Understanding the interaction of primordial gravitational waves (GWs) with the Cosmic Microwave Background (CMB) plasma is important for observational cosmology. In this article, we provide an analysis of an effect apparently overlooked as yet. We consider a single free electric charge and suppose that it can be agitated by primordial GWs propagating through the CMB plasma, resulting in periodic, regular motion along particular directions. Light reflected by the charge will be partially polarized, and this will imprint a characteristic pattern on the CMB. We study this effect by considering a simple model in which anisotropic incident electromagnetic (EM) radiation is rescattered by a charge sitting in spacetime perturbed by GWs and becomes polarized. As the charge is driven to move along particular directions, we calculate its dipole moment to determine the leading-order rescattered EM radiation. The Stokes parameters of the rescattered radiation exhibit a net linear polarization. We investigate how this pol...

  15. Measurement of radioactivity in an elevated radiation background area of Western Ghats

    Directory of Open Access Journals (Sweden)

    Manigandan P.K.

    2014-01-01

    Full Text Available As part of monitoring the exposure of the general public to natural radioactivity, the activity concentration of naturally occurring radionuclides in soil samples in an elevated radiation background area of Western Ghats was determined using gamma-ray spectrometry. Average values of the activity concentration of radionuclides, outdoor terrestrial gamma dose rate, annual effective dose equivalent and radiation hazard indices from soil activity were estimated. The activity concentrations of 232Th and average outdoor terrestrial gamma dose rate were found to be higher than the world average, possibly affecting the Western Ghats environment in general. Therefore, radiological risks to the general population from ionizing radiation from the naturally occurring radionuclides in the soil are considered to be significant. How- ever, other radiological hazard indices were found to be within permissible limits.

  16. Natural background radiation and estimation of gonadal dose rate of population of Chittagong region

    Energy Technology Data Exchange (ETDEWEB)

    Mostofa, M.N.; Ahmed, J.U. (Chittagong Univ. (Bangladesh). Dept. of Physics); Ahmed, R.; Ishaque, A.M. (Nuclear Medicine Center, Chittagong (Bangladesh)); Ahmed, K. (Institute of Nuclear Medicine, Dacca (Bangladesh))

    1981-07-01

    A survey was made on the background radiation to estimate the gonadal dose rate in the district of Chittagong from the year 1978 to 80. This was done with the help of a calibrated Nuclear Chicago transistorized survey meter. The measurements were made in different types of dwellings and occupational buildings constructed with wood, straw/bamboo, tin/bamboo, tin/brick and single and multistoried buildings of brick and concrete. For measurement of outdoor radiation the investigating areas taken were the roads, fields and the Karnafuly river. The variation in the population dose rate as well as gonadal dose rate were observed in different types of dwellings and occupational buildings including outdoors. The average population dose rate including cosmic ray intensity was found to be 172.41+-8.61 mrad/year. Thus, the annual gonadal dose rate due to gamma radiation was found to be 137.92+-6.89 mrad/year.

  17. On the Light Speed Anisotropy vs Cosmic Microwave Background Dipole: European Synchrotron Radiation Facility Measurements

    CERN Document Server

    Gurzadyan, V G; Kashin, A; Margarian, A T; Bartalini, O; Bellini, V; Castoldi, M; D'Angelo, A; Didelez, J P; Salvo, R D; Fantini, A; Gervino, G; Ghio, F; Girolami, B; Giusa, A; Guidal, M; Hourany, E; Knyazyan, S; Kouznetsov, V; Kunne, Ronald Alexander; Lapik, A; Levi-Sandri, P; Llères, A; Mehrabyan, S S; Moricciani, D; Nedorezov, V; Perrin, C; Rebreyend, D; Russo, G; Rudnev, N; Schärf, C; Sperduto, M L; Sutera, M C; Turinge, A

    2007-01-01

    The measurement of the Compton edge of the scattered electrons in GRAAL facility in European Synchrotron Radiation Facility (ESRF) in Grenoble with respect to the Cosmic Microwave Background dipole reveals up to 10 sigma variations larger than the statistical errors. We now show that the variations are not due to the frequency variations of the accelerator. The nature of Compton edge variations remains unclear, thus outlining the imperative of dedicated studies of light speed anisotropy.

  18. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    CERN Document Server

    Madau, Piero

    2016-01-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct HeI photoionizations are the main source of IGM ...

  19. Growth retardation of Paramecium and mouse cells by shielding them from background radiation.

    Science.gov (United States)

    Kawanishi, Masanobu; Okuyama, Katsuyuki; Shiraishi, Kazunori; Matsuda, Yatsuka; Taniguchi, Ryoichi; Shiomi, Nobuyuki; Yonezawa, Morio; Yagi, Takashi

    2012-01-01

    In the 1970s and 1980s, Planel et al. reported that the growth of paramecia was decreased by shielding them from background radiation. In the 1990s, Takizawa et al. found that mouse cells displayed a decreased growth rate under shielded conditions. The purpose of the present study was to confirm that growth is impaired in organisms that have been shielded from background radiation. Radioprotection was produced with a shielding chamber surrounded by a 15 cm thick iron wall and a 10 cm thick paraffin wall that reduced the γ ray and neutron levels in the chamber to 2% and 25% of the background levels, respectively. Although the growth of Paramecium tetraurelia was not impaired by short-term radioprotection (around 10 days), which disagreed with the findings of Planel et al., decreased growth was observed after long-term (40-50 days) radiation shielding. When mouse lymphoma L5178Y cells were incubated inside or outside of the shielding chamber for 7 days, the number of cells present on the 6th and 7th days under the shielding conditions was significantly lower than that present under the non-shielding conditions. These inhibitory effects on cell growth were abrogated by the addition of a ¹³⁷Cs γ-ray source disk to the chamber. Furthermore, no growth retardation was observed in XRCC4-deficient mouse M10 cells, which display impaired DNA double strand break repair.

  20. Natural background radiation induces cytogenetic radioadaptive response more effectively than occupational exposure in human peripheral blood lymphocytes

    Science.gov (United States)

    Monfared, A. Shabestani; Mozdarani, H.; Amiri, M.

    2003-01-01

    Ramsar, a city in the northern Iran, has the highest level of natural background radiation in the world. It has been clearly shown that low doses of ionising radiation can induce resistance to subsequent higher exposures. This phenomenon is termed radioadaptive response. We have compared induction of cytogenetic radioadaptive response by High Natural Background Radiation (HNBR) in Ramsar and X-ray occupational exposure as conditioning doses in human peripheral blood lymphocytes. 30 healthy control individuals, living in Ramsar but in normal background radiation areas, 15 healthy individuals from Talesh Mahalleh, a region with extraordinary high level of background radiation, and 7 X-ray radiographers working in Ramsar hospital located in normal natural background ionising radiation area were evaluated. Peripheral blood samples were prepared and exposed to challenge dose of 0 and 2 Gy. Lymphocytes were scored using analysis of metaphase, for the presence of chromosomal aberrations. An adaptive response was observed in HNBR and radiation workers groups in comparison with sham controls. A significant increase in adaptive response was observed in the HNBR group if compared with the occupationally exposed group. These findings indicate that both natural background radiation and occupational exposure could induce cytogenetic radioadaptive response and it is more significant regarding to natural background ionising radiation.

  1. Radionuclides and radiation indices of high background radiation area in Chavara-Neendakara placer deposits (Kerala, India.

    Directory of Open Access Journals (Sweden)

    Mary Thomas Derin

    Full Text Available The present paper describes a detailed study on the distribution of radionuclides along Chavara - Neendakara placer deposit, a high background radiation area (HBRA along the Southwest coast of India (Kerala. Judged from our studies using HPGe gamma spectrometric detector, it becomes evident that Uranium ((238U, Thorium ((232Th and Potassium ((40K are the major sources for radioactivity prevailing in the area. Our statistical analyses reveal the existence of a high positive correlation between (238U and (232Th, implicating that the levels of these elements are interdependent. Our SEM-EDAX analyses reveal that titanium (Ti and zircon (Zr are the major trace elements in the sand samples, followed by aluminum, copper, iron, ruthenium, magnesium, calcium, sulphur and lead. This is first of its kind report on the radiation hazard indices on this placer deposit. The average absorbed dose rates (9795 nGy h(-1 computed from the present study is comparable with the top-ranking HBRAs in the world, thus offering the Chavara-Neendakara placer the second position, after Brazil; pertinently, this value is much higher than the World average. The perceptibly high absorbed gamma dose rates, entrained with the high annual external effective dose rates (AEED and average annual gonadal dose equivalent (AGDE values existing in this HBRA, encourage us to suggest for a candid assessment of the impact of the background radiation, if any, on the organisms that inhabit along this placer deposit. Future research could effectively address the issue of the possible impact of natural radiation on the biota inhabiting this HBRA.

  2. Temporal Dependence of Chromosomal Aberration on Radiation Quality and Cellular Genetic Background

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2017-01-01

    Radiation induced cancer risks are driven by genetic instability. It is not well understood how different radiation sources induce genetic instability in cells with different genetic background. Here we report our studies on genetic instability, particularly chromosome instability using fluorescence in situ hybridization (FISH), in human primary lymphocytes, normal human fibroblasts, and transformed human mammary epithelial cells in a temporal manner after exposure to high energy protons and Fe ions. The chromosome spread was prepared 48 hours, 1 week, 2 week, and 1 month after radiation exposure. Chromosome aberrations were analyzed with whole chromosome specific probes (chr. 3 and chr. 6). After exposure to protons and Fe ions of similar cumulative energy (??), Fe ions induced more chromosomal aberrations at early time point (48 hours) in all three types of cells. Over time (after 1 month), more chromosome aberrations were observed in cells exposed to Fe ions than in the same type of cells exposed to protons. While the mammary epithelial cells have higher intrinsic genetic instability and higher rate of initial chromosome aberrations than the fibroblasts, the fibroblasts retained more chromosomal aberration after long term cell culture (1 month) in comparison to their initial frequency of chromosome aberration. In lymphocytes, the chromosome aberration frequency at 1 month after exposure to Fe ions was close to unexposed background, and the chromosome aberration frequency at 1 month after exposure to proton was much higher. In addition to human cells, mouse bone marrow cells isolated from strains CBA/CaH and C57BL/6 were irradiated with proton or Fe ions and were analyzed for chromosome aberration at different time points. Cells from CBA mice showed similar frequency of chromosome aberration at early and late time points, while cells from C57 mice showed very different chromosome aberration rate at early and late time points. Our results suggest that relative

  3. Background X-ray Radiation Fields Produced by Young Embedded Star Clusters

    CERN Document Server

    Adams, Fred; Holden, Lisa

    2012-01-01

    Most star formation in our galaxy occurs within embedded clusters, and these background environments can affect the star and planet formation processes occurring within them. In turn, young stellar members can shape the background environment and thereby provide a feedback mechanism. This work explores one aspect of stellar feedback by quantifying the background X-ray radiation fields produced by young stellar objects. Specifically, the distributions of X-ray luminosities and X-ray fluxes produced by cluster environments are constructed as a function of cluster membership size $N$. Composite flux distributions, for given distributions of cluster sizes $N$, are also constructed. The resulting distributions are wide and the X-ray radiation fields are moderately intense, with the expected flux levels exceeding the cosmic and galactic X-ray backgrounds by factors of $\\sim10-1000$ (for energies 0.2 -- 15 keV). For circumstellar disks that are geometrically thin and optically thick, the X-ray flux from the backgrou...

  4. Levels of thoron and progeny in high background radiation area of southeastern coast of Odisha, India.

    Science.gov (United States)

    Ramola, R C; Gusain, G S; Rautela, B S; Sagar, D V; Prasad, G; Shahoo, S K; Ishikawa, T; Omori, Y; Janik, M; Sorimachi, A; Tokonami, S

    2012-11-01

    Exposure to radon, (222)Rn, is assumed to be the most significant source of natural radiation to human beings in most cases. It is thought that radon and its progeny are major factors that cause cancer. The presence of thoron, (220)Rn, was often neglected because it was considered that the quantity of thoron in the environment is less than that of radon. However, recent studies have shown that a high thoron concentration was found in some regions and the exposure to (220)Rn and its progeny can equal or several time exceed that of (220)Rn and its progeny. The results of thoron and its progeny measurements in the houses of high background radiation area (HBRA) of the southeastern coast of Odisha, India presented here. This area is one of the high background radiation areas in India with a large deposit of monazite sand which is the probable source of thoron. Both active and passive methods were employed for the measurement of thoron and its progeny in cement, brick and mud houses in the study area. Thoron concentration was measured using RAD-7 and Raduet. A CR-39 track detector was employed for the measurement of environmental thoron progeny, both in active and passive modes. Thoron and its progeny concentrations were found to be comparatively high in the area. A comparison between the results obtained with various techniques is presented in this paper.

  5. Coherent dynamics of Rydberg atoms in cosmic-microwave-background radiation

    Science.gov (United States)

    Tscherbul, Timur V.; Brumer, Paul

    2014-01-01

    Rydberg atoms excited by cold blackbody radiation are shown to display long-lived quantum coherences on time scales of tens of picoseconds. By solving non-Markovian equations of motion with no free parameters we obtain the time evolution of the density matrix and demonstrate that the blackbody-induced temporal coherences manifest as slowly decaying (100 ps) quantum beats in time-resolved fluorescence. An analytic model shows the dependence of the coherent dynamics on the energy splitting between atomic eigenstates, transition dipole moments, and coherence time of the radiation. Experimental detection of the fluorescence signal from a trapped ensemble of 108 Rydberg atoms is discussed, but shown to be technically challenging at present, requiring cosmic-microwave-background amplification somewhat beyond current practice.

  6. Small-scale anisotropy of the cosmic background radiation and scattering by cloudy plasma

    CERN Document Server

    Peebles, P J E

    1998-01-01

    If the first stars formed soon after decoupling of baryons from the thermal cosmic background radiation (CBR), the radiation may have been last scattered in a cloudy plasma. We discuss the resulting small-scale anisotropy of the CBR in the limit where the plasma clouds are small compared to the mean distance between clouds along a line of sight. This complements the perturbative analysis valid for mildly nonlinear departures from homogeneity at last scattering. We conclude that reasonable choices for the cloud parameters imply CBR anisotropy consistent with the present experimental limits, in agreement with the perturbative approach. This means the remarkable isotropy of the CBR need not contradict the early small-scale structure formation predicted in some cosmogonies.

  7. Southern Hemisphere Measurement of the Anisotropy in the CosmicMicrowave Background Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, George F.; Lubin, Phil M.

    1979-06-01

    A recent measurement of the anisotropy in the Cosmic Background Radiation from the southern hemisphere (Lima, Peru) is essentially in agreement with previous measurements from the northern hemisphere. The net anisotropy can be described as a first order spherical harmonic (Doppler) anisotropy of amplitude 3.1 {+-} 0.4 m{sup o}K with a quadrupole anisotropy of less than 1 m{sup o}K. In addition, measurements of the linear polarization yield an upper limit of 1 m{sup o}K, or one part in 3000, at 95% C.L. for the amplitudes of any spherical harmonic through third order.

  8. Cosmological perturbations of quantum mechanical origin and anisotropy of the microwave background radiation

    CERN Document Server

    Grishchuk, L P

    1994-01-01

    A theory of quantum-mechanical generation of cosmological perturbations is considered. The conclusion of this study is that if the large-angular-scale anisotropy in the cosmic microwave background radiation is caused by the long-wavelength cosmological perturbations of quantum mechanical origin, they are, most likely, gravitational waves, rather than density perturbations or rotational perturbations. Some disagreements with previous publications are clarified. This contribution to the Proceedings is based on Reference~[34]. NOTE: To generate an output, please extract and save the file crckapb.sty which appear at the beginning of the main file.

  9. Cosmic Microwave Background Radiation Constraints on a Modified Chaplygin Gas Model

    Institute of Scientific and Technical Information of China (English)

    LIU Dao-Jun; LI Xin-Zhou

    2005-01-01

    @@ A modified Chaplygin gas model of unifying dark energy and dark matter with the exotic equation of state p = Bρ- A/ρα , which can also explain the recent expansion of the universe, is investigated by means of constraining the location of the peak of the cosmic microwave background radiation spectrum. We find that the result of CMBR measurements does not exclude the nonzero value of parameter B, but allows it in the range -0.35 (<~) B (<~) 0.025.

  10. Biaxial lidar efficiency rising based on improving of spatial selectivity and stability against background radiation

    Energy Technology Data Exchange (ETDEWEB)

    Agishev, R.R.; Bajazitov, R.A.; Galeyev, M.M. [Kazan State Technical Univ., Tatarstan (Russian Federation). Dept. of Radioelectronic and Quantum Systems

    1996-12-31

    A criterion of spatial-angular efficiency (SAE) of remote electro-optical systems for atmosphere monitoring is formulated. The dependencies of the SAE from normalized range and minimal operating range for different optical receiving schemes of ground-based biaxial lidar are analyzed. It is shown that low SAE of traditional VIS and NIR systems are a main cause of a low signal-to-background-noise ratio at the photodetector input, the considerable measurements errors. and the following low accuracy of atmospheric optical parameters reconstruction. The most effective protection against sky background radiation in such systems consists in forming an angular field according to the introduced SAE criterion. Some approaches to achieve high value of the SAE-parameter for receiving system optimization are discussed.

  11. Biaxial lidar efficiency increase based on improving spatial selectivity and stability against background radiation

    Science.gov (United States)

    Agishev, Ravil R.; Bajazitov, Ravil A.; Galeyev, Marat M.

    1996-11-01

    A criterion of spatial-angular efficiency (SAE) of remote electro-optical systems for atmosphere monitoring is formulated. The dependencies of the SAE from normalized range and minimal operating range for different optical receiving schemes of ground-based biaxial LIDAR are analyzed. It is shown that low SAE of traditional VIS & NIR systems is a main cause of a low signal-to-background-noise ratio at the photodetector input, the considerably measurements errors, and the following low accuracy of atmospheric optical parameters reconstruction. The most effective protection against sky background radiation in such systems consists in forming an angular field according to the introduced SAE criterion. Some approaches to achieve high value of the SAE-parameter for receiving system optimization are discussed.

  12. A method of reducing background radiance for emissivity-compensated radiation thermometry of silicon wafers.

    Science.gov (United States)

    Iuchi, T; Toyoda, Y; Seo, T

    2013-02-01

    We studied the spectral and directional emissivities of silicon wafers using an optical polarization technique. Based on simulation and experimental results, we developed two radiation thermometry methods for silicon wafers: one is based on the polarized emissivity-invariant condition and the other is based on the relationship between the ratio of the p- and s-polarized radiance and the polarized emissivity. These methods can be performed at temperatures above 600 °C and over a wide wavelength range (0.9-4.8 μm), irrespective of the dielectric film thickness and the substrate resistivity, which depends on the dopant concentration. The temperature measurements were estimated to have expanded uncertainties (k = 2) of less than 5 °C. With a view to practically applying these methods, we investigated a method to reduce the intense background radiance produced by high-intensity heating lamps. We found that the background radiance can be greatly reduced by using a radiometer that is sensitive to wavelengths of 4.5 or 4.8 μm and suitable geometrical arrangements of a quartz plate. This opens up the possibility of using the two proposed radiation thermometry methods in practical applications.

  13. The Cosmic Microwave Background Radiation-A Unique Window on the Early Universe

    Science.gov (United States)

    Hinshaw, Gary

    2010-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of 11 00. Data from the first seven years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  14. Natural background. gamma. radiation exposure in the metropolitan area of the valley of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M.F.

    1982-01-01

    Measurements of the natural background radiation have been made at numerous places throughout the world. Very little work in this field has been done in developing countries. In Mexico the natural radiation to which the population is exposed has not been assessed. This dissertation represents a pioneer study in this environmental area. The radiation exposure which occupants within buildings receive as a result of naturally occurring radionuclides present in construction materials is the principal focus. Data were collected between August 1979 and November 1980. Continuous monitoring was done with TLDs placed on site for periods of 3 to 6 months. The instrumentation used for real-time measurements was a portable NaI (TI) scintillation detector. In addition, radiometric measurements were performed on construction materials commonly used in Mexican homes. Based on TLD readings taken within 75 dwellings, the typical indoor exposure for a resident of the study area is 9.2 ..mu..Rh/sup -1/. The average reading of the 152 indoor scintillometer surveys was 9.5 ..mu..Rh/sup -1/, the outdoor reading 7.5 ..mu..Rh/sup -1/. Results of one-way and multiway analyses of the exposure data to determine the effect due to building materials type, geologic subsoil, age of dwelling, and elevation are also presented. The results of 152 indoor scintillometer surveys are described.

  15. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Ricardo [Arizona State University, Glendale, AZ (United States); Balascuta, S. [Arizona State University, Glendale, AZ (United States); Benson, Stephen V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Bertozzi, William [Massachusetts Institute of Technology, Cambridge, MA (United States); Boyce, James R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cowan, Ray [Massachusetts Institute of Technology, Cambridge, MA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Evtushenko, Pavel [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Fisher, P. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ihloff, Ernest E. [Hampton University, Hampton, VA (United States); Kalantarians, Narbe [Hampton University, Hampton, VA (United States); Kelleher, Aidan Michael [Massachusetts Institute of Technology, Cambridge, MA (United States); Krossler, W. J. [William and Mary College, Williamsburg, VA (United States); Legg, Robert A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Long, Elena [University of New Hampshire, Durham, NH (United States); Milner, Richard [Massachusetts Institute of Technology, Cambridge, MA (United States); Neil, George R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Ou, Longwu [Massachusetts Institute of Technology, Cambridge, MA (United States); Schmookler, Barack Abraham [Massachusetts Institute of Technology, Cambridge, MA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tschalar, C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Williams, Gwyn P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-11-01

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.

  16. Primordial Gravitational Waves and Rescattered Electromagnetic Radiation in the Cosmic Microwave Background

    Science.gov (United States)

    Kim, Dong-Hoon; Trippe, Sascha

    2016-10-01

    Understanding the interaction of primordial gravitational waves (GWs) with the Cosmic Microwave Background (CMB) plasma is important for observational cosmology. In this article, we provide an analysis of an apparently as-yet-overlooked effect. We consider a single free electric charge and suppose that it can be agitated by primordial GWs propagating through the CMB plasma, resulting in periodic, regular motion along particular directions. Light reflected by the charge will be partially polarized, and this will imprint a characteristic pattern on the CMB. We study this effect by considering a simple model in which anisotropic incident electromagnetic (EM) radiation is rescattered by a charge sitting in spacetime perturbed by GWs, and becomes polarized. As the charge is driven to move along particular directions, we calculate its dipole moment to determine the leading-order rescattered EM radiation. The Stokes parameters of the rescattered radiation exhibit a net linear polarization. We investigate how this polarization effect can be schematically represented out of the Stokes parameters. We work out the representations of gradient modes (E-modes) and curl modes (B-modes) to produce polarization maps. Although the polarization effect results from GWs, we find that its representations, the E- and B-modes, do not practically reflect the GW properties such as strain amplitude, frequency, and polarization states.

  17. Criteria for the Formation of Population III Objects in the Ultraviolet Background Radiation

    CERN Document Server

    Kitayama, T; Umemura, M; Ikeuchi, S

    2001-01-01

    We explore possibilities of collapse and star formation in Population III objects exposed to the external ultraviolet background (UVB) radiation. Assuming spherical symmetry, we solve self-consistently radiative transfer of photons, non-equilibrium H2 chemistry, and gas hydrodynamics. Although the UVB does suppress the formation of low mass objects, the negative feedback turns out to be weaker than previously suggested. In particular, the cut-off scale of collapse drops significantly below the virial temperature 10^4 K at weak UV intensities, due to both self-shielding of the gas and H2 cooling. Clouds above this cut-off tend to contract highly dynamically, further promoting self-shielding and H2 formation. For plausible radiation intensities and spectra, the collapsing gas can cool efficiently to temperatures well below 10^4 K before rotationally supported and the final H2 fraction reaches 10^{-3}. Our results imply that star formation can take place in low mass objects collapsing in the UVB. The threshold b...

  18. A Criterion for Photoionization of Pregalactic Clouds Exposed to Diffuse Ultraviolet Background Radiation

    Science.gov (United States)

    Tajiri, Yukiko; Umemura, Masayuki

    1998-07-01

    To elucidate the permeation of cosmic ultraviolet (UV) background radiation into a pregalactic cloud and the subsequent ionization, the frequency-dependent radiative transfer equation is solved, coupled with the ionization process, for a spherical top-hat cloud composed of pure hydrogen. The calculations properly involve scattering processes of ionizing photons that originate from radiative recombination. As a result, it is shown that the self-shielding, although it is often disregarded in cosmological hydrodynamic simulations, could start to emerge shortly after the maximum expansion stages of density fluctuations. Quantitatively, the self-shielding is prominent above a critical number density of hydrogen, which is given by ncrit = 1.4 × 10-2 cm-3 (M/108 Msolar)-1/5I3/521 for 104 K gas, where M is the cloud mass and the UV background intensity is assumed to be Iν = 10-21I21(ν/νL)-1 ergs cm-2 s-1 sr-1 Hz-1, with νL being the Lyman limit frequency. The weak dependence of ncrit upon the mass is worth noting. The corresponding critical optical depth (τcrit) turns out to be independent of either M or I21, which is τcrit = 2.4 for 104 K gas. The present analysis reveals that the Strömgren approximation leads to overestimation of the photoionization effects. Also, the self-shielded neutral core is no longer sharply separated from surrounding ionized regions; a low but noticeable degree of ionization is caused by high-energy photons even in the self-shielded core. The present results may be substantial when one considers the biasing by photoionization against low-mass galaxy formation.

  19. Unique signatures of natural background radiation on human Y chromosomes from Kerala, India.

    Directory of Open Access Journals (Sweden)

    Sanjay Premi

    Full Text Available BACKGROUND: The most frequently observed major consequences of ionizing radiation are chromosomal lesions and cancers, although the entire genome may be affected. Owing to its haploid status and absence of recombination, the human Y chromosome is an ideal candidate to be assessed for possible genetic alterations induced by ionizing radiation. We studied the human Y chromosome in 390 males from the South Indian state of Kerala, where the level of natural background radiation (NBR is ten-fold higher than the worldwide average, and that from 790 unexposed males as control. RESULTS: We observed random microdeletions in the Azoospermia factor (AZF a, b and c regions in >90%, and tandem duplication and copy number polymorphism (CNP of 11 different Y-linked genes in about 80% of males exposed to NBR. The autosomal homologues of Y-linked CDY genes largely remained unaffected. Multiple polymorphic copies of the Y-linked genes showing single Y-specific signals suggested their tandem duplication. Some exposed males showed unilocus duplication of DAZ genes resulting in six copies. Notably, in the AZFa region, approximately 25% of exposed males showed deletion of the DBY gene, whereas flanking genes USP9Y and UTY remained unaffected. All these alterations were detected in blood samples but not in the germline (sperm samples. CONCLUSIONS: Exposure to high levels of NBR correlated with several interstitial polymorphisms of the human Y chromosome. CNPs and enhanced transcription of the SRY gene after duplication are envisaged to compensate for the loss of Y chromosome in some cells. The aforesaid changes, confined to peripheral blood lymphocytes, suggest a possible innate mechanism protecting the germline DNA from the NBR. Genome analysis of a larger population focusing on greater numbers of genes may provide new insights into the mechanisms and risks of the resultant genetic damages. The present work demonstrates unique signatures of NBR on human Y chromosomes

  20. Multi-frequency survey of background radiations of the Universe. The "Cosmological Gene" project. First results

    Science.gov (United States)

    Parijskij, Yu. N.; Mingaliev, M. G.; Nizhel'Skii, N. A.; Bursov, N. N.; Berlin, A. B.; Grechkin, A. A.; Zharov, V. I.; Zhekanis, G. V.; Majorova, E. K.; Semenova, T. A.; Stolyarov, V. A.; Tsybulev, P. G.; Kratov, D. V.; Udovitskii, R. Yu.; Khaikin, V. B.

    2011-10-01

    The results of the first stage of the "Cosmological Gene" project of the Russian Academy of Sciences are reported. These results consist in the accumulation of multi-frequency data in 31 frequency channels in the wavelength interval 1-55 cm with maximum achievable statistical sensitivity limited by the noise of background radio sources at all wavelengths exceeding 1.38 cm. The survey region is determined by constraints 00 h microwave background are reported as well as the contribution of these noise components in millimeter-wave experiments to be performed in the nearest years. The role of dipole radio emission of fullerene-type dust nanostructures is shown to be small. The most precise estimates of the role of background radio sources with inverted spectra are given and these sources are shown to create no serious interference in experiments. The average spectral indices of the weakest sources of the NVSS and FIRST catalogs are estimated. The "saturation" data for all wavelengths allowed a constraint to be imposed on the Sunyaev-Zeldovich noise (the SZ noise) at all wavelengths, and made it possible to obtain independent estimates of the average sky temperature from sources, substantially weaker than those listed in the NVSS catalog. These estimates are inconsistent with the existence of powerful extragalactic synchrotron background associated with radio sources. Appreciable "quadrupole" anisotropy in is detected in the distribution of the spectral index of the synchrotron radiation of the Galaxy, and this anisotropy should be taken into account when estimating the polarization of the cosmic microwave background on small l. All the results are compared to the results obtained by foreign researchers in recent years.

  1. The Spectrumof the Cosmic Background Radiation: Early and RecentMeasurements from the White Mountain Research Station

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, G.F.

    1985-09-01

    The White Mountain Research Station has provided a support facility at a high, dry, radio-quiet site for measurements that have established the blackbody character of the cosmic microwave background radiation. This finding has confirmed the interpretation of the radiation as a relic of the primeval fireball and helped to establish the hot Big Bang theory as the standard cosmological model.

  2. New Measurements of the Cosmic Background Radiation Temperature at3.3 mm Wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Witebsky, C.; Smoot, G.; De Amici, G.; Friedman, S.D.

    1986-02-01

    We have measured the temperature of the cosmic background radiation (CBR) at 3.3 mm wavelength in 1982, 1983, and 1984 as part of a larger project to determine the CBR temperature at five wavelengths from 12 cm to 3.3 mm (Smoot et al. 1985). The 3.3-mm measurements yield a brightness temperature of 2.57 K with a 1{sigma} uncertainty of 20.12 K. This paper describes the instrument, the measurement techniques, and the data-analysis procedures used. Our result is in good agreement with recent measurements at comparable wavelengths by Meyer and Jura (1985) and by Peterson, Richards, and Timusk (1985), but it disagrees with the temperatures reported by Woody and Richards (1981).

  3. A study of raining influence on the environmental radiation background spectra with HXMT/HE

    CERN Document Server

    Li, Xu-Fang; Zhang, Yi-Fei; Li, Zheng-Wei; Lu, Xue-Feng; Zhao, Jian-Ling; Zou, Chang-Lin; Xu, Yu-Peng; Lu, Fang-Jun

    2016-01-01

    Full functional and performance tests were performed many times before the Hard X-ray Modulation Telescope (HXMT) launch. During one of the tests, the count rate curves of the 18 High Energy Detectors (HED) have been found increased consistently within an interval of time. A further study on the correlation between the count rate and rainfall was carried out,and the increased net spectrum was also analyzed. The analysis results indicate that the short-lived 222Rn decay products (214Pb and 214Bi) in rainwater were responsible for the transient changes of the background radiation spectra in HEDs. The results show that the HXMT/HEDs have a good detection sensitivity on X/gamma rays, and the detector calibration results are effective.

  4. Measurement of the large-scale anisotropy of the cosmic background radiation at 3mm

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, G.L.

    1983-12-01

    A balloon-borne differential radiometer has measured the large-scale anisotropy of the cosmic background radiation (CBR) with high sensitivity. The antenna temperature dipole anistropy at 90 GHz (3 mm wavelength) is 2.82 +- 0.19 mK, corresponding to a thermodynamic anistropy of 3.48 +- mK for a 2.7 K blackbody CBR. The dipole direction, 11.3 +- 0.1 hours right ascension and -5.7/sup 0/ +- 1.8/sup 0/ declination, agrees well with measurements at other frequencies. Calibration error dominates magnitude uncertainty, with statistical errors on dipole terms being under 0.1 mK. No significant quadrupole power is found, placing a 90% confidence-level upper limit of 0.27 mK on the RMS thermodynamic quadrupolar anistropy. 22 figures, 17 tables.

  5. Calibration of low-frequency radio telescopes using the galactic background radiation

    Science.gov (United States)

    Dulk, G. A.; Erickson, W. C.; Manning, R.; Bougeret, J.-L.

    2001-01-01

    We consider the calibration of flux densities of radio bursts from decametric to kilometric wavelengths using ground-based and space-based data. The method we derive is applicable to low-frequency radio telescopes where galactic background radiation is the principal contribution to system temperature. It can be particularly useful for telescopes of low angular resolution observing spectra of radio bursts from the Sun and the planets because absolute calibration of these telescopes is very difficult with conventional techniques. Here we apply the method to observations from about 7 to 47 MHz that were made on the ground with the Bruny Island Radio Spectrometer located in Tasmania, Australia, and those from about 20 kHz to 13.8 MHz were made with the radio experiment WAVES on the WIND spacecraft. The spectrum of the galactic background radiation from 30 MHz has been carefully measured with low-resolution telescopes, starting more than a decade ago. We use this known spectrum to calibrate both BIRS and WAVES on an absolute scale. The accuracy we achieve is about a factor of two, whereas the flux densities of solar and planetary radio sources vary by many orders of magnitude. Our method permits inter-calibration of ground-based and space-based observations, and allows corrections to be made for instrumental uncertainties on both radio experiments. In addition, on the ground, it allows the spectra to be corrected for ionospheric absorption and partial ground reflections. As an application we show the spectrum of a solar type III burst observed from 47 MHz to 20 kHz. Its flux density was largest, S~ 10-17 W m-2 Hz-1, at about 3 MHz, while at 60 kHz and at 47 MHz it was lower by a factor of about 300.

  6. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    CERN Document Server

    Alarcon, R; Benson, S.V.; Bertozzi, W.; Boyce, J.R.; Cowan, R.; Douglas, D.; Evtushenko, P.; Fisher, P.; Ihloff, E.; Kalantarians, N.; Kelleher, A.; Kossler, W.J.; Legg, R.; Long, E.; Milner, R.G.; Neil, G.R.; Ou, L.; Schmookler, B.; Tennant, C.; TschaläR, C.; Williams, G.P.; Zhang, S.

    2013-01-01

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is ...

  7. Aerosol optical, microphysical and radiative properties at regional background insular sites in the western Mediterranean

    Science.gov (United States)

    Sicard, Michaël; Barragan, Rubén; Dulac, François; Alados-Arboledas, Lucas; Mallet, Marc

    2016-09-01

    In the framework of the ChArMEx (the Chemistry-Aerosol Mediterranean Experiment; http://charmex.lsce.ipsl.fr/) program, the seasonal variability of the aerosol optical, microphysical and radiative properties derived from AERONET (Aerosol Robotic Network; http://aeronet.gsfc.nasa.gov/) is examined in two regional background insular sites in the western Mediterranean Basin: Ersa (Corsica Island, France) and Palma de Mallorca (Mallorca Island, Spain). A third site, Alborán (Alborán Island, Spain), with only a few months of data is considered for examining possible northeast-southwest (NE-SW) gradients of the aforementioned aerosol properties. The AERONET dataset is exclusively composed of level 2.0 inversion products available during the 5-year period 2011-2015. AERONET solar radiative fluxes are compared with ground- and satellite-based flux measurements. To the best of our knowledge this is the first time that AERONET fluxes are compared with measurements at the top of the atmosphere. Strong events (with an aerosol optical depth at 440 nm greater than 0.4) of long-range transport aerosols, one of the main drivers of the observed annual cycles and NE-SW gradients, are (1) mineral dust outbreaks predominant in spring and summer in the north and in summer in the south and (2) European pollution episodes predominant in autumn. A NE-SW gradient exists in the western Mediterranean Basin for the aerosol optical depth and especially its coarse-mode fraction, which all together produces a similar gradient for the aerosol direct radiative forcing. The aerosol fine mode is rather homogeneously distributed. Absorption properties are quite variable because of the many and different sources of anthropogenic particles in and around the western Mediterranean Basin: North African and European urban areas, the Iberian and Italian peninsulas, most forest fires and ship emissions. As a result, the aerosol direct forcing efficiency, more dependent to absorption than the absolute

  8. Many body heat radiation and heat transfer in the presence of a non-absorbing background medium

    CERN Document Server

    Müller, Boris; Antezza, Mauro; Emig, Thorsten; Krüger, Matthias

    2016-01-01

    Heat radiation and near-field radiative heat transfer can be strongly manipulated by adjusting geometrical shapes, optical properties, or the relative positions of the objects involved. Typically these objects are considered as embedded in vacuum. By applying the methods of fluctuational electrodynamics, we derive general closed-form expressions for heat radiation and heat transfer in a system of $N$ arbitrary objects embedded in a passive non-absorbing background medium. Taking into account the principle of reciprocity, we explicitly prove the symmetry and positivity of transfer in any such system. Regarding applications, we find that the heat radiation of a sphere as well as the heat transfer between two parallel plates is strongly enhanced by the presence of a background medium. Regarding near- and far-field transfer through a gas like air, we show that a microscopic model (based on gas particles) and a macroscopic model (using a dielectric contrast) yield identical results. We also compare the radiative t...

  9. Space weather circulation model of plasma clouds as background radiation medium of space environment.

    Science.gov (United States)

    Kalu, A. E.

    A model for Space Weather (SW) Circulation with Plasma Clouds as background radiation medium of Space Environment has been proposed and discussed. Major characteristics of the model are outlined and the model assumes a baroclinic Space Environment in view of observed pronounced horizontal electron temperature gradient with prevailing weak vertical temperature gradient. The primary objective of the study is to be able to monitor and realistically predict on real- or near real-time SW and Space Storms (SWS) affecting human economic systems on Earth as well as the safety and Physiologic comfort of human payload in Space Environment in relation to planned increase in human space flights especially with reference to the ISS Space Shuttle Taxi (ISST) Programme and other prolonged deep Space Missions. Although considerable discussions are now available in the literature on SW issues, routine Meteorological operational applications of SW forecast data and information for Space Environment are still yet to receive adequate attention. The paper attempts to fill this gap in the literature of SW. The paper examines the sensitivity and variability in 3-D continuum of Plasmas in response to solar radiation inputs into the magnetosphere under disturbed Sun condition. Specifically, the presence of plasma clouds in the form of Coronal Mass Ejections (CMEs) is stressed as a major source of danger to Space crews, spacecraft instrumentation and architecture charging problems as well as impacts on numerous radiation - sensitive human economic systems on Earth. Finally, the paper considers the application of model results in the form of effective monitoring of each of the two major phases of manned Spaceflights - take-off and re-entry phases where all-time assessment of spacecraft transient ambient micro-incabin and outside Space Environment is vital for all manned Spaceflights as recently evidenced by the loss of vital information during take-off of the February 1, 2003 US Columbia

  10. Doses and risks from uranium are not increased significantly by interactions with natural background photon radiation.

    Science.gov (United States)

    Tanner, R J; Eakins, J S; Jansen, J T M; Harrison, J D

    2012-08-01

    The impact of depleted uranium (DU) on human health has been the subject of much conjecture. Both the chemical and radiological aspects of its behaviour in the human body have previously been investigated in detail, with the radiological impact being assumed to be linked to the alpha decay of uranium. More recently, it has been proposed that the accumulation in tissue of high-Z materials, such as DU, may give rise to enhanced local energy deposition in the presence of natural background photon radiation due to the high photoelectric interaction cross sections of high-Z atoms. It is speculated that, in addition to producing short-range photoelectrons, these events will be followed by intense Auger and Coster-Kronig electron emission, thereby causing levels of cell damage that are unaccounted for in conventional models of radiological risk. In this study, the physical and biological bases of these claims are investigated. The potential magnitudes of any effect are evaluated and discussed, and compared with the risks from other radiological or chemical hazards. Monte Carlo calculations are performed to estimate likely energy depositions due to the presence of uranium in human tissues in photon fields: whole body doses, organ doses in anthropomorphic phantoms and nano-/micro-dosimetric scenarios are each considered. The proposal is shown generally to be based on sound physics, but overall the impact on human health is expected to be negligible.

  11. High-impedence NbSi TES sensors for studying the cosmic microwave background radiation

    CERN Document Server

    Nones, Claudia; Benoit, Alain; Bergé, Laurent; Bideau, Aurelien; Camus, Philippe; Dumoulin, Louis; Monfardini, Alessandro; Rigaut, Olivier

    2012-01-01

    Precise measurements of the cosmic microwave background (CMB) are crucial in cosmology, because any proposed model of the universe must account for the features of this radiation. Of all CMB measurements that the scientific community has not yet been able to perform, the CMB B-mode polarization is probably the most challenging from the instrumental point of view. The signature of primordial gravitational waves, which give rise to a B-type polarization, is one of the goals in cosmology today and amongst the first objectives in the field. For this purpose, high-performance low-temperature bolometric cameras, made of thousands of pixels, are currently being developed by many groups, which will improve the sensitivity to B-mode CMB polarization by one or two orders of magnitude compared to the Planck satellite HFI detectors. We present here a new bolometer structure that is able to increase the pixel sensitivities and to simplify the fabrication procedure. This innovative device replaces delicate membrane-based s...

  12. Background radiation and individual dosimetry in the costal area of Tamil Nadu, India.

    Science.gov (United States)

    Matsuda, Naoki; Brahmanandhan, G M; Yoshida, Masahiro; Takamura, Noboru; Suyama, Akihiko; Koguchi, Yasuhiro; Juto, Norimichi; Raj, Y Lenin; Winsley, Godwin; Selvasekarapandian, S

    2011-07-01

    South coast of India is known as the high-level background radiation area (HBRA) mainly due to beach sands that contain natural radionuclides as components of the mineral monazite. The rich deposit of monazite is unevenly distributed along the coastal belt of Tamil Nadu and Kerala. An HBRA site that laid in 2×7 m along the sea was found in the beach of Chinnavillai, Tamil Nadu, where the maximum ambient dose equivalent reached as high as 162.7 mSv y(-1). From the sands collected at the HBRA spot, the high-purity germanium semi-conductor detector identified six nuclides of thorium series, four nuclides of uranium series and two nuclides belonging to actinium series. The highest radioactivity observed was 43.7 Bq g(-1) of Th-228. The individual dose of five inhabitants in Chinnavillai, as measured by the radiophotoluminescence glass dosimetry system, demonstrated the average dose of 7.17 mSv y(-1) ranging from 2.79 to 14.17 mSv y(-1).

  13. Study of radiation background at the north crossing point of the BEPC Ⅱ in collision mode%Study of radiation background at the north crossing point of the BEPC Ⅱ in collision mode

    Institute of Scientific and Technical Information of China (English)

    莫晓虎; 秦庆; 屈化民; 王贻芳; 徐金强; 张天保; 张建勇; 张清江; Achasov Mikhail; 蔡啸; 傅成栋; Harris Fred; 刘倩; Muchnoi Nikolay

    2011-01-01

    Understanding the radiation background at the north crossing point (NCP) in the tunnel of BEPCII is crucial for the performance safety of the High Purity Germanium (HPGe) detector, and in turn of great significance for long-term stable running of the ener

  14. Real-time airborne gamma-ray background estimation using NASVD with MLE and radiation transport for calibration

    Energy Technology Data Exchange (ETDEWEB)

    Kulisek, J.A., E-mail: Jonathan.Kulisek@pnnl.gov; Schweppe, J.E.; Stave, S.C.; Bernacki, B.E.; Jordan, D.V.; Stewart, T.N.; Seifert, C.E.; Kernan, W.J.

    2015-06-01

    Helicopter-mounted gamma-ray detectors can provide law enforcement officials the means to quickly and accurately detect, identify, and locate radiological threats over a wide geographical area. The ability to accurately distinguish radiological threat-generated gamma-ray signatures from background gamma radiation in real time is essential in order to realize this potential. This problem is non-trivial, especially in urban environments for which the background may change very rapidly during flight. This exacerbates the challenge of estimating background due to the poor counting statistics inherent in real-time airborne gamma-ray spectroscopy measurements. To address this challenge, we have developed a new technique for real-time estimation of background gamma radiation from aerial measurements without the need for human analyst intervention. The method can be calibrated using radiation transport simulations along with data from previous flights over areas for which the isotopic composition need not be known. Over the examined measured and simulated data sets, the method generated accurate background estimates even in the presence of a strong, {sup 60}Co source. The potential to track large and abrupt changes in background spectral shape and magnitude was demonstrated. The method can be implemented fairly easily in most modern computing languages and environments.

  15. Real-time airborne gamma-ray background estimation using NASVD with MLE and radiation transport for calibration

    Science.gov (United States)

    Kulisek, J. A.; Schweppe, J. E.; Stave, S. C.; Bernacki, B. E.; Jordan, D. V.; Stewart, T. N.; Seifert, C. E.; Kernan, W. J.

    2015-06-01

    Helicopter-mounted gamma-ray detectors can provide law enforcement officials the means to quickly and accurately detect, identify, and locate radiological threats over a wide geographical area. The ability to accurately distinguish radiological threat-generated gamma-ray signatures from background gamma radiation in real time is essential in order to realize this potential. This problem is non-trivial, especially in urban environments for which the background may change very rapidly during flight. This exacerbates the challenge of estimating background due to the poor counting statistics inherent in real-time airborne gamma-ray spectroscopy measurements. To address this challenge, we have developed a new technique for real-time estimation of background gamma radiation from aerial measurements without the need for human analyst intervention. The method can be calibrated using radiation transport simulations along with data from previous flights over areas for which the isotopic composition need not be known. Over the examined measured and simulated data sets, the method generated accurate background estimates even in the presence of a strong, 60Co source. The potential to track large and abrupt changes in background spectral shape and magnitude was demonstrated. The method can be implemented fairly easily in most modern computing languages and environments.

  16. The low Earth orbit radiation environment and its impact on the prompt background of hard x-ray focusing telescopes

    Science.gov (United States)

    Fioretti, V.; Bulgarelli, A.; Malaguti, G.; Bianchin, V.; Trifoglio, M.; Gianotti, F.

