WorldWideScience

Sample records for background radiation dose

  1. Natural background radiation and population dose in China

    Energy Technology Data Exchange (ETDEWEB)

    Guangzhi, C. (Ministry of Public Health, Beijing, BJ (China)); Ziqiang, P.; Zhenyum, H.; Yin, Y.; Mingqiang, G.

    On the basis of analyzing the data for the natural background radiation level in China, the typical values for indoor and outdoor terrestrial gamma radiation and effective dose equivalents from radon and thoron daughters are recommended. The annual effective dose equivalent from natural radiation to the inhabitant is estimated to be 2.3 mSv, in which 0.54 mSv is from terrestrial gamma radiation and about 0,8 mSv is from radon and its short-lived daughters. 55 Refs.

  2. Estimates of dose equivalent rates from natural background radiation

    International Nuclear Information System (INIS)

    Environmental monitoring in Khartoum is being conducted using thermoluminescent dosimetry.The purpose of the study is to estimate dose-equivalent rates from natural background radiation.TL phosphorus LiF.Mg, Cu, P and CaSO4:Mn were used to measure the exposure over land for natural background radiation of terrestrial origin plus cosmic radiation and at position over the Blue Nile to account for natural background radiation of extraterrestrial origin (cosmic rays).The associated dose-equivalent rates have been determined.It was found that the dose-equivalent rates from cosmic radiation obtained through this work using the two types of the TLD phosphorus GR-200 A and CaSO4 are 0.295 mSv per year and 0.265 mSv per year, respectively.While the dose-equivalent rates from total natural background radiation obtained through this work are 0.395 mSv per year using GR-200 A and CaSO4 phosphorus, respectively. (Author)

  3. Natural background radiation and population dose distribution in India

    International Nuclear Information System (INIS)

    A country-wide survey of the outdoor natural background gamma radiation levels has been made using mailed thermoluminescent dosimeters (TLDs). The salient features of the results are: (1) The air-kerma levels and the population doses in various states follow log-normal and normal distributions respectively. (2) The national average value for the air dose (air-kerma) is 775 ± 370 (1σ)μGy/y. (3) The lowest air-kerma recorded is 0.23 mGy/y at Minicoy (Laccadive Islands) and the highest is 26.73 mGy/y at Chavra (monazite areas, Kerala). (4) There are significant temporal variation s (even as high as ± 40 per cent) of the background radiation level at many locations and at least in 10 locations where radon/thoron measurements are available, these could be associated with the seasonal variations in radon/thoron levels. (5) The mail control TLDs indicate a country-wide average value of 785 ± 225 μGy/y for the air-kerma which can be considered to provide a truly national average value for the natural background radiation level in India. (6) The mean natural radiation per caput for the country works out to be 690 ± 200 (1σ) Sv/y. (7) The natural radiation per caput seems to be maximum for Andhra Pradesh (1065 ± 325 μSv/y) and minimum for Maharashtra (370 ± 80 μSv/y). (8) The population dose from the external natural background radiation is estimated to be half a million person-Sievert. (9) Assuming 1 CRP risk factor, it can be estimated that just one out of the 43 cancer deaths occurring on an average per 100,000 population in India, can be attributed to the external natural background radiation. (author). 18 refs., 13 tabs., 9 figs

  4. Radiation dose in the high background radiation area in Kerala, India.

    Science.gov (United States)

    Christa, E P; Jojo, P J; Vaidyan, V K; Anilkumar, S; Eappen, K P

    2012-03-01

    A systematic radiological survey has been carried out in the region of high-background radiation area in Kollam district of Kerala to define the natural gamma-radiation levels. One hundred and forty seven soil samples from high-background radiation areas and five samples from normal background region were collected as per standard sampling procedures and were analysed for (238)U, (232)Th and (40)K by gamma-ray spectroscopy. External gamma dose rates at all sampling locations were also measured using a survey meter. The activities of (238)U, (232)Th and (40)K was found to vary from 17 to 3081 Bq kg(-1), 54 to 11976 Bq kg(-1) and BDL (67.4 Bq kg(-1)) to 216 Bq kg(-1), respectively, in the study area. Such heterogeneous distribution of radionuclides in the region may be attributed to the deposition phenomenon of beach sand soil in the region. Radium equivalent activities were found high in several locations. External gamma dose rates estimated from the levels of radionuclides in soil had a range from 49 to 9244 nGy h(-1). The result of gamma dose rate measured at the sampling sites using survey meter showed an excellent correlation with dose rates computed from the natural radionuclides estimated from the soil samples. PMID:21515614

  5. Impact of the Fukushima nuclear accident on background radiation doses measured by control dosimeters in Japan.

    Science.gov (United States)

    Romanyukha, Alexander; King, David L; Kennemur, Lisa K

    2012-05-01

    After the 9.0 magnitude earthquake and subsequent massive tsunami on 11 March 2011 in Japan, several reactors at the Fukushima Daiichi Nuclear Power Plant suffered severe damage. There was immediate participation of U.S. Navy vessels and other United States Department of Defense (DoD) teams that were already in the area at the time of the disaster or arrived shortly thereafter. The correct determination of occupational dose equivalent requires estimation of the background dose component measured by control dosimeters, which is subsequently subtracted from the total dose equivalent measured by personal dosimeters. The purpose of the control dosimeters is to determine the amount of radiation dose equivalent that has accumulated on the dosimeter from background or other non-occupational sources while they are in transit or being stored. Given the release of radioactive material and potential exposure to radiation from the Fukushima Daiichi Nuclear Power Plant and the process by which the U.S. Navy calculates occupational exposure to ionizing radiation, analysis of pre- and post-event control dosimeters is warranted. Several hundred historical dose records from the Naval Dosimetry Center (NDC) database were analyzed and compared with the post-accident dose equivalent data of control dosimeters. As result, it was shown that the dose contribution of the radiation and released radiological materials from the Fukushima nuclear accident to background radiation doses is less than 0.375 μSv d for shallow and deep photon dose equivalent. There is no measurable effect on neutron background exposure. The latter has at least two important conclusions. First, the NDC can use doses measured by control dosimeters at issuing sites in Japan for determination of personnel dose equivalents; second, the dose data from control dosimeters prior to and after the Fukushima accident may be used to assist in dose reconstruction of non-radiological (non-badged) personnel at these locations

  6. Inhalation and external doses in coastal villages of high background radiation area in Kollam, India

    International Nuclear Information System (INIS)

    The observational evidence for radiation-induced health effects in humans comes largely from the exposures to high doses received over short periods of time. The rate of induction of any health risk at low doses and dose rates is estimated by extrapolation from observations at high doses. Effects of low dose/low dose rate could be done by the study of populations that have been exposed to slightly above-average natural radiation doses. Southwest coastal line of the Kerala state in India is one such region known to have elevated levels of background radioactivity mainly due to the mineral-rich sand available with high abundance of thorium. In the present work, a study was conducted to investigate the inhalation and external radiation doses to human beings in the high background radiation area along the southwest coast of Kerala. Five hundred dwellings were selected for the study. All the selected houses were at least 10 y old with similar construction. Long-term integrated indoor measurements of the external gamma dose using thermoluminescent dosemeters (TLDs) and the inhalation dose with the SSNTD-based twin-cup dosemeters were carried out in the dwellings simultaneously. Ambient gamma dose measurements were also made with a GM tube-based survey meter while deploying and retrieving the dosemeters. The data show a high degree of heterogeneity. The inhalation dose was found to vary from 0.1 to 3.53 mSv y-1 and the external dose rates had a range of 383-11419 μGy y-1. The external doses measured by the survey meter and TLDs showed an excellent correlation. (authors)

  7. Profiles of comprehensive dose to population in the high background radiation area in Chhattrapur, Odisha, India

    International Nuclear Information System (INIS)

    A study of the profiles of radiation dose due to natural radioactivity to the populations inhabiting in the High Background Radiation Area (HBRA) of the monazite bearing region in Odisha has been carried out by radiation monitoring of twenty four villages in this region. Comprehensive effective dose was computed taking all the path routes of exposure into consideration; the average effective dose was 4.7±1.0 mSv/y which ranged between 1.4±0.2-6.3±1.3 mSv/y. The contributions of terrestrial radiation, inhalation of radon, thoron progenies and ingestion of food and water to the total dose was 51%, 28% and 13%, respectively. (author)

  8. Lower bound of optimization for the public considering dose distribution of radiation due to natural background radiation

    International Nuclear Information System (INIS)

    The International Commission on Radiological Protection (ICRP) released drafts of new recommendations in June 2004, June 2006 and January 2007 and finally approved a new set of fundamental recommendations on the protection of humans and the environment from ionizing radiation at its meeting in Essen, Germany, 19-21 March 2007. In the process of the completion of the draft recommendations, the numerical value for the minimum dose constraint ensuring public protection was deleted or redescribed using other expressions. This issue remains undetermined even in the recently released Publication 103. On the other hand, ICRP also recently published a new concept of a representative person in Publication 101. This representative person is a hypothetical person exposed to a dose that is representative of the most highly exposed persons in the population. On the basis of this new concept, it is theoretically reasonable that the 95th percentile of the dose received by such representative persons is always lower than the dose constraint, which indicates that the main part of the dose distribution is considerably lower than the dose constraint. In this study, by using the relationship between the dose constraint and the dose distribution of the representative persons and a probabilistic approach using Monte Carlo calculation techniques, the effects of the dose distribution of radiation due to manmade radioactive nuclides when added to those of natural background radiation have been carefully investigated. The results show that additional exposure to manmade radiation of up to 0.5 mSv/y (as a dose constraint) would not significantly change the distribution of the public dose. Taking into consideration such probabilistic analysis and the rationale behind the derivations of exemption and clearance levels, it can be concluded that the minimum dose constraint that requires optimization in radiation protection should be set to 0.1 mSv/y, which is one order of magnitude higher than 0

  9. Preliminary study on the measurement of background radiation dose at Antarctica during 32nd expedition

    International Nuclear Information System (INIS)

    A significant proportion (10%) of the natural background radiation is of cosmic origin. Cosmic ray consists of gamma, protons, electrons, pions, muons, neutrons and low Z nuclei. Due to the geomagnetic effect, cosmic radiation levels at poles are higher. As a consequence, personnel working in Antarctica (or Arctic) are subjected to high level of cosmic radiation. The present study gives the details of the estimation of background radiation (neutrons, gamma and electrons) dose rate around the Indian station at Antarctica named 'Bharati' measured during 32nd Indian scientific expedition to Antarctica (32nd INSEA). The measurement was carried out by passive dosimeters such as TLDs and CR-39 and active dosimeter such as RadEye G portable gamma survey meter. Gamma and electron components were measured using TLDs and survey meter, whereas CR-39 SSNTDs and neutron sensitive TLDs were used for neutron measurements. These detectors were deployed at few selected locations around Bharati station for about 2½ months during summer expedition. The neutron detectors used in the study were pre-calibrated with 241Am-Be fast/thermal neutron source. The fast neutron dose rate measured based on CR-39 detector was found to about 140-420 nSv/h. The gamma dose rate evaluated by TLDs/survey meter are in the range of 290-400 nSv/h. (author)

  10. The natural radiation background

    International Nuclear Information System (INIS)

    The components of the natural background radiation and their variations are described. Cosmic radiation is a major contributor to the external dose to the human body whilst naturally-occurring radionuclides of primordial and cosmogenic origin contribute to both the external and internal doses, with the primordial radionuclides being the major contributor in both cases. Man has continually modified the radiation dose to which he has been subjected. The two traditional methods of measuring background radiation, ionisation chamber measurements and scintillation counting, are looked at and the prospect of using thermoluminescent dosimetry is considered

  11. Epidemiological studies on disturbances of human fetal development in areas with various doses of natural background radiation. I. Relationship between incidences of Down's syndrome or visible malformation and gonad dose equivalent rate of natural background radiation

    International Nuclear Information System (INIS)

    The relationship between environmental radiation to the gonads and incidences of Down's syndrome and visible malformation was analyzed using Kendall's rank correlation method. The subjects, studied during a 3-yr period (1979-1981), were inhabitants of 46 prefectures in Japan that had various dose rates of natural background ionizing radiation. Results showed that the natural background very low-dose radiation rate was not a predominant factor responsible for inducing Down's syndrome or other visible malformations

  12. Background levels and radiation dose yield of o-tyrosine in chicken meat

    International Nuclear Information System (INIS)

    The measurement of o-tyrosine levels in poultry meat is a potential method for postirradiation dosimetry of poultry. The validity of using o-tyrosine for this purpose has not yet been established. As part of the validation process, the o-tyrosine content in unirradiated chicken meat, the radiation dose response curve, and the effects of postirradiation storage on o-tyrosine levels are examined. In 18 individual samples, the mean background level of o-tyrosine was 0.18 +/- 0.11 ppm (wet weight, 70% moisture), and the most frequent background level (60% of the cases) was between 0.05 and 0.15 ppm (wet weight, 70% moisture). In pooled samples of 10 chickens, the mean background level was 0.12 +/- 0.03 ppm (wet weight, 70% moisture). The levels were not significantly affected by storage at 5 degrees C (7 d) or by freezing the sample. The radiation dose response curve was linear within the dose range studied (0 to 10 kGy), with a slope of 0.127 + 0.003 ppm (wet weight)/kGy. Although there was some variation in the intercept (0.132 + 0.013), the slope was the same in all samples tested. Postirradiation storage at either 4 or 8 degrees C until spoilage did not affect the levels of o-tyrosine. These data indicate that o-tyrosine level may be useful for determining the absorbed dose in chicken meat gamma-irradiated to doses greater than 0.6 kGy. Further validation studies are continuing

  13. Estimation of collective effective dose due to natural background radiation in Egypt

    Science.gov (United States)

    Henaish, B. A.; Tawfik, A. A.; Abu Zaid, H.; Gomaa, M. A.

    1994-07-01

    During the last few years, worldwide attention has been directed towards the estimation of natural background radiation levels. Several environmental monitoring networks have been established for systematic data collection and exchange of information.In the present study, measurements of annual effective dose from terrestrial γ-rays are carried out at pre-selected sites within several Egyptian governorates by using a calibrated gas-filled GM-detector connected to a microcomputer system. Contribution of the secondary cosmic-rays, which is of prime importance at sea level, is achieved by carrying out computation based on theoretical considerations.Terrestrial effective dose in Egypt is found to be between 106 and 371 μSv/yr, meanwhile the computed cosmic rays contribution is 260-296 μSv/yr. Accordingly, the annual collective effective dose due to natural background radiation is about 27,253 Man Sv for the last Egyptian population count (1989) considering 0.8 and 0.2 indoor and outdoor occupancy factors.

  14. The enhancement of natural background radiation dose around uranium micro-particles

    International Nuclear Information System (INIS)

    Full text: The biological effects of ionising radiations are mainly produced by the interaction, either directly or indirectly, between secondary electrons and the genetic components of living cells. An interesting radiological situation arises in the case of the absorption of relatively low energy X-rays and gamma rays, of energies below about 250 keV, by particles of high atomic number since the probability of absorption of the photon energy is proportional to the third to fourth power of atomic number. In this situation, highly ionising short-range photoelectrons are produced, which will cause a dose enhancement in the immediate vicinity of the particles. After it was shown conclusively that hot radioactive particles (contamination from nuclear power plants and atomic bomb tests) (Charles et al, J. Radiol. Prot., 23: 5-28, 2003) and warm radioactive particles (depleted uranium) (Royal Society, The health hazards of depleted uranium munitions-Part 1, 2001) do not present as serious a radiological hazard as some have asserted, their attention then focussed on the dose enhancement that uranium particles in the body would produce upon exposure to naturally occurring background gamma radiation (Busby, Euro. J. Biol. Bioelectromag., 1: 82-93, 2005). It was claimed that this enhancement was a factor of 500 to 1000, and that it would then contribute a significant radiation dose, in addition to the dose received from the radioactivity of the depleted uranium. The aim of this project was to obtain an accurate estimate of the enhancement due to high atomic number heavy metal micro-particles using the Monte Carlo code EGSnrc. Uranium was selected for the micro-particles since it is the extreme case of a high atomic number heavy metal. A cylindrical body, 32 cm diameter and 60 cm long, made from ICRU four-element tissue, was exposed to isotropic natural background gamma radiation. The doses in the vicinity of micron-sized uranium particles were calculated at different

  15. Effective doses of background radiation in the Almaty and the Kazakhstan nuclear sites areas

    International Nuclear Information System (INIS)

    The comparative results for determination of partial effective doses from each kind of ionizing radiation and all pathways of radionuclides intakes of Almaty city population, and localities adjoining to nuclear test sites (Lira and Azgir), as well as Semipalatinsk test site (STS). Results of effective dose calculations are evidencing about absence of considerable influence of tests on the sites on the natural radiation dose loads and about some exceeding of effective dose in Almaty above effective doses in the sites' areas. Artificial radionuclides contribution of the sites areas (beside STS) does not exceeds the level of global fallout in Almaty

  16. Genetic background modulates lncRNA-coordinated tissue response to low dose ionizing radiation

    International Nuclear Information System (INIS)

    Long noncoding RNAs (lncRNAs) are emerging as key regulators of diverse cell functions and processes. However, the relevance of lncRNAs in the cell and tissue response to ionizing radiation has not yet been characterized. Here we used microarray profiling to determine lncRNA and mRNA expression in mammary glands of BALB/c and SPRET/EiJ mice after low-dose ionizing radiation (LDIR) exposure. We found that unirradiated mammary tissues of these strains differed significantly in baseline expressions of 290 lncRNAs. LDIR exposure (10 cGy) induced a significant change in the expression of many lncRNAs. The vast majority of lncRNAs identified to be differentially expressed after LDIR in either BALB/c or SPRET/EiJ had a significantly correlated expression pattern with at least one LDIR responsive mRNA. Functional analysis revealed that the response to LDIR in BALB/c mice is highly dynamic with enrichment for genes involved in tissue injury, inflammatory responses, and mammary gland development at 2, 4, and 8 weeks after LDIR, respectively. Our study demonstrates that genetic background strongly influences the expression of lncRNAs and their response to radiation and that lncRNAs may coordinate the tissue response to LDIR exposure via regulation of coding mRNAs

  17. Determination of Absorbed and Effective Dose from Natural Background Radiation around a Nuclear Research Facility

    Directory of Open Access Journals (Sweden)

    M. A. Musa

    2011-01-01

    Full Text Available Problem statement: This study presents result of outdoor absorbed dose rate and estimated effective dose from the naturally occurring radionuclides 232Th and 238U series 40K, around a Nuclear Research Reactor at the Centre for Energy Research and Training (CERT, Zaria, Nigeria. Approach: A high-resolution in situ ?-ray spectrometry was used to carry out the study. CERT houses a 30Kw Research Reactor and other neutron and gamma sources for Research and Training. Results: The values of absorbed dose rate in air for 232Th, 238U and 40K range from 8.2 ± 2.5-24.5 ± 3.6 nGy h?1, 1.9 ± 1.2-4.6 ± 2.5 nGy h?1 and 12.2 ± 5-38 ± 6.7n Gy h?1 respectively . The estimated total annual effective dose outdoor for the sites range from 27.3-79.9 ?Sv y?1.Conclusions: This showed that radiation exposure level for the public is lower than the recommended value of 1 mSv y?1.Hence, the extensive usage of radioactive materials within and around CERT does not appear to have any impact on the radiation burden of the environment.

  18. Survey of Gamma Dose and Radon Exhalation Rate from Soil Surface of High Background Natural Radiation Areas in Ramsar, Iran

    Directory of Open Access Journals (Sweden)

    Rouhollah Dehghani

    2013-09-01

    Full Text Available Background: Radon is a radioactive gas and the second leading cause of death due to lung cancer after smoking. Ramsar is known for having the highest levels of natural background radiation on earth. Materials and Methods: In this research study, 50 stations of high radioactivity areas of Ramsar were selected in warm season of the year. Then gamma dose and radon exhalation rate were measured.Results: Results showed that gamma dose and radon exhalation rate were in the range of 51-7100 nSv/hr and 9-15370 mBq/m2s, respectively.Conclusion: Compare to the worldwide average 16 mBq/m2s, estimated average annual effective of Radon exhalation rate in the study area is too high.

  19. Assessment of indoor radiation dose received by the residents of natural high background radiation areas of coastal villages of Kanyakumari district, Tamil Nadu, India

    Energy Technology Data Exchange (ETDEWEB)

    Deva Jayanthi, D., E-mail: d.devajayanthi@gmail.co [Department of Physics, Women' s Christian College, Nagercoil 629001 (India); Maniyan, C.G. [Environmental Assessment Division, BARC, Mumbai 400085 (India); Perumal, S. [Department of Physics and Research Centre, S.T.Hindu College, Nagercoil 629002 (India)

    2011-07-15

    Radiation exposure and effective dose received through two routes of exposure, viz. external and internal, via inhalation, by residents of 10 villages belonging to Natural High Background Radiation Areas (NHBRA) of coastal regions of Kanyakumari District and Tamil Nadu in India were studied. While the indoor gamma radiation levels were monitored using Thermo Luminescent Dosimeters (TLDs), the indoor radon and thoron gas concentrations were measured using twin chamber dosimeters employing Solid State Nuclear Track Detectors (SSNTDs, LR-115-II). The average total annual effective dose was estimated and found to be varying from 2.59 to 8.76 mSv. -- Highlights: {yields} The effective dose received by the villages of Natural High Background Area (NHBRA) such as Enayam, Midalam and Mel Midalam is high when compared with other study areas. {yields} The high dose indicates higher concentration of radioactive nuclides like Thorium and Uranium in the soil. {yields} As radiation is harmful to human life, the external and internal doses can be reduced by removing the monazite content present in the soil by mineral separation. {yields} Contribution from vegetables, fruits, fish and other non vegetarian items are also being examined. {yields} These results along with other socio-economic factors can throw considerable light on the epidemiological impacts due to low levels of chronic exposure.

  20. Assessment of indoor radiation dose received by the residents of natural high background radiation areas of coastal villages of Kanyakumari district, Tamil Nadu, India

    International Nuclear Information System (INIS)

    Radiation exposure and effective dose received through two routes of exposure, viz. external and internal, via inhalation, by residents of 10 villages belonging to Natural High Background Radiation Areas (NHBRA) of coastal regions of Kanyakumari District and Tamil Nadu in India were studied. While the indoor gamma radiation levels were monitored using Thermo Luminescent Dosimeters (TLDs), the indoor radon and thoron gas concentrations were measured using twin chamber dosimeters employing Solid State Nuclear Track Detectors (SSNTDs, LR-115-II). The average total annual effective dose was estimated and found to be varying from 2.59 to 8.76 mSv. -- Highlights: → The effective dose received by the villages of Natural High Background Area (NHBRA) such as Enayam, Midalam and Mel Midalam is high when compared with other study areas. → The high dose indicates higher concentration of radioactive nuclides like Thorium and Uranium in the soil. → As radiation is harmful to human life, the external and internal doses can be reduced by removing the monazite content present in the soil by mineral separation. → Contribution from vegetables, fruits, fish and other non vegetarian items are also being examined. → These results along with other socio-economic factors can throw considerable light on the epidemiological impacts due to low levels of chronic exposure.

  1. Determination of background radiation

    International Nuclear Information System (INIS)

    The invention relates to a method and appartus for determining the level of background radiation in a spectral region where a Raman peak characteristic of a particular substance, in particular diamond, is expected to occur. The method includes the steps of isolating the radiation in a first spectral band, and isolating the radiation in a second spectral band which overlaps the first spectral band at least partially to form an overlapping band in the vicinity of the expected Raman Peak and a least one sideband. At least one sideband value representative of the radiation present in the one or more sidebands is then obtained, and further values, representative of the radiation isolated by any one or more of the other spectral bands, such as the first and second bands, are then used to derive a background value indicative of the level of background radiation present at the position of the expected Raman peak

  2. Enhancement of natural background gamma-radiation dose around uranium microparticles in the human body

    OpenAIRE

    Pattison, John E; Hugtenburg, Richard P.; Green, Stuart

    2009-01-01

    Ongoing controversy surrounds the adverse health effects of the use of depleted uranium (DU) munitions. The biological effects of gamma-radiation arise from the direct or indirect interaction between secondary electrons and the DNA of living cells. The probability of the absorption of X-rays and gamma-rays with energies below about 200 keV by particles of high atomic number is proportional to the third to fourth power of the atomic number. In such a case, the more heavily ionizing low-energy ...

  3. Local microwave background radiation

    OpenAIRE

    Soares, Domingos

    2006-01-01

    An inquiry on a possible local origin for the Microwave Background Radiation is made. Thermal MBR photons are contained in a system called {\\it magnetic bottle} which is due to Earth magnetic field and solar wind particles, mostly electrons. Observational tests are anticipated.

  4. Cosmic Tachyon Background Radiation

    CERN Document Server

    Tomaschitz, R

    1999-01-01

    The equilibrium statistical mechanics of a background radiation of superluminal particles is investigated, based on a vectorial wave equation for tachyons of the Proca type. The partition function, the spectral energy density, and the various thermodynamic variables of an ideal Bose gas of tachyons in an open Robertson-Walker cosmology are derived. The negative mass square in the wave equation changes the frequency scaling in the Rayleigh-Jeans law, and there are also significant changes in the low temperature regime as compared to the microwave background, in particular in the caloric and thermal equations of state.

  5. Dose-effect relationship in production of dicentrics and rings in blood lymphocytes of individuals living in high background radiation area

    International Nuclear Information System (INIS)

    Objective: To explore the dose-effect relationship in the production of chromosome aberrations by high background radiation by using statistically appropriate individual measurements. Methods: Chromosome analysis was performed in separated blood lymphocytes of 39 family members of different ages from either high background radiation area (HBRA) or control area (CA). Individual cumulative doses ranged from 23.9-261.3 and 5.2-29.8 mGy for HBRA and CA, respectively. A total of about 100,000 cells were scored and dicentric and ring chromosome (dic + Rc) aberrations recorded. Results: In the case of HBRA, individual chromosome aberration frequencies increased with age within each family. The increasing trend was in general not significantly different among families. The increase in individual aberration was closely correlated with age and cumulative dose. Age-and dose-effect relationship fit well the linear equation: Y = 0.0448X + 0.4913 (R2 = 0.7814) for age and Y 0.0156X + 0.5715 (R2 = 0.7061) for cumulative dose, respectively. In the case of CA, there was no significant difference in aberration yields among individuals of different ages, and the group mean aberration frequency was 1.24 +- 0.69 x 10-3. Conclusions: Dic and Rc can continuously accumulate over a lifetime chronic low dose exposures, and can serve as a reliable biological indicator. However, the ultimate sensitivity is about 50 mGy

  6. Epidemiological studies in high background radiation areas

    International Nuclear Information System (INIS)

    Below the doses of 100-200 mSv of radiation exposure, no acute health effect is observed, and the late health effects such as cancer are yet unclear. The problems making the risk evaluation of low dose radiation exposure difficult are the fact that the magnitude of expected health effects are small even if the risk is assumed to increase in proportion to radiation doses. As a result, studies need to be large particular when dealing with rare disease such as cancer. In addition, the expected health effects are so small that they can easily be masked by lifestyles and environmental factors including smoking. This paper will discuss cancer risk possibly associated with low-dose and low-dose rate radiation exposure, describing epidemiological studies on the residents in the high-background radiation areas. (author)

  7. Natural background radiation in Jordan

    International Nuclear Information System (INIS)

    An Airborne Gamma Ray survey has been accomplished for Jordan since 1979. A complete report has been submitted to the Natural Resources Authority along with field and processed data ''digital and analogue''. Natural radioelements concentration is not provided with this report. From the corrected count rate data for each natural radioelement, Concentrations and exposure rates at the ground level were calculated. Contoured maps, showing the exposure rates and the dose rates were created. Both maps reflect the surface geology of Jordan, where the Phosphate areas are very well delineated by high-level contours. In southeastern Jordan the Ordovician sandstone, which contain high percentage of Th (around 2000 ppm in some places) and a moderate percentage of U (about 300 ppm), also show high gamma radiation exposures compared with the surrounding areas. Comparing the values of the exposure rates given in (μR/h) to those obtained from other countries such as United States, Canada, Germany, etc. Jordan shows higher background radiation which reach two folds and even more than those in these countries. More detailed studies should be performed in order to evaluate the radiological risk limits on people who are living in areas of high radiation such that the area of the phosphatic belt which covers a vast area of Jordan high Plateau. (author)

  8. Dose-effect relationship of dicentric and ring chromosomes in lymphocytes of individuals living in the high background radiation areas in China

    International Nuclear Information System (INIS)

    Chromosomes of 39 healthy family members (3 generations from 13 families) living both in the high-level background radiation areas (HBRA) and the control areas (CA) were studied. Cumulative dose from birth to the time of blood sampling was estimated by calculating measured exposure rate in each individual. The cumulative doses ranged 30.9-358.9 and 6.0-59.2 mGy for HBRA and CA, respectively. Peripheral lymphocyte chromosome preparations were made according to our improved method. Dicentric and ring chromosomes (Dic+Rc) were scored in average 2,527 cells per individual in HBRA and 2,694 cells in CA under a microscope equipped with an automated stage. A positive correlation between Dic+Rc and age was found in HBRA, while no such dose relationship was clear in CA. The frequency of Dic+Rc linearly increases over lifetime due to chronic low dose exposure and it is likely that the activation of repair enzymes is not triggered in the present HBRA. Threshold dose (rate) of the induction of chromosome aberrations, if any, is below the present dose (rate) level. (author)

  9. Registration of radiation doses

    International Nuclear Information System (INIS)

    In Finland the Radiation and Nuclear Safety Authority (STUK) is maintaining the register (called Dose Register) of the radiation exposure of occupationally exposed workers in order to ensure compliance with the principles of optimisation and individual protection. The guide contains a description of the Dose Register and specifies the responsibilities of the party running a radiation practice to report the relevant information to the Dose Register

  10. The Cosmic Background Radiation

    OpenAIRE

    Smoot, George; Scott, Douglas

    1997-01-01

    We review the current status of experimental data for spectral distortions and angular anisotropies of the cosmic microwave background, as well as discussing the relevant physical processes. This is one of a number of new articles in astrophysics and cosmology which will appear in the 1996 Review of Particle Properties (Phys. Rev. D. in press). Other relevant reviews include: "Big-Bang Cosmology" by K.A. Olive; "Big-Bang Nucleosynthesis" by K.A. Olive & D.N. Schramm; "The Hubble Constant" by ...

  11. Background dose subtraction in personnel dosimetry

    International Nuclear Information System (INIS)

    In this paper it is proposed to consider the mode of the frequency distribution of the low dose dosemeters from each clinic that uses X rays as the background environmental dose that should be subtracted from the personnel dosimetry to evaluate the doses due to practice. The problems and advantages of this indirect method to estimate the environmental background dose are discussed. The results for 60 towns are presented. (author)

  12. Public dose from a multi-unit CANDU site compared with site limit and natural background radiation

    International Nuclear Information System (INIS)

    Beyond the exclusion area boundary (EAB) that surrounds a CANDU site, the maximum annual dose to members of the public, during normal operation, must comply with the national regulatory limits of the country in which the station is located. The Wolsong site, located on the south-east coast of the Republic of Korea, has four CANDU 6 plants, either operating or under construction. The Korean Electric Power Company (KEPCO) has proposed expanding the site to the north. The extended site could conceivably accommodate six CANDU 9 plants with an EAB at a 500-rn radius. This study calculates the public dose at the EAB around the extended Wolsong site under normal operation. The work shows that the site could accommodate four CANDU 6 and six CANDU 9 plants without exceeding the annual dose allowed to a member of the public at the EAB, and giving only a small annual dose to the most-exposed member of the public living at the EAB. (author)

  13. Terrestrial gamma dose rate, radioactivity and radiological hazards in the rocks of an elevated radiation background in Juban District, Ad Dali' Governorate, Yemen.

    Science.gov (United States)

    Abdurabu, Wedad Ali; Ramli, Ahmad Termizi; Saleh, Muneer Aziz; Heryansyah, Arien; Alnhary, Anees; Fadhl, Shadi

    2016-03-01

    This study aims to evaluate natural radiation and radioactivity in the rock and to assess the corresponding health risk in a region of elevated background radiation in Juban District, Ad Dali' Governorate, Yemen. The mean external gamma dose rate was 374 nGy h(-1) which is approximately six times the world average. The measured results were used to compute annual effective dose equivalent, collective effective dose and excess lifetime cancer risk, which are 2.298 mSv, 61.95 man Sv y(-1) and 8.043  ×  10(-3), respectively. Rocks samples from different geological formations were analyzed for quantitative determination of (226)Ra, (232)Th and (40)K. The specific activity of the rocks samples ranges from 7  ±  1 Bq Kg(-1) to 12 513  ±  329 Bq Kg(-1) for (232)Th, from 6  ±  1 Bq kg(-1) to 3089  ±  74 Bq kg(-1) for (226)Ra and 702  ±  69 Bq kg(-1) to 2954  ±  285 Bq kg(-1) for (40)K. (232)Th is the main contributor to gamma dose rate from the rock samples. Indicators of radiological health impact, radium equivalent activity and external hazard index are 3738 Bq kg(-1) and 10.10, respectively. The mean external hazard index was ten times unity in the studied locations in Juban District, which is higher than the recommended value. PMID:26909670

  14. Background radiation dose-rates to non-human biota in a high mountain habitat in Norway

    DEFF Research Database (Denmark)

    Brown, J.E.; Gelsvik, R.; Kålås, J.A.;

    2009-01-01

    of the available literature on naturally occurring radionuclides in wild plants and animals quickly illustrates a paucity of data coverage in numerous cases. Most notable is the lack of comprehensive information for the important dose-forming radionuclides such as 210Po and 210Pb. In order to collate...... commensurate with activity concentrations reported for reindeer muscle sampled at proximate locations, falling at a level of some 10s of Bq kg-1 by fresh weight. Statistical analyses of the data showed that bank vole and shrew 210Po data constitute different populations with different mean ranks. Unweighted...

  15. Radiation doses to Finns

    International Nuclear Information System (INIS)

    The estimated annual radiation doses to Finns have been reduced in the recent years without any change in the actual radiation environment. This is because the radiation types have been changed. The risk factors will probably be changed again in the future, because recent studies show discrepancies in the neutron dosimetry concerning the city of Hiroshima. Neutron dosimetry discrepancy has been found between the predicted and estimated neutron radiation. The prediction of neutron radiation is calculated by Monte Carlo simulations, which have also been used when designing recommendations for the limits of radiation doses (ICRP60). Estimation of the neutron radiation is made on the basis of measured neutron activation of materials in the city. The estimated neutron dose beyond 1 km is two to ten, or more, times as high as the predicted dose. This discrepancy is important, because the most relevant distances with respect to radiation risk evaluation are between 1 and 2 km. Because of this discrepancy, the present radiation risk factors for gamma and neutron radiation, which rely on the Monte Carlo calculations, are false, too. The recommendations of ICRP60 have been adopted in a few countries, including Finland, and they affect the planned common limits of the EU. It is questionable whether happiness is increased by adopting false limits, even if they are common. (orig.) (2 figs., 1 tab.)

  16. Exposure to background radiation in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, S.B. [Australian Radiation Lab., Melbourne, VIC (Australia)

    1997-12-31

    The average effective dose received by the Australian population is estimated to be {approx}1.8 mSv / year. One half of this exposure arises from exposure from terrestrial radiation and cosmic rays, the remainder from radionuclides within the body and from inhalation of radon progeny. This paper reviews a number of research programmes carried out by the Australian Radiation Laboratory to study radiation exposure from natural background, particularly in the workplace and illustrate approaches to the quantification and management of exposure to natural radiation. The average radiation doses to the Australian population are relatively low; the average annual radon concentration ranged from 6 Bq m{sup -3} in Queensland to 16 Bq m{sup -3} in the Australian Capital Territory (ACT). Of more importance is the emerging issue of exposure to elevated background radiation in the workplace. Two situation are presented; the radiation exposure to air crues and show cave tour guides. Annual doses up to 3.8 mSv were estimated for international crew members while the highest estimate for show cave tour guides was 9 mSv per year. 9 refs., 2 tabs., 4 figs.

  17. Exposure to background radiation in Australia

    International Nuclear Information System (INIS)

    The average effective dose received by the Australian population is estimated to be ∼1.8 mSv / year. One half of this exposure arises from exposure from terrestrial radiation and cosmic rays, the remainder from radionuclides within the body and from inhalation of radon progeny. This paper reviews a number of research programmes carried out by the Australian Radiation Laboratory to study radiation exposure from natural background, particularly in the workplace and illustrate approaches to the quantification and management of exposure to natural radiation. The average radiation doses to the Australian population are relatively low; the average annual radon concentration ranged from 6 Bq m-3 in Queensland to 16 Bq m-3 in the Australian Capital Territory (ACT). Of more importance is the emerging issue of exposure to elevated background radiation in the workplace. Two situation are presented; the radiation exposure to air crues and show cave tour guides. Annual doses up to 3.8 mSv were estimated for international crew members while the highest estimate for show cave tour guides was 9 mSv per year

  18. Natural background radiation and oncologic disease incidence

    International Nuclear Information System (INIS)

    Cause and effect relationships between oncologic disease incidence in human population and environmental factors are examined using investigation materials of Soviet and foreign authors. The data concerning US white population are adduced. The role and contribution of natural background radiation oncologic disease prevalence have been determined with the help of system information analysis. The probable damage of oncologic disease is shown to decrease as the background radiation level diminishes. The linear nature of dose-response relationspip has been established. The necessity to include the life history of the studied population along with environmental factors in epidemiological study under conditions of multiplicity of cancerogenesis causes is emphasized

  19. Natural background radiation in Canada

    International Nuclear Information System (INIS)

    Published airborne gamma ray survey data from 33 areas of Canada were used to compile information on the average ground level exposure from natural radiation. The exposures at ground level were calculated from the surface concentrations of potassium, uranium and thorium. The highest levels of radioactivity were found in northern Canada and were generally related to granitic rocks; the lowest levels with the Athabasca sandstone. Summer outdoor exposure rates have a population-weighted average of 3.7 +- 2.3 μR.h-1, of which 48 percent orginated from potassium, 43 percent from the thorium series and 9 percent from the uranium series. This low level of radioactivity, compared to worldwide data, has resulted from erosion of a geologically old continental crust in which radioactivity decreases with depth. When seasonal variations of soil moisture and snow cover are considered, the annual population-weighted average outdoor exposure rate decreases to 2.8 +- 1.7 μR.h-1 corresponding to an annual outdoor dose-equivalent of 150 +- 90 μSV. Factors increasing the annual outdoor dose-equivalent are cosmic radiation (320 +- 30 μSV) and the internal radioactivity of the body (190 μSV). Using the ratio between indoor and outdoor values for worldwide published data, the average annual Canadian whole-body dose-equivalent from all sources of natural radiation is estimated to be 690 +-130 μSV

  20. Radiation dose in vertebroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Mehdizade, A.; Lovblad, K.O.; Wilhelm, K.E.; Somon, T.; Wetzel, S.G.; Kelekis, A.D.; Yilmaz, H.; Abdo, G.; Martin, J.B.; Viera, J.M.; Ruefenacht, D.A. [Neuroradiology DRRI, Geneva University Hospital, Rue Micheli-du-Crest 24, 1211, Geneva 14 (Switzerland)

    2004-03-01

    We wished to measure the absorbed radiation dose during fluoroscopically controlled vertebroplasty and to assess the possibility of deterministic radiation effects to the operator. The dose was measured in 11 consecutive procedures using thermoluminescent ring dosimeters on the hand of the operator and electronic dosimeters inside and outside of the operator's lead apron. We found doses of 0.022-3.256 mGy outside and 0.01-0.47 mGy inside the lead apron. Doses on the hand were higher, 0.5-8.5 mGy. This preliminary study indicates greater exposure to the operator's hands than expected from traditional apron measurements. (orig.)

  1. ESR measurements of background doses in teeth of Japanese residents

    International Nuclear Information System (INIS)

    The background doses for the teeth of Japanese residents were obtained by electron spin resonance (ESR) method. The doses obtained from 77 of 92 samples are less than 100 mGy while the doses of the other samples are high up to 250 mGy. The doses for buccal part of the teeth are higher than lingual part possibly due to contributions from dental X ray examination. A positive correlation was found between the ages of the donors and the obtained doses. The averaged annual ESR dose was calculated to be 0.87 mGy/y. These doses have to be considered in actual retrospective dosimetry studies for possible radiation accidents. The statistically significant critical level for Japanese residents would be about 200 mGy for individual doses and about 100 mGy for averaged group doses for α = 5% for those with ages older than 50.

  2. Low chronic radiation doses

    International Nuclear Information System (INIS)

    In the context of the Chernobyl and Fukushima accidents where large territories have been contaminated durably and as consequence where local populations are submitted to chronic low radiation doses, IRSN (French institute for radiation protection and nuclear safety) has led various studies to assess the impact of chronic low doses. Studies about the effects of uranium on marine life show that the impact is strongly dependent on the initial state of the individual (zebra Danio rerio fish). The studies about the impact of chronic low doses due to cesium and strontium contamination show different bio-accumulations: 137Cs is found in the animal's whole body with higher concentrations in muscles and kidneys while 90Sr is found almost exclusively in bones and it accumulates more in female mice than in males. The study dedicated to the sanitary impact of chronic low doses on the workers of the nuclear industry shows a higher risk for developing a leukemia, a pleural cancer or a melanoma but no correlation appears between doses and the appearance of the pleural cancer or the melanoma. (A.C.)

  3. Remote Background Radiation Monitoring Using Zigbee Technology

    Directory of Open Access Journals (Sweden)

    Hamisu A. Adamu

    2014-03-01

    Full Text Available In this paper, a solution of remote background radiation monitoring, based on the concept of Wireless Sensor Network (WSN, is presented. Radiation dose rate measured by the sensor node is sent to the monitoring station through ZigBee wireless network operated on 2.4 GHz unlicensed Industrial Scientific Medical (ISM band. The system is calibrated for use for ionizing radiation dose rate range of between naturally occurring background radiation and 1.02 mSv/h. Power consumption of the sensor node is kept low by operating the node ZigBee radio with low duty cycle: i.e by keeping the radio awake only during data transmission/reception. Two ATmega8 microcontrollers, one each for sensor node and the monitoring station, are programmed to perform interfacing, data processing, and control functions. The system range of coverage is 124m for outdoor (line of site deployment and 56.8m for indoor application where 5 brick walls separated the sensor node and the monitoring station. Range of coverage of the system is extendable via the use of ZigBee router(s.

  4. Doses from radiation exposure

    CERN Document Server

    Menzel, H G

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection's (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP's 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effecti...

  5. Cosmic background radiation: a hagiography

    Energy Technology Data Exchange (ETDEWEB)

    Abramo, Luis Raul [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica

    2009-07-01

    Full text. Cosmology advanced tremendously since Gamow and his students predicted the cosmic microwave background radiation, and since Penzias and Wilson observed it for the first time. The observations of the CMBR point to a Universe which is beautiful in its simplicity: the amazing richness of structures can be explained by a minimalistic set of well-known physical laws, a reasonable amount of free parameters, and 'natural' initial conditions which realize the idea of maximum entropy. We will revise the latest observations and show how the CMBR is presently allowing the study of the 'fine structure' of cosmological phenomena. We will also discuss the possibility of a detection of rotational modes (B-modes) in the polarization of the CMBR, that may reveal which processes (inflation ?) acted in the very early universe to endow it with these beautiful and simple properties. (author)

  6. Cosmic background radiation: a hagiography

    International Nuclear Information System (INIS)

    Full text. Cosmology advanced tremendously since Gamow and his students predicted the cosmic microwave background radiation, and since Penzias and Wilson observed it for the first time. The observations of the CMBR point to a Universe which is beautiful in its simplicity: the amazing richness of structures can be explained by a minimalistic set of well-known physical laws, a reasonable amount of free parameters, and 'natural' initial conditions which realize the idea of maximum entropy. We will revise the latest observations and show how the CMBR is presently allowing the study of the 'fine structure' of cosmological phenomena. We will also discuss the possibility of a detection of rotational modes (B-modes) in the polarization of the CMBR, that may reveal which processes (inflation ?) acted in the very early universe to endow it with these beautiful and simple properties. (author)

  7. EPR dosimetry of radiation background in the Urals region

    Energy Technology Data Exchange (ETDEWEB)

    Shishkina, E.A.; Degteva, M.O.; Shved, V.A. [Urals Research Center for Radiation Medicine, 48-A Vorovsky, Chelyabinsk 454076 (Russian Federation); Fattibene, P.; Onori, S. [Istituto Superiore di Sanita and Istituto Nazionale di Fisica Nucleare (Italy); Wieser, A. [GSF, Forschungszentrum fuer Umwelt und Gesundheit, Ingolstaedter Landstr (Germany); Ivanov, D.V.; Bayankin, S.N. [Institute of Metal Physics, Russian Academy of Sciences (Russian Federation); Knyazev, V.A.; Vasilenko, E.I.; Gorelov, M. [ZAO, Closed Corporation ' Company GEOSPETSECOLOGIA' (Russian Federation)

    2006-07-01

    Method of Electron Paramagnetic Resonance is extensively applied to individual retrospective dosimetry. The background dose is unavoidable component of cumulative absorbed dose in the tooth enamel accumulated during the lifetime of donor. Estimation of incidental radiation dose using tooth enamel needs in extraction of background dose. Moreover, the variation of background doses in the population is a limited factor for reliable detection of additional irradiation especially for low dose level. Therefore the accurate knowledge of the natural background radiation dose is a critical element of EPR studies of exposed populations. In the Urals region the method applies for such two large cohorts as the workers of Mayak (Ozersk citizens) and Techa River riverside inhabitants (rural population). Current study aimed to investigate the Urals radiation background detected by EPR spectrometry. For this aim two group of unexposed Urals residents were separated, viz: citizens of Ozersk and rural inhabitants of Chelyabinsk region. Comparison of two investigated territories has demonstrated that from the point of view of radiation background it is impossible to assume the Urals population as uniform. The reliable difference between the urban and rural residents has been found. The average background doses of Ozersk donors is in average 50 mGy higher than those detected for rural residents. The individual variability of background doses for Osersk has been higher than in the rural results. The difference in background dose levels between two population results in different limits of accidental dose detection and individualization. The doses for 'Mayak' workers (Ozyorsk citizens) can be classed as anthropogenic if the EPR measurements exceed 120 mGy for teeth younger than 40 years, and 240 mGy for teeth older than 70 years. The anthropogenic doses for Techa River residents (rural population) would be higher than 95 mGy for teeth younger than 50 years and 270 mGy for

  8. EPR dosimetry of radiation background in the Urals region

    International Nuclear Information System (INIS)

    Method of Electron Paramagnetic Resonance is extensively applied to individual retrospective dosimetry. The background dose is unavoidable component of cumulative absorbed dose in the tooth enamel accumulated during the lifetime of donor. Estimation of incidental radiation dose using tooth enamel needs in extraction of background dose. Moreover, the variation of background doses in the population is a limited factor for reliable detection of additional irradiation especially for low dose level. Therefore the accurate knowledge of the natural background radiation dose is a critical element of EPR studies of exposed populations. In the Urals region the method applies for such two large cohorts as the workers of Mayak (Ozersk citizens) and Techa River riverside inhabitants (rural population). Current study aimed to investigate the Urals radiation background detected by EPR spectrometry. For this aim two group of unexposed Urals residents were separated, viz: citizens of Ozersk and rural inhabitants of Chelyabinsk region. Comparison of two investigated territories has demonstrated that from the point of view of radiation background it is impossible to assume the Urals population as uniform. The reliable difference between the urban and rural residents has been found. The average background doses of Ozersk donors is in average 50 mGy higher than those detected for rural residents. The individual variability of background doses for Osersk has been higher than in the rural results. The difference in background dose levels between two population results in different limits of accidental dose detection and individualization. The doses for 'Mayak' workers (Ozyorsk citizens) can be classed as anthropogenic if the EPR measurements exceed 120 mGy for teeth younger than 40 years, and 240 mGy for teeth older than 70 years. The anthropogenic doses for Techa River residents (rural population) would be higher than 95 mGy for teeth younger than 50 years and 270 mGy for teeth older

  9. Natural background approach to setting radiation standards

    International Nuclear Information System (INIS)

    The suggestion has often been made that an additional radiation exposure imposed on humanity as a result of some important activity such as electricity generation would be acceptable if the exposure was small compared to the natural background. In order to make this concept quantitative and objective, we propose that small compared with the natural background be interpreted as the standard deviation (weighted with the exposed population) of the natural background. This use of the variation in natural background radiation is less arbitrary and requires fewer unfounded assumptions than some current approaches to standard-setting. The standard deviation is an easily calculated statistic that is small compared with the mean value for natural exposures of populations. It is an objectively determined quantity and its significance is generally understood. Its determination does not omit any of the pertinent data. When this method is applied to the population of the United States, it suggests that a dose of 20 mrem/year would be an acceptable standard. This is comparable to the 25 mrem/year suggested as the maximum allowable exposure to an individual from the complete uranium fuel cycle

  10. The Cosmic Background Radiation, 1997

    CERN Document Server

    Smoot, G F; Smoot, George; Scott, Douglas

    1997-01-01

    We summarise the current status of cosmic microwave background spectrum and anisotropy measurements, and their theoretical interpretation. This is the update of the mini-review for the 1997 web-version of the Review of Particle Properties.

  11. Background gamma terrestrial dose rate in Nigerian functional coal mines

    International Nuclear Information System (INIS)

    Measurements of the background terrestrial gamma radiation dose rates at different indoor and outdoor locations on the surfaces of Okpara underground and Okaba open cast mines in Nigeria were made. Two duly calibrated low-level gamma survey metres were held 1 m above the ground surface for these measurements. Measurements were also made at various locations inside the mine tunnel at the Okpara mine. Results indicate that the indoor background gamma radiation is comparable for both mining environments. The mean outdoor gamma dose rate determined for the Okaba mining environment is 10.4 nGy h-1 as against 11.7 nGy h-1 for Okpara. The ranges are 8.5-16.5 nGy h-1 for the Okpara measurements and 7.5-14.0 nGy h-1 for Okaba. Thus, the outdoor gamma dose rates appear to be generally lower at the Okaba open cast mine than at Okpara. The indoor dose rate values range from 11.0 to 17.0 nGy h-1 in both environments. These indoor measurements have nearly the same mean values 14.4 and 14.5 nGy h-1 for Okpara and Okaba environments, respectively. The indoor to outdoor dose rate ratio is 1.2 for Okpara and 1.4 for Okaba. These values are in consonance with the corresponding ratio given in literature. Dose rate measurements inside the mine tunnel at the Okpara mine are higher than the surface indoor measurements ranging from 13.5 to 20.5 nGy h-1 with a mean of 16.5 nGy h-1. The higher dose rate values measured in the mine tunnel are attributable to the concentration of radon in the 'closed' environment of the mine tunnel. (authors)

  12. Prenatal radiation doses from radiopharmaceuticals

    International Nuclear Information System (INIS)

    The radiopharmaceutical administration with diagnostic or therapeutic purpose during pregnancy implies a prenatal radiation dose. The dose assessment and the evaluation of the radiological risks become relevant due to the great radiosensitivity of the fetal tissues in development. This paper is a revision of the available data for estimating fetal doses in the cases of the more frequently used radiopharmaceuticals in nuclear medicine, taking into account recent investigation in placental crossover. The more frequent diagnostic and therapeutic procedures were analyzed according to the radiation doses implied. (author)

  13. The Cosmic Background Radiation, 1995

    CERN Document Server

    Smoot, G F

    1995-01-01

    Observations of the Cosmic Microwave background have provided many of the most powerful constraints we have on cosmology and events in the early universe. The spectrum and isotropy of CBR have long been a pillar of Big Bang models. The discovery of low levels on anisotropy has provided new information and tools for our understanding of the early universe. Further observations promise to enhance greatly our knowledge of processes in the early universe and cosmological parameters. We can anticipate rapid advance in this field up to and through the year 2000 which will dramatically focus our efforts in cosmology during the next millenium. This paper outlines the primary science likely to be discovered and defined by a vigorous airborne and ground-based program which should be strongly supported. If successfully excuted, we an anticipate a measurement of the CBR anisotropy spectrum to within a factor of two of the confidence level unavoidably set by cosmic variance. Even so, observations of the CBR are the best a...