    2012-07-01

    The background minimization is a science-driven necessity in order to reach deep sensitivity levels in the hard X-ray band, one of the key scientific requirements for hard X-ray telescopes (e.g. NuSTAR, ASTRO-H). It requires a careful modeling of the radiation environment and new concepts of shielding systems. We exploit the Bologna Geant4 Multi-Mission Simulator (BoGEMMS) features to evaluate the impact of the Low Earth Orbit (LEO) radiation environment on the prompt background level for a hybrid Si/CdTe soft and hard X-ray detection assembly and a combined active and passive shielding system. For each class of particles, the spectral distribution of the background flux is simulated, exploring the effect of different materials (plastic vs inorganic active scintillator) and configurations (passive absorbers enclosing or surrounded by the active shielding) on the background count rate. While protons are efficiently removed by the active shielding, an external passive shielding causes the albedo electrons and positrons to be the primary source of background. Albedo neutrons are instead weakly interactive with the active shielding, and they cause an intense background level below 10 keV via elastic scattering. The best shielding configuration in terms of background and active shielding count rates is given by an inorganic scintillator placed inside the passive layers, with the addition of passive material to absorb the intense fluorescence lines of the active shielding and avoid escape peaks on the CdTe detector.

  17. Gamma radiation induced background determination for (n,γ) measurements with 4π detectors.

    Energy Technology Data Exchange (ETDEWEB)

    Reifarth, R.; Browne, J. C.; Esch, E. I.; Haight, R. C.; O& #x27; Donnell, J. M.; Kronenberg, A.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2003-07-29

    The main focus of this report is to investigate possibilities to disentangle the target originating γ- background from background caused by scattered neutrons at the sample assuming a DANCE like detector to measure detect the capture events.

  18. Characterization of gaseous detectors at the CERN Gamma Irradiation Facility: GEM performance in presence of high background radiation

    CERN Document Server

    AUTHOR|(CDS)2097588

    Muon detection is an efficient tool to recognize interesting physics events over the high background rate expected at the Large Hadron Collider (LHC) at CERN. The muon systems of the LHC experiments are based on gaseous ionization detectors. In view of the High-Luminosity LHC (HL-LHC) upgrade program, the increasing of background radiation could affect the gaseous detector performance, especially decreasing the efficiency and shortening the lifetime through ageing processes. The effects of charge multiplication, materials and gas composition on the ageing of gaseous detectors have been studied for decades, but the future upgrade of LHC requires additional studies on this topic. At the CERN Gamma Irradiation Facility (GIF++), a radioactive source of cesium-137 with an activity of 14 TBq is used to reproduce reasonably well the expected background radiation at HL-LHC. A muon beam has been made available to study detector performance. The characterization of the beam trigger will be discussed in the present w...

  19. High-impedance NbSi TES sensors for studying the cosmic microwave background radiation

    Science.gov (United States)

    Nones, C.; Marnieros, S.; Benoit, A.; Bergé, L.; Bideaud, A.; Camus, P.; Dumoulin, L.; Monfardini, A.; Rigaut, O.

    2012-12-01

    Precise measurements of the cosmic microwave background (CMB) are crucial in cosmology because any proposed model of the universe must account for the features of this radiation. The CMB has a thermal blackbody spectrum at a temperature of 2.725 K, i.e. the spectrum peaks in the microwave range frequency of 160.2 GHz, corresponding to a 1.9-mm wavelength. Of all CMB measurements that the scientific community has not yet been able to perform, the CMB B-mode polarization is probably the most challenging from the instrumental point of view. The signature of primordial gravitational waves, which give rise to a B-type polarization, is one of the goals in cosmology today and amongst the first objectives in the field. For this purpose, high-performance low-temperature bolometric cameras, made of thousands of pixels, are currently being developed by many groups, which will improve the sensitivity to B-mode CMB polarization by one or two orders of magnitude compared to the Planck satellite HFI detectors. We present here a new bolometer structure that is able to increase the pixel sensitivities and to simplify the fabrication procedure. This innovative device replaces delicate membrane-based structures and eliminates the mediation of phonons: the incoming energy is directly captured and measured in the electron bath of an appropriate sensor and the thermal decoupling is achieved via the intrinsic electron-phonon decoupling of the sensor at very low temperature. Reported results come from a 204-pixel array of NbxSi1-x transition edge sensors with a meander structure fabricated on a 2-inch silicon wafer using electron-beam co-evaporation and a cleanroom lithography process. To validate the application of this device to CMB measurements, we have performed an optical calibration of our sample in the focal plane of a dilution cryostat test bench. We have demonstrated a light absorption close to 20% and an optical noise equivalent power of about 7×10-16 W/√Hz, which is highly

  20. Ralph A. Alpher, George Antonovich Gamow, and the Prediction of the Cosmic Microwave Background Radiation

    OpenAIRE

    2014-01-01

    The first prediction of the existence of "relict radiation" or radiation remaining from the "Big Bang" was made in 1948. This derived from the seminal dissertation work of Ralph A. Alpher. He was a doctoral student of George A. Gamow and developed several critical advances in cosmology in late 1946, 1947, and 1948. Alpher developed the ideas of "hot" big bang cosmology to a high degree of physical precision, and was the first to present the idea that radiation, not matter, predominated the ea...

  1. The fallacy of comparing diagnostic radiation with background radiation; and the need to learn from past mistakes

    Directory of Open Access Journals (Sweden)

    D J Emby

    2010-08-01

    Full Text Available The subject of radiation exposure for diagnostic purposes is currently a ‘hot’ topic, and it is appropriate that the debate around this issue is given exposure in the pages of the SAJR. I would like to comment on a few of the points raised by Dr Tipler in his article that appeared in the June 2010 SAJR.

  2. Real-Time Airborne Gamma-Ray Background Estimation Using NASVD with MLE and Radiation Transport for Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Kulisek, Jonathan A.; Schweppe, John E.; Stave, Sean C.; Bernacki, Bruce E.; Jordan, David V.; Stewart, Trevor N.; Seifert, Carolyn E.; Kernan, Warnick J.

    2015-06-01

    Helicopter-mounted gamma-ray detectors can provide law enforcement officials the means to quickly and accurately detect, identify, and locate radiological threats over a wide geographical area. The ability to accurately distinguish radiological threat-generated gamma-ray signatures from background gamma radiation in real time is essential in order to realize this potential. This problem is non-trivial, especially in urban environments for which the background may change very rapidly during flight. This exacerbates the challenge of estimating background due to the poor counting statistics inherent in real-time airborne gamma-ray spectroscopy measurements. To address this, we have developed a new technique for real-time estimation of background gamma radiation from aerial measurements. This method is built upon on the noise-adjusted singular value decomposition (NASVD) technique that was previously developed for estimating the potassium (K), uranium (U), and thorium (T) concentrations in soil post-flight. The method can be calibrated using K, U, and T spectra determined from radiation transport simulations along with basis functions, which may be determined empirically by applying maximum likelihood estimation (MLE) to previously measured airborne gamma-ray spectra. The method was applied to both measured and simulated airborne gamma-ray spectra, with and without man-made radiological source injections. Compared to schemes based on simple averaging, this technique was less sensitive to background contamination from the injected man-made sources and may be particularly useful when the gamma-ray background frequently changes during the course of the flight.

  3. Scientific results from the cosmic background explorer (COBE). [Information on cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C.L.; Boggess, N.W.; Cheng, E.S.; Hauser, M.G.; Kelsall, T.; Mather, J.C.; Moseley, S.H. Jr.; Shafer, R.A.; Silverberg, R.F. (NASA/Goddard Space Flight Center, Greenbelt, MD (United States)); Murdock, T.L. (General Research Corp., Danvers, MA (United States)); Smoot, G.F. (Lawrence Berkeley Lab., CA (United States)); Weiss, R. (Massachusetts Inst. of Technology, Cambridge (United States)); Wright, E.L. (Univ. of California, Los Angeles (United States))

    1993-06-01

    The National Aeronautics and Space Administration (NASA) has flown the COBE satellite to observe the Big Bang and the subsequent formation of galaxies and large-scale structure. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the cosmic microwave background is that of a black body of temperature T = 2.73 [+-] 0.06 K, with no deviation from a black-body spectrum greater than 0.25% of the peak brightness. The data from the Differential Microwave Radiometers (DMR) show statistically significant cosmic microwave background anisotropy, consistent with a scale-invariant primordial density fluctuation spectrum. Measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservation upper limits to the cosmic infrared background. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the cosmic infrared background limits. 104 refs., 1 tab.

  4. Temperature fluctuations in the primordial background radiation due to gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Doroshkevich, A.G.; Novikov, I.D.; Polnarev, A.G.

    1977-09-01

    The influence of cosmological gravitational waves on the anisotropy of the primordial microwave radiation is discussed. The calculations allow for the gradual rise in the transparency of the plasma to the primordial radiation as recombination proceeds at a red shift z approx. =1300, for the curvature of three-space if ..cap omega..=rho/rho/sub cr/ <1, and for the distorting effects of real antennas upon the observations. The results are presented in a form convenient for direct interpretation of the observations. Comparison of the theoretical results with the empirical evidence sets an upper limit on the possible energy density of gravitational waves in various parts of their spectrum. The anisotropy expected in the primordial electromagnetic radiation is calculated for various assumptions as to the cosmological gravitational wave spectrum.

  5. The Cosmic Microwave Background Radiation Power Spectrum as a Random Bit Generator for Symmetric and Asymmetric-Key Cryptography

    CERN Document Server

    Lee, Jeffrey S

    2016-01-01

    In this note, the Cosmic Microwave Background (CMB) Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n x n) random key matrix for a Vernam cipher is established.

  6. High background radiation areas of Ram sar in Iran: evaluation of DNA damage by alkaline single cell gel electrophoresis (SCE)

    Energy Technology Data Exchange (ETDEWEB)

    Masoomi, J.R. [Biophysics Department, College of Sciences, Tarbiat Modarres University, Tehran (Iran, Islamic Republic of); Mohammadi, Sh. [Radiation Molecular Genetic Laboratory, National Radiation Protection Department (NRPD), Iranian Nuclear Regulatory Authority (INRA), P.O. Box 14155-4494, Tehran (Iran, Islamic Republic of); Amini, M. [Faculty of Pharmacy, Azad University of Tehran (Iran, Islamic Republic of); Ghiassi-Nejad, M. [Biophysics Department, College of Sciences, Tarbiat Modarres University, Tehran (Iran, Islamic Republic of)]. E-mail: ghiassi@mailcity.com

    2006-07-01

    The hot springs in special areas in Ram sar, a northern coastal town in Iran, contain {sup 226}Ra and {sup 222}Rn. The natural radiation effects, radiosensitivity or adaptive responses, on the inhabitants of high natural radiation in Ram sar were studied. The single cell gel electrophoresis was used to monitor DNA damages. Three groups of volunteers were selected, one from high natural background radiation areas as the case group and two from normal background radiation areas as controls (control 1 and control 2). The latter one had the similar living situation to case group while the other (control 2) had different living situation from the other groups. Peripheral blood mononuclear cells (PMNCs) were separated and irradiated by {sup 6}Co source at five different gamma doses. It was found that the spontaneous level of DNA damage and the induced DNA damage in all challenging doses in case group was considerably higher than control groups (p < 0.05). On the other hand, the repair rate in those volunteers, who received less than 10.2 mSv/y was significantly more than the control groups. In the contrary, individuals who live in homes with more than 10.2 mSv/y had incomplete repair. Additionally the plasma and urinary levels of vitamin C were measured spectrophotometrically. Although the concentration of vitamin C of plasma was equal in case and control 1 groups, the urinary level of vitamin C was found to be lower in the case group.

  7. Pulse-shape analysis for gamma background rejection in thermal neutron radiation using CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kavrigin, P., E-mail: pavel.kavrigin@cividec.at [Vienna University of Technology (Austria); Finocchiaro, P., E-mail: finocchiaro@lns.infn.it [INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Griesmayer, E., E-mail: erich.griesmayer@cividec.at [Vienna University of Technology (Austria); Jericha, E., E-mail: jericha@ati.ac.at [Vienna University of Technology (Austria); Pappalardo, A., E-mail: apappalardo@lns.infn.it [INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Weiss, C., E-mail: Christina.Weiss@cern.ch [Vienna University of Technology (Austria); European Organisation for Nuclear Research (CERN), Geneva (Switzerland)

    2015-09-21

    A novel technique for the rejection of gamma background from charged-particle spectra was demonstrated using a CVD diamond detector with a {sup 6}Li neutron converter installed at a thermal neutron beamline of the TRIGA research reactor at the Atominstitut (Vienna University of Technology). Spectra of the alpha particles and tritons of {sup 6}Li(n,T){sup 4}He thermal neutron capture reaction were separated from the gamma background by a new algorithm based on pulse-shape analysis. The thermal neutron capture in {sup 6}Li is already used for neutron flux monitoring, but the ability to remove gamma background allows using a CVD diamond detector for thermal neutron counting. The pulse-shape analysis can equally be applied to all cases where the charged products of an interaction are absorbed in the diamond and to other background particles that fully traverse the detector.

  8. The X-ray log N-log S relation. [background radiation in extragalactic media

    Science.gov (United States)

    Boldt, Elihu

    1989-01-01

    Results from various surveys are reviewed as regards X-ray source counts at high galactic latitudes and the luminosity functions determined for extragalactic sources. Constraints on the associated log N-log S relation provided by the extragalactic X-ray background are emphasized in terms of its spatial fluctuations and spectrum as well as absolute flux level. The large number of sources required for this background suggests that there is not a sharp boundary in the redshift distribution of visible matter.

  9. RADIU-226 CONTENT IN SOIL OF THE HIGH NATURAL BACKGROUND RADIATION AREA OF RAMSAR (IRAN

    Directory of Open Access Journals (Sweden)

    B.Khademi

    1978-11-01

    Full Text Available The existence of a high natural radiation area in the northern part of Iran (Ramsar is proved. Ra 226 in soil is measured. The results are: minimum 23.5 pCi/g and maximum 999 pCi/g soil. Environmental radioactivity is from 0.1 to 5 mr/h.

  10. Assessment of indoor radiation dose received by the residents of natural high background radiation areas of coastal villages of Kanyakumari district, Tamil Nadu, India

    Energy Technology Data Exchange (ETDEWEB)

    Deva Jayanthi, D., E-mail: d.devajayanthi@gmail.co [Department of Physics, Women' s Christian College, Nagercoil 629001 (India); Maniyan, C.G. [Environmental Assessment Division, BARC, Mumbai 400085 (India); Perumal, S. [Department of Physics and Research Centre, S.T.Hindu College, Nagercoil 629002 (India)

    2011-07-15

    Radiation exposure and effective dose received through two routes of exposure, viz. external and internal, via inhalation, by residents of 10 villages belonging to Natural High Background Radiation Areas (NHBRA) of coastal regions of Kanyakumari District and Tamil Nadu in India were studied. While the indoor gamma radiation levels were monitored using Thermo Luminescent Dosimeters (TLDs), the indoor radon and thoron gas concentrations were measured using twin chamber dosimeters employing Solid State Nuclear Track Detectors (SSNTDs, LR-115-II). The average total annual effective dose was estimated and found to be varying from 2.59 to 8.76 mSv. -- Highlights: {yields} The effective dose received by the villages of Natural High Background Area (NHBRA) such as Enayam, Midalam and Mel Midalam is high when compared with other study areas. {yields} The high dose indicates higher concentration of radioactive nuclides like Thorium and Uranium in the soil. {yields} As radiation is harmful to human life, the external and internal doses can be reduced by removing the monazite content present in the soil by mineral separation. {yields} Contribution from vegetables, fruits, fish and other non vegetarian items are also being examined. {yields} These results along with other socio-economic factors can throw considerable light on the epidemiological impacts due to low levels of chronic exposure.

  11. The modulating impact of illumination and background radiation on 8 Hz-induced infrasound effect on physicochemical properties of physiolagical solution.

    Science.gov (United States)

    Baghdasaryan, Naira; Mikayelyan, Yerazik; Barseghyan, Sedrak; Dadasyan, Erna; Ayrapetyan, Sinerik

    2012-12-01

    At present, when the level of background ionizing radiation is increasing in a number of world locations, the problem of the study of biological effect of high background radiation becomes one of the extremely important global problems in modern life sciences. The modern research in biophysics proved that water is a most essential target, through which the biological effects of ionizing and non-ionizing radiations are realized. Therefore, there is no doubt about the strong dependency of non-ionizing radiation-induced effect on the level of background radiation. Findings have shown that illumination and background radiation have a strong modulation effect on infrasound-induced impacts on water physicochemical properties, which could also have appropriate effect on living organisms.

  12. Probing reionization with the cross-power spectrum of 21 cm and near-infrared radiation backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Xiao-Chun, E-mail: xcmao@bao.ac.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-08-01

    The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross-power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then, the intensity of the NIR background is estimated by collecting emission from stars in first-light galaxies. On large scales, we find that the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolute value of the cross-power spectrum is |Δ{sub 21,NIR}{sup 2}|∼10{sup −4} mK nW m{sup –2} sr{sup –1}, reached at ℓ ∼ 1000 when the mean fraction of ionized hydrogen is x-bar{sub i}∼0.9. We find that Square Kilometer Array can measure the 21 cm-NIR cross-power spectrum in conjunction with mild extensions to the existing CIBER survey, provided that the integration time independently adds up to 1000 and 1 hr for 21 cm and NIR observations, and that the sky coverage fraction of the CIBER survey is extended from 4 × 10{sup –4} to 0.1. Measuring the cross-correlation signal as a function of redshift provides valuable information on reionization and helps confirm the origin of the 'missing' NIR background.

  13. Probing Reionization with the Cross-power Spectrum of 21 cm and Near-infrared Radiation Backgrounds

    Science.gov (United States)

    Mao, Xiao-Chun

    2014-08-01

    The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross-power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then, the intensity of the NIR background is estimated by collecting emission from stars in first-light galaxies. On large scales, we find that the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolute value of the cross-power spectrum is |\\Delta ^2_{21,NIR}|\\sim 10^{-4} mK nW m-2 sr-1, reached at l ~ 1000 when the mean fraction of ionized hydrogen is \\bar{x}_{i}\\sim 0.9. We find that Square Kilometer Array can measure the 21 cm-NIR cross-power spectrum in conjunction with mild extensions to the existing CIBER survey, provided that the integration time independently adds up to 1000 and 1 hr for 21 cm and NIR observations, and that the sky coverage fraction of the CIBER survey is extended from 4 × 10-4 to 0.1. Measuring the cross-correlation signal as a function of redshift provides valuable information on reionization and helps confirm the origin of the "missing" NIR background.

  14. Ralph A. Alpher, George Antonovich Gamow, and the Prediction of the Cosmic Microwave Background Radiation

    CERN Document Server

    Alpher, Victor S

    2014-01-01

    The first prediction of the existence of "relict radiation" or radiation remaining from the "Big Bang" was made in 1948. This derived from the seminal dissertation work of Ralph A. Alpher. He was a doctoral student of George A. Gamow and developed several critical advances in cosmology in late 1946, 1947, and 1948. Alpher developed the ideas of "hot" big bang cosmology to a high degree of physical precision, and was the first to present the idea that radiation, not matter, predominated the early universal adiabatic expansion first suggested by A. Friedmann in the early 1920s. Alpher and Herman predicted the residual relic black-body temperature in 1948 and 1949 at around 5 K. However, to this day, this prediction, and other seminal ideas in big bang cosmology, have often been attributed erroneously to the better-known George A. Gamow. This article reviews some of the more egregious and even farcical errors in the scholarly literature about Ralph A. Alpher and his place in the history of big bang cosmology. Tw...

  15. Small-scale primordial magnetic fields and anisotropies in the cosmic microwave background radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jedamzik, Karsten [Laboratoire de Univers et Particules, UMR5299-CNRS, Université de Montpellier II, F-34095 Montpellier (France); Abel, Tom, E-mail: karsten.jedamzik@um2.fr, E-mail: tabel@slac.stanford.edu [Kavli Institute for Particle Astrophysics and Cosmology, SLAC/Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2013-10-01

    It is shown that small-scale magnetic fields present before recombination induce baryonic density inhomogeneities of appreciable magnitude. The presence of such inhomogeneities changes the ionization history of the Universe, which in turn decreases the angular scale of the Doppler peaks and increases Silk damping by photon diffusion. This unique signature could be used to (dis)prove the existence of primordial magnetic fields of strength as small as B ≅ 10{sup −11} Gauss by cosmic microwave background observations.

  16. Rings and spots in the structure of the cosmic background radiation

    Energy Technology Data Exchange (ETDEWEB)

    Argueeso, F.; Martinez-Gonzalez, E.; Sanz, J.L.

    1989-01-01

    The influence of a large-scale spherical mass concentration (or void) on the microwave and X-ray backgrounds is studied. Rings and spots in the sky patterns appear due to focusing of the photons, once the monopole and dipole amplitude have been subtracted to avoid contamination by local structures. It is shown how maps over the whole sky can help to identify such a dominant structure. 23 references.

  17. Determination of Absorbed and Effective Dose from Natural Background Radiation around a Nuclear Research Facility

    Directory of Open Access Journals (Sweden)

    M. A. Musa

    2011-01-01

    Full Text Available Problem statement: This study presents result of outdoor absorbed dose rate and estimated effective dose from the naturally occurring radionuclides 232Th and 238U series 40K, around a Nuclear Research Reactor at the Centre for Energy Research and Training (CERT, Zaria, Nigeria. Approach: A high-resolution in situ ?-ray spectrometry was used to carry out the study. CERT houses a 30Kw Research Reactor and other neutron and gamma sources for Research and Training. Results: The values of absorbed dose rate in air for 232Th, 238U and 40K range from 8.2 ± 2.5-24.5 ± 3.6 nGy h?1, 1.9 ± 1.2-4.6 ± 2.5 nGy h?1 and 12.2 ± 5-38 ± 6.7n Gy h?1 respectively . The estimated total annual effective dose outdoor for the sites range from 27.3-79.9 ?Sv y?1.Conclusions: This showed that radiation exposure level for the public is lower than the recommended value of 1 mSv y?1.Hence, the extensive usage of radioactive materials within and around CERT does not appear to have any impact on the radiation burden of the environment.

  18. Excess relative risk of solid cancer mortality after prolonged exposure to naturally occurring high background radiation in Yangjiang, China

    Energy Technology Data Exchange (ETDEWEB)

    Sun Quanfu; Tao Zufan [Ministry of Health, Beijing (China). Lab. of Industrial Hygiene; Akiba, Suminori (and others)

    2000-10-01

    A study was made on cancer mortality in the high-background radiation areas of Yangjiang, China. Based on hamlet-specific environmental doses and sex- and age-specific occupancy factors, cumulative doses were calculated for each subject. In this article, we describe how the indirect estimation was made on individual dose and the methodology used to estimate radiation risk. Then, assuming a linear dose response relationship and using cancer mortality data for the period 1979-1995, we estimate the excess relative risk per Sievert for solid cancer to be -0.11 (95% CI, -0.67, 0.69). Also, we estimate the excess relative risks of four leading cancers in the study areas, i.e., cancers of the liver, nasopharynx, lung and stomach. In addition, we evaluate the effects of possible bias on our risk estimation. (author)

  19. Probing the cosmic x-ray and MeV gamma ray background radiation through the anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States); Madejski, Grzegorz M. [Stanford Univ., CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States); Rikkyo Univ., Tokyo (Japan)

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once future hard X-ray all sky satellites achieve a sensitivity better than 10–12 erg cm–2 s–1 at 10-30 keV or 30-50 keV—although this is beyond the sensitivities of current hard X-ray all sky monitors—angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  20. Probing the Cosmic X-Ray and MeV Gamma-Ray Background Radiation through the Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Madejski, Grzegorz M. [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once the future hard X-ray all sky satellites achieve the sensitivity better than 10-12 erg/cm2/s-1 at 10-30 keV or 30-50 keV - although this is beyond the sensitivities of current hard X-ray all sky monitors - angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  1. Survey of Gamma Dose and Radon Exhalation Rate from Soil Surface of High Background Natural Radiation Areas in Ramsar, Iran

    Directory of Open Access Journals (Sweden)

    Rouhollah Dehghani

    2013-09-01

    Full Text Available Background: Radon is a radioactive gas and the second leading cause of death due to lung cancer after smoking. Ramsar is known for having the highest levels of natural background radiation on earth. Materials and Methods: In this research study, 50 stations of high radioactivity areas of Ramsar were selected in warm season of the year. Then gamma dose and radon exhalation rate were measured.Results: Results showed that gamma dose and radon exhalation rate were in the range of 51-7100 nSv/hr and 9-15370 mBq/m2s, respectively.Conclusion: Compare to the worldwide average 16 mBq/m2s, estimated average annual effective of Radon exhalation rate in the study area is too high.

  2. Reduction of Radioactive Backgrounds in Electroformed Copper for Ultra-Sensitive Radiation Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Eric W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Aalseth, Craig E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Farmer, Orville T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hossbach, Todd W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liezers, Martin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miley, Harry S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Overman, Nicole R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Reeves, James H. [Reeves and Son LLC., Richland, WA (United States)

    2014-07-07

    Abstract Ultra-pure construction materials are required for the next generation of neutrino physics, dark matter and environmental science applications. These new efforts require materials with purity levels at or below 1 uBq/kg 232Th and 238U. Yet radiometric analysis lacks sensitivity below ~10 uBq/kg for the U and Th decay chains. This limits both the selection of clean materials and the validation of purification processes. Copper is an important high-purity material for low-background experiments due to the ease with which it can be purified by electrochemical methods. Electroplating for purification into near-final shapes, known as electroforming, is one such method. Continued refinement of the copper electroforming process is underway, for the first time guided by an ICP-MS based assay method that can measure 232Th and 238U near the desired purity levels. An assay of electroformed copper at 10 uBq/kg for 232Th has been achieved and is described. The implications of electroformed copper at or better than this purity on next-generation low-background experiments are discussed.

  3. Radiation and Background Levels in a CLIC Detector due to Beam-Beam Effects Optimisation of Detector Geometries and Technologies

    CERN Document Server

    Sailer, André; Lohse, Thomas

    2013-01-10

    The high charge density---due to small beam sizes---and the high energy of the proposed CLIC concept for a linear electron--positron collider with a centre-of-mass energy of up to 3~TeV lead to the production of a large number of particles through beam-beam interactions at the interaction point during every bunch crossing (BX). A large fraction of these particles safely leaves the detector. A still significant amount of energy will be deposited in the forward region nonetheless, which will produce secondary particles able to cause background in the detector. Furthermore, some particles will be created with large polar angles and directly cause background in the tracking detectors and calorimeters. The main sources of background in the detector, either directly or indirectly, are the incoherent $mathrm{e}^{+}mathrm{e}^{-}$ pairs and the particles from $gammagamma ightarrow$ hadron events. The background and radiation levels in the detector have to be estimated, to study if a detector is feasible, that can han...

  4. Isotropic blackbody cosmic microwave background radiation as evidence for a homogeneous universe.

    Science.gov (United States)

    Clifton, Timothy; Clarkson, Chris; Bull, Philip

    2012-08-03

    The question of whether the Universe is spatially homogeneous and isotropic on the largest scales is of fundamental importance to cosmology but has not yet been answered decisively. Surprisingly, neither an isotropic primary cosmic microwave background (CMB) nor combined observations of luminosity distances and galaxy number counts are sufficient to establish such a result. The inclusion of the Sunyaev-Zel'dovich effect in CMB observations, however, dramatically improves this situation. We show that even a solitary observer who sees an isotropic blackbody CMB can conclude that the Universe is homogeneous and isotropic in their causal past when the Sunyaev-Zel'dovich effect is present. Critically, however, the CMB must either be viewed for an extended period of time, or CMB photons that have scattered more than once must be detected. This result provides a theoretical underpinning for testing the cosmological principle with observations of the CMB alone.

  5. Background Radiation Survey of the Radiological/Nuclear Countermeasures Test and Evaluation Center

    Energy Technology Data Exchange (ETDEWEB)

    Colin Okada

    2010-09-16

    In preparation for operations at the Radiological/Nuclear Countermeasures Test and Evaluation Complex (Rad/NucCTEC), the Department of Homeland Security Domestic Nuclear Detection Office (DHS/DNDO) requested that personnel from the Remote Sensing Laboratory (RSL) conduct a survey of the present radiological conditions at the facility. The measurements consist of the exposure rate from a high-pressure ion chamber (HPIC), high-resolution spectra from a high-purity germanium (HPGe) system in an in situ configuration, and low-resolution spectra from a sodium iodide (NaI) detector in a radiation detection backpack. Measurements with these systems were collected at discrete locations within the facility. Measurements were also collected by carrying the VECTOR backpack throughout the complex to generate a map of the entire area. The area was also to be surveyed with the Kiwi (an array of eight-2-inch x 4-inch x 16-inch NaI detectors) from the Aerial Measuring Systems; however, conflicts with test preparation activities at the site prevented this from being accomplished.

  6. Contamination cannot explain the lack of large-scale power in the cosmic microwave background radiation

    CERN Document Server

    Bunn, Emory F

    2008-01-01

    Several anomalies appear to be present in the large-angle cosmic microwave background (CMB) anisotropy maps of WMAP. One of these is a lack of large-scale power. Because the data otherwise match standard models extremely well, it is natural to consider perturbations of the standard model as possible explanations. We show that, as long as the source of the perturbation is statistically independent of the source of the primary CMB anisotropy, no such model can explain this large-scale power deficit. On the contrary, any such perturbation always reduces the probability of obtaining any given low value of large-scale power. We rigorously prove this result when the lack of large-scale power is quantified with a quadratic statistic, such as the quadrupole moment. When a statistic based on the integrated square of the correlation function is used instead, we present strong numerical evidence in support of the result. The result applies to models in which the geometry of spacetime is perturbed (e.g., an ellipsoidal U...

  7. A possible cold imprint of voids on the microwave background radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yan-Chuan; Cole, Shaun; Frenk, Carlos S. [Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Neyrinck, Mark C. [Department of Physics and Astronomy, The Johns Hopkins University, 3701 San Martin Drive, Baltimore, MD 21218 (United States); Szapudi, István, E-mail: y.c.cai@durham.ac.uk [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2014-05-10

    We measure the average temperature decrement on the cosmic microwave background (CMB) produced by voids selected in the Sloan Digital Sky Survey Data Release 7 spectroscopic redshift galaxy catalog, spanning redshifts 0 < z < 0.44. We find an imprint amplitude between 2.6 and 2.9 μK as viewed through a compensated top-hat filter scaled to the radius of each void, we assess the statistical significance of the imprint at ∼2σ, and we make crucial use of N-body simulations to calibrate our analysis. As expected, we find that large voids produce cold spots on the CMB through the integrated Sachs-Wolfe (ISW) effect. However, we also find that small voids in the halo density field produce hot spots, because they reside in contracting, larger-scale overdense regions. This is an important effect to consider when stacking CMB imprints from voids of different radii. We have found that the same filter radius that gives the largest ISW signal in simulations also yields close to the largest detected signal in the observations. However, although it is low in significance, our measured signal has a much higher amplitude than expected from ISW in the concordance ΛCDM universe. The discrepancy is also at the ∼2σ level. We have demonstrated that our result is robust against the varying of thresholds over a wide range.

  8. The 60-micron extragalactic background radiation intensity, dust-enshrouded AGNs and the assembly of groups and clusters of galaxies

    CERN Document Server

    Blain, A W; Blain, Andrew W.; Phillips, Tom

    2002-01-01

    Submillimetre observations reveal a cosmologically significant population of high-redshift dust-enshrouded galaxies. The form of evolution inferred for this population can be reconciled easily with COBE FIRAS and DIRBE measurements of the cosmic background radiation (CBR) at wavelengths >100 microns. At shorter wavelengths, however, the 60-micron CBR intensity reported by Finkbeiner et al. is less easily accounted for. Lagache et al. have proposed that this excess CBR emission is a warm Galactic component, and the detection of the highest-energy gamma-rays from blazars limits the CBR intensity at these wavelengths, but here we investigate sources of this excess CBR emission, assuming that it has a genuine extragalactic origin. We propose and test three explanations, each involving additional populations not readily detected in existing submm-wave surveys. First, dust-enshrouded galaxies with hot dust temperatures, perhaps dust-enshrouded, Compton-thick AGN as suggested by recent deep Chandra surveys. Secondly...

  9. Radiative improvement of the lattice NRQCD action using the background field method with applications to quarkonium spectroscopy

    CERN Document Server

    Hammant, T C; von Hippel, G M; Horgan, R R; Monahan, C J

    2013-01-01

    We apply the background field (BF) method to Non-Relativistic QCD (NRQCD) on the lattice in order to determine the one-loop radiative corrections to the coefficients of the NRQCD action in a manifestly gauge-covariant manner by matching the NRQCD prediction for particular on-shell processes with those of relativistic continuum QCD. We explain how the BF method is implemented in automated perturbation theory and discuss the technique for matching the relativistic and non-relativistic theories. We compute the one-loop radiative corrections to the sigma.B and Darwin terms for the NRQCD action currently used in simulations, as well as the one-loop coefficients of the spin-dependent O(alpha^2) four-fermion contact terms. The effect of the corrections on the hyperfine splitting of bottomonium is estimated using earlier simulation results; the corrected lattice prediction is found to be in agreement with experiment. Agreement of the hyperfine splitting of bottomonium and the B-meson system is confirmed by recent sim...

  10. Radiative transfer in a clumpy universe: IV. New synthesis models of the cosmic UV/X-ray background

    CERN Document Server

    Haardt, Francesco

    2011-01-01

    We present improved synthesis models of the evolving spectrum of the UV/X-ray diffuse background, updating and extending our previous results. Five new main components are added to our radiative transfer code CUBA: (1) the sawtooth modulation of the background intensity from resonant line absorption in the Lyman series of cosmic hydrogen and helium; (2) the X-ray emission from obscured and unobscured quasars; (3) a piecewise parameterization of the distribution in redshift and column density of intergalactic absorbers that fits recent measurements of the mean free path of 1 ryd photons; (4) an accurate treatment of the photoionization structure of absorbers; and (5) the UV emission from star-forming galaxies at all redshifts. We provide tables of the predicted HI and HeII photoionization and photoheating rates for use, e.g., in cosmological hydrodynamics simulations of the Lya forest, and a new metallicity-dependent calibration to the UV luminosity density-star formation rate density relation. A "minimal cosm...

  11. Cancer mortality in the high background radiation areas of Yangjiang, China during the period between 1979 and 1995

    Energy Technology Data Exchange (ETDEWEB)

    Tao Zufan [Ministry of Health, Beijing (China). Lab. of Industrial Hygiene; Zha Yongru; Akiba, Suminori (and others)

    2000-10-01

    The objective of the present study was to estimate cancer risk associated with the low-level radiation exposure of an average annual effective dose of 6.4 mSv (including internal exposure) in the high background-radiation areas (HBRA) in Yangjiang, China. The mortality survey consisted of two steps, i.e., the follow-up of cohort members and the ascertainment of causes of death. The cohort members in HBRA were divided into three dose-groups on the basis of environmental dose-rates per year. The mortality experiences of those three dose groups were compared with those in the residents of control areas by means of relative risk (RR). During the period 1987-1995, we observed 926,226 person-years by following up 106,517 subjects in the cohort study, and accumulated 5,161 deaths, among which 557 were from cancers. We did not observe an increase in cancer mortality in HBRA (RR=0.96, 96% CI, 0.80 to 1.15). The combined data for the period 1979-95 included 125,079 subjects and accumulated 1,698,316 person-years, observed 10,415 total deaths and 1,003 cancer deaths. The relative risk of all cancers for whole HBRA as compared with the control area was estimated to be 0.99 (95% CI, 0.87 to 1.14). The relative risks of cancers of the stomach, colon, liver, lung, bone, female breast and thyroid within whole HBRA were less than one, while the risks for leukemia, cancers of the nasopharynx, esophagus, rectum, pancreas, skin, cervix uteri, brain and central nervous system, and malignant lymphoma were larger than one. None of them were significantly different from RR=1. Neither homogeneity tests nor trend tests revealed any statistically significant relationship between cancer risk and radiation dose. We did not find any increased cancer risk associated with the high levels of natural radiation in HBRA. On the contrary, the mortality of all cancers in HBRA was generally lower than that in the control area, but not statistically significant. (author)

  12. On background radiation gradients--the use of airborne surveys when searching for orphan sources using mobile gamma-ray spectrometry.

    Science.gov (United States)

    Kock, Peder; Rääf, Christopher; Samuelsson, Christer

    2014-02-01

    Systematic background radiation variations can lead to both false positives and failures to detect an orphan source when searching using car-borne mobile gamma-ray spectrometry. The stochastic variation at each point is well described by Poisson statistics, but when moving in a background radiation gradient the mean count rate will continually change, leading to inaccurate background estimations. Airborne gamma spectrometry (AGS) surveys conducted on the national level, usually in connection to mineral exploration, exist in many countries. These data hold information about the background radiation gradients which could be used at the ground level. This article describes a method that aims to incorporate the systematic as well as stochastic variations of the background radiation. We introduce a weighted moving average where the weights are calculated from existing AGS data, supplied by the Geological Survey of Sweden. To test the method we chose an area with strong background gradients, especially in the thorium component. Within the area we identified two roads which pass through the high-variability locations. The proposed method is compared with an unweighted moving average. The results show that the weighting reduces the excess false positives in the positive background gradients without introducing an excess of failures to detect a source during passage in negative gradients.

  13. A Bridge from Optical to Infrared Galaxies Explaining Local Properties, Predicting Galaxy Counts and the Cosmic Background Radiation

    CERN Document Server

    Totani, T; Totani, Tomonori; Takeuchi, Tsutomu T.

    2002-01-01

    We give an explanation for the origin of various properties observed in local infrared galaxies, and make predictions for galaxy counts and cosmic background radiation (CBR), by a new model extended from that for optical/near-infrared galaxies. Important new characteristics of this study are that (1) mass scale dependence of dust extinction is introduced based on the size-luminosity relation of optical galaxies, and that (2) the big grain dust temperature T_dust is calculated based on a physical consideration for energy balance, rather than using the empirical relation between T_dust and total infrared luminosity L_IR found in local galaxies, which has been employed in most of previous works. Consequently, the local properties of infrared galaxies, i.e., optical/infrared luminosity ratios, L_IR-T_dust correlation, and infrared luminosity function are outputs predicted by the model. Our model indeed reproduces these local properties reasonably well. We then found considerably different results for MIR-submm co...

  14. The near-infrared radiation background, gravitational wave background and star formation rate of Pop III and Pop II during cosmic reionization

    CERN Document Server

    Yang, Y P; Dai, Z G

    2015-01-01

    In this paper, we obtain the NIRB and SBGWs from the early stars, which are constrained by the observation of reionization and star formation rate. We study the transition from Pop III to Pop II stars via the star formation model of different population, which takes into account the reionization and the metal enrichment evolution. We calculate the two main metal pollution channels arising from the supernova-driven protogalactic outflows and "genetic channel". We obtain the SFRs of Pop III and Pop II and their NIRB and SBGWs radiation. We predict that the upper limit of metallicity in metal-enriched IGM (the galaxies whose polluted via "genetic channel") reaches $Z_{\\rm crit}=10^{-3.5}Z_{\\odot}$ at $z\\sim13$ ($z\\sim11$), which is consistent with our star formation model. We constrain on the SFR of Pop III stars from the observation of reionization. The peak intensity of NIRB is about $0.03-0.2~nW m^{-2}{sr}^{-1}$ at $\\sim 1 \\mu m$ for $z>6$. The prediction of NIRB signal is consistent with the metallicity evol...

  15. The assessment of cytotoxic T cell and natural killer cells activity in residents of high and ordinary background radiation areas of Ramsar-Iran

    Directory of Open Access Journals (Sweden)

    Sajad Borzoueisileh

    2013-01-01

    Full Text Available The effective radiation dose of human from natural sources is about 2.4 mSv/y and the dose limit for radiation workers is 20 mSv/y. Ramsar, a city in Iran, has been the subject of concern in the last forty years for a high level of radiation measured in some spots as high as 260 mSv/y. Carcinogenesis is one of the most studied effects of radiation especially in high doses. Recent studies showed that the high level of natural radiation received by inhabitants of this area, paradoxically don′t have significant health effect. Natural killer (NK cells and cytotoxic T cells are the most important cells in tumor immune surveillance and CD107a is a widely expressed intracellular protein located in the lysosomal/endosomal membrane. CD107a transiently located on the cell membrane can be used as a marker of CD8 + T cell degranulation following stimulation. It is also expressed, to a lower extent, on activated NK cells. In this study, 60 healthy people were selected randomly and their consent obtained and confounding factors such as sex, age, life-styles was matched then the count of activated NK and CD8 + cells was compared in high and normal background radiation areas inhabitants of Ramsar. After filling the questionnaire and measurement of background radiation, blood samples of 30 healthy people from each region were analyzed immediately by means of flowcytometry. The leukocytes and their subsets were not significantly different between two groups and the count of active cells was higher in control group. The result shows that the changes in immune system occur due to radiation and maybe it is as a result of higher radiosensitivity of activated cells.

  16. Assessment of a relative contribution of terrestrial background radiation in the test field by using RADIAGEMTM 2000 portable survey meter

    Directory of Open Access Journals (Sweden)

    Avdić Senada

    2016-01-01

    Full Text Available This study is focused on the radiological investigation of terrestrial gamma radiation in the test field with soil samples from different minefields in the Federation of Bosnia and Herzegovina. Measurements of ambient dose equivalent rate, commonly referred to as “air dose rate”, in the test field located in the Tuzla Canton, were performed by RADIAGEMTM 2000 portable survey meter, based on energy-compensated Geiger-Muller counter. Its performances were tested in the laboratory conditions with gamma point sources. Since all the samples in the test field were exposed to the same cosmic radiation, there was a possibility to assess a relative contribution of terrestrial gamma radiation due to soil samples of different composition. One set of measurements in the test field was performed with RADIAGEMTM 2000, at a height of about one meter above the ground and basic statistical parameters indicated that there was no significant difference of terrestrial gamma radiation from different soil samples. The other set of measurements was carried out with the same device placed on the ground in the test field. Processing of experimental data on terrestrial gamma radiation has shown that it was possible to make a difference between relative contributions of terrestrial gamma radiation from individual soil samples. The results of investigation could be useful for multiple purposes of public interest.

  17. Evaluation of DNA damage in the root cells of Allium cepa seeds growing in soil of high background radiation areas of Ramsar - Iran

    Energy Technology Data Exchange (ETDEWEB)

    Saghirzadeh, M. [Department of Basic Science, Gonabad University of Medical Sciences, Gonabad (Iran, Islamic Republic of); Gharaati, M.R. [Faculty of Science, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mohammadi, Sh. [Nuclear Science and Technology Research Institute (NSTRI), Radiation Applications Research School, Tehran 11365-3486 (Iran, Islamic Republic of)], E-mail: smohammadi@aeoi.org.ir; Ghiassi-Nejad, M. [Faculty of Science, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2008-10-15

    Plants are unique in their ability to serve as in situ monitors for environmental genotoxins. We have used the alkaline comet assay for detecting induced DNA damage in Allium cepa to estimate the impact of high levels of natural radiation in the soils of inhabited zones of Ramsar. The average specific activity of natural radionuclides measured in the soil samples for {sup 226}Ra was 12,766 Bq kg{sup -1} whereas in the control soils was in the range of 34-60 Bq kg{sup -1}. A positive strong significant correlation of the DNA damage in nuclei of the root cells of A. cepa seeds germinated in the soil of high background radiation areas with {sup 226}Ra specific activity of the soil samples was observed. The results showed high genotoxicity of radioactively contaminated soils. Also the linear increase in the DNA damage indicates that activation of repair enzymes is not triggered by exposure to radiation in HBRA.

  18. The Hard VHE Gamma-ray Emission in High-Redshift TeV Blazars: Comptonization of Cosmic Microwave Background Radiation in an Extended Jet?

    CERN Document Server

    Boettcher, Markus; Finke, Justin D

    2008-01-01

    Observations of very-high-energy (VHE, E > 250 GeV) gamma-ray emission from several blazars at z > 0.1 have placed stringent constraints on the elusive spectrum and intensity of the intergalactic infrared background radiation (IIBR). Correcting their observed VHE spectrum for gamma-gamma absorption even by the lowest plausible level of the IIBR provided evidence for a very hard (photon spectral index Gamma_{ph} 4 X 10^6) on kiloparsec scales along the jet.

  19. Inhalation exposures due to radon and thoron ((222)Rn and (220)Rn): Do they differ in high and normal background radiation areas in India?

    Science.gov (United States)

    Mishra, Rosaline; Sapra, B K; Prajith, R; Rout, R P; Jalaluddin, S; Mayya, Y S

    2015-09-01

    In India, High Background Radiation Areas (HBRAs) due to enhanced levels of naturally occurring radionuclides in soil (thorium and, to a lesser extent, uranium), are located along some parts of the coastal tracts viz. the coastal belt of Kerala, Tamilnadu and Odisha. It is conjectured that these deposits will result in higher emissions of radon isotopes ((222)Rn and (220)Rn) and their daughter products as compared to Normal Background Radiation Areas (NBRAs). While the annual external dose rates contributed by gamma radiations in these areas are about 5-10 times higher, the extent of increase in the inhalation dose rates attributable to (222)Rn and (220)Rn and their decay products is not well quantified. Towards this, systematic indoor surveys were conducted wherein simultaneous measurements of time integrated (222)Rn and (220)Rn gas and their decay product concentrations was carried out in around 800 houses in the HBRAs of Kerala and Odisha to estimate the inhalation doses. All gas measurements were carried out using pin-hole cup dosimeters while the progeny measurements were with samplers and systems based on the Direct radon/thoron Progeny sensors (DRPS/DTPS). To corroborate these passive measurements of decay products concentrations, active sampling was also carried out in a few houses. The results of the surveys provide a strong evidence to conclude that the inhalation doses due to (222)Rn and (220)Rn gas and their decay products in these HBRAs are in the same range as observed in the NBRAs in India.

  20. [Changes in the chromatin structure of lymphoid cells under the influence of low-intensity extremely high-frequency electromagnetic radiation against the background of inflammatory process].

    Science.gov (United States)

    Gapeev, A B; Romanova, N A; Chemeris, N K

    2011-01-01

    Using the alkaline single cell gel electrophoresis technique (comet assay), changes in chromatin structure of peripheral blood leukocytes and peritoneal neutrophils have been studied in mice exposed to low-intensity extremely high-frequency electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20 min at 1 h after induction of inflammation) against the background of the systemic inflammatory process. It was revealed that the exposure of mice with the developing inflammation leads to a pronounced decrease in the level of DNA damage to peripheral blood leukocytes and peritoneal neutrophils. It is supposed that the changes in the chromatin structure of lymphoid cells have a genoprotective character in the inflammatory process and can underlie the mechanisms of realization of antiinflammatory effects of the electromagnetic radiation.

  1. A Spectral Feature of High-Redshift Gamma-Ray Bursts Probing the Earliest Starlight Background Radiation

    CERN Document Server

    Dai, Z G

    2002-01-01

    Gamma-ray bursts (GRBs) and their afterglows at high redshifts have been widely believed to be detectable. Here we analyze a new feature of the MeV spectra of high-redshift GRBs, which is unlikely to appear in low-redshift GRBs. We generally discuss high-energy emission above a few decades of GeV due to synchrotron self-Compton scattering in the internal shock model. Our discussion seems to be supported by the high-energy spectra of several low-redshift GRBs. However, if GRBs originate at high redshifts (e.g., $z\\ge 6$), such photons cannot be detected because they may collide with cosmic optical and ultraviolet background photons, leading to electron/positron pair production. We show that inverse-Compton scattering of the resulting electron/positron pairs off cosmic microwave background photons will produce an additional multi-MeV component, resulting thus in a spectral "bump". We also derive the scattered photon spectrum of such a bump, $\

  2. Radiocarbon dating of archaeological samples (sambaqui) using CO(2) absorption and liquid scintillation spectrometry of low background radiation.

    Science.gov (United States)

    Mendonça, Maria Lúcia T G; Godoy, José M; da Cruz, Rosana P; Perez, Rhoneds A R

    2006-01-01

    Sambaqui means, in the Tupi language, a hill of shells. The sambaquis are archaeological sites with remains of pre-historical Brazilian occupation. Since the sambaqui sites in the Rio de Janeiro state region are older than 10,000 years, the applicability of CO(2) absorption on Carbo-sorb and (14)C determination by counting on a low background liquid scintillation counter was tested. In the present work, sambaqui shells were treated with H(3)PO(4) in a closed vessel in order to generate CO(2). The produced CO(2) was absorbed on Carbo-sorb. On saturation about 0.6g of carbon, as CO(2), was mixed with commercial liquid scintillation cocktail (Permafluor), and the (14)C activity determined by counting on a low background counter, Packard Tricarb 3170 TR/SL, for a period of 1000 mins to enable detection of a radiocarbon age of 22,400 BP. But only samples with ages up to 3500 BP were submitted to the method because the samples had been collected in the municipality of Guapimirim, in archaeological sambaqui-type sites belonging to this age range. The same samples were sent to the (14)C Laboratory of the Centro de Energia Nuclear na Agricultura (CENA/USP) where similar results were obtained.

  3. Limits on the Radiative Decay of Sterile Neutrino Dark Matter from the Unresolved Cosmic and Soft X-ray Backgrounds

    CERN Document Server

    Abazajian, Kevork N; Koushiappas, S M; Hickox, R C; Abazajian, Kevork N.; Markevitch, Maxim; Koushiappas, Savvas M.; Hickox, Ryan C.

    2006-01-01

    We present upper limits on line emission in the Cosmic X-ray background (CXB) that would be produced by decay of sterile neutrino dark matter. We employ the spectra of the unresolved component of the CXB in the Chandra Deep Fields North and South obtained with the Chandra CCD detector in the E=0.8-9 keV band. The expected decay flux comes from the dark matter on the lines of sight through the Milky Way galactic halo. Our constraints on the sterile neutrino decay rate are sensitive to the modeling of the Milky Way halo. The highest halo mass estimates provide a limit on the sterile neutrino mass of m_s<2.9 keV in the Dodelson-Widrow production model, while the lowest halo mass estimates provide the conservative limit of m_s<5.7 keV (2-sigma). We also discuss constraints from a short observation of the softer (E<1 keV) X-ray background with a rocket-borne calorimeter by McCammon and collaborators.

  4. Limits on the radiative decay of sterile neutrino dark matter from the unresolved cosmic and soft x-ray backgrounds

    Science.gov (United States)

    Abazajian, Kevork N.; Markevitch, Maxim; Koushiappas, Savvas M.; Hickox, Ryan C.

    2007-03-01

    We present upper limits on line emission in the Cosmic X-ray background (CXB) that would be produced by decay of sterile neutrino dark matter. We employ the spectra of the unresolved component of the CXB in the Chandra Deep Fields North and South obtained with the Chandra CCD detector in the E=0.8 9keV band. The expected decay flux comes from the dark matter on the lines of sight through the Milky Way galactic halo. Our constraints on the sterile neutrino decay rate are sensitive to the modeling of the Milky Way halo. The highest halo mass estimates provide a limit on the sterile neutrino mass of msrocket-borne calorimeter by McCammon and collaborators.

  5. Photonic Integrated Circuit (PIC) Device Structures: Background, Fabrication Ecosystem, Relevance to Space Systems Applications, and Discussion of Related Radiation Effects

    Science.gov (United States)

    Alt, Shannon

    2016-01-01

    Electronic integrated circuits are considered one of the most significant technological advances of the 20th century, with demonstrated impact in their ability to incorporate successively higher numbers transistors and construct electronic devices onto a single CMOS chip. Photonic integrated circuits (PICs) exist as the optical analog to integrated circuits; however, in place of transistors, PICs consist of numerous scaled optical components, including such "building-block" structures as waveguides, MMIs, lasers, and optical ring resonators. The ability to construct electronic and photonic components on a single microsystems platform offers transformative potential for the development of technologies in fields including communications, biomedical device development, autonomous navigation, and chemical and atmospheric sensing. Developing on-chip systems that provide new avenues for integration and replacement of bulk optical and electro-optic components also reduces size, weight, power and cost (SWaP-C) limitations, which are important in the selection of instrumentation for specific flight projects. The number of applications currently emerging for complex photonics systems-particularly in data communications-warrants additional investigations when considering reliability for space systems development. This Body of Knowledge document seeks to provide an overview of existing integrated photonics architectures; the current state of design, development, and fabrication ecosystems in the United States and Europe; and potential space applications, with emphasis given to associated radiation effects and reliability.

  6. LiteBIRD: a small satellite for the study of B-mode polarization and inflation from cosmic background radiation detection

    Science.gov (United States)

    Hazumi, M.; Borrill, J.; Chinone, Y.; Dobbs, M. A.; Fuke, H.; Ghribi, A.; Hasegawa, M.; Hattori, K.; Hattori, M.; Holzapfel, W. L.; Inoue, Y.; Ishidoshiro, K.; Ishino, H.; Karatsu, K.; Katayama, N.; Kawano, I.; Kibayashi, A.; Kibe, Y.; Kimura, N.; Koga, K.; Komatsu, E.; Lee, A. T.; Matsuhara, H.; Matsumura, T.; Mima, S.; Mitsuda, K.; Morii, H.; Murayama, S.; Nagai, M.; Nagata, R.; Nakamura, S.; Natsume, K.; Nishino, H.; Noda, A.; Noguchi, T.; Ohta, I.; Otani, C.; Richards, P. L.; Sakai, S.; Sato, N.; Sato, Y.; Sekimoto, Y.; Shimizu, A.; Shinozaki, K.; Sugita, H.; Suzuki, A.; Suzuki, T.; Tajima, O.; Takada, S.; Takagi, Y.; Takei, Y.; Tomaru, T.; Uzawa, Y.; Watanabe, H.; Yamasaki, N.; Yoshida, M.; Yoshida, T.; Yotsumoto, K.

    2012-09-01

    LiteBIRD [Lite (Light) satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection] is a small satellite to map the polarization of the cosmic microwave background (CMB) radiation over the full sky at large angular scales with unprecedented precision. Cosmological inflation, which is the leading hypothesis to resolve the problems in the Big Bang theory, predicts that primordial gravitational waves were created during the inflationary era. Measurements of polarization of the CMB radiation are known as the best probe to detect the primordial gravitational waves. The LiteBIRD working group is authorized by the Japanese Steering Committee for Space Science (SCSS) and is supported by JAXA. It has more than 50 members from Japan, USA and Canada. The scientific objective of LiteBIRD is to test all the representative inflation models that satisfy single-field slow-roll conditions and lie in the large-field regime. To this end, the requirement on the precision of the tensor-to-scalar ratio, r, at LiteBIRD is equal to or less than 0.001. Our baseline design adopts an array of multi-chroic superconducting polarimeters that are read out with high multiplexing factors in the frequency domain for a compact focal plane. The required sensitivity of 1.8μKarcmin is achieved with 2000 TES bolometers at 100mK. The cryogenic system is based on the Stirling/JT technology developed for SPICA, and the continuous ADR system shares the design with future X-ray satellites.

  7. Theoretical analysis of the background intensity distribution in X-ray Birefringence Imaging using synchrotron bending-magnet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, John P., E-mail: john.sutter@diamond.ac.uk; Dolbnya, Igor P.; Collins, Stephen P. [Diamond Light Source Ltd., Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom); Harris, Kenneth D. M.; Edwards-Gau, Gregory R. [School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, Wales (United Kingdom); Palmer, Benjamin A. [Department of Structural Biology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001 (Israel)

    2015-04-28

    In the recently developed technique of X-ray Birefringence Imaging, molecular orientational order in anisotropic materials is studied by exploiting the birefringence of linearly polarized X-rays with energy close to an absorption edge of an element in the material. In the experimental setup, a vertically deflecting high-resolution double-crystal monochromator is used upstream from the sample to select the appropriate photon energy, and a horizontally deflecting X-ray polarization analyzer, consisting of a perfect single crystal with a Bragg reflection at Bragg angle of approximately 45°, is placed downstream from the sample to measure the resulting rotation of the X-ray polarization. However, if the experiment is performed on a synchrotron bending-magnet beamline, then the elliptical polarization of the X-rays out of the electron orbit plane affects the shape of the output beam. Also, because the monochromator introduces a correlation between vertical position and photon energy to the X-ray beam, the polarization analyzer does not select the entire beam, but instead selects a diagonal stripe, the slope of which depends on the Bragg angles of the monochromator and the polarization analyzer. In the present work, the final background intensity distribution is calculated analytically because the phase space sampling methods normally used in ray traces are too inefficient for this setup. X-ray Birefringence Imaging data measured at the Diamond Light Source beamline B16 agree well with the theory developed here.

  8. Theoretical analysis of the background intensity distribution in X-ray Birefringence Imaging using synchrotron bending-magnet radiation

    Science.gov (United States)

    Sutter, John P.; Dolbnya, Igor P.; Collins, Stephen P.; Harris, Kenneth D. M.; Edwards-Gau, Gregory R.; Palmer, Benjamin A.

    2015-04-01

    In the recently developed technique of X-ray Birefringence Imaging, molecular orientational order in anisotropic materials is studied by exploiting the birefringence of linearly polarized X-rays with energy close to an absorption edge of an element in the material. In the experimental setup, a vertically deflecting high-resolution double-crystal monochromator is used upstream from the sample to select the appropriate photon energy, and a horizontally deflecting X-ray polarization analyzer, consisting of a perfect single crystal with a Bragg reflection at Bragg angle of approximately 45°, is placed downstream from the sample to measure the resulting rotation of the X-ray polarization. However, if the experiment is performed on a synchrotron bending-magnet beamline, then the elliptical polarization of the X-rays out of the electron orbit plane affects the shape of the output beam. Also, because the monochromator introduces a correlation between vertical position and photon energy to the X-ray beam, the polarization analyzer does not select the entire beam, but instead selects a diagonal stripe, the slope of which depends on the Bragg angles of the monochromator and the polarization analyzer. In the present work, the final background intensity distribution is calculated analytically because the phase space sampling methods normally used in ray traces are too inefficient for this setup. X-ray Birefringence Imaging data measured at the Diamond Light Source beamline B16 agree well with the theory developed here.

  9. A map of the cosmic microwave background radiation from the Wilkinson Microwave Anisotropy Probe (WMAP), showing the large-scale fluctuations (the quadrupole and octopole) isolated by an analysis done partly by theorists at CERN.

    CERN Multimedia

    2004-01-01

    A recent analysis, in part by theorists working at CERN, suggests a new view of the cosmic microwave background radiation. It seems the solar system, rather than the universe, causes the radiation's large-scale fluctuations, similar to the bass in a song.

  10. Comment on "Stress induction in the bacteria Shewanella oneidensis and Deinococcus radiodurans in response to below-background ionizing radiation", Castillo, et al. Int. J. Rad. Biol., 2015; Early Online DOI:10.3109/09553002.2015.1062571

    CERN Document Server

    Katz, J I

    2015-01-01

    Castillo, et al. report hormesis by background levels of radiation, at which there is $< 10^{-3}$ ionization per bacterium in a replication time. This suggests radiation products accumulate in the growth medium over much longer times. Experiments are proposed to test this hypothesis.

  11. Measurements of Rn-222, Rn-220 and their decay products in the environmental air of the high background radiation areas in Yangjiang, China.

    Science.gov (United States)

    Yuan, Y; Morishima, H; Shen, T; Koga, T; Wei, L; Sugahara, T

    2000-10-01

    For the renewal of dose estimation from internal irradiation in the high background radiation areas (HBRA) of Yangjiang, the measurements of radon, thoron and their decay products in the environmental air were conducted, including: (1) integrating measurements of Rn-222 and Rn-220 concentrations; (2) eqilibrium factor F for Rn-222 and alpha-potential energy value of Rn-220; (3) external gamma radiation in places where radon measurements were undertaken; (4) cumulative exposure to indoor radon for each family in a case-control study on lung cancer. The Rn-Tn cup monitor method was used for the integrating measurement of Rn-222 and Rn-220 concentration. An alpha track detector was used for the integration measurement of Rn-222 concentration in the case-control study on lung cancer. The results of measurements show that although the investigated areas are located between the Equator and the Tropic of Cancer, and that people live in well-ventilated dwellings, the concentrations of radon, especially of Rn-220 are significantly higher in the indoor air of HBRA than those in the control area. The value of equilibrium factors for Rn-222, the alpha potential energy of decay products from Rn-222 and Rn-220 are determined.

  12. Measurements of Rn-222, Rn-220 and their decay products in the environmental air of the high background radiation areas in Yangjiang, China

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Yongling; Shen Tong [Labor Hygiene Inst. of Human Province, Changsha (China); Morishima, Hiroshige; Koga, Taeko; Wei Luxin; Sugahara, Tsutomu

    2000-10-01

    For the renewal of dose estimation from internal irradiation in the high background radiation areas (HBRA) of Yangjiang, the measurements of radon, thoron and their decay products in the environmental air were conducted, including: integrating measurements of Rn-222 and Rn-220 concentrations; equilibrium factor F for Rn-222 and alpha-potential energy value of Rn-220; external gamma radiation in places where radon measurements were undertaken; cumulative exposure to indoor radon for each family in a case-control study on lung cancer. The Rn-Tn cup monitor method was used for the integrating measurement of Rn-222 and Rn-220 concentration. An alpha track detector was used for the integration measurement of Rn-222 concentration in the case-control study on lung cancer. The results of measurements show that although the investigated areas are located between the Equator and the Tropic of Cancer, and that people live in well-ventilated dwellings, the concentrations of radon, especially of Rn-220 are significantly higher in the indoor air of HBRA than those in the control area. The value of equilibrium factors for Rn-222, the alpha potential energy of decay products from Rn-222 and Rn-220 are determined. (author)

  13. Background sources at PEP

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, H.; Schwitters, R.F.; Toner, W.T.

    1988-01-01

    Important sources of background for PEP experiments are studied. Background particles originate from high-energy electrons and positrons which have been lost from stable orbits, ..gamma..-rays emitted by the primary beams through bremsstrahlung in the residual gas, and synchrotron radiation x-rays. The effect of these processes on the beam lifetime are calculated and estimates of background rates at the interaction region are given. Recommendations for the PEP design, aimed at minimizing background are presented. 7 figs., 4 tabs.

  14. Terrestrial gamma dose rate, radioactivity and radiological hazards in the rocks of an elevated radiation background in Juban District, Ad Dali' Governorate, Yemen.

    Science.gov (United States)

    Abdurabu, Wedad Ali; Ramli, Ahmad Termizi; Saleh, Muneer Aziz; Heryansyah, Arien; Alnhary, Anees; Fadhl, Shadi

    2016-03-01

    This study aims to evaluate natural radiation and radioactivity in the rock and to assess the corresponding health risk in a region of elevated background radiation in Juban District, Ad Dali' Governorate, Yemen. The mean external gamma dose rate was 374 nGy h(-1) which is approximately six times the world average. The measured results were used to compute annual effective dose equivalent, collective effective dose and excess lifetime cancer risk, which are 2.298 mSv, 61.95 man Sv y(-1) and 8.043  ×  10(-3), respectively. Rocks samples from different geological formations were analyzed for quantitative determination of (226)Ra, (232)Th and (40)K. The specific activity of the rocks samples ranges from 7  ±  1 Bq Kg(-1) to 12 513  ±  329 Bq Kg(-1) for (232)Th, from 6  ±  1 Bq kg(-1) to 3089  ±  74 Bq kg(-1) for (226)Ra and 702  ±  69 Bq kg(-1) to 2954  ±  285 Bq kg(-1) for (40)K. (232)Th is the main contributor to gamma dose rate from the rock samples. Indicators of radiological health impact, radium equivalent activity and external hazard index are 3738 Bq kg(-1) and 10.10, respectively. The mean external hazard index was ten times unity in the studied locations in Juban District, which is higher than the recommended value.

  15. X-Ray Ccds for Space Applications: Calibration, Radiation Hardness, and Use for Measuring the Spectrum of the Cosmic X-Ray Background

    Science.gov (United States)

    Gendreau, Keith Charles

    1995-01-01

    This thesis has two distinct components. One concerns the physics of the high energy resolution X-ray charge coupled devices (CCD) detectors used to measure the cosmic X-ray background (XRB) spectrum. The other involves the measurements and analysis of the XRB spectrum and instrumental background with these detectors on board the advanced satellite for cosmology and astrophysics (ASCA). The XRB has a soft component and a hard component divided at ~2 keV. The hard component is extremely isotropic, suggesting a cosmological origin. The soft component is extremely anisotropic. A galactic component most likely dominates the soft band with X-ray line emission due to a hot plasma surrounding the solar system. ASCA is one of the first of a class of missions designed to overlap the hard and soft X-ray bands. The X-ray CCD's energy resolution allows us to spectrally separate the galactic and cosmological components. Also, the resolution offers the ability to test several specific cosmological models which would make up the XRB. I have concentrated on models for the XRB origin which include active galactic nuclei (AGN) as principal components. I use ASCA data to put spectral constraints on the AGN synthesis model for the XRB. The instrumental portion of this thesis concerns the development and calibration of the X-ray CCDs. I designed, built and operated an X-ray calibration facility for these detectors. It makes use of a reflection grating spectrometer to measure absolute detection efficiency, characteristic absorption edge strengths, and spectral redistribution in the CCD response function. Part of my thesis research includes a study of radiation damage mechanisms in CCDs. This work revealed radiation damage-induced degradation in the spectral response to X-rays. It also uncovered systematic effects which affect both data analysis and CCD design. I have developed a model involving trap energy levels in the CCD band gap structure. These traps reduce the efficiency in which

  16. Tandem duplication and copy number polymorphism of the SRY gene in patients with sex chromosome anomalies and males exposed to natural background radiation.

    Science.gov (United States)

    Premi, Sanjay; Srivastava, Jyoti; Chandy, Sebastian Padinjarel; Ahmad, Jamal; Ali, Sher

    2006-02-01

    Mutations in the SRY gene encompassing the HMG box have been well characterized in gonadal dysgenesis, male infertility and other types of sex chromosome related anomalies (SCRA). However, no information is available on copy number status of this gene under such abnormal conditions. Employing 'Taqman Probe Assay' specific to the SRY gene, we screened 16 DNA samples from patients with SCRA and 36 samples from males exposed to high levels of natural background radiation (HNBR). Patients with SCRA showed 2-16 copies of the SRY gene of which, one, Oxen (49, XYYYY) had eight copies with sequences different from one another. Of the 36 HNBR samples, 12 had one copy whereas 24 harboured 2-8 copies of the SRY gene. A HNBR male 33F had one normal and one mutated copy of this gene. Analysis of 25 DNA samples from blood and semen of normal males showed only one copy of this gene. Despite multiple copies in affected males, fluorescence in-situ hybridization (FISH) with SRY probe detected a single signal on the Y chromosome in HNBR males suggesting its possible localized tandem duplication. Copy number status of the other Y-linked loci is envisaged to augment DNA diagnostics facilitating genetic counselling to affected patients.

  17. Biosorption of cadmium by Brevundimonas sp. ZF12 strain, a novel biosorbent isolated from hot-spring waters in high background radiation areas

    Energy Technology Data Exchange (ETDEWEB)

    Masoudzadeh, Nasrin [Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran (Iran, Islamic Republic of); Department of Biology, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Zakeri, Fardideh [Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran (Iran, Islamic Republic of); National Radiation Protection Department - Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Lotfabad, Tayebe bagheri [Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran (Iran, Islamic Republic of); Sharafi, Hakimeh [Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran (Iran, Islamic Republic of); Department of Biology, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Masoomi, Fatemeh; Zahiri, Hoseein Shahbani; Ahmadian, Gholamreza [Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran (Iran, Islamic Republic of); Noghabi, Kambiz Akbari, E-mail: Akbari@nigeb.ac.ir [Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran (Iran, Islamic Republic of)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Isolation and characterization of a novel cadmium-biosorbent (Brevundimonas sp. ZF12) from high background radiation areas. Black-Right-Pointing-Pointer Brevundimonas sp. ZF12 caused 50% removal of cadmium at the concentration level of 250 ppm. Black-Right-Pointing-Pointer Solution pH values used for the reusability study have powerful desorptive features to recover Cd ions sorbed onto the biomass. Black-Right-Pointing-Pointer This is the first study carried out so far for the cadmium removal from aqueous solutions by a novel biosorbent Brevundimonas sp. ZF12. Black-Right-Pointing-Pointer In our opinion, the isolate can be an attractive alternative to remove the cadmium-containing wastewaters. - Abstract: The aim of this study is to screen cadmium biosorbing bacterial strains isolated from soils and hot-springs containing high concentrations of radium ({sup 226}Ra) in Ramsar using a batch system. Brevundimonas sp. ZF12 strain isolated from the water with high {sup 226}Ra content caused 50% removal of cadmium at a concentration level of 250 ppm. The biosorption equilibrium data are fitted well by the Langmuir adsorption isotherm and kinetic studies indicated that the biosorption follows pseudo second-order model. The effect of different physico-chemical parameters like biomass concentration, pH, cadmium concentration, temperature and contact time on cadmium sorption was also investigated using FTIR, SEM and XRD analytical techniques. A high desorption efficiency (above 90%) was obtained using a pH range of 2.0-4.0. Reusability of the biomass was examined under consecutive biosorption-desorption cycles repeated thrice. In conclusion, Brevundimonas sp. ZF12 is proposed as an excellent cadmium biosorbent that may have important applications in Cd removal from wastewaters.

  18. The Swedish Radiation Protection Institute's regulations concerning the final management of spent nuclear fuel and nuclear waste - with background and comments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    This report presents and comments on the Swedish Radiation Protection Institute's Regulations concerning the Protection of Human Health and the Environment in connection with the Final Management of Spent Nuclear Fuel or Nuclear Waste, SSI FS 1998: 1.

  19. Background Material

    DEFF Research Database (Denmark)

    Zandersen, Marianne; Hyytiäinen, Kari; Saraiva, Sofia;

    2016-01-01

    This document serves as a background material to the BONUS Pilot Scenario Workshop, which aims to develop harmonised regional storylines of socio-ecological futures in the Baltic Sea region in a collaborative effort together with other BONUS projects and stakeholders....

  20. The Effects of X-Ray and UV Background Radiation on the Low-Mass Slope of the Galaxy Mass Function

    CERN Document Server

    Hambrick, D C; Johansson, P H; Naab, T

    2010-01-01

    Even though the dark-matter power spectrum in the absence of biasing predicts a number density of halos n(M) ~ M^-2 (i.e. a Schechter alpha value of -2) at the low-mass end (M < 10^10 M_solar), hydrodynamic simulations have typically produced values for stellar systems in good agreement with the observed value alpha ~ -1. We explain this with a simple physical argument and show that an efficient external gas-heating mechanism (such as the UV background included in all hydro codes) will produce a critical halo mass below which halos cannot retain their gas and form stars. We test this conclusion with GADGET-2-based simulations using various UV backgrounds, and for the first time we also investigate the effect of an X-ray background. We show that at the present epoch alpha is depends primarily on the mean gas temperature at the star-formation epoch for low-mass systems (z <~ 3): with no background we find alpha ~ -1.5, with UV only alpha ~ -1.0, and with UV and X-rays alpha ~ -0.75. We find the critical f...

  1. Evaluating the effectiveness of the treatment of inflammatory periodontal disease on a background of chronic cholecystitis with the combined effect of the running of the alternating magnetic fields and low-intensity laser radiation

    Directory of Open Access Journals (Sweden)

    Dyakova E.S.

    2011-03-01

    Full Text Available The aim of the study was to determine the characteristic clinical, instrumental and diagnostic criteria of inflammatory periodontal diseases on the background of chronic cholecystitis with subsequent evaluation of the effectiveness of therapeutic measures using the combined action of the running of an alternating magnetic field and low-intensity helium-neon laser. Application low-intensiti laser radiation and a running variable magnetic field in complex treatment of patients periodontitis with cholecystitis expressed anti-inflammatory action allows to stop quickly inflammatory process in periodontium and to reduce treatment terms

  2. Minimizing the background radiation in the new neutron time-of-flight facility at CERN FLUKA Monte Carlo simulations for the optimization of the n_TOF second experimental line

    CERN Document Server

    Bergström, Ida; Elfgren, Erik

    2013-06-11

    At the particle physics laboratory CERN in Geneva, Switzerland, the Neutron Time-of-Flight facility has recently started the construction of a second experimental line. The new neutron beam line will unavoidably induce radiation in both the experimental area and in nearby accessible areas. Computer simulations for the minimization of the background were carried out using the FLUKA Monte Carlo simulation package. The background radiation in the new experimental area needs to be kept to a minimum during measurements. This was studied with focus on the contributions from backscattering in the beam dump. The beam dump was originally designed for shielding the outside area using a block of iron covered in concrete. However, the backscattering was never studied in detail. In this thesis, the fluences (i.e. the flux integrated over time) of neutrons and photons were studied in the experimental area while the beam dump design was modified. An optimized design was obtained by stopping the fast neutrons in a high Z mat...

  3. Threshold segmentation for PET target volume delineation in radiation treatment planning: the role of target-to-background ratio and target size.

    Science.gov (United States)

    Brambilla, M; Matheoud, R; Secco, C; Loi, G; Krengli, M; Inglese, E

    2008-04-01

    A multivariable approach was adopted to study the dependence of the percentage threshold [TH(%)] used to define the boundaries of 18F-FDG positive tissue on emission scan duration (ESD) and activity at the start of acquisition (Aacq) for different target sizes and target-to-background (T/B) ratios. An anthropomorphic model, at least for counting rate characteristics, was used to study this dependence in conditions resembling the ones that can be encountered in the clinical studies. An annular ring of water bags of 3 cm thickness was fitted over an International Electro-technical Commission (IEC) phantom in order to obtain counting rates similar to those found in average patients. The scatter fraction of the modified IEC phantom was similar to the mean scatter fraction measured on patients, with a similar scanner. A supplemental set of microhollow spheres was positioned inside the phantom. The NEMA NU 2-2001 scatter phantom was positioned at the end of the IEC phantom to approximate the clinical situation of having activity that extends beyond the scanner field of view. The phantoms were filled with a solution of water and 18F (12 kBq/mL) and the spheres with various T/B ratios of 22.5, 10.3, and 3.6. Sequential imaging was performed to acquire PET images with varying background activity concentrations of about 12, 9, 6.4, 5.3, and 3.1 kBq/mL. The ESD was set to 60, 120, 180, and 240 s/bed. Data were fitted using two distinct multiple linear regression models for sphere ID 10 mm. The fittings of both models were good with an R2 of 0.86 in both cases. Neither ESD nor Aacq resulted as significant predictors of the TH(%). For sphere ID 10 mm the explanatory power of the target size and T/B ratio were reversed, the T/B ratio being now the most important predictor of the TH(%). Both the target size and T/B ratio play a major role in explaining the variance of the TH(%), throughout the whole range of target sizes and T/B ratios examined. Thus, algorithms aimed at

  4. A Search for a keV Signature of Radiatively Decaying Dark Matter with Suzaku XIS Observations of the X-ray Diffuse Background

    CERN Document Server

    Sekiya, Norio; Mitsuda, Kazuhisa

    2015-01-01

    We performed the deepest search for an X-ray emission line between 0.5 and 7 keV from non-baryonic dark matter with the Suzaku XIS. Dark matter associated with the Milky Way galaxy was selected as the target to obtain the best signal-to-noise ratio. From the Suzaku archive, we selected 187 data sets of blank sky regions which were dominated by the X-ray diffuse background. The data sets were from 2005 to 2013. Instrumental responses were adjusted by multiple calibration data sets of the Crab Nebula. We also improved the technique of subtracting lines of instrumental origin. These energy spectra were well described by X-ray emission due to charge exchange around the Solar System, hot plasma in and around the Milky Way and superposition of extra-galactic point sources. A signal of a narrow emission line was searched for, and the significance of detection was evaluated in consideration of the blind search method (the Look-elsewhere Effect). Our results exhibited no significant detection of an emission line featu...

  5. A search for a keV signature of radiatively decaying dark matter with Suzaku XIS observations of the X-ray diffuse background

    Science.gov (United States)

    Sekiya, Norio; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa

    2016-06-01

    We performed the deepest search for an X-ray emission line at between 0.5 and 7 keV from non-baryonic dark matter by the Suzaku XIS. Dark matter associated with the Milky Way was selected as the target to obtain the best signal-to-noise ratio. From the Suzaku archive, we selected 187 data sets of blank-sky regions that were dominated by the X-ray diffuse background. The data sets were from 2005 to 2013. The instrumental responses were adjusted by multiple calibration data sets of the Crab Nebula. We also improved the technique of subtracting lines of instrumental origin. These energy spectra were well described by X-ray emission due to charge exchange around the Solar System, hot plasma in and around the Milky Way, and the superposition of extra-galactic point sources. A signal of a narrow emission-line was searched for, and the significance of detection was evaluated in consideration of the blind search method (the Look-elsewhere Effect). Our results exhibited no significant detection of an emission line feature from dark matter. The 3 σ upper limit for the emission line intensity between 1 and 7 keV was ˜ 10-2 photons cm-2 s-1 sr-1, or ˜ 5 × 10-4 photons cm-2 s-1 sr-1 per M⊙ pc-2, assuming a dark matter distribution with the Galactic rotation curve. The parameters of sterile neutrinos as candidates of dark-matter were also constrained.

  6. Testing inflation with the cosmic background radiation

    CERN Document Server

    Bond, J R

    1994-01-01

    In inflation cosmologies, cosmic structure develops through the gravitational instability of the inevitable quantum noise in primordial scalar fields. I show how the acceleration of the universe defines the shape of the primordial spectrum of gravitational metric and scalar field fluctuations. I assess how we can determine the shape and overall amplitude over the five decades or so of spatial wavelengths we can probe, and use current data ... to show how far we are in this program. Broad-band power amplitudes are given for CMB anisotropy detections up to spring 1994 ... I show that COBE band-powers found with full Bayesian analysis of the 53,90,31 a+b GHz first year DMR (and FIRS) maps are in good agreement, and are essentially independent of spectral slope and degree of (sharp) signal-to-noise filtering. Further, after (smooth) optimal signal-to-noise filtering (\\ie Weiner-filtering), the different DMR maps reveal the same large scale features and correlation functions with little dependence upon slope. Howe...

  7. Background simulations and shielding calculations

    Science.gov (United States)

    Kudryavtsev, Vitaly A.

    2011-04-01

    Key improvements in the sensitivity of the underground particle astrophysics experiments can only be achieved if the radiation causing background events in detectors is well understood and proper measures are taken to suppress it. The background radiation arising from radioactivity and cosmic-ray muons is discussed here together with the methods of its suppression. Different shielding designs are considered to attenuate gamma-rays and neutrons coming from radioactivity in rock and lab walls. Purity of materials used in detector construction is analysed and the background event rates due to the presence of radioactive isotopes in detector components are discussed. Event rates in detectors caused by muon-induced neutrons with and without active veto systems are presented leading to the requirements for the depth of an underground laboratory and the efficiency of the veto system.

  8. Distribution of uranium, thorium and some stable trace and toxic elements in human hair and nails in Niška Banja Town, a high natural background radiation area of Serbia (Balkan Region, South-East Europe).

    Science.gov (United States)

    Sahoo, S K; Žunić, Z S; Kritsananuwat, R; Zagrodzki, P; Bossew, P; Veselinovic, N; Mishra, S; Yonehara, H; Tokonami, S

    2015-07-01

    Human hair and nails can be considered as bio-indicators of the public exposure to certain natural radionuclides and other toxic metals over a long period of months or even years. The level of elements in hair and nails usually reflect their levels in other tissues of body. Niška Banja, a spa town located in southern Serbia, with locally high natural background radiation was selected for the study. To assess public exposure to the trace elements, hair and nail samples were collected and analyzed. The concentrations of uranium, thorium and some trace and toxic elements (Mn, Ni, Cu, Sr, Cd, and Cs) were determined using inductively coupled plasma mass spectrometry (ICP-MS). U and Th concentrations in hair varied from 0.0002 to 0.0771 μg/g and from 0.0002 to 0.0276 μg/g, respectively. The concentrations in nails varied from 0.0025 to 0.0447 μg/g and from 0.0023 to 0.0564 μg/g for U and Th, respectively. We found significant correlations between some elements in hair and nails. Also indications of spatial clustering of high values could be found. However, this phenomenon as well as the large variations in concentrations of heavy metals in hair and nail could not be explained. As hypotheses, we propose possible exposure pathways which may explain the findings, but the current data does not allow testing them.

  9. Change of Primary Cosmic Radiation Nuclear Conposition in the Energy Range $10^{15} - 10^{17}$ eV as a Result of the Interaction with the Interstellar Cold Background of Light Particles

    CERN Document Server

    Barnaveli, T T; Khaldeeva, I V

    2003-01-01

    In this paper the updated arguments in favor of a simple model, explaining from the united positions all peculiarities of the Extensive Air Shower (EAS) hadron E_h(E_0) (and muon E_mu(E_0)) component energy fluxes dependence on the primary particle energy E_0 in the primary energy region 10^{15} - 10^{17} eV are represented. These peculiarities have shapes of consequent distinct deeps of a widths dE_h/E_h of the order of 0.2 and of relative amplitudes dL/L of the order of {0.1 - 1.0}, and are difficult to be explained via known astrophysical mechanisms of particle generation and acceleration. In the basis of the model lies the destruction of the Primary Cosmic Radiation (PCR) nuclei on some monochromatic background of interstellar space, consisting of the light particles of the mass in the area of 36 eV (maybe the component of a dark matter). The destruction thresholds of PCR different nuclear components correspond to the peculiarities of E_h(E_0). In this work the results of the recent treatment of large sta...

  10. Cosmic Microwave Background Mapping

    Science.gov (United States)

    Verkhodanov, O. V.; Doroshkevich, A. G.

    2012-03-01

    The last decade of research in cosmology was connected with the ambitious experiments including space and ground base observations. Among the most impressive results of these investigations are the measurements of the cosmic microwave background (CMB) radiation like WMAP* and Planck. Exactly from the CMB studies, we have started the epoch of the precision cosmology when generally the values of cosmological parameters have been known and present research is devoted to improvement of the precision. These achievements are connected with both the creation of the new facilities in millimeter and submillimeter astronomy (e.g., satellites, receivers, antennas, computers) and development of the methods for the CMB data analysis. Actually, the process of data analysis contains several technical stages including 1. Registration of time-ordered data (TOD) 2. Pixelization of the CMB data - map preparation 3. Component separation 4. Map statistics analysis 5. Map - spherical harmonics transformation 6. C(l)-spectrum calculation and spectrum statistics analysis 7. Cosmological parameters estimation Starting from the cosmic background explorer (COBE) experiment using the so-called Quadrilateralized Sky Cube Projection (see [1-3]), the problem of the whole sky CMB pixelization has attracted great interest and many such schemes were developed. Let us note however that accurate pixelization of the CMB data on the sphere is very important but not the final step of analysis. Usually, the next step implies the determination of the coefficients of the spherical harmonic decomposition of the CMB signal for both anisotropy and polarization. This means that some of the pixelization schemes provide a very accurate map but are inconvenient for further decomposition. This also means that the choice of suitable pixelization schemes depends upon the general goals of the investigation. In this review, we consider several of the most popular sky map pixelization schemes and link them with the

  11. Preliminary research on relationship between long-term low dose radiation exposure and the carotid intima-media thickness of female residents in high background radiation area in Yangjiang, China%阳江高本底女性居民低剂量辐射照射与颈动脉中内膜厚度关系的初步研究

    Institute of Scientific and Technical Information of China (English)

    苏垠平; 谭光享; 雷淑洁; 邹剑明; 张素芬; 刘建香; 李小亮; 孙全富; 秋葉澄伯

    2016-01-01

    Objective To explore the effect on cardiovascular and cerebrovascular diseases for people due to long-term low dose radiation exposure.Methods Four regions were selected from the high background radiation area (HBRA) in Yangjiang,featuring highest external γ radiation dose rate,and two regions from control area (CA) was chosen at the similar distance from downtown as four regions selected from the high background radiation area.Each of one hundred female residents aged more than 50 years old respectively selected from the HBRA in Yangjiang and in the CA.The carotid intima-media thickness (CIMT) was measured using ultrasonic examination.The peripheral venous was sampled to measure the levels of total cholesterol,triglycerides,high-density lipoprotein (HDL) cholesterol and low-density lipoprotein (LDL) cholesterol.Blood pressure,height and weight were also measured.Personal life and living history were collected through questionnaires.The estimation of personal lifetime accumulated radiation dose was based on γ-ray dose rate from indoor and outdoor and the age-related occupancy factor obtained from the previous studies.Results There were statistically significant differences of accumulated radiation dose and CIMT of residents between Yangjiang HBRA and CA [(161.2 ± 38.6) mSy vs.(43.7±7.3) mSv,L (1.0±0.3) mm/R (1.0±0.2) mm vs.L&R (0.9±0.2) mm].The average age was (65.2 ± 10.4) years old for HBRA and (60.7 ± 8.0) years old for CA,respectively.After adjusting confounding factors,including age,blood pressure,BMI and serum cholesterol,the increased cumulative radiation dose was shown to be a risk factor for thickening left CIMT (β =0.000 7,P <0.05).The left CIMT for different dose groups was 0.9,1.0,0.9 and 1.1 mm for < 50,50-100,100-200,> 200 mSv,respectively.Conclusions Long-term low dose radiation exposure may age the vascular,and increasing the risk of atherosclerosis.%目的 探索长期低剂量电离辐射对人群心

  12. Particle propagation in cosmological backgrounds

    CERN Document Server

    Arteaga, Daniel

    2007-01-01

    We study the quantum propagation of particles in cosmological backgrounds, by considering a doublet of massive scalar fields propagating in an expanding universe, possibly filled with radiation. We focus on the dissipative effects related to the expansion rate. At first order, we recover the expected result that the decay rate is determined by the local temperature. Beyond linear order, the decay rate has an additional contribution governed by the expansion parameter. This latter contribution is present even for stable particles in the vacuum. Finally, we analyze the long time behaviour of the propagator and briefly discuss applications to the trans-Planckian question.

  13. Building Background Knowledge

    Science.gov (United States)

    Neuman, Susan B.; Kaefer, Tanya; Pinkham, Ashley

    2014-01-01

    This article make a case for the importance of background knowledge in children's comprehension. It suggests that differences in background knowledge may account for differences in understanding text for low- and middle-income children. It then describes strategies for building background knowledge in the age of common core standards.

  14. Contribution to the G0 violation of parity experience: calculation and simulation of radiative corrections and the background noise study; Contribution a l'experience G0 de violation de la parite : calcul et simulation des corrections radiatives et etude du bruit de fond

    Energy Technology Data Exchange (ETDEWEB)

    Guler, Hayg [Univ. of Paris, Orsay (France)

    2003-12-17

    In the framework of quantum chromodynamics, the nucleon is made of three valence quarks surrpounded by a sea of gluons and quark-antiquark pairs. Only the only lightest quarks (u, d and s) contribute significantly to the nucleon properties. In Go we using the property of weak interaction to violate parity symmetry, in order to determine separately the contributions of the three types of quarks to nucleon form factors. The experiment, which takes place at Thomas Jefferson laboratory (USA), aims at measuring parity violation asymmetry in electron-proton scattering. By doing several measurements at different momentum squared of the exchanged photons and for different kinematics (forward angle when the proton is detected and backward angle it will be the electron) will permit to determine separately strange quarks electric and magnetic contributions to nucleon form factors. To extract an asymmetry with small errors, it is necessary to correct all the beam parameters, and to have high enough counting rates in detectors. A special electronics was developed to treat information coming from 16 scintillator pairs for each of the 8 sectors of the Go spectrometer. A complete calculation of radiative corrections has been clone and Monte Carlo simulations with the GEANT program has permitted to determine the shape of the experimental spectra including inelastic background. This work will allow to do a comparison between experimental data and theoretical calculations based on the Standard Model.

  15. Contribution to the G{sup 0} experiment about parity violation: calculation and simulation of radiative corrections, study of the background noise; Contribution a l'experience G{sup 0} de violation de la parite: calcul et simulation des corrections radiatives et etude de bruit de fond

    Energy Technology Data Exchange (ETDEWEB)

    Guler, H

    2003-12-01

    In the framework of quantum chromodynamics, the nucleon is made of three valence quarks surrounded by a sea of gluons and quark-antiquark pairs. Only the only lightest quarks (u, d and s) contribute significantly to the nucleon properties. In G{sup 0} we use the property of weak interaction to violate parity symmetry, in order to determine separately the contributions of the three types of quarks to nucleon form factors. The experiment, which takes place at Thomas Jefferson laboratory (USA), aims at measuring parity violation asymmetry in electron-proton scattering. By doing several measurements at different momentum squared of the exchanged photons and for different kinematics (forward angle when the proton is detected and backward angle it will be the electron) will permit to determine separately strange quarks electric and magnetic contributions to nucleon form factors. To extract an asymmetry with small errors, it is necessary to correct all the beam parameters, and to have high enough counting rates in detectors. A special electronics was developed to treat information coming from 16 scintillator pairs for each of the 8 sectors of the G{sup 0} spectrometer. A complete calculation of radiative corrections has been done and Monte Carlo simulations with the GEANT program has permitted to determine the shape of the experimental spectra including inelastic background. This work will allow to do a comparison between experimental data and theoretical calculations based on the Standard Model. (author)

  16. Supersymmetric heterotic string backgrounds

    NARCIS (Netherlands)

    Gran, U.; Papadopoulos, G.; Roest, D.; Cvetič, M.

    2007-01-01

    We present the main features of the solution of the gravitino and dilatino Killing spinor equations derived in hep-th/0510176 and hep-th/0703143 which have led to the classification of geometric types of all type I backgrounds. We then apply these results to the supersymmetric backgrounds of the het

  17. The Cosmic Microwave Background

    OpenAIRE

    Silk, Joseph

    2002-01-01

    This set of lectures provides an overview of the basic theory and phenomenology of the cosmic microwave background. Topics include a brief historical review; the physics of temperature and polarization fluctuations; acoustic oscillations of the primordial plasma; the space of inflationary cosmological models; current and potential constraints on these models from the microwave background; and constraints on inflation.

  18. The Athena Background

    Science.gov (United States)

    Piro, Luigi; Lotti, Simone; Macculi, Claudio; Molendi, Silvano; Eraerds, Tanja; Laurent, Philippe

    2015-09-01

    Estimating, reducing and controlling the residual particle background is fundamental for achieving the objectives of several science topics of Athena, in particular those connected with background dominated observations of faint and/or diffuse sources. This requires assessing the particle environment in L2, propagating the various particle components throughout the mirror, spacecraft, and instruments via proper modelling and simulations of various physical processes, implementing design and h/w measures at instrument and mission level to reduce the un-rejected background and identifying proper calibration methods to control the background variations. Likewise, an adequate knowledge of the XRB, made of components that may vary spatially or temporally, is required as well. Here we will review the present status of the background knowledge, and summarize the activities on-going within Athena at various levels.

  19. Global Warming and the Microwave Background

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2009-04-01

    Full Text Available In the work, the importance of assigning the microwave background to the Earth is ad- dressed while emphasizing the consequences for global climate change. Climate mod- els can only produce meaningful forecasts when they consider the real magnitude of all radiative processes. The oceans and continents both contribute to terrestrial emis- sions. However, the extent of oceanic radiation, particularly in the microwave region, raises concerns. This is not only since the globe is covered with water, but because the oceans themselves are likely to be weaker emitters than currently believed. Should the microwave background truly be generated by the oceans of the Earth, our planet would be a much less efficient emitter of radiation in this region of the electromagnetic spectrum. Furthermore, the oceans would appear unable to increase their emissions in the microwave in response to temperature elevation, as predicted by Stefan’s law. The results are significant relative to the modeling of global warming.

  20. Cosmogenic Backgrounds to 0{\

    CERN Document Server

    :,; Auty, D J; Barbeau, P S; Beck, D; Belov, V; Breidenbach, M; Brunner, T; Burenkov, A; Cao, G F; Chambers, C; Cleveland, B; Coon, M; Craycraft, A; Daniels, T; Danilov, M; Daugherty, S J; Davis, J; Delaquis, S; Der Mesrobian-Kabakian, A; DeVoe, R; Didberidze, T; Dilling, J; Dolgolenko, A; Dolinski, M J; Dunford, M; Fairbank, W; Farine, J; Feldmeier, W; Feyzbakhsh, S; Fierlinger, P; Fudenberg, D; Gornea, R; Graham, K; Gratta, G; Hall, C; Herrin, S; Hughes, M; Jewell, M J; Johnson, A; Johnson, T N; Johnston, S; Karelin, A; Kaufman, L J; Killick, R; Koffas, T; Kravitz, S; Krücken, R; Kuchenkov, A; Kumar, K S; Leonard, D S; Licciardi, C; Lin, Y H; Ling, J; MacLellan, R; Marino, M G; Mong, B; Moore, D; Njoya, O; Nelson, R; Odian, A; Ostrovskiy, I; Piepke, A; Pocar, A; Prescott, C Y; Retière, F; Rowson, P C; Russell, J J; Schubert, A; Sinclair, D; Smith, E; Stekhanov, V; Tarka, M; Tolba, T; Tsang, R; Twelker, K; Vuilleumier, J -L; Waite, A; Walton, J; Walton, T; Weber, M; Wen, L J; Wichoski, U; Wood, J; Yang, L; Yen, Y -R; Zeldovich, O Ya

    2015-01-01

    As neutrinoless double-beta decay experiments become more sensitive and intrinsic radioactivity in detector materials is reduced, previously minor contributions to the background must be understood and eliminated. With this in mind, cosmogenic backgrounds have been studied with the EXO-200 experiment. Using the EXO-200 TPC, the muon flux (through a flat horizontal surface) underground at the Waste Isolation Pilot Plant (WIPP) has been measured to be {\\Phi} = 4.07 $\\pm$ 0.14 (sys) $\\pm$ 0.03 (stat) $\\times$ $10^{-7}$cm$^{-2}$ s$^{-1}$, with a vertical intensity of $I_{v}$ = 2.97$^{+0.14}_{-0.13}$ (sys) $\\pm$ 0.02 (stat) $\\times$ $10^{-7}$cm$^{-2}$ s$^{-1}$ sr$^{-1}$. Simulations of muon-induced backgrounds identified several potential cosmogenic radionuclides, though only 137Xe is a significant background for the 136Xe 0{\

  1. Zambia Country Background Report

    DEFF Research Database (Denmark)

    Hampwaye, Godfrey; Jeppesen, Søren; Kragelund, Peter

    This paper provides background data and general information for the Zambia studies focusing on local food processing sub­‐sector; and the local suppliers to the mines as part of the SAFIC project (Successful African Firms and Institutional Change).......This paper provides background data and general information for the Zambia studies focusing on local food processing sub­‐sector; and the local suppliers to the mines as part of the SAFIC project (Successful African Firms and Institutional Change)....