  14. Investigation of ionizing sublethal doses effects on endogenous radioresistance background

    International Nuclear Information System (INIS)

    Sublethal doses of X-radiation (0.5 Gy and 1 Gy) caused the alterations in levels of main components of endogenous radioresistance background in rat tissues. There were demonstrated the decrease of serotonin content in stomach mocosa and spleen, adrenalin, noradrenalin and corticosteroids contents in adrenal glands, nonprotein thiols content in spleen and the increase of lipid peroxide level in serum on the 3-14 days after irradiation. The recovery of the investigated parameters was occurred to the 21 day after exposure. (author)

  15. Radiation background of Black Sea coastal environment

    International Nuclear Information System (INIS)

    The main objective of the project is to establish the level of radiation background and its sources in the Black Sea coastal environment. Marine samples will be collected in the Black Sea Coast area. The content of different radionuclides will be analyzed and the results will be used in a GIS application. The gamma emitting radionuclides will be measured in ultralow radiation background in the Romanian underground laboratory in salt mine in Slanic-Prahova. The main expected results is an up to date quantification of the radiation sources of the background of the Black Sea coastal environment. (authors)

  16. Radiation dose during angiographic procedures

    International Nuclear Information System (INIS)

    The use of angiographic procedures is becoming more prevalent as new techniques and equipment are developed. There have been concerns in the scientific community about the level of radiation doses received by patients, and indirectly by staff, during some of these radiological procedures. The purpose of this study was to assess the level of radiation dose from angiographic procedures to patient at the Ottawa Hospital, General Campus. Radiation dose measurements, using Thermo-Luminescent Dosimeters (TLDs), were performed on more than 100 patients on various procedures. The results show that while the patient dose from the great majority of angiographic procedures is less than 2 Gy, a significant number of procedures, especially interventional procedures may have doses greater than 2 Gy and may lead to deterministic effects. (author)

  17. Risk of cancer subsequent to low-dose radiation

    International Nuclear Information System (INIS)

    The author puts low dose irradiation risks in perspective using average background radiation doses for standards. He assailed irresponsible media coverage during the height of public interest in the Three-Mile Island Reactor incident

  18. Low radiation doses and antinuclear lobby

    International Nuclear Information System (INIS)

    The probability of mutations or diseases resulting from other than radiation causes is negatively dependent on radiation. Thus, for instance, the incidence of cancer, is demonstrably lower in areas with a higher radiation background. The hypothesis is expressed that there exist repair mechanisms for DNA damage which will repair the damage, and will give priority to those genes which are currently active. Survival and stochastic processes are not dependent on the overall repair of DNA but on the repair of critical function genes. New discoveries shed a different light on views of the linear dependence of radiation damage on the low level doses. (M.D.)

  19. Evaluation of radiation doses delivered in different chest CT protocols

    OpenAIRE

    Gorycki, Tomasz; Lasek, Iwona; Kamiński, Kamil; Studniarek, Michał

    2014-01-01

    Summary Background There are differences in the reference diagnostic levels for the computed tomography (CT) of the chest as cited in different literature sources. The doses are expressed either in weighted CT dose index (CTDIVOL) used to express the dose per slice, dose-length product (DLP), and effective dose (E). The purpose of this study was to assess the radiation dose used in Low Dose Computer Tomography (LDCT) of the chest in comparison with routine chest CT examinations as well as to ...

  20. Radiation dose estimates for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms

  1. Radiation doses - maps and magnitudes

    International Nuclear Information System (INIS)

    Three slide sets which can be used in lectures about radiation protection have been published by NRPB. Each consists of 20 slides with captions, and are available at a price of Pound 25 + VAT per set (UK), Pound 25 (Europe) or Pound 35 (rest of world). The slide sets are based on publications in the NRPB ''At-a-Glance'' series of broadsheets, which use illustrations as the main source of information, supported by captions; the series generally avoids the jargon of radiation protection, although each leaflet is based on scientific studies. Slide Set Number 1, ''Radiation Doses - Maps and Magnitudes'' based on the broadsheet of the same name shows visually the main sources of radiation exposure, natural and man-made, with emphasis on the range of doses as well as the averages. The enormous variation in doses across the country is clearly set out. (author)

  2. Radiation biology of low doses

    International Nuclear Information System (INIS)

    Present risk assessments and standards in radiation protection are based on the so-called linear no-threshold (LNT) dose - effect hypothesis, i.e., on a linear, proportional relationship between radiation doses and their effects on biological systems. This concept presupposes that any dose, irrespective of its level and time of occurrence, carries the same risk coefficient and, moreover, that no individual biological effects are taken into account. This contribution presents studies of low energy transfer (LET) radiation which deal with the risk of cancer to individual cells. According to the LNT hypothesis, the relationship for the occurrence of these potential effects should be constant over the dose range: successful repair, cell death, mutation with potential carcinogenesis. The results of the studies presented here indicate more differentiated effects as a function of dose application as far as damage to cellular DNA by ionizing radiation is concerned. At the same overall dose level, multiple exposures to low doses sometimes give rise to much smaller effects than those arising from one single exposure to the total dose. These adaptive effects of cells are known from other studies. The results of the study allow the conclusion to be drawn that non-linear relationships must be assumed to exist for the LET radiation considered. Correspondingly, the linear no-threshold hypothesis model should at least be reconsidered with respect to the low dose range in the light of recent biological findings. The inclusion of other topical research findings also could give rise to a new, revised, risk-oriented approach in radiological protection. (orig.)

  3. Natural background as an indicator of radiation-induced cancer

    International Nuclear Information System (INIS)

    A review of the estimates for radiation-induced cancer rates is presented including the recent high estimates of 8 x 10-3 cancers/man rem. Also reviewed are the external background radiation and cancer incidence for the USA by state. A regression analysis of these data reveals a negative correlation between radiation dose and cancer rate, but only with a correlation coefficient of 0.39. However, the cancer induction rate of 8 x 10-3/man rem is shown to describe the observed data with a probability of 1 in 14,000. Thus such high estimates of radiation-induced cancer rate are highly improbable. (UK)

  4. Radiation Leukemogenesis at Low Dose Rates

    International Nuclear Information System (INIS)

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures

  5. Radiation Leukemogenesis at Low Dose Rates

    Energy Technology Data Exchange (ETDEWEB)

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  6. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  7. Mammography and radiation dose

    International Nuclear Information System (INIS)

    The physical aspects of mammography have been investigated by a commissioned group of physicists at six centers in the United States. Continuous monitoring of the various centers has established sound reproducible data. The 1976 evaluation of 63 systems used in 29 screening centers indicated an average dose to the skin of 2.2 rads per exposure. With high resolution mammography in 2000 asymptomatic women over 35 years of age in a screening program at Emory University, 19 cancers were demonstrated; only one was palpable after localization by mammography, the only one with an axillary lymph node metastasis. Each study required an average of less than 1.5 rads to the fibroglandular tissue of the breasts. Mammography is most useful in the 35 to 50 year age group but should not be denied to younger symptomatic or asymptomatic women

  8. Background radiation levels and standards for protection from ionizing radiations

    International Nuclear Information System (INIS)

    Apart from the amount of radiation which a worker may receive while he performs his work, he is also exposed to radiation because of the nature of his environment. In other words, all individuals are subject to some irradiation even though they may not work with radioactive substances. This source of radiation exposure is often referred to as background radiation. In most environments, it is low-level and can be grouped into two natural and man-made. Background radiation provides the basis on which allowable exposure limits for workers are drawn

  9. Estimation of doses to the residents arising from inhalation of Rn-222, Tn-220 and their decay products in high background radiation area of Yangjiang

    International Nuclear Information System (INIS)

    Objective: The author reports on the estimate of average annual effective dose of the residents and absorbed dose in some human tissues and organs arising from inhalation of Rn-222, Tn-220 and their decay products in investigated areas. Methods: In order to calculate equilibrium factor F for Rn-222 and equilibrium equivalent concentration of Tn-222, the authors measure concentration of Rn-222 and Tn-220 by discrete sampling. Meanwhile, the authors measure the concentration of decay products of Rn-222 and Tn-220. Based on the equilibrium factor F of Rn-222 and equilibrium equivalent concentration of Tn-220, and the occupancy factor, writer estimated average annual effective doses and absorbed doses in some tissues and organs to the residents arising from inhalation of Rn-222, Tn-220 and their decay products in investigated areas. Results: The data based upon the results of integrated measurements on the concentration of Rn-222, Tn-220 in investigated areas. The average indoor and outdoor concentration of Rn-222 are 49.61 Bq·m-3 and 17.30 Bq·m-3 in HBRA, respectively, and 18.1 and 11.7 Bq·m-3 in CA, respectively. The average indoor and outdoor concentrations of Tn-220 are 95.16 Bq·m-3 and 9.3 Bq·m-3 in HBRA, respectively, and 12.4 and 8.1 Bq·m-3 in CA, respectively. The averages of equilibrium factors of Rn-222 for indoors and outdoors in HBRA are 0.46 and 0.53, respectively. The values in CA are 0.62 for indoors and 0.63 for outdoors, respectively. The value of equilibrium equivalent concentration of Tn-220 for indoors and outdoors in HBRA are 6.51 Bq·m-'3 and 0.79 Bq·m-3, respectively, and the values for CA are 0.66 Bq·m-3 and 0.33 Bq·m-3, respectively. Conclusion: The estimate of average annual effective dose to the residents arising from inhalation of Rn-222, Tn-220 and their decay products was 3.28 mSv·a-1 in HBRA, while that in CA was 1.03 mSv·a-1. The trachea-bronchial tree has the maximum absorbed dose in HBRA, the value is 5.40 mGy·a-1; lung has

  10. Occupational radiation doses to personnel

    International Nuclear Information System (INIS)

    Results are presented of 2-year measurements of personnel doses performed according to the program of Personel Dosimetry Centre of Leningrad Scientific Research Institute of Radiation Hygiene. Investigations were carried out in 7 regions of the USSR. Thermoluminescent ''Harshow 2000 D'' dosemeter and lithium fluoride detector were used. Mean dose for all occupational groups (defectoscopists, personnel of radioactive waste disposal, medical radiologists) is found to be not exceeding 10% of maximum permissible dose. It is concluded that working conditions of personnel tested meet the requirements of RPG-76 and sanitary rules BSR-72/80

  11. Ponderable soliton stars and cosmic background radiation

    Science.gov (United States)

    Chiu, Hong-Yee

    1990-01-01

    A theory is developed to describe the possible perturbations of the cosmic background radiation (CBR) by radiation from ponderable soliton stars in the early universe. Since the temperature of such stars is in the range of 10 to the 6th K, thermalization of their emitted radiation is possible. Two models are considered: one in which thermalization is ignored and one in which decoupling from thermalization is considered as a sudden process. The expected perturbation of the CBR is probably less than 1 percent and is largely around the short-wavelength end, in the form of point radio sources. This result is consistent with the most recent COBE measurements.

  12. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  13. Prenatal radiation exposure. Dose calculation

    International Nuclear Information System (INIS)

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  14. Evaluation of background ionising radiation levels within Gwagwalada town, Abuja

    International Nuclear Information System (INIS)

    The background ionising radiation levels within Gwagwalada Town, Abuja has been carried out using Atomtex 1117M Radiation Monitor. Readings were taken in twelve different locations. Twenty different readings were taken at each location and the mean equivalent dose rate was used to calculate the annual equivalent dose rate. A total of 240 measurements were taken across the 12 locations in the study Area. It was observed that the average dose equivalent varied from 0.105±0.008 μSv/h to 0.114±0.015μSv/h with a mean of 0.109±0.013 μSv/h. The mean value from Ungwan Bassa shows the highest equivalent dose rate while the equivalent dose rate from Phase 3 was the lowest. Ungwan Dodo, Ungwan Gwari recorded the second and third highest in-situ gamma radiation of 0.113±0.013 μSv/h and 0.112±0.012 μSv/h respectively. The result shows that the entire equivalent dose rates of all the locations were below the value of the Standard Background Radiation of 0.133 μSv/h. The study also revealed that the average annual equivalent dose rate is 0.192±0.005 mSv/y which is lower than the value of 1.0 mSv/yr averaged over five consecutive years according to the dose limit recommended by the International Commission on Radiological Protection (ICRP).

  15. Assessment of genetically significant doses to the Sofia population from natural gamma background

    International Nuclear Information System (INIS)

    Genetically significant dose to the population of Sofia city was assessed within a program covering larger urban communities in the country. Measurements were made of gamma background exposure rates in the gonadal region. Gonad doses were estimated using a screening factor of 0.73. Based on statistical data for total number of inhabitants and number of people of reproductive age, and on the mean annual gonad doses derived, calculations were made of genetically significant dose to the Sofia population. Base-line data were thus provided for an assessment of extra radiation dose resulting from occupational radiation exposure. (author)

  16. Controllable forms of natural background radiation

    International Nuclear Information System (INIS)

    RENA is a research programm into the controllable forms of natural background radiation, which cover the activities originating from the naturally occurring radionuclides enhanced by human intervention. In the RENA-program emphasis lays upon the policy aspects of environmental-hygienic, economical and governmental character. (H.W.). 15 refs.; 2 tabs

  17. Optimizing patient radiation dose in intervention procedures

    International Nuclear Information System (INIS)

    Although numerous patients derive great benefit from interventional procedures, a serious disadvantage associated with interventional procedures is patient radiation dose. Therefore, interventionalists should be aware of how to reduce the radiation dose to their patients. Currently, no conclusive method for reducing radiation dose is available for interventional procedures; hence, it is necessary to combine various methods. In addition, in order to reduce the radiation injury risk in interventional procedures, evaluation of patient radiation dose is essential. Generally, the tradeoff for a decrease in radiation dose is a loss in image performance. Therefore, optimization of radiation dose and image performance is important in interventional procedures

  18. Natural radiation dose to Gammarus

    International Nuclear Information System (INIS)

    The natural radiation dose rate to whole body and components of the Gammarus species (i.e., G. Tigrinus, G. Fasciatus and G. Daiberi) that occurs in the Hudson River is evaluated and the results compared with the upper limits of dose rates from man made sources to the whole body of the organisms. Methods were developed to study the distribution of alpha emitters from 226Ra plus daughter products in Gammarus using autoradiographic techniques, taking into account the amount of radon that escapes from the organisms. This methodology may be adapted to study the distribution of alpha emitters in contaminated tissues of plants and animals

  19. Ultraviolet Background Radiation from Cosmic Structure Formation

    OpenAIRE

    Miniati, Francesco; Ferrara, Andrea; White, Simon D. M.; Bianchi, Simone

    2003-01-01

    We calculate the contribution to the ultraviolet background (UVB) from thermal emission from gas shock heated by cosmic structure formation. Our main calculation is based on an updated version of Press-Schechter theory. It is consistent with a more empirical estimate based on the observed properties of galaxies and the observed cosmic star formation history. Thermal UVB emission is characterized by a hard spectrum extending well beyond 4 Ry. The bulk of the radiation is produced by objects in...

  20. Low radiation dose effects - is it a myth or reality?

    International Nuclear Information System (INIS)

    The effects of low-level radiation are very difficult to observe and highly controversial. The radiation doses that result from chronic exposures but does not manifest in deterministic effects could be categorised as low radiation doses. These doses result in only potential stochastic effects which are probabilistic in nature. On the other hand, high radiation doses result in both deterministic effects and stochastic effects. Stochastic effects from higher doses are extrapolated linearly to the low doses on the basis of a hypothesis that the dose response curve is linear at all doses. This is what is termed as 'Linear No Threshold (LNT)' hypothesis. Based on this hypothesis, all regulatory agencies stipulate regulatory limits for radiation workers and for members of public. Particularly, the optimisation principle of radiation protection 'as low as reasonably achievable (ALARA)' is insisted on by regulatory bodies resulting in the often asked question as to whether it is really evidence based hypothesis or fear based regulatory concern. Many studies of high background areas in India, Iran, Brazil, etc. have not resulted in proof of excess cancer risk at radiation doses encountered in these areas of high background. Studies on large population of radiation workers who have received higher radiation doses than stipulated in the earlier periods of radiation safety limits have also not shown any increase in cancer incidence ascribable to radiation dose. On the contrary studies have shown, documented by many reputed scientific journals, American Nuclear Society, World Nuclear Agency and BEIR Committee that at low radiation doses the dose response curve is not only nonlinear but also shows a threshold for any harmful effect. (author)

  1. Biology responses to low dose radiation

    International Nuclear Information System (INIS)

    Biology responses to low dose radiation is the most important problem of medical radiation and radiation protection. The especial mechanism of low dose or low dose rate induced cell responses, has been found independent with linear no-threshold model. This article emphasize to introduce low dose or low dose rate induced biology responses of adaptive response, by-effect, super-sensitivity and genomic instability. (authors)

  2. An investigation of gamma background radiation in Hamadan province, Iran

    International Nuclear Information System (INIS)

    The general population, everywhere in the world is exposed to a small dose of ionising radiation from natural sources. Stochastic effects such as cancer and genetic disorders are caused when living creatures are exposed to low doses. In Iran, it is measured in some cities, especially in high-background areas such as Ramsar, but so far there is no measurement in the Hamadan province. Hamadan is located in the west of Iran. Measurements were performed using a RDS-110 survey meter, CaSO4:Dy thermoluminescence dosimetries (TLDs) and a Harshaw 4000 TLD reader. To estimate the dose rate outdoors, four stations along the main directions (north, south, west and east) and one in the town centre were selected. Mean annual X and gamma equivalent dose in Hamadan province are 1.12±0.22 and 1.66±0.07 mSv, which related to RDS-110 survey meter and TLDs measurements, respectively. The TLDs and RDS-110 results are representative of the external photon radiation doses for the selected monitoring locations and for those locations for the hours during which the measurements were taken, respectively. Maximum and minimum of external photon radiation doses are related to Hamadan and Kaboudar-Ahang towns, respectively. According to the results of the study, it seems that the annual X and gamma equivalent dose in Hamadan province exceeded the global mean external exposure amounts by the UNSCEAR, and further studies are needed to measure internal exposures to determine the total environmental radiation level in Hamadan province. (authors)

  3. Polarization of the cosmic background radiation

    International Nuclear Information System (INIS)

    The results and technique of a measurement of the linear polarization of the Cosmic Background Radiation are discussed. The ground-based experiment utilizes a single horn (70 beam width) Dicke-type microwave polarimeter operating at 33 GHz (9.1 mm). Data taken between May 1978 and February 1980 from both the northern hemisphere (Berkeley Lat. = 380N) and the southern hemisphere (Lima Lat. = 120S) show the radiation to be essentially unpolarized over all areas surveyed. For the 380 declination data the 95% confidence level limit on a linearly polarized component is 0.3 mK for the average and 12 and 24 hour periods. Fitting all data gives the 95% confidence level limit on a linearly polarized component of 0.3 mK for spherical harmonics through third order. Constraints on various cosmological models are discussed in light of these limits

  4. Background internal dose rates of earthworm and arthropod species in the forests of Aomori, Japan

    International Nuclear Information System (INIS)

    In this study, we measured the concentrations of several natural radionuclides in samples of one earthworm species and 11 arthropod species collected from four coniferous forests in Rokkasho, Aomori Prefecture, Japan, and we assessed the background internal radiation dose rate for each species. Dose rates were calculated by using the radionuclide concentrations in the samples and dose conversion coefficients obtained from the literature. The mean internal dose rate in the earthworm species was 0.28 μGy h-1, and the mean internal dose rates in the arthropod species ranged between 0.036 and 0.69 μGy h-1. (author)

  5. Radiation doses from residual radioactivity

    International Nuclear Information System (INIS)

    requires knowing the location of the person to within about 200 m from the time of the explosion to a few weeks afterwards. This is an effort that might be comparable to the present shielding study for survivors. The sizes of the four exposed groups are relatively small; however, the number has been estimated only for those exposed to fallout in the Nishiyama district of Nagasaki. Okajima listed the population of Nishiyama as about 600 at the time of the bomb. No figures are available for the other three groups. The individual exposures from residual radiation may not be significant compared with the direct radiation at the time of the bomb. On the other hand, individuals with potential exposure from these sources are dubious candidates for inclusion in a cohort that was presumably not exposed. For comparison with organ doses estimated in other parts of this program, the exposure estimates are converted to absorbed dose in tissue. The first conversion of exposure to absorbed dose in air uses the factor rad in air 0.87 x exposure in R. UNSCEAR uses an average combined factor of 0.7 to convert absorbed dose in air to absorbed dose in tissue for the whole body. This factor accounts for the change in material (air to tissue) and for backscatter and the shielding afforded by other tissues of the body. No allowance for shielding by buildings has been included here. The cumulative fallout exposures given above become absorbed doses in tissue of 12 to 24 rad for Nagasaki and 0.6 to 2 rad for Hiroshima. The cumulative exposures from induced radioactivity become absorbed doses in tissue of 18 to 24 rad for Nagasaki and about 50 rad for Hiroshima. (author)

  6. Car-borne survey of natural background gamma dose rate in Canakkale region (Turkey)

    International Nuclear Information System (INIS)

    Natural background gamma radiation was measured along roads in the environs of Canakkale region by using a car-borne spectrometer system with a plastic gamma radiation detector. In addition, activity concentrations of 238U, 226Ra, 232Th and 40K in soil samples from the Canakkale region were determined by using a gamma spectrometer with an HPGe detector. A total of 92 856 data of the background gamma dose rate were collected for the Canakkale region. The background gamma dose rate of the Canakkale region was mapped using ArcGIS software, applying the geostatistical inverse distance-weighted method. The average and population-weighted average of the gamma dose are 55.4 and 40.6 nGy h-1, respectively. The corresponding average annual effective dose to the public ranged from 26.6 to 96.8 μSv. (authors)

  7. Estimation of radiation dose received by the radiation worker during F-18 FDG injection process

    OpenAIRE

    Jha, Ashish Kumar; Zade, Anand; Rangarajan, Venkatesh

    2011-01-01

    Background: The radiation dosimetric literature concerning the medical and non-medical personnel working in nuclear medicine departments are limited, particularly radiation doses received by radiation worker in nuclear medicine department during positron emission tomography (PET) radiopharmaceutical injection process. This is of interest and concern for the personnel. Aim: To measure the radiation dose received by the staff involved in injection process of Fluorine-18 Fluorodeoxyglucose (FDG)...

  8. Wound trauma alters ionizing radiation dose assessment

    Directory of Open Access Journals (Sweden)

    Kiang Juliann G

    2012-06-01

    Full Text Available Abstract Background Wounding following whole-body γ-irradiation (radiation combined injury, RCI increases mortality. Wounding-induced increases in radiation mortality are triggered by sustained activation of inducible nitric oxide synthase pathways, persistent alteration of cytokine homeostasis, and increased susceptibility to bacterial infection. Among these factors, cytokines along with other biomarkers have been adopted for biodosimetric evaluation and assessment of radiation dose and injury. Therefore, wounding could complicate biodosimetric assessments. Results In this report, such confounding effects were addressed. Mice were given 60Co γ-photon radiation followed by skin wounding. Wound trauma exacerbated radiation-induced mortality, body-weight loss, and wound healing. Analyses of DNA damage in bone-marrow cells and peripheral blood mononuclear cells (PBMCs, changes in hematology and cytokine profiles, and fundamental clinical signs were evaluated. Early biomarkers (1 d after RCI vs. irradiation alone included significant decreases in survivin expression in bone marrow cells, enhanced increases in γ-H2AX formation in Lin+ bone marrow cells, enhanced increases in IL-1β, IL-6, IL-8, and G-CSF concentrations in blood, and concomitant decreases in γ-H2AX formation in PBMCs and decreases in numbers of splenocytes, lymphocytes, and neutrophils. Intermediate biomarkers (7 – 10 d after RCI included continuously decreased γ-H2AX formation in PBMC and enhanced increases in IL-1β, IL-6, IL-8, and G-CSF concentrations in blood. The clinical signs evaluated after RCI were increased water consumption, decreased body weight, and decreased wound healing rate and survival rate. Late clinical signs (30 d after RCI included poor survival and wound healing. Conclusion Results suggest that confounding factors such as wounding alters ionizing radiation dose assessment and agents inhibiting these responses may prove therapeutic for radiation combined

  9. The evolution of the earth's background radiation level over geologic time

    International Nuclear Information System (INIS)

    This paper examines the evolution of the background radiation field in which primitive organisms evolved in terms of internal dose (from internal 40K) and external geologic dose (from gamma emitters in the crust of the earth), and how this may relate to dose-response in modern organisms. (author)

  10. Significance of epidemiological and cytogenetic studies on high background radiation area residents

    International Nuclear Information System (INIS)

    Some area in the world are known as background levels of radiation are 3-5 times higher than the world average. The studies in high background area (HBRA) residents provide important direct information on the biological and health effects of chronic low dose rate radiation. (author)

  11. Radiation dose of CT coronary angiography in clinical practice: Objective evaluation of strategies for dose optimization

    International Nuclear Information System (INIS)

    Background: CT coronary angiography (CTCA) is an evolving modality for the diagnosis of coronary artery disease. Radiation burden associated with CTCA has been a major concern in the wider application of this technique. It is important to reduce the radiation dose without compromising the image quality. Objectives: To estimate the radiation dose of CTCA in clinical practice and evaluate the effect of dose-saving algorithms on radiation dose and image quality. Methods: Effective radiation dose was measured from the dose-length product in 616 consecutive patients (mean age 58 ± 12 years; 70% males) who underwent clinically indicated CTCA at our institution over 1 year. Image quality was assessed subjectively using a 4-point scale and objectively by measuring the signal- and contrast-to-noise ratios in the coronary arteries. Multivariate linear regression analysis was used to identify factors independently associated with radiation dose. Results: Mean effective radiation dose of CTCA was 6.6 ± 3.3 mSv. Radiation dose was significantly reduced by dose saving algorithms such as 100 kV imaging (−47%; 95% CI, −44% to −50%), prospective gating (−35%; 95% CI, −29% to −40%) and ECG controlled tube current modulation (−23%; 95% CI, −9% to −34%). None of the dose saving algorithms were associated with a significant reduction in mean image quality or the frequency of diagnostic scans (P = non-significant for all comparisons). Conclusion: Careful application of radiation-dose saving algorithms in appropriately selected patients can reduce the radiation burden of CTCA significantly, without compromising the image quality.

  12. Down syndrome and the high background radiation areas of Kerala

    International Nuclear Information System (INIS)

    Down syndrome (DS) or trisomy-21 is a complex human clinical entity compromising several functional, structural and developmental features with wide variation in expression levels. The diagnosis is confirmed in majority of the cases by an extra dose of chromosome 21 by cytogenetics and occasionally it may be due to either chromosomal translocation or mosaicism (different cell lines in the same individual). The extra chromosome 21 is usually formed by non-disjunction during meiosis and is the most common numerical chromosomal anomaly compatible with life, as chromosome 21 is one of the smallest with relatively fewer genes most of which are reckoned to be non lethal. Though exact causative factors and pathogenesis is not fully understood, a rise in maternal age at conception coupled with deleterious environmental influence on an ageing ovum is a recognized risk factor. The de novo nature of trisomy-21 and its relatively higher frequency makes it a reliable indicator to assess the role of chronic high background radiation in inducing germ line mutation and congenital malformation. Many other relatively common congenital malformations with multifactorial origin may not have this de novo property and associating its incidence with the prevailing natural background radiation become more complex. In vitro studies have shown association between high intensity radiation and genetics effects but such a relationship so far was not established between DS and radiation

  13. Ultraviolet Background Radiation from Cosmic Structure Formation

    CERN Document Server

    Miniati, F; White, S D M; Bianchi, S; Miniati, Francesco; Ferrara, Andrea; White, Simon D. M.; Bianchi, Simone

    2004-01-01

    We calculate the contribution to the ultraviolet background (UVB) from thermal emission from gas shock heated by cosmic structure formation. Our main calculation is based on an updated version of Press-Schechter theory. It is consistent with a more empirical estimate based on the observed properties of galaxies and the observed cosmic star formation history. Thermal UVB emission is characterized by a hard spectrum extending well beyond 4 Ry. The bulk of the radiation is produced by objects in the mass range 10^11-13 M_solar, i.e. large galaxies and small groups. We compute a composite UVB spectrum due to QSO, stellar and thermal components. The ratio of the UVB intensities at the H and He Lyman limits increases from 60 at z=2 to more than 300 at z=6. A comparison of the resulting photoionization rates to the observed Gunn-Peterson effect at high redshifts constrains the escape fraction of ionizing photons from galaxies to be less than a few percent. Near 1 Ry, thermal and stellar emission are comparable amoun...

  14. Investigation of radiation skin dose in interventional cardiology

    International Nuclear Information System (INIS)

    Background - The study investigated the radiation skin doses for interventional patients in cardiology; two procedures which have the highest radiation dose are Radiofrequency Catheter Ablation (RFCA) and Percutaneous Transluminal Coronary Angioplasty (PTCA). Methods and Results - 56 patients were randomly selected and investigated; 23 patients in the RFCA group and 33 in the PTCA group. Skin and effective dose were calculated from Dose Area Product (DAP). Thermoluminescent Dosimetry was the second method of dose measurement used. Patients were followed-up for a three month period to check for possible skin reactions resulting from the radiation dose during the procedure. Radiation skin doses in 14 patients were calculated to be more than 1 Gy, including three patients who received more than 2 Gy, the threshold dose for deterministic effects of radiation. 7 patients (12.5%) reported skin reactions as a result of the radiation received to their backs during the procedure. Mean DAP and estimated effective doses were 105 Gycm2 and 22.5 mSv for RFCA, and 32 Gycm2 and 6.2 mSv for PTCA procedures respectively. Conclusion - Complex procedures in Interventional Cardiology can exceed the threshold level for deterministic effects in the skin. (author)

  15. Background radiation at Ooty in Nilgiri district of Tamil Nadu

    International Nuclear Information System (INIS)

    The systematic study of background radiation and the distribution of radionuclides in the environment of Ooty in the Nilgiri district of Tamil Nadu was undertaken. Soil samples were collected and detailed analysis for their radioactivity content by gamma ray spectrometry was carried out. The average activity of 232Th, 238U and 40K was estimated from the photo peaks. The thorium to uranium ratio was also found out and the mean value of this ratio was 1.876 with mean deviation 1.964. The analysis also revealed that the thorium concentration was 4.4 times higher than that of world average value. Uranium concentration was higher by a factor of 1.7. However, the concentration of potassium was much lesser than that of world average. An attempt was made to compare the dose calculated from total activity with that measured by environmental radiation dosimeter and the results are given. (author). 11 refs., 1 tab

  16. Doses from Medical Radiation Sources

    Science.gov (United States)

    ... Radiation Protection and Measurements; NCRP Report 124; 1996. United Nations Scientific Committee on the Effects of Atomic Radiation. ... ionizing radiation, Vol. 1: Sources. New York, NY: United Nations Publishing; 2000. Russell JR, Stabin MG, Sparks RB, ...

  17. Thermal radiation of various gravitational backgrounds

    OpenAIRE

    Akhmedov, Emil T.; Akhmedova, Valeria; Pilling, Terry; Singleton, Douglas

    2006-01-01

    We present a simple and general procedure for calculating the thermal radiation coming from any stationary metric. The physical picture is that the radiation arises as the quasi--classical tunneling of particles through a gravitational barrier. We show that our procedure can reproduce the results of Hawking and Unruh radiation. We also show that under certain kinds of coordinate transformations the temperature of the thermal radiation will change in the case of the Schwarzschild black holes. ...

  18. Ultraviolet background radiation from cosmic structure formation

    Science.gov (United States)

    Miniati, Francesco; Ferrara, Andrea; White, Simon D. M.; Bianchi, Simone

    2004-03-01

    We calculate the contribution to the ultraviolet background (UVB) from thermal emission from gas shock heated during cosmic structure formation. Our main calculation is based on an updated version of Press-Schechter theory. It is consistent with a more empirical estimate based on the observed properties of galaxies and the observed cosmic star formation history. Thermal UVB emission is characterized by a hard spectrum extending well beyond 4 Ryd. The bulk of the radiation is produced by objects in the mass range 1011-1013 Msolar, i.e. large galaxies and small groups. We compute a composite UVB spectrum due to quasi-stellar object (QSO), stellar and thermal components. The ratio of the UVB intensities at the H and He Lyman limits increases from 60 at z= 2 to more than 300 at z= 6. A comparison of the resulting photoionization rates to the observed Gunn-Peterson effect at high redshifts constrains the escape fraction of ionizing photons from galaxies to be less than a few per cent. Near 1 Ryd, thermal and stellar emission are comparable, amounting to about 10, 20 and 35 per cent of the total flux at redshifts of 3, 4.5 and higher, respectively. However, near the ionization threshold for He II, the thermal contribution is much stronger. It is comparable to the QSO intensity already at redshift ~3 and dominates at redshifts above 4. Thermal photons alone are enough to produce and sustain He II reionization already at z~ 6. We discuss the possible implications of our results for the thermal history of the intergalactic medium, in particular for He II reionization.

  19. Annual radiation dose in thermoluminescence dating

    International Nuclear Information System (INIS)

    The annual radiation dose in thermoluminescence dating has been discussed. The autor gives an entirely new concept of the enviromental radiation in the thermoluminescence dating. Methods of annual dose detemination used by author are dating. Methods of annual dose determination used by author are summed up, and the results of different methods are compared. The emanium escapiug of three radioactive decay serieses in nature has been considered, and several determination methods are described. The contribution of cosmic rays for the annual radiation dose has been mentioned

  20. Calculating the background radiation in the vicinity of the beam catchers of the ELBE radiation source

    International Nuclear Information System (INIS)

    The ELBE radiation sources comprises beam catchers in the experimenting sites which absorb the primary electron beam as well as the generated secondary radiation. The beam catcher consists of an ultrapure graphite absorber enclosed in a water-cooled stainless steel shell. Background radiation is shielded by iron, lead and heavy concrete. The beam parameters and the position of the beam catchers differ between experimenting sites. In order to determine the dose dependence of photon and neutron fluence and the dose equivalent at the cooling shell of the beam catcher, simulations were carried out using the FLUKA code. Radiation energies of 20 MeV and 50 MeV and electron fluxes of 1 mA were considered. The spatial and energetic distributions of the dose rate equivalent provide a basis for dimensioning of the radiation shields. The calculated distributions of the energy dose rate in the beam catcher serve as a basis for assessing thermal loads on materials and for designing the cooling system. (orig.)

  1. A background radiation survey along the transcontinental railway in Australia

    International Nuclear Information System (INIS)

    This article reports a survey, carried out during a period from October 31 to November 3, 1994 in Australia, as well as some basic techniques of train-borne measurements for estimating outdoor gamma-ray dose rates. Surface rock and bedrock data are presented for convenience for geological analysis. Cosmic-ray dose rates estimated from atmospheric pressure data are also presented for researchers who are interested in total background radiation dose rates. It was found that gamma levels can be high in the western area. The dose rate data were based on the shielding correction factor evaluated at platforms in many stations. To confirm the validity of this method, the data from train-borne surveys in central Japan were compared with the present Australian data. There were, to some extent, correlations between them. The present study suggests that the train-borne measurements are useful for surveying wide area in a short time with an error of about 20%. (N.K.)

  2. Low doses effects and gamma radiations low dose rates

    International Nuclear Information System (INIS)

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  3. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  4. Human exposure to high natural background radiation: what can it teach us about radiation risks?

    Energy Technology Data Exchange (ETDEWEB)

    Hendry, Jolyon H; Sohrabi, Mehdi; Burkart, Werner [Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna (Austria); Simon, Steven L [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Wojcik, Andrzej [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Cardis, Elisabeth [Centre for Research in Environmental Epidemiology (CREAL), Municipal Institute of Medical Research (IMIM-Hospital del Mar) and CIBER Epidemiologia y Salud Publica - CIBERESP, Barcelona (Spain); Laurier, Dominique; Tirmarche, Margot [Radiobiology and Epidemiology Department, Radiological and Human Health Division, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses (France); Hayata, Isamu [National Institute of Radiological Sciences, Chiba (Japan)], E-mail: jhendry2002uk@yahoo.com

    2009-06-01

    Natural radiation is the major source of human exposure to ionising radiation, and its largest contributing component to effective dose arises from inhalation of {sup 222}Rn and its radioactive progeny. However, despite extensive knowledge of radiation risks gained through epidemiologic investigations and mechanistic considerations, the health effects of chronic low-level radiation exposure are still poorly understood. The present paper reviews the possible contribution of studies of populations living in high natural background radiation (HNBR) areas (Guarapari, Brazil; Kerala, India; Ramsar, Iran; Yangjiang, China), including radon-prone areas, to low dose risk estimation. Much of the direct information about risk related to HNBR comes from case-control studies of radon and lung cancer, which provide convincing evidence of an association between long-term protracted radiation exposures in the general population and disease incidence. The success of these studies is mainly due to the careful organ dose reconstruction (with relatively high doses to the lung), and to the fact that large-scale collaborative studies have been conducted to maximise the statistical power and to ensure the systematic collection of information on potential confounding factors. In contrast, studies in other (non-radon) HNBR areas have provided little information, relying mainly on ecological designs and very rough effective dose categorisations. Recent steps taken in China and India to establish cohorts for follow-up and to conduct nested case-control studies may provide useful information about risks in the future, provided that careful organ dose reconstruction is possible and information is collected on potential confounding factors.

  5. Potential radiation doses from 1994 Hanford Operations

    International Nuclear Information System (INIS)

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site

  6. Potential radiation doses from 1994 Hanford Operations

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  7. Microbiology of the surface water samples in the high background radiation areas of Ramsar, Iran

    International Nuclear Information System (INIS)

    Residents of high background radiation areas of Ramsar have lived in these areas for many generations and received radiation doses much higher than the dose limit recommended by ICRP for radiation workers. The radioactivity of the high background radiation areas of Ramsar is reported to be due to 226Ra and its decay products, which have been brought to the surface by the waters of hot springs. Over the past years the department has focused on different aspects of the health effects of the elevated levels of natural radiation in Ramsar. This study was aimed to perform a preliminary investigation on the bioeffects of exposure to elevated levels of natural radiation on the microbiology of surface water samples. Water samples were collected from surface water streams in Talesh Mahalleh district, Ramsar as well as a nearby area with normal levels of background radiation. Only two strains of bacteria, that is, Providencia stuartii and Shimwellia blattae, could be isolated from the water samples collected from high background radiation areas, while seven strains (Escherichia coli, Enterobacter asburiae, Klebsiella pneumoniae, Shigella dysenteriae, Buttiauxella agerstis, Tatumella punctuata and Raoultella ornithinolytica) were isolated from the water samples collected from normal background radiation areas. All the bacteria isolated from water samples of high and normal background radiation areas were sensitive to ultraviolet radiation, heat, betadine, alcohol, and deconex. Although other investigators have reported that bacteria isolated from hot springs show radioresistance, the results reported here do not reveal any adaptive response. (author)

  8. Mapping the exposure of the Brazilian population to natural background radiation - cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rochedo, Elaine R.R., E-mail: elaine@ird.gov.br [Instituto de Radioprotecao e Dosimetria (lRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Salles, Krause C.S.; Prado, Nadya M.C., E-mail: krausesalles@yahoo.com.br, E-mail: nadya@ime.ib.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The main objective of this work is to statically and graphically describe the exposure of the Brazilian population to natural background radiation. in this stage, doses due to cosmic rays is being assessed based on sea level dose rates, corrected by latitude and altitude, according to the model recommended by UNSCEAR. In this work, the doses were estimated for ali Brazilian municipalities with more than 100.000 inhabitants. The 253 municipalities selected for this study include about 52% of the Brazilian population. Average dose rate was estimated to be about 50 n Sv/h with a variation coefficient of 31%. The estimated doses have shown a strong influence of altitude on dose rates, with a correlation coefficient of 0,998 for ao exponential fit. This result confirms previous studies that show a large effect of the altitude 00 exposure from cosmic radiation. Considering the same occupation and shielding conditions used by UNSCEAR as global averages, average annual dose was estimated to be 0,37 (0,24 - 0,76) mSv/y, very close to UNSCEAR worldwide average of 0,38 (0,3 - 1,0) mSv/y. (author)

  9. On epidemiological studies of high background radiation areas

    International Nuclear Information System (INIS)

    Until recently, the epidemiological studies of high background radiation areas (HBRA) have 'received relatively little attention', and sometimes even ignored, e.g. UNSCEAR omitted the studies in Kerala from a table of epidemiological studies of radiation and cancer. Authoritative reports on the effects from ionizing radiation such as those from the National Research Council, UNSCEAR, and ICRP instead rely on other sources of information - most notably the A-bomb survivor cohort, medically irradiated cohorts, cohorts of miners exposed to high levels of radon, and the residential radon case-control studies. No doubt this is because HBRA studies typically have had relatively large potential for bias and confounding, low statistical power, and limitations relating to dosimetry. However, great efforts have been made recently to improve HBRA studies, particularly in Kerala and the Yuangjiang area of China. It is anticipated that some of these studies may be able to provide important direct information on health effects from chronic low-dose radiation exposures, a primary concern for radiation protection. In fact, the width of 90% confidence intervals for ERR/Gy reported for incidence from the Kerala study (-0.58, 0.46), and mortality in Yangjiang (-0.67, 0.69), is already comparable to that for some prominent studies of low-dose rate health effects such as of incidence in the Techa River Cohort (0.3, 1.9) and of mortality in the 15-Country Nuclear Workers Study (0.27, 1.80). However, it should be stressed that these intervals do not account for non-sampling sources of uncertainty such as errors in dosimetry and residual confounding. This presentation will focus on ways to further improve HBRA studies around the world, with particular emphasis on the ones in India and China. This will include ways to increase statistical power - such as ways to combine information from different HBRA studies, and possible extensions of the studies such as those designed to better

  10. Health effects in residents of high background radiation regions

    International Nuclear Information System (INIS)

    Studies carried out in various countries and by the World Health Organization on health effects of exposure of populations to high levels of natural background radiation result in observations of different significance. There are indications of changes in chromosome aberration rate; Down's syndrome has been observed to be possibly related to radiation exposure; malignant neoplasms in bone apparently correspond to high concentrations of 226Ra in drinking water. Although various researchers have looked for them, effects have not been demonstrated regarding cancer mortality (other than malignant neoplasms involving bone), gross congenital abnormalities, fertility index, growth and development, hereditary disease (other than the possibility of Down's syndrome), infant mortality, longevity, multiple births, sex ratio, or spontaneous abortion rate. On the basis of reported data clear quantitative conception of the risk of low-level radiation from natural sources could not be developed and feasibility studies of further epidemiological programmes should be organized. The possibility of reducing the collective population dose from natural sources could be further explored and a basis for necessary legal action on establishment of standards for possible sources of natural radiation, such as building materials, fertilizers, natural gas and water, might be developed. (author)

  11. Occupational radiation doses during interventional procedures

    Science.gov (United States)

    Nuraeni, N.; Hiswara, E.; Kartikasari, D.; Waris, A.; Haryanto, F.

    2016-03-01

    Digital subtraction angiography (DSA) is a type of fluoroscopy technique used in interventional radiology to clearly visualize blood vessels in a bony or dense soft tissue environment. The use of DSA procedures has been increased quite significantly in the Radiology departments in various cities in Indonesia. Various reports showed that both patients and medical staff received a noticeable radiation dose during the course of this procedure. A study had been carried out to measure these doses among interventionalist, nurse and radiographer. The results show that the interventionalist and the nurse, who stood quite close to the X-ray beams compared with the radiographer, received radiation higher than the others. The results also showed that the radiation dose received by medical staff were var depending upon the duration and their position against the X-ray beams. Compared tothe dose limits, however, the radiation dose received by all these three medical staff were still lower than the limits.

  12. Background internal dose rates of earthworm and arthropod species in the forests of Aomori, Japan

    International Nuclear Information System (INIS)

    We measured naturally occurring radionuclides in samples from an earthworm species and 11 arthropod species collected in coniferous forests in Rokkasho, Aomori, Japan, to assess background internal radiation dose rates. The rates were calculated from the measured concentrations of the radionuclides and dose coefficients from the literature. The mean internal dose rate of composite earthworm samples was 0.35 μGy h-1, whereas the mean dose rates of the arthropod samples ranged from 36 nGy h-1 to 0.79 μGy h-1. Polonium-210 was the radionuclide with the highest contribution to the internal dose rate for all the species, except the longhorn beetle. (author)

  13. Integrated Molecular Analysis Indicates Undetectable Change in DNA Damage in Mice after Continuous Irradiation at ~ 400-fold Natural Background Radiation

    OpenAIRE

    Olipitz, Werner; Wiktor-Brown, Dominika; Shuga, Joe; Pang, Bo; McFaline, Jose; Lonkar, Pallavi; Thomas, Aline; Mutamba, James T; Greenberger, Joel S.; Samson, Leona D.; Dedon, Peter C; Yanch, Jacquelyn C.; Engelward, Bevin P.

    2012-01-01

    Background: In the event of a nuclear accident, people are exposed to elevated levels of continuous low dose-rate radiation. Nevertheless, most of the literature describes the biological effects of acute radiation. Objectives: DNA damage and mutations are well established for their carcinogenic effects. We assessed several key markers of DNA damage and DNA damage responses in mice exposed to low dose-rate radiation to reveal potential genotoxic effects associated with low dose-rate radiation....

  14. Dose Assurance in Radiation Processing Plants

    DEFF Research Database (Denmark)

    Miller, Arne; Chadwick, K.H.; Nam, J.W.

    1983-01-01

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the...... radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing....

  15. Dose assurance in radiation processing plants

    International Nuclear Information System (INIS)

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing. (author)

  16. Dose assurance in radiation processing plants

    Science.gov (United States)

    Miller, A.; Chadwick, K. H.; Nam, J. W.

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing.

  17. Radiation Doses from Computed tomography in Iraq

    International Nuclear Information System (INIS)

    Radiation doses to Patient during CT scanner and the radiological risk are significant. Patient dose survey has been conducted to investigate the Iraq patient radiation doses received in CT scanners in order to established reference dose levels. These doses are Entrance Surface Dose (ESD),computed tomography dose index(CTDI)), and dose length product (DLP). Two CT scanner were investigated in this study were, Siemens Somatom Plus 4, located in at medical city of Baghdad, and Philips, Optimus located in privet hospital at Baghdad. ESD were measured by TLD and Dosimax ionization chamber for head, chest, and abdomen for both sex and different weights. The TLD results were higher than that measured with Dosimax due to scattered radiation .The scattering factor which is the ratio between dose measured by TLD and that measured by ionization chamber range between (1.14-1.34) compare to international measurement which is range between (1.1-1.5).The (ESD) measured by the two methods were agree well after the subtraction of scattering dose, and have compered with original research. Dose profile were measured using array of TLD chips shows that its full width at half maximum is(7.99 mm) approximately equal the slice thickness(8 mm). Our results compare with reference level at U.K, European Guidelines and

  18. Structures in the microwave background radiation

    CERN Document Server

    Meissner, K A; Ruszczycki, B

    2012-01-01

    We compare the actual WMAP maps with artificial, purely statistical maps of the same harmonic content to argue that there are, with confidence level 99.7 %, ring-type structures in the observed cosmic microwave background.

  19. Spectral Analysis in High Radiation Space Backgrounds with Robust Fitting

    Science.gov (United States)

    Lasche, G. P.; Coldwell, R. L.; Nobel, L. A.; Rester, A. C.; Trombka, J. I.

    1997-01-01

    Spectral analysis software is tested for its ability to fit spectra from space. The approach, which emphasizes the background shape function, is uniquely suited to the identification of weak-strength nuclides in high-radiation background environments.

  20. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  1. Plastic for indicating a radiation dose

    International Nuclear Information System (INIS)

    A plastic film suitable for indicating radiation dose contains a chlorine polymer, at least one acid sensitive coloring agent and a plasticizer. The film undergoes a distinct change of color in response to a given radiation dose, the degree of change proportional to the total change. These films may be stored for a long period without loss of sensitivity, and have good color stability after irradiation. (auth)

  2. Development of radiation dose assessment system for radiation accident (RADARAC)

    International Nuclear Information System (INIS)

    The possibility of radiation accident is very rare, but cannot be regarded as zero. Medical treatments are quite essential for a heavily exposed person in an occurrence of a radiation accident. Radiation dose distribution in a human body is useful information to carry out effectively the medical treatments. A radiation transport calculation utilizing the Monte Carlo method has an advantageous in the analysis of radiation dose inside of the body, which cannot be measured. An input file, which describes models for the accident condition and quantities of interest, should be prepared to execute the radiation transport calculation. Since the accident situation, however, cannot be prospected, many complicated procedures are needed to make effectively the input file soon after the occurrence of the accident. In addition, the calculated doses are to be given in output files, which usually include much information concerning the radiation transport calculation. Thus, Radiation Dose Assessment system for Radiation Accident (RADARAC) was developed to derive effectively radiation dose by using the MCNPX or MCNP code. RADARAC mainly consists of two parts. One part is RADARAC-INPUT, which involves three programs. A user can interactively set up necessary resources to make input files for the codes, with graphical user interfaces in a personnel computer. The input file includes information concerning the geometric structure of the radiation source and the exposed person, emission of radiations during the accident, physical quantities of interest and so on. The other part is RADARAC-DOSE, which has one program. The results of radiation doses can be effectively indicated with numerical tables, graphs and color figures visibly depicting dose distribution by using this program. These results are obtained from the outputs of the radiation transport calculations. It is confirmed that the system can effectively make input files with a few thousand lines and indicate more than 20

  3. Correlation between regional oncological mortality and natural radiation background in the CSR

    International Nuclear Information System (INIS)

    On the basis of published geological data (maps) an attempt was made to correlate the regional distribution of oncological mortality with the dose rate of the natural radiation background in the Czech Socialist Republic. No relationship was observed between the two parameters in the whole area of the CSR; for districts with an increased dose rate of the background or with high mortality the statistical relationship proved an inverse relationship: the higher the background dose rate the lower the oncological mortality and vice versa. (author). 3 figs., 1 tab., 22 refs

  4. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  5. The evolution of the earth's background radiation field over the past four billion years

    International Nuclear Information System (INIS)

    It seems likely that life has evolved under an evolving background radiation field. The radiation dose from the earth itself has changed over geologic time as the crust of the earth has become enriched in radioactive elements and as those elements subsequently decayed away. The radiation dose from biologic potassium has steadily decreased with time according to the law of radioactive decay. Because of these two effects, it seems likely that early life was exposed to nearly ten times current radiation dose rates. In addition to these sources, cosmic and cosmogenic sources may have periodically raised radiation dose rates to very high levels at times in the past. These sources of radiation exposure are not well understood at present, but are the subject of ongoing research. Modern organisms may be more resistant to the adverse effects of radiation because mutation repair mechanisms evolved under higher radiation levels. This may help to shed some light on the current controversy regarding the biological effects of exposure to low levels of ionizing radiation, or it may simply help us to understand why cancer is primarily a disease of the elderly rather than the middle-aged. In addition, changing radiation levels over geologic time may help to reconcile molecular models of evolution with what is currently known from the fossil record. It may also be that this reconciliation can be used to validate the radiation dose rate models described above. Only time and further research will tell

  6. Radiation dose in digital subtraction angiography

    International Nuclear Information System (INIS)

    A phantom study using thermoluminescence dosimeter was undertaken to compare radiation doses from five different imaging systems used in digital subtraction angiography (DSA). Red bone marrow and maximum skin doses were generally high. Depending upon the system, the maximum skin dose ranged from 202 to 53 mGy. Based on these results, the maximum skin dose was obtained in the clinical setting. The average dose in patients was 175 mGy for arterial DSA and 250 mGy for intravenous DSA. For radiologists, radiation doses to the lens, fingers of the right hand, and thyroid gland were 0.34, 0.27, and 0.4 mGy, respectively, in the case of mannual injection of contrast media; and undetectable, 0.029, and 0.0143 mGy, respectively, in the case of automatic injection. (Namekawa, K.)

  7. Dose mapping for documentation of radiation sterilization

    DEFF Research Database (Denmark)

    Miller, A.

    1999-01-01

    The radiation sterilization standards EN 552 and ISO 11137 require that dose mapping in real or simulated product be carried in connection with the process qualification. This paper reviews the recommendations given in the standards and discusses the difficulties and limitations of practical dose...

  8. Evaluation of radiation doses from radioactive drugs

    International Nuclear Information System (INIS)

    Radioactive new drugs are regulated by the Food and Drug Administration (FDA) in the United States. Before a new drug can be marketed it must have an approved New Drug Application (NDA). Clinical investigations of a radioactive new drug are carried out under a Notice of Claimed Investigational Exemption for a New Drug (IND), submitted to the FDA. In the review of the IND, radiation doses are projected on the basis of experimental data from animal models and from calculations based upon radiation characteristics, predicted biodistribution of the drug in humans, and activity to be administered. FDA physicians review anticipated doses and prevent clinical investigations in humans when the potential risk of the use of a radioactive substance outweighs the prospect of achieving beneficial results from the administration of the drug. In the evaluation of an NDA, FDA staff attempt to assure that the intended diagnostic or therapeutic effect is achievable with the lowest practicable radiation dose. Radiation doses from radioactive new drugs are evaluated by physicians within the FDA. Important radioactive new drugs are also evaluated by the Radiopharmaceuticals Advisory Committee. FDA also supports the Center for Internal Radiation Dosimetry at Oak Ridge, to provide information regarding in vivo distribution and dosimetry to critical organs and the whole body from radioactive new drugs. The process for evaluation of radiation doses from radioactive new drugs for protection against use of unnecessary radiation exposure by patients in nuclear medicine procedures, a

  9. Radiation doses - maps and magnitudes

    International Nuclear Information System (INIS)

    A NRPB leaflet in the 'At-a-Glance' Series presents information on the numerous sources and magnitude of exposure of man to radiation. These include the medical use of radiation, radioactive discharges to the environment, cosmic rays, gamma rays from the ground and buildings, radon gas and food and drink. A Pie chart represents the percentage contribution of each of those sources. Finally, the terms becquerel, microsievert and millisievert are explained. (U.K.)

  10. Car-borne survey of natural background gamma dose rate in Çanakkale region, Turkey.

    Science.gov (United States)

    Turhan, S; Arıkan, I H; Oğuz, F; Özdemir, T; Yücel, B; Varinlioğlu, A; Köse, A

    2012-01-01

    Natural background gamma radiation was measured along roads in the environs of Çanakkale region by using a car-borne spectrometer system with a plastic gamma radiation detector. In addition, activity concentrations of ²³⁸U, ²²⁶Ra, ²³²Th and ⁴⁰K in soil samples from the Çanakkale region were determined by using a gamma spectrometer with an HPGe detector. A total of 92,856 data of the background gamma dose rate were collected for the Çanakkale region. The background gamma dose rate of the Çanakkale region was mapped using ArcGIS software, applying the geostatistical inverse distance-weighted method. The average and population-weighted average of the gamma dose are 55.4 and 40.6 nGy h⁻¹, respectively. The corresponding average annual effective dose to the public ranged from 26.6 to 96.8 µSv. PMID:21362693

  11. The Cosmic Background Radiation, Snowmass Workshop

    OpenAIRE

    Smoot, George F.

    1995-01-01

    Observations of the Cosmic Microwave background have provided many of the most powerful constraints we have on cosmology and events in the early universe. The spectrum and isotropy of CBR have long been a pillar of Big Bang models. The discovery of low levels on anisotropy has provided new information and tools for our understanding of the early universe. Further observations promise to enhance greatly our knowledge of processes in the early universe and cosmological parameters. We can antici...

  12. THE HIGH BACKGROUND RADIATION AREA IN RAMSAR IRAN: GEOLOGY, NORM, BIOLOGY, LNT, AND POSSIBLE REGULATORY FUN

    Energy Technology Data Exchange (ETDEWEB)

    Karam, P. A.

    2002-02-25

    The city of Ramsar Iran hosts some of the highest natural radiation levels on earth, and over 2000 people are exposed to radiation doses ranging from 1 to 26 rem per year. Curiously, inhabitants of this region seem to have no greater incidence of cancer than those in neighboring areas of normal background radiation levels, and preliminary studies suggest their blood cells experience fewer induced chromosomal abnormalities when exposed to 150 rem ''challenge'' doses of radiation than do the blood cells of their neighbors. This paper will briefly describe the unique geology that gives Ramsar its extraordinarily high background radiation levels. It will then summarize the studies performed to date and will conclude by suggesting ways to incorporate these findings (if they are borne out by further testing) into future radiation protection standards.

  13. Cosmic far-ultraviolet background radiation

    International Nuclear Information System (INIS)

    It is demonstrated that interstellar dust grains forward-scatter far-ultraviolet radiation extremely strongly: the value of the Henyey-Greenstein scattering parameter g at 1425 A is shown to be at least 0.75; the actual value is very likely greater than 0.9. Also, observations of the Virgo cluster of galaxies sets a limit tau > 2 x 1025 sec on the life-time of 17-20 eV/c2 heavy neutrinos, if such neutrinos are responsible for the gravitational binding of the cluster. (Auth.)

  14. Radiation Doses from some Egyptian industrial products

    International Nuclear Information System (INIS)

    The annual dose equivalent from exposures to radionuclides contained in some industrial ores and their waste products, were estimated using collective data from these industrial materials. This study takes in consideration industrial ores and their waste products. The materials studied were iron and steel products, cement manufacture, phosphate fertilizers, phosphoric acid production as well as ores used in ceramic production and waste. An integrated method was used in mathematical assumption form for the purpose of calculating the radiation dose equivalent. The calculated values of the annual radiation doses for workers were found to be significant. These results are discussed in the light of international exposure limits for workers

  15. Radiation dose from cigarette tobacco

    International Nuclear Information System (INIS)

    The radioactivity in tobacco leaves collected from 15 different regions of Greece before cigarette production was studied in order to estimate the effective dose from cigarette tobacco due to the naturally occurring primordial radionuclides, such as 226Ra and 210Pb of the uranium series and 228Ra of the thorium series and or man-made radionuclides, such as 137Cs of Chernobyl origin. Gamma-ray spectrometry was applied using Ge planar and coaxial type detectors of high resolution and high efficiency. It was concluded that the annual effective dose due to inhalation for adults (smokers) for 226Ra varied from 42.5 to 178.6 μ Sv y-1 (average 79.7 μ Sv y-1), while for 228Ra from 19.3 to 116.0 μ Sv y-1 (average 67.1 μ Sv y-1) and for 210Pb from 47.0 to 134.9 μ Sv y-1 (average 104.7 μ Sv y-1), that is the same order of magnitude for each radionuclide. The sum of the effective doses of the three natural radionuclides varied from 151.9 to 401.3 μ Sv y-1 (average 251.5 μ Sv y-1). The annual effective dose from 137Cs of Chernobyl origin was three orders of magnitude lower as it varied from 70.4 to 410.4 nSv y-1 (average 199.3 nSv y-1). (authors)

  16. Work on optimum medical radiation doses

    International Nuclear Information System (INIS)

    Every day the medical world makes use of X-rays and radioisotopes. Radiology allows organs to be visualised, nuclear medicine diagnoses and treats cancer by injecting radioisotopes, and radiotherapy uses ionising radiation for cancer therapy. The medical world is increasingly mindful of the risks of ionising radiation that patients are exposed to during these examinations and treatments. In 2009 SCK-CEN completed two research projects that should help optimise the radiation doses of patients.

  17. Formation of Primordial Galaxies under UV background Radiation

    CERN Document Server

    Susa, H; Susa, Hajime; Umemura, Masayuki

    2000-01-01

    The pancake collapse of pregalactic clouds under UV background radiation is explored with a one-dimensional sheet model. Here, attention is concentrated on elucidating the basic physics on the thermal evolution of pregalactic clouds exposed to diffuse UV radiation. So, we treat accurately the radiation transfer for the ionizing photons, with solving chemical reactions regarding hydrogen molecules as well as atoms. The self-shielding against UV radiation by H$_2$ Lyman-Werner bands, which regulates the photo-dissociation of hydrogen molecules, is also taken into account. As a result, it is found that when the UV background radiation is at a level of $10^{-22} (\

  18. Radiation Doses Received by the Irish Population

    International Nuclear Information System (INIS)

    Some chemical elements present in the environment since the Earth was formed are naturally radioactive and exposure to these sources of radiation cannot be avoided. There have also been additions to this natural inventory from artificial sources of radiation that did not exist before the 1940s. Other sources of radiation exposure include cosmic radiation from outer space and the use of radiation in medical diagnosis and treatment. There can be large variability in the dose received by invividual members of the population from any given source. Some sources of radiation expose every member of the population while, in other cases, only selected individuals may be exposed. For example, natural radioactivity is found in all soils and therefore everybody receives some radiation dose from this activity. On the other hand, in the case of medical exposures, only those who undergo a medical procedure using radiation will receive a radiation dose. The Radiological Protection Institute of Ireland (RPII) has undertaken a comprehensive review of the relevant data on radiation exposure in Ireland. Where no national data have been identified, the RPII has either undertaken its own research or has referred to the international literature to provide a best estimate of what the exposure in Ireland might be. This has allowed the relative contribution of each source to be quantified. This new evaluation is the most up-to-date assessment of radiation exposure and updates the assessment previously reported in 2004. The dose quoted for each source is the annual 'per caput' dose calculated on the basis of the most recently available data. This is an average value calculated by adding the doses received by each individual exposed to a given radiation source and dividing the total by the current population of 4.24 million. All figures have been rounded, consistent with the accuracy of the data. In line with accepted international practice, where exposure takes place both indoors and

  19. Background radiation and childhood leukemia: A nationwide register-based case-control study.

    Science.gov (United States)

    Nikkilä, Atte; Erme, Sini; Arvela, Hannu; Holmgren, Olli; Raitanen, Jani; Lohi, Olli; Auvinen, Anssi

    2016-11-01

    High doses of ionizing radiation are an established cause of childhood leukemia. However, substantial uncertainty remains about the effect of low doses of radiation, including background radiation and potential differences between genetic subgroups of leukemia have rarely been explored. We investigated the effect of the background gamma radiation on childhood leukemia using a nationwide register-based case-control study. For each of the 1,093 cases, three age- and gender matched controls were selected (N = 3,279). Conditional logistic regression analyses were adjusted for confounding by Down syndrome, birth weight (large for gestational age), and maternal smoking. Complete residential histories and previously collected survey data of the background gamma radiation in Finland were used to assess the exposure of the study subjects to indoor and outdoor gamma radiation. Overall, background gamma radiation showed a non-significant association with the OR of childhood leukemia (OR 1.01, 95% CI 0.97, 1.05 for 10 nSv/h increase in average equivalent dose rate to red bone marrow). In subgroup analyses, age group 2-childhood leukemia, particularly at age 2-<7 years. Our findings suggest a larger effect of radiation on leukemia with high hyperpdiploidy than other subgroups, but this result requires further confirmation. PMID:27405274

  20. Assessment of radiation dose awareness among pediatricians

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Karen E.; Parnell-Parmley, June E.; Charkot, Ellen; BenDavid, Guila; Krajewski, Connie [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, Ontario (Canada); Haidar, Salwa [Mubarak Al-Kabeer Hospital, Department of Radiology, Salmiya (Kuwait); Moineddin, Rahim [University of Toronto, Department of Family and Community Medicine, Toronto (Canada)

    2006-08-15

    There is increasing awareness among pediatric radiologists of the potential risks associated with ionizing radiation in medical imaging. However, it is not known whether there has been a corresponding increase in awareness among pediatricians. To establish the level of awareness among pediatricians of the recent publicity on radiation risks in children, knowledge of the relative doses of radiological investigations, current practice regarding parent/patient discussions, and the sources of educational input. Multiple-choice survey. Of 220 respondents, 105 (48%) were aware of the 2001 American Journal of Roentgenology articles on pediatric CT and radiation, though only 6% were correct in their estimate of the quoted lifetime excess cancer risk associated with radiation doses equivalent to pediatric CT. A sustained or transient increase in parent questioning regarding radiation doses had been noticed by 31%. When estimating the effective doses of various pediatric radiological investigations in chest radiograph (CXR) equivalents, 87% of all responses (and 94% of CT estimates) were underestimates. Only 15% of respondents were familiar with the ALARA principle. Only 14% of pediatricians recalled any relevant formal teaching during their specialty training. The survey response rate was 40%. Awareness of radiation protection issues among pediatricians is generally low, with widespread underestimation of relative doses and risks. (orig.)

  1. Assessment of radiation dose awareness among pediatricians

    International Nuclear Information System (INIS)

    There is increasing awareness among pediatric radiologists of the potential risks associated with ionizing radiation in medical imaging. However, it is not known whether there has been a corresponding increase in awareness among pediatricians. To establish the level of awareness among pediatricians of the recent publicity on radiation risks in children, knowledge of the relative doses of radiological investigations, current practice regarding parent/patient discussions, and the sources of educational input. Multiple-choice survey. Of 220 respondents, 105 (48%) were aware of the 2001 American Journal of Roentgenology articles on pediatric CT and radiation, though only 6% were correct in their estimate of the quoted lifetime excess cancer risk associated with radiation doses equivalent to pediatric CT. A sustained or transient increase in parent questioning regarding radiation doses had been noticed by 31%. When estimating the effective doses of various pediatric radiological investigations in chest radiograph (CXR) equivalents, 87% of all responses (and 94% of CT estimates) were underestimates. Only 15% of respondents were familiar with the ALARA principle. Only 14% of pediatricians recalled any relevant formal teaching during their specialty training. The survey response rate was 40%. Awareness of radiation protection issues among pediatricians is generally low, with widespread underestimation of relative doses and risks. (orig.)

  2. Background Radiation Studies at LHCb Using Geant4

    CERN Document Server

    Daquino, G G; Folger, G

    2004-01-01

    This paper aims to describe the feasibility studies performed to evaluate the background radiation levels in the LHCb experiment with Geant4. LHCb is one of the experiments that will operate at the LHC (Large Hadron Collider) under construction at CERN. The simulation toolkit Geant4 has been used to model the interactions of particles with the detector. Geant4 is a software toolkit developed and maintained by a world-wide collaboration of physicists and computer scientists. The principal monitored distributions in this study are the dose and the fluence of certain particles in specific locations of the experiment. The dose is defined as the energy delivered in a volume per unit of the volume mass, while the fluence is defined as the number of particles passing through a surface per unit of area. Energy spectra need also to be evaluated to take into account the energy distribution of these particles, since specific problems in the electronics can be caused by particles of certain energies. For ...

  3. Background radiation studies at LHCb using Geant4

    CERN Document Server

    Daquino, Giuseppe Giovanni; Folger, Günter

    2006-01-01

    Preliminary results of simulation studies performed to evaluate the background radiation levels in the LHCb experiment are presented in the paper. LHCb is one of the experiments that will operate at the LHC (Large Hadron Collider) under construction at CERN. The simulation toolkit Geant4 has been used to model the interactions of particles with the detector. Geant4 is a software toolkit developed and maintained by a world-wide collaboration of physicists and computer scientists. The principal monitored distributions in this study are the dose and fluence of certain particles in specific locations of the experiment. Energy spectra need also to be evaluated in order to take into account the energy distribution of these particles, since specific problems in the electronics can be raised by particles of certain energies. To this purpose, we need: 1) Tallying doses and fluences in Geant4. 2) These quantities are generally calculated on a plane or a cylindrical surface that should not interfere with the real geomet...

  4. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico

    Directory of Open Access Journals (Sweden)

    Sergio Luevano-Gurrola

    2015-09-01

    Full Text Available Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize.

  5. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico

    Science.gov (United States)

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-01-01

    Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize. PMID:26437425

  6. Estimation of radiation risks at low dose

    International Nuclear Information System (INIS)

    The report presents a review of the effects caused by radiation in low doses, or at low dose rates. For the inheritable (or ''genetic''), as well as for the cancer producing effects of radiation, present evidence is consistent with: (a) a non-linear relationship between the frequency of at least some forms of these effects, with comparing frequencies caused by doses many times those received annually from natural sources, with those caused by lower doses; (b) a probably linear relationship, however, between dose and frequency of effects for dose rates in the region of that received from natural sources, or at several times this rate; (c) no evidence to indicate the existence of a threshold dose below which such effects are not produced, and a strong inference from the mode of action of radiation on cells at low dose rates that no such thresholds are likely to apply to the detrimental, cancer-producing or inheritable, effects resulting from unrepaired damage to single cells. 19 refs

  7. Background radiation in two locations in Deaf Smith and Swisher Counties within the Palo Duro Basin

    International Nuclear Information System (INIS)

    Data on external background radiation doses resulting from cosmic, terrestrial, and fallout sources and on concentrations of radioactivity in environmental media are presented and discussed. Doses to individuals located at the approximate centers of two locations in Texas, one in Deaf Smith County and the other in Swisher County, are given, as are the population doses to people residing within 50 miles of each of the approximate centers. No adjustments have been made for the effects of buildings on radiation doses - that is, the shielding from external radiation afforded by the buildings and radiation from building materials are not accounted for. Concentrations of radioactivity in air, water, and milk in the region are also given. Because of the lack of specific information on background radiation at the locations, the external-dose rates to people and the radioactivity levels in environmental media for the region have been taken from the literature. A background radiation survey will be conducted in the Palo Duro Basin to obtain additional data. 26 references, 3 figures, 15 tables

  8. Epidemiological investigation in high background radiation areas of Yangjiang, China

    International Nuclear Information System (INIS)

    This investigation began in 1972. Various radiological measurements revealed that individual external exposure to the environmental gamma radiation in a high background radiation area (HBRA) is about three times higher than that in the nearby control area (CA). If the internal exposure is included, the averaged annual effective dose equivalents will be 5.4 mSv in HBRA, 2.0 mSv in CA respectively. About 80,000 inhabitants in each area whose families have lived there for two or more generations are being observed. About one million person-years in HBRA and in CA were observed for cancer mortality, and sex-, age- and site-specific cancer mortality were analyzed. Statistical analysis showed no difference either in mortality of all cancer or in immortality of leukemia between HBRA and CA. However, the cancer mortality of all cancer except leukemia for age group of 40-70 years was lower statistically in HBRA than that in CA. The total number of 31 kinds of hereditary diseases and congenital deformities in children below 12 years old between two areas were almost identical. However, the frequency of Down Syndrome in HBRA was statistically higher than that in CA. 16 refs, 2 figs, 29 tabs

  9. Occupational radiation doses in interventional radiology: Simulations

    International Nuclear Information System (INIS)

    In interventional radiology, occupational radiation doses can be high. Therefore, many authors have established conversion coefficients from the dose-area product data or from the personal dosemeter reading to the effective dose of the radiologist. These conversion coefficients are studied also in this work, with an emphasis on sensitivity of the results to changes in exposure conditions. Comparison to earlier works indicates that, for the exposure conditions examined in this work, all previous models discussed in this work overestimate the effective dose of the radiologist when a lead apron and a thyroid shield are used. Without the thyroid shield, underestimation may occur with some models. (authors)

  10. Effects of deprivation of background environmental radiation on cultured human cells

    International Nuclear Information System (INIS)

    In this paper we present results from an experiment aimed at investigating whether living cells are influenced by background ionizing radiation. Parallel human cell cultures were set-up in two separate laboratories and maintained for several months under identical conditions but for a 80 x different level of background ionizing radiation. Periodically, the cell cultures were monitored for the onset of divergences in biochemical behavior, using two distinct cellular biology assays, namely micronuclei induction and activity of enzymes implicated in the management of oxidative stress. To reveal any subtle modifications, responses were also amplified by subjecting cell cultures to acute stress induced by exposure to moderately high doses of ionizing radiation. Compared to reference radiation background conditions, cultures maintained in a reduced background radiation environment handled the consequences of acute stress with diminished efficacy.

  11. Dose Assurance in Radiation Processing Plants

    DEFF Research Database (Denmark)

    Miller, Arne; Chadwick, K.H.; Nam, J.W.

    1983-01-01

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the radiat...... radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing.......Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the...

  12. The proportion of thyroid cancers in the Japanese atomic bomb survivors associated with natural background radiation

    International Nuclear Information System (INIS)

    Generalised absolute and relative risk models (with adjustment to the excess absolute risk for time since exposure and age at exposure, and with adjustment to the excess relative risk for age at exposure) are fitted to the Japanese atomic bomb survivor thyroid cancer incidence data followed up over the period 1958-87, taking account of natural background radiation. Thyroid cancers associated with natural background radiation and atomic bomb radiation are overwhelmingly accounted for by exposure at young ages. Over 50% of the excess cases associated with either the atomic bomb radiation or natural background radiation are linked to exposures under the age of 20, irrespective of the assumed risk model or natural background dose rate. The excess risk is overwhelmingly concentrated among females, again irrespective of the assumed model or natural background dose rate. Depending on the assumed natural background dose rate (in the range 0.5-2.0 mSv/year) between 17.3 and 32.0% of the thyroid cancer in this cohort may be associated with natural background radiation if an absolute risk model applies; between 4.2 and 17.1% of the thyroid cancers may be associated with natural background radiation if the relative risk model applies. The proportion of the thyroid tumours attributed to the atomic bomb radiation is between 21.1 and 22.0% for the absolute risk model, and is between 18.7 and 19.1% for the relative risk model, in both cases irrespective of the assumed background radiation dose. In particular, these proportions are not very different from the proportions calculated when fitting models that do not take account of natural background radiation, namely 22.0% for the absolute risk model and 18.6% for the relative risk model. The proportion of thyroid cancers accounted for by natural background radiation progressively increases with attained age, from 0.3% of cancers among those under the age of 15 to 30.5% for those over the age of 60, assuming that the absolute risk

  13. Radiation doses from computed tomography in Australia

    International Nuclear Information System (INIS)

    Recent surveys in various countries have shown that computed tomography (CT) is a significant and growing contributor to the radiation dose from diagnostic radiology. Australia, with 332 CT scanners (18 per million people), is well endowed with CT equipment compared to European countries (6 to 13 per million people). Only Japan, with 8500 units (78 per million people), has a significantly higher proportion of CT scanners. In view of this, a survey of CT facilities, frequency of examinations, techniques and patient doses has been performed in Australia. It is estimated that there are 1 million CT examinations in Australia each year, resulting in a collective effective dose of 7000 Sv and a per caput dose of 0.39 mSv. This per caput dose is much larger than found in earlier studies in the UK and New Zealand but is less than 0.48 mSv in Japan. Using the ICRP risk factors, radiation doses from CT could be inducing about 280 fatal cancers per year in Australia. CT is therefore a significant, if not the major, single contributor to radiation doses and possible risk from diagnostic radiology. (authors)

  14. Committed dose assessment based on background outdoor gamma exposure in Chihuahua City, Mexico

    International Nuclear Information System (INIS)

    Full text: Determining ionizing radiation in a geographic area serves to assess its effects on populations health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the committed dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, annual effective dose, and the lifetime cancer risk, 48 sampling points were randomly selected along the Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Muller counter. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th, 40K and their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Outdoor gamma dose rates ranged from 56 to 193 n Gy h-1. Results indicated that lifetime effective dose to inhabitants of Chihuahua City is in average of 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of activity concentrations in soil were 51.8, 73.1, and 1096.5 Bq kg-1, of 226Ra, 232Th and 40K, respectively. From the analysis of the spatial distribution of 232Th, 226Ra, and 40K is to north, to north-center, and to south of city, respectively. In conclusion, natural background gamma dose received by inhabitants of Chihuahua City is high and mainly due to geological characteristics of the zone. (Author)

  15. Committed dose assessment based on background outdoor gamma exposure in Chihuahua City, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Luevano G, S.; Perez T, A.; Pinedo A, C.; Renteria V, M. [Universidad Autonoma de Chihuahua, Facultad de Zootecnia y Ecologia, Perif. Francisco R. Almada Km 1, 31415 Chihuahua, Chih. (Mexico); Carrillo F, J.; Montero C, M. E., E-mail: mrenteria@uach.mx [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, 31136 Chihuahua, Chih. (Mexico)

    2015-10-15

    Full text: Determining ionizing radiation in a geographic area serves to assess its effects on populations health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the committed dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, annual effective dose, and the lifetime cancer risk, 48 sampling points were randomly selected along the Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Muller counter. At the same sites, 48 soil samples were taken to obtain the activity concentrations of {sup 226}Ra, {sup 232}Th, {sup 40}K and their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Outdoor gamma dose rates ranged from 56 to 193 n Gy h{sup -1}. Results indicated that lifetime effective dose to inhabitants of Chihuahua City is in average of 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of activity concentrations in soil were 51.8, 73.1, and 1096.5 Bq kg{sup -1}, of {sup 226}Ra, {sup 232}Th and {sup 40}K, respectively. From the analysis of the spatial distribution of {sup 232}Th, {sup 226}Ra, and {sup 40}K is to north, to north-center, and to south of city, respectively. In conclusion, natural background gamma dose received by inhabitants of Chihuahua City is high and mainly due to geological characteristics of the zone. (Author)

  16. Environmental policy. Ambient radioactivity levels and radiation doses in 1998

    International Nuclear Information System (INIS)

    The report contains information on the natural (background) radiation exposure (chapter II), the natural radiation exposure as influenced by anthropogenic effects (chapter III), the anthropogenic radiation exposure (chapter IV), and the radiation doses to the environment and the population emanating from the Chernobyl fallout (chapter V). The natural radiation exposure is specified referring to the contributions from cosmic and terrestrial background radiation and intake of natural radioactive substances. Changes of the natural environment resulting from anthropogenic effects (technology applications) inducing an increase in concentration of natural radioactive substances accordingly increase the anthropogenic radiation exposure. Indoor air radon concentration in buildings for instance is one typical example of anthropogenic increase of concentration of natural radioactivity, primarily caused by the mining industry or by various materials processing activities, which may cause an increase in the average radiation dose to the population. Measurements so far show that indoor air concentration of radon exceeds a level of 200 Bq/m3 in less than 2% of the residential buildings; the EUropean Commission therefore recommends to use this concentration value as a maximum value for new residential buildings. Higher concentrations are primarily measured in areas with relevant geological conditions and abundance of radon, or eg. in mining areas. (orig./CB)

  17. An Evaluation of Dose Equivalence between Synchrotron Microbeam Radiation Therapy and Conventional Broadbeam Radiation Using Clonogenic and Cell Impedance Assays

    OpenAIRE

    Mohammad Johari Ibahim; Crosbie, Jeffrey C.; Yuqing Yang; Marina Zaitseva; Andrew W Stevenson; Rogers, Peter A. W.; Premila Paiva

    2014-01-01

    BACKGROUND: High-dose synchrotron microbeam radiation therapy (MRT) has shown the potential to deliver improved outcomes over conventional broadbeam (BB) radiation therapy. To implement synchrotron MRT clinically for cancer treatment, it is necessary to undertake dose equivalence studies to identify MRT doses that give similar outcomes to BB treatments. AIM: To develop an in vitro approach to determine biological dose equivalence between MRT and BB using two different cell-based assays. METHO...

  18. Experiences from studies of leukemia, background radiation and other factors

    International Nuclear Information System (INIS)

    Ionizing radiation seems to induce myeloid leukemia of the acute and chronic type, and also acute lymphatic leukemia but not chronic lymphatic leukemia. The effects of low dose radiation in this context as well as for other malignancies, are currently a matter of controversy. On the basis of literary data the carcinogenic effect, and in particular the leukemia inducing effect, of low dose irradiation is discussed. It is concluded that only further studies in the low dose range can create a definite basis for a risk assessment with regard to ionizing radiation. The risk estimates obtained may not necessarily reflect an initiating effect of ionizing radiation, but could involve late stage effects exerted over time. However, such possibilities have so far achieved little attention

  19. Radiation doses in interventional radiology procedures

    International Nuclear Information System (INIS)

    Objective: To investigate the radiation doses for the patients undergoing interventional radiology and to analyze the dose - influencing factors. Methods: The clinical data of 461 patients undergoing interventional radiology, including cerebral angiography (CEA), cerebral aneurysm embolism (CAE), superselective hepatic arterial chemoembolization (SHAG), coronary angiography (COA), percutaneous intracoronary stent implantation (PISI), cardiac radiofrequency catheter ablation (RFCA), and permanent cardiac pacemaker implantation (PCPI) were collected to observe the cumulative air kerma (CAK), dose area product (DAP), and fluoroscopy time, and effective dose was estimated using the conversion factors. Results: The effective doses for CEA, CAE, SHAG, COA, PISI, RFCA, and PCPI were (0.33 ±0.20), (0.49 ±0.35), (6.92 ±4.19),(0.76 ±0.91), (2.35 ± 1.47), (0.50 ±0.74), and (0.67 ±0.70) Sv,respectively. In 126 of the 416 patients (26%), the effective doses were greater than 1 Sv, and the effective doses of 10 person-times were greater than 10 Sv, all of which were observed in the patients undergoing SHAG. The CAK values for CEA, CAE, SHAG, COA, PISI, RFCA, and PCPI were (0.55 ±0.43), (1.34 ± 1.11), (0.95 ±0.57), (0.32 ±0.31), (0.91 ±0.33), (0.16 ±0.22), and (0.15 ±0.14) Gy, respectively. The CAK values were greater than 1 Gy in 59 of the 461 patients (12.8%), greater than 2 Gy in 11 cases (2.4%), and greater than 3 Gy in 1 CEA cases and 1 CEA case, respectively. Conclusions: There is a wide variation range in radiation dose for different procedures. As most interventional radiology procedure can result in clinically significant radiation dose to the patient, stricter dose control should be carried out. (authors)

  20. Patient perspectives on radiation dose.

    Science.gov (United States)

    Graff, Joyce

    2014-03-01

    People with genetic cancer syndromes have a special interest in imaging. They also have special risk factors with respect to radiation. They need to utilize the potential of imaging while keeping in mind concerns about cumulative radiation exposure. Before imaging, early detection of problems was limited. With imaging, issues can be identified when they are small and a good plan of action can be developed early. Operations can be planned and metastatic cancer avoided. The positive contribution of imaging to the care of these patients can be profound. However, this additional surveillance is not without cost. An average patient with 1 of these syndromes will undergo 100 or more scans in their lifetime. Imaging professionals should be able to describe the risks and benefits of each scan in terms that the patient and the ordering physician can understand to make smart decisions about the ordering of scans. Why CT versus MRI? When are x-ray or ultrasound appropriate, and when are they not? What are the costs and the medical risks for the patient? What value does this picture add for the physician? Is there a way to answer the medical question with a test other than a scan? Medicine is a team sport, and the patient is an integral member of the team. PMID:24589397

  1. Evaluation of radiation dose to patients during abdominal embolizations

    Directory of Open Access Journals (Sweden)

    Livingstone Roshan

    2005-12-01

    Full Text Available BACKGROUND: Abdominal embolization procedures performed using digital subtraction angiography (DSA is on the increase in the present-day scenario owing to their diagnostic and therapeutic values. These procedures involve prolonged fluoroscopy times and may tend to impart high radiation dose to patients if adequate radiation safety measures are not taken. AIM: To evaluate radiation dose imparted to patients and the work practices involved therein during abdominal embolization procedures. MATERIALS AND METHODS: Forty-two patients who underwent abdominal embolizations performed using DSA equipment were included in the study. Dose area product (DAP was measured using DAP meter and values obtained were used for calculating entrance surface dose (ESD. Work practices of personnel involved in conducting the procedure were evaluated based on the choice of field sizes, selection of appropriate fluoro-modes, and optimization techniques. RESULTS AND CONCLUSIONS: The mean ESD values during hepatic embolization, renal embolization, splenic artery embolization and transarterial chemoembolization (TACE were 1.2, 1.01, 1.19, and 1.03, respectively. No deterministic effects of radiation, such as transient or main erythema, were noticed for a few patients whose doses exceeded the threshold doses.

  2. Imaging of Radiation Dose for Stereotactic Radiosurgery.

    Science.gov (United States)

    Guan, Timothy Y; Almond, Peter R; Park, Hwan C; Lindberg, Robert D; Shields, Christopher B

    2015-01-01

    The distributions of radiation dose for stereotactic radiosurgery, using a modified linear accelerator (Philips SL-25 and SRS-200), have been studied by using three different dosimeters: (1) ferrous-agarose-xylenol orange (FAX) gels, (2) TLD, and (3) thick-emulsion GafChromic dye film. These dosimeters were loaded into a small volume of defect in a phantom head. A regular linac stereotactic radiosurgery treatment was then given to the phantom head for each type of dosimeter. The measured radiation dose and its distributions were found to be in good agreement with those calculated by the treatment planning computer. PMID:27421869

  3. Epigenomic Adaptation to Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Michael N. [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-30

    The overall hypothesis of this grant application is that the adaptive responses elicited by low dose ionizing radiation (LDIR) result in part from heritable DNA methylation changes in the epigenome. In the final budget period at the University of Wisconsin-Madison, we will specifically address this hypothesis by determining if the epigenetically labile, differentially methylated regions (DMRs) that regulate parental-specific expression of imprinted genes are deregulated in agouti mice by low dose radiation exposure during gestation. This information is particularly important to ascertain given the 1) increased human exposure to medical sources of radiation; 2) increased number of people predicted to live and work in space; and 3) enhanced citizen concern about radiation exposure from nuclear power plant accidents and terrorist ‘dirty bombs.’

  4. High dose dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Radiation processing today offers various advantages in the field of sterilization of medical and pharmaceutical products, food preservation, treatment of chemical materials and a variety of other products widely used in modern society, all of which are of direct relevance to health and welfare. The safety and economic importance of radiation processing is clearly recognized. It is understood that reliable dosimetry is a key parameter for quality assurance of radiation processing and irradiated products. Furthermore, the standardization of dosimetry can provide a justification for the regulatory approval of irradiated products and form the basis of international clearance for free trade. After the initiation of the Agency's high dose standardization programme (1977), the first IAEA Symposium on High Dose Dosimetry was organized in 1984. As a result, concern as to the necessity of reliable dosimetry has greatly escalated not only in the scientific community but also in the radiation processing industry. The second International Symposium on High Dose Dosimetry for Radiation Processing was held in Vienna from 5 to 9 November, 1990, with a view to providing an international forum for the exchange of technical information on up to date developments in this particular field. The scientific programme held promises for an authoritative account of the status of high dose dosimetry throughout the world in 1990. Forty-one papers presented at the meeting discussed the development of new techniques, the improvement of reference and routine dosimetry systems, and the quality control and assurance of dosimetry. Refs, figs and tabs

  5. Systematic review on physician's knowledge about radiation doses and radiation risks of computed tomography

    International Nuclear Information System (INIS)

    Background: The frequent use of computed tomography is a major cause of the increasing medical radiation exposure of the general population. Consequently, dose reduction and radiation protection is a topic of scientific and public concern. Aim: We evaluated the available literature on physicians' knowledge regarding radiation dosages and risks due to computed tomography. Methods: A systematic review in accordance with the Cochrane and PRISMA statements was performed using eight databases. 3091 references were found. Only primary studies assessing physicians' knowledge about computed tomography were included. Results: 14 relevant articles were identified, all focussing on dose estimations for CT. Overall, the surveys showed moderate to low knowledge among physicians concerning radiation doses and the involved health risks. However, the surveys varied considerably in conduct and quality. For some countries, more than one survey was available. There was no general trend in knowledge in any country except a slight improvement of knowledge on health risks and radiation doses in two consecutive local German surveys. Conclusions: Knowledge gaps concerning radiation doses and associated health risks among physicians are evident from published research. However, knowledge on radiation doses cannot be interpreted as reliable indicator for good medical practice.

  6. Effects of Proton Radiation Dose, Dose Rate and Dose Fractionation on Hematopoietic Cells in Mice

    OpenAIRE

    Ware, J.H.; Sanzari, J.; Avery, S.; Sayers, C; Krigsfeld, G.; Nuth, M.; Wan, X. S.; Rusek, A.; Kennedy, A R

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05–0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals...

  7. Natural background radiation induces cytogenetic radioadaptive response more effectively than occupational exposure in human peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Ramsar, a city in the north part of Iran, has the highest level of natural background radiation in the world. We compared induction of cytogenetic radioadaptive response by High Natural Background Radiation (HNBR) in Ramsar and X-Ray occupational exposure as inducing doses in human peripheral blood lymphocytes. 30 healthy control individuals, living in Ramsar but in ordinary background radiation areas (inducing dose = 0), 15 healthy individuals from Talesh Mahalleh, a region with extraordinary level of background radiation (max. inducing dose = 260 mGy/year) and 7 X-Ray radiographers working in Ramsar hospital located in normal natural background of ionising radiation (max. inducing dose = 20 mGy/year) were evaluated. Peripheral blood samples were prepared and exposed to challenge dose of 0 and 2 Gy. Lymphocytes were scored using analysis of metaphase, for the presence of chromosomal aberrations (simple deletion, dicentrics and rings). An adaptive response was observed in HNBR and radiation workers groups in comparison with sham controls. Also, compared with occupationally exposed group a significant marked increase in adaptive response was observed in HNBR group. These findings indicate that both natural background radiation and occupational exposure could induce cytogenetic radioadaptive response and it is more significant regarding to natural background ionising radiation. (author)

  8. Measurement of radiation dose at the north interaction point of BEPCⅡ

    Institute of Scientific and Technical Information of China (English)

    MO Xiao-Hu; ZHANG Jian-Yong; ZHANG Tian-Bao; ZHANG Qing-Jiang; Achasov Mikhail; FU Cheng-Dong; Muchnoi Nikolay; QIN Qing; QU Hua-Min; WANG Yi-Fang; WU Jing-Min; XU Jin-Qiang; YU Bo-Xiang

    2009-01-01

    The technique details for measuring radiation dose are expounded.The results of gamma and neutron radiation levels are presented and the corresponding radiation shielding is discussed based on the simplified estimation.In addition, the photon radiation level move as background for future experiments is measured by a NaI(T1) detector.

  9. Bayesian approach in MN low dose of radiation counting

    International Nuclear Information System (INIS)

    The Micronucleus assay in lymphocytes is a well established technique for the assessment of genetic damage induced by ionizing radiation. Due to the presence of a natural background of MN the net MN is obtained by subtracting this value to the gross value. When very low doses of radiation are given the induced MN is close even lower than the predetermined background value. Furthermore, the damage distribution induced by the radiation follows a Poisson probability distribution. These two facts pose a difficult task to obtain the net counting rate in the exposed situations. It is possible to overcome this problem using a bayesian approach, in which the selection of a priori distributions for the background and net counting rate plays an important role. In the present work we make a detailed analysed using bayesian theory to infer the net counting rate in two different situations: a) when the background is known for an individual sample, using exact value value for the background and Jeffreys prior for the net counting rate, and b) when the background is not known and we make use of a population background distribution as background prior function and constant prior for the net counting rate. (Author)

  10. Radiation background with the CMS RPCs at the LHC

    International Nuclear Information System (INIS)

    The Resistive Plate Chambers (RPCs) are employed in the CMS Experiment at the LHC as dedicated trigger system both in the barrel and in the endcap. This article presents results of the radiation background measurements performed with the 2011 and 2012 proton-proton collision data collected by CMS. Emphasis is given to the measurements of the background distribution inside the RPCs. The expected background rates during the future running of the LHC are estimated both from extrapolated measurements and from simulation

  11. Biological indicators for radiation dose assessment

    International Nuclear Information System (INIS)

    After an introductory report on the present level of practical experience in using biological indicator systems to identify and assess doses from radiation exposures, the state of the art in the field of biochemical, cytological and immunological indicators was presented as a basis for discussions in working groups. With reference to the type of radiation - gamma radiation, electrons, neutrons - the question was examined how and to which extent body doses could be evaluated on the basis of results from biological indicator systems. The indicator systems were examined and evaluated in working groups under the aspects of practical use, validity of results and demand of research according to uniform criteria. These were, among others, dose effect relationship, detection limit, reproducibility and specificity, interference factors, stress and reasonable inconvenience of the examined person, earliest possible availability of results and the maximum time needed to identify a biological effect after radiation exposure, as well as the possible maximum number of persons examined from a population group of radiation exposed individuals. The results of the working groups discussions were compiled and summarized in recommendations. (orig./MG)

  12. Imputability of health effects to low-dose radiation exposure situations

    International Nuclear Information System (INIS)

    The key note address is aimed to discuss a crucial issue in nuclear law: whether or not late health effects of stochastic nature, such as radio-induced cancer or hereditable effects, are attributable to radiation exposure situations delivering relatively low radiation doses and, therefore, whether such effects are imputable to those responsible of such situations. The term low dose is used in the presentation when referring to doses similar to natural background doses. (author)

  13. Patient radiation doses from neuroradiology procedures

    International Nuclear Information System (INIS)

    Following the presentation of radiation-induced deterministic effects by some patients undergoing neuroradiological procedures during successive sessions, such as temporary epilation, in the 'Hospital Universitario de Canarias', measurements were made of dose to patients. The maximum dose-area product measured by ionization chamber during these procedures was 39617 cGy.cm2 in a diagnostic of aneurysm and the maximum dose to the skin measured by thermoluminescent dosemeters (TLDs) was 462.53 mGy. This can justify certain deterministic effects but it is unlikely that the patients will suffer serious effects from this skin dose. Also, measurements were made of effective dose about two usual procedures, embolisation of tumour und embolisation of aneurysm. These procedures were reproduced with an anthropomorphic phantom Rando and doses were measured with TLDs. Effective doses obtained were 3.79 mSv and 4.11 mSv, respectively. The effective dose valued by the program EFFDOSE was less than values measured with TLDs. (author)

  14. Simple dose verification system for radiotherapy radiation

    International Nuclear Information System (INIS)

    The aim of this paper is to investigate an accurate and convenient quality assurance programme that should be included in the dosimetry system of the radiotherapy level radiation. We designed a mailed solid phantom and used TLD-100 chips and a Rexon UL320 reader for the purpose of dosimetry quality assurance in Taiwanese radiotherapy centers. After being assembled, the solid polystyrene phantom weighted only 375 g which was suitable for mailing. The Monte Carlo BEAMnrc code was applied in calculations of the dose conversion factor of water and polystyrene phantom: the dose conversion factor measurements were obtained by switching the TLDs at the same calibration depth of water and the solid phantom to measure the absorbed dose and verify the accuracy of the theoretical calculation results. The experimental results showed that the dose conversion factors from TLD measurements and the calculation values from the BEAMnrc were in good agreement with a difference within 0.5%. Ten radiotherapy centers were instructed to deliver to the TLDs on central beam axis absorbed dose of 2 Gy. The measured doses were compared with the planned ones. A total of 21 beams were checked. The dose verification differences under reference conditions for 60Co, high energy X-rays of 6, 10 and 15 MV were truly within 4% and that proved the feasibility of applying the method suggested in this work in radiotherapy dose verification

  15. Radiation dose to the eye lens

    DEFF Research Database (Denmark)

    Baun, Christina; Falch Braas, Kirsten; D. Nielsen, Kamilla;

    2015-01-01

    field in oncology patients undergoing eyes-to-thighs PET/CT must always include the base of the scull according to department guidelines. The eye lens is sensitive to radiation exposure and if possible it should be avoided to scan the eye. If the patient’s head is kipped backwards during the scan one...... might avoid including the eye in the CT scan without losing sufficient visualization of the scull base. The aim of this study was to evaluate the possibility of decreasing the radiation dose to the eye lens, simply by changing the head position, when doing the PET/CT scan from the base of the scull...... the skull base. Conclusion: These results indicate that it is possible to reduce the radiation dose to the eye lens without loss of diagnostic information in the scan by optimizing positioning of the head....

  16. Mammography Radiation Dose and Image Quality

    International Nuclear Information System (INIS)

    The early detection of breast cancer is technologically very challenging for radiography. At present screen-film mammography is the favoured method for early detection of breast cancer. In the United States, screening is under way and a large number of asymptomatic women are being exposed to radiation for the purpose of detecting early occult cancer. The prognosis for this disease is greatly improved if the cancer can be found before it reaches the size of 1 cm. Because of the widespread use of this imaging technology, much attention has been paid to its optimisation in terms of patient radiation dose, required image quality and quality control. Mammography in the USA is regulated by the Federal Government through mandatory facility certification including annual inspections and a specified quality control programme. However, there is still a wide range of radiation dose delivered to achieve a given film optical density and level of image quality. (author)

  17. Bio-indicators for radiation dose assessment

    International Nuclear Information System (INIS)

    In nuclear facilities, such as Chalk River Laboratories, dose to the atomic radiation workers (ARWs) is assessed routinely by using physical dosimeters and bioassay procedures in accordance with regulatory recommendations. However, these procedures may be insufficient in some circumstances, e.g., in cases where the reading of the physical dosimeters is questioned, in cases of radiation accidents where the person(s) in question was not wearing a dosimeter, or in the event of a radiation emergency when an exposure above the dose limits is possible. The desirability of being able to assess radiation dose on the basis of radio-biological effects has prompted the Dosimetric Research Branch to investigate the suitability of biological devices and techniques that could be used for this purpose. Current biological dosimetry concepts suggest that there does not appear to be any bio-indicator that could reliably measure the very low doses that are routinely measured by the physical devices presently in use. Nonetheless, bio-indicators may be useful in providing valuable supplementary information in cases of unusual radiation exposures, such as when the estimated body doses are doubtful because of lack of proper physical measurements, or in cases where available results need to be confirmed for medical treatment plannings. This report evaluates the present state of biological dosimetry and, in particular, assesses the efficiency and limits of individual indicators. This has led to the recommendation of a few promising research areas that may result in the development of appropriate biological dosimeters for operational and emergency needs at Chalk River

  18. Radiation dose measurements in intravenous pyelography

    International Nuclear Information System (INIS)

    Intravenous pyelography (IVP) and micturition cystourethrography (MCU) are the standard procedures in the radiological examination of children with urinary tract infections and in the control of these children. Gonad protection against radiation is not possible in MCU, but concerning the girls partly possible in IVP. It is of major importance to know the radiation dose in these procedures, especially since the examination is often repeated in the same patients. All IVP were done by means of the usual technique including possible gonad protection. The thermoluminescence dosimeter was placed rectally in the girls and fixed on the scrota in the boys. A total of 50 children was studied. Gonad dose ranged from 140 to 200mR in the girls and from 20 to 70mR in the boys (mean values). The radiation dose in IVP is very low compared to that of MCU, and from this point of view IVP is a dose saving examination in the control of children with urinary tract infections

  19. Spectrum and isotropy of the submillimeter background radiation

    International Nuclear Information System (INIS)

    Two great astronomical discoveries have most shaped our present concept of the Big Bang universe. Like the Hubble recession of the galaxies, the discovery of the 30K background radiation by Penzias and Wilson in 1965 has given rise to a line of research which is still very active today. Penzias and Wilson's universal microwave background at 7 cm was immediately interpreted by R.H. Dicke's group at Princeton as coming from the primordial fireball of incandescent plasma which filled the universe for the million years or so after its explosive birth. This interpretation gives rise to two crucial predictions as to the nature of the background radiation. Its spectrum should be thermal even after having been red shifted by a factor of approximately 1000 by the expansion of the universe, and the radiation should be isotropic - assuming that the universe itself is isotropic. If the background radiation is indeed from the primordial fireball it affords us the only direct view at the very young universe. This paper deals with the spectrum and then the isotropy of the background radiation, with emphasis on high frequency or submillimeter measurements. Prospects for the future are discussed briefly. (Auth.)

  20. Biological effect of low dose radiation

    International Nuclear Information System (INIS)

    This document describes the recent findings in studies of low dose radiation effect with those by authors' group. The low dose radiation must be considered in assessment of radiation effects because it induces the biological influence unexpected hitherto; i.e., the bystander effect and genetic instability. The former is a non-targeted effect that non-irradiated cells undergo the influence of directly irradiated cells nearby, which involves cell death, chromosome aberration, micronucleus formation, mutation and carcinogenesis through cellular gap junction and/or by signal factors released. Authors' group has found the radical(s) possessing as long life time as >20 hr released from the targeted cells, a possible mediator of the effect; the generation of aneuploid cells as an early carcinogenetic change; and at dose level <10 Gy, activation of MAPK signal pathway leading to relaxation of chromatin structure. The genetic instability means the loss of stability where replication and conservation of genome are normally maintained, and is also a cause of the late radiation effect. The group has revealed that active oxygen molecules can affect the late effect like delayed cell death, giant cell formation and chromosome aberration, all of which lead to the instability, and is investigating the hypothesis that the telomere instability resulted from the abnormal post-exposure interaction with its nuclear membrane or between chromatin and nuclear matrix, is enhanced by structural distortion of nuclear genes. As well, shown is the possible suppression of carcinogenesis by p53. The group, to elucidate the mechanism underlying the low dose radiation effect, is conducting their studies in consideration of the sequential bases of physical, chemical and biological processes. (R.T.)