  2. Calibrating cosmological radiative transfer simulations with Lyman alpha forest data: Evidence for large spatial UV background fluctuations at z ~ 5.6 - 5.8 due to rare bright sources

    CERN Document Server

    Chardin, Jonathan; Aubert, Dominique; Puchwein, Ewald

    2015-01-01

    We calibrate here cosmological radiative transfer simulation with ATON/RAMSES with a range of measurements of the Lyman alpha opacity from QSO absorption spectra. We find the Lyman alpha opacity to be very sensitive to the exact timing of hydrogen reionisation. Models reproducing the measured evolution of the mean photoionisation rate and average mean free path reach overlap at z ~ 7 and predict an accelerated evolution of the Lyman alpha opacity at z > 6 consistent with the rapidly evolving luminosity function of Lyman alpha emitters in this redshift range. Similar to "optically thin" simulations our full radiative transfer simulations fail, however, to reproduce the high-opacity tail of the Lyman alpha opacity PDF at z > 5. We argue that this is due to spatial UV fluctuations in the post-overlap phase of reionisation on substantially larger scales than predicted by our source model, where the ionising emissivity is dominated by large numbers of sub-L* galaxies. We further argue that this suggests a signific...

  3. Robustness of cosmic neutrino background detection in the cosmic microwave background

    CERN Document Server

    Audren, Benjamin; Cuesta, Antonio J; Gontcho, Satya Gontcho A; Lesgourgues, Julien; Niro, Viviana; Pellejero-Ibanez, Marcos; Pérez-Ràfols, Ignasi; Poulin, Vivian; Tram, Thomas; Tramonte, Denis; Verde, Licia

    2015-01-01

    The existence of a cosmic neutrino background can be probed indirectly by CMB experiments, not only by measuring the background density of radiation in the universe, but also by searching for the typical signatures of the fluctuations of free-streaming species in the temperature and polarisation power spectrum. Previous studies have already proposed a rather generic parametrisation of these fluctuations, that could help to discriminate between the signature of ordinary free-streaming neutrinos, or of more exotic dark radiation models. Current data are compatible with standard values of these parameters, which seems to bring further evidence for the existence of a cosmic neutrino background. In this work, we investigate the robustness of this conclusion under various assumptions. We generalise the definition of an effective sound speed and viscosity speed to the case of massive neutrinos or other dark radiation components experiencing a non-relativistic transition. We show that current bounds on these effectiv...

  4. Exploring String Theory Backgrounds

    CERN Document Server

    Williams, B P

    2004-01-01

    This thesis examines phenomenological and theoretical questions by exploring string theoretic backgrounds. Part I focuses on cosmology. First we propose that the induced metric along a brane moving through a curved bulk may be interpreted as the cosmology of the brane universe, providing a resolution to the apparent cosmological singularity on the brane. We then look at various decay channels of the certain meta-stable de Sitter vacua and show that there exist NS5-brane meditated decays which are much faster than decays to decompactification. Part II discusses a new class of nongeometric vacua in string theory. These backgrounds may be described locally as T2 fibrations. By enlarging the monodromy group of the fiber to include perturbative stringy duality symmetries we are able to explicitly construct nongeometric backgrounds.

  5. Backgrounded but not peripheral

    DEFF Research Database (Denmark)

    Hovmark, Henrik

    2013-01-01

    -cultural construction of identity, and, as a matter of fact, that their role might be quite important. I argue that the DDAs are backgrounded but not peripheral, i.e. marginal or insignificant. And I introduce the notion of “contextualization cue” in this argument (Levinson, 2003a, Gumperz, 1992)....

  6. China: Background Notes Series.

    Science.gov (United States)

    Reams, Joanne Reppert

    Concise background information on the People's Republic of China is provided. The publication begins with a profile of the country, outlining the people, geography, economy, and membership in international organizations. The bulk of the document then discusses in more detail China's people, geography, history, government, education, economy, and…

  7. The Cosmic Microwave Background

    Directory of Open Access Journals (Sweden)

    Jones Aled

    1998-01-01

    Full Text Available We present a brief review of current theory and observations of the cosmic microwave background (CMB. New predictions for cosmological defect theories and an overview of the inflationary theory are discussed. Recent results from various observations of the anisotropies of the microwave background are described and a summary of the proposed experiments is presented. A new analysis technique based on Bayesian statistics that can be used to reconstruct the underlying sky fluctuations is summarised. Current CMB data is used to set some preliminary constraints on the values of fundamental cosmological parameters $Omega$ and $H_circ$ using the maximum likelihood technique. In addition, secondary anisotropies due to the Sunyaev-Zel'dovich effect are described.

  8. The extragalactic IR background

    CERN Document Server

    De Zotti, G; Mazzei, P; Toffolatti, L; Danese, L; De Zotti, G; Franceschini, A; Mazzei, P; Toffolatti, L; Danese, L

    1994-01-01

    Current limits on the intensity of the extragalactic infrared background are consistent with the expected contribution from evolving galaxies. Depending on the behaviour of the star formation rate and of the initial mass function, we can expect that dust extinction during early evolutionary phases ranges from moderate to strong. An example of the latter case may be the ultraluminous galaxy IRAS F10214 + 4724. The remarkable lack of high redshift galaxies in faint optically selected samples may be indirect evidence that strong extinction is common during early phases. Testable implications of different scenarios are discussed; ISO can play a key role in this context. Estimates of possible contributions of galaxies to the background under different assumptions are presented. The COBE/FIRAS limits on deviations from a blackbody spectrum at sub-mm wavelengths already set important constraints on the evolution of the far-IR emission of galaxies and on the density of obscured (``Type 2'') AGNs. A major progress in ...

  9. Adaption of the radiation dose for computed tomography of the body - back-ground for the dose adaption programme OmnimAs; Straaldosreglering vid kroppsdatortomografi - bakgrund till dosregleringsprogrammet OmnimAs

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, Ulf; Kristiansson, Mattias [Trelleborg Hospital (Sweden); Leitz, Wolfram [Swedish Radiation Protection Authority, Stockholm (Sweden); Paahlstorp, Per-Aake [Siemens Medical Solutions, Solna (Sweden)

    2004-11-01

    When performing computed tomography examinations the exposure factors are hardly ever adapted to the patient's size. One reason for that might be the lack of simple methods. In this report the computer programme OmnimAs is described which is calculating how the exposure factors should be varied together with the patient's perimeter (which easily can be measured with a measuring tape). The first approximation is to calculate the exposure values giving the same noise levels in the image irrespective the patient's size. A clinical evaluation has shown that this relationship has to be modified. One chapter is describing the physical background behind the programme. Results calculated with OmnimAs are in good agreement with a number of published studies. Clinical experiences are showing the usability of OmnimAs. Finally the correlation between several parameters and image quality/dose is discussed and how this correlation can be made use of for optimising CT-examinations.

  10. Nonparametric Inference for the Cosmic Microwave Background

    CERN Document Server

    Genovese, C R; Nichol, R C; Arjunwadkar, M; Wasserman, L; Genovese, Christopher R.; Miller, Christopher J.; Nichol, Robert C.; Arjunwadkar, Mihir; Wasserman, Larry

    2004-01-01

    The Cosmic Microwave Background (CMB), which permeates the entire Universe, is the radiation left over from just 380,000 years after the Big Bang. On very large scales, the CMB radiation field is smooth and isotropic, but the existence of structure in the Universe - stars, galaxies, clusters of galaxies - suggests that the field should fluctuate on smaller scales. Recent observations, from the Cosmic Microwave Background Explorer to the Wilkinson Microwave Anisotropy Project, have strikingly confirmed this prediction. CMB fluctuations provide clues to the Universe's structure and composition shortly after the Big Bang that are critical for testing cosmological models. For example, CMB data can be used to determine what portion of the Universe is composed of ordinary matter versus the mysterious dark matter and dark energy. To this end, cosmologists usually summarize the fluctuations by the power spectrum, which gives the variance as a function of angular frequency. The spectrum's shape, and in particular the ...

  11. Rocket observations of the diffuse ultraviolet background

    Science.gov (United States)

    Jakobsen, P.; Bowyer, S.; Kimble, R.; Jelinsky, P.; Grewing, M.; Kraemer, G.; Wulf-Mathies, C.

    1984-01-01

    The objective of the experiment reported here was to obtain additional information on the absolute intensity level and spatial variation of the diffuse ultraviolet background and thereby gain insight into the origin of this radiation. The experiment used three ultraviolet sensitive photometers placed in the focal plane of a 95-cm, f/2.8 normal incidence telescope flown on board an Aries sounding rocket. The measured intensities clearly refute the hypothesis of an isotropic background, the intensities of the high galactic latitude being definitely lower than the intensities seen at intermediate latitudes. Moreover, the count rates in all three channels along the slow scan exhibit local enhancements as well as an overall trend. In general, the spatial variations exhibited by the data correlate with the line of sight of neutral hydrogen column density as determined from 21-cm radio observations. This fact demonstrates that there is a galactic component to the diffuse ultraviolet radiation field.

  12. Radiation leakage from electromagnetic oven

    Directory of Open Access Journals (Sweden)

    Abdurrahman Khalil

    2015-10-01

    Results & Discussions: The measurements have been done at some houses in Erbil city, according to the source of background radiation exist before measuring data. Our data compared with standard safe range of radiation data. Results showed that there is radiation leak form all type of electromagnetic oven and all at the order of safety compared with standard value.

  13. Gravitational wave background from rotating neutron stars

    Science.gov (United States)

    Rosado, Pablo A.

    2012-11-01

    The background of gravitational waves produced by the ensemble of rotating neutron stars (which includes pulsars, magnetars, and gravitars) is investigated. A formula for Ω(f) (a function that is commonly used to quantify the background, and is directly related to its energy density) is derived, without making the usual assumption that each radiating system evolves on a short time scale compared to the Hubble time; the time evolution of the systems since their formation until the present day is properly taken into account. Moreover, the formula allows one to distinguish the different parts of the background: the unresolvable (which forms a stochastic background or confusion noise, since the waveforms composing it cannot be either individually observed or subtracted out of the data of a detector) and the resolvable. Several estimations of the background are obtained, for different assumptions on the parameters that characterize neutron stars and their population. In particular, different initial spin period distributions lead to very different results. For one of the models, with slow initial spins, the detection of the background by present or planned detectors can be rejected. However, other models do predict the detection of the background, that would be unresolvable, by the future ground-based gravitational wave detector ET. A robust upper limit for the background of rotating neutron stars is obtained; it does not exceed the detection threshold of two cross-correlated Advanced LIGO interferometers. If gravitars exist and constitute more than a few percent of the neutron star population, then they produce an unresolvable background that could be detected by ET. Under the most reasonable assumptions on the parameters characterizing a neutron star, the background is too faint to be detected. Previous papers have suggested neutron star models in which large magnetic fields (like the ones that characterize magnetars) induce big deformations in the star, which

  14. Family Background and Entrepreneurship

    DEFF Research Database (Denmark)

    Lindquist, Matthew J.; Sol, Joeri; Van Praag, Mirjam

    Vast amounts of money are currently being spent on policies aimed at promoting entrepreneurship. The success of such policies, however, rests in part on the assumption that individuals are not ‘born entrepreneurs’. In this paper, we assess the importance of family background and neighborhood...... treatment within families by gender and birth order does little to further increase our estimates of the importance of family-wide factors. We then go on to show that neighborhood effects, sibling peer effects, and parental income and education explain very little of these correlations. Parental...

  15. Malaysia; Background Paper

    OpenAIRE

    International Monetary Fund

    1996-01-01

    This Background Paper on Malaysia examines developments and trends in the labor market since the mid-1980s. The paper describes the changes in the employment structure and the labor force. It reviews wages and productivity trends and their effects on unit labor cost. The paper highlights that Malaysia’s rapid growth, sustained since 1987, has had a major impact on the labor market. The paper outlines the major policy measures to address the labor constraints. It also analyzes Malaysia’s r...

  16. Radiation Protection

    Science.gov (United States)

    ... EPA United States Environmental Protection Agency Search Search Radiation Protection Share Facebook Twitter Google+ Pinterest Contact Us Radiation Protection Document Library View and download EPA radiation ...

  17. Low-Background Counting at Homestake

    Science.gov (United States)

    Marshall, Iseley

    2009-10-01

    Background characterization at Homestake is an ongoing project crucial to the experiments located there. From neutrino physics to WIMP detection, low-background materials and their screening require highly sensitive detectors. Naturally, shielding is needed to lower ``noise'' in these detectors. Because of its vast depth, Homestake will be effective in shielding against cosmic-ray radiation. This means little, however, if radiation from materials used still interferes. Specifically, our group is working on designing the first low-background counting facility at the Homestake mine. Using a high-purity germanium crystal detector from ORTEC, measurements will be taken within a shield that is made to specifically account for radiation underground and fits the detector. Currently, in the design, there is a layer of copper surrounded by an intricate stainless steel casing, which will be manufactured air tight to accommodate for nitrogen purging. Lead will surround the stainless steel shell to further absorb gamma rays. A mobile lift system has been designed for easy access to the detector. In the future, this project will include multiple testing stations located in the famous Davis Cavern where future experiments will have the ability to use the site as an efficient and accurate counting facility for their needs (such as measuring radioactive isotopes in materials). Overall, this detector (and its shield system) is the beginning of a central testing facility that will serve Homestake's scientific community.

  18. X-Ray Background from Early Binaries

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    What impact did X-rays from the first binary star systems have on the universe around them? A new study suggests this radiation may have played an important role during the reionization of our universe.Ionizing the UniverseDuring the period of reionization, the universe reverted from being neutral (as it was during recombination, the previous period)to once again being ionized plasma a state it has remained in since then. This transition, which occurred between 150 million and one billion years after the Big Bang (redshift of 6 z 20), was caused by the formation of the first objects energetic enough to reionize the universes neutral hydrogen.ROSAT image of the soft X-ray background throughout the universe. The different colors represent different energy bands: 0.25 keV (red), 0.75 keV (green), 1.5 keV (blue). [NASA/ROSAT Project]Understanding this time period in particular, determining what sources caused the reionization, and what the properties were of the gas strewn throughout the universe during this time is necessary for us to be able to correctly interpret cosmological observations.Conveniently, the universe has provided us with an interesting clue: the large-scale, diffuse X-ray background we observe all around us. What produced these X-rays, and what impact did this radiation have on the intergalactic medium long ago?The First BinariesA team of scientists led by Hao Xu (UC San Diego) has suggested that the very first generation of stars might be an important contributor to these X-rays.This hypothetical first generation, Population III stars, are thought to have formed before and during reionization from large clouds of gas containing virtually no metals. Studies suggest that a large fraction of Pop III stars formed in binaries and when those stars ended their lives as black holes, ensuing accretion from their companions could produceX-ray radiation.The evolution with redshift of the mean X-ray background intensities. Each curve represents a different

  19. Radiation sickness

    Science.gov (United States)

    ... radiation. There are two basic types of radiation: ionizing and nonionizing. Nonionizing radiation comes in the form of light, radio waves, microwaves and radar. This kind of radiation usually ...

  20. Radiation enteritis

    Science.gov (United States)

    Radiation enteropathy; Radiation-induced small bowel injury; Post-radiation enteritis ... Radiation therapy uses high-powered x-rays, particles, or radioactive seeds to kill cancer cells. The therapy ...

  1. Radiation Therapy

    Science.gov (United States)

    ... the area is stitched shut. Another treatment, called proton-beam radiation therapy , focuses the radiation on the ... after radiation treatment ends. Sore mouth and tooth decay. If you received radiation therapy to the head ...

  2. Cosmic microwave background theory.

    Science.gov (United States)

    Bond, J R

    1998-01-01

    A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in -space are consistent with a DeltaT flat in frequency and broadly follow inflation-based expectations. That the levels are approximately (10(-5))2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Lambda cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 +/- 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 +/- 0.08 for DMR plus the SK95 experiment; 1.00 +/- 0.04 for DMR plus all smaller angle experiments; 1.00 +/- 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Lambda and moderate constraints on Omegatot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant.

  3. Radiation dosimetry.

    OpenAIRE

    Cameron, J

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists.

  4. Army Programs: The Army Radiation Safety Program

    Science.gov (United States)

    2007-11-02

    area or very high radiation area. (For example, medical and dental diagnostic x-ray systems do not require an ARA.) However, commanders will...the testing of nuclear explosive devices or from past nuclear accidents such as Chernobyl that contribute to background radiation. Background radiation

  5. An introduction to radiation protection

    CERN Document Server

    Martin, Alan; Beach, Karen; Cole, Peter

    2012-01-01

    The sixth edition of this established text takes the reader through the general background to the subject, the technical principles underlying the control of radiation hazards, radiation detection and measurement and the biological effects of radiation. These are followed by a consideration of radiation protection issues in the nuclear industry, the non-nuclear sector and the medical field. Further specialised topics include risk assessment, waste management and decommissioning, radiological incidents and emergencies, relevant legislation and organizational issues.

  6. Low background infrared (LBIR) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Low background infrared (LBIR) facility was originally designed to calibrate user supplied blackbody sources and to characterize low-background IR detectors and...

  7. Cosmic Microwave Background Data Analysis

    Science.gov (United States)

    Paykari, Paniez; Starck, Jean-Luc Starck

    2012-03-01

    About 400,000 years after the Big Bang the temperature of the Universe fell to about a few thousand degrees. As a result, the previously free electrons and protons combined and the Universe became neutral. This released a radiation which we now observe as the cosmic microwave background (CMB). The tiny fluctuations* in the temperature and polarization of the CMB carry a wealth of cosmological information. These so-called temperature anisotropies were predicted as the imprints of the initial density perturbations which gave rise to the present large-scale structures such as galaxies and clusters of galaxies. This relation between the present-day Universe and its initial conditions has made the CMB radiation one of the most preferred tools to understand the history of the Universe. The CMB radiation was discovered by radio astronomers Arno Penzias and Robert Wilson in 1965 [72] and earned them the 1978 Nobel Prize. This discovery was in support of the Big Bang theory and ruled out the only other available theory at that time - the steady-state theory. The crucial observations of the CMB radiation were made by the Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite [86]- orbited in 1989-1996. COBE made the most accurate measurements of the CMB frequency spectrum and confirmed it as being a black-body to within experimental limits. This made the CMB spectrum the most precisely measured black-body spectrum in nature. The CMB has a thermal black-body spectrum at a temperature of 2.725 K: the spectrum peaks in the microwave range frequency of 160.2 GHz, corresponding to a 1.9mmwavelength. The results of COBE inspired a series of ground- and balloon-based experiments, which measured CMB anisotropies on smaller scales over the next decade. During the 1990s, the first acoustic peak of the CMB power spectrum (see Figure 5.1) was measured with increasing sensitivity and by 2000 the BOOMERanG experiment [26] reported

  8. Background and introduction

    DEFF Research Database (Denmark)

    2012-01-01

    Purpose: To explain the purpose and background of this book and introduce the three basic perspectives behind the research presented as well as the structure and editing process of the book. Methodology: The editors shared and discussed individual contributions to this chapter, based on their own...... behind the scenes of the making of this book and connects contributions from three different fields - FM, CREM, and B2B marketing - to shed more light on the concept of added value of FM. It serves as an introduction to the research presented in the other chapters in this book....... expertise, the involvement in the process leading to this the book including a number of workshops, and a literature review of the development of their disciplinary fields: Facilities Management (FM), Corporate Real Estate Management (CREM) and Business to Business (B2B) Marketing. Findings: The difference...... in scope between FM and CREM is that CREM has its focus on real estate as physical and economical assets utilized by an organisation, while FM has a wider service focus. The difference in scope between FM and CREM on one side and B2B marketing on the other is that FM and CREM are related to organisations...

  9. Background radiation deepens the confusion for big bang theorists

    CERN Multimedia

    Vaughan, C

    1990-01-01

    Results from COBE presented at an APS meeting in Washington this week, confirmed earlier results that revealed that matter was spread around so smoothly in the early Universe that it is difficult to explain how galaxies could have formed (1/2 page).

  10. New Measurements of the Cosmic Background Radiation Spectrum

    Science.gov (United States)

    Smoot, G. F.; De Amici, G.; Levin, S.; Witebsky, C.

    We continue consideration of ways-and-means for creating, in an evolutionary, ever-more-powerful manner, a continually-updated data-base of salient atmospheric properties sufficient for finite differenced integration-based, high-fidelity weather prediction over intervals of 2-3 weeks, leveraging the 10{sup 14} FLOPS digital computing systems now coming into existence. A constellation comprised of 10{sup 6}-10{sup 9} small atmospheric sampling systems--high-tech superpressure balloons carrying early 21st century semiconductor devices, drifting with the local winds over the meteorological spectrum of pressure-altitudes--that assays all portions of the troposphere and lower stratosphere remains the central feature of the proposed system. We suggest that these devices should be active-signaling, rather than passive-transponding, as we had previously proposed only for the ground- and aquatic-situated sensors of this system. Instead of periodic interrogation of the intra-atmospheric transponder population by a constellation of sophisticated small satellites in low Earth orbit, we now propose to retrieve information from the instrumented balloon constellation by existing satellite telephony systems, acting as cellular tower-nodes in a global cellular telephony system whose ''user-set'' is the atmospheric-sampling and surface-level monitoring constellations. We thereby leverage the huge investment in cellular (satellite) telephony and GPS technologies, with large technical and economic gains. This proposal minimizes sponsor forward commitment along its entire programmatic trajectory, and moreover may return data of weather-predictive value soon after field activities commence. We emphasize its high near-term value for making better mesoscale, relatively short-term weather predictions with computing-intensive means, and its great long-term utility in enhancing the meteorological basis for global change predictive studies. We again note that adverse impacts of weather involve continuing costs of the order of 1% of GDP, a large fraction of which could be retrieved if high-fidelity predictions of two weeks forward applicability were available. These{approx}$10{sup 2} B annual savings dwarf the<$1 B costs of operating a rational, long-range weather prediction system of the type proposed.

  11. Division G Commission 21: Galactic and Extragalactic Backgrounds Radiation

    Science.gov (United States)

    Murthy, Jayant; Witt, Adolf; Baggaley, W. Jack; Dwek, Eli; Levasseur-Regourd, Anny-Chantal; Mann, Ingrid; Mattila, Kalevi; Watanabe, Jun-Ichi

    2016-04-01

    Commission 21 was one of the oldest and smallest in the IAU yet one which underwent the most evolution since its inception. It began in 1955 as Light of the Night Sky (Lumière du Ciel Nocturne) under the Presidentship of Jean Dufay (University Observatory at Lyon). As the name suggested, in the years before space observations, its focus was on observations of atmospheric light which, at the time, was the domain of astronomers. Thus the early proceedings of the Commission were dominated by reports of the daytime and nighttime emission as observed from different locations and different conditions. Our knowledge of the Earth's atmosphere is still shaped by these early observations (Meier R.R., 1991, Space Sci. Rev. 58, 1). Members of Commission 21 were key to organizing interational collaborations to set up atmospheric stations at different latitudes, including in the Souther hemisphere and in ensuring a consistent calibration between the instruments. The Commission also bought in results from Soviet scientists in an era where communication was limited by both politics and language.

  12. Propagation in a thermal graviton background

    CERN Document Server

    Arteaga, D; Verdaguer, E; Arteaga, Daniel; Parentani, Renaud; Verdaguer, Enric

    2003-01-01

    Gravitational radiative corrections evaluated in a non-trivial background may lead to Lorentz-breaking modifications of the effective dispersion relation of particles, even if the Lorentz group is a fundamental symmetry of the theory. As a first step to explore this possibility, we compute the one-loop radiative corrections to the self-energy of a scalar particle propagating in a thermal bath of gravitons in Minkowski spacetime. We obtain terms which originate from the thermal bath and which indeed break the Lorentz invariance that possessed the propagator in the vacuum. Rather unexpectedly however, the terms which break Lorentz invariance vanish in the high three-momentum limit. We also found that the imaginary part, which gives the rate of approach to thermal equilibrium, vanishes at one loop.

  13. Radiation Therapy

    Science.gov (United States)

    Radiation therapy is a cancer treatment. It uses high doses of radiation to kill cancer cells and stop them from ... half of all cancer patients receive it. The radiation may be external, from special machines, or internal, ...

  14. Radiation dosimetry

    CERN Document Server

    Hine, Gerald J; Hine, Gerald J

    1956-01-01

    Radiation Dosimetry focuses on the advancements, processes, technologies, techniques, and principles involved in radiation dosimetry, including counters and calibration and standardization techniques. The selection first offers information on radiation units and the theory of ionization dosimetry and interaction of radiation with matter. Topics include quantities derivable from roentgens, determination of dose in roentgens, ionization dosimetry of high-energy photons and corpuscular radiations, and heavy charged particles. The text then examines the biological and medical effects of radiation,

  15. The Cosmic Microwave Background anisotropies: open problems

    CERN Document Server

    Martínez-González, E

    2005-01-01

    The standard inflationary model presents a simple scenario within which the homogeneity, isotropy and flatness of the universe appear as natural outcomes and, in addition, fluctuations in the energy density are originated during the inflationary phase. These seminal density fluctuations give rise to fluctuations in the temperature of the Cosmic Microwave Background (CMB) at the decoupling surface. Afterward, the CMB photons propagate almost freely, with slight gravitational interactions with the evolving gravitational field present in the large scale structure (LSS) of the matter distribution and a low scattering rate with free electrons after the universe becomes reionized. These secondary effects slightly change the shape of the intensity and polarization angular power spectra (APS) of the radiation. The APS contain very valuable information on the parameters characterizing the background model of the universe and those parametrising the power spectra of both matter density perturbations and gravitational w...

  16. JEM-X background models

    DEFF Research Database (Denmark)

    Huovelin, J.; Maisala, S.; Schultz, J.

    2003-01-01

    Background and determination of its components for the JEM-X X-ray telescope on INTEGRAL are discussed. A part of the first background observations by JEM-X are analysed and results are compared to predictions. The observations are based on extensive imaging of background near the Crab Nebula...

  17. Alpha Background Rejection in Bolometer Detectors

    Science.gov (United States)

    Deporzio, Nicholas

    2016-03-01

    This study presents the modification of bolometer detectors used in particle searches to veto or otherwise reject alpha radiation background and the statistical advantages of doing so. Several techniques are presented in detail - plastic film scintillator vetoes, metallic film ionization vetoes, and scintillating bolometer vetoes. Plastic scintillator films are cooled to bolometer temperatures and bombarded with 1.4MeV to 6.0MeV alpha particles representative of documented detector background. Photomultipliers detect this scintillation light and produce a veto signal. Layered metallic films of a primary metal, dielectric, and secondary metal, such as gold-polyethylene-gold films, are cooled to milli-kelvin temperatures and biased to produce a current signal veto when incident 1.4MeV to 6.0MeV alpha particles ionize conduction paths through the film. Modified Zinc Molybdate Bolometers are used to produce scintillation light when stimulated by alpha background. Calibration of veto signal to background energy is presented. Results are used to quantify the statistical impact of such modifications on bolometer searches.

  18. Supergravity backgrounds and symmetry superalgebras

    CERN Document Server

    Ertem, Ümit

    2016-01-01

    We consider the bosonic sectors of supergravity theories in ten and eleven dimensions which correspond to the low energy limits of string theories and M-theory. The solutions of supergravity field equations are known as supergravity backgrounds and the number of preserved supersymmetries in those backgrounds are determined by Killing spinors. We provide some examples of supergravity backgrounds which preserve different fractions of supersymmetry. An important invariant for the characterization of supergravity backgrounds is their Killing superalgebras which are constructed out of Killing vectors and Killing spinors of the background. After constructing Killing superalgebras of some special supergravity backgrounds, we discuss about the possibilities of the extensions of these superalgebras to include the higher degree hidden symmetries of the background.

  19. Evidence for extra radiation?

    DEFF Research Database (Denmark)

    Hamann, J.

    2012-01-01

    during the marginalisation process, and we demonstrate that the effect is related to the fact that cosmic microwave background (CMB) data constrain N_eff only indirectly via the redshift of matter-radiation equality. Once present CMB data are combined with external information about, e.g., the Hubble...

  20. Simulation of PEP-II Accelerator Backgrounds Using TURTLE

    CERN Document Server

    Barlow, Roger J; Kozanecki, Witold; Majewski, Stephanie; Roudeau, Patrick; Stocchi, Achille

    2005-01-01

    We present studies of accelerator-induced backgrounds in the BaBar detector at the SLAC B-Factory, carried out using a modified version ofthe DECAY TURTLE simulation package. Lost-particle backgrounds in PEP-II are dominated by a combination of beam-gas bremstrahlung, beam-gas Coulomb scattering, radiative-Bhabha events and beam-beam blow-up. The radiation damage and detector occupancy caused by the associated electromagnetic shower debris can limit the usable luminosity. In order to understand and mitigate such backgrounds, we have performed a full programme of beam-gas and luminosity-background simulations, that include the effects of the detector solenoidal field, detailed modelling of limiting apertures in both collider rings, and optimization of the betatron collimation scheme in the presence of large transverse tails.

  1. Wilsonian flows and background fields

    CERN Document Server

    Litim, Daniel F; Litim, Daniel F.; Pawlowski, Jan M.

    2002-01-01

    We study exact renormalisation group flows for background field dependent regularisations. It is shown that proper-time flows are approximations to exact background field flows for a specific class of regulators. We clarify the role of the implicit scale dependence introduced by the background field. Its impact on the flow is evaluated numerically for scalar theories at criticality for different approximations and regularisations. Implications for gauge theories are discussed.

  2. Background subtraction theory and practice

    CERN Document Server

    Elgammal, Ahmed

    2014-01-01

    Background subtraction is a widely used concept for detection of moving objects in videos. In the last two decades there has been a lot of development in designing algorithms for background subtraction, as well as wide use of these algorithms in various important applications, such as visual surveillance, sports video analysis, motion capture, etc. Various statistical approaches have been proposed to model scene backgrounds. The concept of background subtraction also has been extended to detect objects from videos captured from moving cameras. This book reviews the concept and practice of back

  3. MDT Performance in a High Rate Background Environment

    CERN Document Server

    Aleksa, Martin; Hessey, N P; Riegler, W

    1998-01-01

    A Cs137 gamma source with different lead filters in the SPS beam-line X5 has been used to simulate the ATLAS background radiation. This note shows the impact of high background rates on the MDT efficiency and resolution for three kinds of pulse shaping and compares the results with GARFIELD simulations. Furthermore it explains how the performance can be improved by time slewing corrections and double track separation.

  4. 阳江高本底地区女性居民甲状腺超声检查的结果与分析%Analysis on the result of thyroid ultrasound examination in female residents in high background radiation area Yangjiang

    Institute of Scientific and Technical Information of China (English)

    苏垠平; 邹剑明; 谭光享; 秋叶澄伯; 雷淑洁; 李小亮; 孙全富

    2016-01-01

    Objective To explore the effect of long-term low dose radiation exposure on thyroid noduls of people.Methods There were 100 female residents aged 50 or above selected each from four regions in the high background radiation area (HBRA) and two regions in the control area (CA).The number,size and form of thyroid nodule were measured by ultrasound examination.Other indicators like blood pressure,height and weight were also measured.Personal life and living history were collected through questionnaires.The estimation of individual lifetime accumulated radiation dose was based on the γ dose rate indoor and outdoor and the age-related occupancy factor that obtained from the previous studies.Multinomial Logistic regression model,chi-square test and t test were conducted through software Stata 11.0.Results The average age was (65.2 ± 10.4) years for residents from HBRA and (60.7 ± 8.1) years for residents from CA,the average accumulated radiation dose in HBRA and CA was (162.5 ± 38.1) and (43.7 ± 7.3) mSv,respectively.Through the thyroid ultrasound examination,the prevalence of thyroid nodules in HBRA was higher than that in CA,70.2% and 51.0%,respectively.Among different type of thyroid nodules,the proportion of multiple solid nodules was highest,87.7% in HBRA and,75.9% in CA,respectively.The solid nodules were divided into different group according to the largest diameter of the nodule.For the solid nodule with < 15 mm in diameter,after adjusting confounding factor age,HBRA was responsible a possible risk (for nodule with < 10 mm in diameterβ =0.804,P < 0.05;while for 10-15 mm in diameterβ =1.277,P < 0.05).The accumulated radiation dose was a risk factor for small solid nodules with < 15 mm in diameter,and the risk would increase with the increased accumulated radiation dose.Conclusions There was no effect tobe found on the large nodules from longterm low dose radiation exposure,however the increase in the risk of the small solid nodules (< 15

  5. Physics for radiation protection

    CERN Document Server

    Martin, James E

    2013-01-01

    A much-needed working resource for health physicists and other radiation protection professionals, this volume presents clear, thorough, up-to-date explanations of the basic physics necessary to address real-world problems in radiation protection. Designed for readers with limited as well as basic science backgrounds, Physics for Radiation Protection emphasizes applied concepts and carefully illustrates all topics through examples as well as practice problems. Physics for Radiation Protection draws substantially on current resource data available for health physics use, providing decay schemes and emission energies for approximately 100 of the most common radionuclides encountered by practitioners. Excerpts of the Chart of the Nuclides, activation cross sections, fission yields, fission-product chains, photon attenuation coefficients, and nuclear masses are also provided.

  6. Backgrounds and characteristics of arsonists

    NARCIS (Netherlands)

    Labree, W.; Nijman, H.L.I.; Marle, H.J.C. van; Rassin, E.

    2010-01-01

    The aim of this study was to gain more insight in the backgrounds and characteristics of arsonists. For this, the psychiatric, psychological, personal, and criminal backgrounds of all arsonists (n = 25), sentenced to forced treatment in the maximum security forensic hospital “De Kijvelanden”, were c

  7. Measurement of natural background neutron

    CERN Document Server

    Li Jain, Ping; Tang Jin Hua; Tang, E S; Xie Yan Fong

    1982-01-01

    A high sensitive neutron monitor is described. It has an approximate counting rate of 20 cpm for natural background neutrons. The pulse amplitude resolution, sensitivity and direction dependence of the monitor were determined. This monitor has been used for natural background measurement in Beijing area. The yearly average dose is given and compared with the results of KEK and CERN.

  8. Gamma Reaction History Backgrounds at the NIF

    Science.gov (United States)

    Church, J. A.; Stoeffl, W. S.; Watts, P. W.; Carpenter, A. C.; Liebman, J.; Herrmann, H. W.; Kim, Y. H.; Grafil, E.

    2011-10-01

    The Gamma Reaction History (GRH) diagnostic at NIF detects gamma-rays, emitted directly from DT fusion reactions (DT γ) , through the use of four Gas Cherenkov detectors with adjustable gamma-ray energy thresholds. It is primarily used to determine bang time, burn width and total DT yield of the implosion. Background interference to the signal is insignificant when capsules are driven directly by the lasers, but can be significant during indirect-drive using a hohlraum, forming an approximately 20 ns plateau under the narrow ~200 ps FWHM fusion signal. This background is independent of fusion yield and most likely the result of laser-plasma interaction (LPI) induced hot electron bremsstrahlung radiation. These hard x-rays stream out target chamber ports and take multiple scatter paths to reach the GRH photomultiplier tubes (PMT), where they then bypass the Cherenkov conversion process and generate signal by direct interaction with the PMT microchannel plates. An examination of this background contribution to the GRH signal and possible mitigation strategies will be presented. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344, LLNL-ABS-490832.

  9. Radiation Therapy: Professions in Radiation Therapy

    Science.gov (United States)

    ... Resources Professions Site Index A-Z Professions in Radiation Therapy Radiation Oncologist Therapeutic Medical Physicist Radiation Therapist Dosimetrist Radiation Oncology Nurse Social Worker Dietitian Radiation Oncologist Radiation oncologists are physicians who oversee the ...

  10. Fingerprints of Galactic Loop I on the Cosmic Microwave Background

    DEFF Research Database (Denmark)

    Liu, Hao; Mertsch, Philipp; Sarkar, Subir

    2014-01-01

    We investigate possible imprints of galactic foreground structures such as the "radio loops" in the derived maps of the cosmic microwave background. Surprisingly, there is evidence for these not only at radio frequencies through their synchrotron radiation, but also at microwave frequencies where...

  11. Fingerprints of Galactic Loop I on the Cosmic Microwave Background

    DEFF Research Database (Denmark)

    Liu, Hao; Mertsch, Philipp; Sarkar, Subir

    2014-01-01

    We investigate possible imprints of galactic foreground structures such as the "radio loops" in the derived maps of the cosmic microwave background. Surprisingly, there is evidence for these not only at radio frequencies through their synchrotron radiation, but also at microwave frequencies where...... due to primordial gravitational waves from inflation....

  12. GammaSense: Infrastructureless Positioning using Background Radioactivity

    DEFF Research Database (Denmark)

    Bucur, Doina; Kjærgaard, Mikkel Baun

    2008-01-01

    We introduce the harvesting of natural background radioactivity for positioning. Using a standard Geiger-Müller counter as sensor, we fingerprint the natural levels of gamma radiation with the aim of then roughly pinpointing the position of a client in terms of interfloor, intrafloor, and indoor-...

  13. Measurement of radiative neutralino production

    CERN Document Server

    Bartels, Christoph; Langenfeld, Ulrich; List, Jenny

    2012-01-01

    We perform the first experimental study with full detector simulation for the radiative production of neutralinos at the linear collider, at sqrt{s} = 500 GeV and realistic beam polarizations. We consider all relevant backgrounds, like the Standard Model background from radiative neutrino production. The longitudinal polarized beams enhance the signal and simultaneously reduce the background, such that statistical errors are significantly reduced. We find that the photon spectrum from the signal process can be well isolated. The neutralino mass and the cross section can be measured at a few per-cent level, with the largest systematic uncertainties from the measurement of the beam polarization and the beam energy spectrum.

  14. Berkeley Low Background Counting Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Sensitive low background assay detectors and sample analysis are available for non-destructive direct gamma-ray assay of samples. Neutron activation analysis is also...

  15. Backgrounds in AFP Detector Estimation

    CERN Document Server

    Huang, Yicong

    2016-01-01

    The ATLAS Forward Proton (AFP) detectors aim to measure protons that are scattered in the ATLAS interaction point under very small angles ($90-160 \\mu rad$). The diffractive protons detected by the AFP may be accompanied by beam halo. This report presents an estimation of the beam halo backgrounds in the AFP using low pile-up data, and position distributions of the backgrounds in the AFP.

  16. Anomalies of the Cosmic Microwave Background

    DEFF Research Database (Denmark)

    Hansen, Martin Anders Kirstejn

    The Cosmic Microwave Background (CMB) is the faint afterglow of the extreme conditions that existed shortly after Big Bang. The temperature of the CMB radiation across the sky is extremely uniform, yet tiny anisotropies are present, and have with recent satellite missions been mapped to very high...... for modern Cosmology. Ever since the first easurements of the CMB anisotropy, several anomalies have been reported, and subsequently confirmed by later satellite, ground and balloon based missions. These anomalies does not conform to the standard model of cosmic inflation, and may thereby jeopardize...... with the parity asymmetry. A brief set of results for the parity asymmetry for the 4 data sets from the Planck satellite. This is compared with simulations to show how anomalous the observed low value of the parity asymmetry is. A test devoted to investigating whether the Edgeworth-Kuiper belt can aect...

  17. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite

    Science.gov (United States)

    Mather, J. C.; Cheng, E. S.; Shafer, R. A.; Bennett, C. L.; Boggess, N. W.; Dwek, E.; Hauser, M. G.; Kelsall, T.; Moseley, S. H., Jr.; Silverberg, R. F.

    1990-01-01

    A preliminary spectrum is presented of the background radiation between 1 and 20/cm from regions near the north Galactic pole, as observed by the FIRAS instrument on the COBE satellite. The spectral resolution is 1/cm. The spectrum is well fitted by a blackbody with a temperature of 2.735 + or - 0.06 K, and the deviation from a blackbody is less than 1 percent of the peak intensity over the range 1-20/cm. These new data show no evidence for the submillimeter excess previously reported by Matsumoto et al. (1988) in the cosmic microwave background. Further analysis and additional data are expected to improve the sensitivity to deviations from a blackbody spectrum by an order of magnitude.

  18. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite

    Energy Technology Data Exchange (ETDEWEB)

    Mather, J.C.; Cheng, E.S.; Shafer, R.A.; Bennett, C.L.; Boggess, N.W.; Dwek, E.; Hauser, M.G.; Kelsall, T.; Moseley, S.H. Jr.; Silverberg, R.F. (NASA, Goddard Space Flight Center, Greenbelt, MD (USA))

    1990-05-01

    A preliminary spectrum is presented of the background radiation between 1 and 20/cm from regions near the north Galactic pole, as observed by the FIRAS instrument on the COBE satellite. The spectral resolution is 1/cm. The spectrum is well fitted by a blackbody with a temperature of 2.735 + or - 0.06 K, and the deviation from a blackbody is less than 1 percent of the peak intensity over the range 1-20/cm. These new data show no evidence for the submillimeter excess previously reported by Matsumoto et al. (1988) in the cosmic microwave background. Further analysis and additional data are expected to improve the sensitivity to deviations from a blackbody spectrum by an order of magnitude. 31 refs.

  19. Estimation of background spectrum in a shielded HPGe detector using Monte Carlo simulations.

    Science.gov (United States)

    Medhat, M E; Wang, Yifang

    2014-02-01

    Monte Carlo simulations are powerful tools used to estimate the background γ-radiation detected by high-resolution gamma-ray spectrometry systems with a HPGe (high purity germanium) detector contained inside a lead shield. The purpose of this work was to examine the applicability of Monte Carlo simulations to predict the optimal lead thickness necessary to reduce the background effect in spectrometer measurements. GEANT4 code was applied to simulate the background radiation spectrum at different thicknesses of lead. The simulated results were compared with experimental measurements of background radiation taken at the same shielding thickness. The results show that the background radiation detected depends on the thickness, size and lining of the shield. Simulation showed that 12 cm lead thick is the optimal shielding thickness.

  20. Background Independent String Field Theory

    CERN Document Server

    Bars, Itzhak

    2014-01-01

    We develop a new background independent Moyal star formalism in bosonic open string field theory. The new star product is formulated in a half-phase-space, and because phase space is independent of any background fields, the interactions are background independent. In this basis there is a large amount of symmetry, including a supersymmetry OSp(d|2) that acts on matter and ghost degrees of freedom, and simplifies computations. The BRST operator that defines the quadratic kinetic term of string field theory may be regarded as the solution of the equation of motion A*A=0 of a purely cubic background independent string field theory. We find an infinite number of non-perturbative solutions to this equation, and are able to associate them to the BRST operator of conformal field theories on the worldsheet. Thus, the background emerges from a spontaneous-type breaking of a purely cubic highly symmetric theory. The form of the BRST field breaks the symmetry in a tractable way such that the symmetry continues to be us...

  1. The Cosmic Infrared Background Experiment

    CERN Document Server

    Bock, J; Cooray, A R; Kawada, M; Keating, B; Lange, A; Lee, D H; Matsumoto, T; Matsuura, S; Pak, S; Renbarger, T; Sullivan, I; Tsumura, K; Wada, T; Watabe, T; Bock, James; Battle, John; Cooray, Asantha; Kawada, Mitsunobu; Keating, Brian; Lange, Andrew; Lee, Dae-Hea; Matsumoto, Toshio; Matsuura, Shuji; Pak, Soojong; Renbarger, Tom; Sullivan, Ian; Tsumura, Kohji; Wada, Takehiko; Watabe, Toyoki

    2006-01-01

    We are developing a rocket-borne instrument (the Cosmic Infrared Background ExpeRiment, or CIBER) to search for signatures of primordial galaxy formation in the cosmic near-infrared extra-galactic background. CIBER consists of a wide-field two-color camera, a low-resolution absolute spectrometer, and a high-resolution narrow-band imaging spectrometer. The cameras will search for spatial fluctuations in the background on angular scales from 7 arcseconds to 2 degrees over a range of angular scales poorly covered by previous experiments. CIBER will determine if the fluctuations reported by the IRTS arise from first-light galaxies or have a local origin. In a short rocket flight CIBER has sensitivity to probe fluctuations 100 times fainter than IRTS/DIRBE. By jointly observing regions of the sky studied by Spitzer and ASTRO-F, CIBER will build a multi-color view of the near-infrared background, accurately assessing the contribution of local (z = 1-3) galaxies to the observed background fluctuations, allowing a de...

  2. Neutron background estimates in GESA

    Directory of Open Access Journals (Sweden)

    Fernandes A.C.

    2014-01-01

    Full Text Available The SIMPLE project looks for nuclear recoil events generated by rare dark matter scattering interactions. Nuclear recoils are also produced by more prevalent cosmogenic neutron interactions. While the rock overburden shields against (μ,n neutrons to below 10−8 cm−2 s−1, it itself contributes via radio-impurities. Additional shielding of these is similar, both suppressing and contributing neutrons. We report on the Monte Carlo (MCNP estimation of the on-detector neutron backgrounds for the SIMPLE experiment located in the GESA facility of the Laboratoire Souterrain à Bas Bruit, and its use in defining additional shielding for measurements which have led to a reduction in the extrinsic neutron background to ∼ 5 × 10−3 evts/kgd. The calculated event rate induced by the neutron background is ∼ 0,3 evts/kgd, with a dominant contribution from the detector container.