  1. Agriculture-related radiation dose calculations

    International Nuclear Information System (INIS)

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs

  2. Agriculture-related radiation dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  3. Internal 40K radiation dose to Indians

    International Nuclear Information System (INIS)

    A group of 350 Indians from both sexes (7-65 years) representing different regions of India was studied for internal 40K radiation dose from the naturally occurring body 40K, which was measured in the National Institute of Nutrition (NIN) whole-body counter. Although the 40K radioactivity reached a peak value by 18 years in female (2,412 Bq) and by 20 years in male (3,058 Bq) and then varied inversely with age in both sexes, the radiation dose did not show such a trend. Boys and girls of 11 years had annual effective dose of nearly 185 mSv, which decreased during adolescence (165 mSv), increased to 175 mSv by 18-20 years in adults and decreased progressively on further ageing to 99 mSv in males and 69 mSv in females at 65 years. The observed annual effective dose (175 mSv) of the young adults was close to that of the ICRP Reference Man (176 mSv) and Indian Reference Man (175 mSv). With a mean specific activity of 55 Bq/kg for the subjects and a conversion coefficient close to 3 mSv per annum per Bq/kg, the average annual effective dose from the internal 40K turned out to be 165 mSv for Indians. (author)

  4. Geographically determined dependencies in the value of the constant natural radiation gamma-background

    International Nuclear Information System (INIS)

    The problem of the assessment of the influence of natural gamma background changes on the population is discussed. It is considered that the populations in different geographic regions have adapted by evolution mechanisms to the respective unchanged (without human activities) radiation background. The background limits for each area form the 'radiation comfortable zone' which varies very much for the different geographic areas. Leaving the 'comfortable zone' leads to a triggering of adaptive mechanisms in the population including the natural selection in order to reach an equilibrium. Thus, the radiation impact exceeding the 'comfortable zone' is expected to cause harm for a part of the population which is preliminarily burden or uncapable to adapt. From this point of view the increased morbidity due to radiation factor in those cases remains hidden. As a conclusion it is pointed out that the proposed increase of the annual dose for the population might result with harmful consequences for the whole human population

  5. An intercomparison of detectors for measurement of background radiation

    International Nuclear Information System (INIS)

    Measurements of the background radiation were made in 1978 at 14 locations with a high-pressure ionization chamber, thermoluminiscence dosimeters (TLD's), two NaI(Tl) detectors, and a Ge(Li) spectrometer system. Simultaneous measurements with the ionization chamber and the spectrometer system provide reliable estimates of the total background exposure rate, of the individual contributors to the terrestrial exposure rate, and of the exposure rate from the secondary cosmic radiation. The TLD results agree with those of the ionization chamber. The NaI(Tl) detector results show that accurate estimates of the terrestrial exposure rate can be obtained if empirical corrections are applied. (author)

  6. Ionizing radiation: effects of low doses

    International Nuclear Information System (INIS)

    This article deals with the important and delicate subject posed by the study of the action on Man's health of low doses of ionizing radiation. A number of fundamental notions whose knowledge is indispensable in order to avoid doubtful meanings or misunderstandings are noted in this article. Following the reminder of these notions, the characteristics of the various types of pathological effects of radiation are indicated, as well as how it is possible for effects which are named ''aleatory'' to be evaluated with care so as to limit risks at low doses. The reader will easily understand that this article has to be somewhat didactic - it seemed best to proceed by well defined stages and to clearly specify numerous concepts whose meanings are not always clearly defined when such problems are treated

  7. Radiation dose assessment for building material

    International Nuclear Information System (INIS)

    A mathematical model for radiation dose assessment for building materials based on attenuation and build up for gamma rays of the natural emitters was studied in this work. This was done by calculate the air absorbed dose from elemental volume and integrate over the total wall volume, which uniformed density and activity concentration. The used form of the build-up is a mixing of exponential and linear form for Berger model [1]. To convert absorbed dose to effective dose for all natural emitter (include 137Cs in case of fallout), the dose rate conversion factors which were reported in UNSCEAR (1993) Report [2] and U. S. NCRP (1987) [3] was used. These factors are 0.7 Sv/Gy for adult and 0.8 Sv/Gy for children. A computer program for calculating the absorbed and the annual effective dose was prepared in MATLAB language. The program is applicable for wall or room building materials when walls consist of one or two layers. The obtained results were compared with published studies. (author)

  8. New technologies to reduce pediatric radiation doses

    International Nuclear Information System (INIS)

    X-ray dose reduction in pediatrics is particularly important because babies and children are very sensitive to radiation exposure. We present new developments to further decrease pediatric patient dose. With the help of an advanced exposure control, a constant image quality can be maintained for all patient sizes, leading to dose savings for babies and children of up to 30%. Because objects of interest are quite small and the speed of motion is high in pediatric patients, short pulse widths down to 4 ms are important to reduce motion blurring artifacts. Further, a new noise-reduction algorithm is presented that detects and processes signal and noise in different frequency bands, generating smooth images without contrast loss. Finally, we introduce a super-resolution technique: two or more medical images, which are shifted against each other in a subpixel region, are combined to resolve structures smaller than the size of a single pixel. Advanced exposure control, short exposure times, noise reduction and super-resolution provide improved image quality, which can also be invested to save radiation exposure. All in all, the tools presented here offer a large potential to minimize the deterministic and stochastic risks of radiation exposure. (orig.)

  9. Measurement of radioactivity in an elevated radiation background area of Western Ghats

    Directory of Open Access Journals (Sweden)

    Manigandan P.K.

    2014-01-01

    Full Text Available As part of monitoring the exposure of the general public to natural radioactivity, the activity concentration of naturally occurring radionuclides in soil samples in an elevated radiation background area of Western Ghats was determined using gamma-ray spectrometry. Average values of the activity concentration of radionuclides, outdoor terrestrial gamma dose rate, annual effective dose equivalent and radiation hazard indices from soil activity were estimated. The activity concentrations of 232Th and average outdoor terrestrial gamma dose rate were found to be higher than the world average, possibly affecting the Western Ghats environment in general. Therefore, radiological risks to the general population from ionizing radiation from the naturally occurring radionuclides in the soil are considered to be significant. How- ever, other radiological hazard indices were found to be within permissible limits.

  10. Stimulating effects of low doses of radiation

    International Nuclear Information System (INIS)

    Different ionizing radiations cause biochemical and biophysical changes in the cells of the genotypes according to the application of the doses applied to different organs of the plants, and the manner of their application (acute, chronic, or acute and chronic). The sensitivity of different genotypes, and their tissues, depends on the stage at which their tissues were irradiated as well as on the environmental conditions under which the irradiation was made. Relatively strong doses usually cause some genetic changes in the somatic and generative cells. Small doses can, in some genotypes, stimulate the growth of some tissues to some extent. The stimulating effect on the growth of seedlings of the M2 generation, developed from acute seed irradiation of some genotypes of wheat, barley, and inbred lines of maize and their hybrids is described here. 3 refs, 5 tabs

  11. Researches and Applications of ESR Dosimetry for Radiation Accident Dose Assessment

    International Nuclear Information System (INIS)

    The aim of this work was to establish methods suitable for practical dose assessment of people involved in ionising radiation accidents. Some biological materials of the human body and materials possibly carried or worn by people were taken as detection samples. By using electron spin resonance (ESR) techniques, the basic dosimetric properties of selected materials were investigated in the range above the threshold dose of human acute haemopoietic radiation syndrome. The dosimetric properties involved included dose response properties of ESR signals, signal stabilities, distribution of background signals, the lowest detectable dose value, radiation conditions, environmental effects on the detecting process, etc. Several practical dose analytical indexes and detecting methods were set up. Some of them (bone, watch glass and tooth enamel) had also been successfully used in the dose assessment of people involved in three radiation accidents, including the Chernobyl reactor accident. This work further proves the important role of ESR techniques in radiation accident dose estimation. (author)

  12. Genes activated by low dose radiation

    International Nuclear Information System (INIS)

    Gene expression profiles were examined in the mouse kidney and testis in order to investigate the molecular mechanisms of the life span-shortening effect of low dose-rate radiation. C57BL/6J male mice (7-8 wks old) were irradiated by cesium-137 gamma-rays for 485 days at rates of 0, 32, 650 and 13,000 nGy/min and organs were excised out. Gene expression was analyzed with cDNA microarray Illumina Sentrix Mouse-6. In the kidney, 4 genes concerning mitochondrial respiration (oxidative phosphorylation) were found to be up-regulated at the middle and high dose rates (expression level changed in >1.6 folds by irradiation). Significantly modulated genes were in 16 clusters, which exerted elevated expression level dose rate-dependently and found to be categorized in cytoplasm/mitochondria/energy pathways by the database ''Gene Ontology''. In the testis, gene expression pattern was different from that in kidney. Clustering analysis and database revealed that up-regulated genes belonged to ''DNA repair'', ''response to DNA damage'', DNA replication'' and ''Mitotic cell cycles''. Thus low dose radiation can cause the cellular oxidative stress by elevated respiratory activity in the kidney, and a type of emergent biological response in the testis. (R.T.)

  13. Low radiation doses - Book of presentations (slides)

    International Nuclear Information System (INIS)

    This document brings together all the available presentations (slides) of the conference on low radiation doses organised by the 'research and health' department of the French society of radiation protection (SFRP). Ten presentations are available and deal with he following topics: 1 - Cyto-toxicity, geno-toxicity: comparative approach between ionizing radiations and other geno-toxic agents (F. Nesslany, Institut Pasteur, Lille); Succession of events occurring after a radio-induced DNA damage (D. Averbeck, IRSN/CEA); Importance of stem cells in the response to ionizing radiations (J. Lebeau, CEA); Relation between energy deposition at the sub-cell scale and early biological effects (C. Villagrasa, IRSN); Natural history of breast cancer: predisposition, susceptibility with respect to irradiation (S. Rivera, IGR); Pediatrics scanner study and the EPI-CT project (M.O Bernier, IRSN); What future for an irradiated cell: survival or apoptosis? (E. Sage, Institut Curie); Differential effect of a 137Cs chronic contamination on the different steps of the atheromatous pathology (T. Ebrahimian, IRSN); Variability of the individual radiosensitivity (S. Chevillard, CEA); What definitions for individual sensitivity? (A. Schmidt, CEA); Low doses: some philosophical remarks (A. Grinbaum, CEA)

  14. Search for radiative decays of cosmic background neutrino using cosmic infrared background energy spectrum

    International Nuclear Information System (INIS)

    We propose to search for the neutrino radiative decay by fitting a photon energy spectrum of the cosmic infrared background to a sum of the photon energy spectrum from the neutrino radiative decay and a continuum. By comparing the present cosmic infrared background energy spectrum observed by AKARI and Spitzer to the photon energy spectrum expected from neutrino radiative decay with a maximum likelihood method, we obtained a lifetime lower limit of 3.1x1012 to 3.8x1012 years at 95% confidence level for the third generation neutrino v3 in the v3 mass range between 50 and 150 meV/c2 under the present constraints by the neutrino oscillation measurements. In the left-right symmetric model, the minimum lifetime of v3 is predicted to be 1.5x1017 years for m3 of 50 meV/c2. We studied the feasibility of the observation of the neutrino radiative decay with a lifetime of 1.5x1017 years, by measuring a continuous energy spectrum of the cosmic infrared background. (author)

  15. ESR radiation dose evaluation on radiation exposure accident in England

    International Nuclear Information System (INIS)

    A technician of nondestructive inspection in England died because of radiation injury even though his exposure record with film badge indicated only 104 mSv of the lifelong exposure dose. After the request of the National Radiation Protection Board of Great Britain, the author conducted measurement of the exposure dose with ESR dosimetry. ESR spectra were measured on tooth enamel and bones of the finger and the upper arm taken from the dead technician. The exposure dose is obtained from the enhancement of the ESR signal intensity of CO2- after international irradiation. 14 and 12 Gy for tooth enamel, 7.2 and 4.2 Gy for the bones of the finger and the upper arm respectively. The bone samples may show smaller dose due to metabolism in the body. The technician is assumed to be exposed about 10 mSv at the fingers and the arms for each time on the inspection of pipings for more than 10 years. He used to wear the film badge on his waist. The author stresses the importance of preservation of extracted tooth as a exposure record for radiation workers. (T.H.)

  16. The Effects of the Ionizing Radiation Background on Galaxy Evolution

    CERN Document Server

    Hambrick, D Clay; Naab, Thorsten; Johansson, Peter H

    2009-01-01

    We find that the amount and nature of the assumed ionizing background can strongly affect galaxy formation and evolution. Galaxy evolution simulations typically incorporate an ultraviolet background which falls off rapidly above z=3; e.g., that of Haardt & Madau (1996). However, this decline may be too steep to fit the WMAP constraints on electron scattering optical depth or observations of intermediate redshift (z ~ 2-4) Ly-alpha forest transmission. As an alternative, we present simulations of the cosmological formation of individual galaxies with UV backgrounds that decline more slowly at high redshift: both a simple intensity rescaling and the background recently derived by Faucher-Giguere (2009), which softens the spectrum at higher redshifts. We also test an approximation of the X-ray background with a similar z-dependence. We find for the test galaxies that an increase in either the intensity or hardness of ionizing radiation generically pushes star formation towards lower redshifts: although overa...

  17. Background Radiation Measurements at High Power Research Reactors

    CERN Document Server

    Ashenfelter, J; Baldenegro, C X; Band, H R; Barclay, G; Bass, C D; Berish, D; Bowden, N S; Bryan, C D; Cherwinka, J J; Chu, R; Classen, T; Davee, D; Dean, D; Deichert, G; Dolinski, M J; Dolph, J; Dwyer, D A; Fan, S; Gaison, J K; Galindo-Uribarri, A; Gilje, K; Glenn, A; Green, M; Han, K; Hans, S; Heeger, K M; Heffron, B; Jaffe, D E; Kettell, S; Langford, T J; Littlejohn, B R; Martinez, D; McKeown, R D; Morrell, S; Mueller, P E; Mumm, H P; Napolitano, J; Norcini, D; Pushin, D; Romero, E; Rosero, R; Saldana, L; Seilhan, B S; Sharma, R; Stemen, N T; Surukuchi, P T; Thompson, S J; Varner, R L; Wang, W; Watson, S M; White, B; White, C; Wilhelmi, J; Williams, C; Wise, T; Yao, H; Yeh, M; Yen, Y -R; Zhang, C; Zhang, X

    2016-01-01

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including $\\gamma$-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  18. Background radiation measurements at high power research reactors

    Science.gov (United States)

    Ashenfelter, J.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y.-R.; Zhang, C.; Zhang, X.

    2016-01-01

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  19. Position sensitive detection of neutrons in high radiation background field

    International Nuclear Information System (INIS)

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e− radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm2) spectroscopic Timepix detector adapted for neutron detection utilizing very thin 10B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10−4

  20. Suppressing Background Radiation Using Poisson Principal Component Analysis

    CERN Document Server

    Tandon, P; Dubrawski, A; Labov, S; Nelson, K

    2016-01-01

    Performance of nuclear threat detection systems based on gamma-ray spectrometry often strongly depends on the ability to identify the part of measured signal that can be attributed to background radiation. We have successfully applied a method based on Principal Component Analysis (PCA) to obtain a compact null-space model of background spectra using PCA projection residuals to derive a source detection score. We have shown the method's utility in a threat detection system using mobile spectrometers in urban scenes (Tandon et al 2012). While it is commonly assumed that measured photon counts follow a Poisson process, standard PCA makes a Gaussian assumption about the data distribution, which may be a poor approximation when photon counts are low. This paper studies whether and in what conditions PCA with a Poisson-based loss function (Poisson PCA) can outperform standard Gaussian PCA in modeling background radiation to enable more sensitive and specific nuclear threat detection.

  1. Low Dose Ionizing Radiation Modulates Immune Function

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Gregory A. [Loma Linda Univ., CA (United States)

    2016-01-12

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in the

  2. Low Dose Ionizing Radiation Modulates Immune Function

    International Nuclear Information System (INIS)

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a 'Th2 polarized' immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in

  3. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  4. Public exposure due to external gamma background radiation in boundary areas of Iran

    International Nuclear Information System (INIS)

    A monitoring program in boundary areas of a country is an appropriate way to indicate the level of public exposure. In this research, gamma background radiation was measured using TL dosimeters at 12 boundary areas as well as in the capital city of Iran during the period 2010 to 2011. The measurements were carried out in semi-annual time intervals from January to June and July to December in each year. The maximum average dose equivalent value measured was approximately 70 μSv/month for Tehran city. Also, the average dose values obtained were less than 40 μSv/month for all the cities located at the sea level except that of high level natural radiation area of Ramsar, and more than 55 μSv/month for the higher elevation cities. The public exposure due to ambient gamma dose equivalent in Iran is within the levels reported by UNSCEAR. - Highlights: • Gamma background radiation was measured at 12 boundary areas. • Maximum average dose equivalent measured was 70 μSv/month. • Differences of background gamma in high elevation cities are due to GCR. • Public exposures obtained in Iran are within the levels reported by UNSCEAR

  5. Ultraviolet radiation therapy and UVR dose models

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, David Robert, E-mail: davidrobert.grimes@oncology.ox.ac.uk [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland and Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom)

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  6. The Cosmic Microwave Background Radiation and its Polarization

    Science.gov (United States)

    Wollack, Edward

    2016-03-01

    The cosmic microwave background (CMB) radiation and its faint polarization have provided a unique means to constrain the physical state of the early Universe. Continued advances in instrumentation, observation, and analysis have revealed polarized radiation signatures associated with gravitational lensing and have heightened the prospects for using precision polarimetry to experimentally confront the inflationary paradigm. Characterization of this relic radiation field has the power to constrain or reveal the detailed properties of astroparticle species and long wave gravitational radiation. On going and planned CMB polarization efforts from the ground, balloon, and space borne platforms will be briefly surveyed. Recent community activities by the Inflation Probe Science Interest Group (IPSIG) will also be summarized. NASA PCOS mini-symposium (invited IPSIG talk).

  7. Radiation doses from medical diagnostic procedures in Canada

    International Nuclear Information System (INIS)

    This document sets out to record and analyze the doses incurred in Canada from medical procedures involving the use of ionizing radiation in a typical year. Excluded are those doses incurred during therapeutic irradiation, since they differ in scale to such a large degree and because they are used almost exclusively in treating cancer. In this we are following a precedent set by the United Nations Scientific Committee on the Effects of Ionizing Radiation. Although the International Commission on Radiological Protection (ICRP) notes that dose limits should not be applied to medical exposures, it also observes that doses in different settings for the same procedure may vary by as much as two orders of magnitude, and that there are considerable opportunities for dose reductions in diagnostic radiology. Because these data do not stand in isolation the report also encompasses a review of the relevant literature and some background comment on the evolving technology of the radiological sciences. Because there is a somewhat incomplete perception of the changes taking place in diagnostic methods we have also provided some introductory explanations of the relevant technologies. In addition, there is an analysis of at least some of the limitations on the completeness of the data which are reported here. (author)

  8. 广东高本底地区人群氧化损伤及抗氧化水平调查%The effects of low dose radiation on the levels of oxidative damage and antioxidant in population of high background radiation area of Guangdong

    Institute of Scientific and Technical Information of China (English)

    陈慧峰; 郭强之; 刘明; 耿继武; 苏世标

    2015-01-01

    目的 探讨长期连续天然放射性照射对人群氧化损伤及抗氧化水平的影响.方法 选择广东天然放射性高本底辐射地区(HBRA)48名男性居民为研究对象,选择恩平市某镇(CA)相匹配的48名男性居民为对照人群.采集2组人群外周静脉血并分离血浆,采用酶联免疫吸附试验(ELISA),测定血浆中DNA氧化损伤指标8-羟基脱氧鸟苷(8-OHdG)和抗氧化指标硫氧还蛋白还原酶(TrxR)的表达水平.结果 与对照组相比,高本底地区人群外周血血浆中DNA氧化损伤指标8-OHdG表达水平由(315.39±100.59) ng/ml降低至(272.64±96.85) ng/ml,抗氧化指标TrxR表达水平由(0.467±0.056) ng/ml升高至(0.496±0.044) ng/ml,两组间的差异均有统计学意义(t=2.121、-2.823,P<0.05).多元线性回归分析结果显示,在排除年龄、饮酒、喝茶、吸烟、接受医疗照射、生活应激事件等混杂因素的影响后,低剂量电离辐射个人累积剂量对8-OHdG和TrxR表达水平均有影响(t=-2.327、2.367,P<0.05).结论 长期接触低剂量电离辐射可降低人群氧化损伤水平,增强机体抗氧化水平.%Objective To investigate the effects of low dose radiation on the level of oxidative damage and antioxidant in population of high background radiation area of Guangdong.Methods A total of 48 male residents who lived in high background radiation area(HBRA) of Guangdong province and 48 male residents who lived in neighboring Enping control area were chosen as the objectives and control respectively.The peripheral venous blood of two groups was collected,and then the levels of 8-OHdG and TrxR were determined by enzyme linked immunosorbent assay (ELISA).Results Compared with the CA group [(315.39 ± 100.59) ng/ml],the level of 8-OHdG [(272.64 ± 96.85) ng/ml] decreased significantly in HBRA (t =2.121,P <0.05).Compared with the CA group [(0.467 ±0.056) ng/ml],the level of TrxR [(0.496 ± 0.044) ng/ml] increased significantly in HBRA (t =-2.823,P

  9. Optimization of image quality and radiation dose in neuroradiological computed tomography

    OpenAIRE

    Löve, Askell

    2013-01-01

    Background: The goal of clinical computed tomography (CT) is to produce images of diagnostic quality using the lowest possible radiation exposure. Degradation of image quality, with increased image noise and reduced spatial resolution, is a major limitation for radiation dose reduction in CT. This can be counteracted with new post-processing image filters and iterative reconstruction (IR) algorithms that improve image quality and allow for reduced radiation doses. Implementation of new method...

  10. Therapeutic effects of low radiation doses

    International Nuclear Information System (INIS)

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses, yet few of these studies meet the required standard. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high. Since no adequate experimental studies have been performed nothing is known about the mechanisms of these therapeutic radiation

  11. Radiation dose assessment in nuclear medicine

    International Nuclear Information System (INIS)

    Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. Recently, interest has grown in therapeutic agents for a number of applications in nuclear medicine. Internal dose models and methods have been in use for many years, are well established and can give radiation doses to stylized models representing reference individuals. Kinetic analyses need to be carefully planned, and dose conversion factors should be chosen that are most similar to the subject in question and that can then be tailored to be more patient specific. Such calculations, however, are currently not relevant in patient management in internal emitter therapy, as they are not sufficiently accurate or detailed to guide clinical decision making. Great strides are being made at many centres regarding the use of patient image data to construct individualized voxel based models for more detailed and patient specific dose calculations.These recent advances make it likely that the relevance will soon change to be more similar to that of external beam treatment planning. (author)

  12. Radiation doses from mammography in Australia

    International Nuclear Information System (INIS)

    During 1989-90 the Australian Radiation Laboratory conducted a postal survey of at least 90% of the mammographic facilities in Australia. The primary aim of the survey was to measure the mean glandular dose (MGD) and the X-ray beam half value layer (HVL) for a typical mammograph. The MGD and HVL were measured with a specially designed tissue equivalent monitor. In all, 258 mammographic centres were surveyed. It was found that for centres using film-screen imaging, the average mean glandular dose was 1.83 mGy for centres using grids and 0.84 mGy for centres not using grids. In addition to the MGD and HVL, comprehensive statistical information was collected and data is presented on the types of equipment and techniques used, the number and age of patients and demographic distribution of centres. Results indicate that the use of a grid is the major factor determining dose and several other factors appear to have minor effects. In view of the distribution of MGD, it is recommended that the mean glandular dose per image, for a 5 cm compressed breast thickness, should not exceed 2.0 mGy when a grid is used and 1.0 mGy without a grid. 63 refs., 11 tabs., 15 figs

  13. Alternative application for the radiation background in the development of the atlas database of atmospheric radiation

    CERN Document Server

    De la Hoz, Ivan Arturo Morales

    2014-01-01

    Nowadays radiation is one of the variables to be considered in the environmental forecasting and it is meaningful in the increase of global warming, together greenhouse effect. The radiation considered by the meteorological organizations depends on the World Radiometric Reference (WRR), the World Standard Group (WSG), addressed by the World Meteorological Organization (WMO). This work is based on the cosmic microwave background, as a variable to be estimated in order to get information about the incident radiation in the Earth's atmosphere, as a valuable and meaningful contribution in the building of the radiation atlas by the (UPME) and (IDEAM). Due to the fact that the variables considered are ultraviolet and infrared radiation, ozone column, direct radiation and diffuse radiation, the last two get the global radiation, and are the only ones to be evaluated by the national meteorological organizations in the country. The study of the cosmic background radiation as a research project will provide data which ...

  14. Cosmic microwave background radiation anisotropies in brane worlds.

    Science.gov (United States)

    Koyama, Kazuya

    2003-11-28

    We propose a new formulation to calculate the cosmic microwave background (CMB) spectrum in the Randall-Sundrum two-brane model based on recent progress in solving the bulk geometry using a low energy approximation. The evolution of the anisotropic stress imprinted on the brane by the 5D Weyl tensor is calculated. An impact of the dark radiation perturbation on the CMB spectrum is investigated in a simple model assuming an initially scale-invariant adiabatic perturbation. The dark radiation perturbation induces isocurvature perturbations, but the resultant spectrum can be quite different from the prediction of simple mixtures of adiabatic and isocurvature perturbations due to Weyl anisotropic stress. PMID:14683226

  15. Human response to high-background radiation environments on Earth and in space

    Science.gov (United States)

    Durante, M.; Manti, L.

    2008-09-01

    The main long-term objective of the space exploration program is the colonization of the planets of the Solar System. The high cosmic radiation equivalent dose rate represents an inescapable problem for the safe establishment of permanent human settlements on these planets. The unshielded equivalent dose rate on Mars ranges between 100 and 200 mSv/year, depending on the Solar cycle and altitude, and can reach values as high as 360 mSv/year on the Moon. The average annual effective dose on Earth is about 3 mSv, nearly 85% of which comes from natural background radiation, reduced to less than 1 mSv if man-made sources and the internal exposure to Rn daughters are excluded. However, some areas on Earth display anomalously high levels of background radiation, as is the case with thorium-rich monazite bearing sand deposits where values 200 400 times higher than the world average can be found. About 2% of the world’s population live above 3 km and receive a disproportionate 10% of the annual effective collective dose due to cosmic radiation, with a net contribution to effective dose by the neutron component which is 3 4 fold that at sea level. Thus far, epidemiological studies have failed to show any adverse health effects in the populations living in these terrestrial high-background radiation areas (HBRA), which provide an unique opportunity to study the health implications of an environment that, as closely as possibly achievable on Earth, resembles the chronic exposure of future space colonists to higher-than-normal levels of ionizing radiation. Chromosomal aberrations in the peripheral blood lymphocytes from the HBRA residents have been measured in several studies because chromosomal damage represents an early biomarker of cancer risk. Similar cytogenetic studies have been recently performed in a cohort of astronauts involved in single or repeated space flights over many years. The cytogenetic findings in populations exposed to high dose-rate background radiation

  16. To understand the radiation dose in color

    International Nuclear Information System (INIS)

    Radiation is particles or electromagnetic waves having high energy, causing health damage to the human body, but cannot be perceived by the five senses of human. For enabling the visual sensing of radiation, the research and development of the functional dye material that changes from colorless body to colored body through irradiation is being promoted. This paper introduces the phenoxazine-based color former of solution type using the color former that changes color to blue through irradiation. The authors examined two types of phenoxazine-based color formers protected with alkyl oxycarbonyl group (-COOR), and mono-alkyl carbamoyl group (CONHR). Phenoxazine-based color former in acetonitrile solvent was revealed to be able to visually confirm the gamma irradiation dose of 10 Gy, but there is a problem of low temporal stability of the solution. (A.O.)

  17. Nature of the Background Ultraviolet Radiation Field at High Redshifts

    Indian Academy of Sciences (India)

    Archana Samantaray; Pushpa Khare

    2000-06-01

    We have tried to determine the flux of the ultraviolet background radiation field from the column density ratios of various ions in several absorption systems observed in the spectra of QSOs. We find that in most cases the flux is considerably higher than what has been estimated to be contributed by the AGNs. The excess flux could originate locally in hot stars. In a few cases we have been able to show that such galactic flux can only contribute a part of the total required flux. The results suggest that the background gets a significant contribution from an unseen QSO population.

  18. Wormhole solution of BD theory in an anisotropic radiation background

    Directory of Open Access Journals (Sweden)

    B. Nasre Esfahani

    2001-06-01

    Full Text Available   Time-dependent wormhole solution of the BD theory in an anisotropic radiation background is presented. It is also found that the BD scalar field depends only on time. This time dependency is in power-law form. It is shown that the wormhole geometry is valid for ω ≥ -3/2, and for any arbitrary positive values of . The GR limit of our solution is obtained for ω=0 , not for ω→∞ . Though the BD field can be non-exotic, the background material is entirely exotic.

  19. Predictions of radiation backgrounds for GRO/OSSE

    International Nuclear Information System (INIS)

    In view of the important influence of background radiation induced by the charged particle environment on the sensitivity of space-borne gamma-ray instrumentation, an extensive series of simulations has been performed on representations of the Oriented Scintillation Spectrometer Experiment and Gamma Ray Observatory Spacecraft. Previously reported results on shielding are summarised and new results are presented on the influence of detector and spacecraft orientation within anisotropic trapped proton distributions. For the cosmic ray calculation, confidence is obtained by comparison with background observations obtained during a balloon flight of a single detector unit over Alice Springs. (author)

  20. Pre-operational background radiation monitoring of Emergency Planning Zone (EPZ) of Kudankulam Nuclear Power Plant using mobile radiation monitoring methodology

    International Nuclear Information System (INIS)

    A pre-operational background radiation monitoring was carried out in the Emergency Planning Zone (EPZ) of Kudankulam Nuclear Power Plant (KKNPP). The objective of the radiation survey at pre operational stage was to form baseline radiation data against which future changes in the environmental radiation due to the operation of KKNPP can be compared. The radiation mapping was carried out using mobile monitoring technique - as a state of the art technique, where various radiation monitoring instruments installed on a mobile van were simultaneously used for qualitative and quantitative assessment (dose rate as well as radionuclide identification). During the radiation monitoring survey most of the accessible areas in EPZ have been covered. The radiation data such as dose rate, counts rate and radionuclide activity concentration in the soil were retrieved from various radiation monitors, processed and analyzed. The preoperational background radiation monitoring in EPZ of KKNPP showed the elevated radiation field, which is of the order of 30 times the national average background radiation field, in some regions like Kuthankuzhi, Lakshmipuram, Navvaladi etc. The detailed survey and analysis showed the excess presence of 232Th and 40K in elevated radiation field areas. This study would help to form baseline radiation data against which any future changes in the environmental radiation due to the operation of KKNPP can be evaluated

  1. Public exposure due to external gamma background radiation in boundary areas of Iran.

    Science.gov (United States)

    Pooya, S M Hosseini; Dashtipour, M R; Enferadi, A; Orouji, T

    2015-09-01

    A monitoring program in boundary areas of a country is an appropriate way to indicate the level of public exposure. In this research, gamma background radiation was measured using TL dosimeters at 12 boundary areas as well as in the capital city of Iran during the period 2010 to 2011. The measurements were carried out in semi-annual time intervals from January to June and July to December in each year. The maximum average dose equivalent value measured was approximately 70 μSv/month for Tehran city. Also, the average dose values obtained were less than 40 μSv/month for all the cities located at the sea level except that of high level natural radiation area of Ramsar, and more than 55 μSv/month for the higher elevation cities. The public exposure due to ambient gamma dose equivalent in Iran is within the levels reported by UNSCEAR. PMID:26057985

  2. Solid tumor risks after high doses of ionizing radiation

    OpenAIRE

    Sachs, Rainer K; Brenner, David J.

    2005-01-01

    There is increasing concern regarding radiation-related second-cancer risks in long-term radiotherapy survivors and a corresponding need to be able to predict cancer risks at high radiation doses. Although cancer risks at moderately low radiation doses are reasonably understood from atomic bomb survivor studies, there is much more uncertainty at the high doses used in radiotherapy. It has generally been assumed that cancer induction decreases rapidly at high doses due to cell killing. However...

  3. PRDC - A software package for personnel radiation dose calculation

    International Nuclear Information System (INIS)

    To determine effective dose, we usually need to use a very complicated human body model and a sophisticated computer code to transport radiations in the body model and surrounding medium, which is not very easy to practicing health physicists in the field. This study develops and tests a software package, called PRDC (Personnel Radiation Dose Calculation), which calculates effective dose and radiation doses to various organs/tissues and personal dosemeters based on a series of interpolations. (authors)

  4. Potential radiation dose from eating fish exposed to actinide contamination

    International Nuclear Information System (INIS)

    The purpose of this work is to establish a maximum potential for transporting actinides to man via fish consumption. The study took place in U-pond, a nuclear waste pond on the Hanford Site. It has concentrations of 238U, 238Pu, sup(239,240)Pu and 241Am that are approx. 3 orders of magnitude greater than background levels. Fish living in the pond contain higher actinide concentrations than those observed in fish from any other location. Experiments were performed in U-Pond to determine maximum quantities of actinides that could accumulate in fillets and whole bodies of two centrarchid fish species. Doses to hypothetical consumers were then estimated. Results indicate that highest concentrations occurring in bluegill or bass muscle after more than a year's exposure to the pond would not be sufficient to produce a significant radiation dose to a human consumer, even if he ate 0.5 kg (of the order of 1 lb) of these fillets every day for 70 yr. Natural predators (heron or coyote), having lifetime diets of whole fish from U-Pond, would receive less radiation dose from the ingested actinides than from natural background sources. (author)

  5. Potential radiation dose from eating fish exposed to actinide contamination

    Energy Technology Data Exchange (ETDEWEB)

    Emery, R.M.; Klopfer, D.C.; Baker, D.A.; Soldat, J.K. (Battelle Pacific Northwest Labs., Richland, WA (USA))

    1981-04-01

    The purpose of this work is to establish a maximum potential for transporting actinides to man via fish consumption. The study took place in U-pond, a nuclear waste pond on the Hanford Site. It has concentrations of /sup 238/U, /sup 238/Pu, sup(239,240)Pu and /sup 241/Am that are approx. 3 orders of magnitude greater than background levels. Fish living in the pond contain higher actinide concentrations than those observed in fish from any other location. Experiments were performed in U-Pond to determine maximum quantities of actinides that could accumulate in fillets and whole bodies of two centrarchid fish species. Doses to hypothetical consumers were then estimated. Results indicate that highest concentrations occurring in bluegill or bass muscle after more than a year's exposure to the pond would not be sufficient to produce a significant radiation dose to a human consumer, even if he ate 0.5 kg (of the order of 1 lb) of these fillets every day for 70 yr. Natural predators (heron or coyote), having lifetime diets of whole fish from U-Pond, would receive less radiation dose from the ingested actinides than from natural background sources.

  6. Potential radiation dose from eating fish exposed to actinide contamination

    Energy Technology Data Exchange (ETDEWEB)

    Emery, R.M.; Klopfer, D.C.; Baker, D.A.; Soldat, J.K.

    1980-01-01

    The purpose of this work is to establish a maximum potential for transporting actinides to man via fish consumption. The study took place in U-Pond, a nuclear waste pond on the Hanford Site. It has concentrations of /sup 238/U, /sup 238/Pu, /sup 239,240/Pu and /sup 241/Am that are approximately three orders of magnitude greater than background levels. Fish living in the pond contain higher actinide concentrations than those observed in fish from any other location. Experiments were performed in U-pond to determine maximum quantities of actinides that could accumulate in fillets and whole bodies of two centrarchid fish species. Doses to hypothetical consumers were then estimated by assuming that actinide behavior in their bodies was similar to that defined for Standard Man by the International Commission on Radiological Protection. Results indicate that highest concentrations occurring in bluegill or bass muscle after more than a year's exposure to the pond would not be sufficient to produce a significant radiation dose to a human consumer, even if he ate 0.5 kg (approx.1 lb) of these fillets every day for 70 years. Natural predators (heron or coyote), having lifetime diets of whole fish from U-Pond, would receive less radiation dose from the ingested actinides than from natural background sources. 34 refs., 5 figs., 4 tabs.

  7. Potential radiation dose from eating fish exposed to actinide contamination

    International Nuclear Information System (INIS)

    The purpose of this work is to establish a maximum potential for transporting actinides to man via fish consumption. The study took place in U-Pond, a nuclear waste pond on the Hanford Site. It has concentrations of 238U, 238Pu, /sup 239,240/Pu and 241Am that are approximately three orders of magnitude greater than background levels. Fish living in the pond contain higher actinide concentrations than those observed in fish from any other location. Experiments were performed in U-pond to determine maximum quantities of actinides that could accumulate in fillets and whole bodies of two centrarchid fish species. Doses to hypothetical consumers were then estimated by assuming that actinide behavior in their bodies was similar to that defined for Standard Man by the International Commission on Radiological Protection. Results indicate that highest concentrations occurring in bluegill or bass muscle after more than a year's exposure to the pond would not be sufficient to produce a significant radiation dose to a human consumer, even if he ate 0.5 kg (∼1 lb) of these fillets every day for 70 years. Natural predators (heron or coyote), having lifetime diets of whole fish from U-Pond, would receive less radiation dose from the ingested actinides than from natural background sources. 34 refs., 5 figs., 4 tabs

  8. Backgrounds of computer-assisted treatment planning in radiation therapy

    International Nuclear Information System (INIS)

    Interaction of ionising radiation and living materials causes biological damage of tempory or permanent nature. In radiation therapy this phenomenon is used in a controlled fashion in order to stop the proliferation of malignant cells, while at the same time limiting the permanent damage to healthy tissues and organs to at least tolerable levels. Because of the often relatively small differences in response of malignant growths and normal tissues, the margins between tolerable and intolerable are so small that the greatest precision in treatment planning and execution is required. The nature of this treatment agent implies that the radiation therapist has to rely very much on instrumentally obtained and processed information, in all phases of this medical activities around the patient. In this paper a description is given of the backgrounds of computer-assisted methods which have enabled modern individualised and optimised planning for therapy with high energy X- and gamma beams. (orig.)

  9. CERN-derived analysis of lunar radiation backgrounds

    Science.gov (United States)

    Wilson, Thomas L.; Svoboda, Robert

    1993-01-01

    The Moon produces radiation which background-limits scientific experiments there. Early analyses of these backgrounds have either failed to take into consideration the effect of charm in particle physics (because they pre-dated its discovery), or have used branching ratios which are no longer strictly valid (due to new accelerator data). We are presently investigating an analytical program for deriving muon and neutrino spectra generated by the Moon, converting an existing CERN computer program known as GEANT which does the same for the Earth. In so doing, this will (1) determine an accurate prompt neutrino spectrum produced by the lunar surface; (2) determine the lunar subsurface particle flux; (3) determine the consequence of charm production physics upon the lunar background radiation environment; and (4) provide an analytical tool for the NASA astrophysics community with which to begin an assessment of the Moon as a scientific laboratory versus its particle radiation environment. This will be done on a recurring basis with the latest experimental results of the particle data groups at Earth-based high-energy accelerators, in particular with the latest branching ratios for charmed meson decay. This will be accomplished for the first time as a full 3-dimensional simulation.

  10. Design of radiation dose tumor response assays

    International Nuclear Information System (INIS)

    The efficient utilization of animals in a radiation dose response assay for tumor control requires a definition of the goal, e.g., TCD50 or slope. A series of computer modelled ''experiments'' have been performed for each of a number of allocations of dose levels (DL) and number of animals/DL. The authors stipulated that the assumed TCD50 was .85 of true value; assumed slope was correct. They stipulated a binominal distribution of observed tumor control results at each dose level. A pilot assay used 6 tumors at 7 DL (from TCD1-TCD97). The second assay used 30 tumors assigned to 2,3,5 or 9 DL and to selected tumor control probabilities (TCP derived from the pilot run. Results from 100 test runs were combined with the pilot run for each of the combination of DL and TCP values. Logit regression lines were fitted through these ''data'' and the 95% CL around the TCD50 and the TCD37 values and the variances of the slopes were computed. These experiments were repeated using the method suggested by Porter (1980). Results show that a different strategy is needed depending upon the goal, viz. TCD50 or TCD37 vs slope. The differences between the two approaches are discussed

  11. A survey of senile dementia in the high background radiation areas in Yangjiang, China

    International Nuclear Information System (INIS)

    Objective: To evaluate the effects of long-term low dose and low dose-rate ionizing radiation exposure on the prevalence rate of senile dementia, further assess the effects of low-dose radiation exposure on central nervous system and study the pathogen of senile dementia, and provide direct observational data of human beings. Methods: A cross-sectional study of the prevalence of senile dementia was carried out in high background radiation areas in Yangjiang, Guangdong Province, China. The survey was conducted in two stages. For the initial screening, Hasegawa Dementia Scale (HDS) was used for all subjects. In the second stage, the stage of diagnosis, special questionnaires of healthy state of old people were sued. The final diagnoses were made according to the third revised edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM III-R) of American Psychiatric Association. Results: 1018 inhabitants aged 65 years and over, including 513 persons in HBRA and 505 in CA were observed. According to DSM III-R, 61 cases (31 cases in HBRA and 30 cases in CA) of senile dementia were diagnosed. The prevalence rates of senile dementia are 6.04% in HBRA and 5.94% in CA, the total prevalence rate being 5.99%. Conclusion: No significant statistical difference in the prevalence rate of senile dementia between the two areas was found, suggesting that the prevalence rate of senile dementia in these areas is not associated with the high background radiation exposure

  12. Assessment of Radiation Background Variation for Moving Detection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James Christopher [Los Alamos National Laboratory; Rennie, John Alan [Los Alamos National Laboratory; Toevs, James Waldo [Los Alamos National Laboratory; Wallace, Darrin J. [Los Alamos National Laboratory; Abhold, Mark Edward [Los Alamos National Laboratory

    2015-07-13

    The introduction points out that radiation backgrounds fluctuate across very short distances: factors include geology, soil composition, altitude, building structures, topography, and other manmade structures; and asphalt and concrete can vary significantly over short distances. Brief descriptions are given of the detection system, experimental setup, and background variation measurements. It is concluded that positive and negative gradients can greatly reduce the detection sensitivity of an MDS: negative gradients create opportunities for false negatives (nondetection), and positive gradients create a potentially unacceptable FAR (above 1%); the location of use for mobile detection is important to understand; spectroscopic systems provide more information for screening out false alarms and may be preferred for mobile use; and mobile monitor testing at LANL accounts for expected variations in the background.

  13. Radiation dose reduction by chemical decontamination

    International Nuclear Information System (INIS)

    The paper deals with the role of chemical decontamination for reducing radiation exposure during major maintenance activities like in-service inspection of coolant channels and EMCCR works on the Primary Heat Transport System and associated components. In order to achieve the man rem reduction, MAPS has successfully carried out six decontamination campaigns of PHT system, three for MAPS-1 and three for MAPS-2. The complexing agent EDTA used in the first four DCDs was changed over to Nitrilo Tri-Acetic acid (NTA) in the subsequent two DCDs and the beneficial effects of the same on dose reduction are detailed. With the use of Nitrilo Tri-Acetic acid (NTA) as complexing agent, the need to add during the process to augment the loss due to IX pickup and radiation decomposition was avoided as NTA displayed better radiation stability and was not getting picked up in the cation IX. Good decontamination factors were observed in the monel with NTA, as copper and nickel complexes of NTA had lower stability constants than that with EDTA. An overview of all these decontaminations along with the brief description of the process and benefits in terms of dose reduction is described. Further, the chemical decontamination procedures adopted for minimising the loose and the fixed contamination on the seal plugs of the 306 coolant channels of Unit-2 during EMCCR works is also presented. The pressure tubes are rolled into the end fittings which have got seal plugs to prevent the PHT water coming out of the system. The 612 seal plugs made of stainless steel were decontaminated using ∼ 10% diammonium hydrogen citrate maintaining a temperature of 70 to 80 deg C. All the 612 seal plugs were successfully decontaminated in 41 batches. The process details and results obtained are reviewed. (author)

  14. Cumulative radiation dose of multiple trauma patients during their hospitalization

    International Nuclear Information System (INIS)

    Objective: To study the cumulative radiation dose of multiple trauma patients during their hospitalization and to analyze the dose influence factors. Methods: The DLP for CT and DR were retrospectively collected from the patients during June, 2009 and April, 2011 at a university affiliated hospital. The cumulative radiation doses were calculated by summing typical effective doses of the anatomic regions scanned. Results: The cumulative radiation doses of 113 patients were collected. The maximum,minimum and the mean values of cumulative effective doses were 153.3, 16.48 mSv and (52.3 ± 26.6) mSv. Conclusions: Multiple trauma patients have high cumulative radiation exposure. Therefore, the management of cumulative radiation doses should be enhanced. To establish the individualized radiation exposure archives will be helpful for the clinicians and technicians to make decision whether to image again and how to select the imaging parameters. (authors)

  15. Quantitative study of unstable chromosome aberrations following life time exposure of high background radiation in China

    International Nuclear Information System (INIS)

    Objective: To obtain a quantitative data regarding high background radiation-induced human chromosome aberrations by using advanced techniques. Methods: Environmental exposure dose for each individual was carefully measured. The estimated life-time doses ranged 25.2-244.8 and 5.4-51.7 mGy for individuals from the high background radiation area (HBRA) and the control area, respectively. Peripheral blood specimens were taken from 28 family members of three different generations in both areas. Purified lymphocyte culture technique for chromosome preparation was adopted and a total number of 70000 metaphases were scored. Results: In the case of HBRA, the frequencies of Dic + Rc increased with age, but no age-dependency was observed in subjects from the control area. The mean aberration yields significantly in excess of control value were seen in two older age groups. The aberration frequencies increased in proportion to the cumulative dose of the individuals living in HBRA. The estimated rate of increase per mGy was 1.5 x 10-5 per cell. Conclusion: It seems that Dic can continuously accumulated over life-time chronic low dose exposure and can serve as a reliable biological indicator. When the dose reduces to about 50 mGy, however, it becomes difficult to use to current method for quantitative analysis

  16. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  17. Vertebrate radiations of the Jehol Biota and their environmental background

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhonghe

    2004-01-01

    @@ Significant progress has been made in recent years in the studies of various groups of the Jehol Biota, particularly concerning the origin of birds and their flight as well as the evolution of Early Cretaceous birds, dinosaurs, mammals, insects and flowering plants[1-5]. As a result, the Jehol Biota has become well known to both the scientific community and the public. The studies on the Jehol Biota also revealed the patterns and processes of the evolutionary radiations of many major groups of Early Cretaceous animals and plants, such as the earliest known radiation of angiosperms and birds, early differentiation of mammals and many Cretaceous dinosaurian groups. Notably, the radiations of the Jehol vertebrates share some similar patterns attributable to the particular environmental background. For instance, the Jehol vertebrate radiations are highlighted by the presence of abundant arboreal adaptations and herbivorous forms, thus closely linked to the forest environments. In addition, the differentiation of habitats and diets is also characteristic of the evolutionary radiations of pterosaurs, dinosaurs, birds and mammals in the Jehol Biota.

  18. Monitoring of radiation dose rates around a clinical nuclear medicine site

    International Nuclear Information System (INIS)

    The monitoring of radiation dose around the nuclear medicine site is an important study issue. In this study, TLD-100H radiation dosimeters were used to measure the ambient radiation dose rates around a clinical nuclear medicine site in order to investigate the latent hot zones of radiation exposure. Results of this study showed that the radiation doses measured from all piping and storage systems were comparable to the background dose. A relatively high dose was observed at the single bend point of waste water piping of the PET/CT. Another important finding was the unexpected high dose rates observed at the non-restricted waiting area (NRWA) of SPECT. To conclude, this study provides useful information for further determination of an appropriate dose reduction strategy to achieve the ALARA principle in a clinical nuclear medicine site. - Highlights: • Observed unexpected high dose rates in the non restricted waiting area. • Provides useful Radiation Dose Rates information in nuclear medicine radioactive waste water pipeline system. • Provide TLD setup method in environmental radiation dose evaluate

  19. Radiation Dose to Newborns in Neonatal Intensive Care Units

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Bahreyni Toossi

    2012-01-01

    Full Text Available Background: With the increase of X-ray use for medical diagnostic purposes, knowing the given doses is necessary in patients for comparison with reference levels. The concept of reference doses or diagnostic reference levels (DRLs has been developed as a practical aid in the optimization of patient protection in diagnostic radiology.Objectives: To assess the radiation doses to neonates from diagnostic radiography (chest and abdomen. This study has been carried out in the neonatal intensive care unit of a province in Iran.Patients and Methods: Entrance surface dose (ESD was measured directly with thermoluminescent dosimeters (TLDs. The population included 195 neonates admitted for a diagnostic radiography, in eight NICUs of different hospital types.Results: The mean ESD for chest and abdomen examinations were 76.3 µGy and 61.5 µGy, respectively. DRLs for neonate in NICUs of the province were 88 µGy for chest and 98 µGy for abdomen examinations that were slightly higher than other studies. Risk of death due to radiation cancer incidence of abdomens examination was equal to 1.88 × 10 -6 for male and 4.43 × 10 -6 for female. For chest X-ray, it was equal to 2.54 × 10 -6 for male and 1.17 × 10 -5 for female patients.Conclusion: DRLs for neonates in our province were slightly higher than values reported by other studies such as European national diagnostic reference levels and the NRPB reference dose. The main reason was related to using a high mAs and a low kVp applied in most departments and also a low focus film distance (FFD. Probably lack of collimation also affected some exams in the NICUs.Keywords:Intensive Care Units,Neonatal,Radiation Dosimetry

  20. Radiation doses inside industrial irradiation installation with linear electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Alexandre R., E-mail: alexandre.lima@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Pelegrineli, Samuel Q.; Alo, Gabriel F., E-mail: samuelfisica@yahoo.com.br, E-mail: gabriel.alo@aceletron.com.br [Aceletron Irradiacao Industrial, Aceletrica Comercio e Representacoes Ltda, Rio de Janeiro, RJ (Brazil); Silva, Francisco C.A. Da, E-mail: dasilva@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Aceletron Industrial Irradiation Company is the unique installation in South America to provide industrial irradiation service using two linear electron accelerators of 18 kW and 10 MeV energy. The electron beam technology allows using electrons to irradiate many goods and materials, such as hospital and medical equipment, cosmetics, herbal products, polymers, peat, gemstones and food. Aceletron Company uses a concrete bunker with 3.66 m of thickness to provide the necessary occupational and environmental radiation protection of X-rays produced. The bunker is divided in main four areas: irradiation room, maze, tower and pit. Inside the irradiation room the x-rays radiation rates are measured in two ways: direct beam and 90 deg C. The rates produced in the conveyor system using 10 MeV energy are 500 Gy/min/mA and 15 Gy/min/mA, respectively. For a 1.8 mA current, the rates produced are 900 Gy/min and 27 Gy/min, respectively. Outside the bunker the radiation rate is at background level, but in the tower door and modulation room the radiation rate is 10 μSv/h. In 2014, during a routine operation, an effective dose of 30.90 mSv was recorded in a monthly individual dosimeter. After the investigation, it was concluded that the dose was only in the dosimeter because it felt inside the irradiation room. As Aceletron Company follows the principles of safety culture, it was decided to perform the radiation isodose curves, inside the four areas of the installation, to know exactly the hotspots positions, exposure times and radiation doses. Five hotspots were chosen taking into account worker's routes and possible operational places. The first experiment was done using a package with three TLD and OSLD dosimeters to obtain better statistical results. The first results for the five hotspots near the accelerator machine showed that the radiation dose rates were between 26 Gy/h and 31 Gy/h. The final measurements were performed using a package with one TLD and one OSLD

  1. Consideration of Radiation Dose Terms of the Korea Nuclear Safety Act for Evaluation of Dose Limit of Radiation Workers

    International Nuclear Information System (INIS)

    'Peepok-bangsaseolyang' is a term defined as the sum of the radiation doses exposed externally and internally according to Subparagraph 19 of Article 2 of the Korea Nuclear Safety Act (KNSA). Table 1 of Enforcement Decree of the KNSA provides effective dose limit and equivalent dose limit for radiation workers. Dose limit is the upper limit of Peepok-bangsaseolyang according to Subparagraph 5 of Article 2 of Enforcement Decree of the KNSA. Notice of Korea Nuclear Safety and Security (KNSSC) No.2012-29 defines effective dose and equivalent dose. To utilize these requirements for dose limit of radiation workers, a simple diagram of all kind of radiation doses described in the KNSA, called 'dose pedigree of Peepok-bangsaseolyang' has been developed. This dose pedigree of Peepok-bangsaseolyang is described herein, and, in order to be available more effectively in our regulatory system, some suggestions are presented

  2. Molecular mechanism of adaptive response to low dose radiation

    International Nuclear Information System (INIS)

    Adaptive response is a term used to describe the ability of a low, priming dose of ionizing radiation to modify the effects of a subsequent higher, challenge dose. Molecular mechanism of adaptive response to low dose radiation is involved in signal transduction pathway, reactive oxygen species, DNA damage repair

  3. Radiation dose determination by using powder Seydisehir alumina

    International Nuclear Information System (INIS)

    Thermoluminescence dosimeters (TLDs) is a passive dose measurement method used for the supervision, quality control and calibration during radiation dose measurements. Nowadays TLDs, including alumina, are largely used and investigated due to high sensitivity, physical and chemical stability, and re-usefulness. In this work, powder form of Seydisehir alumina is used as a thermoluminescence material and α and β radiation doses were measured.