  3. Atoms, Radiation, and Radiation Protection

    CERN Document Server

    Turner, James E

    2007-01-01

    Atoms, Radiation, and Radiation Protection offers professionals and advanced students a comprehensive coverage of the major concepts that underlie the origins and transport of ionizing radiation in matter. Understanding atomic structure and the physical mechanisms of radiation interactions is the foundation on which much of the current practice of radiological health protection is based. The work covers the detection and measurement of radiation and the statistical interpretation of the data. The procedures that are used to protect man and the environment from the potential harmful effects of

  4. Cosmology on Compact and Stable Supergravity Background

    CERN Document Server

    Hailu, Girma

    2012-01-01

    We propose a cosmological model of D3-brane universe on compact and stable supergravity background of wrapped D7-branes in type IIB string theory previously argued to be dual to pure N=1 SU(N) gauge theory in four dimensions. A model universe of order Planck size near the UV boundary dynamically flows toward the IR with constant total energy density and accelerating expansion followed by smooth transition to decelerating expansion and collides with the wrapped D7-branes at the IR boundary. The model addresses the horizon and flatness problems with most of the expansion produced during the decelerating expansion phase. The inflationary scenario is used to generate sources of inhomogeneities in the cosmic microwave background radiation and seeds for large scale structure formation from quantum fluctuations which exit the Hubble radius early during the accelerating expansion phase and the model addresses the inhomogeneity problem with red tilt in the power spectrum. We propose that the kinetic energy of the mode...

  5. Children of ethnic minority backgrounds

    DEFF Research Database (Denmark)

    Johansen, Stine Liv

    2010-01-01

    media products and toys just as they will have knowledge of different media texts, play genres, rhymes etc. This has consequences for their ability to access social settings, for instance in play. New research in this field will focus on how children themselves make sense of this balancing of cultures......Children of ethnic minority background balance their everyday life between a cultural background rooted in their ethnic origin and a daily life in day care, schools and with peers that is founded in a majority culture. This means, among other things, that they often will have access to different...

  6. Generative electronic background music system

    Energy Technology Data Exchange (ETDEWEB)

    Mazurowski, Lukasz [Faculty of Computer Science, West Pomeranian University of Technology in Szczecin, Zolnierska Street 49, Szczecin, PL (Poland)

    2015-03-10

    In this short paper-extended abstract the new approach to generation of electronic background music has been presented. The Generative Electronic Background Music System (GEBMS) has been located between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The music composition process is performed by a number of mini-models parameterized by further described properties. The mini-models generate fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models - a host-model. General mechanism has been presented including the example of the synthesized output compositions.

  7. Exotic branes and nongeometric backgrounds.

    Science.gov (United States)

    de Boer, Jan; Shigemori, Masaki

    2010-06-25

    When string or M theory is compactified to lower dimensions, the U-duality symmetry predicts so-called exotic branes whose higher-dimensional origin cannot be explained by the standard string or M-theory branes. We argue that exotic branes can be understood in higher dimensions as nongeometric backgrounds or U folds, and that they are important for the physics of systems which originally contain no exotic charges, since the supertube effect generically produces such exotic charges. We discuss the implications of exotic backgrounds for black hole microstate (non-)geometries.

  8. The Anisotropy of the Microwave Background to l = 3500 Mosaic Observations with the Cosmic Background Imager

    CERN Document Server

    Pearson, T J; Readhead, A C S; Shepherd, M C; Sievers, J L; Udomprasert, P S; Cartwright, J K; Farmer, A J; Padin, S; Myers, S T; Bond, J R; Contaldi, C R; Pen, U L; Prunet, S; Pogosyan, D; Carlstrom, J E; Kovács, J; Leitch, E M; Pryke, C L; Halverson, N W; Holzapfel, W L; Altamirano, P; Bronfman, L; Casassus, S; May, J; Joy, M

    2003-01-01

    Using the Cosmic Background Imager, a 13-element interferometer array operating in the 26-36 GHz frequency band, we have observed 40 sq deg of sky in three pairs of fields, each ~ 145 x 165 arcmin, using overlapping pointings (mosaicing). We present images and power spectra of the cosmic microwave background radiation in these mosaic fields. We remove ground radiation and other low-level contaminating signals by differencing matched observations of the fields in each pair. The primary foreground contamination is due to point sources (radio galaxies and quasars). We have subtracted the strongest sources from the data using higher-resolution measurements, and we have projected out the response to other sources of known position in the power-spectrum analysis. The images show features on scales ~ 6 - 15 arcmin, corresponding to masses ~ (5 - 80)*10^{14} Msun at the surface of last scattering, which are likely to be the seeds of clusters of galaxies. The power spectrum estimates have a resolution Delta-l = 200 an...

  9. Radiation carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1976-01-01

    The risk of iatrogenic tumors with radiation therapy is so outweighed by the benefit of cure that estimates of risk have not been considered necessary. However, with the introduction of chemotherapy, combined therapy, and particle radiation therapy, the comparative risks should be examined. In the case of radiation, total dose, fractionation, dose rate, dose distribution, and radiation quality should be considered in the estimation of risk. The biological factors that must be considered include incidence of tumors, latent period, degree of malignancy, and multiplicity of tumors. The risk of radiation induction of tumors is influenced by the genotype, sex, and age of the patient, the tissues that will be exposed, and previous therapy. With chemotherapy the number of cells at risk is usually markedly higher than with radiation therapy. Clearly the problem of the estimation of comparative risks is complex. This paper presents the current views on the comparative risks and the importance of the various factors that influence the estimation of risk.

  10. Radiation acoustics

    CERN Document Server

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  11. Low Background Micromegas in CAST

    CERN Document Server

    Garza, J G; Aznar, F.; Calvet, D.; Castel, J.F.; Christensen, F.E.; Dafni, T.; Davenport, M.; Decker, T.; Ferrer-Ribas, E.; Galán, J.; García, J.A.; Giomataris, I.; Hill, R.M.; Iguaz, F.J.; Irastorza, I.G.; Jakobsen, A.C.; Jourde, D.; Mirallas, H.; Ortega, I.; Papaevangelou, T.; Pivovaroff, M.J.; Ruz, J.; Tomás, A.; Vafeiadis, T.; Vogel, J.K.

    2015-01-01

    Solar axions could be converted into x-rays inside the strong magnetic field of an axion helioscope, triggering the detection of this elusive particle. Low background x-ray detectors are an essential component for the sensitivity of these searches. We report on the latest developments of the Micromegas detectors for the CERN Axion Solar Telescope (CAST), including technological pathfinder activities for the future International Axion Observatory (IAXO). The use of low background techniques and the application of discrimination algorithms based on the high granularity of the readout have led to background levels below 10$^{-6}$ counts/keV/cm$^2$/s, more than a factor 100 lower than the first generation of Micromegas detectors. The best levels achieved at the Canfranc Underground Laboratory (LSC) are as low as 10$^{-7}$ counts/keV/cm$^2$/s, showing good prospects for the application of this technology in IAXO. The current background model, based on underground and surface measurements, is presented, as well as ...

  12. Low Background Micromegas in CAST

    DEFF Research Database (Denmark)

    Garza, J G; Aune, S.; Aznar, F.

    2014-01-01

    Solar axions could be converted into x-rays inside the strong magnetic field of an axion helioscope, triggering the detection of this elusive particle. Low background x-ray detectors are an essential component for the sensitivity of these searches. We report on the latest developments of the Micr...

  13. Educational Choice. A Background Paper.

    Science.gov (United States)

    Quality Education for Minorities Network, Washington, DC.

    This paper addresses school choice, one proposal to address parental involvement concerns, focusing on historical background, definitions, rationale for advocating choice, implementation strategies, and implications for minorities and low-income families. In the past, transfer payment programs such as tuition tax credits and vouchers were…

  14. Hawking radiation

    Science.gov (United States)

    Parentani, Renaud; Spindel, Philippe

    2011-12-01

    Hawking radiation is the thermal radiation predicted to be spontaneously emitted by black holes. It arises from the steady conversion of quantum vacuum fluctuations into pairs of particles, one of which escaping at infinity while the other is trapped inside the black hole horizon. It is named after the physicist Stephen Hawking who derived its existence in 1974. This radiation reduces the mass of black holes and is therefore also known as black hole evaporation.

  15. The Cosmic Infrared Background Experiment

    Science.gov (United States)

    Bock, James; Battle, J.; Cooray, A.; Hristov, V.; Kawada, M.; Keating, B.; Lee, D.; Matsumoto, T.; Matsuura, S.; Nam, U.; Renbarger, T.; Sullivan, I.; Tsumura, K.; Wada, T.; Zemcov, M.

    2009-01-01

    We are developing the Cosmic Infrared Background ExpeRiment (CIBER) to search for signatures of first-light galaxy emission in the extragalactic background. The first generation of stars produce characteristic signatures in the near-infrared extragalactic background, including a redshifted Ly-cutoff feature and a characteristic fluctuation power spectrum, that may be detectable with a specialized instrument. CIBER consists of two wide-field cameras to measure the fluctuation power spectrum, and a low-resolution and a narrow-band spectrometer to measure the absolute background. The cameras will search for fluctuations on angular scales from 7 arcseconds to 2 degrees, where the first-light galaxy spatial power spectrum peaks. The cameras have the necessary combination of sensitivity, wide field of view, spatial resolution, and multiple bands to make a definitive measurement. CIBER will determine if the fluctuations reported by Spitzer arise from first-light galaxies. The cameras observe in a single wide field of view, eliminating systematic errors associated with mosaicing. Two bands are chosen to maximize the first-light signal contrast, at 1.6 um near the expected spectral maximum, and at 1.0 um; the combination is a powerful discriminant against fluctuations arising from local sources. We will observe regions of the sky surveyed by Spitzer and Akari. The low-resolution spectrometer will search for the redshifted Lyman cutoff feature in the 0.7 - 1.8 um spectral region. The narrow-band spectrometer will measure the absolute Zodiacal brightness using the scattered 854.2 nm Ca II Fraunhofer line. The spectrometers will test if reports of a diffuse extragalactic background in the 1 - 2 um band continues into the optical, or is caused by an under estimation of the Zodiacal foreground. We report performance of the assembled and tested instrument as we prepare for a first sounding rocket flight in early 2009. CIBER is funded by the NASA/APRA sub-orbital program.

  16. Fingerprints of Galactic Loop I on the Cosmic Microwave Background

    CERN Document Server

    Liu, Hao; Sarkar, Subir

    2014-01-01

    We investigate possible imprints of galactic foreground structures such as the `radio loops' in the derived maps of the cosmic microwave background. Surprisingly there is evidence for these not only at radio frequencies through their synchrotron radiation, but also at microwave frequencies where emission by dust dominates. This suggests the mechanism is magnetic dipole radiation from dust grains enriched by metallic iron, or ferrimagnetic molecules. This new foreground we have identified is present at high galactic latitudes, and potentially dominates over the expected B-mode polarisation signal due to primordial gravitational waves from inflation.

  17. Upper Limits on a Stochastic Background of Gravitational Waves

    CERN Document Server

    Abbott, B; Adhikari, R; Ageev, A; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cantley, C A; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Danzmann, K; Daw, E; De Bra, D; Delker, T; Dergachev, V; DeSalvo, R; Dhurandhar, S V; Di Credico, A; Ding, H; Drever, R W P; Dupuis, R J; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; González, G; Goler, S; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Günther, M; Gustafson, E; Gustafson, R; Hamilton, W O; Hammond, M; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Luck, H; Lyons, T T; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Müller, G; Mukherjee, S; Murray, P; Myers, J; Nagano, S; Nash, T; Nayak, R; Newton, G; Nocera, F; Noel, J S; Nutzman, P; Olson, T; O'Reilly, B; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robison, L; Roddy, S; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Rüdiger, A; Russell, P; Ryan, K; Salzman, I; Sandberg, V; Sanders, G H; Sannibale, V; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sengupta, A S; Shapiro, C A; Shawhan, P; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Smith, J R; Smith, M; Smith, M R; Sneddon, P H; Spero, R; Stapfer, G; Steussy, D; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tariq, H; Taylor, I; Taylor, R; Thorne, K A; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D W; Ungarelli, C; Vallisneri, M; Van Putten, M H P M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Williams, P R; Williams, R; Willke, B; Wilson, A; Winjum, B J; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yoshida, S; Zaleski, K D; Zanolin, M; Zawischa, I; Zhang, L; Zhu, R; Zotov, N P; Zucker, M; Zweizig, J

    2005-01-01

    The Laser Interferometer Gravitational Wave Observatory (LIGO) has performed a third science run with much improved sensitivities of all three interferometers. We present an analysis of approximately 200 hours of data acquired during this run, used to search for a stochastic background of gravitational radiation. We place upper bounds on the energy density stored as gravitational radiation for three different spectral power laws. For the flat spectrum, our limit of Omega_0<8.4e-4 in the 69-156 Hz band is ~10^5 times lower than the previous result in this frequency range.

  18. Upper limits on a stochastic background of gravitational waves.

    Science.gov (United States)

    Abbott, B; Abbott, R; Adhikari, R; Agresti, J; Ajith, P; Allen, B; Allen, J; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barton, M A; Bayer, K; Belczynski, K; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Buonanno, A; Busby, D; Butler, W E; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cardenas, L; Carter, K; Casey, M M; Charlton, P; Chatterji, S; Chen, Y; Chin, D; Christensen, N; Cokelaer, T; Colacino, C N; Coldwell, R; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Dalrymple, J; D'Ambrosio, E; Danzmann, K; Davies, G; DeBra, D; Dergachev, V; Desai, S; DeSalvo, R; Dhurandar, S; Díaz, M; Di Credico, A; Drever, R W P; Dupuis, R J; Ehrens, P; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Finn, L S; Franzen, K Y; Frey, R E; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Gholami, I; Giaime, J A; Goda, K; Goggin, L; González, G; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grunewald, S; Guenther, M; Gustafson, R; Hamilton, W O; Hanna, C; Hanson, J; Hardham, C; Harry, G; Heefner, J; Heng, I S; Hewitson, M; Hindman, N; Hoang, P; Hough, J; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, L; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Khan, A; Kim, C; King, P; Klimenko, S; Koranda, S; Kozak, D; Krishnan, B; Landry, M; Lantz, B; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Lindquist, P; Liu, S; Lormand, M; Lubinski, M; Lück, H; Luna, M; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Malec, M; Mandic, V; Marka, S; Maros, E; Mason, K; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Melissinos, A; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Mohanty, S; Moreno, G; Mossavi, K; Mueller, G; Mukherjee, S; Myers, E; Myers, J; Nash, T; Nocera, F; Noel, J S; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rawlins, K; Ray-Majumder, S; Re, V; Regimbau, T; Reitze, D H; Riesen, R; Riles, K; Rivera, B; Robertson, D I; Robertson, N A; Robinson, C; Roddy, S; Rodriguez, A; Rollins, J; Romano, J D; Romie, J; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Sandberg, V; Sanders, G H; Sannibale, V; Sarin, P; Sathyaprakash, B S; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Sellers, D; Sengupta, A S; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Sintes, A M; Smith, J; Smith, M R; Spjeld, O; Strain, K A; Strom, D M; Stuver, A; Summerscales, T; Sung, M; Sutton, P J; Tanner, D B; Taylor, R; Thorne, K A; Thorne, K S; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D; Ungarelli, C; Vallisneri, M; van Putten, M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Ward, H; Ward, R; Watts, K; Webber, D; Weiland, U; Weinstein, A; Weiss, R; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Willke, B; Wilson, A; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Woods, D; Wooley, R; Worden, J; Yakushin, I; Yamamoto, H; Yoshida, S; Zanolin, M; Zhang, L; Zotov, N; Zucker, M; Zweizig, J

    2005-11-25

    The Laser Interferometer Gravitational-Wave Observatory has performed a third science run with much improved sensitivities of all three interferometers. We present an analysis of approximately 200 hours of data acquired during this run, used to search for a stochastic background of gravitational radiation. We place upper bounds on the energy density stored as gravitational radiation for three different spectral power laws. For the flat spectrum, our limit of omega0 < 8.4 x 10(-4) in the 69-156 Hz band is approximately 10(5) times lower than the previous result in this frequency range.

  19. Overview on measures concerning the radiation exposure reduction following events with serious radiological consequences (catalogue of measures) Pt. 2. Background information, theory and examples of use; Uebersicht ueber Massnahmen zur Verringerung der Strahlenexposition nach Ereignissen mit nicht unerheblichen radiologischen Auswirkungen. (Massnahmenkatalog). T. 2. Hintergrundinformationen, Theorie und Anwendungsbeispiele

    Energy Technology Data Exchange (ETDEWEB)

    Genkel, Simone; Schnadt, Horst (comps.)

    2010-07-01

    The report edited by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety includes the following chapters: Summary of materials: international nuclear and radiological event scale (INES), nuclear power plants in Europe, significance of the reference nuclide I-131, emergency protection measures, radiation protection measures, contaminated surface waters, contaminated matter disposal, prevention of radiation exposure by inhalation, decision making concerning agriculture and food, radiation protection during disposal procedures. Theoretical fundamentals: decontamination, dose rate, contaminated soils, inhalation dose, contaminated articles, contaminated surface waters, contaminated skin, contamination by ingestion, conversion factors, calculation procedures for appropriate measures. Examples for use of the catalogue of measures.

  20. The Diffuse Supernova Neutrino Background

    CERN Document Server

    Beacom, John F

    2010-01-01

    The Diffuse Supernova Neutrino Background (DSNB) is the weak glow of MeV neutrinos and antineutrinos from distant core-collapse supernovae. The DSNB has not been detected yet, but the Super-Kamiokande (SK) 2003 upper limit on the electron antineutrino flux is close to predictions, now quite precise, based on astrophysical data. If SK is modified with dissolved gadolinium to reduce detector backgrounds and increase the energy range for analysis, then it should detect the DSNB at a rate of a few events per year, providing a new probe of supernova neutrino emission and the cosmic core-collapse rate. If the DSNB is not detected, then new physics will be required. Neutrino astronomy, while uniquely powerful, has proven extremely difficult -- only the Sun and the nearby Supernova 1987A have been detected to date -- so the promise of detecting new sources soon is exciting indeed.

  1. Background independence in a background dependent renormalization group

    CERN Document Server

    Labus, Peter; Slade, Zoë H

    2016-01-01

    Within the derivative expansion of conformally reduced gravity, the modified split Ward identities are shown to be compatible with the flow equations if and only if either the anomalous dimension vanishes or the cutoff profile is chosen to be power law. No solutions exist if the Ward identities are incompatible. In the compatible case, a clear reason is found for why Ward identities can still forbid the existence of fixed points; however, for any cutoff profile, a background independent (and parametrisation independent) flow equation is uncovered. Finally, expanding in vertices, the combined equations are shown generically to become either over-constrained or highly redundant beyond the six-point level.

  2. NLC and the background atmosphere above ALOMAR

    Directory of Open Access Journals (Sweden)

    J. Fiedler

    2011-06-01

    Full Text Available Noctilucent clouds (NLC have been measured by the Rayleigh/Mie/Raman-lidar at the ALOMAR research facility in Northern Norway (69° N, 16° E. From 1997 to 2010 NLC were detected during more than 1850 h on 440 different days. Colocated MF-radar measurements and calculations with the Leibniz-Institute Middle Atmosphere (LIMA- model are used to characterize the background atmosphere. Temperatures as well as horizontal winds at 83 km altitude show distinct differences during NLC observations compared to when NLC are absent. The seasonally averaged temperature is lower and the winds are stronger westward when NLC are detected. The wind separation is a robust feature as it shows up in measurements as well as in model results and it is consistent with the current understanding that lower temperatures support the existence of ice particles. For the whole 14-year data set there is no statistically significant relation between NLC occurrence and solar Lyman-α radiation. On the other hand NLC occurrence and temperatures at 83 km show a significant anti-correlation, which suggests that the thermal state plays a major role for the existence of ice particles and dominates the pure Lyman-α influence on water vapor during certain years. We find the seasonal mean NLC altitudes to be correlated to both Lyman-α radiation and temperature. NLC above ALOMAR are strongly influenced by atmospheric tides. The cloud water content varies by a factor of 2.8 over the diurnal cycle. Diurnal and semidiurnal amplitudes and phases show some pronounced year-to-year variations. In general, amplitudes as well as phases vary in a different manner. Amplitudes change by a factor of more than 3 and phases vary by up to 7 h. Such variability could impact long-term NLC observations which do not cover the full diurnal cycle.

  3. Spectral measurements of the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Kogut, A.J.

    1989-04-01

    Three experiments have measured the intensity of the Cosmic Microwave Background (CMB) at wavelengths 4.0, 3.0, and 0.21 cm. The measurement at 4.0 cm used a direct-gain total-power radiometer to measure the difference in power between the zenith sky and a large cryogenic reference target. Foreground signals are measured with the same instrument and subtracted from the zenith signal, leaving the CMB as the residual. The reference target consists of a large open-mouth cryostat with a microwave absorber submerged in liquid helium; thin windows block the radiative heat load and prevent condensation atmospheric gases within the cryostat. The thermodynamic temperature of the CMB at 4.0 cm is 2.59 +- 0.07 K. The measurement at 3.0 cm used a superheterodyne Dicke-switched radiometer with a similar reference target to measure the zenith sky temperature. A rotating mirror allowed one of the antenna beams to be redirected to a series of zenith angles, permitting automated atmospheric measurements without moving the radiometer. A weighted average of 5 years of data provided the thermodynamic temperature of the CMB at 3.0 cm of 2.62 +- 0.06 K. The measurement at 0.21 cm used Very Large Array observations of interstellar ortho-formaldehyde to determine the CMB intensity in molecular clouds toward the giant HII region W51A (G49.5-0.4). Solutions of the radiative transfer problem in the context of a large velocity gradient model provided estimates of the CMB temperature within the foreground clouds. Collisional excitation from neutral hydrogen molecules within the clouds limited the precision of the result. The thermodynamic temperature of the CMB at 0.21 cm is 3.2 +- 0.9 K. 72 refs., 27 figs., 38 tabs.

  4. Stray light analysis of the Diffuse Infrared Background Experiment (DIRBE)

    Science.gov (United States)

    Breault, R. P.

    1984-01-01

    The straylight analysis of the diffuse infrared background experiment (DIRBE) on the cosmic background explorer (COBE) mission is discussed. From the statement of work (SOW), the purpose of DIRBE is to measure, or set upper limits on, the spectral and spatial character of the diffuse extra galactic infrared radiation. Diffuse infrared sources within our own galaxy are measured. The required reduction of the unwanted radiation imposes severe design and operating restrictions on the DIRBE instrument. To accomplish its missions, it will operate at a multitude of wavelengths ranging from 1.25 um out to 200 to 300 microns. The operating bands and the required point source normalized irradiance transmittance (PSNIT) are shown. The important straylight concepts in the DIRBE design are reviewed. The model and assumptions used in APART analysis are explained. The limitations due to the scalar theory used in the analysis are outlined.

  5. The Yuan-Tseh Lee Array for Microwave Background Anisotropy

    CERN Document Server

    Ho, Paul T P; Chang, Chia-Hao; Chang, Shu-Hao; Chang, Su-Wei; Chen, Chung-Cheng; Chen, Ke-Jung; Chen, Ming-Tang; Han, Chih-Chiang; Ho, West M; Huang, Yau-De; Hwang, Yuh-Jing; Ibanez-Romano, Fabiola; Jiang, Homin; Koch, Patrick M; Kubo, Derek Y; Li, Chao-Te; Lim, Jeremy; Lin, Kai-Yang; Liu, Guo-Chin; Lo, Kwok-Yung; Ma, Cheng-Jiun; Martin, Robert N; Martin-Cocher, Pierre; Molnar, Sandor M; Ng, Kin-Wang; Nishioka, Hiroaki; O'Connell, Kevin E; Oshiro, Peter; Patt, Ferdinand; Raffin, Philippe; Umetsu, Keiichi; Wei, Tashun; Wu, Jiun-Huei Proty; Chiueh, Tzi-Dar; Chiueh, Tzihong; Chu, Tah-Hsiung; Huang, Chih-Wei Locutus; Hwang, W Y Pauchy; Liao, Yu-Wei; Lien, Chun-Hsien; Wang, Fu-Cheng; Wang, Huei; Wei, Ray-Ming; Yang, Chia-Hsiang; Kesteven, Michael; Kingsley, Jeff; Sinclair, Malcolm M; Wilson, Warwick; Birkinshaw, Mark; Liang, Haida; Lancaster, Katy; Park, Chan-Gyung; Pen, Ue-Li; Peterson, Jeffrey B

    2008-01-01

    The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) is the first interferometer dedicated to studying the cosmic microwave background (CMB) radiation at 3mm wavelength. The choice of 3mm is to minimize the contributions from foreground synchrotron radiation and Galactic dust emission. The initial configuration of seven 0.6m telescopes mounted on a 6-m hexapod platform, was dedicated in October 2006 on Mauna Loa, Hawaii. Scientific operations began with the detection of a number of clusters of galaxies via the thermal Sunyaev-Zel'dovich effect. We compare our data with Subaru weak lensing data in order to study the structure of dark matter. We also compare our data with X-ray data in order to derive the Hubble constant.

  6. Radiation physics for medical physicists

    CERN Document Server

    Podgorsak, Ervin B

    2006-01-01

    This book summarizes the radiation physics knowledge that professionals working in medical physics need to master for efficient and safe dealings with ionizing radiation. It contains eight chapters, each chapter covering a specific group of subjects related to radiation physics and is intended as a textbook for a course in radiation physics in medical-physics graduate programs. However, the book may also be of interest to the large number of professionals, not only medical physicists, who in their daily occupations deal with various aspects of medical physics and find a need to improve their understanding of radiation physics. The main target audience for this book is graduate students studying for M.Sc. and Ph.D. degrees in medical physics, who have to possess the necessary physics and mathematics background knowledge to be able to follow and master the complete textbook. Medical residents, technology students and biomedical engineering students may find certain sections too challenging or esoteric, yet they...

  7. The Cosmic Microwave Background State of the Art

    CERN Document Server

    Barreiro, R B

    2000-01-01

    We review the current status of the cosmic microwave background (CMB) radiation, including a revision of some basic theoretical aspects, a summary of anisotropy detections and CMB experiments, and a description of some relevant characteristics of the microwave foregrounds. We also discuss the different estimators proposed in the literature to detect non-Gaussianity and outline the basis of some reconstruction methods that have been applied to the CMB.

  8. Family Background and Educational Choices

    DEFF Research Database (Denmark)

    McIntosh, James; D. Munk, Martin

    We examine the participation in secondary and tertiary education of five cohorts of Danish males and females who were aged twenty starting in 1982 and ending in 2002. We find that the large expansion of secondary education in this period was characterized by a phenomenal increase in gymnasium...... enrollments, especially for females. Not only did the educational opportunities for individuals with disadvantaged backgrounds improve absolutely, but their relative position also improved. A similarly dramatic increase in attendance at university for the period 1985-2005 was found for these cohorts when...

  9. Radiation Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Castor, J I

    2003-10-16

    The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is

  10. Biological effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G. [SENES Oak Ridge Inc., Oak Ridge, TN (United States); Theodorakis, C.W.; Shugart, L.R. [Oak Ridge National Lab., Oak Ridge, TN (United States). Environmental Sciences Division

    1996-12-31

    Natural populations have always been exposed to background levels of ionizing radiation; however, with the event of the nuclear age, studies about the effects of higher-than-background levels of ionizing radiation on individuals or populations of organisms became important. Originally, concern was focused on survival after large, acute radiation doses, and numerous studies document the somatic and genetic effects of acute ionizing radiation. However, there is a growing realization that chronic long-term exposure to higher-than-background levels of environmental radiation is more likely than is large acute exposure. Less than 10% of the literature on ionizing radiation effects deals with chronic long-term effects, and very few studies involve natural populations. In 1977, mosquito fish, Gambusia affinis, were experimentally introduced into a 0,45 ha, decommissioned, radioactive waste pond where the measured dose at the sediment-water interface was 1,150 rad/year. One year later, the fecundity of the population had not changed significantly. Eighteen years later, studies of the fish showed an inverse correlation between DNA strand breakage and fecundity in the contaminated pond. More recent studies have provided evidence that genetic diversity of the fish has increased in the contaminated site. These fish also have a greater prevalence of certain DNA banding patterns. Individuals displaying these banding patterns have a higher fecundity and lower degree of DNA strand breakage than individuals with less common banding patterns. Gambusia affinis has apparently adapted to the high background radiation, successfully surviving for approximately 50 generations. 31 refs, 5 figs.

  11. Radiation damage

    CERN Document Server

    Heijne, Erik H M; CERN. Geneva

    1998-01-01

    a) Radiation damage in organic materials. This series of lectures will give an overview of radiation effects on materials and components frequently used in accelerator engineering and experiments. Basic degradation phenomena will be presented for organic materials with comprehensive damage threshold doses for commonly used rubbers, thermoplastics, thermosets and composite materials. Some indications will be given for glass, scintillators and optical fibres. b) Radiation effects in semiconductor materials and devices. The major part of the time will be devoted to treat radiation effects in semiconductor sensors and the associated electronics, in particular displacement damage, interface and single event phenomena. Evaluation methods and practical aspects will be shown. Strategies will be developed for the survival of the materials under the expected environmental conditions of the LHC machine and detectors. I will describe profound revolution in our understanding of black holes and their relation to quantum me...

  12. Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  13. Radiation Protection

    Energy Technology Data Exchange (ETDEWEB)

    Loos, M

    2001-04-01

    Major achievements of SCK-CEN's Radiation Protection Department in 2000 are described. The main areas for R and D of the department remain neutron dosimetry and neutron activation analysis, safeguards information handling and non-destructive assay techniques. Further activities include low-level radioactivity measurements in environmental and biological samples and radiation protection research. Finally, achievements in decision strategy research and social sciences in nuclear research are reported.

  14. Background reionization history from omniscopes

    CERN Document Server

    Clesse, Sebastien; Ringeval, Christophe; Tashiro, Hiroyuki; Tytgat, Michel

    2012-01-01

    The measurements of the 21 cm brightness temperature fluctuations from the neutral hydrogen at the epoch of reionization (EoR) should inaugurate the next generation of cosmological observables. In this respect, many works have concentrated on the disambiguation of the cosmological signals from the dominant reionization foregrounds. However, even after perfect foregrounds removal, our ignorance on the background reionization history can significantly affect the cosmological parameter estimation. In particular, the interdependence between the hydrogen ionized fraction, the baryon density and the optical depth to the redshift of observation induce non-trivial degeneracies between the cosmological parameters that have not been considered so far. Using a simple, but consistent, reionization model, we revisit their expected constraints for a futuristic giant 21 cm omniscope by using for the first time Monte-Carlo-Markov-Chains (MCMC) methods on multi-redshift full sky simulated data. Our results agree well with the...

  15. Background illumination and automated perimetry.

    Science.gov (United States)

    Klewin, K M; Radius, R L

    1986-03-01

    Visual field function in the right and left eyes of 31 normal volunteers was evaluated with an automated projection perimeter (OCTOPUS). Serial visual field evaluations were repeated in these same eyes with neutral filters of increasing optical density. We compared the results of threshold determinations with the different neutral filters in place before the examined eye. Significant reduction in threshold sensitivity at several test spots throughout the central 30 degrees visual field was seen with neutral density filters of 0.5 log units or greater. The low level of background illumination of the OCTOPUS perimeter (4.0 apostilbs) may allow relatively minor reduction in light transmission by the ocular media to produce significant changes in the recorded level of threshold sensitivity during visual field evaluation.

  16. Polarization of Cosmic Microwave Background

    CERN Document Server

    Buzzelli, Alessandro; de Gasperis, Giancarlo; Vittorio, Nicola

    2016-01-01

    In this work we present an extension of the ROMA map-making code for data analysis of Cosmic Microwave Background polarization, with particular attention given to the inflationary polarization B-modes. The new algorithm takes into account a possible cross-correlated noise component among the different detectors of a CMB experiment. We tested the code on the observational data of the BOOMERanG (2003) experiment and we show that we are provided with a better estimate of the power spectra, in particular the error bars of the BB spectrum are smaller up to 20% for low multipoles. We point out the general validity of the new method. A possible future application is the LSPE balloon experiment, devoted to the observation of polarization at large angular scales.

  17. Study on Optical Filter Heating in Background Limited Detector Experiments

    Science.gov (United States)

    Bueno, J.; de Visser, P. J.; Doyle, S.; Baselmans, J. J. A.

    2014-09-01

    Cryogenic test setups with controlled stray light environments capable of reaching ultra-low radiative background levels are required to test far infrared (FIR) and submillimeter (sub-mm) wave radiation detectors for future space based observatories. In recent experiments (Nature Commun 5:3130, 2014), in which 1.54 THz radiation was coupled onto an antenna-coupled kinetic inductance detector (KID), we found a higher than expected optical loading. We show that this can be explained by assuming heating of the metal mesh IR filters and re-radiation onto the KID. Note that the total power from the cryogenic black body source used in the experiments (at T = - K) is much larger than the power inside the - THz band we use to calibrate our detector. The out-of-band radiation can have up to 5 orders of magnitude more power than inside the - THz band of interest. A strategy to mitigate the filter heating problem is presented, and when it is implemented, the validated upper limit for stray light at the detector level is down to few aW.

  18. Proposed Radiation Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Davey, C. S.

    2004-07-01

    Current scientific evidence is that radiation at low levels is not harmful, but beneficial. This is borne out by both radiobiology and epidemiology. The ICRP 26 recommended limits of 50 mSv and 5 mSv per annum are comparable with the average natural background levels in Iran and Norway, respectively, and levels five times higher than that quoted for Iran are to be found in some populated parts of this world. The new limits proposed for ionising radiation are generated by comparison to existing recommended limits for essential minerals. There is a range of acceptable exposures to radiation, just as there is for minerals. The replacement for the ICRP 60 recommendations (20 mSv and 1 mSv for radiation workers and public respectively) should be higher limits of 200 mSv and 50 mSv. There should also be minimum recommended annual levels of 10 mSv, for both radiation workers and the public. The consequences of not proposing this change are continuing huge negative impacts to society. In cancer therapy, even the older guidelines caused unnecessary expense and delays. The cost to Canada is astronomical, when one considers the effect of the existing limits on the use of nuclear power, and the resulting use of hydrocarbons and the consequent increase in acid rain, etc. Of course, the same thing can be said of the entire world limited funds are diverted from areas where they would be better applied, and alternative solutions to societal needs are implemented, solutions which increase pollution and cause injury and death. It is time to reverse the current, expensive trend into misapplied ALARA, based on the paranoia about all things nuclear, which has developed since the linear no-threshold hypothesis was first proposed.propose the transition to a realistic and balanced approach to ionising radiation. (Author)

  19. The Isotropic Radio Background and Annihilating Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Belikov, Alexander V. [Institut d' Astrophysique (France); Jeltema, Tesla E. [Univ. of California, Santa Cruz, CA (United States); Linden, Tim [Univ. of California, Santa Cruz, CA (United States); Profumo, Stefano [Univ. of California, Santa Cruz, CA (United States); Slatyer, Tracy R. [Princeton Univ., Princeton, NJ (United States)

    2012-11-01

    Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.

  20. Formation of globular clusters induced by external ultraviolet radiation II: Three-dimensional radiation hydrodynamics simulations

    CERN Document Server

    Abe, Makito; Hasegawa, Kenji

    2016-01-01

    We explore the possibility of the formation of globular clusters under ultraviolet (UV) background radiation. One-dimensional spherical symmetric radiation hydrodynamics (RHD) simulations by Hasegawa et al. have demonstrated that the collapse of low-mass (10^6-10^7 solar masses) gas clouds exposed to intense UV radiation can lead to the formation of compact star clusters like globular clusters (GCs) if gas clouds contract with supersonic infall velocities. However, three-dimensional effects, such as the anisotropy of background radiation and the inhomogeneity in gas clouds, have not been studied so far. In this paper, we perform three-dimensional RHD simulations in a semi-cosmological context, and reconsider the formation of compact star clusters in strong UV radiation fields. As a result, we find that although anisotropic radiation fields bring an elongated shadow of neutral gas, almost spherical compact star clusters can be procreated from a "supersonic infall" cloud, since photo-dissociating radiation supp...

  1. Stochastic Background of Gravitational Waves Generated by Compact Binary Systems

    CERN Document Server

    Evangelista, E F D

    2015-01-01

    Binary Systems are the most studied sources of gravitational waves. The mechanisms of emission and the behavior of the orbital parameters are well known and can be written in analytic form in several cases. Besides, the strongest indication of the existence of gravitational waves has arisen from the observation of binary systems. On the other hand, when the detection of gravitational radiation becomes a reality, one of the observed pattern of the signals will be probably of stochastic background nature, which are characterized by a superposition of signals emitted by many sources around the universe. Our aim here is to develop an alternative method of calculating such backgrounds emitted by cosmological compact binary systems during their periodic or quasiperiodic phases. We use an analogy with a problem of Statistical Mechanics in order to perform this sum as well as taking into account the temporal variation of the orbital parameters of the systems. Such a kind of background is of particular importance sinc...

  2. The Far Infrared and Submillimeter Diffuse Extragalactic Background

    CERN Document Server

    Hauser, M G

    2001-01-01

    The cosmic infrared background (CIB) radiation was a long-sought fossil of energetic processes associated with structure formation and chemical evolution since the Big Bang. The COBE Diffuse Infrared Background Experiment (DIRBE) and Far Infrared Absolute Spectrophotometer (FIRAS) were specifically designed to search for this background from 1.25 microns to millimeter wavelengths. These two instruments provided high quality, absolutely calibrated all-sky maps which have enabled the first detections of the CIB, initially at far infrared and submillimeter wavelengths, and more recently in the near infrared as well. The aim of this paper is to review the status of determinations of the CIB based upon COBE measurements. The results show that the energy in the CIB from far infrared to millimeter wavelengths is comparable to that in the integrated light of galaxies from UV to near infrared wavelengths: the universe had a luminous but dusty past. On the assumption that nucleosynthesis in stars is the energy source f...

  3. Synchrotron radiation with radiation reaction

    Science.gov (United States)

    Nelson, Robert W.; Wasserman, Ira

    1991-04-01

    A rigorous discussion is presented of the classical motion of a relativistic electron in a magnetic field and the resulting electromagnetic radiation when radiation reaction is important. In particular, for an electron injected with initial energy gamma(0), a systematic perturbative solution to the Lorentz-Dirac equation of motion is developed for field strengths satisfying gamma(0) B much less than 6 x 10 to the 15th G. A particularly accurate solution to the electron orbital motion in this regime is found and it is demonstrated how lowest-order corrections can be calculated. It is shown that the total energy-loss rate corresponds to what would be found using the exact Larmor power formula without including radiation reaction. Provided that the particle energy and field strength satisfy the same contraint, it is explicitly demonstrated that the intuitive prescription for calculating the time-integrated radiation spectrum described above is correct.

  4. Polarization aspects in radiative neutralino production

    CERN Document Server

    Dreiner, Herbert K; Langenfeld, Ulrich

    2007-01-01

    We study the impact of beam polarization on radiative neutralino production e+e- \\to \\chi^0_1 \\chi^0_1 photon at the International Linear Collider. We show that longitudinal polarized beams significantly enhance the signal and simultaneously reduce the Standard Model background from radiative neutrino production e+e- \\to \

  5. Radiation Therapy (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Radiation Therapy KidsHealth > For Parents > Radiation Therapy Print A ... have many questions and concerns about it. About Radiation Therapy In radiation therapy, high-energy radiation from ...

  6. Abdominal radiation - discharge

    Science.gov (United States)

    Radiation - abdomen - discharge; Cancer - abdominal radiation; Lymphoma - abdominal radiation ... When you have radiation treatment for cancer, your body goes through changes. About 2 weeks after radiation treatment starts, you might notice changes ...

  7. Brain radiation - discharge

    Science.gov (United States)

    Radiation - brain - discharge; Cancer-brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...

  8. Neurobiological background of negative symptoms.

    Science.gov (United States)

    Galderisi, Silvana; Merlotti, Eleonora; Mucci, Armida

    2015-10-01

    Studies investigating neurobiological bases of negative symptoms of schizophrenia failed to provide consistent findings, possibly due to the heterogeneity of this psychopathological construct. We tried to review the findings published to date investigating neurobiological abnormalities after reducing the heterogeneity of the negative symptoms construct. The literature in electronic databases as well as citations and major articles are reviewed with respect to the phenomenology, pathology, genetics and neurobiology of schizophrenia. We searched PubMed with the keywords "negative symptoms," "deficit schizophrenia," "persistent negative symptoms," "neurotransmissions," "neuroimaging" and "genetic." Additional articles were identified by manually checking the reference lists of the relevant publications. Publications in English were considered, and unpublished studies, conference abstracts and poster presentations were not included. Structural and functional imaging studies addressed the issue of neurobiological background of negative symptoms from several perspectives (considering them as a unitary construct, focusing on primary and/or persistent negative symptoms and, more recently, clustering them into factors), but produced discrepant findings. The examined studies provided evidence suggesting that even primary and persistent negative symptoms include different psychopathological constructs, probably reflecting the dysfunction of different neurobiological substrates. Furthermore, they suggest that complex alterations in multiple neurotransmitter systems and genetic variants might influence the expression of negative symptoms in schizophrenia. On the whole, the reviewed findings, representing the distillation of a large body of disparate data, suggest that further deconstruction of negative symptomatology into more elementary components is needed to gain insight into underlying neurobiological mechanisms.

  9. Comparison of backgrounds in OSO-7 and SMM spectrometers and short-term activation in SMM

    Science.gov (United States)

    Dunphy, P. P.; Forrest, D. J.; Chupp, E. L.; Share, G. H.

    1989-01-01

    The backgrounds in the OSO-7 Gamma-Ray Monitor and the Solar Maximum Mission Gamma-Ray Spectrometer are compared. After scaling to the same volume, the background spectra agree to within 30 percent. This shows that analyses which successfully describe the background in one detector can be applied to similar detectors of different sizes and on different platforms. The background produced in the SMM spectrometer by a single trapped-radiation belt passage is also studied. This background is found to be dominated by a positron-annihilation line and a continuum spectrum with a high energy cutoff at 5 MeV.

  10. Advanced methods and means to improve atmospheric lidar stability against sky background clutter

    Science.gov (United States)

    Agishev, Ravil R.

    2011-11-01

    An impact of intensive background clutter on lidar photodetectors leads to changes of their sensitivity and can even overload them. As a result, information on atmospheric optical parameters is distorted and sometimes can be completely lost. Since a problem of lidar system structure and parameters adaptation to background radiation remains actual one, some advanced methods and means to improve atmospheric lidar stability against sky background clutter are discussed.

  11. Dark Radiation from Modulated Reheating

    CERN Document Server

    Kobayashi, Takeshi; Takahashi, Tomo; Yamaguchi, Masahide

    2011-01-01

    We show that the modulated reheating mechanism can naturally account for dark radiation, which is favored by recent observations of the cosmic microwave background radiation and the primordial Helium abundance. In this mechanism, the inflaton decay rate depends on a light modulus which acquires almost scale-invariant quantum fluctuations during inflation. We find that the light modulus is generically produced by the inflaton decay and therefore a prime candidate for the dark radiation. Interestingly, an almost scale-invariant power spectrum predicted in the modulated reheating mechanism gives a better fit to the observation in the presence of the extra radiation. We discuss the production mechanism of the light modulus in detail taking account of its associated isocurvature fluctuations. We also consider a case where the modulus becomes the dominant component of dark matter.

  12. NLC and the background atmosphere above ALOMAR

    Directory of Open Access Journals (Sweden)

    J. Fiedler

    2011-02-01

    Full Text Available Noctilucent clouds (NLC have been measured by the Rayleigh/Mie/Raman-lidar at the ALOMAR research facility in Northern Norway (69° N, 16° E. From 1997 to 2010 NLC were detected during more than 1850 h on 440 different days. Colocated MF-radar measurements and calculations with the Leibniz-Institute Middle Atmosphere (LIMA- model are used to characterize the background atmosphere. Temperatures as well as horizontal winds at 83 km altitude show distinct differences during NLC compared to the absence of NLC. On seasonal mean it is colder and the winds are stronger westward when NLC are detected. The wind separation is a robust feature as it shows up in measurements as well as in model and it is consistent with the current understanding that lower temperatures support the existence of ice particles. For the whole 14-years data set there is no statistically significant relation between NLC occurrence and solar activity. On the other hand NLC occurrence and temperatures at 83 km show a significant anti-correlation, which suggests that the thermal state plays a major role for the existence of ice particles and dominates the pure Lyman-α influence on water vapor during certain years. We find the seasonal mean NLC altitudes to be correlated to both Lyman-α radiation and temperature. NLC above ALOMAR are strongly influenced by atmospheric tides. Diurnal and semidiurnal amplitudes and phases show partly pronounced year-to-year variations. In general, amplitudes as well as phases vary in a different manner. Amplitudes change by a factor of more than 3 and phases vary by up to 7 h. Such variability can impact NLC observations limited to fixed local times.

  13. Cherenkov radiation; La radiation Cerenkov

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    When the radioactivity has been discovered, it was observed by researchers that different materials as mineral salts or solutions were emitting a weak light when submitted to radioactivity beams. At the beginning it has been thought that it was fluorescent light. In 1934, Cherenkov, a russian physicist, worked on the luminescence of uranyl salts solutions caused by gamma radiation and observed a very weak light was emitted by pure liquid. After further studies, he concluded that this phenomena was different from fluorescence. Since then, it has been called Cherenkov effect. This blue light emission is produced when charged particles are going through a transparent medium with an upper velocity than light velocity. This can happen only in medium with large refractive index as water or glass. It also presents its different properties discovered afterwards. The different applications of the Cherenkov radiation are discussed as counting techniques for radiation detectors or comic ray detectors. (M.P.)

  14. The Isotropic Radio Background and Annihilating Dark Matter

    CERN Document Server

    Hooper, Dan; Jeltema, Tesla E; Linden, Tim; Profumo, Stefano; Slatyer, Tracy R

    2012-01-01

    Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, sim...