  4. Effects of Low Dose Radiation on Mammals 1

    OpenAIRE

    Okumura, Yutaka; Mine, Mariko; Kishikawa, Masao

    1991-01-01

    Radiation has been applied widely to clinics, researches and industries nowadays. Irradiation by atomic bomb produced many victims in Hiroshima and Nagasaki. Radiation effects on animals and human belings have been reported extensively, especially at a dose range of high amount of radiation. As radiation effects at low dose have not been well studied, it is believed that even a small amount of radiation produces hazardous effects. However, it might not be true. Beneficial effects of a low dos...

  5. Thyroid nodularity and chromosome aberrations among women in areas of high background radiation in China

    International Nuclear Information System (INIS)

    Thyroid nodularity following continuous low-dose radiation exposure in China was determined in 1,001 women aged 50-65 years who resided in areas of high background radiation (330 mR/yr) their entire lives, and in 1,005 comparison subjects exposed to normal levels of radiation (114 mR/yr). Cumulative doses to the thyroid were estimated to be of the order of 14 cGy and 5 cGy, respectively. Personal interviews and physical examinations were conducted, and measurements were made of serum thyroid hormone levels, urinary iodine concentrations, and chromosome aberrations in circulating lymphocytes. For all nodular disease, the prevalences in the high background and control areas were 9.5% and 9.3%, respectively. For single nodules, the prevalences were 7.4% in the high background area and 6.6% in the control area (prevalence ratio = 1.13; 95% confidence interval = 0.82-1.55). There were no differences found in serum levels of thyroid hormones. Women in the high background region, however, had significantly lower concentrations of urinary iodine and significantly higher frequencies of stable and unstable chromosome aberrations. Increased intake of allium vegetables such as garlic and onions was associated with a decreased risk of nodular disease, which seems consistent with experimental studies suggesting that allium compounds can inhibit tumor growth and proliferation. The prevalence of mild diffuse goiter was higher in the high background radiation region, perhaps related to a low dietary intake of iodine. These data suggest that continuous exposure to low-level radiation throughout life is unlikely to appreciably increase the risk of thyroid cancer. However, such exposure may cause chromosomal damage

  6. Assessment of background gamma radiation and determination of excess lifetime cancer risk in Sabzevar City, Iran in 2014

    Directory of Open Access Journals (Sweden)

    Akbar Eslami

    2016-01-01

    Full Text Available Background: Background gamma radiation levels vary in different locations and depended on many factors such as radiation properties of soil, building materials as well as construction types which human lives on it. People are always exposed to ionizing radiation, which could badly influence their health. The aim of this study was to evaluate the background gamma-ray dose rate and the estimated annual effective dose equivalent and determination of excess lifetime cancer risk in Sabzevar City, Iran. Methods: The aim of this cross-sectional study was to determine the dose rate of background gamma radiation in outdoor an indoor areas, 26 stations were selected using the map of the Sabzevar City. The amount of gamma radiation was measured at 4 months (September to January in 2014 year. The dosimeter used in this study was a survey meter, that is designed for monitoring radiation of x, gamma and beta rays. Results: The obtained results show that there are significant differences between the indoor and outdoor exposures (P> 0.05. We did not observe significant differences between the time of sampling and sampling locations, (P<0.05. The minimum and maximum values of dose rate were found 66±20 nSvh-1 and 198±28 nSvh-1. The annual effective dose for Sabzevar residents was estimated to be 0.85 mSv and also the amount of excess lifetime cancer risk was estimated 3.39×10-3. Conclusion: According to the results, the excess lifetime cancer risk and the annual effective dose for the Sabzavar City residents due to the background gamma radiation was higher than the global average (0.5 mSv. The epidemiological studies have been proposed to evaluate the risk of chronic diseases associated with natural radiation exposure among residents.

  7. Statistical analyses of cancer mortality data of high background radiation areas of Yangjiang

    International Nuclear Information System (INIS)

    The author describes the methodology and results of the recent statistical analysis of cancer mortality data between 1970-1986 of high background radiation areas in Yangjiang, Guangdong, China. This analysis emphases on the establishment of reasonable mathematical models, parameter estimation techniques and combined analysis of data collected in different survey periods. Dose-response analyses were carried out in more detail to detect radiation effects. Statistical estimation of the upper confidence bounds of hazardous effect of radiation is given in terms of the upper confidence limit of excess relative risk of all cancers and of leukemia. The analysis further confirms that there is no correlation between radiation exposure and mortality from all cancers or from leukemia. Estimates of radiation induced cancer risk were made based on three mathematical models. Each model was designed for a specific subset of data which were collected differently in method or contain different information. The upper confidence limit of the excess relative risk was also estimated using the likelihood method. It is noted that the estimate of the upper bound of cancer risk is consistent with or similar to the result of occupational exposure and the risk extrapolated from the Japanese A-bomb study. Therefore, these results strengthen the conclusion that the estimates obtained through extrapolation from high dose data do not seriously underestimate the risk of low-dose exposure, but leave open the possibility that extrapolation may overestimate risks

  8. Towards individualized dose constraints: Adjusting the QUANTEC radiation pneumonitis model for clinical risk factors

    DEFF Research Database (Denmark)

    Appelt, Ane L; Vogelius, Ivan R.; Farr, Katherina P.;

    2014-01-01

    Background. Understanding the dose-response of the lung in order to minimize the risk of radiation pneumonitis (RP) is critical for optimization of lung cancer radiotherapy. We propose a method to combine the dose-response relationship for RP in the landmark QUANTEC paper with known clinical risk...... for a patient without pulmonary co-morbidities, caudally located tumor, no history of smoking,...

  9. Contributions of gamma ray bursters and supernovae to the terrestrial background radiation field

    International Nuclear Information System (INIS)

    generating mass extinction on earth, they are likely to have increased terrestrial background radiation levels significantly on a relatively frequent evolutionary timescale. This, in turn, may have implications for the way in which modern organisms respond to radiation dose. (author)

  10. Confounding factors in radiation epidemiology and their comparability between high background radiation areas and control areas in Yangjiang, China

    International Nuclear Information System (INIS)

    Objective: Confounding factors in radiation epidemiology and their comparability among the four different dose-rate groups in high background radiation areas were studied. Methods: The demography data were collected by a specific registration method. For the components of diet and life style, the samples were taken by a stratified random sampling method. Results: The sex-, age-distributions and the life expectancy of the members of a cohort 35 years old and above in the four dose-rate groups were similar to each other. The components of diet were constituted mostly of grains and vegetables with less meat, eggs and milk. The percentages of cigarette smokers were 27.7%-31.3% in both male and female subjects and the percentages of alcohol drinkers were 4.0%-6.9% in them. Conclusion: The results show that there is good comparability between the four dose-rate groups except for background radiation level, and it is suggested that the taken food consisting of grains and vegetables may be a beneficial factor leading to low incidence of malignancies in this area

  11. Radiative corrections in QED in a Lorentz violating background1

    International Nuclear Information System (INIS)

    Radiative corrections in Lorentz violating extensions of QED have received considerable attention in the last years. In this talk I will address the case of fermions coupled to a constant background axial-vector and analise both classical and quantum aspects which prove to be relevant for the consistence of the theory. The modification of the mass-shell conditions in the free theory allows to determine bounds on the fermions' momenta which in turns determines the domain of integration for radiative corrections. We consider this to render the theory free of ambiguities, rather than formal arguments which may lack foundation in this context. Also, the appearance of an anomalous loss of gauge invariance and the role of finite temperature are discussed.

  12. Cosmic Rays Induced Background Radiation on Board of Commercial Flights

    CERN Document Server

    Pinilla, S; Núñez, L A

    2015-01-01

    The aim of this work is to determine the total integrated flux of cosmic radiation which a commercial aircraft is exposed to along specific flight trajectories. To study the radiation background during a flight and its modulation by effects such as altitude, latitude, exposure time and transient magnetospheric events, we perform simulations based on Magnetocosmics and CORSIKA codes, the former designed to calculate the geomagnetic effects on cosmic rays propagation and the latter allows us to simulate the development of extended air showers in the atmosphere. In this first work, by considering the total flux of cosmic rays from 5 GeV to 1 PeV, we obtained the expected integrated flux of secondary particles on board of a commercial airplane during the Bogot\\'a-Buenos Aires trip by point-to-point numerical integration.

  13. Direct determination of internal radiation dose in human blood

    CERN Document Server

    Tanır, Ayse Güneş

    2014-01-01

    The purpose of this study is to measure the internal radiation dose using a human blood sample. In the literature, there is no process that allows the direct measurement of the internal radiation dose received by a person. The luminescence counts from a blood sample having a laboratory-injected radiation dose and the waste blood of the patient injected with a radiopharmaceutical for diagnostic purposes were both measured. The decay and dose-response curves were plotted for the different doses. The doses received by the different blood aliquots can be determined by interpolating the luminescence counts to the dose-response curve. This study shows that the dose received by a person can be measured directly, simply and retrospectively by using only a very small amount of blood sample. The results will have important ramifications for the medicine and healthcare fields in particular. This will also be very important in cases of suspicion of radiation poisoning, malpractice and so on.

  14. UV background radiation, dust, and gas at high galactic latitude

    International Nuclear Information System (INIS)

    A new analysis of the UV background radiation measurements obtained with the ELZ instrument on board the D2B-Aura satellite is performed at high galactic latitudes (mod(b)>=300) in two bandpasses centered at 1690 A and 2200 A. Correlations of the UV brightnesses with dust tracers are found; the scattering phase function of dust can be derived. Among regions exhibiting a UV flux in excess over the average correlation, an insight is given on the Eridanus region known as a hot spot in soft X-rays. (Auth.)

  15. Search for Linear Polarization of the Cosmic Background Radiation

    Science.gov (United States)

    Lubin, P. M.; Smoot, G. F.

    1978-10-01

    We present preliminary measurements of the linear polarization of the cosmic microwave background (3 deg K blackbody) radiation. These ground-based measurements are made at 9 mm wavelength. We find no evidence for linear polarization, and set an upper limit for a polarized component of 0.8 m deg K with a 95% confidence level. This implies that the present rate of expansion of the Universe is isotropic to one part in 10{sup 6}, assuming no re-ionization of the primordial plasma after recombination

  16. Anisotropies of Cosmic Background Radiation from a Local Collapse

    OpenAIRE

    Wu, Xiang-Ping; Fang, Li-Zhi

    1993-01-01

    We present an exact solution of the anisotropies of cosmic background radiation (CBR) from a local collapse described by a spherical over-dense region embedded in a flat universe, with the emphasis on the relationship between the dipole $(\\Delta {\\sf T}/{\\sf T})_d$ and the quadrupole $(\\Delta {\\sf T}/{\\sf T})_q$ anisotropy. This result has been used to examine the kinematic quadrupole correction $(\\Delta {\\sf T}/{\\sf T})_q=(\\Delta {\\sf T}/{\\sf T})_d^2/2$, which is usually applied to remove th...

  17. Ambient radioactivity levels and radiation doses. Annual report 2012

    International Nuclear Information System (INIS)

    The annual report 2012 on ambient radioactivity levels and radiation doses covers the following issues: Part A: General information: natural environmental radioactivity; artificial radioactivity in the environment; occupational radiation exposure; radiation exposures from medical applications; the handling of radioactive materials and sources of ionizing radiation; non-ionizing radiation. Part B: Current data and their evaluation: natural environmental radioactivity; artificial radioactivity in the environment; occupational radiation exposures; radiation exposures from medical applications; the handling of radioactive materials and sources of ionizing radiation; non-ionizing radiation. The report includes data on the stock of radioactive waste, radiation accidents and unusual events.

  18. External radiation survey and dose predictions for Rongelap, Utirik, Rongerik, Ailuk, and Wotje Atolls

    International Nuclear Information System (INIS)

    External radiation measurements were made at several atolls in the northern Marshall Islands, which are known or suspected to have been the recipients of tropospheric fallout during the Pacific Testing Programs. Sufficient data were available to ascertain realistic dose predictions for the inhabitants of Rongelap and Utirik Atolls where the 30 year integral doses from external sources exclusive of background radiation were 0.65 and 0.06 rem respectively. These estimates are based on realistic life-style models based on observations of each atoll community. Ailuk and Wotje Atolls were found to be represenatives of regional background radiation levels

  19. Dose planning and dose delivery in radiation therapy

    International Nuclear Information System (INIS)

    A method has been developed for calibration of CT-numbers to volumetric electron density distributions using tissue substitutes of known elemental composition and experimentally determined electron density. This information have been used in a dose calculation method based on photon and electron interaction processes. The method utilizes a convolution integral between the photon fluence matrix and dose distribution kernels. Inhomogeneous media are accounted for using the theorems of Fano and O'Connor for scaling dose distribution kernels in proportion to electron density. For clinical application of a calculated dose plan, a method for prediction of accelerator output have been developed. The methods gives the number of monitor units that has to be given to obtain a certain absorbed dose to a point inside an irregular, inhomogeneous object. The method for verification of dose distributions outlined in this study makes it possible to exclude the treatment related variance contributions, making an objective evaluation of dose calculations with experiments feasible. The methods for electron density determination, dose calculation and prediction of accelerator output discussed in this study will all contribute to an increased accuracy in the mean absorbed dose to the target volume. However, a substantial gain in the accuracy for the spatial absorbed dose distribution will also follow, especially using CT for mapping of electron density together with the dose calculation algorithm. (au)

  20. Radiative emission of neutrino pair free of quantum electrodynamic backgrounds

    International Nuclear Information System (INIS)

    A scheme of quantum electrodynamic (QED) background-free radiative emission of a neutrino pair (RENP) is proposed in order to achieve precision determination of neutrino properties so far not accessible. The important point for the background rejection is the fact that the dispersion relation between the wave vector along the propagating direction in the wave guide (and in a photonic-crystal-type fiber) and the frequency is modified by a discretized non-vanishing effective mass. This effective mass acts as a cutoff of allowed frequencies, and one may select the RENP photon energy region free of all macro-coherently amplified QED processes by choosing the cutoff larger than the mass of neutrinos

  1. Low-dose radiation epidemiology studies: status and issues.

    Science.gov (United States)

    Shore, Roy E

    2009-11-01

    Although the Japanese atomic bomb study and radiotherapy studies have clearly documented cancer risks from high-dose radiation exposures, radiation risk assessment groups have long recognized that protracted or low exposures to low-linear energy transfer radiations are key radiation protection concerns because these are far more common than high-exposure scenarios. Epidemiologic studies of human populations with low-dose or low dose-rate exposures are one approach to addressing those concerns. A number of large studies of radiation workers (Chernobyl clean-up workers, U.S. and Chinese radiological technologists, and the 15-country worker study) or of persons exposed to environmental radiation at moderate to low levels (residents near Techa River, Semipalatinsk, Chernobyl, or nuclear facilities) have been conducted. A variety of studies of medical radiation exposures (multiple-fluoroscopy, diagnostic (131)I, scatter radiation doses from radiotherapy, etc.) also are of interest. Key results from these studies are summarized and compared with risk estimates from the Japanese atomic bomb study. Ideally, one would like the low-dose and low dose-rate studies to guide radiation risk estimation regarding the shape of the dose-response curve, DDREF (dose and dose-rate effectiveness factor), and risk at low doses. However, the degree to which low-dose studies can do so is subject to various limitations, especially those pertaining to dosimetric uncertainties and limited statistical power. The identification of individuals who are particularly susceptible to radiation cancer induction also is of high interest in terms of occupational and medical radiation protection. Several examples of studies of radiation-related cancer susceptibility are discussed, but none thus far have clearly identified radiation-susceptible genotypes. PMID:19820457

  2. Radiation effects on livestock: physiological effects, dose response

    International Nuclear Information System (INIS)

    Farm livestock show no measurable effects from being exposed to ionizing radiation unless the level is greatly in excess of the natural background radiation. Possible sources of ionizing radiation which might affect livestock or contribute to radioactivity in the food chain to humans are reactor accidents, fuel reprocessing plant accidents and thermonuclear explosions. Most data on ionizing radiation effects on livestock are from whole body gamma doses near the LD 50/60 level. However, grazing livestock would be subjected to added beta exposure from ingested and skin retained radioactive particles. Results of attempts to simulate exposure of the Hereford cattle at Alamogardo, NM show that cattle are more sensitive to ingested fallout radiation than other species. Poultry LD 50/60 for gamma exposure is about twice the level for mammals, and swine appear to have the most efficient repair system being able to withstand the most chronic gamma exposure. Productivity of most livestock surviving an LD 50/60 exposure is temporarily reduced and longterm effects are small. Livestock are good screeners against undesirables in our diet and with the exception of radiosotopes of iodine in milk, very little fission product radioactivity would be expected to be transferred through the food chain in livestock products for humans. Feeding of stored feed or moving livestock to uncontaminated pastures would be the best protective action to follow. 29 references

  3. Dose conversion factors for external photon radiation

    International Nuclear Information System (INIS)

    Dose conversion factors for radionuclides have been computed and tabulated for two situations: photon doses resulting from immersion in contaminated air, and exposure to a contaminated land surface. Computed dose conversion factors relates absorbed dose rate in human tissue to activity concentration. Tabulated dose conversion factors includes contributions from naturally occurring radionuclides as well as manmade radionuclides: activation products, fission products, actinides. (Auth.)

  4. Dose conversion factors for external photon radiation

    International Nuclear Information System (INIS)

    Dose conversion factors for radionuclides have been computed and tabulated for two situations: photon doses resulting from immersion in contaminated air, and exposure to a contaminated land surface. Computed dose conversion factors relates absorbed dose rate in human tissue to activity concentration. Tabulated dose conversion factors includes contributions from naturally occuring radionuclides as well as manmade radionuclides: activation products, fission products, actinides. (author)

  5. Current issues in carcinogenic effect of low-dose radiation

    International Nuclear Information System (INIS)

    A review of publications dealing with study of radiation sources and biological evaluation of increasing doses of people irradiation under occupational and usual living conditions is presented. The existing natural and artifial irradiation sources are considered. It is noted that all types of ionizing radiations are characterized by high carcinogenic efficiency and can induce benign and malignant tumors practically in all organs. Statistically reliable data in experimental and epidemiological investigations were recorded under the effect of large and mean doses. Minor radiation doses not responsible for visible functional and morphological changes in early periods can cause pathological changes in delayed periods. The data on carcinogenic effect of relatively small radiation doses are available

  6. Personal monitoring and assessment of doses received by radiation workers

    International Nuclear Information System (INIS)

    The Personal Radiation Monitoring Service operated by the Australian Radiation Laboratory is outlined and the types of monitors used for assessment of doses received by radiation workers are described. The distribution of doses received by radiation workers in different occupational categories is determined. From these distributions, the average doses received have been assessed and the maximum likely additional increase in cancer deaths in Australia as a result of occupational exposure estimated. This increase is shown to be very small. There is, however, a considerable spread of doses received by individuals within occupational groups

  7. Evaluation of occupational and patient radiation doses in orthopedic surgery

    International Nuclear Information System (INIS)

    This study intends to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (DHS) and (ii) Dynamic Cannula Screw (DCS) and to evaluate entrance surface Air kerma (ESAK) dose and organ doses and effective doses. Calibrated Thermoluminescence dosimeters (TLD-GR200A) were used. The mean patients’ doses were 0.46 mGy and 0.07 mGy for DHS and DCS procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean organ and effective dose for patients and staff were higher in DHS compared to DCS. Orthopedic surgeons were exposed to unnecessary radiation doses due to the lack of protection measures. The radiation dose per hip procedure is within the safety limit and less than the previous studies

  8. Radiation dose and cancer risk among pediatric patients undergoing interventional neuroradiology procedures

    OpenAIRE

    Thierry-Chef, Isabelle; Simon, Steven L.; Miller, Donald L.

    2006-01-01

    Background During interventional neuroradiology procedures, patients can be exposed to moderate to high levels of radiation. Special considerations are required to protect children, who are generally more sensitive to the short- and long-term detrimental effects of radiation exposure. Estimates of dose to the skin of children from certain interventional procedures have been published elsewhere, but we are not aware of data on dose to the brain or on the long-term risk of cancer from brain rad...

  9. MONTEC, an interactive fortran program to simulate radiation dose and dose-rate responses of populations

    International Nuclear Information System (INIS)

    The computer program MONTEC was written to simulate the distribution of responses in a population whose members are exposed to multiple radiation doses at variable dose rates. These doses and dose rates are randomly selected from lognormal distributions. The individual radiation responses are calculated from three equations, which include dose and dose-rate terms. Other response-dose/rate relationships or distributions can be incorporated by the user as the need arises. The purpose of this documentation is to provide a complete operating manual for the program. This version is written in FORTRAN-10 for the DEC system PDP-10

  10. Radionuclides and radiation indices of high background radiation area in Chavara-Neendakara placer deposits (Kerala, India).

    Science.gov (United States)

    Derin, Mary Thomas; Vijayagopal, Perumal; Venkatraman, Balasubramaniam; Chaubey, Ramesh Chandra; Gopinathan, Anilkumar

    2012-01-01

    The present paper describes a detailed study on the distribution of radionuclides along Chavara - Neendakara placer deposit, a high background radiation area (HBRA) along the Southwest coast of India (Kerala). Judged from our studies using HPGe gamma spectrometric detector, it becomes evident that Uranium ((238)U), Thorium ((232)Th) and Potassium ((40)K) are the major sources for radioactivity prevailing in the area. Our statistical analyses reveal the existence of a high positive correlation between (238)U and (232)Th, implicating that the levels of these elements are interdependent. Our SEM-EDAX analyses reveal that titanium (Ti) and zircon (Zr) are the major trace elements in the sand samples, followed by aluminum, copper, iron, ruthenium, magnesium, calcium, sulphur and lead. This is first of its kind report on the radiation hazard indices on this placer deposit. The average absorbed dose rates (9795 nGy h(-1)) computed from the present study is comparable with the top-ranking HBRAs in the world, thus offering the Chavara-Neendakara placer the second position, after Brazil; pertinently, this value is much higher than the World average. The perceptibly high absorbed gamma dose rates, entrained with the high annual external effective dose rates (AEED) and average annual gonadal dose equivalent (AGDE) values existing in this HBRA, encourage us to suggest for a candid assessment of the impact of the background radiation, if any, on the organisms that inhabit along this placer deposit. Future research could effectively address the issue of the possible impact of natural radiation on the biota inhabiting this HBRA. PMID:23185629

  11. Radionuclides and radiation indices of high background radiation area in Chavara-Neendakara placer deposits (Kerala, India.

    Directory of Open Access Journals (Sweden)

    Mary Thomas Derin

    Full Text Available The present paper describes a detailed study on the distribution of radionuclides along Chavara - Neendakara placer deposit, a high background radiation area (HBRA along the Southwest coast of India (Kerala. Judged from our studies using HPGe gamma spectrometric detector, it becomes evident that Uranium ((238U, Thorium ((232Th and Potassium ((40K are the major sources for radioactivity prevailing in the area. Our statistical analyses reveal the existence of a high positive correlation between (238U and (232Th, implicating that the levels of these elements are interdependent. Our SEM-EDAX analyses reveal that titanium (Ti and zircon (Zr are the major trace elements in the sand samples, followed by aluminum, copper, iron, ruthenium, magnesium, calcium, sulphur and lead. This is first of its kind report on the radiation hazard indices on this placer deposit. The average absorbed dose rates (9795 nGy h(-1 computed from the present study is comparable with the top-ranking HBRAs in the world, thus offering the Chavara-Neendakara placer the second position, after Brazil; pertinently, this value is much higher than the World average. The perceptibly high absorbed gamma dose rates, entrained with the high annual external effective dose rates (AEED and average annual gonadal dose equivalent (AGDE values existing in this HBRA, encourage us to suggest for a candid assessment of the impact of the background radiation, if any, on the organisms that inhabit along this placer deposit. Future research could effectively address the issue of the possible impact of natural radiation on the biota inhabiting this HBRA.

  12. Research And Investigation To Establish The Database Of Environment Radiation Background For Vietnam (Phase 2009 -2011)

    International Nuclear Information System (INIS)

    Setting up data base of natural radiation background serves for planning socio-economics development in a province as well as the whole country and estimating annual effective dose of population. Beside external irradiation dose caused by the natural radioisotopes in the series 238U, 232Th and 40K in soil, population has been received internal dose caused by the above radioisotopes taken in the body from several ways. In order to complete the database of national radiation background and go to estimate annual effective radiation dose of population in the whole country, this project focus to carry out the works as following: (i) Setting up database of radiation background in the whole country: 150 soil samples that collected in the districts of 46 provinces have been analyzed. The average activity concentration of 238U, 232Th and 40K are 37.86 Bq/kg, 58.88 Bq/kg and 462.78 Bq/kg, respectively. The outdoor, indoor and total annual effective doses are calculated: 0.087±0.036 mSv; 0.488±0.202 mSv and 0.576± 0.240 mSv, respectively. (ii) Setting up database of radiation background of province Ninh Thuan and Quang Nam: The detailed database of radiation background of all villages in Ninh Thuan and Quang Nam has been established. 84 soil samples in Ninh Thuan and 311 in Quang Nam were collected for analyze. The indoor and outdoor radon concentration at sampling positions has been measured. The average activities of 238U, 232Th, 40K, and 222Rn isotopes in Ninh Thuan are reported: 33.50 Bq/kg, 55.43 Bq/kg, 701.12 Bq/kg and 12.1 Bq/m3, 9.5 Bq/m3, respectively. The outdoor, indoor and total annual effective doses in Ninh Thuan are calculated: 0.095±0.029 mSv; 0.529±0.162 mSv and 0.624± 0.382 mSv, respectively. The average activities of 238U, 232Th, 40K, and 222Rn isotopes in Quang Nam are reported: 44.47 Bq/kg, 52.68 Bq/kg, 459.33 Bq/kg, 18.0 Bq/m3. The outdoor, indoor and total annual effective doses are calculated: 0.086±0.039 mSv; 0.482±0.216 mSv and 0.568± 0

  13. Large-Angular-Scale Anisotropy in the Cosmic Background Radiation

    Science.gov (United States)

    Gorenstein, M. V.; Smoot, G. F.

    1980-05-01

    We report the results of an extended series of airborne measurements of large-angular-scale anisotropy in the 3 K cosmic background radiation. Observations were carried out with a dual-antenna microwave radiometer operating at 33 GHz (.089 cm wavelength) flown on board a U-2 aircraft to 20 km altitude. In eleven flights, between December 1976 and May 1978, the radiometer measured differential intensity between pairs of directions distributed over most of the northern hemisphere with an rms sensitivity of 47 mK Hz{sup 1�}. The measurements how clear evidence of anisotropy that is readily interpreted as due to the solar motion relative to the sources of the radiation. The anisotropy is well fit by a first order spherical harmonic of amplitude 360{+ or -}50km sec{sup -1} toward the direction 11.2{+ or -}0.5 hours of right ascension and 19 {+ or -}8 degrees declination. A simultaneous fit to a combined hypotheses of dipole and quadrupole angular distributions places a 1 mK limit on the amplitude of most components of quadrupole anisotropy with 90% confidence. Additional analysis places a 0.5 mK limit on uncorrelated fluctuations (sky-roughness) in the 3 K background on an angular scale of the antenna beam width, about 7 degrees.

  14. Studies of health effects of low dose radiation and its application to medicare

    International Nuclear Information System (INIS)

    The articles contain following 7 topics of low dose radiation effects. Studies of Health Effects of Low dose Radiation and Its Application to Medicare'', describes the indication of Rn therapy and investigations of its usefulness mechanism mainly in Misasa Spa, Okayama Pref. ''Challenges for the Paradigm Shift (CRIEPI Studies)'', introduces studies against the paradigm that radiation dose is linearly and proportionally hazardous. ''Studies of High Background Radiation Area (CRIEPI Studies)'', describes global HBRA studies on chromosome affection and effect of smoking in HBRA. ''Is the Radiation Effect on Man Proportional to Dose? (CRIEPI Studies)'', describes studies of immature sperm irradiated at low dose against Linear-Non-threshold Theory (LNT) hypothesis. ''Induction of Radiation Resistance by Low Dose Radiation and Assessment of Its Effect in Models of Human Diseases (CRIEPI Studies)'', explains the adoptive response in radiation effect, suppression of carcinogenesis and immune regulation by previous low dose radiation in the mouse, and improvement of diabetes in the db/db mouse. ''Modulation of Biological Effects of Low Dose Radiation: Adoptive Response, Bystander Effect, Genetic Instability and Radiation Hormesis'', summarizes findings of each item. ''Cancer Treatment with Low dose Radiation to the Whole Body'', describes basic studies in the mouse tumor in relation to suppression of carcinogenesis and metastasis, immune activation and treatment, and successful clinical studies in patients with ovary, colon cancers and malignant lymphoma where survival has been significantly improved: a base of recent European Organization for Research and Treatment of Cancer (EORTC) clinical trials. The mechanism is essentially based on immune activation of patients to cure the disease. (R.T.)

  15. Radiation doses from contaminant aerosol deposition to the human body

    International Nuclear Information System (INIS)

    Nearly all assessments of radiation doses received following accidental airborne releases have focused on the contributions originating from the plume and from ground deposition. Very little thought has however been given to doses received from deposition directly onto humans. The results of recent experimental investigations of aerosol deposition to and clearance from human skin and clothing have been used to model the doses potentially received in an accident situation. It was found that both the skin dose from β-emitters and the whole body dose from γ-emitters may be significant compared with doses received through other pathways, such as external radiation from the environment. (au)

  16. Radiation Dose Risk and Diagnostic Benefit in Imaging Investigations

    CERN Document Server

    Dobrescu, Lidia

    2015-01-01

    The paper presents many facets of medical imaging investigations radiological risks. The total volume of prescribed medical investigations proves a serious lack in monitoring and tracking of the cumulative radiation doses in many health services. Modern radiological investigations equipment is continuously reducing the total dose of radiation due to improved technologies, so a decrease in per caput dose can be noticed, but the increasing number of investigations has determined a net increase of the annual collective dose. High doses of radiation are cumulated from Computed Tomography investigations. An integrated system for radiation safety of the patients investigated by radiological imaging methods, based on smart cards and Public Key Infrastructure allow radiation absorbed dose data storage.

  17. Effects of low dose radiation and epigenetic regulation

    International Nuclear Information System (INIS)

    Purpose: To conclude the relationship between epigenetics regulation and radiation responses, especially in low-dose area. Methods: The literature was examined for papers related to the topics of DNA methylation, histone modifications, chromatin remodeling and non-coding RNA modulation in low-dose radiation responses. Results: DNA methylation and radiation can regulate reciprocally, especially in low-dose radiation responses. The relationship between histone methylation and radiation mainly exists in the high-dose radiation area; histone deacetylase (HDAC) inhibitors show a promising application to enhance radiation sensitivity, no matter whether in low-dose or high-dose areas; the connection between γ-H2AX and LDR has been remained unknown, although γ-H2AX has been shown no radiation sensitivities with 1-15 Gy irradiation; histone ubiquitination play an important role in DNA damage repair mechanism. Moreover, chromatin remodeling has an integral role in DSB repair and the chromatin response, in general, may be precede DNA end resection. Finally, the effect of radiation on miRNA expression seems to vary according to cell type, radiation dose, and post-irradiation time point. Conclusion: Although the advance of epigenetic regulation on radiation responses, which we are managing to elucidate in this review, has been concluded, there are many questions and blind blots deserved to investigated, especially in low-dose radiation area. However, as progress on epigenetics, we believe that many new elements will be identified in the low-dose radiation responses which may put new sights into the mechanisms of radiation responses and radiotherapy. (authors)

  18. Individual monitoring of external radiation - dose quantities and their relevance to radiation protection

    International Nuclear Information System (INIS)

    External exposures due to the use of ionising radiation are the major contributor to doses to radiation workers. X-and gamma rays from radiation sources and radiation generating equipment's from the main component of dose. This is because of their penetrating power and wider abundance due to their use in medical, industrial research and agriculture fields. Although in some cases, beta radiation and neutrons also form some significant component to dose, their overall contribution remains much lower

  19. Mortality from diseases other than cancer following low doses of ionizing radiation

    DEFF Research Database (Denmark)

    Vrijheid, M; Cardis, E; Ashmore, P;

    2007-01-01

    BACKGROUND: Ionizing radiation at very high (radio-therapeutic) dose levels can cause diseases other than cancer, particularly heart diseases. There is increasing evidence that doses of the order of a few sievert (Sv) may also increase the risk of non-cancer diseases. It is not known, however......, whether such effects also occur following the lower doses and dose rates of public health concern. METHODS: We used data from an international (15-country) nuclear workers cohort study to evaluate whether mortality from diseases other than cancer is related to low doses of external ionizing radiation....... Analyses included 275 312 workers with adequate information on socioeconomic status, over 4 million person-years of follow-up and an average cumulative radiation dose of 20.7 mSv; 11 255 workers had died of non-cancer diseases. RESULTS: The excess relative risk (ERR) per Sv was 0.24 [95% CI (confidence...

  20. Follow up on a workloaded interventional radiologist's occupational radiation doses - a study case

    International Nuclear Information System (INIS)

    During many interventional procedures, patients' radiation doses are high, affecting radiologist's radiation doses. We checked occupational doses of a workloaded interventional radiologist during seven years

  1. The principles of dose limitation in radiation protection: Dose limits and intervention reference levels

    International Nuclear Information System (INIS)

    The paper discusses the biological effects of ionizing radiation, the systems of dose limitations, and the quantification and acceptance of the risks involved in exposures amounting to the dose limit level and the intervention reference level. According to the concept of biological radiation effects, the dose limits and intervention reference levels do not mark the threshold between safety and danger; rather, they should be viewed as the lower limit of an unacceptable dose range, or a dose range below which interference in case of radiation accidents seems to be unnecessary. (HSCH)

  2. Knowledge of medical imaging radiation dose and risk among doctors

    International Nuclear Information System (INIS)

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients.

  3. Stimulation of biological activities using low radiation doses

    International Nuclear Information System (INIS)

    Hormesis is the excitation, or stimulation, by low doses of any agent in any system; high doses inhibit but low doses stimulate. Don Luckey from the University of Florida identified the phenomenon of radiation hormesis, in 1982. After nearly ten years of data surveys and animal tests in many universities to examine the truth about radiation hormesis, we realized the scientific significance of the stimulating effects caused by low levels of radiation exposure. Stimulation with Ionizing radiation presented evidence of increased vigor in plants, bacteria, invertebrates and vertebrates. Most physiologic reactions in living cells are stimulated by low doses of ionizing radiation. This stimulating effect includes enzyme induction, photosynthesis, respiration and growth. Radiation stimulation to the immune system decreases infection and premature death in radiation exposed individuals. (author)

  4. Energies, health, medicine. Low radiation doses; Energies, sante, medecine. Les faibles doses de rayonnement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This file concerns the biological radiation effects with a special mention for low radiation doses. The situation of knowledge in this area and the mechanisms of carcinogenesis are detailed, the different directions of researches are given. The radiation doses coming from medical examinations are given and compared with natural radioactivity. It constitutes a state of the situation on ionizing radiations, known effects, levels, natural radioactivity and the case of radon, medicine with diagnosis and radiotherapy. (N.C.)

  5. Cytogenetic studies on newborns from high level natural background radiation areas of Kerala coast, South India

    International Nuclear Information System (INIS)

    The human population residing in the monazite bearing high level natural background radiation (HLNBR) areas of Kerala, along the South-West coast of India provides unique opportunities of assessing directly in man, the health effects of chronic low-level radiation exposure. The per capita dose received by this population is nearly four times the normal background radiation level. While this is the average dose, the radiation levels prevailing in these HLNBR areas are in the range of 1 to over 35 mGy per year. Chromosomal aberration studies in the lymphocytes of newborns and adults from these areas have been in progress for two decades. So far, 4156 newborn babies from HLNBR and 7321 from normal background radiation (NBR) areas have been screened for the incidence of chromosomal aberrations (dicentrics and rings). The mean frequency of dicentrics and rings did not show any significant difference between the newborns in the control and the HLNBRA population. Assessment of the frequency of micronuclei in cytochalasin-B blocked binucleated lymphocytes of 49 newborns from control areas and 131 newborns from radioactive areas also showed similar values. While an age-dependent increase in chromosome aberration frequency was observed in the adult samples from control and the study areas, the regression analysis of the data indicated a marginally higher slope for the samples from HLNBRA. Karyotype anomalies recorded so far among the newborns have not revealed any significant difference in the incidence of numerical (including Down syndrome) and structural alterations between the control and the exposed populations. A noteworthy observation, herein reported for the first time from any HLNBR area is that there is no discernible increase in the incidence of micronuclei and chromosomal aberrations in the peripheral lymphocytes of newborn babies hailing from HLNBR areas, where their ancestral generations have lived for several hundreds of years. (author)

  6. Background radiation and birth defects in seven prefectures in north Japan and in Ibaraki Prefecture

    International Nuclear Information System (INIS)

    Among 7 prefectures in north Japan, Niigata has the highest background radiation and Aomori the lowest. Foetal, neonatal, perinatal and infant death rates are, however, the lowest in Niigata and highest in Aomori. Vital statistics in 7 prefectures in north Japan and in Ibaraki were compared from 1960 to 1980. Death rates were decreased remarkably in 20 years in these prefectures as well as in Japan in general. If a linear correlation, y = a + bx is assumed between radiation dose x and death rate y, regression coefficient b is always negative in 6 cases (3 kinds of death rates in 2 test periods). Improvement in vital statistics is not due to the difference in radiation levels. (author)

  7. A review of the studies on the high background radiation areas of the world

    International Nuclear Information System (INIS)

    The most important places among the well documented high background radiation areas (HBRA) of the world inhabited by sizable populations are : Guarapari (Brazil), Yangjiang (China), Chavara and Manavalakkurichy (India), and Ramsar (Iran). While the source of the high background radiation is monazite deposits in the first three cases, radium in soil/water and radon in air are the sources of high background radiation in Ramsar. In India, there are quite a few monazite placer deposits along its long coastal line: Ullal (Karnataka), Chavara (Kerala), Manavalakkurichy and Kalpakkam (Tamilnadu), and Chatrapur (Orissa). During the last three decades many investigations have been carried out in these areas covering various aspects such as radiation dosimetry, biological effects, ecological effects, epidemiology etc. Reports, often vague and inconclusive, continue to appear in literature on topics like genetic effects, cancer risk, hormesis, radon dose estimates etc. A summary of all the important results reported so far, as well as some thoughts on possible future programmes in these areas are presented. (author). 7 refs., 1 tab., 1 fig

  8. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.;

    1977-01-01

    Thin radiochromic dye films are useful for measuring large radiation absorbed doses (105–108 rads) and for high-resolution imaging of dose patterns produced by penetrating radiation beams passing through non-homogeneous media. Certain types of amino-substituted triarylmethane cyanides dissolved in...... polymeric solutions can be cast into flexible free-standing thin films of uniform thickness and reproducible response to ultraviolet and ionizing radiation. The increase in optical density versus energy deposited by radiation is linear over a wide range of doses and is for practical purposes independent of...... dose rate (1–1014 rad s−1). Upon irradiation of the film, the profile of the radiation field is registered as a permanent colored image of the dose distribution. Unlike most other types of dyed plastic dose meters, the optical density produced by irradiation is in most cases stable for periods of at...

  9. Evaluation of the natural background radiation in City Sopron

    Energy Technology Data Exchange (ETDEWEB)

    Spaits, T. [West Hungary Univ., Institute of Forestry Mechanics (Hungary); Divos, F. [West Hungary Univ., National Radiation Control System - Sopron Unit (Hungary); Kavasi, N. [Veszprem Univ., Dept. of Radiochemistry (Hungary); Boka, Z. [West Hungary Univ., Dept. of Geodetics and Remote Sensing (Hungary)

    2006-07-01

    In the Postgraduate School of the Faculty of Forestry of the University of West Hungary a project with the topic Research of natural radioactive isotopes in our built and natural environs is being run. Preparing this map is an organic part of this PhD research. The measurements are being made in Sopron city and in its next surroundings, trying to estimate, which dose of radiation a citizen of Sopron is exposed, according to his age and lifestyle. The measurements completely cover the built-up area of Sopron, moreover they exceed the confines, so thus they provide information about the natural areas in the vicinity of the city. In figures, the detection carried out in an area of 24 square kilometres, working with a grid mesh of 200 metres. A sodium-iodide detector was used. We have faced several anomalies while mapping. These are the following: On Main Square (Foter), Ursulin Square (Orsolya ter), Paulites Square (Palosok tere, where a higher dose can be measured, due to granite cobbles, used to cover the pavements of the squares and streets. This was confirmed by the gamma spectrometric examination of the granite stones. In these areas, a triple of the mean dose-rate of 70-90 n Sv/h in Sopron was detected. The highest values of 400 n Sv/h were detected in the cinder-covered car-park of the paint store in Koszegi Street. The total gamma activity concentration of the cinder used in the car-park was nearly 2000 Bq/kg. A triple to a quadruple of the natural level was detected in the vicinity of the chimney of the former thermal power plant and the brick factory. The detection was carried out in four directions with raising range starting by the chimneys, which has spectacularly shown, that the sedimentation of the aerosols can be tracked is a function of distance. The measurements have also shown, that there is a significant difference between dose-levels of the natural areas beyond the eastern and western edge of the city, which can be explained with the different

  10. Evaluation of the natural background radiation in City Sopron

    International Nuclear Information System (INIS)

    In the Postgraduate School of the Faculty of Forestry of the University of West Hungary a project with the topic Research of natural radioactive isotopes in our built and natural environs is being run. Preparing this map is an organic part of this PhD research. The measurements are being made in Sopron city and in its next surroundings, trying to estimate, which dose of radiation a citizen of Sopron is exposed, according to his age and lifestyle. The measurements completely cover the built-up area of Sopron, moreover they exceed the confines, so thus they provide information about the natural areas in the vicinity of the city. In figures, the detection carried out in an area of 24 square kilometres, working with a grid mesh of 200 metres. A sodium-iodide detector was used. We have faced several anomalies while mapping. These are the following: On Main Square (Foter), Ursulin Square (Orsolya ter), Paulites Square (Palosok tere, where a higher dose can be measured, due to granite cobbles, used to cover the pavements of the squares and streets. This was confirmed by the gamma spectrometric examination of the granite stones. In these areas, a triple of the mean dose-rate of 70-90 n Sv/h in Sopron was detected. The highest values of 400 n Sv/h were detected in the cinder-covered car-park of the paint store in Koszegi Street. The total gamma activity concentration of the cinder used in the car-park was nearly 2000 Bq/kg. A triple to a quadruple of the natural level was detected in the vicinity of the chimney of the former thermal power plant and the brick factory. The detection was carried out in four directions with raising range starting by the chimneys, which has spectacularly shown, that the sedimentation of the aerosols can be tracked is a function of distance. The measurements have also shown, that there is a significant difference between dose-levels of the natural areas beyond the eastern and western edge of the city, which can be explained with the different

  11. Natural background radiation exposure in the western coastal villages of Tamil Nadu, India - a preliminary study

    International Nuclear Information System (INIS)

    External gamma radiation fields have been measured in eleven villages situated at the southern coastal peninsular India. The average fields in the villages range from 0.7 to 3.0 μGyh-1 at the outdoor environment. The ratio between the outdoor and indoor radiation field works out to 1.7. The sea beaches adjoining the villages show average radiation fields ranging from 0.5 to 20 μGyh-1. High outdoor occupancy of the inhabitants, extending 12 hours per day, related to occupation rest and recreation is observed in the area. Significant diurnal changes are seen in the concentrations of 220Rn progeny in the indoor and outdoor atmosphere. Based on the external gamma radiation fields, occupancy factors and internal exposures, total dose of the population at the natural high background radiation area (NHBRA) has been estimated. The per capita average exposure in the coastal villages from Midalam to Muttom works out to 17 mSv per year which is 3 times higher than the earlier reported value from the NHBRA at Chavara-Neendakara. Nearly 90% of the exposure is contributed by external gamma radiation. The NHBRA which is inhabited by nearly 1 lakh fishermen offers a unique population group for radiation dosimetry and epidemiological studies. (author)

  12. Radiation doses in patients under full-mouth radiographic examination

    International Nuclear Information System (INIS)

    Radiation doses received by tissues of the head and neck as a result of a full-mouth radiographic examination are studied. Simulations are carried out by irradiating the head and neck section of an anthropomorphic phantom. The radiation doses are determined through the use of thermoluminescent dosimeters

  13. Far Infrared Spectrometry of the Cosmic Background Radiation

    Science.gov (United States)

    Mather, J. C.

    1974-01-01

    I describe two experiments to measure the cosmic background radiation near 1 mm wavelength. The first was a ground-based search for spectral lines, made with a Fabry-Perot interferometer and an InSb detector. The second is a measurement of the spectrum from 3 to 18 cm{sup -1}, made with a balloon-borne Fourier transform spectrometer. It is a polarizing Michelson interferometer, cooled in liquid helium, and operated with a germanium bolometer. I give the theory of operation, construction details, and experimental results. The first experiment was successfully completed but the second suffered equipment malfunction on its first flight. I describe the theory of Fourier transformations and give a new understanding of convolutional phase correction computations. I discuss for infrared bolometer calibration procedures, and tabulate test results on nine detectors. I describe methods of improving bolometer sensitivity with immersion optics and with conductive film blackening.

  14. Cosmic Background Radiation and `ether-drift' experiments

    CERN Document Server

    Consoli, M; Rapisarda, A

    2016-01-01

    `Ether-drift' experiments have played a crucial role for the origin of relativity. Though, a recent re-analysis shows that those original measurements where light was still propagating in gaseous systems, differently from the modern experiments in vacuum and in solid dielectrics, indicate a small universal anisotropy which is naturally interpreted in terms of a non-local thermal gradient. We argue that this could possibly be the effect, on weakly bound gaseous matter, of the temperature gradient due to the Earth's motion within the Cosmic Background Radiation (CBR). Therefore, a check with modern laser interferometers is needed to reproduce the conditions of those early measurements with today's much greater accuracy. We emphasize that an unambiguous confirmation of our interpretation would have far reaching consequences. For instance, it would also imply that all physical systems on the moving Earth are exposed to a tiny energy flow, an effect that, in principle, could induce forms of self-organization in ma...

  15. Characteristic angular scales in cosmic microwave background radiation

    International Nuclear Information System (INIS)

    We investigate the stochasticity in temperature fluctuations in the cosmic microwave background (CMB) radiation data from the Wilkinson Microwave Anisotropy Probe. We show that the angular fluctuation of the temperature is a Markov process with a Markov angular scale, Markov 1.01-0.07+0.09. We characterize the complexity of the CMB fluctuations by means of a Fokker-Planck or Langevin equation and measure the associated Kramers-Moyal coefficients for the fluctuating temperature field T(n-circumflex) and its increment, ΔT = T(n-circumflex1) - T(n-circumflex2). Through this method we show that temperature fluctuations in the CMB have fat tails compared to a Gaussian distribution. (author)

  16. Measuring radiation dose to patients undergoing fluoroscopically-guided interventions

    Science.gov (United States)

    Lubis, L. E.; Badawy, M. K.

    2016-03-01

    The increasing prevalence and complexity of fluoroscopically guided interventions (FGI) raises concern regarding radiation dose to patients subjected to the procedure. Despite current evidence showing the risk to patients from the deterministic effects of radiation (e.g. skin burns), radiation induced injuries remain commonplace. This review aims to increase the awareness surrounding radiation dose measurement for patients undergoing FGI. A review of the literature was conducted alongside previous researches from the authors’ department. Studies pertaining to patient dose measurement, its formalism along with current advances and present challenges were reviewed. Current patient monitoring techniques (using available radiation dosimeters), as well as the inadequacy of accepting displayed dose as patient radiation dose is discussed. Furthermore, advances in real-time patient radiation dose estimation during FGI are considered. Patient dosimetry in FGI, particularly in real time, remains an ongoing challenge. The increasing occurrence and sophistication of these procedures calls for further advances in the field of patient radiation dose monitoring. Improved measuring techniques will aid clinicians in better predicting and managing radiation induced injury following FGI, thus improving patient care.