  15. Radiation Technology Against Bioterrorism

    Science.gov (United States)

    2004-10-25

    application of radiation processing: radiation crosslinking of polymers and radiation sterilization of health care products have developed into substantial...municipal waste water, • radiation inactivation of bioterrorism agents, • electron beam processing of flue gases, • radiation crosslinking , • radiation...Electron beam processing of flue gases 6. Radiation crosslinking 7. Radiation curing 3 Radiation Technology Against Bioterrorism L.G. Gazsó and G

  16. Low-background Gamma Spectroscopy at Sanford Underground Laboratory

    Science.gov (United States)

    Chiller, Christopher; Alanson, Angela; Mei, Dongming

    2014-03-01

    Rare-event physics experiments require the use of material with unprecedented radio-purity. Low background counting assay capabilities and detectors are critical for determining the sensitivity of the planned ultra-low background experiments. A low-background counting, LBC, facility has been built at the 4850-Level Davis Campus of the Sanford Underground Research Facility to perform screening of material and detector parts. Like many rare event physics experiments, our LBC uses lead shielding to mitigate background radiation. Corrosion of lead brick shielding in subterranean installations creates radon plate-out potential as well as human risks of ingestible or respirable lead compounds. Our LBC facilities employ an exposed lead shield requiring clean smooth surfaces. A cleaning process of low-activity silica sand blasting and borated paraffin hot coating preservation was employed to guard against corrosion due to chemical and biological exposures. The resulting lead shield maintains low background contribution integrity while fully encapsulating the lead surface. We report the performance of the current LBC and a plan to develop a large germanium well detector for PMT screening. Support provided by Sd governors research center-CUBED, NSF PHY-0758120 and Sanford Lab.

  17. Background and introduction: Chapter 1

    Science.gov (United States)

    Shafroth, Patrick B.

    2010-01-01

    The Salt Cedar and Russian Olive Control Demonstration Act of 2006 (Public Law 109-320; hereafter the Act) directs the Department of the Interior to submit a report to Congress1 that includes an assessment of several issues surrounding these two nonnative trees, now dominant components of the vegetation along many rivers in the Western United States. Specifically, the Act calls for “…an assessment of the extent of salt cedar and Russian olive infestation on public and private land in the western United States,” which shall“A) consider existing research on methods to control salt cedar and Russian olive trees; B) consider the feasibility of reducing water consumption by salt cedar and Russian olive trees; C) consider methods of and challenges associated with the revegetation or restoration of infested land; and D) estimate the costs of destruction of salt cedar and Russian olive trees, related biomass removal, and revegetation or restoration and maintenance of the infested land.”Finally, the Act calls for discussion of“(i) long-term management and funding strategies…that could be implemented by Federal, State, tribal, and private land managers and owners to address the infestation by salt cedar and Russian olive; (ii) any deficiencies in the assessment or areas for additional study; and (iii) any field demonstrations that would be useful in the effort to control salt cedar and Russian olive.”The primary intent of this report is to provide the science assessment called for under the Act. A secondary purpose is to provide a common background for applicants for prospective demonstration projects, should funds be appropriated for this second phase of the Act. In addition to relying on the direction provided under Section C of the Act, the authors of this report also drew upon the detailed list of considerations presented in Section E of the Act to guide development of more expansive discussions of topics relevant to saltcedar and Russian olive control

  18. The Cosmic Infrared Background Experiment (CIBER): The Low Resolution Spectrometer

    CERN Document Server

    Tsumura, K; Battle, J; Bock, J; Brown, S; Cooray, A; Hristov, V; Keating, B; Kim, M G; Lee, D H; Levenson, L R; Lykke, K; Mason, P; Matsumoto, T; Matsuura, S; Murata, K; Nam, U W; Renbarger, T; Smith, A; Sullivan, I; Suzuki, K; Wada, T; Zemcov, M

    2011-01-01

    Absolute spectrophotometric measurements of diffuse radiation at 1 \\mu m to 2 \\mu m are crucial to our understanding of the radiative content of the Universe from nucleosynthesis since the epoch of reionization, the composition and structure of the Zodiacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment (CIBER) is a \\lambda / \\Delta \\lambda \\sim 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 \\mu m < \\lambda < 2.1 \\mu m. This paper presents the optical, mechanical and electronic design of the LRS, as well as the ground testing, characterization and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding a...

  19. Shielding concepts for low-background proportional counter arrays in surface laboratories

    CERN Document Server

    Aalseth, Craig E; Mace, Emily K; Orrell, John L; Seifert, Allen; Williams, Richard M

    2015-01-01

    Development of ultra low background gas proportional counters has made the contribution from naturally occurring radioactive isotopes -- primarily $\\alpha$ and $\\beta$ activity in the uranium and thorium decay chains -- inconsequential to instrumental sensitivity levels when measurements are performed in above ground surface laboratories. Simple lead shielding is enough to mitigate against gamma rays as gas proportional counters are already relatively insensitive to naturally occurring gamma radiation. The dominant background in these surface laboratory measurements using ultra low background gas proportional counters is due to cosmic ray generated muons, neutrons, and protons. Studies of measurements with ultra low background gas proportional counters in surface and underground laboratories as well as radiation transport Monte Carlo simulations suggest a preferred conceptual design to achieve the highest possible sensitivity from an array of low background gas proportional counters when operated in a surface...

  20. Simulation of background reduction and Compton suppression in a low-background HPGe spectrometer at a surface laboratory

    Science.gov (United States)

    Niu, Shun-Li; Cai, Xiao; Wu, Zhen-Zhong; Liu, Yi; Xie, Yu-Guang; Yu, Bo-Xiang; Wang, Zhi-Gang; Fang, Jian; Sun, Xi-Lei; Sun, Li-Jun; Liu, Ying-Biao; Gao, Long; Zhang, Xuan; Zhao, Hang; Zhou, Li; Lü, Jun-Guang; Hu, Tao

    2015-08-01

    High-purity germanium (HPGe) detectors are well suited to analyse the radioactivity of samples. In order to reduce the environmental background for an ultra-low background HPGe spectrometer, low-activity lead and oxygen free copper are installed outside the probe to shield from gamma radiation, with an outer plastic scintillator to veto cosmic rays, and an anti-Compton detector to improve the peak-to-Compton ratio. Using Geant4 tools and taking into account a detailed description of the detector, we optimize the sizes of these detectors to reach the design requirements. A set of experimental data from an existing HPGe spectrometer was used to compare with the simulation. For the future low-background HPGe detector simulation, considering different thicknesses of BGO crystals and anti-coincidence efficiency, the simulation results show that the optimal BGO thickness is 5.5 cm, and the peak-to-Compton ratio of 40K is raised to 1000 when the anti-coincidence efficiency is 0.85. In the background simulation, 15 cm oxygen-free copper plus 10 cm lead can reduce the environmental gamma rays to 0.0024 cps/100 cm3 Ge (50 keV-2.8 MeV), which is about 10-5 of the environmental background.

  1. Self-Similar Symmetry Model and Cosmic Microwave Background

    Directory of Open Access Journals (Sweden)

    Tomohide eSonoda

    2016-05-01

    Full Text Available In this paper, we present the self-similar symmetry (SSS model that describes the hierarchical structure of the universe. The model is based on the concept of self-similarity, which explains the symmetry of the cosmic microwave background (CMB. The approximate length and time scales of the six hierarchies of the universe---grand unification, electroweak unification, the atom, the pulsar, the solar system, and the galactic system---are derived from the SSS model. In addition, the model implies that the electron mass and gravitational constant could vary with the CMB radiation temperature.

  2. Large-scale streaming motions and microwave background anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Gonzalez, E.; Sanz, J.L. (Cantabria Universidad, Santander (Spain))

    1989-12-01

    The minimal microwave background radiation is calculated on each angular scale implied by the existence of large-scale streaming motions. These minimal anisotropies, due to the Sachs-Wolfe effect, are obtained for different experiments, and give quite different results from those found in previous work. They are not in conflict with present theories of galaxy formation. Upper limits are imposed on the scale at which large-scale streaming motions can occur by extrapolating results from present double-beam-switching experiments. 17 refs.

  3. Comparison of Coherent Smith-Purcell radiation and Coherent Transition Radiation

    CERN Document Server

    Khodnevych, Vitalii; Bezshyyko, Oleg

    2016-01-01

    Smith-Purcell radiation and Transition Radiation are two radiative phenomenon that occur in charged particles accelerators. For both the emission can be significantly enhanced with sufficiently short pulses and both can be used to measure the form factor of the pulse. We compare the yield of these phenomenon in different configurations and look at their application as bunch length monitors, including background filtering and rejection. We apply these calculations to the specific case of the CLIO Free Electron laser.

  4. Radiation protection

    CERN Multimedia

    Radioactive Shipping Service

    2005-01-01

    The section of the radiation protection group in charge of shipping radioactive material would like to remind users that all radioactive material leaving CERN must be checked for radioactivity and must be shipped according to the procedure given at http://cern.ch/service-rp-shipping Do not hesitate to contact us for any question or control. Radioactive Shipping Service: service-rp-shipping@cern.ch Tél. 73171

  5. Radiation protection

    CERN Document Server

    2005-01-01

    The section of the Radiation Protection Group in charge of shipping radioactive material would like to remind users that all radioactive material leaving CERN must be checked for radioactivity and must be shipped according to the procedure given at http://cern.ch/service-rp-shipping Do not hesitate to contact us for any question or control. Radioactive Shipping Service: service-rp-shipping@cern.ch Tel. 73171

  6. Radiation protection

    CERN Multimedia

    2005-01-01

    The section of the Radiation Protection Group in charge of shipping radioactive material would like to remind users that all radioactive material leaving CERN must be checked for radioactivity and must be shipped according to the procedure given at http://cern.ch/service-rp-shipping Do not hesitate to contact us for any question or control. Radioactive Shipping Service: service-rp-shipping@cern.ch Tél. 73171

  7. Multipurpose background for standardization in medical photography.

    Science.gov (United States)

    Hallock, G G

    1985-08-01

    A dual photography background system consisting of a quadrilled format on one side and a plain background on the other is described. It is mobile and efficient as a space- and time-saving device for medical photography.

  8. [National Elk Refuge background and operating statement

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is a background on National Elk Refuge in Wyoming. Part I is solely background information concerning the physical characteristics, habitat, major...

  9. Radiatively Generated $\

    CERN Document Server

    Joshipura, A S; Joshipura, Anjan S.; Rindani, Saurabh D.

    2003-01-01

    We study the consequences of assuming that the mass scale $\\Delta_{odot}$ corresponding to the solar neutrino oscillations and mixing angle $U_{e3}$ corresponding to the electron neutrino oscillation at CHOOZ are radiatively generated through the standard electroweak gauge interactions. All the leptonic mass matrices having zero $\\Delta_{odot}$ and $U_{e3}$ at a high scale lead to a unique low energy value for the $\\Delta_{odot}$ which is determined by the (known) size of the radiative corrections, solar and the atmospheric mixing angle and the Majorana mass of the neutrino observed in neutrinoless double beta decay. This prediction leads to the following consequences: ($i$) The MSSM radiative corrections generate only the dark side of the solar neutrino solutions. ($ii$) The inverted mass hierarchy ($m,-m,0$) at the high scale fails in generating the LMA solution but it can lead to the LOW or vacuum solutions. ($iii$) The $\\Delta_{odot}$ generated in models with maximal solar mixing at a high scale is zero t...

  10. Chest radiation - discharge

    Science.gov (United States)

    Radiation - chest - discharge; Cancer - chest radiation; Lymphoma - chest radiation ... When you have radiation treatment for cancer, your body goes through changes. About 2 weeks after your first treatment: It may be hard ...

  11. Risk Factors: Radiation

    Science.gov (United States)

    Radiation of certain wavelengths, called ionizing radiation, has enough energy to damage DNA and cause cancer. Ionizing radiation includes radon, x-rays, gamma rays, and other forms of high-energy radiation.

  12. Acute Radiation Syndrome

    Science.gov (United States)

    ... Matters Information on Specific Types of Emergencies Acute Radiation Syndrome (ARS): A Fact Sheet for the Public ... is called the radiation dose. People exposed to radiation will get ARS only if: The radiation dose ...

  13. Radiation Engineering for Designers

    Science.gov (United States)

    Pellish, Jonathan A.

    2015-01-01

    This tutorial provides an overview of the natural space radiation environment, an introduction to radiation effect types, an overview of EEE parts selection, scrubbing, and radiation mitigation, and an introduction to radiation testing.

  14. Upper Limit on the Cosmological Gamma-ray Background

    CERN Document Server

    Inoue, Yoshiyuki

    2012-01-01

    We show that the current extragalactic gamma-ray background (EGB) measurement below 100 GeV sets an upper limit on EGB itself at very high energy (VHE) above 100 GeV. The limit is conservative for the electromagnetic cascade emission from VHE EGB interacting with the cosmic microwave-to-optical background radiation not to exceed the current EGB measurement. The cascade component fits the measured VHE EGB spectrum rather well. However, once we add the contribution from known source classes, the Fermi VHE EGB observation exceeds or even violates the limit, which is approximated as E^2dN/dE < 4.5x10^-5 (E/100 GeV)^-0.7 MeV/cm^2/s/sr. The upper limit above 100 GeV is useful in the future to probe the EGB origin and the new physics like axion-like particles and Lorentz-invariance violation.

  15. A Gravitational Wave Background from Reheating after Hybrid Inflation

    CERN Document Server

    Garcia-Bellido, Juan; Sastre, Alfonso

    2007-01-01

    The reheating of the universe after hybrid inflation proceeds through the nucleation and subsequent collision of large concentrations of energy density in the form of bubble-like structures moving at relativistic speeds. This generates a significant fraction of energy in the form of a stochastic background of gravitational waves, whose time evolution is determined by the successive stages of reheating. First, tachyonic preheating makes the amplitude of gravity waves grow exponentially fast. Second, bubble collisions add a new burst of gravitational radiation. Third, turbulent motions finally produce a self-similar time evolution, which allows us to extrapolate the amplitude and shape of this background till the end of reheating. We find that the fraction of energy density today in these primordial gravitational waves could be significant for GUT-scale models of inflation, although well beyond the frequency range sensitivity of gravitational wave observatories like LIGO, LISA or BBO. However, low-scale models ...

  16. Modelling the uv/x-ray cosmic background with CUBA

    CERN Document Server

    Haardt, F; Haardt, Francesco; Madau, Piero

    2001-01-01

    In this paper, I will describe the features of the numerical code CUBA, aimed at the solution of the radiative transfer equation in a cosmological context. CUBA will be soon available for public use at the URL http://pitto.mib.infn.it/~haardt/, allowing for several user-supplied input parameters, such as favourite cosmology, luminosity functions, Type II object evolution, stellar spectra, and many others. I will also present some new results of the UV/X-ray cosmic background as produced by the observed populations of QSOs and star forming galaxies, updating and extending our previous works. The background evolution is complemented with a number of derived quantities such as the ionization and thermal state of the IGM, the HeII opacity, the HI and HeII ionization rates, and the HI, HeII and Compton heating rates.

  17. 16 CFR 1101.1 - General background.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false General background. 1101.1 Section 1101.1 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INFORMATION DISCLOSURE UNDER SECTION 6(b) OF THE CONSUMER PRODUCT SAFETY ACT Background § 1101.1 General background. (a) Basic purpose. This rule sets...

  18. Backgrounds in Boundary String Field Theory

    CERN Document Server

    Baumgartl, M

    2009-01-01

    We study the role of closed string backgrounds in boundary string field theory. Background independence requires the introduction of dual boundary fields, which are reminiscent of the doubled field formalism. We find a correspondence between closed string backgrounds and collective excitations of open strings described by vertex operators involving dual fields. Renormalization group flow, solutions and stability are discussed in an example.

  19. The music of the Big Bang the cosmic microwave background and the new cosmology

    CERN Document Server

    Balbi, Amedeo

    2008-01-01

    The cosmic microwave background radiation is the afterglow of the big bang: a tenuous signal, more than 13 billion years old, which carries the answers to many of the questions about the nature of our Universe. It was serendipitously discovered in 1964, and thoroughly investigated in the last four decades by a large number of experiments. Two Nobel Prizes in Physics have already been awarded for research on the cosmic background radiation: one in 1978 to Arno Penzias and Robert Wilson, who first discovered it, the other in 2006, to George Smoot and John Mather, for the results of the COBE satellite. Most cosmological information is encoded in the cosmic background radiation by acoustic oscillations in the dense plasma that filled the primordial Universe: a "music" of the big bang, which cosmologists have long been trying to reconstruct and analyze, in order to distinguish different cosmological models, much like one can distinguish different musical instruments by their timbre and overtones. Only lately, this...

  20. Radiation protection policies to protect public health

    Energy Technology Data Exchange (ETDEWEB)

    Muckerheide, J. [Commonwealth Massachusetts, Needham, MA (United States)

    1995-12-31

    Scientific data from plant, animal, and human populations more strongly find radiation essential to life, i.e., suppressing background radiation is debilitating and that moderately enhanced radiation doses have positive effects, than that low-moderate radiation dose has adverse effects. {close_quote} Federal radiation protection policy will be in the public interest and save hundreds of billions of dollars at no public health cost when known dose effects to exposed populations are applied to ensure no adverse health effects, with safety margins, and when appropriate research is funded (and public benefits from new radiation and nuclear science and technology applications are enabled) at the sole cost of reduced federal power and influence.

  1. Measurement and analysis of sky background spectra in passive ranging

    Science.gov (United States)

    Yu, Zhang; Liu, Bingqi; Yu, Hao; Li, Xiaoming; Yan, Zongqun; Hua, Wenshen; Shi, Yunsheng; Chen, Yichao

    2015-10-01

    Experimental program is designed to analyze the radiation and absorption characteristic of the sky background at near-infrared Oxygen A absorption band of passive ranging based on Oxygen spectral absorption; an acousto-optic tunable hyper spectral imaging spectrometer is used as the measuring device. Under the condition of sunny, cloudy, and snowy weather, the sky background spectral distribution is collected using the acousto-optic tunable hyper spectral imaging spectrometer. Then the Oxygen absorption rate is calculated according to the principle of Oxygen spectrum absorption passive ranging. The measurement result shows: absorption lines exist in the sky background spectral distribution at the Oxygen A absorption band, and the absorption rates are different at different weather conditions. The Oxygen absorption rates are the biggest under snowy weather, bigger under cloudy weather, and the smallest under sunny weather. The general change pattern of Oxygen absorption rate under different weather conditions is obtained and the result has laid solid foundation for suppressing the interference of the background and extracting target spectral accurately in subsequent passive ranging researching.

  2. Cosmic microwave background and first molecules in the early universe

    Energy Technology Data Exchange (ETDEWEB)

    Signore, Monique [LERMA, Observatoire de Paris, Paris (France); Puy, Denis [University of Montpellier II, CNRS UMR 5024, GRAAL CC72, Montpellier (France)

    2009-01-15

    Besides the Hubble expansion of the universe, the main evidence in favor of the big-bang theory was the discovery, by Penzias and Wilson, of the cosmic microwave background (hereafter CMB) radiation. In 1990, the COBE satellite (Cosmic Background Explorer) revealed an accurate black-body behavior with a temperature around 2.7 K. Although the microwave background is very smooth, the COBE satellite did detect small variations - at the level of one part in 100 000 - in the temperature of the CMB from place to place in the sky. These ripples are caused by acoustic oscillations in the primordial plasma. While COBE was only sensitive to long-wavelength waves, the Wilkinson Microwave Anisotropy Probe (WMAP) - with its much higher resolution - reveals that the CMB temperature variations follow the distinctive pattern predicted by cosmological theory. Moreover, the existence of the microwave background allows cosmologists to deduce the conditions present in the early stages of the big bang and, in particular, helps to account for the chemistry of the universe. This report summarizes the latest measurements and studies of the CMB with the new calculations about the formation of primordial molecules. The PLANCK mission - planned to be launched in 2009 - is also presented. (orig.)

  3. The Cosmic Microwave Background Spectrum and a Determination of Fractal Space Dimensionality

    CERN Document Server

    Caruso, Francisco

    2009-01-01

    The possibility to constrain fractal space dimensionality form Astrophysics and other areas is briefly reviewed. Using data from FIRAS instrument aboard COBE satellite and assuming space dimensionality to be $3 + \\epsilon$, we calculate $\\epsilon = - (0.957 \\pm 0.006) \\times 10^{-5}$ and an absolute temperature 2.726 $\\pm$ 0.00003 K by fitting the cosmic microwave background radiation spectrum to Planck's radiation distribution.

  4. Re-evaluation of the Cosmic Microwave Background (CMB)

    Science.gov (United States)

    Haynes, R.

    2009-12-01

    The cosmic microwave background (CMB) has an almost perfect black-body spectrum, with polarization. These characteristics are inconsistent with the Standard Big Bang (SBB) model. An almost perfect spectrum can arise only from a surface of last scattering which is an almost perfect black-body. Thermodynamically, this is matter in thermal equilibrium, absorbing almost 100% of incident radiation and re-emitting it as black-body radiation. By definition, a perfect black-body is matter at zero kelvin, and cold matter better approaches this perfection. SBB theory describes the CMB as originating from a hydrogen-helium plasma, condensing at a temperature of about 3,000 K. Such a surface would exhibit a continuous radiation spectrum, not unlike that of the sun, which is shown to have a spectrum similar, but not identical to, a black-body spectrum. An imperfect spectrum, even stretched 1100 fold as in the SBB model, remains an imperfect spectrum. Also, a plasma would not support the orientation required to impart polarization to the CMB. A better explanation of the observational evidence is possible if one views the observable universe as part of, and originating from, a much larger structure. Here we propose a defined physical description for such a model. It is shown how a "cosmic fabric" of spin-oriented atomic hydrogen, at zero kelvin, surrounding a matter-depletion zone and the observable universe, would produce the CMB observations. The cosmic fabric would be a perfect black-body and subsequently re-emit an almost perfect black-body spectrum. The radiation would be almost perfectly isotropic, imposed by the spherical distribution of the surface of last scattering, and spin-oriented hydrogen would impart the observed polarization. This geometry also obviates the so-called "horizon problem" of the SBB, why the CMB radiation is essentially isotropic when coming from points of origin with no apparent causal contact. This problem was supposedly "solved" with the

  5. Applying radiation health effects data to radiation protection policies

    Energy Technology Data Exchange (ETDEWEB)

    Muckerheide, James [Center for Nuclear Technology and Society at WPI, Worcester Polytechnic Institute, Worcester, MA (United States)

    2000-05-01

    resulted in quick political rejection of the proposed policy. It was seen as stating that, while very small radiation doses would in fact cause 'small' adverse health consequences (seen by the public and their political leaders as 'cancer deaths'), such consequences are seen as found 'acceptable' by the radiation protection authorities. Such implied but non-existent consequences are NOT seen as acceptable to the public and its political leaders. No explanation of 'context' or providing public education' can reasonably be expected to overcome the perception provided by the proposal that such trivial radiation produce 'a few deaths' that, because they are 'lost in cancer statistics' are perceived as accepted' by the radiation protection policy-makers, which results in the permanent loss of public acceptance and credibility of these organizations and individuals. This proposal considers the lack of adverse health effects from data at, e.g., variations in natural background, confirmed by medical and biological data, establish that radiation at low levels can have no relevant net adverse consequences. Such a basis can provide public assurance that appropriate radiation protection limits produce no residual public health and safety consequences. (author)

  6. The Cosmic Infrared Background Experiment (CIBER): The Low Resolution Spectrometer

    Science.gov (United States)

    Tsumura, K.; Arai, T.; Battle, J.; Bock, J.; Brown, S.; Cooray, A.; Hristov, V.; Keating, B.; Kim, M. G.; Lee, D. H.; Levenson, L. R.; Lykke, K.; Mason, P.; Matsumoto, T.; Matsuura, S.; Murata, K.; Nam, U. W.; Renbarger, T.; Smith, A.; Sullivan, I.; Suzuki, K.; Wada, T.; Zemcov, M.

    2013-08-01

    Absolute spectrophotometric measurements of diffuse radiation at 1 μm to 2 μm are crucial to our understanding of the radiative content of the universe from nucleosynthesis since the epoch of reionization, the composition and structure of the zodiacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment is a λ/Δλ ~ 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 μm <λ < 2.1 μm. This paper presents the optical, mechanical, and electronic design of the LRS, as well as the ground testing, characterization, and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding and control of sources of systematic error for absolute photometry of the near-infrared extragalactic background light.

  7. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE LOW RESOLUTION SPECTROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Tsumura, K.; Arai, T.; Matsumoto, T.; Matsuura, S.; Murata, K. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronoutical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Battle, J.; Bock, J. [Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA), Pasadena, CA 91109 (United States); Brown, S.; Lykke, K.; Smith, A. [Optical Technology Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Cooray, A. [Center for Cosmology, University of California, Irvine, Irvine, CA 92697 (United States); Hristov, V.; Levenson, L. R.; Mason, P. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Keating, B.; Renbarger, T. [Department of Physics, University of California, San Diego, San Diego, CA 92093 (United States); Kim, M. G. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H.; Nam, U. W. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Sullivan, I., E-mail: tsumura@ir.isas.jaxa.jp [Department of Physics, The University of Washington, Seattle, WA 98195 (United States); and others

    2013-08-15

    Absolute spectrophotometric measurements of diffuse radiation at 1 {mu}m to 2 {mu}m are crucial to our understanding of the radiative content of the universe from nucleosynthesis since the epoch of reionization, the composition and structure of the zodiacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment is a {lambda}/{Delta}{lambda} {approx} 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 {mu}m <{lambda} < 2.1 {mu}m. This paper presents the optical, mechanical, and electronic design of the LRS, as well as the ground testing, characterization, and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding and control of sources of systematic error for absolute photometry of the near-infrared extragalactic background light.

  8. Current treatments for radiation retinopathy

    Energy Technology Data Exchange (ETDEWEB)

    Giuliari, Gian Paolo; Simpson, E. Rand (Princess Margaret Hospital, Univ. of Toronto, Dept. of Ophthalmology and Vision Sciences, Toronto (Canada)), e-mail: gpgiuliari@gmail.com; Sadaka, Ama (Schepens Eye Research Inst., Boston, MA (United States)); Hinkle, David M. (Massachusetts Eye Research and Surgery Institution, Cambridge, MA (United States))

    2011-01-15

    Background. To review the currently available therapeutic modalities for radiation retinopathy (RR), including newer investigational interventions directed towards specific aspects of the pathophysiology of this refractory complication. Methods. A review of the literature encompassing the pathogenesis of RR and the current therapeutic modalities available was performed. Results. RR is a chronic and progressive condition that results from exposure to any source of radiation. It might be secondary to radiation treatment of intraocular tumors such as choroidal melanomas, retinoblastomas, and choroidal metastasis, or from unavoidable exposure to excessive radiation from the treatment of extraocular tumors like cephalic, nasopharyngeal, orbital, and paranasal malignancies. After the results of the Collaborative Ocular Melanoma Study, most of the choroidal melanomas are being treated with plaque brachytherapy increasing by that the incidence of this radiation complication. RR has been reported to occur in as many as 60% of eyes treated with plaque radiation, with higher rates associated with larger tumors. Initially, the condition manifests as a radiation vasculopathy clinically seen as microaneurysms and telangiectasis, with posterior development of retinal hard exudates and hemorrhages, macular edema, neovascularization and tractional retinal detachment. Regrettably, the management of these eyes remains limited. Photodynamic therapy, laser photocoagulation, oral pentoxyphylline and hyperbaric oxygen have been attempted as treatment modalities with inconclusive results. Intravitreal injections of anti-vascular endothelial growth factor such as bevacizumab, ranibizumab and pegaptanib sodium have been recently used, also with variable results. Discussion. RR is a common vision threatening complication following radiation therapy. The available therapeutic options are limited and show unsatisfactory results. Further large investigative studies are required for developing

  9. Dark Radiation and Inflationary Freedom

    CERN Document Server

    Gariazzo, Stefano

    2015-01-01

    A relaxed primordial power spectrum (PPS) of scalar perturbations arising from inflation can impact the dark radiation constraints obtained from Cosmic Microwave Background and other cosmological measurements. If inflation produces a non-standard PPS for the initial fluctuations, a fully thermalized light sterile neutrino can be favoured by CMB observations, instead of being strongly disfavoured. In the case of a thermal axion, the constraints on the axion mass are relaxed when the PPS is different from the standard power law.

  10. Measurement of radiation dose at the north interaction point of BEPCⅡ

    Institute of Scientific and Technical Information of China (English)

    MO Xiao-Hu; ZHANG Jian-Yong; ZHANG Tian-Bao; ZHANG Qing-Jiang; Achasov Mikhail; FU Cheng-Dong; Muchnoi Nikolay; QIN Qing; QU Hua-Min; WANG Yi-Fang; WU Jing-Min; XU Jin-Qiang; YU Bo-Xiang

    2009-01-01

    The technique details for measuring radiation dose are expounded.The results of gamma and neutron radiation levels are presented and the corresponding radiation shielding is discussed based on the simplified estimation.In addition, the photon radiation level move as background for future experiments is measured by a NaI(T1) detector.

  11. Extragalactic Background Light: Measurements and Applications

    CERN Document Server

    Cooray, Asantha

    2016-01-01

    This review covers the measurements related to the extragalactic background light (EBL) intensity from gamma-rays to radio in the electromagnetic spectrum over 20 decades in the wavelength. The cosmic microwave background (CMB) remains the best measured spectrum with an accuracy better than 1%. The measurements related to the cosmic optical background (COB), centered at 1 microns, are impacted by the large zodiacal light associated with interplanetary dust in the inner Solar system. The best measurements of COB come from an indirect technique involving Gamma-ray spectra of bright blazars with an absorption feature resulting from pair-production off of COB photons. The cosmic infrared background (CIB) peaking at around 100 microns established an energetically important background with an intensity comparable to the optical background. This discovery paved the path for large aperture far-infrared and sub-millimeter observations resulting in the discovery of dusty, starbursting galaxies. Their role in galaxy for...

  12. Compressive Background Modeling for Foreground Extraction

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2015-01-01

    Full Text Available Robust and efficient foreground extraction is a crucial topic in many computer vision applications. In this paper, we propose an accurate and computationally efficient background subtraction method. The key idea is to reduce the data dimensionality of image frame based on compressive sensing and in the meanwhile apply sparse representation to build the current background by a set of preceding background images. According to greedy iterative optimization, the background image and background subtracted image can be recovered by using a few compressive measurements. The proposed method is validated through multiple challenging video sequences. Experimental results demonstrate the fact that the performance of our approach is comparable to those of existing classical background subtraction techniques.

  13. Cognitive abilities, sociocultural background and academic achievement

    OpenAIRE

    Diniz, António; Pocinho, Margarida Maria Ferreira Diogo Dias; Almeida,Leandro Silva

    2011-01-01

    The infl uence of students’ sociocultural background on academic achievement is a well established fact. Research also points out that sociocultural background is related to students’ cognitive abilities and these have an effect on their academic achievement. However, the mediator role of cognitive abilities on the relationship between sociocultural background and academic achievement is less well known. A structural equation model that represents these relationships was tested in a sample...

  14. On Cultural Background Knowledge in English Reading

    Institute of Scientific and Technical Information of China (English)

    苏琴; 郭成

    2009-01-01

    Reading comprehension is undoubtedly one of the most important abilities for English learners. This paper firstly makes a brief introduction to the reading theory and cultural background knowledge. Then using schema theory and typical examples, the paper demons~ates the role of cultural background knowledge in reading comprehension. The application of cultural background knowledge inreading practice is proposed as the keys to the improvement of reading comprehension ability.

  15. Gauge theories with non-trivial backgrounds

    CERN Document Server

    Binosi, Daniele

    2014-01-01

    We review our most recent results in formulating gauge theories in the presence of a background field on the basis of symmetry arguments only. In particular we show how one can gain full control over the dependence on the background field of the effective action, and how the so-called background field method emerges naturally from the requirement of invariance under the BRST and antiBRST symmetries.

  16. Formation of globular clusters induced by external ultraviolet radiation - II. Three-dimensional radiation hydrodynamics simulations

    Science.gov (United States)

    Abe, Makito; Umemura, Masayuki; Hasegawa, Kenji

    2016-12-01

    We explore the possibility of the formation of globular clusters (GCs) under ultraviolet (UV) background radiation. One-dimensional spherical symmetric radiation hydrodynamics (RHD) simulations by Hasegawa et al. have demonstrated that the collapse of low-mass (106-7 M⊙) gas clouds exposed to intense UV radiation can lead to the formation of compact star clusters like GCs if gas clouds contract with supersonic infall velocities. However, three-dimensional effects, such as the anisotropy of background radiation and the inhomogeneity in gas clouds, have not been studied so far. In this paper, we perform three-dimensional RHD simulations in a semicosmological context, and reconsider the formation of compact star clusters in strong UV radiation fields. As a result, we find that although anisotropic radiation fields bring an elongated shadow of neutral gas, almost spherical compact star clusters can be procreated from a `supersonic infall' cloud, since photodissociating radiation suppresses the formation of hydrogen molecules in the shadowed regions and the regions are compressed by UV heated ambient gas. The properties of resultant star clusters match those of GCs. On the other hand, in weak UV radiation fields, dark-matter-dominated star clusters with low stellar density form due to the self-shielding effect as well as the positive feedback by ionizing photons. Thus, we conclude that the `supersonic infall' under a strong UV background is a potential mechanism to form GCs.

  17. Cosmological perturbations of quantum-mechanical origin and anisotropy of the microwave background

    Science.gov (United States)

    Grishchuk, L. P.

    1993-01-01

    Cosmological perturbations generated quantum mechanically (as a particular case, during inflation) possess statistical properties of squeezed quantum states. The power spectra of the perturbations are modulated and the angular distribution of the produced temperature fluctuations of the cosmic microwave background radiation is quite specific. An exact formula is derived for the angular correlation function of the temperature fluctuations caused by squeezed gravitational waves. The predicted angular pattern can, in principle, be revealed by observations like those by the Cosmic Background Explorer.

  18. Online measurement of the BEPC Ⅱ background using RadFET dosimeters

    Institute of Scientific and Technical Information of China (English)

    GONG Hui; LI Jin; GONG Guang-Hua; LI Yu-Xiong; HOU Lei; SHAO Bei-Bei

    2009-01-01

    To monitor the integral dose deposited in the BESⅢ electromagnetic calorimeter whose perfor-mance degrades due to exposure to the BEPCⅡ background, a 400 nm IMPL RadFET dosimeter-based integral dose online monitor system is built. After calibration with the 60Co source and verification with TLD in the pulse radiation fields, an experiment was arranged to measure the BEPC Ⅱ background online. The results are presented.

  19. Long-term variations in the gamma-ray background on SMM

    Science.gov (United States)

    Kurfess, J. D.; Share, G. H.; Kinzer, R. L.; Johnson, W. N.; Adams, J. H., Jr.

    1989-01-01

    Long-term temporal variations in the various components of the background radiation detected by the gamma-ray spectrometer on the Solar Maximum Mission are presented. The SMM gamma-ray spectrometer was launched in February, 1980 and continues to operate normally. The extended period of mission operations has provided a large data base in which it is possible to investigate a variety of environmental and instrumental background effects. In particular, several effects associated with orbital precession are introduced and discussed.

  20. Radiation Induced Genomic Instability

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend

  1. Radiation pneumonitis

    Energy Technology Data Exchange (ETDEWEB)

    Amla, T.R.; Chakravarti, R.N.; Lal, K.

    1975-07-01

    Adult healthy rhesus monkeys were exposed to a course of roentgen irradiation over the chest and back to produce pulmonary changes simulating human radiation pneumonitis. Macroscopic and morphologic changes included dense adhesions, pleural thickening and increased consistency of the lungs. Microscopically the early reaction was characterized by dilatation of pulmonary vessels, microhaemorrhages, collapse of alveoli, permeation of the interstitial tissue with a fibrinous fluid and cells. In the late stage the fibrinous interstitial matrix was replaced by hyaline eosinophilic mass, fragmentation and dissolution of the elastic tissue and thickening of the alveolar walls. The cell population in the interstitial tissue showed decline and at places radiolytic effect. There was peribronchial and perivascular fibrosis and hyalinization and pulmonary arteries revealed marked degree of arteriosclerosis. The present study opens a new field for experimental research on the development of pulmonary hypertension as a post-irradiation complication.

  2. Radiation Insulation

    Science.gov (United States)

    1995-01-01

    The Apollo and subsequent spacecraft have had highly effective radiation barriers; made of aluminized polymer film, they bar or let in heat to maintain consistent temperatures inside. Tech 2000, formerly Quantum International Corporation used the NASA technology in its insulating materials, Super "Q" Radiant Barrier, for home, industry and mobile applications. The insulation combines industrial aluminum foil overlaid around a core of another material, usually propylene or mylar. The outer layer reflects up to 97 percent of heat; the central layer creates a thermal break in the structure and thus allows low radiant energy emission. The Quantum Cool Wall, used in cars and trucks, takes up little space while providing superior insulation, thus reducing spoilage and costs. The panels can also dampen sound and engine, exhaust and solar heat.

  3. Hanford Site background: Part 1, Soil background for nonradioactive analytes. Revision 1, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    Volume two contains the following appendices: Description of soil sampling sites; sampling narrative; raw data soil background; background data analysis; sitewide background soil sampling plan; and use of soil background data for the detection of contamination at waste management unit on the Hanford Site.

  4. Calibration and background measurements with a tissue equivalent proportional counter.

    Science.gov (United States)

    Autischer, M; Beck, P; Kindl, P; Latocha, M; Rollet, S

    2007-01-01

    A tissue-equivalent-proportional counter (TEPC) instrument has been used as the reference instrument for cosmic radiation measurement at flight altitudes by several institutes. For purposes of characterisation the response of the instrument has been investigated under different standard radiation conditions, in terms of radiation particle, energy and angle of incidence. Photon sources and photon beams of energies up to 6.6 MeV and neutron beams up to 200 MeV were used. To have a better understanding of the shielding influence of the instrument assembly, the angle dependence of response was analysed for several radiation conditions. Specific measurement conditions were simulated with the Monte Carlo transport code, FLUKA. The measured instrument response was compared with simulation results. It was demonstrated, that simulations were very helpful to understand the instrument's response. The TEPC instrument used by the Austrian Research Centre Seibersdorf (ARCS) research simulates the energy deposition in a unit density tissue volume of 2 microm diameter, of similar size to a cell nucleus. Pure propane at low pressure is used as measurement gas. To characterise the instrument at low dose rates background measurements were done 800 m below ground and at the ultra low level laboratory in Gran Sasso, 1380 m below ground. These results were compared with measurements on the Earth's surface at different altitudes on mountains up to 3480 m above sea level. The significant increase of the expected dose rate is well reproduced by the experiments at mountain altitudes. As a result of this study a full characterisation and a thorough understanding of the performance and reliability of the detector was achieved.

  5. Beamstrahlung and QED backgrounds at future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, D.V.

    1990-10-01

    This dissertation is a detailed study of several aspects of beamstrahlung and related phenomena. The problem is formulated as the relativistic scattering of an electron from a strong but slowly varying potential. The solution is readily interpreted in terms of a classical electron trajectory, and differs from the solution of the corresponding classical problem mainly in the effect of quantum recoil due to the emission of hard photons. When the general solution is expanded for the case of an almost-uniform field, the leading term is identical to the well-known formula for quantum synchrotron radiation. The first non-leading term is negligible in all cases of interest where the expansion is valid. In applying the standard synchrotron radiation formula to the beamstrahlung problem, the effects of radiation reaction on the emission of multiple photons can be significant for some machine designs. Another interesting feature is the helicity dependence of the radiation process, which is relevant to the case where the electron beam is polarized. The inverse process of coherent electron-positron pair production by a beamstrahlung photon is a potentially serious background source at future colliders, since low-energy pairs can exit the bunch at a large angle. Pairs can also be produced incoherently by the collision of the two photons, either real or virtual. The rates, spectra, and angular distributions for both the coherent and incoherent processes are estimated here. At a 1/2 TeV machine the incoherent process will be more common, resulting in roughly 10{sup 6} pairs per bunch crossing. One member of each pair is always pushed outward, at an angle determined by its energy, by the field of the oncoming bunch. In addition, a small number of pairs are initially produced with a comparable or larger angle.

  6. Background studies for a ton-scale argon dark matter detector (ArDM)

    CERN Document Server

    Kaufmann, L

    2006-01-01

    The ArDM project aims at operating a large noble liquid detector to search for direct evidence of Weakly Interacting Massive Particles (WIMP) as Dark Matter in the universe. Background sources relevant to ton-scale liquid and gaseous argon detectors, such as neutrons from detector components, muon-induced neutrons and neutrons caused by radioactivity of rock, as well as the internal $^{39}Ar$ background, are studied with simulations. These background radiations are addressed with the design of an appropriate shielding as well as with different background rejection potentialities. Among them the project relies on event topology recognition, event localization, density ionization discrimination and pulse shape discrimination. Background rates, energy spectra, characteristics of the background-induced nuclear recoils in liquid argon, as well as the shielding performance and rejection performance of the detector are described.

  7. Development of a low-level background gamma-ray spectrometer by KRISS.

    Science.gov (United States)

    Lee, K B; Park, Tae Soon; Lee, Jong Man; Oh, Phil-Je; Lee, Sang-Han

    2008-01-01

    A new low-level background and high-efficiency gamma-ray spectrometric system, to be used mainly for the activity certification of natural-matrix certified reference materials (CRMs) and environmental reference materials (RMs) that has been developed on the grounds of the Korea Research Institute of Standards and Science (KRISS). The spectrometer consists of a low-background high-purity germanium detector with a relative efficiency of 120% and various shielding devices to reduce radiation background. The cabinet-shaped device made of 10ton of shielding materials encloses the germanium detector for protection against background from natural radioactivity and neutrons. Three plates of 50-mm-thick plastic scintillation detectors on top of the passive shielding cabinet suppress cosmogenic background by detecting high-energetic cosmic muons bombarding the germanium detector. The measured background rate of the spectrometer for the energy range 50-3000keV was 1.72s(-1).

  8. The Temperature of the Cosmic Microwave Background

    CERN Document Server

    Fixsen, D J

    2009-01-01

    The FIRAS data are independently recalibrated using the WMAP data to obtain a CMB temperature of 2.7260 +/- 0.0013. Measurements of the temperature of the cosmic microwave background are reviewed. The determination from the measurements from the literature is cosmic microwave background temperature of 2.72548 +/- 0.00057 K.

  9. 45 CFR 650.16 - Background rights.

    Science.gov (United States)

    2010-10-01

    ... of the Bayh-Dole Act (35 U.S.C. 202(f)) as implemented by 37 CFR 401.12). ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Background rights. 650.16 Section 650.16 Public... Background rights. The Foundation will acquire rights to a research performer's pre-existing technology...

  10. Multiple Scatters in Single Site Gamma Backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-16

    nEXO aims to reduce its gamma backgrounds by taking advantage of the fact that a large number of gammas that would otherwise be backgrounds will undergo multiple compton scattering in the TPC and produce spatially distinct signals. These multi-sited (MS) events can be excluded from the 0νββ search.

  11. Detection of weak and small infrered targets under complicated background

    Science.gov (United States)

    Chen, Jinling; Zhang, Jiming; Deng, Linming; Niu, Xiaoming; Wei, Xueming; Xu, Jing; Wu, Jian

    2010-10-01

    The technique of weak small target detection and recognition has been the key technique of the electro-optical detecting system, many scholars are engaging the research of detection for weak and small targets. The effective detection for small targets in low SNR images is still a hot research field. Because infrared sensor is easily affected by atmosphere hot radiation, long distance and sensor noise, the detected targets in infrared images often present like small targets and drowned in noise. The basic problem inherent to extent the detection range is the detection of small, low observable, no obvious structural information in images and complicated background. In order to improve the detection ratio of weak small targets and decrease the false alarming ratio in the condition of complicated background, the paper presents the technology of pretreatment of infrared images and the technology of detection for weak small targets, mainly including the technology of Sobel edge algorithm and multi-degree and multi-orientation gradient. Based upon horizon-correlative characteristic of infrared images which were gotten by scanning, considering of the target properties in complicated background, an algorithm of weak and small target detection is presented. Because the images appear horizon-correlative characteristic, Sobel horizontal operator is adopted. By this algorithm, the background clutter was suppressed. Then an adaptive threshold was proposed to extract the precise location of small target. Incorporated with the two methods, a single frame weak and small target detection algorithm was built. Its high performance was then proved in a serial of experiments. In order to solve the detection problems of weak and small infrared targets under complicated background, a detection algorithm integrating with multi-degree and multi-orientation gradient fusion is proposed. Based on the principle of infrared radiation property of target, i.e., the gradient variations of pixel

  12. Can Bohmian Mechanics Be Made Background Independent?

    CERN Document Server

    Vassallo, Antonio

    2015-01-01

    The paper presents an inquiry into the question regarding the compatibility of Bohmian mechanics, intended as a non-local theory of moving point-like particles, with background independence. This issue is worth being investigated because, if the Bohmian framework has to be of some help in developing new physics, it has to be compatible with the most well-established traits of modern physics, background independence being one of such traits. The paper highlights the fact that the notion of background independence in the context of spacetime physics is slippery and interpretation-laden. It is then suggested that the best-matching framework developed by Julian Barbour might provide a robust enough meaning of background independence. The structure of Bohmian dynamics is evaluated against this framework, reaching some intermediate results that speak in favor of the fact that Bohmian mechanics can be made background independent.

  13. Polylogarithmic representation of radiative and thermodynamic properties of thermal radiation in a given spectral range: I. Blackbody radiation

    CERN Document Server

    Fisenko, Anatoliy I

    2014-01-01

    Using polylogarithm functions the exact analytical expressions for the radiative and thermodynamic properties of blackbody radiation, such as the Wien displacement law, Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies are constructed. The obtained expressions allow us to tabulate these functions in various finite frequency bands at different temperatures for practical applications. As an example, the radiative and thermodynamic functions using experimental data for the monopole spectrum of the Cosmic Microwave Background (CMB) radiation measured by the COBE FIRAS instrument in the 60 - 600 GHz frequency interval at the temperature T = 2.725 K are calculated. The expressions obtained for the radiative and thermodynamic functions can be easily presented in wavelength and wavenumber domains.

  14. Stellar background EUV as a source of Titan's nightside ionosphere

    Science.gov (United States)

    Moore, Luke; O'Donoghue, James; Mendillo, Michael

    2016-10-01

    Stellar background EUV photons can ionize molecular species in planetary atmospheres, and in fact are the dominant source of the terrestrial E region at night. Recent modeling efforts based on in situ measurements of Titan's upper atmosphere by the Cassini spacecraft have proposed a range of possible sources of Titan's nightside ionosphere, including: persistence of ions created on the dayside, transport of dayside ions, and ionization due to precipitation of energetic particles from Saturn's magnetosphere. All of these sources are likely present, but the additional source of ionization due to stellar background EUV - which is also present - has thus far been neglected. Consequently, the currently modeled sources of nightside ionization have likely been overestimated in order to match observed densities. Moreover, there are uncertainties associated with each of the currently treated sources - such as complicated photochemistry, or precipitating energy fluxes and energies - that may be reduced by inclusion of this additional source of ionization.We present calculated ion production rates at Titan based on an updated estimate of the stellar background EUV radiation field as well as preliminary 1D ionospheric modeling that includes a representative set of Titan photochemical reactions.

  15. PENGARUH BACKGROUND MAHASISWA TERHADAP KINERJA AKADEMIK

    Directory of Open Access Journals (Sweden)

    Trianasari Angkawijaya

    2014-09-01

    Full Text Available Abstract: The Effect of Students’ Background on Academic Performance. This study examines the effect of background variables on the academic performance of accounting students in a private university in Surabaya. The background variables under study included previous academic performance, prior knowledge on accounting, sex, motivation, preparedness, and expectations. The results show that previous academic performance, motivation, and expectations have positive and significant effects on the students’ overall academic performance in accounting, while preparedness affects only the students’ performance in management accounting. In contrast, prior knowledge on accounting and sex do not give significant impacts to the students’ overall academic performance.These findings indicate the importance of previous aca­demic performance as well as motivation and expectations as background variables in current academic performance. Keywords: students’ background, academic performance, accounting Abstrak: Pengaruh Background Mahasiswa terhadap Kinerja Akademik. Penelitian ini mengkaji pengaruh variabel background terhadap kinerja akademik mahasiswa akuntansi di Universitas Surabaya. Lima variabel background utama dipergunakan, yaitu kinerja akademik sebelumnya, pengetahuan akun­tansi sebelumnya, jenis kelamin, motivasi, kesiapan, dan ekspektasi. Hipotesis diuji menggunakan model regresi linier berganda OLS dan Robust Standar Error. Hasil penelitian memerlihatkan bahwa kinerja akademik sebelumnya, motivasi, dan ekspektasi memiliki pengaruh positif signifikan terhadap kinerja akademik keseluruhan, sementara kesiapan memberikan pengaruh positif hanya pada kinerja akademik akuntansi manajemen. Sebaliknya, pengetahuan akuntansi sebelumnya dan jenis kelamin tidak memberi­kan pengaruh signifikan terhadap kinerja akademik keseluruhan. Temuan ini mengindikasikan bahwa kinerja akademik sebelumnya beserta motivasi dan ekspektasi adalah variabel background

  16. Physics of radiation effects in crystals

    CERN Document Server

    Johnson, RA

    1986-01-01

    ``Physics of Radiation Effects in Crystals'' is presented in two parts. The first part covers the general background and theory of radiation effects in crystals, including the theory describing the generation of crystal lattice defects by radiation, the kinetic approach to the study of the disposition of these defects and the effects of the diffusion of these defects on alloy compositions and phases. Specific problems of current interest are treated in the second part and include anisotropic dimensional changes in x-uranium, zirconium and graphite, acceleration of thermal creep in reactor ma

  17. Radiation detection and measurement student solutions manual

    CERN Document Server

    Wehe, David K

    2012-01-01

    This is the resource that engineers turn to in the study of radiation detection. The fourth edition takes into account the technical developments that continue to enhance the instruments and techniques available for the detection and spectroscopy of ionizing radiation. New coverage is presented on ROC curves, micropattern gas detectors, new sensors for scintillation light, and the excess noise factor. Revised discussions are also included on TLDs and cryogenic spectrometers, radiation backgrounds, and the VME standard. Engineers will gain a strong understanding of the field with this updated book.

  18. Solar parameters for modeling interplanetary background

    CERN Document Server

    Bzowski, M; Tokumaru, M; Fujiki, K; Quemerais, E; Lallement, R; Ferron, S; Bochsler, P; McComas, D J

    2011-01-01

    The goal of the Fully Online Datacenter of Ultraviolet Emissions (FONDUE) Working Team of the International Space Science Institute in Bern, Switzerland, was to establish a common calibration of various UV and EUV heliospheric observations, both spectroscopic and photometric. Realization of this goal required an up-to-date model of spatial distribution of neutral interstellar hydrogen in the heliosphere, and to that end, a credible model of the radiation pressure and ionization processes was needed. This chapter describes the solar factors shaping the distribution of neutral interstellar H in the heliosphere. Presented are the solar Lyman-alpha flux and the solar Lyman-alpha resonant radiation pressure force acting on neutral H atoms in the heliosphere, solar EUV radiation and the photoionization of heliospheric hydrogen, and their evolution in time and the still hypothetical variation with heliolatitude. Further, solar wind and its evolution with solar activity is presented in the context of the charge excha...

  19. Radiation and Pregnancy

    Science.gov (United States)

    ... Home > Pregnancy > Is it safe? > Radiation and pregnancy Radiation and pregnancy E-mail to a friend Please ... can you protect yourself and your baby from radiation during pregnancy? Tell any health care provider you ...

  20. Breast radiation - discharge

    Science.gov (United States)

    Radiation - breast - discharge ... away around 4 to 6 weeks after the radiation treatment is over. You may notice changes in ... breast looks or feels (if you are getting radiation after a lumpectomy). These changes include: Soreness or ...

  1. Lyman alpha emission from the first galaxies : Implications of UV backgrounds and the formation of molecules

    NARCIS (Netherlands)

    Latif, M. A.; Schleicher, D. R. G.; Spaans, Maarten; Zaroubi, S.

    2011-01-01

    The Lyman alpha line is a robust tracer of high redshift galaxies. We present estimates of Lyman alpha emission from a protogalactic halo illuminated by UV background radiation fields with various intensities. For this purpose, we performed cosmological hydrodynamics simulations with the adaptive me

  2. The Formation of Massive Primordial Stars in the Presence of Moderate UV Backgrounds

    NARCIS (Netherlands)

    Latif, M. A.; Schleicher, D. R. G.; Bovino, S.; Grassi, T.; Spaans, M.

    2014-01-01

    Radiative feedback produced by stellar populations played a vital role in early structure formation. In particular, photons below the Lyman limit can escape the star-forming regions and produce a background ultraviolet (UV) flux, which consequently may influence the pristine halos far away from the

  3. Asymptotic freedom in the early big bang and the isotropy of the cosmic microwave background

    Science.gov (United States)

    Stecker, F. W.

    1980-01-01

    It is suggested that a superunified field theory incorporating gravity and possessing asymptotic freedom could provide a solution to the problem of the isotropy of the universal 3 K background radiation. Thermal equilibrium could be established in this context through interactions occurring in a temporally indefinite pre-Planckian era.

  4. Asymptotic freedom in the early big-bang and the isotropy of the cosmic microwave background

    Science.gov (United States)

    Stecker, F. W.

    1979-01-01

    The isotropy of the universal 3K background radiation is discussed and a superunified field theory incorporating gravity and possessing asymptotic freedom is suggested to provide a solution to the problem. Thermal equilibrium is established in this context through interactions occurring in a temporally indefinite preplanckian era.

  5. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Siegel, Robert

    2016-01-01

    Further expanding on the changes made to the fifth edition, Thermal Radiation Heat Transfer, 6th Edition continues to highlight the relevance of thermal radiative transfer and focus on concepts that develop the radiative transfer equation (RTE). The book explains the fundamentals of radiative transfer, introduces the energy and radiative transfer equations, covers a variety of approaches used to gauge radiative heat exchange between different surfaces and structures, and provides solution techniques for solving the RTE.

  6. Gravity with background fields and diffeomorphism breaking

    CERN Document Server

    Bluhm, Robert

    2016-01-01

    Effective gravitational field theories with background fields break local Lorentz symmetry and diffeomorphism invariance. Examples include Chern-Simons gravity, massive gravity, and the Standard-Model Extension (SME). The physical properties and behavior of these theories depend greatly on whether the spacetime symmetry breaking is explicit or spontaneous. With explicit breaking, the background fields are fixed and nondynamical, and the resulting theories are fundamentally different from Einstein's General Relativity (GR). However, when the symmetry breaking is spontaneous, the background fields are dynamical in origin, and many of the usual features of Einstein's GR still apply.

  7. Do instantons like a colorful background?

    Energy Technology Data Exchange (ETDEWEB)

    Gies, H.; Pawlowski, J.M.; Wetterich, C. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Jaeckel, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-08-15

    We investigate chiral symmetry breaking and color symmetry breaking in QCD. The effective potential of the corresponding scalar condensates is discussed in the presence of non-perturbative contributions from the semiclassical one-instanton sector. We concentrate on a color singlet scalar background which can describe chiral condensation, as well as a color cotet scalar background which can generate mass for the gluons. Whereas a non-vanishing singlet chiral field is favored by the instantons, we have found no indication for a preference of color octet backgrounds. (orig.)

  8. ARCADE Detection of an Extragalactic Radio Background

    Science.gov (United States)

    Kogut, Alan J.

    2009-01-01

    Sometimes when we look for one thing we stumble on something else. The Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) was designed to measure the blackbody spectrum of the cosmic microwave background to search for spectral distortions related to the epoch of reionization. Instead, the July 2006 flight found evidence for an extragalactic radio background with amplitude six times brighter than the expected contribution from faint radio sources. The author discusses the ARCADE instrument and the evidence for an extragalactic radio background.

  9. The astrophysical gravitational wave stochastic background

    Institute of Scientific and Technical Information of China (English)

    Tania Regimbau

    2011-01-01

    A stochastic background of gravitational waves with astrophysical origins may have resulted from the superposition of a large number of unresolved sources since the beginning of stellar activity.Its detection would put very strong constraints on the physical properties of compact objects, the initial mass function and star formarion history.On the other hand, it could be a ‘noise' that would mask the stochastic background of its cosmological origin.We review the main astrophysical processes which are able to produce a stochastic background and discuss how they may differ from the primordial contribution in terms of statistical properties.Current detection methods are also presented.

  10. Exploiting background knowledge in automated discovery

    Energy Technology Data Exchange (ETDEWEB)

    Aronis, J.M.; Buchanan, B.G. [Univ. of Pittsburgh, PA (United States); Provost, F.J. [NYNEX Science and Technology, White Plains, NY (United States)

    1996-12-31

    Prior work in automated scientific discovery has been successful in finding patterns in data, given that a reasonably small set of mostly relevant features is specified. The work described in this paper places data in the context of large bodies of background knowledge. Specifically, data items are connected to multiple databases of background knowledge represented as inheritance networks. The system has made a practical impact on botanical toxicology research, which required linking examples of cases of plant exposures to databases of botanical, geographical, and climate background knowledge.

  11. On the bremsstrahlung background correction to the high-energy Compton spectroscopy

    Indian Academy of Sciences (India)

    S Mathur; B L Ahuja

    2005-07-01

    A methodology for bremsstrahlung (BS) background correction to extract a true Compton profile in high-energy Compton scattering experiments is presented. The BS background profiles for Hg, computed within the Born approximation, are estimated for different values of incident energy. It is seen for the first time that the BS background contribution in high-energy Compton profile experiments like those employing third generation synchrotron radiation sources comes out to be significant and non-linear. Further, it is found that the incorporation of BS correction in data reduction of such an experiment performed on Hg at 662 keV energy helps in reconciliation of theory and experiment.

  12. Excess astrophysical photons from a 0.1-1 keV cosmic axion background.

    Science.gov (United States)

    Conlon, Joseph P; Marsh, M C David

    2013-10-11

    Primordial decays of string theory moduli at z~10(12) naturally generate a dark radiation cosmic axion background with 0.1-1 keV energies. This cosmic axion background can be detected through axion-photon conversion in astrophysical magnetic fields to give quasithermal excesses in the extreme ultraviolet and soft x-ray bands. Substantial and observable luminosities may be generated even for axion-photon couplings axion-photon conversion may explain the observed excess emission of soft x rays from galaxy clusters, and may also contribute to the diffuse unresolved cosmic x-ray background. We list a number of correlated predictions of the scenario.

  13. Radiation controlling reversible window

    Energy Technology Data Exchange (ETDEWEB)

    Gell, H.A. Jr.

    1980-01-01

    A coated glass glazing system is presented including a transparent glass substrate having one surface coated with a radiation absorptive film which is overcoated with a radiation reflective film by a technique which renders the radiation reflective film radiation absorptive at the surface contracting the radiating absorptive film. The coated glass system is used as glazing for storm windows which are adapted to be reversible so that the radiation reflective surface may be exposed to the outside of the dwelling during the warm seasons to prevent excessive solar radiation from entering a dwelling and reversed during cold seasons to absorb solar radiation and utilize it to aid in keeping the dwelling interior warm.

  14. Radiation detection and measurement concepts, methods and devices

    CERN Document Server

    McGregor, Douglas

    2017-01-01

    This text on radiation detection and measurement is a response to numerous requests expressed by students at various universities, in which the most popularly used books do not provide adequate background material, nor explain matters in understandable terms. This work provides a modern overview of radiation detection devices and radiation measurement methods. The topics selected in the book have been selected on the basis of the author’s many years of experience designing radiation detectors and teaching radiation detection and measurement in a classroom environment.

  15. Thermal radiation heat transfer (3rd revised and enlarged edition)

    Science.gov (United States)

    Siegel, Robert; Howell, John R.

    1992-01-01

    This book first reviews the overall aspects and background information related to thermal radiation heat transfer and incorporates new general information, advances in analytical and computational techniques, and new reference material. Coverage focuses on radiation from opaque surfaces, radiation interchange between various types of surfaces enclosing a vacuum or transparent medium, and radiation including the effects of partially transmitting media, such as combustion gases, soot, or windows. Boundary conditions and multiple layers are discussed with information on radiation in materials with nonunity refractive indices.

  16. The Spin-2 Equation on Minkowski Background

    CERN Document Server

    Beyer, Florian; Frauendiener, Jörg; Whale, Ben

    2014-01-01

    The linearised general conformal field equations in their first and second order form are used to study the behaviour of the spin-2 zero-rest-mass equation on Minkowski background in the vicinity of space-like infinity.

  17. Activating Background Knowledge in Reading Comprehension Assessment.

    Science.gov (United States)

    Rowe, Deborah Wells; Rayford, Lawrence

    1987-01-01

    Indicates that a broad age range of students can use some purpose questions as cues to activate background knowledge. Suggest topic familiarity, amount of information presented, and the presence of genre clues as text features affecting schema activation. (NKA)

  18. Dyonic branes and linear dilaton background

    CERN Document Server

    Clément, G; Leygnac, C; Orlov, D; Clement, Gerard; Gal'tsov, Dmitri; Leygnac, Cedric; Orlov, Dmitri

    2006-01-01

    We study dyonic solutions to the gravity-dilaton-antisymmetric form equations with the goal of identifying new $p$-brane solutions on the fluxed linear dilaton background. Starting with the generic solutions constructed by reducing the system to decoupled Liouville equations for certain values of parameters, we identify the most general solution whose singularities are hidden behind a regular event horizon, and then explore the admissible asymptotic behaviors. In addition to known asymptotically flat dyonic branes, we find two classes of asymptotically non-flat solutions which can be interpreted as describing magnetically charged branes on the electrically charged linear dilaton background (and the $S$-dual configuration of electrically charged branes on the magnetically charged background), and uncharged black branes on the dyonically charged linear dilaton background. This interpretation is shown to be consistent with the first law of thermodynamics for the new solutions.

  19. Cognitive abilities, sociocultural background and academic achievement.

    Science.gov (United States)

    Diniz, António; Dias Pocinho, Margarida; Silva Almeida, Leandro

    2011-11-01

    The influence of students' sociocultural background on academic achievement is a well established fact. Research also points out that sociocultural background is related to students' cognitive abilities and these have an effect on their academic achievement. However, the mediator role of cognitive abilities on the relationship between sociocultural background and academic achievement is less well known. A structural equation model that represents these relationships was tested in a sample (N= 728) of Portuguese junior high school students. Multigroup analysis of the model showed the importance of the cognitive ability mediation effect between sociocultural background and academic achievement in the 7th and 9th grades, but not in the 8th grade. This difference may be the result of the academic transition experienced in the 7th and 9th grades in the Portuguese educational system, which requires parents' higher involvement in school.

  20. Background by neutron activation in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Meierhofer, Georg; Dietrich, Dennis; Freund, Kai; Grabmayr, Peter; Hegai, Alexander; Jochum, Josef; Knapp, Markus; Ritter, Florian [Kepler Center for Astro and Particle Physics, Universitaet Tuebingen (Germany); Canella, Lea [Institut fuer Radiochemie, Technische Universitaet Muenchen (Germany); Jolie, Jan [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Kudejova, Petra [FRM II, Technische Universitaet Muenchen (Germany)

    2010-07-01

    The observation of the neutrinoless double beta decay is a proof of the Majorana nature of the neutrino. The long half-life of this decay requires experiments of very low background rates in the region of interest at Q{sub {beta}}{sub {beta}}. Prompt {gamma}-rays after neutron capture on germanium and the {beta}-decay of {sup 77}Ge contribute to the background in experiments using {sup 76}Ge for the search of the neutrinoless double beta decay. The poorly known prompt {gamma}-ray spectra and the neutron capture cross sections for the (n,{gamma}) reactions of {sup 74}Ge and {sup 76}Ge were measured at the research reactor FRM II (Munich). The obtained data are needed in MC simulations for qualitative and quantitative background prediction in the Gerda experiment. The data and their implication on the background in Gerda are presented.

  1. Standard Model Background of the Cosmological Collider

    CERN Document Server

    Chen, Xingang; Xianyu, Zhong-Zhi

    2016-01-01

    The inflationary universe can be viewed as a "Cosmological Collider" with energy of Hubble scale, producing very massive particles and recording their characteristic signals in primordial non-Gaussianities. To utilize this collider to explore any new physics at very high scales, it is a prerequisite to understand the background signals from the particle physics Standard Model. In this paper we describe the Standard Model background of the Cosmological Collider.

  2. CORSIKA modifications for faster background generation

    Science.gov (United States)

    Jero, Kyle

    2016-04-01

    CORSIKA is a simulation program for extensive air showers initiated by high energy cosmic particles. These air showers create the majority of the muons and neutrinos which neutrino that telescopes detect and are considered a background signature in searches for astrophysical neutrinos. This contribution will discuss changes to CORSIKA which allow for faster high energy background simulation. The theory, implementation, application, and performance of these modifications will be presented.

  3. CORSIKA modifications for faster background generation

    Directory of Open Access Journals (Sweden)

    Jero Kyle

    2016-01-01

    Full Text Available CORSIKA is a simulation program for extensive air showers initiated by high energy cosmic particles. These air showers create the majority of the muons and neutrinos which neutrino that telescopes detect and are considered a background signature in searches for astrophysical neutrinos. This contribution will discuss changes to CORSIKA which allow for faster high energy background simulation. The theory, implementation, application, and performance of these modifications will be presented.

  4. Mathematical Background of Public Key Cryptography

    DEFF Research Database (Denmark)

    Frey, Gerhard; Lange, Tanja

    2005-01-01

    The two main systems used for public key cryptography are RSA and protocols based on the discrete logarithm problem in some cyclic group. We focus on the latter problem and state cryptographic protocols and mathematical background material.......The two main systems used for public key cryptography are RSA and protocols based on the discrete logarithm problem in some cyclic group. We focus on the latter problem and state cryptographic protocols and mathematical background material....

  5. Military Retirement: Background and Recent Developments

    Science.gov (United States)

    2014-05-28

    Military Retirement: Background and Recent Developments David F. Burrelli Specialist in Military Manpower Policy Barbara Salazar Torreon...00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Military Retirement: Background and Recent Developments 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...Recent Developments Congressional Research Service Summary The military retirement system is a noncontributory, defined benefit system that has

  6. A background free double beta decay experiment

    OpenAIRE

    Giomataris, Ioannis

    2010-01-01

    We present a new detection scheme for rejecting backgrounds in neutrino less double beta decay experiments. It relies on the detection of Cherenkov light emitted by electrons in the MeV region. The momentum threshold is tuned to reach a good discrimination between background and good events. We consider many detector concepts and a range of target materials. The most promising is a high-pressure 136Xe emitter for which the required energy threshold is easily adjusted. Combination of this conc...

  7. Supermembrane actions for Gaiotto-Maldacena backgrounds

    Science.gov (United States)

    Stefański, Bogdan

    2014-06-01

    We write down the supermembrane actions for M-theory backgrounds dual to general N=2 four-dimensional superconformal field theories. The actions are given to all orders in fermions and are in a particular κ-gauge. When an extra U(1) isometry is present, our actions reduce to κ-gauge fixed Green-Schwarz actions for the corresponding Type IIA backgrounds.

  8. Supermembrane actions for Gaiotto–Maldacena backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Stefański, Bogdan, E-mail: Bogdan.Stefanski.1@city.ac.uk

    2014-06-15

    We write down the supermembrane actions for M-theory backgrounds dual to general N=2 four-dimensional superconformal field theories. The actions are given to all orders in fermions and are in a particular κ-gauge. When an extra U(1) isometry is present, our actions reduce to κ-gauge fixed Green–Schwarz actions for the corresponding Type IIA backgrounds.

  9. Moving object detection using background subtraction

    CERN Document Server

    Shaikh, Soharab Hossain; Chaki, Nabendu

    2014-01-01

    This Springer Brief presents a comprehensive survey of the existing methodologies of background subtraction methods. It presents a framework for quantitative performance evaluation of different approaches and summarizes the public databases available for research purposes. This well-known methodology has applications in moving object detection from video captured with a stationery camera, separating foreground and background objects and object classification and recognition. The authors identify common challenges faced by researchers including gradual or sudden illumination change, dynamic bac

  10. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops

    CERN Document Server

    Al-Ghafri, Khalil Salim

    2015-01-01

    The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops namely thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function that ensures the temperature evolution of the background plasma due to radiation coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglect the magnetic field perturbation and eventually reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale much larger than the oscillation period that subsequently enables...

  11. Non-collision backgrounds in ATLAS

    CERN Document Server

    Gibson, S M; The ATLAS collaboration

    2012-01-01

    The proton-proton collision events recorded by the ATLAS experiment are on top of a background that is due to both collision debris and non-collision components. The latter comprises of three types: beam-induced backgrounds, cosmic particles and detector noise. We present studies that focus on the first two of these. We give a detailed description of beam-related and cosmic backgrounds based on the full 2011 ATLAS data set, and present their rates throughout the whole data-taking period. Studies of correlations between tertiary proton halo and muon backgrounds, as well as, residual pressure and resulting beam-gas events seen in beam-condition monitors will be presented. Results of simulations based on the LHC geometry and its parameters will be presented. They help to better understand the features of beam-induced backgrounds in each ATLAS sub-detector. The studies of beam-induced backgrounds in ATLAS reveal their characteristics and serve as a basis for designing rejection tools that can be applied in physic...

  12. String pair production in non homogeneous backgrounds

    CERN Document Server

    Bolognesi, Stefano; Tallarita, Gianni

    2016-01-01

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is les...

  13. Background study of absorbed dose in biological experiments at the Modane Underground Laboratory

    Science.gov (United States)

    Lampe, Nathanael; Marin, Pierre; Castor, Jean; Warot, Guillaume; Incerti, S.; Maigne, Lydia; Sarramia, David; Breton, Vincent

    2016-09-01

    Aiming to explore how biological systems respond to ultra-low background environ-ments, we report here our background studies for biological experiments in the Modane Under-ground Laboratory. We find that the minimum radioactive background for biology experiments is limited by the potassium content of the biological sample itself, coming from its nutritive me-dium, which we find in our experimental set-up to be 26 nGy hr-1. Compared to our reference radiation environment in Clermont-Ferrand, biological experiments can be conducted in the Modane laboratory with a radiation background 8.2 times lower than the reference above-ground level. As the radiation background may be further reduced by using different nutritive media, we also provide measurements of the potassium concentration by gamma spectroscopy of yeast extract (63.3±1.2 mg g-1) and tryptone (2.5±0.2 mg g-1) in order to guide media selection in future experiments.

  14. Dark matter powered stars: Constraints from the extragalactic background light

    CERN Document Server

    Maurer, A; Kneiske, T; Elsässer, D; Hauschildt, P H; Horns, D

    2012-01-01

    The existence of predominantly cold non-baryonic dark matter is unambiguously demonstrated by several observations (e.g., structure formation, big bang nucleosynthesis, gravitational lensing, and rotational curves of spiral galaxies). A candidate well motivated by particle physics is a weakly interacting massive particle (WIMP). Self-annihilating WIMPs would affect the stellar evolution especially in the early universe. Stars powered by self-annihilating WIMP dark matter should possess different properties compared with standard stars. While a direct detection of such dark matter powered stars seems very challenging, their cumulative emission might leave an imprint in the diffuse metagalactic radiation fields, in particular in the mid-infrared part of the electromagnetic spectrum. In this work the possible contributions of dark matter powered stars (dark stars; DSs) to the extragalactic background light (EBL) are calculated. It is shown that existing data and limits of the EBL intensity can already be used to...

  15. Spectator fields and their imprints on the Cosmic Microwave Background

    CERN Document Server

    Wang, Lingfei

    2016-01-01

    When a subdominant light scalar field ends slow roll during inflation, but well after the Hubble exit of the pivot scales, it may determine the cosmological perturbations. This thesis investigates how such a scalar field, the spectator, may leave its impact on the Cosmic Microwave Background (CMB) radiation and be consequently constrained. We first introduce the observables of the CMB, namely the power spectrum $P_\\zeta$, spectral index $n_s$ and its running $dn_s/d\\ln k$, the non-Gaussianities $f_{NL}$, $g_{NL}$ and $\\tau_{NL}$, and the lack of isocurvature and polarization modes. Based on these studies, we derive the cosmological predictions for the spectator scenario, revealing its consistency with the CMB for inflection point potentials, hyperbolic tangent potentials, and those with a sudden phase transition. In the end, we utilize the spectator scenario to explain the CMB power asymmetry, with a brief tachyonic fast-roll phase.

  16. Large Scale Anomalies of the Cosmic Microwave Background with Planck

    DEFF Research Database (Denmark)

    Frejsel, Anne Mette

    This thesis focuses on the large scale anomalies of the Cosmic Microwave Background (CMB) and their possible origins. The investigations consist of two main parts. The first part is on statistical tests of the CMB, and the consistency of both maps and power spectrum. We find that the Planck data...... is very consistent, while the WMAP 9 year release appears more contaminated by non-CMB residuals than the 7 year release. The second part is concerned with the anomalies of the CMB from two approaches. One is based on an extended inflationary model as the origin of one specific large scale anomaly, namely....... Here we find evidence that the Planck CMB maps contain residual radiation in the loop areas, which can be linked to some of the large scale CMB anomalies: the point-parity asymmetry, the alignment of quadrupole and octupole and the dipolemodulation....

  17. Solar system astrophysics background science and the inner solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Background Science and the Inner Solar System provides new insights into the burgeoning field of planetary astronomy. As in the first edition, this volume begins with a rigorous treatment of coordinate frames, basic positional astronomy, and the celestial mechanics of two and restricted three body system problems. Perturbations are treated in the same way, with clear step-by-step derivations. Then the Earth’s gravitational potential field and the Earth-Moon system are discussed, and the exposition turns to radiation properties with a chapter on the Sun. The exposition of the physical properties of the Moon and the terrestrial planets are greatly expanded, with much new information highlighted on the Moon, Mercury, Venus, and Mars. All of the material is presented within a framework of historical importance. This book and its sister volume, Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System, are pedagogically well written, providing cl...

  18. Upgraded VIRGO detector(s) and stochastic gravitational waves backgrounds

    CERN Document Server

    Babusci, D

    1999-01-01

    The sensitivity achievable by a pair of VIRGO detectors to stochastic and isotropic gravitational wave backgrounds of cosmological origin is discussed in view of the development of a second VIRGO interferometer. We describe a semi-analytical technique allowing to compute the signal-to-noise ratio for (monotonic or non-monotonic) logarithmic energy spectra of relic gravitons of arbitrary slope. We apply our results to the case of two correlated and coaligned VIRGO detectors and we compute their achievable sensitivities. The maximization of the overlap reduction function is discussed. We focus our attention on a class of models whose expected sensitivity is more promising, namely the case of string cosmological gravitons. We perform our calculations both for the case of minimal string cosmological scenario and in the case of a non-minimal scenario where a long dilaton dominated phase is present prior to the onset of the ordinary radiation dominated phase. In this framework, we study possible improvements of the...

  19. The use of difference spectra with a filtered rolling average background in mobile gamma spectrometry measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cresswell, A.J. [Scottish Universities Environmental Research Centre, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, Glasgow G75 0QF (United Kingdom)], E-mail: a.cresswell@suerc.gla.ac.uk; Sanderson, D.C.W. [Scottish Universities Environmental Research Centre, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, Glasgow G75 0QF (United Kingdom)

    2009-08-21

    The use of difference spectra, with a filtering of a rolling average background, as a variation of the more common rainbow plots to aid in the visual identification of radiation anomalies in mobile gamma spectrometry systems is presented. This method requires minimal assumptions about the radiation environment, and is not computationally intensive. Some case studies are presented to illustrate the method. It is shown that difference spectra produced in this manner can improve signal to background, estimate shielding or mass depth using scattered spectral components, and locate point sources. This approach could be a useful addition to the methods available for locating point sources and mapping dispersed activity in real time. Further possible developments of the procedure utilising more intelligent filters and spatial averaging of the background are identified.

  20. Reionization during the dark ages from a cosmic axion background

    CERN Document Server

    Evoli, Carmelo; Mirizzi, Alessandro; Montanino, Daniele

    2016-01-01

    Recently it has been pointed out that a cosmic background of relativistic axion-like particles (ALPs) would be produced by the primordial decays of heavy fields in the post-inflation epoch, contributing to the extra-radiation content in the Universe today. Primordial magnetic fields would trigger conversions of these ALPs into sub-MeV photons during the dark ages. This photon flux would produce an early reionization of the Universe, leaving a significant imprint on the total optical depth to recombination $\\tau$. Using the current measurement of $\\tau$ and the limit on the extra-radiation content $\\Delta N_{\\rm eff} $ by the Planck experiment we put a strong bound on the ALP-photon conversions. Namely we obtain upper limits on the product of the photon-ALP coupling constant $g_{a\\gamma}$ times the magnetic field strength $B$ down to $g_{a\\gamma} B \\gtrsim 6 \\times 10^{-18} \\textrm{GeV}^{-1} \\textrm{nG} $ for ultralight ALPs.

  1. Background exposure rates of terrestrial wildlife in England and Wales

    Energy Technology Data Exchange (ETDEWEB)

    Beresford, N.A. [Centre for Ecology and Hydrology, CEH-Lancaster, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)], E-mail: nab@ceh.ac.uk; Barnett, C.L. [Centre for Ecology and Hydrology, CEH-Lancaster, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Jones, D.G. [British Geological Society, Keyworth, Nottingham NG12 5GG (United Kingdom); Wood, M.D. [Institute for Sustainable Water Integrated Management and Ecosystem Research (SWIMMER), Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom); Appleton, J.D.; Breward, N. [British Geological Society, Keyworth, Nottingham NG12 5GG (United Kingdom); Copplestone, D. [Environment Agency, Richard Fairclough House, Knutsford Road, Warrington, Cheshire WA4 1HG (United Kingdom)

    2008-09-15

    It has been suggested that, when assessing radiation impacts on non-human biota, estimated dose rates due to anthropogenically released radionuclides should be put in context by comparison to dose rates from natural background radiation. In order to make these comparisons, we need data on the activity concentrations of naturally occurring radionuclides in environmental media and organisms of interest. This paper presents the results of a study to determine the exposure of terrestrial organisms in England and Wales to naturally occurring radionuclides, specifically {sup 40}K, {sup 238}U series and {sup 232}Th series radionuclides. Whole-body activity concentrations for the reference animals and plants (RAPs) as proposed by the ICRP have been collated from literature review, data archives and a targeted sampling campaign. Data specifically for the proposed RAP are sparse. Soil activity concentrations have been derived from an extensive geochemical survey of the UK. Unweighted and weighted absorbed dose rates were estimated using the ERICA Tool. Mean total weighted whole-body absorbed dose rates estimated for the selected terrestrial organisms was in the range 6.9 x 10{sup -2} to 6.1 x 10{sup -1} {mu}Gy h{sup -1}.

  2. Radiation physics for medical physicists

    Energy Technology Data Exchange (ETDEWEB)

    Podgorsak, E.B. [McGill Univ. Health Centre, Montreal, QC (Canada). Dept. of Medical Physics

    2006-07-01

    This book summarizes the radiation physics knowledge that professionals working in medical physics need to master for efficient and safe dealings with ionizing radiation. It contains eight chapters, each chapter covering a specific group of subjects related to radiation physics and is intended as a textbook for a course in radiation physics in medical-physics graduate programs. However, the book may also be of interest to the large number of professionals, not only medical physicists, who in their daily occupations deal with various aspects of medical physics and find a need to improve their understanding of radiation physics. The main target audience for this book is graduate students studying for M.Sc. and Ph.D. degrees in medical physics, who have to possess the necessary physics and mathematics background knowledge to be able to follow and master the complete textbook. Medical residents, technology students and biomedical engineering students may find certain sections too challenging or esoteric, yet they will find many sections interesting and useful in their studies. Candidates preparing for professional certification exams in any of the medical physics subspecialties should find the material useful, and some of the material would also help candidates preparing for certification examinations in medical dosimetry or radiation-related medical specialties. Numerous textbooks are available covering the various subspecialties of medical physics but they generally make a transition from the elementary basic physics directly into the intricacies of the given medical physics subspecialty. The intent of this textbook is to provide the missing link between the elementary physics on the one hand and the physics of the subspecialties on the other hand. (orig.)

  3. Automated FingerPrint Background removal: FPB

    Directory of Open Access Journals (Sweden)

    Morgante Michele

    2009-04-01

    Full Text Available Abstract Background The construction of a whole-genome physical map has been an essential component of numerous genome projects initiated since the inception of the Human Genome Project. Its usefulness has been proved for whole-genome shotgun projects as a post-assembly validation and recently it has also been used in the assembly step to constrain on BACs positions. Fingerprinting is usually the method of choice for construction of physical maps. A clone fingerprint is composed of true peaks representing real fragments and background peaks, mainly composed of E. coli genomic DNA, partial digestions, star activity by-products, and machine background. High-throughput fingerprinting leads to the production of thousands of BAC clone fingerprints per day. That is why background peaks removal has become an important issue and needs to be automatized, especially in capillary electrophoresis based fingerprints. Results At the moment, the only tools available for such a task are GenoProfiler and its descendant FPMiner. The large variation in the quality of fingerprints that is usually present in large fingerprinting projects represents a major difficulty in the correct removal of background peaks that has only been partially addressed by the methods so far adopted that all require a long manual optimization of parameters. Thus, we implemented a new data-independent tool, FPB (FingerPrint Background removal, suitable for large scale projects as well as mapping of few clones. Conclusion FPB is freely available at http://www.appliedgenomics.org/tools.php. FPB was used to remove the background from all fingerprints of three grapevine physical map projects. The first project consists of about 50,000 fingerprints, the second one consists of about 70,000 fingerprints, and the third one consists of about 45,000 fingerprints. In all cases a successful assembly was built.

  4. Principles of stray light suppression and conceptual application to the design of the Diffuse Infrared Background Experiment for NASA's Cosmic Background Explorer

    Science.gov (United States)

    Evans, D. C.

    1983-01-01

    The Diffuse Infrared Background Experiment (DIRBE) is a 10 band filter photometer that will operate at superfluid helium temperatures. Diffuse galactic and extragalactic infrared radiation in the 1-300 micrometer wavelength region will be measured by the instrument. Polarization measurements will be made for 3 bands in the 1-4 micrometer spectral region. The main sources of unwanted radiation are the sun, earth, thermal radiation from an external sun shield, the moon, the brighter planets and stars, and sky light itself from outside the instrument's nominal one degree square field of view. The system level engineering concepts and the principles of stray light suppression that resulted in the instrument design are presented.

  5. Dynamical properties of background neural networks with uniform firing rate and background input

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei [Computational Intelligence Laboratory, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China); Yi Zhang [Computational Intelligence Laboratory, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China)]. E-mail: zhangyi@uestc.edu.cn

    2007-08-15

    In this paper, the dynamic properties of the background neural networks with the uniform firing rate and background input is investigated with a series of mathematical arguments including nondivergence, global attractivity and complete stability analysis. Moreover, it shows that shifting the background level affects the existence and stability of the equilibrium point. Depending on the increase or decrease in background input, the network can engender bifurcation and chaos. It may be have one or two different stable firing levels. That means the background neural network can exhibit not only monostability but also multistability.

  6. Detection of Terahertz Radiation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a system for detecting terahertz radiation, a camera device, and a method for detecting terahertz radiation.......The present invention relates to a system for detecting terahertz radiation, a camera device, and a method for detecting terahertz radiation....

  7. Gravitation radiation observations

    OpenAIRE

    Glass, E. N.

    2017-01-01

    The notion of gravitational radiation begins with electromagnetic radiation. In 1887 Heinrich Hertz, working in one room, generated and received electromagnetic radiation. Maxwell's equations describe the electromagnetic field. The quanta of electromagnetic radiation are spin 1 photons. They are fundamental to atomic physics and quantum electrodynamics.

  8. COBE Observations of the Cosmic Infrared Background

    CERN Document Server

    Wright, E L

    2004-01-01

    The Diffuse InfraRed Background Experiment on COBE measured the total infrared signal seen from space at a distance of 1 astronomical unit from the Sun. Using time variations as the Earth orbits the Sun, it is possible to remove most of the foreground signal produced by the interplanetary dust cloud [zodiacal light]. By correlating the DIRBE signal with the column density of atomic hydrogen measured using the 21 cm line, it is possible to remove most of the foreground signal produced by interstellar dust, although one must still be concerned by dust associated with H_2 (molecular gas) and H II (the warm ionized medium). DIRBE was not able to determine the CIRB in the 5-60 micron wavelength range, but did detect both a far infrared background and a near infrared background. The far infrared background has an integrated intensity of about 34 nW/m^2/sr, while the near infrared and optical extragalactic background has about 59 nW/m^2/sr. The Far InfraRed Absolute Spectrophotometer (FIRAS) on COBE has been used to...

  9. Holographic backgrounds from D-brane probes

    CERN Document Server

    Moskovic, Micha

    2014-01-01

    This thesis focuses on the derivation of holographic backgrounds from the field theory side, without using any supergravity equations of motion. Instead, we rely on the addition of probe D-branes to the stack of D-branes generating the background. From the field theory description of the probe branes, one can compute an effective action for the probes (in a suitable low-energy/near-horizon limit) by integrating out the background branes. Comparing this action with the generic probe D-brane action then allows to determine the holographic background dual to the considered field theory vacuum. In the first part, the required pre-requisites of field and string theory are recalled and this strategy to derive holographic backgrounds is explained in more detail on the basic case of D3-branes in flat space probed by a small number of D-instantons. The second part contains our original results, which have already appeared in arXiv:1301.3738, arXiv:1301.7062 and arXiv:1312.0621. We first derive the duals to three conti...

  10. Infrared Background and Missiles Signature Survey

    Directory of Open Access Journals (Sweden)

    D.V. Renuka

    2013-11-01

    Full Text Available The proliferation of the missile threats in the existing threat scenario for airborne platform is a serious point of consideration for any mission planning. Missile warning system is an electronic warfare support system which gives warning to the pilot when a missile is detected in the scenario. The airborne platform has to be installed with missile warning sensors to give a spherical coverage, so that the sensors can detect the IR intensity variation in the ground scenario. This IR intensity variation has to be further analysed to differentiate the raising missile intensity from the varying background clutter. In order to differentiate the threat from the background clutter, the system should have sufficient background data set for online comparison thereby having less false alarm rate. The efficiency and performance of any missile warning system is validated with respect to its probability of declaration against the false alarm rate. Hence, to realize an efficient functioning of missile warning system, building IR background data base and missile signature database are the primary task. This paper details the methodology to be adapted for the building of tactical missile IR signatures and background data.

  11. Infrared Background and Missiles Signature Survey

    Directory of Open Access Journals (Sweden)

    D.V. Renuka

    2013-12-01

    Full Text Available The proliferation of the missile threats in the existing threat scenario for airborne platform is a serious point of consideration for any mission planning. Missile warning system is an electronic warfare support system which gives warning to the pilot when a missile is detected in the scenario. The airborne platform has to be installed with missile warning sensors to give a spherical coverage, so that the sensors can detect the IR intensity variation in the ground scenario. This IR intensity variation has to be further analysed to differentiate the raising missile intensity from the varying background clutter. In order to differentiate the threat from the background clutter, the system should have sufficient background data set for online comparison thereby having less false alarm rate. The efficiency and performance of any missile warning system is validated with respect to its probability of declaration against the false alarm rate. Hence, to realize an efficient functioning of missile warning system, building IR background data base and missile signature database are the primary task. This paper details the methodology to be adapted for the building of tactical missile IR signatures and background data.Defence Science Journal, 2013, 63(6, pp.611-615, DOI:http://dx.doi.org/10.14429/dsj.63.5762

  12. On conformal higher spins in curved background

    Science.gov (United States)

    Grigoriev, M.; Tseytlin, A. A.

    2017-03-01

    We address the question of how to represent an interacting action for a tower of conformal higher spin fields in a form covariant with respect to a background metric. We use the background metric to define the star product which plays a central role in the definition of the corresponding gauge transformations. By analogy with the kinetic term in the 4-derivative Weyl gravity action expanded near an on-shell background one expects that the kinetic term in such an action should be gauge-invariant in a Bach-flat metric. We demonstrate this fact to first order in expansion in powers of the curvature of the background metric. This generalizes the result of arXiv:1404.7452 for spin 3 case to all conformal higher spins. We also comment on a possibility of extending this claim to terms quadratic in the curvature and discuss the appearance of background-dependent mixing terms in the quadratic part of the conformal higher spin action.

  13. On conformal higher spins in curved background

    CERN Document Server

    Grigoriev, M

    2016-01-01

    We address the question of how to represent an interacting action for the tower of conformal higher spin fields in a form covariant with respect to a background metric. We use a background metric to define a star product which plays a central role in the definition of the corresponding gauge transformations. By an analogy with the kinetic term in the 4-derivative Weyl gravity action expanded near an on-shell background one expects that the kinetic term in such an action should be gauge-invariant in a Bach-flat metric. We demonstrate this fact to first order in expansion in powers of the curvature of the background metric. This generalizes the result of arXiv:1404.7452 for spin 3 case to all conformal higher spins. We also comment on a possibility of extending this claim to terms quadratic in the curvature and discuss the appearance of background-dependent mixing terms in the quadratic part of the conformal higher spin action.

  14. Can one measure the Cosmic Neutrino Background?

    CERN Document Server

    Faessler, Amand; Kovalenko, Sergey; Simkovic, Fedor

    2016-01-01

    The Cosmic Microwave Background (CMB) yields information about our Universe at around 380 000 years after the Big Bang (BB). Due to the weak interaction of the neutrinos with matter the Cosmic Neutrino Background (CNB) should give information about a much earlier time of our Universe, around one second after the Big Bang. Probably the most promising method to `see' the Cosmic Neutrino Background is the capture of the electron neutrinos from the Background by Tritium, which then decays into 3He and an electron with the energy of the the Q-value = 18.562 keV plus the electron neutrino rest mass. The `KArlsruhe TRItium Neutrino' (KATRIN) experiment, which is in preparation, seems presently the most sensitive proposed method for measuring the electron antineutrino mass. At the same time KATRIN can also look by the reaction: electron neutrino (~1.95 Kelvin) + 3H --> 3He + e- (with the energy Q = 18.6 keV + electron neutrino mass). The capture of the Cosmic Background Neutrinos (CNB) should show in the electron spe...

  15. Discovery potential of radiative neutralino production at the ILC

    CERN Document Server

    Dreiner, H K; Langenfeld, U; Dreiner, Herbi K.; Kittel, Olaf; Langenfeld, Ulrich

    2006-01-01

    We study radiative neutralino production e^+e^- \\to \\tilde\\chi^0_1 \\tilde\\chi^0_1\\gamma at the linear collider with longitudinally polarised beams. We consider the Standard Model background from radiative neutrino production e^+e^- \\to \

  16. Radiation Shielding at High-Energy Electron and Proton Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Sayed H.; /SLAC; Cossairt, J.Donald; /Fermilab; Liu, James C.; /SLAC

    2007-12-10

    The goal of accelerator shielding design is to protect the workers, general public, and the environment against unnecessary prompt radiation from accelerator operations. Additionally, shielding at accelerators may also be used to reduce the unwanted background in experimental detectors, to protect equipment against radiation damage, and to protect workers from potential exposure to the induced radioactivity in the machine components. The shielding design for prompt radiation hazards is the main subject of this chapter.

  17. Pythia Jet Finding Study with Trento Backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Joseph [United States Naval Academy, Annapolis, MD (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soltz, Ron [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-22

    We present results applying the Pythia SlowJet Finder to Pythia generated QCD and QED hard processes in the presence of simulated heavy ion backgrounds. The hard process events are generated with Pythia version 8.219 for √sNN=200 GeV proton-proton collisions and the backgrounds are generated by the Reduced Thickness Event-by-event Nuclear Topology model TRENTo for Au-Au collisions with a nucleon-nucleon cross-section of 4.23 fm2. The TRENTo model is used to calculate the initial entropy and ellipticity from which the total charged particle multiplicity and elliptic ow are determined. We report results in the form of event displays, total pT distributions, and fragmentation distributions for SlowJet applied to Pythia events with and without the simulated heavy ion backgrounds.

  18. Background modeling for the GERDA experiment

    CERN Document Server

    Becerici-Schmidt, N

    2013-01-01

    The neutrinoless double beta (0nubb) decay experiment GERDA at the LNGS of INFN has started physics data taking in November 2011. This paper presents an analysis aimed at understanding and modeling the observed background energy spectrum, which plays an essential role in searches for a rare signal like 0nubb decay. A very promising preliminary model has been obtained, with the systematic uncertainties still under study. Important information can be deduced from the model such as the expected background and its decomposition in the signal region. According to the model the main background contributions around Qbb come from Bi-214, Th-228, K-42, Co-60 and alpha emitting isotopes in the Ra-226 decay chain, with a fraction depending on the assumed source positions.

  19. Background Model for the Majorana Demonstrator

    CERN Document Server

    Cuesta, C; Aguayo, E; Avignone, F T; Barabash, A S; Bertrand, F E; Boswell, M; Brudanin, V; Busch, M; Byram, D; Caldwell, A S; Chan, Y-D; Christofferson, C D; Combs, D C; Cuesta, C; Detwiler, J A; Doe, P J; Efremenko, Yu; Egorov, V; Ejiri, H; Elliott, S R; Fast, J E; Finnerty, P; Fraenkle, F M; Galindo-Uribarri, A; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guiseppe, V E; Gusev, K; Hallin, A L; Hazama, R; Hegai, A; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Keeter, K J; Kidd, M F; Kochetov, O; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; Leviner, L E; Loach, J C; MacMullin, J; MacMullin, S; Martin, R D; Meijer, S; Mertens, S; Nomachi, M; Orrell, J L; O'Shaughnessy, C; Overman, N R; Phillips, D G; Poon, A W P; Pushkin, K; Radford, D C; Rager, J; Rielage, K; Robertson, R G H; Romero-Romero, E; Ronquest, M C; Schubert, A G; Shanks, B; Shima, T; Shirchenko, M; Snavely, K J; Snyder, N; Suriano, A M; Thompson, J; Timkin, V; Tornow, W; Trimble, J E; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Wiseman, C; Xu, W; Yakushev, E; Young, A R; Yu, C H; Yumatov, V

    2014-01-01

    The Majorana Collaboration is constructing a system containing 40 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To realize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example using powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements.