  17. Telomere length in human adults and high level natural background radiation.

    Directory of Open Access Journals (Sweden)

    Birajalaxmi Das

    Full Text Available BACKGROUND: Telomere length is considered as a biomarker of aging, stress, cancer. It has been associated with many chronic diseases such as hypertension and diabetes. Although, telomere shortening due to ionizing radiation has been reported in vitro, no in vivo data is available on natural background radiation and its effect on telomere length. METHODOLOGY/PRINCIPAL FINDINGS: The present investigation is an attempt to determine the telomere length among human adults residing in high level natural radiation areas (HLNRA and the adjacent normal level radiation areas (NLNRA of Kerala coast in Southwest India. Genomic DNA was isolated from the peripheral blood mononuclear cells of 310 individuals (HLNRA: N = 233 and NLNRA: N = 77. Telomere length was determined using real time q-PCR. Both telomere (T and single copy gene (S specific primers were used to calculate the relative T/S and expressed as the relative telomere length. The telomere length was determined to be 1.22+/-0.15, 1.12+/-0.15, 1.08+/-0.08, 1.12+/-0.11, respectively, among the four dose groups (5.00 mGy per year, which did not show any dose response. The results suggested that the high level natural chronic radiation did not have significant effect on telomere length among young adult population living in HLNRA, which is indicative of better repair of telomeric ends. No significant difference in telomere length was observed between male and female individuals. In the present investigation, although the determination of telomere length was studied among the adults with an age group between 18 to 40 years (mean maternal age: 26.10+/-4.49, a negative correlation was observed with respect to age. However, inter-individual variation was (0.81-1.68 was clearly observed. CONCLUSIONS/SIGNIFICANCE: In this preliminary investigation, we conclude that elevated level of natural background radiation has no significant effect on telomere length among the adult population residing in HLNRAs of

  18. Radiation risk evaluation and reference doses in interventional radiology

    International Nuclear Information System (INIS)

    In interventional radiology, there are two potential hazards to the patient. These are somatic risks and, for certain procedures, deterministic injuries. The task of radiation protection in interventional radiology is to minimise somatic risks and avoid deterministic injuries. Radiation protection tools and protocols must be developed to achieve these two objectives. Reference doses have been proposed as a method of identifying high dose centres and equipment. The role of reference doses in interventional radiology will be discussed. There are two approaches to reference doses in interventional radiology. These are the measurement of patient entrance skin dose or skin dose rate, or image intensifier input dose rate. Alternatively, dose area product or effective dose to the patient may be monitored. These two main approaches have their advantages and disadvantages. (author)

  19. A Bayesian Semiparametric Model for Radiation Dose-Response Estimation.

    Science.gov (United States)

    Furukawa, Kyoji; Misumi, Munechika; Cologne, John B; Cullings, Harry M

    2016-06-01

    In evaluating the risk of exposure to health hazards, characterizing the dose-response relationship and estimating acceptable exposure levels are the primary goals. In analyses of health risks associated with exposure to ionizing radiation, while there is a clear agreement that moderate to high radiation doses cause harmful effects in humans, little has been known about the possible biological effects at low doses, for example, below 0.1 Gy, which is the dose range relevant to most radiation exposures of concern today. A conventional approach to radiation dose-response estimation based on simple parametric forms, such as the linear nonthreshold model, can be misleading in evaluating the risk and, in particular, its uncertainty at low doses. As an alternative approach, we consider a Bayesian semiparametric model that has a connected piece-wise-linear dose-response function with prior distributions having an autoregressive structure among the random slope coefficients defined over closely spaced dose categories. With a simulation study and application to analysis of cancer incidence data among Japanese atomic bomb survivors, we show that this approach can produce smooth and flexible dose-response estimation while reasonably handling the risk uncertainty at low doses and elsewhere. With relatively few assumptions and modeling options to be made by the analyst, the method can be particularly useful in assessing risks associated with low-dose radiation exposures. PMID:26581473

  20. Effect of low doses of gamma radiation in tomato seeds

    International Nuclear Information System (INIS)

    Tomato dry seeds of the hybrid 'Gladiador' Fl were exposed to low doses of gamma radiation from 60Co source at 0. 509 kGy tax rate in order to study stimulation effects of radiation on germination and plant growth. Eight treatments of different radiation doses were applied as follows: 0 (control); 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 20.0 Gy. Seed germination as well as green fruits number, harvested fruit number, fruit weight and total production were assessed to identify occurrence of stimulation. Tomato seeds and plants were handled as for usual tomato production in Brazil. Low doses of gamma radiation treatment in the seeds stimulate germination and substantially increase fruit number and total production up to 86% at 10 Gy dose. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production thus, showing hormetic effects. (author)

  1. Calculation of the dose caused by internal radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purposes of monitoring radiation exposure it is necessary to determine or to estimate the dose caused by both external and internal radiation. When comparing the value of exposure to the dose limits, account must be taken of the total dose incurred from different sources. This guide explains how to calculate the committed effective dose caused by internal radiation and gives the conversion factors required for the calculation. Application of the maximum values for radiation exposure is dealt with in ST guide 7.2, which also sets out the definitions of the quantities and concepts most commonly used in the monitoring of radiation exposure. The monitoring of exposure and recording of doses are dealt with in ST Guides 7.1 and 7.4.

  2. Radiation dose distributions due to sudden ejection of cobalt device.

    Science.gov (United States)

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. PMID:27423021

  3. Evaluation of Patient Radiation Dose during Orthopedic Surgery

    International Nuclear Information System (INIS)

    The number of orthopedic procedures requiring the use of the fluoroscopic guidance has increased over the recent years. Consequently the patient exposed to un avoidable radiation doses. The aim of the current study was to evaluate patient radiation dose during these procedures.37 patients under went dynamic hip screw (DHS) and dynamic cannulated screw (DCS) were evaluated using calibrated Thermolumincent Dosimeters (TLDs), under carm fluoroscopic machines ,in three centers in Khartoum-Sudan. The mean Entrance Skin Dose (ESD) was 7.9 m Gy per procedure. The bone marrow and gonad organ exposed to significant doses. No correlation was found between ESD and Body Mass Index (BMI), or patient weight. Well correlation was found between kilo voltage applied and ESD. Orthopedic surgeries delivered lower radiation dose to patients than cardiac catheterization or hysterosalpingraphy (HSG) procedures. More study should be implemented to follow radiation dose before surgery and after surgery

  4. The researches of medical and environmental radiation protection dose

    OpenAIRE

    盧, 暁光

    2013-01-01

    Nowadays, with the development of modern radiation science, application of radiation exposure has been paid more and more attention in various fields. Although there are many benefits for human by the use of radiation in such as medical diagnose and treatment, utilization of nuclear power, more efforts should be made to radiation hazards and their control that are often neglected. The researches in this study were intended to meet the requirements with the center of radiation protection dose ...

  5. A Paradigm Shift in Low Dose Radiation Biology

    Directory of Open Access Journals (Sweden)

    Z. Alatas

    2015-08-01

    Full Text Available When ionizing radiation traverses biological material, some energy depositions occur and ionize directly deoxyribonucleic acid (DNA molecules, the critical target. A classical paradigm in radiobiology is that the deposition of energy in the cell nucleus and the resulting damage to DNA are responsible for the detrimental biological effects of radiation. It is presumed that no radiation effect would be expected in cells that receive no direct radiation exposure through nucleus. The risks of exposure to low dose ionizing radiation are estimated by extrapolating from data obtained after exposure to high dose radiation. However, the validity of using this dose-response model is controversial because evidence accumulated over the past decade has indicated that living organisms, including humans, respond differently to low dose radiation than they do to high dose radiation. Moreover, recent experimental evidences from many laboratories reveal the fact that radiation effects also occur in cells that were not exposed to radiation and in the progeny of irradiated cells at delayed times after radiation exposure where cells do not encounter direct DNA damage. Recently, the classical paradigm in radiobiology has been shifted from the nucleus, specifically the DNA, as the principal target for the biological effects of radiation to cells. The universality of target theory has been challenged by phenomena of radiation-induced genomic instability, bystander effect and adaptive response. The new radiation biology paradigm would cover both targeted and non-targeted effects of ionizing radiation. The mechanisms underlying these responses involve biochemical/molecular signals that respond to targeted and non-targeted events. These results brought in understanding that the biological response to low dose radiation at tissue or organism level is a complex process of integrated response of cellular targets as well as extra-cellular factors. Biological understanding of

  6. How to understand the radiation effects of small dose - some critical comments on ICRP recommendations

    International Nuclear Information System (INIS)

    The widespread feeling of 'radiophobia' by the general public has its basis on the ICRP's 'linear no-threshold' hypothesis in dose-response relationship for low dose radiation from the standpoint of radiation protection. Although this common feeling served as a merit for constructing the 'safety culture' of society, it has now become a large obstacle for the development of peaceful uses of nuclear technology as a demerit. Recently many data have been accumulated for the radiation effects of low dose, both epidemiologically and experimentally. Although in general it is very difficult to obtain clear evidence of presence or absence of threshold, it seems to be true that the risk by radiation exposure at low level (the definition of which is below 0.2 Gy) is not so large as that of extrapolation from the high or medium dose range. In fact, many data suggest that some quite different mechanisms are working in low dose from high dose, such as 'adaptive response', and a new concept, 'radiation hormesis', has emerged, that the low level radiation is not only quite harmless but is rather necessary for living cells or beneficial for human health. In this paper, some critical comments on ICRP recommendations are given as a personal view by the author. These include: (1) a question of exact assessment of exposed dose by A-bomb survivors used for the epidemiological data, which are regarded to be the most authentic and important; (2) a brief summary of effects at the natural radiation level, including the high background area data; (3) the importance of dose rate effect, which reflects the living matter's repairability from radiation injury, and (4) the proposal of new paradigm by adopting the reasonable 'de minimis' level (below which there is no harm) both for low dose and at low dose rate. A simple mathematical analysis for representative data of dose rate effect was shown as an appendix

  7. Epidemiological investigation of radiological effects in high background radiation areas of Yangjiang, China

    International Nuclear Information System (INIS)

    The purpose of this investigation is to provide some information for providing whether any detrimental effects exist in a large population whose families have been continuously exposed to a low dose rate radiation. Two areas in Yangjiang Country, characterized by high background radiation (HBR) with environmental gamma exposure, large population size and long-term inhabitants, were selected for evaluation of late effects of HBR. The areas with normal radiation background close to the Yangjiang Country were selected as control areas. Up to 1986 approximately one million person-years in each area in both HBR and control areas have been observed. No increase of cancer mortality was found in the HBR areas; on the contrary, cancer mortality tended to be lower in the HBR areas than the control areas. The prevalence of hereditary diseases and congenital defects was similar in both HBR and control areas, but the frequency of Down's syndrome was higher in the HBR areas (through within the normal range) than the control areas. A possible explanation is the difference of age of maternity between the HBR and control areas, and the extremely low frequency in the control areas. Possible factors influencing the incidence of mutationbased diseases were comparable in the HBR and control groups. However, the cultural and educational levels were somewhat different, probably affecting health status and family planning. It is likely that there may be a dose threshold for cancer incidence, but this remains to be determined by further research. (N.K.)

  8. Investigation of background radiation and associated anomalies in Rifle, Colorado

    International Nuclear Information System (INIS)

    In addition to examining anomalies and establishing the background gamma exposure rate range, the study presents a formula to convert thousand counts per minute (kcpm) from a gamma scintillator to microroentgen per hour (μRh) for the Rifle region. Also, a method is presented to identify contaminated areas containing excess 226Ra, by using a GR-410 gamma spectrometer. This method is suggested to be applied to all property surveys in the Rifle area. The Wasatch Formation, which outcrops extensively in the Rifle area, was found to have a major influence on the background radiation. Varying potassium concentrations and naturally occurring uranium in this rock unit reveal varying gamma exposure rates. Examining RaTh ratios from laboratory analysis of soil samples or use of RaTh ratios from GR-410 gamma spectrometer readings on site allows discrimination between mill related contamination and naturally occuring radioactivity. Radioactive coal clinkers were found used as fill material throughout the Rifle region and have been determined to be a product of the mill and subject to remediation. Finally, windblown mill tailings contamination is addressed in some detail. Mill tailings redistributed from the Rifle uranium mill tailings piles by prevailing winds were detected extensively on vicinity properties in Rifle. Some radioactive components of the windblown tailings were found to have leached into the subsurface soil. The combination of Wasatch Formation, radioactive coal clinkers, and windblown tailings accounts for many of the anomalous gamma exposure rates observed by the radiological survey teams. 11 refs., 10 figs., 3 tabs

  9. Natural radiation dose to Gammarus from Hudson river

    International Nuclear Information System (INIS)

    The purpose of this investigation is to evaluate the natural radiation dose rate to whole body and components of the Gammarus species, a zooplankton which occurs in the Hudson River among other places, and to compare the results with the upper limits of dose rates from man-made sources. The alpha dose rates to the exoskeleton and soft tissues are about 10 times the average alpha dose rate to the whole body, assuming uniform distribution of 226Ra. The natural alpha radiation dose rate to Gammarus represents only about 5% of the total natural dose to the organism, i.e., 492 mrad/yr. The external dose rate due to 40K, 238U plus daughters and 232Th plus daughters accumulated in the sediments comprise 91% of that total natural dose rate, the remaining percentage being due to natural internal beta emitters and cosmic radiation. Man-made sources can cause an external dose rate up to 224 mrad/yr, which comprises roughly 1/3 of the total dose rate (up to 716 mrad/yr; natural plus man-made) to the Gammarus of Hudson River in front of Indian Point Nuclear Power Station. However, in terms of dose-equivalent the natural sources of radiation would contribute more than 75% of the total dose to Gammarus

  10. Radiation dose rates from UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Friend, P.J. [Urenco, Capenhurst (United Kingdom)

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  11. ''Low dose'' and/or ''high dose'' in radiation protection: A need to setting criteria for dose classification

    International Nuclear Information System (INIS)

    The ''low dose'' and/or ''high dose'' of ionizing radiation are common terms widely used in radiation applications, radiation protection and radiobiology, and natural radiation environment. Reading the title, the papers of this interesting and highly important conference and the related literature, one can simply raise the question; ''What are the levels and/or criteria for defining a low dose or a high dose of ionizing radiation?''. This is due to the fact that the criteria for these terms and for dose levels between these two extreme quantities have not yet been set, so that the terms relatively lower doses or higher doses are usually applied. Therefore, setting criteria for classification of radiation doses in the above mentioned areas seems a vital need. The author while realizing the existing problems to achieve this important task, has made efforts in this paper to justify this need and has proposed some criteria, in particular for the classification of natural radiation areas, based on a system of dose limitation. (author)

  12. Low dose radiation and plant growth

    International Nuclear Information System (INIS)

    Ionizing radiation includes cosmic radiation, earth radiation, radionuclides for the medical purpose and nuclear industry, fallout radiation. From the experimental results of various radiation effects on seeds or seedlings, it was found that germination rate, development, respiration rate, reproduction and blooming were accelerated compared with the control. In mammal, hormesis phenomenon manifested itself in increased disease resistance, lifespan, and decreased rate of tumor incidence. In plants, it was shown that germination, sprouting, growth, development, blooming and resistance to disease were accelerated

  13. Low dose radiation and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Jae; Lee, Hae Youn; Park, Hong Sook

    2001-03-01

    Ionizing radiation includes cosmic radiation, earth radiation, radionuclides for the medical purpose and nuclear industry, fallout radiation. From the experimental results of various radiation effects on seeds or seedlings, it was found that germination rate, development, respiration rate, reproduction and blooming were accelerated compared with the control. In mammal, hormesis phenomenon manifested itself in increased disease resistance, lifespan, and decreased rate of tumor incidence. In plants, it was shown that germination, sprouting, growth, development, blooming and resistance to disease were accelerated.

  14. Determination of Radiation Dose in Oncology and Radiotherapy Centre at Ahmadu Bello University Teaching Hospital, Shika, Zaria

    International Nuclear Information System (INIS)

    Within the ABUTH Shika-Zaria, is the Oncology and Radiotherapy Center accomplished with four major Radiation sources; Cobalt-60 machine, Brachetherapy Unit, Chemotherapy ward and Orthovoltage Unit. Radiation dosimetry work was carried out in all rooms in the Center and within the hospital premises. Atomtex portable Dose rate meter and TLD were used. The mean radiation level in the Center was 0.22±0.02μSv/h. The background Radiation level within the hospital premises was 0.14±0.01μSv/h. There was an increase in radiation dose of 0.08±0.01μSv/h for the Center above the natural background radiation level within the hospital premises. The two measuring instruments were comparable. There was no leakage of radiation recorded around the radiation facilities and the measured radiation doses were very low as recommended by ICRP.

  15. Radiation dose estimates for copper-64 citrate in man

    International Nuclear Information System (INIS)

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. The authors have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiations. 5 references, 3 tables

  16. Radiation dose estimates for copper-64 citrate in man

    International Nuclear Information System (INIS)

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. We have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiation. 5 refs., 3 tabs

  17. Status of eye lens radiation dose monitoring in European hospitals

    OpenAIRE

    Carinou, Eleftheria; Ginjaume Egido, Mercè; O'Connor, Una; Kopec, Renata; Sans Merce, Marta

    2014-01-01

    A questionnaire was developed by the members of WG12 of EURADOS in order to establish an overview of the current status of eye lens radiation dose monitoring in hospitals. The questionnaire was sent to medical physicists and radiation protection officers in hospitals across Europe. Specific topics were addressed in the questionnaire such as: knowledge of the proposed eye lens dose limit; monitoring and dosimetry issues; training and radiation protection measures. The results of the survey hig...

  18. Background and anthropogenic radionuclide derived dose rates to freshwater ecosystem - Nuclear power plant cooling pond - Reference organisms

    International Nuclear Information System (INIS)

    The radiological assessment of non-human biota to demonstrate protection is now accepted by a number of international and national bodies. Therefore, it is necessary to develop a scientific basis to assess and evaluate exposure of biota to ionizing radiation. Radionuclides from the Ignalina Nuclear Power Plant (Lithuania) were discharged into Lake Druksiai cooling pond. Additional radionuclide migration and recharge to this lake from a hypothetical near-surface, low-level radioactive waste disposal, to be situated 1.5 km from the lake, had been simulated using RESRAD-OFFSITE code. This paper uses ERICA Integrated Approach with associated tools and databases to compare the radiological dose to freshwater reference organisms. Based on these data, it can be concluded that background dose rates to non-human biota in Lake Druksiai far exceed those attributable to anthropogenic radionuclides. With respect the fishery and corresponding annual committed effective human dose as a result of this fish consumption Lake Druksiai continues to be a high-productivity water body with intensive angling and possible commercial fishing. - Highlights: → Dose rates to the reference organisms are lower than expected from the background radioactivity. → Pelagic fish part of adult human annual committed effective dose would be as small as a few μSv y-1. → With respect the fishery Lake Druksiai continues to be a high-productivity water body.

  19. Reduction of the radiation dose received by interventional cardiologists following training in radiation protection

    International Nuclear Information System (INIS)

    The University General Hospital of Alexandroupolis was established in 2003 to cover Eastern Macedonia and Thrace Districts of Northern Greece. The hospital has two interventional cardiology units and the occupational radiation exposure of the cardiologists was the highest of all specialties using ionising radiation. In order to aid in decreasing the radiation dose levels, a seminar was organised for all personnel working in interventional radiology field. After this, an important reduction of the radiation dose of the cardiologists was noted. Training in radiation protection is essential to reduce the radiation doses and consequently the deterministic and stochastic effects of ionising radiation of cardiologists working in interventional radiology. (authors)

  20. A Biodosimeter for Multiparametric Determination of Radiation Dose, Radiation Quality, and Radiation Risk

    Science.gov (United States)

    Richmond, Robert; Cruz, Angela; Jansen, Heather; Bors, Karen

    2003-01-01

    Predicting risk of human cancer following exposure of an individual or a population to ionizing radiation is challenging. To an approximation, this is because uncertainties of uniform absorption of dose and the uniform processing of dose-related damage at the cellular level within a complex set of biological variables degrade the confidence of predicting the delayed expression of cancer as a relatively rare event. Cellular biodosimeters that simultaneously report: 1) the quantity of absorbed dose after exposure to ionizing radiation, 2) the quality of radiation delivering that dose, and 3) the risk of developing cancer by the cells absorbing that dose would therefore be useful. An approach to such a multiparametric biodosimeter will be reported. This is the demonstration of a dose responsive field effect of enhanced expression of keratin 18 (K18) in cultures of human mammary epithelial cells irradiated with cesium-1 37 gamma-rays. Dose response of enhanced K18 expression was experimentally extended over a range of 30 to 90 cGy for cells evaluated at mid-log phase. K18 has been reported to be a marker for tumor staging and for apoptosis, and thereby serves as an example of a potential marker for cancer risk, where the reality of such predictive value would require additional experimental development. Since observed radiogenic increase in expression of K18 is a field effect, ie., chronically present in all cells of the irradiated population, it may be hypothesized that K18 expression in specific cells absorbing particulate irradiation, such as the high-LET-producing atomic nuclei of space radiation, will report on both the single-cell distributions of those particles amongst cells within the exposed population, and that the relatively high dose per cell delivered by densely ionizing tracks of those intersecting particles will lead to cell-specific high-expression levels of K18, thereby providing analytical end points that may be used to resolve both the quantity and

  1. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.; Pejtersen, K.; Pedersen, Walther Batsberg

    1977-01-01

    dose rate (1–1014 rad s−1). Upon irradiation of the film, the profile of the radiation field is registered as a permanent colored image of the dose distribution. Unlike most other types of dyed plastic dose meters, the optical density produced by irradiation is in most cases stable for periods of at...... of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and...

  2. Long-term radiation dose reduction plan of KHNP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Saeng-Ki; Shin, Sang-Woon; Lim, Byoung-Chan [Korea Hydro and Nuclear Power Company, Seoul (Korea, Republic of)

    2002-07-01

    Annual radiation dose limit to radiation worker was substantially lowered in Korea by the adoption of 1990 recommendations of the International Commission on Radiation Protection (ICRP 60) in its legislation. On the other hand, radiation management environment in nuclear power plants is getting more worse because of the accumulation of radiation sources inside the system and the frequent need for maintenance according as the operation years of nuclear power plants increase. Therefore, Korea Hydro and Nuclear power Co., Ltd. (KHNP) has established a long-term 10 years' plan from 2001 to 2010 for the reduction of radiation dose to workers. The plan is aimed for the reduction of annual dose per unit averaged over 5 years from 0.9 man-Sv in 2001 to 0.75 man- Sv in 2010 by radiation source reduction, equipment/tool improvement or new equipment development for easy maintenance, and the improvement of administration and system.

  3. 10 CFR 20.1004 - Units of radiation dose.

    Science.gov (United States)

    2010-01-01

    ... beta radiation 1 1 Alpha particles, multiple-charged particles, fission fragments and heavy particles... 10 Energy 1 2010-01-01 2010-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions §...

  4. Assessment of dose level of ionizing radiation in army scrap

    International Nuclear Information System (INIS)

    Radiation protection is the science of protecting people and the environment from the harmful effects of ionizing radiation, which includes both particle radiation and high energy radiation. Ionizing radiation is widely used in industry and medicine. Any human activity of nuclear technologies should be linked to the foundation of scientific methodology and baseline radiation culture to avoid risk of radiation and should be working with radioactive materials and expertise to understand, control practices in order to avoid risks that could cause harm to human and environment. The study was conducted in warehouses and building of Sudan air force Khartoum basic air force during September 2010. The goal of this study to estimate the radiation dose and measurement of radioactive contamination of aircraft scrap equipment and increase the culture of radiological safety as well as the concept of radiation protection. The results showed that there is no pollution observed in the contents of the aircraft and the spire part stores outside, levels of radiation dose for the all contents of the aircraft and spire part within the excitable level, except temperature sensors estimated radiation dose about 43 μSv/h outside of the shielding and 12 μSv/h inside the shielding that exceeded the internationally recommended dose level. One of the most important of the identification of eighteen (18) radiation sources used in temperature and fuel level sensors. These are separated from the scrap, collected and stored in safe place. (Author)

  5. Global DNA methylation responses to low dose radiation exposure

    International Nuclear Information System (INIS)

    Full text: High radiation doses cause breaks in the DNA which are considered the critical lesions in initiation of radiation-induced cancer. However, at very low radiation doses relevant for the general public, the induction of such breaks will be rare, and other changes to the DNA such as DNA methylation which affects gene expression may playa role in radiation responses. We are studying global DNA methylation after low dose radiation exposure to determine if low dose radiation has short- and/or long-term effects on chromatin structure. We developed a sensitive high resolution melt assay to measure the levels of DNA methylation across the mouse genome by analysing a stretch of DNA sequence within Long Interspersed Nuclear Elements-I (LINE I) that comprise a very large proportion of the mouse and human genomes. Our initial results suggest no significant short-term or longterm) changes in global NA methylation after low dose whole-body X-radiation of 10 J1Gyor 10 mGy, with a significant transient increase in NA methylation observed I day after a high dose of I Gy. If the low radiation doses tested are inducing changes in bal DNA methylation, these would appear to be smaller than the variation observed between the sexes and following the general stress of the sham-irradiation procedure itself. This research was funded by the Low Dose Radiation Research Program, Biological and Environmental Research, US DOE, Grant DE-FG02-05ER64104 and MN is the recipient of the FMCF/BHP Dose Radiation Research Scholarship.

  6. Radiation doses from radiation sources of neutrons and photons by different computer calculation

    International Nuclear Information System (INIS)

    In the present paper the calculation technique aspects of dose rate from neutron and photon radiation sources are covered with reference both to the basic theoretical modeling of the MERCURE-4, XSDRNPM-S and MCNP-3A codes and from practical point of view performing safety analyses of irradiation risk of two transportation casks. The input data set of these calculations -regarding the CEN 10/200 HLW container and dry PWR spent fuel assemblies shipping cask- is frequently commented as for as connecting points of input data and understanding theoric background are concerned

  7. Doses and biological effect of ionizing radiation

    International Nuclear Information System (INIS)

    Basic values and their symbols as well as units of physical dosimetry are given. The most important information about biological radiation effects is presented. Polish radiation protection standards are cited. (A.S.)

  8. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  9. Patient radiation doses for electron beam CT

    International Nuclear Information System (INIS)

    A Monte Carlo based computer model has been developed for electron beam computed tomography (EBCT) to calculate organ and effective doses in a humanoid hermaphrodite phantom. The program has been validated by comparison with experimental measurements of the CT dose index in standard head and body CT dose phantoms; agreement to better than 8% has been found. The robustness of the model has been established by varying the input parameters. The amount of energy deposited at the 12:00 position of the standard body CT dose phantom is most susceptible to rotation angle, whereas that in the central region is strongly influenced by the beam quality. The program has been used to investigate the changes in organ absorbed doses arising from partial and full rotation about supine and prone subjects. Superficial organs experience the largest changes in absorbed dose with a change in subject orientation and for partial rotation. Effective doses for typical clinical scan protocols have been calculated and compared with values obtained using existing dosimetry techniques based on full rotation. Calculations which make use of Monte Carlo conversion factors for the scanner that best matches the EBCT dosimetric characteristics consistently overestimate the effective dose in supine subjects by typically 20%, and underestimate the effective dose in prone subjects by typically 13%. These factors can therefore be used to correct values obtained in this way. Empirical dosimetric techniques based on the dose-length product yield errors as great as 77%. This is due to the sensitivity of the dose length product to individual scan lengths. The magnitude of these errors is reduced if empirical dosimetric techniques based on the average absorbed dose in the irradiated volume (CTDIvol) are used. Therefore conversion factors specific to EBCT have been calculated to convert the CTDIvol to an effective dose

  10. Recent research on the effects of low dose radiation: implications to radiation protection

    International Nuclear Information System (INIS)

    Radiation protection specialists unanimously agree that radiation at high dose levels can cause cancer. At low dose levels, the results are not conclusive. Specialists accept the Linear-No-Threshold (LNT) dose-effect relationship as a practical approach in radiation protection. That means that the dose-effect relation is linear without a threshold; any dose however small will have some deleterious effect. Application of LNT without appreciating that it is just a pragmatic concept leads to unreasonable fear about radiation. This adversely impact acceptance of nuclear power as a source of energy

  11. KREAM: Korean Radiation Exposure Assessment Model for Aviation Route Dose

    Science.gov (United States)

    Hwang, J.; Dokgo, K.; Choi, E. J.; Kim, K. C.; Kim, H. P.; Cho, K. S. F.

    2014-12-01

    Since Korean Air has begun to use the polar route from Seoul/ICN airport to New York/JFK airport on August 2006, there are explosive needs for the estimation and prediction against cosmic radiation exposure for Korean aircrew and passengers in South Korea from public. To keep pace with those needs of public, Korean government made the law on safety standards and managements of cosmic radiation for the flight attendants and the pilots in 2013. And we have begun to develop our own Korean Radiation Exposure Assessment Model (KREAM) for aviation route dose since last year funded by Korea Meteorological Administration (KMA). GEANT4 model and NRLMSIS 00 model are used for calculation of the energetic particles' transport in the atmosphere and for obtaining the background atmospheric neutral densities depending on altitude. For prediction the radiation exposure in many routes depending on the various space weather effects, we constructed a database from pre-arranged simulations using all possible combinations of R, S, and G, which are the space weather effect scales provided by the National Oceanic and Atmospheric Administration (NOAA). To get the solar energetic particles' spectrum at the 100 km altitude which we set as a top of the atmospheric layers in the KREAM, we use ACE and GOES satellites' proton flux observations. We compare the results between KREAM and the other cosmic radiation estimation programs such as CARI-6M which is provided by the Federal Aviation Agency (FAA). We also validate KREAM's results by comparison with the measurement from Liulin-6K LET spectrometer onboard Korean commercial flights and Korean Air Force reconnaissance flights.

  12. Low-dose radiation: a cause of breast cancer

    International Nuclear Information System (INIS)

    It is likely that the breast is the organ most sensitive to radiation carcinogenesis in postpubertal women. Studies of different exposed populations have yielded remarkably consistent results, in spite of wide differences in underlying breast cancer rates and conditions of exposure. Excess risk is approximately proportional to dose, and is relatively independent of ionization density and fractionization of dose. This implies that the risk associated with low-dose exposures to ionizing radiation can be estimated with some confidence from higher-dose data. Excess risk is heavily dependent on age at exposure but relatively independent of population differences in normal risk. The temporal patterns after exposure of both radiation-induced and naturally occurring breast cancer are similar, suggesting a strong influence of factors other than radiation on radiation-induced breast cancer. Uncertainties remain about risks from exposures before puberty and after menopause

  13. Radiation doses and possible radiation effects of low-level, chronic radiation in vegetation

    International Nuclear Information System (INIS)

    Measurements were made of radiation doses in soil and vegetation in Pu-contaminated areas at the Nevada Test Site with the objective of investigating low-level, low-energy gamma radiation (with some beta radiation) effects at the cytological or morphological level in native shrubs. In this preliminary investigation, the exposure doses to shrubs at the approximate height of stem apical meristems were estimated from 35 to 140 R for a ten-year period. The gamma exposure dose estimated for the same period was 20.7 percent +- 6.4 percent of that recorded by the dosimeters used in several kinds of field instrument surveys. Hence, a survey instrument reading made at about 25 cm in the tops of shrubs should indicate about 1/5 the dosimeter-measured exposures. No cytology has yet been undertaken because of the drought since last winter. (auth)

  14. Total Risk Management for Low Dose Radiation Exposures

    International Nuclear Information System (INIS)

    Our civilization is witnessing about century of nuclear age mixed with enormous promises and cataclysmic threats. Nuclear energy seems to encapsulate both potential for pure good and evil or at least we humans are able to perceive that. These images are continuously with us and they are both helping and distracting from making best of nuclear potentials for civilization. Today with nuclear use significantly present and with huge potential to further improve our life with energy and medical use it is of enormous importance to try to have calmed, rational, and objective view on potential risks and certain benefits. Because all use of nuclear energy proved that their immediate risks are negligible (i.e., Three Mile Island and Fukushima) or much smaller than from the other alternatives (i.e., Chernobyl) it seems that the most important issue is the amount of risk from the long term effects to people from exposure to small doses of radiation. A similar issue is present in the increased use of modern computational tomography and other radiation sources use in medicine for examination and therapy. Finally, extreme natural exposures are third such potential risk sources. Definition of low doses varies depending on the way of delivery (i.e., single, multiple or continuous exposures), and for this paper usual dose of 100 mSv is selected as yearly upper amount. There are three very different scientifically supported views on the potential risks from the low doses exposure. The most conservative theory is that all radiation is harmful, and even small increments from background levels (i.e., 2-3 mSv) present additional risk. This view is called linear no threshold theory (LNT) and it is accepted as a regulatory conservative simple approach which guarantees safety. Risk is derived from the extrapolation of the measured effects of high levels of radiation. Opposite theory to LNT is hormesis which assumes that in fact small doses of radiation are helpful and they are improving our

  15. Isodose mapping of terrestrial gamma radiation dose rate of Selangor state, Kuala Lumpur and Putrajaya, Malaysia

    International Nuclear Information System (INIS)

    A terrestrial gamma radiation survey for the state of Selangor, Kuala Lumpur and Putrajaya was conducted to obtain baseline data for environmental radiological health practices. Based on soil type, geological background and information from airborne survey maps, 95 survey points statistically representing the study area were determined. The measured doses varied according to geological background and soil types. They ranged from 17 nGy h−1 to 500 nGy h−1. The mean terrestrial gamma dose rate in air above the ground was 182 ± 81 nGy h−1. This is two times higher than the average dose rate of terrestrial gamma radiation in Malaysia which is 92 nGy h−1 (UNSCEAR 2000). An isodose map was produced to represent exposure rate from natural sources of terrestrial gamma radiation. - Highlights: • A methodology is presented to reduce terrestrial gamma dose rate field survey. • Geological background of acid intrusive of granitic type has the highest dose rates. • The mean dose rate is 2 times higher than the world average. • Isodose map of terrestrial gamma radiation for Selangor, Kuala Lumpur and Putrajaya was produced

  16. Development of Plant Application Technique of Low Dose Radiation

    International Nuclear Information System (INIS)

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources

  17. Development of Plant Application Technique of Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek (and others)

    2007-07-15

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources.

  18. Radon-thoron exposures in high background radiation areas: a review

    International Nuclear Information System (INIS)

    The radon-thoron measurements reported in literature for the high background radiation areas (HBRAs) of the world are summarised here. The most important areas covered are the Radon Spas and the thorium bearing monazite deposits. Special mention is made of the ongoing programmes of radon-thoron survey in the monazite beach areas of India; preliminary measurements indicate significant levels of thoron exposures. The diurnal and seasonal variations are quite wide underscoring the importance of carrying out integrated measurements for meaningful assessments of population exposures. Radon-thoron inhalation dose rates upto 30 mSv/y have been measured in lran as well as India. It has been generally observed that the cumulative population doses due to radon-thoron inhalation are as high as those due to the external exposures in these HBRAs. (author). 7 refs., 2 tabs., 3 figs

  19. Biological indicators for radiation absorbed dose: a review

    International Nuclear Information System (INIS)

    Biological dosimetry has an important role to play in assessing the cumulative radiation exposure of persons working with radiation and also in estimating the true dose received during accidents involving external and internal exposure. Various biodosimetric methods have been tried to estimate radiation dose for the above purposes. Biodosimetric methods include cytogenetic, immunological and mutational assays. Each technique has certain advantages and disadvantages. We present here a review of each technique, the actual method used for detection of dose, the sensitivity of detection and its use in long term studies. (author)

  20. A Cosmic Microwave Background Radiation Polarimeter Using Superconducting Bearings

    CERN Document Server

    Hanany, S; Johnson, B; Jones, T; Hull, J R; Ma, K B

    2003-01-01

    Measurements of the polarization of the cosmic microwave background (CMB) radiation are expected to significantly increase our understanding of the early universe. We present a design for a CMB polarimeter in which a cryogenically cooled half wave plate rotates by means of a high-temperature superconducting (HTS) bearing. The design is optimized for implementation in MAXIPOL, a balloon-borne CMB polarimeter. A prototype bearing, consisting of commercially available ring-shaped permanent magnet and an array of YBCO bulk HTS material, has been constructed. We measured the coefficient of friction as a function of several parameters including temperature between 15 and 80 K, rotation frequency between 0.3 and 3.5 Hz, levitation distance between 6 and 10 mm, and ambient pressure between 10^{-7} and 1 torr. The low rotational drag of the HTS bearing allows rotations for long periods of time with minimal input power and negligible wear and tear thus making this technology suitable for a future satellite mission.

  1. Review of low dose-rate epidemiological studies and biological mechanisms of dose-rate effects on radiation induced carcinogenesis

    International Nuclear Information System (INIS)

    Radiation protection system adopts the linear non-threshold model with using dose and dose-rate effectiveness factor (DDREF). The dose-rate range where DDREF is applied is below 100 mGy per hour, and it is regarded that there are no dose-rate effects at very low dose rate, less than of the order of 10 mGy per year, even from the biological risk evaluation model based on cellular and molecular level mechanisms for maintenance of genetic integrity. Among low dose-rate epidemiological studies, studies of residents in high natural background areas showed no increase of cancer risks at less than about 10 mGy per year. On the other hand, some studies include a study of the Techa River cohort suggested the increase of cancer risks to the similar degree of Atomic bomb survivor data. The difference of those results was supposed due to the difference of dose rate. In 2014, International Commission on Radiological Protection opened a draft report on stem cell biology for public consultations. The report proposed a hypothesis based on the new idea of stem cell competition as a tissue level quality control mechanism, and suggested that it could explain the dose-rate effects around a few milligray per year. To verify this hypothesis, it would be needed to clarify the existence and the lowest dose of radiation-induced stem cell competition, and to elucidate the rate of stem cell turnover and radiation effects on it. As for the turnover, replenishment of damaged stem cells would be the important biological process. It would be meaningful to collect the information to show the difference of dose rates where the competition and the replenishment would be the predominant processes. (author)

  2. Radiation Doses Received by the Irish Population 2014

    International Nuclear Information System (INIS)

    People are constantly exposed to a variety of sources of both natural and artificial radioactivity. The radiation dose received by the population from such sources is periodically estimated by the Radiological Protection Institute of Ireland RPII. This report is an update of a population dose assessment undertaken in 2008 and includes the most recent data available on the principal radiation exposure pathways. Wherever possible the collective dose and the resulting average annual dose to an individual living in Ireland, based on the most recently published figure for the population of Ireland, have been calculated for each of the pathways of exposure

  3. Radiation doses to rodents inhabiting a radioactive waste receiving area

    International Nuclear Information System (INIS)

    A study was conducted of the gamma ray doses to four species of native rodents inhabiting a low level radioactive liquid waste disposal area. Absorbed doses of radiation were measured with lithium fluoride thermoluminescent dosimeters that were implanted subcutaneously. The absorbed radiation doses and 137Cs body burdens were significantly higher for western harvest mice (Reithrodontomys megalotis) than for deer mice (Peromyscus maniculatus), pinon mice (P. truei) and the least chipmunk (Eutamias minimus), reflecting differences in mobility and habitat preferences of the respective species. The average dose received by harvest mice was 26 mrad/day, which was 26% of the highest gamma dose detected at the ground surface in the study plot, although the maximum dose received by individual mice was as high as 45% of the maximum dose rates in the plot. (author)

  4. Space Radiation Quality Factors and the Delta Ray Dose and Dose-Rate Reduction Effectiveness Factor.

    Science.gov (United States)

    Cucinotta, Francis A; Cacao, Eliedonna; Alp, Murat

    2016-03-01

    In this paper, the authors recommend that the dose and dose-rate effectiveness factor used for space radiation risk assessments should be based on a comparison of the biological effects of energetic electrons produced along a cosmic ray particles path in low fluence exposures to high dose-rate gamma-ray exposures of doses of about 1 Gy. Methods to implement this approach are described. PMID:26808878

  5. Radiation doses to patients in haemodynamic procedures

    International Nuclear Information System (INIS)

    Interventional radio-cardiology gives high doses to patients due to high values of fluoroscopy times and large series of radiographic images. The main objective of the present work is the determination of de dose-area product (DAP) in patients of three different types of cardiology procedures with X-rays. The effective doses were estimated trough the organ doses values measured with thermoluminescent dosimeters (TLDs-100), suitable calibrated, placed in a phantom type Rando which was submitted to the same radiological conditions corresponding to the procedures made on patients. The values for the effective doses in the procedures CAD Seldinger was 6.20 mSv on average and 1.85mSv for pacemaker implants. (author)

  6. Photosensitivity of murine skin greatly depends on the genetic background: clinically relevant dose as a new measure to replace minimal erythema dose in mouse studies.

    Science.gov (United States)

    Gyöngyösi, Nóra; Lőrincz, Kende; Keszeg, András; Haluszka, Dóra; Bánvölgyi, András; Tátrai, Erika; Kárpáti, Sarolta; Wikonkál, Norbert M

    2016-07-01

    Artificial UV irradiation of murine skin is a frequently used method for testing photosensitivity, study carcinogenesis and photoprotective effects of different compounds. However, doses of UV radiation and mouse strains used in experiments vary greatly. The genetic background of mice may influence the photosensitivity as melanin content, pigmentation and hair cycle parameters are dissimilar. Doses of UV are often expressed in relation to the minimal erythema dose (MED) that was not necessarily determined for the given strain. We set out to standardize the method of measuring photosensitivity in three commonly used mouse strains, C57BL/6N, Balb/c and SKH-1. We found that MED may not be determined for some strains as erythema development in mice with diverse genotypes differs greatly. We measured the oedema response in vivo and ex vivo by using OCT. Given the strain-specific variability of erythema, we introduced Clinically Relevant Dose (CRD) as a new term to replace MED in experiments, to describe the lowest dose that triggers a perceptible skin reaction in mice. Not only the CRD but the proportion of erythema and oedema were different in strains examined. C57BL/6N mice display skin reactions at the lowest UVB dose, while SKH-1 hairless mice show changes, mostly oedema, after higher doses of UVB. The cellular composition and skin thickness were examined by histopathology. IL-1beta and IL-6 levels in skin correlated with the increasing doses of UVB. Despite the variations in the degree of erythema and oedema, no major differences in cytokine expressions were seen among various strains of mice. PMID:26910301

  7. Radiation dose and cancer risk among pediatric patients undergoing interventional neuroradiology procedures

    International Nuclear Information System (INIS)

    During interventional neuroradiology procedures, patients can be exposed to moderate to high levels of radiation. Special considerations are required to protect children, who are generally more sensitive to the short- and long-term detrimental effects of radiation exposure. Estimates of dose to the skin of children from certain interventional procedures have been published elsewhere, but we are not aware of data on dose to the brain or on the long-term risk of cancer from brain radiation. Our goals were to estimate radiation doses to the brain in 50 pediatric patients who had undergone cerebral embolization and to assess their lifetime risks of developing radiation-related brain cancer. Entrance-peak skin dose and various assumptions on conditions of exposure were used as input for dosimetric calculations to estimate the spatial pattern of dose within the brain and the average dose to the whole brain for each child. The average dose and the age of the child at time of exposure were used to estimate the lifetime risk of developing radiation-related brain cancer. Among the 50 patients, average radiation doses to the brain were estimated to vary from 100 mGy to 1,300 mGy if exposed to non-collimated fields and from 20 mGy to 160 mGy for collimated, moving fields. The lifetime risk of developing brain cancer was estimated to be increased by 2% to 80% as a result of the exposure. Given the very small lifetime background risk of brain tumor, the excess number of cases will be small even though the relative increase might be as high as 80%. ALARA principles of collimation and dose optimization are the most effective means to minimize the risk of future radiation-related cancer. (orig.)

  8. Health hazards of low doses of ionizing radiations. Vo. 1

    International Nuclear Information System (INIS)

    Exposure to high doses of ionizing radiation results in clinical manifestations of several disease entities that may be fatal. The onset and severity of these acute radiation syndromes are deterministic in relation to dose magnitude. Exposure to ionizing radiations at low doses and low dose rates could initiate certain damage in critical molecules of the cell, that may develop in time into serious health effects. The incidence of such delayed effects in low, and is only detectable through sophisticated epidemiological models carried out on large populations. The radiation damage induced in critical molecules of cells may develop by stochastic biochemical mechanisms of repair, residual damage, adaptive response, cellular transformation, promotion and progression into delayed health effects, the most important of which is carcinogenesis. The dose response relationship of probabilistic stochastic delayed effects of radiation at low doses and low dose rates, is very complex indeed. The purpose of this review is to provide a comprehensive understanding of the underlying mechanisms, the factors involved, and the uncertainties encountered. Contrary to acute deterministic effects, the occurrence of probabilistic delayed effects of radiation remains to be enigmatic. 7 figs

  9. Low doses of radiation: epidemiological investigations

    International Nuclear Information System (INIS)

    Influence of small dozes of radiation was investigated with the help epidemiologic evidence. Correlation analysis, regression analysis and frequency analysis were used for investigating morbidity of various cancer illnesses. The pollution of the environment and the fallout of radionuclides in 1962 and 1986 years have an influence upon morbidity of cancer. Influence of small dozes of radiation on health of the population is multifactorial. Therefore depending on other adverse external conditions the influence of radiation in small dozes can be increased or is weakened. Such character of influence of radiation in small dozes proposes the differentiated approach at realization of preventive measures. Especially it concerns regions with favorable ecological conditions.

  10. A family of statistical distributions for modelling occupational radiation doses in low dose occupations

    International Nuclear Information System (INIS)

    New statistical distributions have been defined to describe occupational exposures to ionising radiation. These distributions are particularly useful in modelling occupations where most doses are low. The maximum likelihood method was used for parameter estimation and has been adapted to allow doses that are recorded as zero to be included in the calculations. The method can then be applied to estimate true doses from the complete set of recorded dose values when the a priori dose distribution and the dose measurement distributions have been derived previously. This application is important in epidemiological cohort studies where it can improve the accuracy of excess relative risk estimates. (authors)

  11. An overview of measuring and modelling dose and risk from ionising radiation for medical exposures

    International Nuclear Information System (INIS)

    Purpose: This paper gives an overview of the methods that are used to calculate dose and risk from exposure to ionizing radiation as a support to other papers in this special issue. Background: The optimization of radiation dose is a legal requirement in medical exposures. This review paper aims to provide the reader with knowledge of dose by providing definitions and concepts of absorbed, effective and equivalent dose. Criticisms of the use of effective dose to infer the risk of an exposure to an individual will be discussed and an alternative approach considering the lifetime risks of cancer incidence will be considered. Prior to any dose or risk calculation, data concerning the dose absorbed by the patient needs to be collected. This paper will describe and discuss the main concepts and methods that can be utilised by a researcher in dose assessments. Concepts behind figures generated by imaging equipment such as dose-area-product, computed tomography dose index, dose length product and their use in effective dose calculations will be discussed. Processes, advantages and disadvantages in the simulation of exposures using the Monte Carlo method and direct measurement using digital dosimeters or thermoluminescent dosimeters will be considered. Beyond this special issue, it is proposed that this paper could serve as a teaching or CPD tool for personnel working or studying medical imaging

  12. Environmental gamma monitoring in high background radiation areas of Orissa using CaSO4:Dy TL dosimeters

    International Nuclear Information System (INIS)

    Naturally occurring radionuclides are the major contributor to the total effective dose of ionizing radiation received by the population. In India, there are quite a few monazite sand bearing placer deposits causing high background radiation along its long coastline. Chatrapur, Orissa is one of the high background areas of India. The beach sand of this area contains natural mineral Monazite abundantly. Maximum and minimum dose were found 1202. 1 μGy in spring and 483.8 μGy in monsoon at Port School and Gopalpur respectively. In spring, summer, monsoon and winter season the dose ranges were observed 1202.1-520.3, 1154.7-503.6, 1066.3-483.8 and 1141.7-508.5 μG respectively. (author)

  13. Optical tomography for measuring dose distribution in radiation therapy

    Directory of Open Access Journals (Sweden)

    Kauppinen Matti

    2014-01-01

    Full Text Available The dosimetry is used to verify the dose magnitude with artificial samples (phantoms before giving the planned radiation therapy to the patient. Typically, dose distribution is measured only in a single point or on a two-dimensional matrix plane. New techniques of radiation therapy ensure more detailed planning of radiation dose distribution which will lead to the need of measuring the radiation dose distribution three-dimensionally. The gel dosimetry is used to indicate and determine the ionizing radiation three-dimensionally. The radiation causes changes in chemical properties of the gel. The radiation dose distribution is defined by measuring the chemical changes. A conventional method is the magnetic resonance imaging and a new possibility is optical computed tomography (optical-CT. The optical-CT is much cheaper and more practical than magnetic resonance imaging. In this project, an optical-CT based method device was built by aiming at low material costs and a simple realization. The constructed device applies the charge coupled device camera and fluorescent lamp technologies. The test results show that the opacity level of the radiated gel can be measured accurately enough. The imaging accuracy is restricted by the optical distortion, e. g. vignetting, of the lenses, the distortion of a fluorescent lamp as the light source and a noisy measuring environment.

  14. Measurements of radon and thoron concentrations in high radiation background area using pin-hole dosimeter

    International Nuclear Information System (INIS)

    In present investigation, newly designed twin cup pin-hole dosimeter with LR-115 track detector has been used for the integrated measurements of radon and thoron in the environmental air of a high background radiation area in coastal Orissa. The twin cup dosimeters were calibrated before installation in the field. The calibration experiment was made in an inter calibration exercise at NIRS, Chiba, Japan. The resulting calibration factors were used to obtain the values of radon and thoron in the study area. Radon and thoron concentrations in the houses of study area were found to vary from 24 Bq/m3 to 98 Bq/m3 and 46 Bq/m3 to 689 Bq/m3, respectively. The indoor and outdoor gamma dose rates in the study area vary from 0.124 μGy/h to 0.257 μGy/h and 0.109 μGy/h to 0.361 μGy/h, respectively. The annual effective dose due to the exposure to indoor radon and progeny was found to vary from 0.70 mSv to 2.84 mSv with an average value of 1.73 mSv. However, the annual effective dose due to the exposure to thoron and progeny was found to vary from 1.16 mSv to 17.36 mSv with an average value of 7.36 mSv. Thoron concentration and gamma dose rate were found relatively higher in the area. - Highlights: • Results of a newly designed twin cup pin-hole dosimeter are reported in this paper. • Radon and thoron were measured in high background radiation area of India. • Concentration of thoron and resulting effective dose were found higher in the area. • The indoor and outdoor gamma dose rates were also relatively higher in the area. • The resulting dose to the people living in the area was estimated

  15. BZNF-1 wide range pocket intelligent radiation dose rate meter

    International Nuclear Information System (INIS)

    The functional performance, operational principles and technical means as well as the experimental results of the packet intelligent radiation dose ratemeter using G-M detector and a single chip microcomputer are described

  16. Low dose ionizing radiation induced acoustic neuroma: A putative link?

    Directory of Open Access Journals (Sweden)

    Sachin A Borkar

    2012-01-01

    Full Text Available Although exposure to high dose ionizing radiation (following therapeutic radiotherapy has been incriminated in the pathogenesis of many brain tumors, exposure to chronic low dose ionizing radiation has not yet been shown to be associated with tumorigenesis. The authors report a case of a 50-year-old atomic reactor scientist who received a cumulative dose of 78.9 mSv over a 10-year period and was detected to have an acoustic neuroma another 15 years later. Although there is no proof that exposure to ionizing radiation was the cause for the development of the acoustic neuroma, this case highlights the need for extended follow-up periods following exposure to low dose ionizing radiation.

  17. Online Radiation Dose Measurement System for ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration

    2012-01-01

    Particle detectors and readout electronics in the high energy physics experiment ATLAS at the Large Hadron Collider at CERN operate in radiation field containing photons, charged particles and neutrons. The particles in the radiation field originate from proton-proton interactions as well as from interactions of these particles with material in the experimental apparatus. In the innermost parts of ATLAS detector components will be exposed to ionizing doses exceeding 100 kGy. Energetic hadrons will also cause displacement damage in silicon equivalent to fluences of several times 10e14 1 MeV-neutrons per cm2. Such radiation doses can have severe influence on the performance of detectors. It is therefore very important to continuously monitor the accumulated doses to understand the detector performance and to correctly predict the lifetime of radiation sensitive components. Measurements of doses are important also to verify the simulations and represent a crucial input into the models used for predicting future ...