  20. Cross correlations of the cosmic infrared background

    CERN Document Server

    Zhang, P

    2003-01-01

    Cosmic infrared background (CIB) is a sensitive measure of the structure formation of the universe, especially the star formation history. But this background is overwhelmed by foregrounds. The cross correlation of CIB with galaxies is able to eliminate such foregrounds, minimize and localize several backgrounds which could bias the study of the star formation history. The cross correlation study of CIB has three advantages. (1) Combining the galaxy photometric redshift information, it directly measures the structure formation history. (2) The sky area used for CIB analysis is no long limited to the relatively clean sky. The utilization of CIB full sky data minimizes the sample variance. (3) The CIB measurement is no longer limited to several narrow frequency windows. This allows the measurement of CIB based on integrated intensity, whose theoretical prediction is based on energy conservation, thus is fairly model independent and robust. The cross correlation can be measured with 10% accuracy (statistical and...

  1. Tidal Forces in Naked Singularity Backgrounds

    CERN Document Server

    Goel, Akash; Roy, Pratim; Sarkar, Tapobrata

    2015-01-01

    The end stage of a gravitational collapse process can generically result in a black hole or a naked singularity. Here we undertake a comparative analysis of the nature of tidal forces in these backgrounds. The effect of such forces is generically exemplified by the Roche limit, which predicts the distance within which a celestial object disintegrates due to the tidal effects of a second more massive object. In this paper, using Fermi normal coordinates, we numerically compute the Roche limit for a class of non-rotating naked singularity backgrounds, and compare them with known results for Schwarzschild black holes. Our analysis indicates that there might be substantially large deviations in the magnitudes of tidal forces in naked singularity backgrounds, compared to the black hole cases. If observationally established, these can prove to be an effective indicator of the nature of the singularity at a galactic centre.

  2. Electron and Gamma Background in CRESST Detectors

    CERN Document Server

    Lang, R F; Bauer, M; Bavykina, I; Bento, A; Brown, A; Bucci, C; Ciemniak, C; Coppi, C; Deuter, G; Von Feilitzsch, F; Hauff, D; Henry, S; Huff, P; Imber, J; Ingleby, S; Isaila, C; Jochum, J; Kiefer, M; Kimmerle, M; Kraus, H; Lanfranchi, J -C; Majorovits, B; Malek, M; McGowan, R; Mikhailik, V B; Pantic, E; Petricca, F; Pfister, S; Potzel, W; Pröbst, F; Roth, S; Rottler, K; Sailer, C; Schäffner, K; Schmaler, J; Scholl, S; Seidel, W; Stodolsky, L; Tolhurst, A J B; Usherov, I; Westphal, W

    2009-01-01

    The CRESST experiment monitors 300g CaWO_4 crystals as targets for particle interactions in an ultra low background environment. In this paper, we analyze the background spectra that are recorded by three detectors over many weeks of data taking. Understanding these spectra is mandatory if one wants to further reduce the background level, and allows us to cross-check the calibration of the detectors. We identify a variety of sources, such as intrinsic contaminations due to primordial radioisotopes and cosmogenic activation of the target material. In particular, we detect a 3.6keV X-ray line from the decay of 41-Ca with an activity of (26\\pm4)\\mu Bq, corresponding to a ratio 41-Ca/40-Ca=(2.2\\pm0.3)\\times10^{-16}.

  3. In-Beam Background Suppression Shield

    CERN Document Server

    Santoro, V; DiJulio, D D; Ansell, S; Bentley, P M

    2015-01-01

    The long (3ms) proton pulse of the European Spallation Source (ESS) gives rise to unique and potentially high backgrounds for the instrument suite. In such a source an instrument capabilities will be limited by it's Signal to Noise (S/N) ratio. The instruments with a direct view of the moderator, which do not use a bender to help mitigate the fast neutron background, are the most challenging. For these beam lines we propose the innovative shielding of placing blocks of material directly into the guide system, which allow a minimum attenuation of the cold and thermal fluxes relative to the background suppression. This shielding configuration has been worked into a beam line model using Geant4. We study particularly the advantages of single crystal sapphire and silicon blocks .

  4. Modelling background intensity in Affymetrix Genechips

    CERN Document Server

    Kroll, K M; Carlon, E

    2008-01-01

    DNA microarrays are devices that are able, in principle, to detect and quantify the presence of specific nucleic acid sequences in complex biological mixtures. The measurement consists in detecting fluorescence signals from several spots on the microarray surface onto which different probe sequences are grafted. One of the problems of the data analysis is that the signal contains a noisy background component due to non-specific binding. This paper presents a physical model for background estimation in Affymetrix Genechips. It combines two different approaches. The first is based on the sequence composition, specifically its sequence dependent hybridization affinity. The second is based on the strong correlation of intensities from locations which are the physical neighbors of a specific spot on the chip. Both effects are incorporated in a background functional which contains 24 free parameters, fixed by minimization on a training data set. In all data analyzed the sequence specific parameters, obtained by min...

  5. Neutrino refraction by the cosmic neutrino background

    CERN Document Server

    Diaz, J S

    2015-01-01

    We have determined the dispersion relation of a neutrino test particle propagating in the cosmic neutrino background. Describing the relic neutrinos and antineutrinos from the hot big bang as a dense medium, a matter potential or refractive index is obtained. The vacuum neutrino mixing angles are unchanged, but the energy of each mass state is modified. Using a matrix in the space of neutrino species, the induced potential is decomposed into a part which produces signatures in beta-decay experiments and another part which modifies neutrino oscillations. The low temperature of the relic neutrinos makes a direct detection extremely challenging. From a different point of view, the identified refractive effects of the cosmic neutrino background constitute an ultralow background for future experimental studies of nonvanishing Lorentz violation in the neutrino sector.

  6. The homogeneity conjecture for supergravity backgrounds

    Science.gov (United States)

    Figueroa-O'Farrill, José Miguel

    2009-06-01

    These notes record three lectures given at the workshop "Higher symmetries in Physics", held at the Universidad Complutense de Madrid in November 2008. In them we explain how to construct a Lie (super)algebra associated to a spin manifold, perhaps with extra geometric data, and a notion of privileged spinors. The typical examples are supersymmetric supergravity backgrounds; although there are more classical instances of this construction. We focus on two results: the geometric constructions of compact real forms of the simple Lie algebras of type B4, F4 and E8 from S7, S8 and S15, respectively; and the construction of the Killing superalgebra of eleven-dimensional supergravity backgrounds. As an application of this latter construction we show that supersymmetric supergravity backgrounds with enough supersymmetry are necessarily locally homogeneous.

  7. Wireless radiation sensor

    Science.gov (United States)

    Lamberti, Vincent E.; Howell, Jr, Layton N.; Mee, David K.; Kress, Reid L.

    2016-08-09

    Disclosed is a sensor for detecting radiation. The sensor includes a ferromagnetic metal and a radiation sensitive material coupled to the ferromagnetic metal. The radiation sensitive material is operable to change a tensile stress of the ferromagnetic metal upon exposure to radiation. The radiation is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  8. Cosmic microwave background polarization in Noncommutative space-time

    CERN Document Server

    Batebi, S; Mohammadi, R; Tizchang, S

    2016-01-01

    In the standard model of cosmology (SMC) the B-mode polarization of the CMB can be explained by the gravitational effects in the inflation epoch. However, this is not the only way to explain the B-mode polarization for the CMB. It can be shown that the Compton scattering in presence of a background besides generating a circularly polarized microwave, can leads to a B-mode polarization for the CMB. Here we consider the non-commutative (NC) space time as a background to explore the CMB polarization at the last scattering surface. We obtain the B-mode spectrum of the CMB radiation by scalar perturbation of metric via a correction on the Compton scattering in NC-space-time in terms of the circular polarization power spectrum and the non-commutative energy scale. It can be shown that even for the NC-scale as large as $10TeV$ the NC-effects on the CMB polarization and the r-parameter is significant. We show that the V-mode power spectrum can be obtained in terms of linearly polarized power spectrum in the range Mic...

  9. Machine Induced Experimental Background Conditions in the LHC

    CERN Document Server

    Levinsen, Yngve Inntjore; Stapnes, Steinar

    2012-09-19

    The Large Hadron Collider set a new energy record for particle accelerators in late 2009, breaking the previous record held by Tevatron of 2 TeV collision energy. The LHC today operates at a collision energy of 7 TeV. With higher beam energy and intensity, measures have to be taken to ensure optimal experimental conditions and safety of the machine and detectors. Machine induced experimental background can severely reduce the quality of experimental triggers and track reconstruction. In a worst case, the radiation levels can be damaging for some of the subdetectors. The LHC is a particular challenge in this regard due to the vastly different operating conditions of the different experiments. The nominal luminosity varies by four orders of magnitude. The unprecedented stored beam energy and the amount of superconducting elements can make it challenging to protect the accelerator itself as well. In this work we have simulated and measured the machine induced background originating from various sources: the beam...

  10. Propagation of light in area metric backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Punzi, Raffaele; Wohlfarth, Mattias N R [Zentrum fuer Mathematische Physik und II. Institut fuer Theoretische Physik, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Schuller, Frederic P, E-mail: raffaele.punzi@desy.d, E-mail: fps@aei.mpg.d, E-mail: mattias.wohlfarth@desy.d [Max Planck Institut fuer Gravitationsphysik, Albert Einstein Institut, Am Muehlenberg 1, 14467 Potsdam (Germany)

    2009-02-07

    The propagation of light in area metric spacetimes, which naturally emerge as refined backgrounds in quantum electrodynamics and quantum gravity, is studied from first principles. In the geometric-optical limit, light rays are found to follow geodesics in a Finslerian geometry, with the Finsler norm being determined by the area metric tensor. Based on this result, and an understanding of the nonlinear relation between ray vectors and wave covectors in such refined backgrounds, we study light deflection in spherically symmetric situations and obtain experimental bounds on the non-metricity of spacetime in the solar system.

  11. Focusing of branes in warped backgrounds

    CERN Document Server

    Kar, S

    2006-01-01

    Branes are embedded surfaces in a given background (bulk) spacetime. Assuming a warped bulk, we investigate, in analogy with the case for geodesics, the notion of {\\em focusing} of families of such embedded, extremal 3--branes in a five dimensional background . The essential tool behind our analysis, is the well-known generalised Raychaudhuri equations for surface congruences. In particular, we find explicit solutions of these equations, which seem to show that families of 3--branes can focus along lower dimensional submanifolds depending on where the initial expansions are specified. We conclude with comments on the results obtained and possibilities about future work along similar lines.

  12. Probabilistic Model-Based Background Subtraction

    DEFF Research Database (Denmark)

    Krüger, Volker; Andersen, Jakob; Prehn, Thomas

    2005-01-01

    manner. Bayesian propagation over time is used for proper model selection and tracking during model-based background subtraction. Bayes propagation is attractive in our application as it allows to deal with uncertainties during tracking. We have tested our approach on suitable outdoor video data....... is the correlation between pixels. In this paper we introduce a model-based background subtraction approach which facilitates prior knowledge of pixel correlations for clearer and better results. Model knowledge is being learned from good training video data, the data is stored for fast access in a hierarchical...

  13. Geodesics and Newton's Law in Brane Backgrounds

    CERN Document Server

    Mück, W; Volovich, I V

    2000-01-01

    In brane world models our universe is considered as a brane imbedded into ahigher dimensional space. We discuss the behaviour of geodesics in theRandall-Sundrum background and point out that free massive particles cannotmove along the brane only. The brane is repulsive, and matter will be expelledfrom the brane into the extra dimension. This is rather undesirable, and hencewe study an alternative model with a non-compact extra dimension, but with anattractive brane embedded into the higher dimensional space. We study thelinearized gravity equations and show that Newton's gravitational law is validon the brane also in the alternative background.

  14. Social Class, Family Background and Intergenerational Mobility

    DEFF Research Database (Denmark)

    D. Munk, Martin; McIntosh, James

    -Goldthorpe classi.cation system, raising doubts about the statistical validity of occupational classication systems in general. We also estimate regression models of occupational earnings, household earnings, and educational attainment using family background variables as covariates controlling for unobservables......, measurement error, and simultaneous equation bias. In these models homogeneity tests are also rejected. We conclude from these results that the individual.s family background has a small but signi.cant impact on lifetime chances which is not captured by the Erikson-Goldthorpe classi.cation scheme....

  15. Shielding concepts for low-background proportional counter arrays in surface laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, Craig E.; Humble, Paul H.; Mace, Emily K.; Orrell, John L.; Seifert, Allen; Williams, Richard M.

    2016-02-01

    Development of ultra low background gas proportional counters has made the contribution from naturally occurring radioactive isotopes – primarily and activity in the uranium and thorium decay chains – inconsequential to instrumental sensitivity levels when measurements are performed in above ground surface laboratories. Simple lead shielding is enough to mitigate against gamma rays as gas proportional counters are already relatively insensitive to naturally occurring gamma radiation. The dominant background in these surface laboratory measurements using ultra low background gas proportional counters is due to cosmic ray generated muons, neutrons, and protons. Studies of measurements with ultra low background gas proportional counters in surface and underground laboratories as well as radiation transport Monte Carlo simulations suggest a preferred conceptual design to achieve the highest possible sensitivity from an array of low background gas proportional counters when operated in a surface laboratory. The basis for a low background gas proportional counter array and the preferred shielding configuration is reported, especially in relation to measurements of radioactive gases having low energy decays such as 37Ar.

  16. Shielding concepts for low-background proportional counter arrays in surface laboratories.

    Science.gov (United States)

    Aalseth, C E; Humble, P H; Mace, E K; Orrell, J L; Seifert, A; Williams, R M

    2016-02-01

    Development of ultra low background gas proportional counters has made the contribution from naturally occurring radioactive isotopes - primarily α and β activity in the uranium and thorium decay chains - inconsequential to instrumental sensitivity levels when measurements are performed in above ground surface laboratories. Simple lead shielding is enough to mitigate against gamma rays as gas proportional counters are already relatively insensitive to naturally occurring gamma radiation. The dominant background in these surface laboratory measurements using ultra low background gas proportional counters is due to cosmic ray generated muons, neutrons, and protons. Studies of measurements with ultra low background gas proportional counters in surface and underground laboratories as well as radiation transport Monte Carlo simulations suggest a preferred conceptual design to achieve the highest possible sensitivity from an array of low background gas proportional counters when operated in a surface laboratory. The basis for a low background gas proportional counter array and the preferred shielding configuration is reported, especially in relation to measurements of radioactive gases having low energy decays such as (37)Ar.

  17. 再论暗物质、暗能量、引力波-中微子及力的统一问题--从宇宙微波背景辐射B模偏振之发现的物理学意义谈起%Re-analysis on Dark Matter,Dark Energy,Gravitational Waves,Neutrino,and the Unity of the Forces---From the Physics Significances of the B-mode Polarization of Cosmic Microwave Background Radiation

    Institute of Scientific and Technical Information of China (English)

    张海鹏; 张力; 孟庆义; 罗延安; 张丹参; 李玉清; 华凌

    2014-01-01

    进一步探讨暗物质、暗能量、引力波-中微子及力的统一问题,结果认为:(1)以宇宙大部分星系合并成的重力真空星的类似局部暴涨解释了宇宙加速膨胀的可能是暗能量的高比例之源;证明哈佛-史密森天体物理学中心等BICEP2望远镜发现的宇宙微波背景辐射的B模式偏振信号,可能是宇宙暴涨与上述的类似局部暴涨的引力波叠加作用的结果。(2)英国《自然》杂志发表的76个“黑洞”探测所发现的强大的磁场,客观上较强有力地支持作者提出的“黑洞”(暗星)的夸克星模型:由1/3基本电荷的正负夸克以类似于金刚石的正四面体“空间点阵”组成。质能守恒定律提示1/3基本电荷的夸克可能是空心结构。(3)进一步支持“黑洞”(暗星-夸克星)作为暗物质的候选者的可行性。%By re -analyzing dark matter,dark energy,gravitational waves,neutrino,and the unity of the forces,findings show that,(1 )whereat,the B-mode polarization of cosmic microwave background radiation found by the scientists of Harvard-Smithson Center for Astrophysics according to BICEP2 telescope,seems rather to be the result of co-action of both the cosmic original gravitational wave and that from the above-mentioned transver-sion similar to soaring when it was the unverse’s 60 million years,than to be the evidence of a single cosmic origi-nal gravitational or than to be the solid evidence of cosmic soaring at birth.(2)In the journal,Nature,it has been recently proposed that the 76 “black holes”had been found to have the magnetic field being very strong.That strongly support that the quark star model explaining “black hole”(dark star)by us,which published in Jan, 2013.(3)The tempory exclusion of weakly interacting massive particle to act as one of particles consisting of dark matter,as an international advance in studies on dark matter after our works in Jan,2013,further

  18. Infrared clutter measurements of marine backgrounds

    NARCIS (Netherlands)

    Schwering, Piet B.

    1991-01-01

    Observations in the infrared wavelength band between 8 and 12 μm of sea backgrounds have been recorded with a CCIR compatible imager for a large number of sea states (0 - 6). Recordings took place in coastal areas as well as on open seas. The behavior of clutter in the infrared data was analyzed in

  19. 32 CFR 264.3 - Background.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Background. 264.3 Section 264.3 National Defense..., Greece, Italy, Japan, The Netherlands, Norway, Portugal, Spain, Turkey, and the United Kingdom. The... the Technical Property Committees in Europe. The J-4, Hq. United States Forces Japan, Tokyo, Japan...

  20. Geometry of all supersymmetric type I backgrounds

    NARCIS (Netherlands)

    Gran, Ulf; Papadopoulos, George; Sloane, Peter; Roest, Diederik

    2007-01-01

    We find the geometry of all supersymmetric type I backgrounds by solving the gravitino and dilatino Killing spinor equations, using the spinorial geometry technique, in all cases. The solutions of the gravitino Killing spinor equation are characterized by their isotropy group in Spin(9, 1), while th

  1. 16 CFR 1031.2 - Background.

    Science.gov (United States)

    2010-01-01

    ... Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL COMMISSION PARTICIPATION AND COMMISSION EMPLOYEE INVOLVEMENT IN VOLUNTARY STANDARDS ACTIVITIES General Policies § 1031.2 Background. (a) Congress enacted the Consumer Product Safety Act in 1972 to protect consumers against unreasonable risks of injury...

  2. Ablation plume dynamics in a background gas

    DEFF Research Database (Denmark)

    Amoruso, Salvatore; Schou, Jørgen; Lunney, James G.

    2010-01-01

    The expansion of a plume in a background gas of pressure comparable to that used in pulsed laser deposition (PLD) has been analyzed in terms of the model of Predtechensky and Mayorov (PM). This approach gives a relatively clear and simple description of the essential hydrodynamics during the expa...

  3. Building Background Knowledge within Literature Circles

    Science.gov (United States)

    Barone, Diane; Barone, Rebecca

    2012-01-01

    The authors examined the strength of literature circles in developing background knowledge--an acknowledged sticking point in the development of understanding for middle graders--with a special focus on the literature circle role of "investigator," where it is student initiative and not teacher direction that guides comprehension. Observing…

  4. 7 CFR 799.1 - Background.

    Science.gov (United States)

    2010-01-01

    ... ENVIRONMENTAL PROTECTION ENVIRONMENTAL QUALITY AND RELATED ENVIRONMENTAL CONCERNS-COMPLIANCE WITH THE NATIONAL ENVIRONMENTAL POLICY ACT § 799.1 Background. The National Environmental Policy Act (NEPA) of 1969 (42 U.S.C.... Section (102)(2) also requires all Federal agencies to give appropriate consideration to the...

  5. Background model for the MAJORANA DEMONSTRATOR

    CERN Document Server

    Cuesta, C; Arnquist, I J; Avignone, F T; Barabash, A S; Bertrand, F E; Bradley, A W; Brudanin, V; Busch, M; Buuck, M; Caldwell, T S; Chan, Y-D; Christofferson, C D; Chu, P -H; Detwiler, J A; Dunagan, C; Efremenko, Yu; Ejiri, H; Elliott, S R; Fullmer, A; Galindo-Uribarri, A; Gilliss, T; Giovanetti, G K; Green, M P; Gruszko, J; Guinn, I S; Guiseppe, V E; Henning, R; Hoppe, E W; Howe, M A; Jasinski, B R; Keeter, K J; Kidd, M F; Konovalov, S I; Kouzes, R T; Leon, J; Lopez, A M; MacMullin, J; Martin, R D; Massarczyk, R; Meijer, S J; Mertens, S; Orrell, J L; O'Shaughnessy, C; Poon, A W P; Radford, D C; Rager, J; Rielage, K; Robertson, R G H; Romero-Romero, E; Shanks, B; Shirchenko, M; Suriano, A M; Tedeschi, D; Trimble, J E; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Wiseman, C; Xu, W; Yakushev, E; Yu, C -H; Yumatov, V; Zhitnikov, I

    2016-01-01

    The MAJORANA Collaboration is constructing a system containing 44 kg of high-purity Ge (HPGe) detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale to ~15 meV. To realize this, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 count/(ROI-t-y) in the 4 keV region of interest (ROI) around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials and analytical methods for background rejection, for example using powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements. Preliminary background results obtained during the engineering runs of the Demonstrator are pre...

  6. Generalized geometry lectures on type II backgrounds

    CERN Document Server

    Tsimpis, Dimitrios

    2016-01-01

    The first part of these notes is a self-contained introduction to generalized complex geometry. It is intended as a `user manual' for tools used in the study of supersymmetric backgrounds of supergravity. In the second part we review some past and recent results on the generalized complex structure of supersymmetric type II vacua in various dimensions.

  7. Climate change. Scientific background and process

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Fuglestvedt, Jan; Seip, Hans Martin; Skodvin, Tora

    1999-07-01

    The paper describes briefly the natural and man-made forces behind climate change and outlines climate variations in the past. It also discusses the future impact of anthropogenic emission of greenhouse gases, and the background, organisation and functioning of the Intergovernmental Panel on Climate Change (IPCC)

  8. Jordan: Background and U.S. Relations

    Science.gov (United States)

    2012-10-03

    incurring a bar to reentry. CRS Correspondence with USAID, March 3, 2011. Jordan: Background and U.S. Relations Congressional Research Service 13...commodities imported by Jordan consisted of aircraft parts, machinery and appliances, vehicles, and cereals . Two measures, in particular—the Free Trade

  9. 36 CFR 805.1 - Background.

    Science.gov (United States)

    2010-07-01

    ... to the environmental effects of their proposed actions in their decisionmaking and to prepare detailed environmental statements on recommendations or reports on proposals for legislation and other... IMPLEMENTATION OF NATIONAL ENVIRONMENTAL POLICY ACT § 805.1 Background. (a) The National Environmental Policy...

  10. 38 CFR 200.2 - Background.

    Science.gov (United States)

    2010-07-01

    ... NATIONAL ENVIRONMENTAL POLICY ACT § 200.2 Background. (a) The NEPA and the Council on Environmental Quality... actions (activities, programs, projects, legislation) and any reasonable alternatives on the environment... the decision is made about whether and how to proceed with the action. Relevant...

  11. Quantum electrodynamics on background external fields

    OpenAIRE

    2003-01-01

    The quantum electrodynamics in presence of background external fields is developed. Modern methods of local quantum physics allow to formulate the theory on arbitrarily strong possibly time-dependent external fields. Non-linear observables which depend only locally on the external field are constructed. The tools necessary for this formulation, the parametrices of the Dirac operator, are investigated.

  12. The spinorial method of classifying supersymmetric backgrounds

    NARCIS (Netherlands)

    Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.

    2006-01-01

    We review how the classification of all supersymmetric backgrounds of IIB supergravity can be reduced to the evaluation of the Killing spinor equations and their integrability conditions, which contain the field equations, on five types of spinors. This is an extension of the work [hep-th/0503046] t

  13. Model-based target and background characterization

    Science.gov (United States)

    Mueller, Markus; Krueger, Wolfgang; Heinze, Norbert

    2000-07-01

    Up to now most approaches of target and background characterization (and exploitation) concentrate solely on the information given by pixels. In many cases this is a complex and unprofitable task. During the development of automatic exploitation algorithms the main goal is the optimization of certain performance parameters. These parameters are measured during test runs while applying one algorithm with one parameter set to images that constitute of image domains with very different domain characteristics (targets and various types of background clutter). Model based geocoding and registration approaches provide means for utilizing the information stored in GIS (Geographical Information Systems). The geographical information stored in the various GIS layers can define ROE (Regions of Expectations) and may allow for dedicated algorithm parametrization and development. ROI (Region of Interest) detection algorithms (in most cases MMO (Man- Made Object) detection) use implicit target and/or background models. The detection algorithms of ROIs utilize gradient direction models that have to be matched with transformed image domain data. In most cases simple threshold calculations on the match results discriminate target object signatures from the background. The geocoding approaches extract line-like structures (street signatures) from the image domain and match the graph constellation against a vector model extracted from a GIS (Geographical Information System) data base. Apart from geo-coding the algorithms can be also used for image-to-image registration (multi sensor and data fusion) and may be used for creation and validation of geographical maps.

  14. 47 CFR 215.1 - Background.

    Science.gov (United States)

    2010-10-01

    ... POINT FOR ELECTROMAGNETIC PULSE (EMP) INFORMATION § 215.1 Background. (a) The nuclear electromagnetic pulse (EMP) is part of the complex environment produced by nuclear explosions. It consists of transient... among affected Federal agencies information concerning the telecommunications effects of EMP...

  15. Eurocode I: Basis of design. Background information

    NARCIS (Netherlands)

    Vrouwenvelder, A.C.W.M.

    1996-01-01

    This paper gives a review of the background philosophy of Eurocode 1, Basis of Design. The main ideas behind the various parts of the document are discussed. The emphasize is put on the reliability aspects and the partial factor method. Recommendations for future developments are given.

  16. 44 CFR 350.3 - Background.

    Science.gov (United States)

    2010-10-01

    ... coordinate civil emergency planning, management and assistance functions and to represent the President in... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Background. 350.3 Section 350.3 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF...

  17. Quantum Electrodynamics on background external fields

    CERN Document Server

    Marecki, P

    2003-01-01

    The quantum electrodynamics in presence of background external fields is developed. Modern methods of local quantum physics allow to formulate the theory on arbitrarily strong possibly time-dependent external fields. Non-linear observables which depend only locally on the external field are constructed. The tools necessary for this formulation, the parametrices of the Dirac operator, are investigated.

  18. Overseas Contingency Operations Funding: Background and Status

    Science.gov (United States)

    2016-06-13

    Research Service 52 Item Definition of Criteria Operations Direct War costs:  transport of personnel, equipment, and supplies to, from, and...Background and Status Congressional Research Service 53 Item Definition of Criteria Industrial Base Capacity Programs to maintain industrial base

  19. Officer Overexecution: Analysis and Solutions (Technical Background)

    Science.gov (United States)

    2015-08-01

    Distribution unlimited Officer Overexecution: Analysis and Solutions (Technical Background ) Jared M. Huff and Ann D. Parcell...Deviation SME Subject Matter Expert SWO Surface Warfare Officer SWO(N) Surface Warfare Officer with the Nuclear Subspecialty TFMMS Total Force...affect retention behavior. Some subject matter experts ( SMEs ) have suggested that an excess of junior officers (JOs) on board surface ships may not

  20. 44 CFR 334.3 - Background.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Background. 334.3 Section 334.3 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND... adversaries shape the nature and gravity of the threat as well as its likelihood and timing of...

  1. In-beam background suppression shield

    DEFF Research Database (Denmark)

    Santoro, V.; Cai, Xiao Xiao; DiJulio, D. D.

    2015-01-01

    , which do not use a bender to help mitigate the fast neutron background, are the most challenging. For these beam lines we propose the innovative shielding of placing blocks of material directly into the guide system, which allow a minimum attenuation of the cold and thermal fluxes relative...

  2. Dark radiation and inflationary freedom

    Science.gov (United States)

    Gariazzo, Stefano

    2016-05-01

    A relaxed primordial power spectrum (PPS) of scalar perturbations arising from inflation can impact the dark radiation constraints obtained from Cosmic Microwave Background and other cosmological measurements. If inflation produces a non-standard PPS for the initial fluctuations, a fully thermalized light sterile neutrino can be favoured by CMB observations, instead of being strongly disfavoured. In the case of a thermal axion, the constraints on the axion mass are relaxed when the PPS is different from the standard power law. Based on Refs. [1, 2].

  3. Radiation damage of structural materials

    CERN Document Server

    Koutsky, Jaroslav

    1994-01-01

    Maintaining the integrity of nuclear power plants is critical in the prevention or control of severe accidents. This monograph deals with both basic groups of structural materials used in the design of light-water nuclear reactors, making the primary safety barriers of NPPs. Emphasis is placed on materials used in VVER-type nuclear reactors: Cr-Mo-V and Cr-Ni-Mo-V steel for RPV and Zr-Nb alloys for fuel element cladding. The book is divided into 7 main chapters, with the exception of the opening one and the chapter providing a phenomenological background for the subject of radiation damage. Ch

  4. Background reduction in the SNO+ experiment

    Energy Technology Data Exchange (ETDEWEB)

    Segui, L. [University of Oxford, Denys Wilkinson Building, Keble Road, OX1 Oxford (United Kingdom)

    2015-08-17

    SNO+ is a large multi-purpose liquid scintillator experiment, which first aim is to detect the neutrinoless double beta decay of {sup 130}Te. It is placed at SNOLAB, at 6000 m.w.e. and it is based on the SNO infrastructure. SNO+ will contain approximately 780 tonnes of liquid scintillator, loaded with {sup 130}Te inside an acrylic vessel (AV) with an external volume of ultra pure water to reduce the external backgrounds. Light produced in the scintillator by the interaction of particles will be detected with about 9,000 photomultiplier’s. For the neutrinoless double beta decay phase, due to its the extremely low rate expected, the control, knowledge and reduction of the background is essential. Moreover, it will also benefit other phases of the experiment focused on the study of solar neutrinos, nucleon decay, geoneutrinos and supernovae. In order to reduce the internal background level, a novel purification technique for tellurium loaded scintillators has been developed by the collaboration that reduces the U/Th concentration and several cosmic-activated isotopes by at least a factor 10{sup 2} -10{sup 3} in a single pass. In addition, different rejection techniques have been developed for the remaining internal backgrounds based on Monte-Carlo simulations. In this work, the scintillator purification technique and the levels obtained with it will be discussed. Furthermore, an overview of the different backgrounds for the double-beta phase will be presented, highlighting some of the techniques developed to reject the remained decays based on their expected timing differences.

  5. Rounded leaf end effect of multileaf collimator on penumbra width and radiation field offset: an analytical and numerical study

    Directory of Open Access Journals (Sweden)

    Zhou Dong

    2015-09-01

    Full Text Available Background. Penumbra characteristics play a significant role in dose delivery accuracy for radiation therapy. For treatment planning, penumbra width and radiation field offset strongly influence target dose conformity and organ at risk sparing.

  6. Gravitational and dilaton radiation from a relativistic membrane

    CERN Document Server

    Galtsov, D V; Gal'tsov, Dmitri V.; Melkumova, Elena Yu.

    2001-01-01

    Recent scenarios of the TeV-scale brane cosmology suggest a possibility of existence in the early universe of two-dimensional topological defects: relativistic membranes. Like cosmic strings, oscillating membranes could emit gravitational radiation contributing to a stochastic background of gravitational waves. We calculate dilaton and gravitational radiation from a closed toroidal membrane excited along one homology cycle. The spectral-angular distributions of dilaton and gravitational radiation are obtained in a closed form in terms of Bessel's functions. The angular distributions are affected by oscillating factors due to an interference of radiation from different segments of the membrane. The dilaton radiation power is dominated by a few lower harmonics of the basic frequency, while the spectrum of the gravitational radiation contains also a substantial contribution from higher harmonics. The radiative lifetime of the membrane is determined by its tension and depends weakly on the ratio of two radii of t...

  7. Radiation safety and vascular access: attitudes among cardiologists worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Vidovich, Mladen I., E-mail: miv@uic.edu [Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois (United States); Khan, Asrar A. [Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois (United States); Xie, Hui [Division of Epidemiology and Biostatistics and Cancer Center, University of Illinois at Chicago, Chicago, Illinois (United States); Shroff, Adhir R. [Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois (United States)

    2015-03-15

    Objectives: To determine opinions and perceptions of interventional cardiologists on the topic of radiation and vascular access choice. Background: Transradial approach for cardiac catheterization has been increasing in popularity worldwide. There is evidence that transradial access (TRA) may be associated with increasing radiation doses compared to transfemoral access (TFA). Methods: We distributed a questionnaire to collect opinions of interventional cardiologists around the world. Results: Interventional cardiologists (n = 5332) were contacted by email to complete an on-line survey from September to October 2013. The response rate was 20% (n = 1084). TRA was used in 54% of percutaneous coronary interventions (PCIs). Most TRAs (80%) were performed with right radial access (RRA). Interventionalists perceived that TRA was associated with higher radiation exposure compared to TFA and that RRA was associated with higher radiation exposure that left radial access (LRA). Older interventionalists were more likely to use radiation protection equipment and those who underwent radiation safety training gave more importance to ALARA (as low as reasonably achievable). Nearly half the respondents stated they would perform more TRA if the radiation exposure was similar to TFA. While interventionalists in the United States placed less importance to certain radiation protective equipment, European operators were more concerned with physician and patient radiation. Conclusions: Interventionalists worldwide reported higher perceived radiation doses with TRA compared to TFA and RRA compared to LRA. Efforts should be directed toward encouraging consistent radiation safety training. Major investment and application of novel radiation protection tools and radiation dose reduction strategies should be pursued. - Highlights: • We examined radiation safety and arterial access practices among 1000 cardiologists. • Radial access is perceived as having higher radiation dose compared to

  8. Plutonium radiation surrogate

    Science.gov (United States)

    Frank, Michael I.

    2010-02-02

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  9. Atmospheric Physics Background – Methods – Trends

    CERN Document Server

    2012-01-01

    On the occasion of the 50th anniversary of the Institute of Atmospheric Physics of the German Aerospace Center (DLR), this book presents more than 50 chapters highlighting results of the institute’s research. The book provides an up-to-date, in-depth survey across the entire field of atmospheric science, including atmospheric dynamics, radiation, cloud physics, chemistry, climate, numerical simulation, remote sensing, instruments and measurements, as well as atmospheric acoustics. The authors have provided a readily comprehensible and self-contained presentation of the complex field of atmospheric science. The topics are of direct relevance for aerospace science and technology. Future research challenges are identified.

  10. Radiation Hardness Assurance for Space Systems

    Science.gov (United States)

    Poivey, Christian; Day, John H. (Technical Monitor)

    2002-01-01

    The space radiation environment can lead to extremely harsh operating conditions for on-board electronic box and systems. The characteristics of the radiation environment are highly dependent on the type of mission (date, duration and orbit). Radiation accelerates the aging of the electronic parts and material and can lead to a degradation of electrical performance; it can also create transient phenomena on parts. Such damage at the part level can induce damage or functional failure at electronic box, subsystem, and system levels. A rigorous methodology is needed to ensure that the radiation environment does not compromise the functionality and performance of the electronics during the system life. This methodology is called hardness assurance. It consists of those activities undertaken to ensure that the electronic piece parts placed in the space system perform to their design specifications after exposure to the space environment. It deals with system requirements, environmental definitions, part selection, part testing, shielding and radiation tolerant design. All these elements should play together in order to produce a system tolerant to.the radiation environment. An overview of the different steps of a space system hardness assurance program is given in section 2. In order to define the mission radiation specifications and compare these requirements to radiation test data, a detailed knowledge of the space environment and the corresponding electronic device failure mechanisms is required. The presentation by J. Mazur deals with the Earth space radiation environment as well as the internal environment of a spacecraft. The presentation by J. Schwank deals with ionization effects, and the presentation by T. Weatherford deals with Single particle Event Phenomena (SEP) in semiconductor devices and microcircuits. These three presentations provide more detailed background to complement the sections 3 and 4. Part selection and categorization are discussed in section

  11. Enhancement of radiation response with bevacizumab

    Directory of Open Access Journals (Sweden)

    Hoang Tien

    2012-04-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF plays a critical role in tumor angiogenesis. Bevacizumab is a humanized monoclonal antibody that neutralizes VEGF. We examined the impact on radiation response by blocking VEGF signaling with bevacizumab. Methods Human umbilical vein endothelial cell (HUVEC growth inhibition and apoptosis were examined by crystal violet assay and flow cytometry, respectively. In vitro HUVEC tube formation and in vivo Matrigel assays were performed to assess the anti-angiogenic effect. Finally, a series of experiments of growth inhibition on head and neck (H&N SCC1 and lung H226 tumor xenograft models were conducted to evaluate the impact of bevacizumab on radiation response in concurrent as well as sequential therapy. Results The anti-angiogenic effect of bevacizumab appeared to derive not only from inhibition of endothelial cell growth (40% but also by interfering with endothelial cell function including mobility, cell-to-cell interaction and the ability to form capillaries as reflected by tube formation. In cell culture, bevacizumab induced a 2 ~ 3 fold increase in endothelial cell apoptosis following radiation. In both SCC1 and H226 xenograft models, the concurrent administration of bevacizumab and radiation reduced tumor blood vessel formation and inhibited tumor growth compared to either modality alone. We observed a siginificant tumor reduction in mice receiving the combination of bevacizumab and radiation in comparison to mice treated with bevacizumab or radiation alone. We investigated the impact of bevacizumab and radiation treatment sequence on tumor response. In the SCC1 model, tumor response was strongest with radiation followed by bevacizumab with less sequence impact observed in the H226 model. Conclusions Overall, these data demonstrate enhanced tumor response when bevacizumab is combined with radiation, supporting the emerging clinical investigations that are combining anti

  12. Spherical Shell Cosmological Model and Uniformity of Cosmic Microwave Background Radiation

    CERN Document Server

    Vlahovic, Branislav

    2012-01-01

    Considered is spherical shell as a model for visible universe and parameters that such model must have to comply with the observable data. The topology of the model requires that motion of all galaxies and light must be confined inside a spherical shell. Consequently the observable universe cannot be defined as a sphere centered on the observer, rather it is an arc length within the volume of the spherical shell. The radius of the shell is 4.46 $\\pm$ 0.06 Gpc, which is for factor $\\pi$ smaller than radius of a corresponding 3-sphere. However the event horizon, defined as the arc length inside the shell, has the size of 14.0 $\\pm$ 0.2 Gpc, which is in agreement with the observable data. The model predicts, without inflation theory, the isotropy and uniformity of the CMB. It predicts the correct value for the Hubble constant $H_0$ = 67.26 $\\pm$ 0.90 km/s/Mpc, the cosmic expansion rate $H(z)$, and the speed of the event horizon in agreement with observations. The theoretical suport for shell model comes from gen...

  13. The imprint of the cosmic supermassive black hole growth history on the 21 cm background radiation

    CERN Document Server

    Tanaka, Takamitsu L; Perna, Rosalba

    2015-01-01

    The redshifted 21 cm transition line of hydrogen tracks the thermal evolution of the neutral intergalactic medium (IGM) at "cosmic dawn," during the emergence of the first luminous astrophysical objects (~100 Myr after the Big Bang) but before these objects ionized the IGM (~400-800 Myr after the Big Bang). Because X-rays, in particular, are likely to be the chief energy courier for heating the IGM, measurements of the 21 cm signature can be used to infer knowledge about the first astrophysical X-ray sources. Using analytic arguments and a numerical population synthesis algorithm, we argue that the progenitors of supermassive black holes (SMBHs) should be the dominant source of hard astrophysical X-rays---and thus the primary driver of IGM heating and the 21 cm signature---at redshifts $z 20$. An absence of such a signature in the forthcoming observational data would imply that SMBH formation occurred later (e.g. via so-called direct collapse scenarios), that it was not a common occurrence in early galaxies ...

  14. The Effects of Ionising Radiation on MEMS Silicon Strain Gauges: Preliminary Background and Methodology

    Science.gov (United States)

    2006-09-01

    Technology Organisation ( ANSTO ). Preliminary proton irradiations have been performed to define the methodology for the exposures in the ANSTO facility. This...Science and Technology Organisation ( ANSTO ). The Radiological Exposure Lab has a High-Intensity Gamma Calibrator facility that can be used to expose the...available for neutron exposures within the Lab. ANSTO runs a dedicated particle accelerator facility – STAR, Small Tandem for Applied Research – for

  15. Analysis of Background Gamma-Radiation Amplitude Variation at U.S. Ports of Entry

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, III, Thomas D.

    2014-07-01

    The TRB project analyzes data and builds tools to enhance the capability for interdiction of illicit nuclear material at U.S. border crossings. The work done by TRB allows for a more precise classification of radioactive isotopes, pattern detection in traffic, and formulation of effective defenses.

  16. Discrimination of non-radiation backgrounds in the proportional counter of MARDS

    Science.gov (United States)

    Na, Liang; Xiaofeng, Guo; Fei, Luo; Fanhua, Hao; RenDe, Ze; Qingpei, Xiang; Chengsheng, Chu; Yongchun, Xiang; Zhaotong, Yan; Wei, Li

    2017-03-01

    The Movable 37Ar Rapid Detection System (MARDS) was developed by the Institute of Nuclear Physics and Chemistry of the China Academy of Engineering Physics in 2006 for on-site inspections under the Comprehensive Test Ban Treaty. It is a small and portable system that can quickly acquire data at suspected nuclear test sites. In this work, digital pulse shape discrimination (PSD) was used to process data from test samples to reduce electronic noise. The experimental results demonstrate that PSD combined with principal component analysis can classify and reject many noise sources. Thus, the threshold for the signal can be set low, expanding MARDS valid data acquisition capability, especially in very low-level and low-energy counting situations.

  17. Superluminal radiation by uniformly moving charges

    Science.gov (United States)

    Tomaschitz, Roman

    2003-03-01

    The emission of superluminal quanta (tachyons) by freely propagating particles is scrutinized. Estimates are derived for spontaneous superluminal radiation from electrons moving close to the speed of the Galaxy in the microwave background. This is the threshold velocity for tachyon radiation to occur, a lower bound. Quantitative estimates are also given for the opposite limit, tachyon radiation emitted by ultra-relativistic electrons in linear colliders and supernova shock waves. The superluminal energy flux is studied and the spectral energy density of the radiation is derived, classically as well as in second quantization. There is a transversal bosonic and a longitudinal fermionic component of the radiation. We calculate the power radiated, its angular dependence, the mean energy of the radiated quanta, absorption and emission rates, as well as tachyonic number counts. We explain how the symmetry of the Einstein /A-coefficients connects to time-symmetric wave propagation and to the Wheeler-Feynman absorber theory. A relation between the tachyon mass and the velocity of the Local Group of galaxies is suggested.

  18. Risks and management of radiation exposure.

    Science.gov (United States)

    Yamamoto, Loren G

    2013-09-01

    High-energy ionizing radiation is harmful. Low-level exposure sources include background, occupational, and medical diagnostics. Radiation disaster incidents include radioactive substance accidents and nuclear power plant accidents. Terrorism and international conflict could trigger intentional radiation disasters that include radiation dispersion devices (RDD) (a radioactive dirty bomb), deliberate exposure to industrial radioactive substances, nuclear power plant sabotage, and nuclear weapon detonation. Nuclear fissioning events such as nuclear power plant incidents and nuclear weapon detonation release radioactive fallout that include radioactive iodine 131, cesium 137, strontium 90, uranium, plutonium, and many other radioactive isotopes. An RDD dirty bomb is likely to spread only one radioactive substance, with the most likely substance being cesium 137. Cobalt 60 and strontium 90 are other RDD dirty bomb possibilities. In a radiation disaster, stable patients should be decontaminated to minimize further radiation exposure. Potassium iodide (KI) is useful for iodine 131 exposure. Prussian blue (ferric hexacyanoferrate) enhances the fecal excretion of cesium via ion exchange. Ca-DTPA (diethylenetriaminepentaacetic acid) and Zn-DTPA form stable ionic complexes with plutonium, americium, and curium, which are excreted in the urine. Amifostine enhances chemical and enzymatic repair of damaged DNA. Acute radiation sickness ranges in severity from mild to lethal, which can be assessed by the nausea/vomiting onset/duration, complete blood cell count findings, and neurologic symptoms.

  19. Contribution of quasar-driven outflows to the extragalactic gamma-ray background

    Science.gov (United States)

    Wang, Xiawei; Loeb, Abraham

    2016-12-01

    The origin of the extragalactic γ-ray background permeating throughout the Universe remains a mystery forty years after its discovery. The extrapolated population of blazars can account for only half of the background radiation in the energy range of ~0.1-10 GeV (refs ,). Here we show that quasar-driven outflows generate relativistic protons that produce the missing component of the extragalactic γ-ray background and naturally match its spectral fingerprint, with a generic break above ~1 GeV. The associated γ-ray sources are too faint to be detected individually, explaining why they had not been identified so far. However, future radio observations may image their shock fronts directly. Our best fit to the Fermi-LAT observations of the extragalactic γ-ray background spectrum provides constraints on the outflow parameters that agree with observations of these outflows and theoretical predictions. Although our model explains the data, there might be additional contributing sources.

  20. Quasar-driven outflows account for the missing extragalactic gamma-ray background

    CERN Document Server

    Wang, Xiawei

    2016-01-01

    The origin of the extragalactic $\\gamma$-ray background permeating throughout the Universe remains a mystery forty years after its discovery. The extrapolated population of blazars can account for only half of the background radiation at the energy range of ~ 0.1-10 GeV. Here we show that quasar-driven outflows generate relativistic protons that produce the missing component of the extragalactic $\\gamma$-ray background and naturally match its spectral fingerprint, with a generic break above ~ 1 GeV. The associated $\\gamma$-ray sources are too faint to be detected individually, explaining why they had not been identified so far. However, future radio observations may image their shock fronts directly. Our best fit to the Fermi-LAT observations of extragalactic $\\gamma$-ray background spectrum provides constraints on the outflow parameters that agree with observations of these outflows and theoretical predictions.