  18. Estimating radiation doses from reactor accidents

    International Nuclear Information System (INIS)

    In order to plan for emergency response to reactor accidents involving large radiation releases, it is necessary to determine the medical resources, such as diagnostic laboratory tests, hospital facilities and convalescent care, needed to care for a large population exposed to radiation. A determination of the needed medical resources is difficult because of the widely varying sensitivity humans exhibit to radiation exposure and because of the large number of assumptions involved in predicting radiation dispersion. This paper demonstrates a simple method for approximating medical needs in response to a severe reactor accident. The method requires a model for radiation dispersion from the accident and data for population distribution surrounding the reactor. With this information, tables developed in this paper may be used to project medical needs. The needs identified by this methodology may be compared against the actual medical resources of nearby communities to determine the size of the area impacted

  19. Radiation Dose Management In Nuclear Power Plants

    International Nuclear Information System (INIS)

    According to the US experience, the factors contributing to savings in radiation exposures for the period of 1985 to 1994 are (in the order of rank) (1) radiation protection guidelines, (2) reductions in unscheduled special maintenance, (3) reductions in source of exposure through material replacement, (4) primary chemistry control, cobalt substitution, decontamination, and preconditioning, (5) shutdown chemistry control guidelines, and (6) automated in-service inspection methods, and heat stress management guide. This illustrates that for successful radiation management, various factors must be included and integrated in the spirit of optimization. These factors are good planning and programming, use of technology, the culture to support ALARA among the management and workers, and the process of carrying out the actual tasks in details. Not only the control of radiation field through the implementation of technology is important but also the proper control of human involvement in radiation zone based on good planned programs and supportive culture is very important

  20. An international intercomparison of absorbed dose measurements for radiation therapy

    International Nuclear Information System (INIS)

    Dose intercomparison on an international basis has become an important component of quality assurance measurement i.e. to check the performance of absorbed dose measurements in radiation therapy. The absorbed dose to water measurements for radiation therapy at the SSDL, MINT have been regularly compared through international intercomparison programmes organised by the IAEA Dosimetry Laboratory, Seibersdorf, Austria such as IAEA/WHO TLD postal dose quality audits and the Intercomparison of therapy level ionisation chamber calibration factors in terms of air kerma and absorbed dose to water calibration factors. The results of these intercomparison in terms of percentage deviations for Cobalt 60 gamma radiation and megavoltage x-ray from medical linear accelerators participated by the SSDL-MINT during the year 1985-2001 are within the acceptance limit. (Author)

  1. Depth dose and angular dose distribution experiments with high energy electron-photon radiation

    International Nuclear Information System (INIS)

    India's first synchrotron radiation source, Indus-1, is commissioned at the Centre for Advanced Technology (CAT), Indore. Radiation environment of this facility is quite different in comparison to that of nuclear or irradiator facilities and proton or heavy ion accelerator facilities. The primary particle accelerated being the electron, the radiation environment mainly comprises of Bremsstrahlung photons followed by photo-neutrons, whereas electron contamination too exists within the containment area. Due to the complex nature of the radiation viz. high energy, broad energy spectrum, pulsed, mixed field, sharp angular distribution etc. quantification of radiation dose becomes a difficult task. In this paper, experiments on depth dose and angular dose distribution done with 450 MeV electron-photon radiation are described

  2. Dose Response for Chromosome Aberrations in Human Lymphocytes and Fibroblasts After Exposure to Very Low Dose of High Let Radiation

    Science.gov (United States)

    Hada, M.; George, K.; Chappell, L.; Cucinotta, F. A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivor with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (0.01 - 0.20 Gy) of 170 MeV/u Si-28 ions or 600 MeV/u Fe-56 ions, including doses where on average less than one direct ion traversal per cell nucleus occurs. Chromosomes were analyzed using the whole-chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). The responses for doses above 0.1 Gy (more than one ion traverses a cell) showed linear dose responses. However, for doses less than 0.1 Gy, both Si-28 ions and Fe-56 ions showed a dose independent response above background chromosome aberrations frequencies. Possible explanations for our results are non-targeted effects due to aberrant cell signaling [1], or delta-ray dose fluctuations [2] where a fraction of cells receive significant delta-ray doses due to the contributions of multiple ion tracks that do not directly traverse cell nuclei where chromosome aberrations are scored.

  3. Internal dose assessment in radiation accidents

    International Nuclear Information System (INIS)

    Although numerous models have been developed for occupational and medical internal dosimetry, they may not be applicable to an accident situation. Published dose coefficients relate effective dose to intake, but if acute deterministic effects are possible, effective dose is not a useful parameter. Consequently, dose rates to the organs of interest need to be computed from first principles. Standard bioassay methods may be used to assess body contents, but, again, the standard models for bioassay interpretation may not be applicable because of the circumstances of the accident and the prompt initiation of decorporation therapy. Examples of modifications to the standard methodologies include adjustment of biological half-times under therapy, such as in the Goiania accident, and the same effect, complicated by continued input from contaminated wounds, in the Hanford 241Am accident. (author)

  4. Biological effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Few weeks ago, when the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) submitted to the U.N. General Assembly the UNSCEAR 1994 report, the international community had at its disposal a broad view of the biological effects of low doses of ionizing radiation. The 1994 report (272 pages) specifically addressed the epidemiological studies of radiation carcinogenesis and the adaptive responses to radiation in cells and organisms. The report was aimed to supplement the UNSCEAR 1993 report to the U.N. General Assembly- an extensive document of 928 pages-which addressed the global levels of radiation exposing the world population, as well as some issues on the effects of ionizing radiation, including: mechanisms of radiation oncogenesis due to radiation exposure, influence of the level of dose and dose rate on stochastic effects of radiation, hereditary effects of radiation effects on the developing human brain, and the late deterministic effects in children. Those two UNSCEAR reports taken together provide an impressive overview of current knowledge on the biological effects of ionizing radiation. This article summarizes the essential issues of both reports, although it cannot cover all available information. (Author)

  5. Individual radiation doses. Annual report 1994

    International Nuclear Information System (INIS)

    During the year we measured whole body doses on 10,670 persons, distributed as follows: 0-0.5 mSv on 9,203 persons, 0.6-1 mSv on 665 persons, 1-1.5 mSv on 762 persons, >5 mSv on 40 persons. For doses higher than 4 mSv/4 weeks, the reason for the irradiation will be investigated. 2 tabs, 2 figs

  6. Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors.

    Science.gov (United States)

    Sasaki, Masao S; Tachibana, Akira; Takeda, Shunichi

    2014-05-01

    Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the 'integrate-and-fire' algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (i) the presence of a threshold that varied with organ, gender and age at exposure, and (ii) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to (239)Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation-environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking. PMID:24366315

  7. Radiation Dose to the Thyroid and Gonads in Patients Undergoing Cardiac CT Angiography

    OpenAIRE

    Behroozi, Hamid; Davoodi, Mohammad; Aghasi, Shahriar

    2015-01-01

    Background: The present data show a global increase in the rate of cardiovascular disease. Cardiac CT angiography has developed as a fast and non-invasive cardiac imaging modality following the introduction of multi-slice computed tomogaraphy. Objectives: The aim of this study was to measure the radiation dose to the thyroid and pelvis regions in patients undergoing cardiac CT angiography using the Care Dose 4D method of 64-slice scanner. Patients and Methods: Eighty-one patients (41 males an...

  8. Evaluation of occupational and patient radiation doses in orthopedic surgery

    Energy Technology Data Exchange (ETDEWEB)

    Sulieman, A. [Salman bin Abdulaziz University, College of Applied Medical Sciences, Radiology and Medical Imaging Department, P.O. Box 422, Alkharj (Saudi Arabia); Habiballah, B.; Abdelaziz, I. [Sudan Univesity of Science and Technology, College of Medical Radiologic Sciences, P.O. Box 1908, Khartoum (Sudan); Alzimami, K. [King Saud University, College of Applied Medical Sciences, Radiological Sciences Department, P.O. Box 10219, 11433 Riyadh (Saudi Arabia); Osman, H. [Taif University, College of Applied Medical Science, Radiology Department, Taif (Saudi Arabia); Omer, H. [University of Dammam, Faculty of Medicine, Dammam (Saudi Arabia); Sassi, S. A., E-mail: Abdelmoneim_a@yahoo.com [Prince Sultan Medical City, Department of Medical Physics, Riyadh (Saudi Arabia)

    2014-08-15

    Orthopedists are exposed to considerable radiation dose during orthopedic surgeries procedures. The staff is not well trained in radiation protection aspects and its related risks. In Sudan, regular monitoring services are not provided for all staff in radiology or interventional personnel. It is mandatory to measure staff and patient exposure in order to radiology departments. The main objectives of this study are: to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (Dhs) and (i i) Dynamic Cannula Screw (Dcs); to estimate the risk of the aforementioned procedures and to evaluate entrance surface dose (ESD) and organ dose to specific radiosensitive patients organs. The measurements were performed in Medical Corps Hospital, Sudan. The dose was measured for unprotected organs of staff and patient as well as scattering radiation. Calibrated Thermoluminescence dosimeters (TLD-Gr-200) of lithium fluoride (LiF:Mg, Cu,P) were used for ESD measurements. TLD signal are obtained using automatic TLD Reader model (Plc-3). The mean patients doses were 0.46 mGy and 0.07 for Dhs and Dcs procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean radiation dose for staff was higher in Dhs compared to Dcs. This can be attributed to the long fluoroscopic exposures due to the complication of the procedures. Efforts should be made to reduce radiation exposure to orthopedic patients, and operating surgeons especially those with high work load. Staff training and regular monitoring will reduce the radiation dose for both patients and staff. (Author)

  9. Evaluation of occupational and patient radiation doses in orthopedic surgery

    International Nuclear Information System (INIS)

    Orthopedists are exposed to considerable radiation dose during orthopedic surgeries procedures. The staff is not well trained in radiation protection aspects and its related risks. In Sudan, regular monitoring services are not provided for all staff in radiology or interventional personnel. It is mandatory to measure staff and patient exposure in order to radiology departments. The main objectives of this study are: to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (Dhs) and (i i) Dynamic Cannula Screw (Dcs); to estimate the risk of the aforementioned procedures and to evaluate entrance surface dose (ESD) and organ dose to specific radiosensitive patients organs. The measurements were performed in Medical Corps Hospital, Sudan. The dose was measured for unprotected organs of staff and patient as well as scattering radiation. Calibrated Thermoluminescence dosimeters (TLD-Gr-200) of lithium fluoride (LiF:Mg, Cu,P) were used for ESD measurements. TLD signal are obtained using automatic TLD Reader model (Plc-3). The mean patients doses were 0.46 mGy and 0.07 for Dhs and Dcs procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean radiation dose for staff was higher in Dhs compared to Dcs. This can be attributed to the long fluoroscopic exposures due to the complication of the procedures. Efforts should be made to reduce radiation exposure to orthopedic patients, and operating surgeons especially those with high work load. Staff training and regular monitoring will reduce the radiation dose for both patients and staff. (Author)

  10. Radiation dose specification for equipment qualification

    International Nuclear Information System (INIS)

    The methodology of radiological conditions calculation for the purpose of Equipment Qualification (EQ) is described in the paper and is illustrated with the example of calculation that was performed in the frame of Equipment Qualification Parameters determination for NPP Krsko. The complete process is explained what include: identification and calculation of fission product inventory; release, dilution and removal in the containment; leakage to the containment annulus; deposition in the containment sump; influence of the recirculating radioactive fluid outside containment. The analysis is focused on the evaluation of accident doses in the containment, but it is also accompanied with the calculation of doses outside containment during recirculation phase of LOCA and with discussion of normal operating doses determination. In addition, the paper emphasize the specific problems that came up during the implementation in the NEK EQ program, i.e., the influence of the beta particle energy, calculation of Bremsstrahlung effect and the impact of the enclosure volume size on the dose. The methodology is consistent with US NRC requirements and involves the usage of several computer codes (ORIGEN - fission product inventory calculation, ELISA dose calculation in the containment atmosphere, DIDOS and QUADUE calculation of doses from concentrated radioactive sources).(author)

  11. Adaptive response in frogs chronically exposed to low doses of ionizing radiation in the environment

    International Nuclear Information System (INIS)

    Using the micronucleus assay, decreased levels of DNA damage were found after high dose ionizing radiation exposure of liver cells taken from frogs inhabiting a natural environment with above-background levels of ionizing radiation, compared to cells taken from frogs inhabiting background areas. The data obtained from a small number of animals suggest that stress present in the above-background environment could induce an adaptive response to ionizing radiation. This study did not reveal harmful effects of exposure to low levels of radioactivity. On the contrary, stress present in the above-background area may serve to enhance cellular defense mechanisms. - Highlights: → Frogs were collected from background and higher tritium level habitats. → The micronucleus assay was conducted on liver cells obtained from the frogs. → No detrimental effects were noted in frogs exposed to elevated tritium. → Adaptive responses were observed in frogs exposed to elevated tritium.

  12. Monitoring of radiation exposure and registration of doses

    International Nuclear Information System (INIS)

    The guide defines the concepts relevant to the monitoring of radiation exposure and working conditions and provides guidelines for determining the necessity of monitoring and subsequently organizing it. In addition, instructions are given for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK). Also the procedures are described for situations leading to exceptional exposures. (10 refs., 1 tab.)

  13. Iodine 131 therapy patients: radiation dose to staff

    International Nuclear Information System (INIS)

    Metastasis to the skeletal system from follicular thyroid carcinoma may be treated with an oral dose of 131I-NaI. Radiation exposures to hospital personnel attending these patients were calculated as a function of administered dose, distance from the patient and time after administration. Routine or emergency patient handling tasks would not exceed occupational radiation protection guidelines for up to 30 min immediately after administration. The emergency handling of several patients presents the potential for exceeding these guidelines. (author)

  14. Radiation doses to personnel during common angiographic procedures involving DSA

    International Nuclear Information System (INIS)

    In this study, the radiation doses received by the staff are monitored during common angiographic procedures involving digital subtraction angiography (DSA). Doses are assessed by direct measurement using lithium fluoride thermoluminescent dosemeters (TLDs). The entrance surface dose (mGy) at the different locations on each of the staff for the three different procedures are given. As the result, on the whole, the main operator, who is standing closest to the x-ray tube and patient, receive the highest dose while the radiographer receives the lowest dose

  15. Radiation doses to personnel in clinics for gynecologic oncology

    International Nuclear Information System (INIS)

    Radium or Cesium is used for radiotherapy of gynecologic cancer at six clinics in Sweden. This report gives a survey of the radiation doses the personnel is exposed to. The measurement were performed using TL-dosimeters. The dose equivalents for different parts of the body at specific working moments was deduced as well as the effective dose equivalent and the collective dose equivalent. 1983 the total collective dose equivalent for the six clinics was 1.3 manSv, which corresponds to 3.9 manmSv/g equivalent mass of Radium used at the treatments. (With 11 tables and 10 figures) (L.E.)

  16. Cosmic background radiation spectral distortion and radiative decays of relic neutral particles

    International Nuclear Information System (INIS)

    The recently observed excess of photons on a short wavelength side of the peak of a cosmic background radiation spectrum can be described by radiative decays of relic neutral particles. The lifetime and mass of a decaying particle must satisfy the following conditions: 2x109 s14 s, 0.4 eV-9-8x10-8) μb, and the interaction of new particles with the usual matter must be rather strong. The generalization of the standard SU(3)xSU(2)xU(1) model is presented which includes new particles with the desired properties. 18 refs.; 3 figs.; 2 tabs

  17. Personal exposure to grass pollen: relating inhaled dose to background concentration

    DEFF Research Database (Denmark)

    Peel, Robert George; Hertel, Ole; Smith, Matt;

    2013-01-01

    lasted for approximately 25 to 30 minutes and was performed at 2-hour intervals from noon to midevening under moderate exercise by 2 individuals. Results: A median ratio of dose rate to background concentration of 0.018 was recorded, with higher ratio values frequently occurring at 12 to 2 PM, the time...

  18. High-dose preoperative radiation for cancer of the rectum: Impact of radiation dose on patterns of failure and survival

    International Nuclear Information System (INIS)

    A variety of dose-time schedules are currently used for preoperative radiation therapy of rectal cancer. An analysis of patients treated with high-dose preoperative radiation therapy was undertaken to determine the influence of radiation dose on the patterns of failure, survival, and complications. Two hundred seventy-five patients with localized rectal cancer were treated with high-dose preoperative radiation therapy. One hundred fifty-six patients received 45 Gy (low-dose group). Since 1985, 119 patients with clinically unfavorable cancers were given a higher dose, 55 Gy using a shrinking field technique (high-dose group). All patients underwent curative resection. Median follow-up was 66 months in the low-dose group and 28 months in the high-dose group. Patterns of failure, survival, and complications were analyzed as a function of radiation dose. Fourteen percent of the total group developed a local recurrence; 20% in the low-dose group as compared with 6% in the high-dose group. The actuarial local recurrence rate at 5 years was 20% for the low-dose group and 8% for the high-dose group, and approached statistical significance with p = .057. For tethered/fixed tumors the actuarial local recurrence rates at 5 years were 28% and 9%, respectively, with p = .05. Similarly, for low-lying tumors (less than 6 cm from the anorectal junction) the rates were 24% and 9%, respectively, with p = .04. The actuarial rate of distant metastasis was 28% in the low-dose group and 20% in the high-dose group and was not significantly different. Overall actuarial 5-year survival for the total group of patients was 66%. No significant difference in survival was observed between the two groups, despite the higher proportion of unfavorable cancers in the high-dose group. The incidence of complications was 2%, equally distributed between the two groups. High-dose preoperative radiation therapy for rectal cancer results in excellent local control rates. 27 refs., 2 figs., 8 tabs

  19. Weighting of secondary radiations in organ dose calculations

    International Nuclear Information System (INIS)

    The current system of dose quantities in radiological protection is based, in addition to the absorbed dose, on the concepts of equivalent dose and effective dose. This system has been developed mainly with uniform whole-body exposures in mind. Conceptual and practical problems arise when the system is applied to more general exposure situations where the radiation quality is altered within the human body. In this article these problems are discussed, using proton beam radiotherapy as a specific example, and a proposition is made that dose equivalent quantities should be used instead of equivalent doses when organ doses are of interest. The calculations of out-of-field organ doses in proton therapy show that the International Commission on Radiological Protection-prescribed use of the proton weighting factor generally leads to an underestimation of the stochastic risks, while the use of neutron weighting factors in the way as practised in the literature leads to a significant overestimation of these risks. (authors)

  20. Radiative QCD backgrounds to exclusive H→b anti b production: radiation from the screening gluon

    International Nuclear Information System (INIS)

    Central exclusive Higgs boson production, pp→p+H+p, at the LHC can provide an important complementary contribution to the comprehensive study of the Higgs sector in a remarkably clean topology. The b anti b Higgs decay mode is especially attractive, and for certain BSM scenarios may even become the discovery channel. Obvious requirements for the success of such exclusive measurements are strongly suppressed and controllable backgrounds. One potential source of background comes from additional gluon radiation which leads to a three-jet b anti bg final state. We perform an explicit calculation of the subprocesses gg→q anti qg, gg→ggg in the case of 'internal' gluon radiation from the spectator, t-channel screening gluon, when the two incoming active t-channel gluons form a color octet. We find that the overall contribution of this source of background is orders of magnitude lower than that caused by the main irreducible background resulting from the ggPP→b anti b subprocess. Therefore, this background contribution can be safely neglected. (orig.)

  1. Radiation shielding and dose rate distribution for the building of the high dose rate accelerator

    International Nuclear Information System (INIS)

    A high dose rate electron accelerator was established at Osaka Laboratory for Radiation Chemistry, Takasaki Establishment, JAERI in the fiscal year of 1975. This report shows the fundamental concept for the radiation shielding of the accelerator building and the results of their calculations which were evaluated through the model experiments. After the construction of the building, the leak radiation was measured in order to evaluate the calculating method of radiation shielding. Dose rate distribution of X-rays was also measured in the whole area of the irradiation room as a data base. (author)

  2. The clinical demand for information and the radiation dose in pelvimetry and amniography

    International Nuclear Information System (INIS)

    Radiographic measurements are an important part of antenatal care and are in fact used to a great extent in nulliparous women. In view of this clinical background and also for ethical reasons, reduction of the radiation doses is mandatory. As radiographic pelvimetry is used in so many pregnant women, it is of importance that no higher radiation doses are applied than are absolutely needed to guarantee correct and necessary information. Dose reduction is afforded in two different ways - by optimizing the imaging techniques and by closing a suitable film-screen combination. Measurement of absorbed doses in patients was carried out with highly sensitive lithium fluoride thermoluminiscence dosimeters (TLD) with a dimension of 3x3x0.9 mm (Harshaw type TLD-100). All TLD probes were calibrated with Co60 radiation between the measurement series. Absorbed radiation doses were measured in the rectum for different film-screen combinations. Depending on the position of the fetus in relation to the maternal pelvis, it is obvious that in any individual case varying parts of the fetus will lie directly in the radiation beam. In amniography the absorbed radiation doses will vary from case to case depending on the number of exposures, which should not exceed six, and the duration of fluoroscopy, which should be no longer than 1 min. With the use of lanex Regular screens and highly coned images the radiation dose will not exceed 3.0 mGy. Since a high image quality is mandatory for evaluation of disorders in the fetal skeleton, measurements were not performed with other high-speed screens. The MR 800 screen appears to provide further reduction of the radiation dose in this type of examination. (orig./MG)

  3. Radiation Dose-Volume Effects in the Esophagus

    International Nuclear Information System (INIS)

    Publications relating esophageal radiation toxicity to clinical variables and to quantitative dose and dose-volume measures derived from three-dimensional conformal radiotherapy for non-small-cell lung cancer are reviewed. A variety of clinical and dosimetric parameters have been associated with acute and late toxicity. Suggestions for future studies are presented.

  4. Mutation process at low or high radiation doses

    International Nuclear Information System (INIS)

    A concise review is given of the status of research on the genetic effects of low-level radiation in general. The term ''low dose'' is defined and current theories on low dose are set out. Problems and their solutions are discussed. (author)

  5. The dose makes the poison. Even for radiation

    International Nuclear Information System (INIS)

    The dose makes the poison, a quote by Paracelsus a doctor who lived half a millennium ago, is still valid today. Nevertheless this general accepted fact is being excluded in relation to ionizing radiation, which is wrongly considered as radioactive radiation. Here applies the LNT-Hypothesis (Linear No Threshold), agreed on by the ICRP, the Commission on Radiological Protection, a dose-to-effect relationship, which is based on the EU directives and the German Radiation Protection Ordinance. The LNT-hypothesis states, that even every smallest dose of radiation already provides a potentiality of danger and was introduced as precaution assuming that self-healing mechanisms even through weak radiation of damaged cells can be excluded and every damage caused by radiation inevitably leads to cell mutation and with it to cancer development. Without any further knowledge assumptions were made, that the same mechanism for cancer development applies for high and small doses. This assumption turned out to be wrong, as it is increasingly reported on findings which show, that smaller doses of ionized radiation demonstrably does not cause any damage, but on the contrary can even be healthy.

  6. Radiation dose modeling using IGRIP and Deneb/ERGO

    International Nuclear Information System (INIS)

    The Radiological Environment Modeling System (REMS) quantifies dose to humans in radiation environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO (Ergonomics) simulation software products. These commercially available products are augmented with custom C code to provide the radiation exposure information to and collect the radiation dose information from the workcell simulations. The emphasis of this paper is on the IGRIP and Deneb/ERGO parts of REMS, since that represents the extension to existing capabilities developed by the authors. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these database files to compute and accumulate dose to human devices (Deneb's ERGO human) during simulated operations around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. REMS was developed because the proposed reduction in the yearly radiation exposure limit will preclude or require changes in many of the manual operations currently being utilized in the Weapons Complex. This is particularly relevant in the area of dismantlement activities at the Pantex Plant in Amarillo, TX. Therefore, a capability was needed to be able to quantify the dose associated with certain manual processes so that the benefits of automation could be identified and understood

  7. Radiation dose to the lens and cataract formation

    International Nuclear Information System (INIS)

    The purpose of this work was to determine the radiation tolerance of the lens of the eye and the incidence of radiation-induced lens changes in patients treated by fractionated supervoltage radiation therapy for orbital tumors. Forty patients treated for orbital lymphoma and pseudotumor with tumor doses of 20--40 Gy were studied. The lens was partly shielded using lead cylinders in most cases. The dose to the germinative zone of the lens was estimated by measurements in a tissue equivalent phantom using both film densitometry and thermoluminescent dosimetry. Opthalmological examination was performed at 6 monthly intervals after treatment. The lead shield was found to reduce the dose to the germinative zone of the lens to between 36--50% of the tumor dose for Cobalt beam therapy, and to between 11--18% for 5 MeV x-rays. Consequently, the lens doses were in the range 4.5--30 Gy in 10--20 fractions. Lens opacities first appeared from between 3 and 9 years after irradiation. Impairment of visual acuity ensued in 74% of the patients who developed lens opacities. The incidence of lens changes was strongly dose-related. None was seen after doses of 5 Gy or lower, whereas doses of 16.5 Gy or higher were all followed by lens opacities which impaired visual acuity. The largest number of patients received a maximum lens dose of 15 Gy; in this group the actuarial incidence of lens opacities at 8 years was 57% with visual impairment in 38%. The adult lens can tolerate a total dose of 5 Gy during a fractionated course of supervoltage radiation therapy without showing any changes. Doses of 16.5 Gy or higher will almost invariably lead to visual impairment. The dose which causes a 50% probability of visual impairment is approximately 15 Gy. 10 refs., 4 figs., 1 tab

  8. The effects of small doses of radiation

    International Nuclear Information System (INIS)

    The following topics were discussed in outline at a two day conference organized by I.B.C. Technical Services Ltd, February 1989, in London: radiation carcinogenesis mechanisms, environmental exposure, occupational exposure trends and comparisons, ICRP risk assessment and use of data including that of A-Bomb survivors, the ankylosing spondylitis study, UKAEA and AWE mortality studies, Sellafield, leukemia clusters and radiation hormesis. (UK)

  9. Social economical and psychological considerations in conveying potential radiation risks from high level natural background radiation to the residents of Ramsar, Iran

    International Nuclear Information System (INIS)

    X-rays and radioactivity were discovered more than 100 years ago but the need for protection against very low doses of ionizing radiation and especially different levels of natural radiation is still among the most controversial matters in radiobiology and radiation protection. According to formal reports, some areas in Ramsar, a city in northern Iran, are the inhabited areas with the highest levels of natural radiation studied so far. A population of about 2000 is exposed to average annual radiation levels of 10.2 mGy y''-1 and the highest recorded external gamma dose rates are about 130 mGy y''-1. We have previously shown that in high background radiation areas (HBRAs), cultured human lymphocytes of the inhabitants whose cumulative radiation doses were as much as 170 times more than those of a control area when subjected to 1.5 Gy challenge dose,were significantly more radioresistant compared to the residents of the control area (Mortazavi et al. 2002a,b, Mortazavi and Karam 2002, Ghiassi-Najed et al. 2002). The people who live in these areas are usually unaware of the high levels of natural radiation in their environment. Studies performed on the residents of these areas have indicated that the effective dose of the inhabitants, in some cases, is much higher than the dose limits for occupational irradiation. Considering recent policies of ICRP regarding suggesting dose limits for exposure to natural sources of ionizing including radon, it seems that the inhabitants should become familiar with the possible risks of the exposure to high levels of ionizing radiation. They should also realize that studies performed over the past years have indicated no detrimental effect. On the other hand, according to ICRP suggestions and considering the experiences in other countries, especially evacuation of the residents of contaminated areas after Chernobyl accident, setting any radiation protection regulation for the inhabitants without considering social, economic and

  10. Radiation dose distributions and their optimization

    International Nuclear Information System (INIS)

    The current situation in the radiotherapy treatment of carcinoma of the larynx is discussed from a physicist's point of view and in the light of the results of one series of patients. The results suggest that the spatial distribution of dose obtainable with supervoltage irradiation for treatment of T1 to T4 No Mo cases is not far from the ideal, and that it is not difficult to prescribe an optimal distribution. A significant difference in the rate of local cure was found between those treated to a CRE value greater than 1,750 and those treated to less than 1,750. Methods are suggested of optimizing the dose distribution in time by increasing the effect on tumor cells without exceeding an acceptable tolerance dose to normal tissues

  11. Therapeutic effects of low radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Trott, K.R. (Dept. of Radiation Biology, St. Bartholomew' s Medical College, London (United Kingdom))

    1994-01-01

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high.

  12. Radiation Dose-Response Relationships and Risk Assessment

    International Nuclear Information System (INIS)

    The notion of a dose-response relationship was probably invented shortly after the discovery of poisons, the invention of alcoholic beverages, and the bringing of fire into a confined space in the forgotten depths of ancient prehistory. The amount of poison or medicine ingested can easily be observed to affect the behavior, health, or sickness outcome. Threshold effects, such as death, could be easily understood for intoxicants, medicine, and poisons. As Paracelsus (1493-1541), the 'father' of modern toxicology said, 'It is the dose that makes the poison.' Perhaps less obvious is the fact that implicit in such dose-response relationships is also the notion of dose rate. Usually, the dose is administered fairly acutely, in a single injection, pill, or swallow; a few puffs on a pipe; or a meal of eating or drinking. The same amount of intoxicants, medicine, or poisons administered over a week or month might have little or no observable effect. Thus, before the discovery of ionizing radiation in the late 19th century, toxicology ('the science of poisons') and pharmacology had deeply ingrained notions of dose-response relationships. This chapter demonstrates that the notion of a dose-response relationship for ionizing radiation is hopelessly simplistic from a scientific standpoint. While useful from a policy or regulatory standpoint, dose-response relationships cannot possibly convey enough information to describe the problem from a quantitative view of radiation biology, nor can they address societal values. Three sections of this chapter address the concepts, observations, and theories that contribute to the scientific input to the practice of managing risks from exposure to ionizing radiation. The presentation begins with irradiation regimes, followed by responses to high and low doses of ionizing radiation, and a discussion of how all of this can inform radiation risk management. The knowledge that is really needed for prediction of individual risk is presented

  13. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    Science.gov (United States)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests

  14. Environmental policy. Ambient radioactivity levels and radiation doses in 1996

    International Nuclear Information System (INIS)

    The report is intended as information for the German Bundestag and Bundesrat as well as for the general population interested in issues of radiological protection. The information presented in the report shows that in 1996, the radiation dose to the population was low and amounted to an average of 4 millisievert (mSv), with 60% contributed by natural radiation sources, and 40% by artificial sources. The major natural source was the radioactive gas radon in buildings. Anthropogenic radiation exposure almost exclusively resulted from application of radioactive substances and ionizing radiation in the medical field, for diagnostic purposes. There still is a potential for reducing radiation doses due to these applications. In the reporting year, there were 340 000 persons occupationally exposed to ionizing radiation. Only 15% of these received a dose different from zero, the average dose was 1.8 mSv. The data show that the anthropogenic radiation exposure emanating from the uses of atomic energy or applications of ionizing radiation in technology is very low. (orig./CB)

  15. Sensors of absorbed dose of ionizing radiation based on mosfet

    OpenAIRE

    Perevertaylo V. L.

    2010-01-01

    The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  16. Radiation Dose from Lunar Neutron Albedo

    Science.gov (United States)

    Adams, J. H., Jr.; Bhattacharya, M.; Lin, Zi-Wei; Pendleton, G.

    2006-01-01

    The lunar neutron albedo from thermal energies to 8 MeV was measured on the Lunar Prospector Mission in 1998-1999. Using GEANT4 we have calculated the neutron albedo due to cosmic ray bombardment of the moon and found a good-agreement with the measured fast neutron spectra. We then calculated the total effective dose from neutron albedo of all energies, and made comparisons with the effective dose contributions from both galactic cosmic rays and solar particle events to be expected on the lunar surface.

  17. Two pediatric cases of high dose radiation-induced meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Miho [National Yokosuka Hospital, Kanagawa (Japan); Nagashima, Goro; Fujimoto, Tsukasa; Aoyagi, Masaru; Takasato, Yoshio

    2001-10-01

    There have been many reports of low dose radiation-induced meningiomas, and the number of reports of high dose radiation-induced meningiomas has been increasing recently. In this report, we present two cases of pediatric radiation-induced meningiomas, one 14 years after 36 Gy of radiation therapy for medulloblastoma and the other 8 years after 20 Gy of local radiation therapy for germinoma. Both patients underwent surgical removal of the meningiomas. The case of medulloblastoma was later revealed to be basal cell phacomatosis syndrome. Basal cell phacomatosis syndrome is a disease that occurs as a result of abnormality of chromosome 9. We speculate that the occurrence of radiation-induced meningioma may have been related to the basic genetic vulnerability of the patients. (author)

  18. Estimation of radiation dose received by the radiation workers during radiographic testing

    International Nuclear Information System (INIS)

    This study was conducted primarily to evaluate occupational radiation dose in industrial radiography during radiographic testing at Balil-Hadida, with the aim of building up baseline data on radiation exposure in the industrial radiography practice in Sudan. Dose measurements during radiographic testing were performed and compared with IAEA reference dose. In this research the doses measured by using hand held radiation survey meter and personal monitoring dosimeter. The results showed that radiation doses ranged between minimum (0.448 mSv/ 3 month) , and maximum (1.838 mSv / 3 month), with an average value (0.778 mSv/ 3 month), and the standard deviation 0.292 for the workers used gamma mat camera. The analysis of data showed that the radiation dose for all radiation worker are receives less than annual limit for exposed workers 20 mSv/ year and compare with other study found that the dose received while body doses ranging from 0.1 to 9.4 mSv/ year, work area design in all the radiography site followed the three standard rules namely putting radiation signs, reducing access to control area and making of boundaries. Thus the accidents arising from design faults not likely to occur at these site. Results suggest that adequate fundamental training of radiation workers in general radiography prior to industrial radiography work will further improve the standard of personnel radiation protection. (Author)

  19. Do changes in biomarkers from space radiation reflect dose or risk?

    Science.gov (United States)

    Brooks, A.

    . Following low-LET radiation exposure, the biological response often does not increase as a linear function of dose. Thus, the RBE and the subsequent risk predicted is dependent on the dose where the two radiation types are compared. To avoid this problem the standard procedure is to use the dose and dose-rate response and compare the linear components of the two r diation exposures. Important riska comparisons are often done at very low doses, where the reference radiation may either increase or decrease as a function of dose. Since the low-LET exposure often does not produce a significant change above the background level of damage, the derived RBE factors can become very large.Studies using micronuclei as biomarkers following exposure to mono-energetic neutrons, x-rays and gamma rays delivered at very low doses (up to 0.10 Gy) demonstrated the differences in the shape of each dose-response relationship and the problems associated with the RBE. These studies show that RBE may not accurately reflect the hazards or risk associated with space radiation exposure. As additional measures of biological change are developed, it may become possible to base risk on biological change and not on changes in radiation doses. Research funded through grants # DE-FG03-99ER62787 from DOE Office of Biological and Environmental Research and RO1 CA74053-01 from NIH/NASA to Washington State University Tri-Cities.

  20. Plants as warning signal for exposure to low dose radiation

    International Nuclear Information System (INIS)

    The stamen-hair system of Tradescantia for flower colour has proven to be one of the most suitable materials to study the frequency of mutations induced by low doses of various ionizing radiations and chemical mutagens. The system has also been used successfully for detecting mutagenic synergisms among chemical mutagens and ionizing radiations as well as for studying the variations of spontaneous mutation frequency. In this study of radiobiology, the main objective is to observe somatic mutation (occurrence of pink cells from blue cells) induced on stamen hairs of five Tradescantia sp. available in Malaysia after exposure to low doses of chronic gamma irradiation using Gamma Green House. Pink cells appeared only on Tradescantia Pallida Purpurea stamen hairs after 13 days of exposure to irradiation with different doses of gamma rays. The highest number of stamens with pink cells was recorded from flowers irradiated with the highest dose of 6.37 Gy with 0.07 Gy/ h of dose rate. The lowest number of stamens with pink cells was recorded with an average of 0.57, irradiated with the lowest dose of 0.91 Gy with 0.01 Gy/ h of dose rate. There were no pink cells observed on Tradescantia Spathaceae Discolor after exposure to different doses of gamma rays. Similar negative results were observed for the control experiments. The principal cells in this assay are the mitotic stamen hair cells developing in the young flower buds. After exposure to radiation, the heterozygous dominant blue character of the stamen hair cell is prevented, resulting in the appearance of the recessive pink color. Furthermore, no pink cell appears on all species of Tradescantia spathaceae after irradiated with different doses of gamma rays. The sensitivity of the Tradescantia has been used widely and has demonstrated the relation between radiation dose and frequency of mutation observed at low doses which can contribute to the effects of low doses and their consequences for human health. This system

  1. Molecular targets for radioprotection by low dose radiation exposure

    International Nuclear Information System (INIS)

    Adaptive response is a reduced effect from a higher challenging dose of a stressor after a smaller inducing dose had been applied a few hrs earlier. Radiation induced fibrosarcoma (RIF) cells did not show such an adaptive response, i.e. a reduced effect from a higher challenging dose (2 Gy) of a radiation after a priming dose (1 cGy) had been applied 4 or 7 hrs earlier, but its thermoresistant clone (TR) did. Since inducible HSP70 and HSP25 expressions were different between these two cell lines, the role of inducible HSP70 and HSP25 in adaptive response was examined. When inducible hsp70 or hsp25 genes were transfected to RIF cells, radioresistance in clonogenic survival and reduction of apoptosis was detected. The adaptive response was also acquired in these two cell lines, and inducible hsp70 transfectant showed more pronounced adaptive response than hsp25 transfectant. From these results, inducible HSP70 and HSP25 are at least partly responsible for the induction of adaptive response in these cells. Moreover, when inducible HSP70 or HSP25 genes were transfected to RIF cells, coregulation of each gene was detected and heat shock factor (HSF) was found to be responsible for these phenomena. In continuation of our earlier study on the involvement of heat shock protein (HSP) 25 and HSP70 in the induction of adaptive response, we have now examined the involvement of these proteins in the induction of the adaptive response, using an animal model system. C57BL6 mice were irradiated with 5 cGy of gamma radiation 3 times for a week (total of 15cGy) and a high challenge dose (6Gy) was given on the day following the last low dose irradiation. Survival rate of the low dose pre-irradiated mice was increased to 30%. Moreover, high dose-mediated induction of apoptosis was also reduced by low dose pre-irradiation. To elucidate any link existing between HSP and induction of the adaptive response, reverse transcriptase (RT)-polymerase chain reaction (PCR) analysis was performed

  2. ISFSI site boundary radiation dose rate analyses

    International Nuclear Information System (INIS)

    Across the globe nuclear utilities are in the process of designing and analysing Independent Spent Fuel Storage Installations (ISFSI) for the purpose of above ground spent-fuel storage primarily to mitigate the filling of spent-fuel pools. Using a conjoining of discrete ordinates transport theory (DORT) and Monte Carlo (MCNP) techniques, an ISFSI was analysed to determine neutron and photon dose rates for a generic overpack, and ISFSI pad configuration and design at distances ranging from 1 to ∼1700 m from the ISFSI array. The calculated dose rates are used to address the requirements of 10CFR72.104, which provides limits to be enforced for the protection of the public by the NRC in regard to ISFSI facilities. For this overpack, dose rates decrease by three orders of magnitude through the first 200 m moving away from the ISFSI. In addition, the contributions from different source terms changes over distance. It can be observed that although side photons provide the majority of dose rate in this calculation, scattered photons and side neutrons take on more importance as the distance from the ISFSI is increased. (authors)

  3. A program for synchrotron radiation dose calculations

    International Nuclear Information System (INIS)

    The computer program PHOTON was obtained from Brookhaven National Laboratory (courtesy D. Chapman, NSLS), and has now been installed at APS VAX. In the following a brief description of the program and how to access to it is described with an example. A detailed manual for the program is also available. The program is developed to calculate the transmitted and scattered spectra of the synchrotron radiation, as it passes through series of filters. The source can be a bending magnet or a wiggler. This can be generated for any bending magnet or a wiggler source by varying ring energy, the critical energy and opening angles of the radiation beam. Monochromatic beams to white radiation can be treated. Filter materials can be pure elements or composites. The absorption cross-sections of all elements for covering 10-2 to 106 keV are now included in a table, which can be accessed by giving the atomic symbol

  4. Radiation dose computation for renal dynamic radionuclide-imaging

    International Nuclear Information System (INIS)

    Objective: To study the internal radiation dose in kidney and bladder for the renal dynamic radionuclide-imaging. Methods: A double compartment chain related to kidney-bladder excretion model was set out. The correlative mathematical expressions were educed to simulate the absorbed radionuclide medicament for renal dynamic imaging's transfer and excretion. The total disintegration amount in kidney, bladder and other organs was counted. Monte Carlo methods were used to calculate the radionuclide disintegration radial energy deposited in kidney and bladder, and their effective doses were calculated according to the radiation quality factor. Results: To take 131I-OIH and 99Tcm-DTPA imaging agents for example, the internal radiation dose in kidney was 0.058 mGy/MBq(for 131I-OIH) and 0.0054 mGy/MBq(for 99Tcm-DTPA), respectively, while the internal radiation dose in bladder is 0.40 mGy/MBq(for 131I-OIH) and 0.033 mGy/MBq(for 99Tcm. DTPA), respectively. Conclusions: The internal radiation doses in kidney and bladder are very low for renal dynamic radionuclide- imaging at the conventional dose. (authors)

  5. Effective UV radiation dose in polyethylene exposed to weather

    Science.gov (United States)

    González-Mota, R.; Soto-Bernal, J. J.; Rosales-Candelas, I.; Calero Marín, S. P.; Vega-Durán, J. T.; Moreno-Virgen, R.

    2009-09-01

    In this work we quantified the effective UV radiation dose in orange and colorless polyethylene samples exposed to weather in the city of Aguascalientes, Ags. Mexico. The spectral distribution of solar radiation was calculated using SMART 2.9.5.; the samples absorption properties were measured using UV-Vis spectroscopy and the quantum yield was calculated using samples reflectance properties. The determining factor in the effective UV dose is the spectral distribution of solar radiation, although the chemical structure of materials is also important.

  6. Monitoring of radiation exposure and registration of doses

    International Nuclear Information System (INIS)

    The Section 32 of the Finnish Radiation Act (592/91) defines the requirements to be applied to the monitoring of the radiation exposure and working conditions in Finland. The concepts relevant to the monitoring and guidelines for determining the necessity of the monitoring as well as its organizing are given in the guide. Instructions for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK) are given, also procedures for situations leading to exceptional exposures are described. (9 refs.)

  7. A method for radiobiological investigations in radiation fields with different LET and high dose rates

    International Nuclear Information System (INIS)

    For investigations: 1. Performed in the field of radiobiology with different LET-radiation and a relatively high background dose rate of one component (e.g. investigations with fast and intermediate reactor neutrons) 2. Concerning radiation risk studies within a wide range 3. Of irradiations, covering a long time period (up to 100 days) a test system is necessary which on the one hand makes it possible to analyze the influence of different LET radiation and secondly shows a relative radiation resistant behaviour and allows a simple cell cycle regulation. A survey is given upon the installed device of a simple cell observation method, the biological test system used and the analysis of effects caused by dose, repair and LET. It is possible to analyze the behaviour of the nonsurvival cells and to demonstrate different reactions of the test parameters to the radiation of different LET. (author)

  8. Status of eye lens radiation dose monitoring in European hospitals.

    Science.gov (United States)

    Carinou, Eleftheria; Ginjaume, Merce; O'Connor, Una; Kopec, Renata; Sans Merce, Marta

    2014-12-01

    A questionnaire was developed by the members of WG12 of EURADOS in order to establish an overview of the current status of eye lens radiation dose monitoring in hospitals. The questionnaire was sent to medical physicists and radiation protection officers in hospitals across Europe. Specific topics were addressed in the questionnaire such as: knowledge of the proposed eye lens dose limit; monitoring and dosimetry issues; training and radiation protection measures. The results of the survey highlighted that the new eye lens dose limit can be exceeded in interventional radiology procedures and that eye lens protection is crucial. Personnel should be properly trained in how to use protective equipment in order to keep eye lens doses as low as reasonably achievable. Finally, the results also highlighted the need to improve the design of eye dosemeters in order to ensure satisfactory use by workers. PMID:25222935

  9. Status of eye lens radiation dose monitoring in European hospitals

    International Nuclear Information System (INIS)

    A questionnaire was developed by the members of WG12 of EURADOS in order to establish an overview of the current status of eye lens radiation dose monitoring in hospitals. The questionnaire was sent to medical physicists and radiation protection officers in hospitals across Europe. Specific topics were addressed in the questionnaire such as: knowledge of the proposed eye lens dose limit; monitoring and dosimetry issues; training and radiation protection measures. The results of the survey highlighted that the new eye lens dose limit can be exceeded in interventional radiology procedures and that eye lens protection is crucial. Personnel should be properly trained in how to use protective equipment in order to keep eye lens doses as low as reasonably achievable. Finally, the results also highlighted the need to improve the design of eye dosemeters in order to ensure satisfactory use by workers. (paper)

  10. Direct determination of radiation dose in human blood

    CERN Document Server

    Tanir, Ayse Gunes; Sahiner, Eren; Bolukdemir, Mustafa Hicabi; Koc, Kemal; Meric, Niyazi; Kelec, Sule Kaya

    2014-01-01

    Our purpose is to measure the internal radiation dose (ID) using human blood sample. In the literature, there is no process that allows the direct measurement of ID received by a person. This study has shown that it is possible to determine ID in human blood exposed to internal or external ionizing radiation treatment both directly and retrospectively. OSL technique was used to measure the total dose from the blood sample. OSL counts from the waste blood of the patient injected with a radiopharmaceutical for diagnostic or treatment purposes and from a blood sample having a laboratory-injected radiation dose were both used for measurements. The decay and dose-response curves (DRC) were plotted for different doses. The doses received by different blood aliquots have been determined by interpolating the natural luminescence counts to DRC. In addition, OSL counts from a healthy blood sample exposed to an external radiation source were measured. The blood aliquots were given different 0-200Gy beta doses and their ...

  11. Dose Rate of Environmental Gamma Radiation in Java Island

    International Nuclear Information System (INIS)

    The dose rate Monitoring of environmental gamma radiation at some locations in Java Island in the year 2005 / 2006 has been carried out. The dose rate measurement of gamma radiation is carried out by using the peripheral of Portable Gamma of Ray Spectrometer with detector of NaI(Tl), Merck Exploranium, Model GR-130- MINISPEC, while to determine its geographic position is used by the GPS (Global Positioning System), made in German corporation of GPS III Plus type. The division of measurement region was conducted by dividing Java Island become 66 parts with same distance, except in Jepara area that will built PLTN (Nuclear Energy Power), distance between measurement points is more closed. The results of dose rate measurement are in 66 locations in Java Island the range of (19.24 ± 4.05) nSv/hour until (150.78 ± 12.26) nSv/hour with mean (51.93 ± 36.53) nSv/h. The lowest dose rate was in location of Garut, while highest dose rate was in Ujung Lemah Abang, Jepara location. The data can be used for base line data of dose rate of environmental gamma radiation in Indonesia, specially in Java Island. The mean level of gamma radiation in Java monitoring area (0.46 mSv / year) was still lower than worldwide average effective dose rate of terrestrial gamma rays 0.5 mSv / year (report of UNSCEAR, 2000). (author)

  12. Dose received by radiation workers in Australia, 1991

    International Nuclear Information System (INIS)

    Exposure to radiation can cause genetic defects or cancer. People who use sources of radiation as part of their employment are potentially at a greater risk than others owing to the possibility of their being continually exposed to small radiation doses over a long period. In Australia, the National Health and Medical Research Council has established radiation protection standards and set annual effective dose limits for radiation workers in order to minimise the chance of adverse effects occurring. These standards are based on the the recommendations of the International Commission on Radiological Protection (ICRP 1990). In order to ensure that the prescribed limits are not exceeded and to ensure that doses are kept to a minimum, some sort of monitoring is necessary. The primary purpose of this report is to provide data on the distribution of effective doses for different occupational categories of radiation worker in Australia. The total collective effective dose was found to be of the order of 4.9 Sv for a total of 34750 workers. 9 refs., 16 tabs., 6 figs

  13. Dose received by radiation workers in Australia, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Morris, N.D.

    1994-07-01

    Exposure to radiation can cause genetic defects or cancer. People who use sources of radiation as part of their employment are potentially at a greater risk than others owing to the possibility of their being continually exposed to small radiation doses over a long period. In Australia, the National Health and Medical Research Council has established radiation protection standards and set annual effective dose limits for radiation workers in order to minimise the chance of adverse effects occurring. These standards are based on the the recommendations of the International Commission on Radiological Protection (ICRP 1990). In order to ensure that the prescribed limits are not exceeded and to ensure that doses are kept to a minimum, some sort of monitoring is necessary. The primary purpose of this report is to provide data on the distribution of effective doses for different occupational categories of radiation worker in Australia. The total collective effective dose was found to be of the order of 4.9 Sv for a total of 34750 workers. 9 refs., 16 tabs., 6 figs.

  14. Radiation dose estimates for carbon-11-labelled PET tracers

    International Nuclear Information System (INIS)

    Introduction: Carbon-11-labelled positron emission tomography (PET) tracers commonly used in biomedical research expose subjects to ionising radiation. Dosimetry is the measurement of radiation dose, but also commonly refers to the estimation of health risk associated with ionising radiation. This review describes radiation dosimetry of carbon-11-labelled molecules in the context of current PET research and the most widely used regulatory guidelines. Methods: A MEDLINE literature search returned 42 articles; 32 of these were based on human PET data dealing with radiation dosimetry of carbon-11 molecules. Radiation burden expressed as effective dose and maximum absorbed organ dose was compared between tracers. Results: All but one of the carbon-11-labelled PET tracers have an effective dose under 9 μSv/MBq, with a mean of 5.9 μSv/MBq. Data show that serial PET scans in a single subject are feasible for the majority of radiotracers. Conclusion: Although differing in approach, the two most widely used regulatory frameworks (those in the USA and the EU) do not differ substantially with regard to the maximum allowable injected activity per PET study. The predictive validity of animal dosimetry models is critically discussed in relation to human dosimetry. Finally, empirical PET data are related to human dose estimates based on homogenous distribution, generic models and maximum cumulated activities. Despite the contribution of these models to general risk estimation, human dosimetry studies are recommended where continued use of a new PET tracer is foreseen.

  15. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2008-04-14

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

  16. Dose dependence on stochastic radiobiological effect in radiation risk estimation

    International Nuclear Information System (INIS)

    The analysis of the results in dose -- effect relationship observation has been carried out on the cell and organism levels, with the aim to obtain more precise data on the risk coefficients at low doses. The results are represented by two contrasting groups of dose dependence on effect: a downwards concave and a J-shaped curve. Both types of dependence are described by the equation solutions of an assumed unified protective mechanism, which comprises two components: constitutive and adaptive or inducible ones. The latest data analysis of the downwards concave dependence curves shows a considerable underestimation of radiation risk in all types of cancer, except leukemia, for a number of critical groups in a population, at low doses comparing to the ICRP recommendations. With the dose increase, the decrease of the effect value per dose unit is observed. It may be possibly related to the switching of the activity of the adaptive protective mechanism, with some threshold dose values being exceeded

  17. Intensity modulated radiation therapy (IMRT) for better dose targeting

    International Nuclear Information System (INIS)

    Full text: Intensity modulated radiation therapy generally implies the use of inverse planning using preselected organ dose constraints and dose volume histogram analysis. Then modulated beams are created by multi leaf collimator (MLC) sequences. This new method of modulating each beam produces fine resolution dose maps around the target volume. New and exciting tumour visualisation techniques using PET and MRS imaging may ensure that the new technology in dose delivery is matched by improved biological aided targeting images which better specifying the tumour volume. Implementing IMRT into the clinic is a complex and time consuming task however some examples of clinical sites which lend themselves to IMRT over conventional radiotherapy will be shown. One vendors approach (the pinnacle radiotherapy planning computer) is described. It maintains forward computation of the final dose map to ensure integrity of the inverse planning process. Planning dose tool calculations are compared with film dosimetry results. These comparisons ensure accurate doses are delivered to the patient

  18. Human evidence on the shape of the dose-response curves for radiation carcinogenesis

    International Nuclear Information System (INIS)

    The carcinogenic effects of high levels of ionizing radiation are better understood than those of any other environmental agent. However, the somatic risk from low doses is highly disputed. The uncertainties stem from the fact that a direct estimation of small risks requires impracticably large samples. Therefore, risk estimates for low doses have to be derived indirectly by extrapolation from high exposure data and are heavily dependent on assumptions about the form of the dose-response curve. Although radiobiological theories tested on in vitro systems predict a quadratic term in the dose-response equation which should, at least for sparsely ionizing radiation, dominate the shape of the curve, the epidemiological data available cannot exclude the possibility of a pure linear relationship. In some cases, apparent thresholds may result from latent periods inversely related to dose. Besides depending on the quality of the radiation, the shape seems also to differ with the type of cancer induced. Studies on uranium miners, atomic bomb survivors and on irradiated patients are reviewed with emphasis on the shape of the dose-response. The credibility of the most publicized reports claiming a large cancer risk from low levels of radiation is assessed. The feasibility of a new study in an area of high natural background is explored. Finally, the influence of the uncertainties concerning the effect of low level radiation on future exposure limits set by regulatory bodies is discussed. (Auth.)

  19. Visualization of radiation dose big data acquired by monitoring posts

    International Nuclear Information System (INIS)

    Currently, in Fukushima Prefecture, 3625 radiation dose monitoring posts is available, and the radiation data is acquired every 10 minutes. However, an effective visualization of such an enormous amount of data has not been sufficiently performed. In this study, pull out the meaningful information from the big data, to achieve an effective visualization. By comparing the physical attenuation with the radiation dose changes, we can predict the trend of environment attenuation. We visualize the influence of the environment by plotting the results to the map. As a result, the difference in the increase or decrease depending on the location appeared. Under the influence of snow cover, a phenomenon that radiation dose is reduced in winter were also seen. We considered that these results will be effective for the policies of decontamination and the estimation of the amount of snow as water resources. (author)

  20. Development of PC version code system for radiation dose estimation

    International Nuclear Information System (INIS)

    Since a direct access from a radiation work site to a main frame computer is usually difficult, evaluation of radiation sources and/or doses are often carried out by handcalculations with less accuracy. So considering a recent remarkable progress of PC (Personal computer), we have developed an interactive code system of PC version to calculate dose equivalent values with high accuracy. It consists of a radiation source calculation code ORIGEN-2 and point kernel shielding calculation codes, QAD-CGGP2 and G33-GP2. With the present system, you can easily obtain dose equivalent values at any detector point starting from radiation source estimation. Validity of these codes have been verified individually on a main frame computer through various benchmark calculations. Thus we verified the present PC version system by comparing the PC calculations with those using a main frame computer. Excellent agreement was obtained between them. (author)

  1. Space radiation absorbed dose distribution in a human phantom.

    Science.gov (United States)

    Badhwar, G D; Atwell, W; Badavi, F F; Yang, T C; Cleghorn, T F

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  2. Space radiation absorbed dose distribution in a human phantom

    Science.gov (United States)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  3. Scientific and organizational background with regard to occupational radiation protection

    International Nuclear Information System (INIS)

    The starting point of the joint European health policy is the 1957 Euratom Treaty, which puts great emphasis on the protection of workers and the general public against dangers arising from ionizing radiation. New radiation protection legislation is driven by scientific developments, by experience with former legislation or by identification of regulatory gaps. Additionally, new legislation has been initiated after identification of changes in social and industrial structures and after the Chernobyl accident. To ensure a harmonized and sound operational implementation of the new radiation protection requirements, close contact is kept between the European Commission departments active in the radiation protection field and those responsible for operational radiation protection in competent authorities as well as in the working field. This process also identifies the need for new regulations. The European radiation protection policy contributed significantly to the achievements, providing for the present high standards of radiological protection of workers and the general public within the European Union. However, the radiological protection issue cannot be seen as isolated and detached from other developments in our society, which is confronted with major problems, most of which appear from the fact that the different sectors in our society progress and develop at different speeds. This leads to confusion and therefore the subject of radiation protection in industry, education, research and medicine is a multidisciplinary initiative involving different interest groups and specialized services. This activity will continue to be of importance for the next century. (author)

  4. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation.

    Directory of Open Access Journals (Sweden)

    Feng Yang

    Full Text Available BACKGROUND: High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation. PRINCIPAL FINDINGS: We have identified 7117 unique phosphopeptides (2566 phosphoproteins from control and irradiated (2 and 50 cGy primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. CONCLUSIONS: Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health.

  5. Occupational radiation doses in Portugal from 1994 to 1998

    International Nuclear Information System (INIS)

    This work reports on the occupational radiation doses for external radiation received in 1994-1998 by the radiation workers monitored by the Radiological Protection and Nuclear Safety Department (DPRSN) in Portugal. Individual monitoring for external radiation is carried out in Portugal by DPRSN since the 60s, and the workers are monitored on a monthly or quarterly bases. In 1995 DPRSN monitored approximately 8000 people and was the only laboratory carrying out this sort of activity in Portugal. In 1998 the number of monitored people increased to nearly 8500 from 860 facilities, which leads us to state that the results shown in this work are well representative of the universe of radiation workers in Portugal. Until 1996, the dose measurement procedure was based only on film dosimetry and the results reported for the 1994-1995 period were obtained with this methodology. Since 1996, thermoluminescent dosimetry (TLD) was gradually introduced and since then an effort has been made to transfer the monitored workers from film to TLD. In 1998, both film and TLD dosimetry systems were running simultaneously, with average numbers of 4500 workers monitored with film dosimetry, while 4000 were monitored with TLD. The data presented from 1996 to 1998 were obtained with both methodologies. This work reports the annual mean effective doses received from external radiation, for the monitored and exposed workers in the different fields of activity, namely, industry, research laboratories, health and mining. The distribution of the annual effective dose by dose intervals is also reported. The collective annual dose by field of activity is estimated and the contribution to the total annual collective dose is determined. The collective dose estimates for the period 1994 to 1998 demonstrated that the health sector is the most representative exposed group in Portugal. (author)

  6. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kleiman, Norman Jay [Columbia University

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9

  7. Cancer risk at low doses of ionizing radiation. Artificial neural networks inference from atomic bomb survivors

    International Nuclear Information System (INIS)

    Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the ‘integrate-and-fire’ algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (1) the presence of a threshold that varied with organ, gender and age at exposure, and (2) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to 239Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation–environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking. (author)

  8. Uncertainty of dose measurement in radiation processing

    DEFF Research Database (Denmark)

    Miller, A.

    1996-01-01

    running debate and presents the author's view, which is based upon experience in radiation processing dosimetry. The origin of all uncertainty components must be identified and can be classified according to Type A and Type B, but it is equally important to separate the uncertainty components into those...

  9. Overview of ICRP Committee 2: doses from radiation exposure.

    Science.gov (United States)

    Harrison, J D; Paquet, F

    2016-06-01

    The focus of the work of Committee 2 of the International Commission on Radiological Protection (ICRP) is the computation of dose coefficients compliant with Publication 103 A set of reference computational phantoms is being developed, based on medical imaging data, and used for radiation transport calculations. Biokinetic models used to describe the behaviour of radionuclides in body tissues are being updated, also leading to changes in organ doses and effective dose coefficients. Dose coefficients for external radiation exposure of adults calculated using the new reference phantoms were issued as Publication 116, jointly with the International Commission on Radiation Units and Measurements. Forthcoming reports will provide internal dose coefficients for radionuclide inhalation and ingestion by workers, and associated bioassay data. Work is in progress to revise internal dose coefficients for members of the public, and, for the first time, to provide reference values for external exposures of the public. Committee 2 is also working with Committee 3 on dose coefficients for radiopharmaceuticals, and leading a cross-Committee initiative to give advice on the use of effective dose. PMID:26984902

  10. Biological dosimetry of ionizing radiation in the high dose range

    International Nuclear Information System (INIS)

    The report reviews briefly methods of dose evaluation after exposure to high doses of ionizing radiation. Validation of two methods also is described: micronucleus (Mn) frequency estimation according Muller and Rode and premature chromosome condensation (PCC) combined with painting of 3 pairs of chromosomes in human lymphocytes. According to Muller and Rode, micronucleus frequency per binucleated cells with at least one Mn linearly increases with dose up to 15 Gy and is suitable end-point for biological dosimetry. These authors, however, examined cells from only one donor. The data reported below were obtained for 5 donors; they point to a considerable individual variation of thus measured response to irradiation. Due to the high degree of inter-donor variability, there is no possibility to apply this approach in biological dosimetry in the dose range 5 - 20 Gy gamma 60Co radiation. A linear response up to 10 Gy was observed only in the case of certain donors. In contrast, determination of the dose-effect relationship with the PCC method gave good results (small inter-individual variation, no plateau effect up to dose 10 Gy), so that with a calibration curve it could be used for dose estimation after exposure to doses up to 10 Gy of X or gamma 60Co radiation. (author)

  11. Dose dependent rearrangement of cellular membranes induced by ionizing radiation

    International Nuclear Information System (INIS)

    The radiation-induced effects at dose rate of 0.35 Gy/min (in vivo) and of ultra-low doses (in vitro) on the cell membranes structural state were shown. The modifications of the membrane protein and lipid components and their dynamic state were revealed at experimental irradiation conditions by fluorescent probe analysis. The principal component analysis of the research data indicates the dose-dependent decrease of plasma membrane structural orderliness of the small intestine enterocytes with the increase of the ionizing irradiation acute dose of 0.5, 1.0, 2.0, 3.0 Gy at dose rate of 0.35 Gy/min. The complex response of the biological structure - the erythrocytes plasma membrane, on the ionizing radiation action at ultra-low doses that occurred through macromolecular structural rearrangements was also demonstrated. The features of the structural rearrangement of the cellular membranes depending on the ionizing radiation dose (dose rate) are found out

  12. Radiation doses from dental radiography at private practioneers

    International Nuclear Information System (INIS)

    This investigation was made in January 1975 together with a seminar group from the faculty of odontology in Stockholm. Every four private practising dentists in Stockholm and its environs were selected by haphazard to get an enquiry equipment etc. Every forty private practising dentists were then selected by haphazard to get a visit. 32 x-ray plants were investigated. The radiation doses showed a great spreading. The mean value of the radiation doses to the irradiated organs had been reduced about 5 times compared to a similar investigation, which was made in 1960. The use of long metal tubes and high-speed film gave the lowest dose values, while a short cone of bakelite and a low-speed film gave the highest dose values. Fluctuations in the dose values seemed also to depend on the technique. The reasons for this may be variations in the settings of the instruments and in the dark room technique. (M.S.)

  13. Radiation dose assessments for materials with elevated natural radioactivity

    International Nuclear Information System (INIS)

    The report provides practical information needed for evaluating the radiation dose to the general public and workers caused by materials containing elevated levels of natural radionuclides. The report presents criteria, exposure scenarios and calculations used to assess dose with respect to the safety requirements set for construction materials in accordance with the Finnish Radiation Act. A method for calculating external gamma exposure from building materials is presented in detail. The results for most typical cases are given as specific dose rates in table form to enable doses to be assessed without computer calculation. A number of such dose assessments is presented, as is the corresponding computer code. Practical investigation levels for the radioactivity of materials are defined. (23 refs.)

  14. Time-dependent radiation dose simulations during interplanetary space flights

    Science.gov (United States)

    Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju

    2016-07-01

    Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.

  15. Photon and neutron dose evaluation in experimental hall of Indus-1 synchrotron radiation source

    International Nuclear Information System (INIS)

    Radiation measurement in Indus-1 experimental hall and Control Room area was performed for evaluating the photon and neutron dose rates during various operating conditions. The measurements were carried out using VICTOREEN 451 P and LUDLUM Model 2363 survey meter for photon and neutron dose rate measurement respectively. From the measurements, it was seen that during Indus-1 injection, maximum photon dose rate of 410 μSv/h and maximum neutron dose rate of 15.9 μSv/h was observed at one of the hot spots (front of pre-mirror, Beam Line-1). At experimental station of the beam lines, the neutron dose rates observed were in the range 1.0 - 3.4 μSv/h whereas the photon dose rates were up to 0.9 μSv/h. During Indus-1 storage condition, the radiation levels were near background levels except at one of the hot spots (pre-mirror, BL-4) where photon and neutron dose rates observed were 6.3 μSv/h and 45.1 μSv/h respectively. During Indus-2 injection neutron dose rates ranging from background to 3.3 μSv/h were observed in the sitting area at experimental station whereas photon dose rate was noticed up to 0.4 μSv/h. For the control room area, neutron dose rates up to a maximum of 3 μSv/h were observed during Indus-1 injection only. During other operation modes, dose rates in control room are of background level. Details of the measurements and results are presented in the paper. (author)

  16. Radiation-dose consequences of acid rain

    International Nuclear Information System (INIS)

    Acid rain causes accelerated mobilization of many materials in soils. Natural and anthropogenic radionuclides, especially Ra and Cs, are among these materials. Generally, a decrease in soil pH by 1 unit will cause increases in mobility and plant uptake by factors of 2 to 7. Several simulation models were tested with most emphasis on an atmospherically driven soil model that predicts water and nuclide flow through a soil profile. We modelled a typical, acid rain sensitive soil using meterological data from Geraldton, Ontario. The results, within the range of effects on the soil expected from acidification, showed direct proportionality between the mobility of the nuclides and dose. Based on the literature available, a decrease in pH of 1 unit may increase the mobility of Ra and Cs by a factor or 2 or more. This will lead to increases in plant uptake and ultimate dose to man of about the same extent

  17. What happens at very low levels of radiation exposure ? Are the low dose exposures beneficial ?

    International Nuclear Information System (INIS)

    Full text: Radiation is naturally present in our environment and has been since the birth of this planet. The human population is constantly exposed to low levels of natural background radiation, primarily from environmental sources, and to higher levels from occupational sources, medical therapy, and other human-mediated events. Radiation is one of the best-investigated hazardous agents. The biological effects of ionizing radiation for radiation protection consideration are grouped into two categories: The deterministic and the stochastic ones. Deterministic radiation effects can be clinically diagnosed in the exposed individual and occur when above a certain thresholdan appropriately high dose is absorbed in the tissues and organs to cause the death of a large number of cells and consequently to impair tissue or organ functions early after exposure. A clinically observable biological effect (Acute Radiation Sendromes, ARS) occurs days to months after an acute radiation dose. Stochastic radiation effects are the chronic effects of radiation result from relatively low exposure levels delivered over long periods of time. These are sort of effects that might result from occupational exposure, or to the background exposure levels. Such late effects might be the development of malignant (cancerous) disease and of the hereditary consequences. These effects may be observed many years after the radiation exposure. There is a latent period between the initial radiation exposure and the development of the biological effect. For this reason, a stochastic effect is called a Linear or Zero-Threshold (LNT) Dose-Response Effect. There is a stochastic correlation between the number of cases of cancers or genetic defects developed inside a population and the dose received by the population at relatively large levels of radiation. These changes in gene activation seem to be able to modify the response of cells to subsequent radiation exposure, termed the adaptive response. This

  18. Occupational radiation doses among diagnostic radiation workers in South Korea, 1996-2006

    International Nuclear Information System (INIS)

    This study details the distribution and trends of doses of occupational radiation among diagnostic radiation workers by using the national dose registry between 1996 and 2006 by the Korea Food and Drug Administration. Dose measurements were collected quarterly by the use of thermoluminescent dosemeter personal monitors. A total of 61 732 workers were monitored, including 18 376 radiologic technologists (30%), 13 762 physicians (22%), 9858 dentists (16%) and 6114 dental hygienists (9.9%). The average annual effective doses of all monitored workers decreased from 1.75 to 0.80 mSv over the study period. Among all diagnostic radiation workers, radiologic technologists received both the highest effective and collective doses. Male radiologic technologists aged 30-49 y composed the majority of workers receiving more than 5 mSv in a quarter. More intensive monitoring of occupational radiation exposure and investigation into its health effects on diagnostic radiation workers are required in South Korea. (authors)

  19. Emissions and doses from sources of ionising radiation in the Netherlands: radiation policy monitoring

    International Nuclear Information System (INIS)

    In 1997 the Ministry of Housing, Spatial Planning and the Environment requested RIVM to develop an information system for policy monitoring. One of the motives was that the European Union requires that the competent authorities of each member state ensure that dose estimates due to practices involving exposure to ionising radiation are made as realistic as possible for the population as a whole and for reference groups in all places where such groups may occur. Emissions of radionuclides and radiation to the environment can be classified as follows: (1) emissions to the atmosphere, (2) emissions to the aquatic system and (3) emission of external radiation from radioactive materials and equipment that produces ionising radiation. Released radioactivity is dispersed via exposure pathways, such as the atmosphere, deposition on the ground and farmland products, drinking water, fish products, etc. This leads to radiation doses due to inhalation, ingestion and exposure to external radiation. To assess the possible radiation doses different kinds of models are applied, varying from simple multiplications with dispersion coefficients, transfer coefficients and dose conversion coefficients to complex dispersion models. In this paper an overview is given of the human-induced radiation doses in the Netherlands. Also, trends in and the effect of policy on the radiation dose of members of the public are investigated. This paper is based on an RIVM report published recently. A geographical distribution of radiation risks due to routine releases for a typical year in the Netherlands was published earlier

  20. Biological impact of high-dose and dose-rate radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Maliev, V.; Popov, D. [Russian Academy of Science, Vladicaucas (Russian Federation); Jones, J.; Gonda, S. [NASA -Johnson Space Center, Houston (United States); Prasad, K.; Viliam, C.; Haase, G. [Antioxida nt Research Institute, Premier Micronutrient Corporation, Novato (United States); Kirchin, V. [Moscow State Veterinary and Biotechnology Acade my, Moscow (Russian Federation); Rachael, C. [University Space Research Association, Colorado (United States)

    2006-07-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  1. Biological impact of high-dose and dose-rate radiation exposure

    International Nuclear Information System (INIS)

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  2. Measurement of radiation dose in cerebral CT perfusion study

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate radiation dose in cerebral perfusion studies with a multi-detector row CT (MDCT) scanner on various voltage and current settings by using a human head phantom. Following the CT perfusion study protocol, continuous cine scans (1 sec/rotation x 60 sec) consisting of four 5-mm-thick contiguous slices were performed three times at variable tube voltages of 80 kV, 100 kV, 120 kV, and 140 kV with the same tube current setting of 200 mA and on variable current settings of 50 mA, 100 mA, 150 mA, and 200 mA with the same tube voltage of 80 kV. Radiation doses were measured using a total of 41 thermoluminescent dosimeters (TLDs) placed in the human head phantom. Thirty-six TLDs were inside and three were on the surface of the slice of the X-ray beam center, and two were placed on the surface 3 cm caudal assuming the lens position. Average radiation doses of surface, inside, and lens increased in proportion to the increases of tube voltage and tube current. The lowest inside dose was 87.6±15.3 mGy, and the lowest surface dose was 162.5±6.7 mGy at settings of 80 kV and 50 mA. The highest inside dose was 1,591.5±179.7 mGy, and the highest surface dose was 2,264.6±123.7 mGy at 140 kV-200 mA. At 80 kV-50 mA, the average radiation dose of lens was the lowest at 5.5±0.0 mGy. At 140 kV-200 mA the radiation dose of lens was the highest at 127.2±0.6 mGy. In cerebral CT perfusion study, radiation dose can vary considerably. Awareness of the patient's radiation dose is recommended. (author)

  3. Radiation-induced cancer from low doses of ionizing radiation: risk analysis using the cell dose concept

    International Nuclear Information System (INIS)

    High doses of ionizing radiations are known to bear the risk of cancer to the exposed individual. In order to appreciate potential carcinogenesis from low doses also, the action of ionizing radiation in the human body has to be considered in holistic approach: energy depositions to individual cells trigger effects within a hierachical structure of interacting levels of biological systems, consisting consecutively of atoms, molecules, cells and organ tissue. The present paper describes the cell dose concept which is an essential factor in assessing the risk due to the ionizing radiation to the cells and tissues. Low dose of ionizing radiation induces adaptive response in individual cells which could be linked to the action of molecular radicals. Enzyme activities in bone marrow cells and bilayer lipid membranes and radicals are directly related to radiation effects. Temporary improvements of the detoxification of molecular radicals also improve the cellular defence. The risk analysis calls for more attention as it is important for radiation protection and other beneficial effects due to low doses of irradiation. (author). 18 refs

  4. Techniques and radiation dose in CT examinations of adult patients

    International Nuclear Information System (INIS)

    The use of CT in medical diagnosis delivers radiation dose to patients that are higher than those from other radiological procedures. Lake of optimized protocols could be an additional source of increased dose. The aim of this study was to measure radiation doses in CT examination of the adults in three Sudanese hospitals. Details were obtained from approximately 160 CT examination carried out in 3 hospitals (3 CT scanners). Effective dose was calculated for each examination using CT dose indices. exposure related parameters and CT D1- to- effective dose conversion factors. CT air kerma index (CT D1) and dose length products (DLP) determined were below the established international reference dose levels. The mean effective doses in this study for the head, chest, and abdomen are 0.82, 3.7 and 5.4 mGy respectively. These values were observed that the effective dose per examination was lower in Sudan than in other countries. The report of a CT survey done in these centers indicates that the mean DLP values for adult patients were ranged from 272-460 mGy cm (head) 195-995 mGy cm (chest), 270-459 mGy cm (abdomen). There are a number of observed parameters that greatly need optimization, such as minimize the scan length, without missing any vital anatomical regions, modulation of exposure parameters (kV, mA, exposure time, and slice thickness) based on patient size and age. Another possible method is through use of contrast media only to optimize diagnostic yield. The last possible method is the use of radio protective materials for protection however, in order to achieve the above optimization strategies: there is great demand to educate CT personnel on the effects of scan parameter settings on radiation dose to patients and image quality required for accurate diagnosis. (Author)

  5. Estimation of Fetal Dose during Radiation Therapy of Pregnant Patient

    International Nuclear Information System (INIS)

    To evaluate the effectiveness of a simple and practical shielding device to reduce the fetal dose for a pregnant patient undergoing radiation therapy of brain metastasis. The dose to the fetus was evaluated by simulating the treatments using the anthropomorphic phantom. The prescription dose at mid-brain is 300 cGy x 10 fractions with 6 MV photon with 18 x 22 cm2 field size. The additional shielding devices to reduce the fetal dose are a shielding wall, cerrobend plates and lead (Pb) sheets over acrylic bridge. Various points of measurement with off-field distance were detected by using ion-chamber (30, 40, 50, and 60 cm) with and without the shielding devices and TLD (30, 40, 50, 60, and 70 cm) only with the shielding devices. The doses to the fetus without shielding were 3.20, 3.21, 1.44, 0.90 cGy at the distances of 30, 40, 50, and 60 cm from the treatment field edge. With shielding, the doses were reduced to 0.88, 0.60, 0.35, 0.25 cGy, and the ratio of the shielding effect varied from 70% to 80%. TLD results were 1.8, 1.2, 0.8, 1.2, and 0.8 cGy (70 cm). The total dose to the fetus was expected to be under 1 cGy during the entire treatment. The essential point during radiation therapy of pregnant patient would be minimizing the fetal dose. 10 cGy to 20 cGy is the threshold dose for fetal radiation effects. Our newly developed device reduced the fetal dose far below the safe level. Therefore, our additional shielding devices are useful and effective to reduce the fetal dose.

  6. Natural radioactivity and associated radiation characteristic of the new high background radiation area of lambwe east southern Kenya

    International Nuclear Information System (INIS)

    Rocks and soils from a number of areas underlined by carbonatite rocks in Kenya have been associated with high levels of natural background radioactivity. People in such high background radiation areas (HBRA), are exposed to abnormally high annual absorbed dose (that have health implications) than the global normal 1 mSvyr-1. In this paper, results of field background radiation measurements, activity concentrations of primordial radionuclides in (mainly carbonatite rock and soil) matrices, and estimated annual external effective dose rates are presented for South and North Ruri hills in Lambwe East location of Suba District, which lies roughly between latitudes 0°30'S and 1°00'S, bounded on the east by longitude 34°30'E and on the west by the shores of Lake Victoria 16 and Winnam Gulf. Altitudes in the region range from about 1000 m on the shores of Lake Victoria to above 1800 m on top of the Ruri hills. The main geological features are carbonatite formations. Twenty one samples were analyzed using high-purity germanium (HPGe) gamma-ray spectrometer. The activity concentrations ranged 14.18 - 6559.99 Bqkg-1 (average: 1396.85 Bqkg-1) for Th-232; 2.73 - 499.24 Bqkg-1 (average: 178.69 Bqkg-1) for U-238; and 56.67 - 1454.73 Bqkg-1 (average: 508.67 Bqkg-1) for K-40. The variability in Th distribution could be due to another contributing factor apart from carbonatite: Homa hills geothermal field fluids might be responsible for delivery of Th to surface rocks; some hot spots have travertine deposits. Measured absorbed dose rates in air outdoors range 700 - 6000.00 nGyh-1 (mean: 2325.84 nGy h-1); assuming 0.4 occupancy factor, these values correspond to individual annual effective dose rates of 1.717 - 14.717 mSvyr-1 (mean: 5.705 mSv yr-1). Measured absorbed dose rates are higher than calculated values since they include the contribution of cosmic rays. The natural radioactivity is fractionated with higher levels in the soils than carbonatite rocks

  7. Vertical distribution of radiation dose rates in the water of a brackish lake in Aomori Prefecture, Japan

    International Nuclear Information System (INIS)

    Seasonal radiation dose rates were measured with glass dosemeters housed in watertight cases at various depths in the water of Lake Obuchi, a brackish lake in Aomori Prefecture, Japan, during fiscal years 2011-2013 to assess the background external radiation dose to aquatic biota in the lake. The mean radiation dose in the surface water of the lake was found to be 27 nGy h-1, which is almost the same as the absorption dose rate due to cosmic ray reported in the literature. Radiation dose rates decreased exponentially with water depth down to a depth of 1 m above the bottom sediment. In the water near the sediment, the dose rate increased with depth owing to the emission of γ-rays from natural radionuclides in the sediment. (authors)

  8. Reduction of patient radiation dose in Spiral CT scan

    International Nuclear Information System (INIS)

    To optimize patient radiation dose in Spiral CT scan of dento-maxillo-facial region by measuring the absorbed dose in the phantom and to evaluate reliability of dose estimation methods using CTDI (CT Dose Index, FDA, USA). Spiral CT scanning with 'pitchs' (ratio of table speed to slice thickness per rotation) more than 1 was used for dose measurements. The dose was measured using a human phantom (Alderson Research Laboratories, USA) in the CT scan with a 3rd generation CT scanner of Somatom Plus (Siemens, Germany) for bone imaging. CTDI for this CT scanner were 9.2 mGy/100 mA at the center in an acrylic resin phantom with diameter of 16 cm and 8.5 mGy/100 mA at 1 cm depth from the phantom surface. X-ray tube voltage of 120 kV and tube current of 85 mA was used. Slice thickness was varied from 1 to 3 mm and table speed per rotation was also varied from 1 to 5 mm per rotation. X-Omat-V (Eastman Kodak, USA) films and TLD (Thermo-Luminescent-Dosimetry) dosimeters of the type of MSO-S (Kyokko, Japan) were used in the dosimetry. Patients radiation dose reduced with increasing the pitch of SPIRAL scan. Measured dose was uniformly distributed and well corresponded to the dose calculated using CTDI. However, measured doses on scanning with 1 mm slice thickness were always higher than those with 2 to 5 mm slice thickness. The lowest radiation dose was obtained with scanning with 2 mm slice thickness and table speed of 4 mm per rotation which give the dose of about 4 mGy per one CT examination in the imaged tissues. The highest dose per one CT examination was measured in 'dental CT' for the mandibular region with 1 mm slice thickness and table speed of 1 mm per rotation which gave 12 mGy by film dosimetry and 9 mGy by TLD dosimetry. SPIRAL scan with pitch more than 1 was effective for reduction of patient radiation dose without reducing the image quality. CTDI was also useful to estimate the dose except scans with 1 mm slice thickness. (author)

  9. Radiation doses to the staff of a nuclear cardiology department

    International Nuclear Information System (INIS)

    The last years, new radiopharmaceuticals are used in a Nuclear Medicine (NM) Department. Nowadays, Single Photon Emission Computed Tomography (SPECT) is a method of routine imaging, a fact that has required increased levels of radioactivity in certain patient examinations. The staff that is more likely to receive the greatest radiation dose in a NM Department is the technologist who deals with performance of patient examination and injection of radioactive material and the nurse who is caring for the patients visiting the Department some of which being totally helpless. The fact that each NM Dept possesses equipment with certain specifications, deals with various kind of patients, has specific design and radiation protection measures which can differ from other NM Depts and uses various examination protocols, makes essential the need to investigate the radiation doses received by each member of the staff, so as to continuously monitor doses and take protective measures if required, control less experienced staff and ensure that radiation dose levels are kept as low as possible at all times. The purpose of the current study was to evaluate radiation dose to the nuclear cardiology department staff by thermoluminescent dosemeters (TLDs) placed on the the skin at thyroid and abdominal region as well as evaluating protection measures taken currently in the Dept

  10. A method of estimating fetal dose during brain radiation therapy

    International Nuclear Information System (INIS)

    Purpose: To develop a simple method of estimating fetal dose during brain radiation therapy. Methods and Materials: An anthropomorphic phantom was modified to simulate pregnancy at 12 and 24 weeks of gestation. Fetal dose measurements were carried out using thermoluminescent dosimeters. Brain radiation therapy was performed with two lateral and opposed fields using 6 MV photons. Three sheets of lead, 5.1-cm-thick, were positioned over the phantom's abdomen to reduce fetal exposure. Linear and nonlinear regression analysis was used to investigate the dependence of radiation dose to an unshielded and/or shielded fetus upon field size and distance from field isocenter. Results: Formulas describing the exponential decrease of radiation dose to an unshielded and/or shielded fetus with distance from the field isocenter are presented. All fitted parameters of the above formulas can be easily derived using a set of graphs showing their correlation with field size. Conclusion: This study describes a method of estimating fetal dose during brain radiotherapy, accounting for the effects of gestational age, field size and distance from field isocenter. Accurate knowledge of absorbed dose to the fetus before treatment course allows for the selection of the proper irradiation technique in order to achieve the maximum patient benefit with the least risk to the fetus

  11. Radiation doses and evaluation of radiation health risk in X-ray diagnosis

    International Nuclear Information System (INIS)

    Mean doses of irradiation of some patent organs and effective equivalent doses (EED) during 21 kind of X-ray examinations were determined on the basis of materials of radiation-sanitary investigation into volume and character of X-ray aid, received by population in one of the RSFSR regions, and its correlation with literary data. Average annual collective radiation doses of the region population were evaluated, among them collective EED, accounting for 1.85 MZw/year per head

  12. Background radiation and individual dosimetry in the coastal area of Tamil Nadu (India)

    International Nuclear Information System (INIS)

    South coast of India is known as the high-level background radiation area (HBRA) mainly due to beach sands that contain natural radionuclides as components of the mineral monazite. The rich deposit of monazite is unevenly distributed along the coastal belt of Tamil Nadu and Kerala. An HBRA site that laid in 2x7 m along the sea was found in the beach of Chinnavillai, Tamil Nadu, where the maximum ambient dose equivalent reached as high as 162.7 mSv y-1. From the sands collected at the HBRA spot, the high-purity germanium semi-conductor detector identified six nuclides of thorium series, four nuclides of uranium series and two nuclides belonging to actinium series. The highest radioactivity observed was 43.7 Bq g-1 of Th-228. The individual dose of five inhabitants in Chinnavillai, as measured by the radiophotoluminescence glass dosimetry system, demonstrated the average dose of 7.17 mSv y-1 ranging from 2.79 to 14.17 mSv y-1. (authors)

  13. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Feng; Waters, Katrina M.; Miller, John H.; Gritsenko, Marina A.; Zhao, Rui; Du, Xiuxia; Livesay, Eric A.; Purvine, Samuel O.; Monroe, Matthew E.; Wang, Yingchun; Camp, David G.; Smith, Richard D.; Stenoien, David L.

    2010-11-30

    Background: High doses of ionizing radiation result in biological damage, however the precise relationships between long term health effects, including cancer, and low dose exposures remain poorly understood and are currently extrapolated using high dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose dependent responses to radiation. Principle Findings: We have identified 6845 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts one hour post-exposure. Dual statistical analyses based on spectral counts and peak intensities identified 287 phosphopeptides (from 231 proteins) and 244 phosphopeptides (from 182 proteins) that varied significantly following exposure to 2 and 50 cGy respectively. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatics analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role of MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conlcusions: Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provides a basis for the systems level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at

  14. Low dose radiation and diabetes mellitus

    International Nuclear Information System (INIS)

    Induction of hormesis and adaptive response by low-dose radiatio (LDR) has been extensively indicated. It's mechanism may be related with the protective protein and antioxidants that LDR induced, which take effects on the diabetes mellitus (DM) and other diseases. This review will summarize available dat with emphasis on three points: the preventive effect of LDR on the development of diabetes, the therapeutic effect of LDR on diabetic complications and possible mechanisms by which LDR prevents the development of diabetes and diabetic complications. Finally, the perspectives of LDR clinical, diabetes-related implication are discussed. (authors)

  15. Regular observation of natural background radiation in high school using a ventilated case for meteorological instruments

    International Nuclear Information System (INIS)

    There are many examples of the measurement of natural background radiation in schools. Most schools in Japan have ventilated cases for taking meteorological measurements, but they are rarely used. We measure natural background radiation using a ventilated case as part of chemistry club activities. Figures 2 and 3 to 6 show the natural background radiation in various rooms, and in the ventilated case, respectively. I propose that there are some advantages to using ventilated meteorological station cases for the measurement of natural background radiation. (author)

  16. Radiation Dose Testing on Juno High Voltage Cables

    Science.gov (United States)

    Green, Nelson W.; Kirkham, Harold; Kim, Wousik; McAlpine, Bill

    2008-01-01

    The Juno mission to Jupiter will have a highly elliptical orbit taking the spacecraft through the radiation belts surrounding the planet. During these passes through the radiation belts, the spacecraft will be subject to high doses of radiation from energetic electrons and protons with energies ranging from 10 keV to 1 GeV. While shielding within the spacecraft main body will reduce the total absorbed dose to much of the spacecraft electronics, instruments and cables on the outside of the spacecraft will receive much higher levels of absorbed dose. In order to estimate the amount of degradation to two such cables, testing has been performed on two coaxial cables intended to provide high voltages to three of the instruments on Juno. Both cables were placed in a vacuum of 5x10(exp -6) torr and cooled to -50(deg)C prior to exposure to the radiation sources. Measurements of the coaxial capacitance per unit length and partial discharge noise floor indicate that increasing levels of radiation make measurable but acceptably small changes to the F EP Teflon utilized in the construction of these cables. In addition to the radiation dose testing, observations were made on the internal electrostatic charging characteristics of these cables and multiple discharges were recorded.

  17. Metaphase chromosome aberrations as markers of radiation exposure and dose

    International Nuclear Information System (INIS)

    Chromosome aberration frequency provides the most reliable biological marker of dose for detecting acute accidental radiation exposure. Significant radiation-induced changes in the frequency of chromosome aberrations can be detected at very low doses. Our paper provides information on using molecular chromosome probes ''paints'' to score chromosome damage and illustrates how technical advances make it possible to understand mechanisms involved during formation of chromosome aberrations. In animal studies chromosome aberrations provide a method to relate cellular damage to cellular dose. Using an In vivo/In vitro approach aberrations provided a biological marker of dose from radon progeny exposure which was used to convert WLM to dose in rat tracheal epithelial cells. Injection of Chinese hamsters with 144Ce which produced a low dose rate exposure of bone marrow to either low-LET radiation increased the sensitivity of the cells to subsequent external exposure to 60Co. These studies demonstrated the usefulness of chromosome damage as a biological marker of dose and cellular responsiveness

  18. Evaluation of fluctuation of equivalent dose rate due to radionuclide radiation in buildings

    International Nuclear Information System (INIS)

    Radionuclide gamma radiation in building materials twist natural gamma field, therefore, dosimetry investigation of ionizing radiation of natural radionuclides was carried out near various building constructions. It was detected that equivalent dose rate of natural radionuclides increases exponentially (this empirical dependence stays in force to 10-15 meters from a building) while approaching a building under investigation. It was measured that buildings increase ionizing radiation approximately 1,5-2 times. Wooden buildings are an exception. They change natural background to 5 %. The values of equivalent dose rate in buildings are distributed according to Gaussian distribution. The measured equivalent dose rate is 1,5 times smaller in wooden houses then in block, silicate and ceramic bricks houses. (author)

  19. Radiation Background and Attenuation Model Validation and Development

    Energy Technology Data Exchange (ETDEWEB)

    Peplow, Douglas E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Santiago, Claudio P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-05

    This report describes the initial results of a study being conducted as part of the Urban Search Planning Tool project. The study is comparing the Urban Scene Simulator (USS), a one-dimensional (1D) radiation transport model developed at LLNL, with the three-dimensional (3D) radiation transport model from ORNL using the MCNP, SCALE/ORIGEN and SCALE/MAVRIC simulation codes. In this study, we have analyzed the differences between the two approaches at every step, from source term representation, to estimating flux and detector count rates at a fixed distance from a simple surface (slab), and at points throughout more complex 3D scenes.

  20. Relation between cancer incidence or mortality and external natural background radiation in Japan

    International Nuclear Information System (INIS)

    Analysis was performed on the relationships between the organ dose-equivalent rate due to natural background radiation (mSv/a) and three parameters of cancer risk: the age-adjusted cancer incidence (patients x 105 persons x a-1) in 13 large areas, the standardized mortality ratio of cancers in 46 large areas, and the cancer mortality in the population aged more than 40 years old (cancer deaths x 105 persons x a-1) in 649 small areas. The age-adjusted liver cancer incidence in males fitted the exponential model significantly (p<0.01) and the relationship of stomach cancer mortality of aged males in small areas fitted the linear model significantly (p<0.05). No relationship was observed with regard to female cancer in either case. The relationships between the three parameters and various other cancers of both sexes were not statistically significant. (author)

  1. Dose Definition and Physical Dose Evaluation for the Human Body in External Radiation Accidents

    International Nuclear Information System (INIS)

    For the bone marrow type of radiation sickness, it is possible to describe the injury to whole-body haematopoietic tissue using stem cell dose. In the case of highly non-uniform exposure, an extra-high local dose to certain parts of the body or absorbed dose to critical organs should be additionally described. To obtain objective dosimetric data from objects carried by the irradiated victims, the watch is an easily available accident dosemeter. Watch rubies can be used as thermoluminescence dosemeters, and the watch glass can be used in electron spin resonance dose measurement. (author)

  2. Health Effects of Exposure to Low Dose of Radiation

    International Nuclear Information System (INIS)

    Human beings are exposed to natural radiation from external sources include radionuclides in the earth and cosmic radiation, and by internal radiation from radionuclides, mainly uranium and thorium series, incorporated into the body. Living systems have adapted to the natural levels of radiation and radioactivity. But some industrial practices involving natural resources enhance these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Biological effects of ionizing radiation are the outcomes of physical and chemical processes that occur immediately after the exposure, then followed by biological process in the body. These processes will involve successive changes in the molecular, cellular, tissue and whole organism levels. Any dose of radiation, no matter how small, may produce health effects since even a single ionizing event can result in DNA damage. The damage to DNA in the nucleus is considered to be the main initiating event by which radiation causes damage to cells that results in the development of cancer and hereditary disease. It has also been indicated that cytogenetic damage can occur in cells that receive no direct radiation exposure, known as bystander effects. This paper reviews health risks of low dose radiation exposure to human body causing stochastic effects, i.e. cancer induction in somatic cells and hereditary disease in genetic cells. (author)

  3. Cosmological Production of Vector Bosons and Cosmic Microwave Background Radiation

    CERN Document Server

    Blaschke, D B; Gusev, A A; Pervushin, V N; Proskurin, D P

    2004-01-01

    The intensive cosmological creation of vector W, Z- bosons in the cosmological model with the relative units is considered. Field theoretical models are studied, which predict that the CMB radiation and the baryon matter in the universe can be products of decay and annihilation processes of these primordial bosons.

  4. Methodology for assessing doses and radiation impact on marine organisms

    International Nuclear Information System (INIS)

    Environmental protection is one of the key issues in the prospective policy and strategy of radiation protection. In this context, numerous efforts have been made for developing the framework for the protection of non-human species from ionizing radiation, especially in European countries and Unite States. The present report summarizes knowledge so far attained on the assessment of doses and radiation impact on marine organisms. Special attention was directed to the methodology for calculating absorbed doses of marine organisms, based on which a case study was also carried out for estimating absorbed dose rate of several species of marine organisms inhabiting in the coastal sea off Rokkasho-Mura, Aomori Prefecture where a spent nuclear fuel reprocessing plant came into operation. (author)

  5. Low-level radiation doses - a hazard to health?

    International Nuclear Information System (INIS)

    The health hazard induced by low radiation doses can be understood only if we gain an understanding of the fate of the radiation-sensitive structural element within the biological system which it undergoes in the radiation field, and its significance for the total system. In the low-level dose range, single absorption events occur in individual cells as sensitive elements; such single events cause an acute, temporary thymidine kinase inhibition. During this reaction, the affected cell reveals to be resistant to a second event. These observations question the generality of a linear realation between dose and biological effect. We may even have to consider a beneficial effect of single absorption events in the affected cells. (orig./HP)

  6. Local dose enhancement in radiation therapy: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    The development of nanotechnology has boosted the use of nanoparticles in radiation therapy in order to achieve greater therapeutic ratio between tumor and healthy tissues. Gold has been shown to be most suitable to this task due to the high biocompatibility and high atomic number, which contributes to a better in vivo distribution and for the local energy deposition. As a result, this study proposes to study, nanoparticle in the tumor cell. At a range of 11 nm from the nanoparticle surface, results have shown an absorbed dose 141 times higher for the medium with the gold nanoparticle compared to the water for an incident energy spectrum with maximum photon energy of 50 keV. It was also noted that when only scattered radiation is interacting with the gold nanoparticles, the dose was 134 times higher compared to enhanced local dose that remained significant even for scattered radiation. (author)

  7. Radiation dose to personnel during percutaneous renal calculus removal

    International Nuclear Information System (INIS)

    Radiation dose to the radiologist and other personnel was measured during 102 procedures for percutaneous removal of renal calculi from the upper collecting system. A mobile C-arm image intensifier was used to guide entrance to the kidney and stone removal. Average fluoroscopy time was 25 min. Exposure to personnel was monitored by quartz-fiber dosimeters at the collar level above the lead apron. Average radiation dose to the radiologist was 10 mrem (0.10 mSv) per case; to the surgical nurse, 4 mrem (0.04 mSv) per case; to the radiologic technologist, 4 mrem (0.04 mSv) per case; and to the anesthesiologist, 3 mrem (0.03 mSv) per case. Radiation dose to the uroradiologic team during percutaneous nephrostolithotomy is similar to that from other interventional fluoroscopic procedures and is within acceptable limits for both physicians and assisting personnel

  8. Radiation dose to personnel during percutaneous renal calculus removal

    Energy Technology Data Exchange (ETDEWEB)

    Bush, W.H.; Jones, D.; Brannen, G.E.

    1985-12-01

    Radiation dose to the radiologist and other personnel was measured during 102 procedures for percutaneous removal of renal calculi from the upper collecting system. A mobile C-arm image intensifier was used to guide entrance to the kidney and stone removal. Average fluoroscopy time was 25 min. Exposure to personnel was monitored by quartz-fiber dosimeters at the collar level above the lead apron. Average radiation dose to the radiologist was 10 mrem (0.10 mSv) per case; to the surgical nurse, 4 mrem (0.04 mSv) per case; to the radiologic technologist, 4 mrem (0.04 mSv) per case; and to the anesthesiologist, 3 mrem (0.03 mSv) per case. Radiation dose to the uroradiologic team during percutaneous nephrostolithotomy is similar to that from other interventional fluoroscopic procedures and is within acceptable limits for both physicians and assisting personnel.

  9. Radiation-induced stress effects following low dose exposure

    International Nuclear Information System (INIS)

    Complete text of publication follows. Recent advances in our understanding of effects of radiation on living cells suggest that fundamentally different mechanisms are operating at low doses compared with high doses. Also, acute low doses appear to involve different response mechanisms compared with chronic low doses. Both genomic instability and so called 'bystander effects' show many similarities with well known cellular responses to oxidative stress. These predominate following low dose exposures and are maximally expressed at doses as low as 5mGy. At the biological level this is not surprising. Chemical toxicity has been known for many years to show these patterns of dose response. Cell signaling and coordinated stress mechanisms appear to dominate acute low dose exposure to chemicals. Adaptation to chemical exposures is also well documented although mechanisms of adaptive responses are less clear. In the radiation field adaptive responses also become important when low doses are protracted or fractionated. Recent data from our group concerning bystander effects following multiple low dose exposures suggest that adaptive responses can be induced in cells which only receive signals from irradiated neighbours. We have data showing delayed and bystander effects in humans, rodents 3 fish species and in prawns following in vitro and/or in vivo irradiation of haematopoietic tissues and, from the aquatic groups, gill and skin/fin tissue. Bystander signals induced by radiation can be communicated from fish to fish in vivo and are detectable as early as the eyed egg stage, i.e. as soon as tissue starts to develop. Using proteomic approaches we have determined that the bystander and the direct irradiation proteomes are different. The former show significant upregulation of 5 proteins with anti-oxidant, regenerative and restorative functions while the direct radiation proteome has 2 upregulated proteins both involved in proliferation. These data have implications for

  10. Radiation dose to physicians’ eye lens during interventional radiology

    Science.gov (United States)

    Bahruddin, N. A.; Hashim, S.; Karim, M. K. A.; Sabarudin, A.; Ang, W. C.; Salehhon, N.; Bakar, K. A.

    2016-03-01

    The demand of interventional radiology has increased, leading to significant risk of radiation where eye lens dose assessment becomes a major concern. In this study, we investigate physicians' eye lens doses during interventional procedures. Measurement were made using TLD-100 (LiF: Mg, Ti) dosimeters and was recorded in equivalent dose at a depth of 0.07 mm, Hp(0.07). Annual Hp(0.07) and annual effective dose were estimated using workload estimation for a year and Von Boetticher algorithm. Our results showed the mean Hp(0.07) dose of 0.33 mSv and 0.20 mSv for left and right eye lens respectively. The highest estimated annual eye lens dose was 29.33 mSv per year, recorded on left eye lens during fistulogram procedure. Five physicians had exceeded 20 mSv dose limit as recommended by international commission of radiological protection (ICRP). It is suggested that frequent training and education on occupational radiation exposure are necessary to increase knowledge and awareness of the physicians’ thus reducing dose during the interventional procedure.

  11. Radiation Doses in Some Cardiac Catheterization and Angiography Procedures

    International Nuclear Information System (INIS)

    Interventional radiology involves diagnostic and therapeutic procedures that range from simple to complex. Patients can be subjected to varying radiation doses. The study aims to determine the variation in patient entrance doses of pediatric and adult patients who underwent selected cardiac catheterization and angiography procedures at King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia. It is also aimed to investigate the methods for optimizing radiation protection. A total of 761 pediatric patients and 114 adult patients for cardiac catheterization and 320 adults for angiography were included in the study. Results showed that pulmonary and PDA are high dose procedures yielding to an average effective dose of 10 and 8.2 mSv respectively. DAP values showed a good correlation with effective doses for diagnostic and COA dilatation with r2 equal to 0.81 and 0.70 respectively. PTCA procedure delivered a maximum skin dose that exceeded the threshold dose for skin erythemia with a value of 4.5 Gy. Percutaneous Transhepatic Choleangiography (PTC) and Transjugular Intrahepatic Portosystemic Shunts (TIPSS) delivered the maximum skin dose of 983 and 735 mGy. The study recommends that a review of the protocols and setting of image quality criteria for pediatric especially for age groups 0 and 1 and adult patients should be made in order that fluoroscopy time , peak kilovoltage and number of cine series be reduced. (author)

  12. Rain-induced increase in background radiation detected by Radiation Portal Monitors

    International Nuclear Information System (INIS)

    A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to enhance partner country capability to deter, detect, and interdict the illicit movement of special nuclear material. In the present work, transient increases in gamma-ray counting rates in RPMs due to rain are investigated. The increase in background activity associated with rain, which has been well documented in the field of environmental radioactivity, originates primarily from the wet-deposition of two radioactive daughters of 222Rn, namely, 214Pb and 214Bi. In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and high-purity germanium spectra. The data verify that these radionuclides are responsible for the largest environmental background fluctuations in RPMs. Analytical expressions for the detector response function in Poly-Vinyl Toluene have been derived. Effects on system performance and potential mitigation strategies are discussed. - Highlights: • Analytical response-function of Radiation Portal Monitors to wet-deposition of radioactive radon-daughters. • Spectral proof of constituent radio-isotopes in rain (using HPGe), directly correlated with RPM response. • Direct proof of the independence of RPM rain-response and atmospheric pressure. • Future study will be able to estimate global/seasonal activity-density of rain from RPM responses. • Future automation of analysis will include filters based on characteristic RPM response

  13. Assessment of radiation dose in digital storage phosphor radiography

    International Nuclear Information System (INIS)

    This paper reports on digital storage phosphor radiography that is able to produce images of constant optical density over a wide range of exposure dose by adjusting reading sensitivity. Since overexposed images are not as-readily recognized as with the conventional film-screen technique, a method capable of determining radiation dose is necessary to detect overexposures (due to, e.g., handling errors or technical defects). A formula was designed that calculates the radiation dose in the film plane from image sensitivity (S-factor), latitude (L-factor), and average gray value over the region of interest. To verify the formula, 106 measurements with variation of dose, L-factor, S-factor, and the readout algorithm were made with the Digiscan storage phosphor system (Siemens)

  14. Early radiation dose-response in lung: an ultrastructural study

    International Nuclear Information System (INIS)

    A systematic fine-structural study of dog lungs was undertaken to ascertain the radiation dose response in the lungs of large animals. The capillary endothelium appeared to be the initial site of the post-irradiation pulmonary damage. This subpheural response included diffuse septal thickening, fibrosis, edema, and reduced alveolar lumina. The deep parenchymal response involved perivascular fibrosis, which was associated with perivascular hyperplasia of Type II pneumocytes, increased number and sizes of lamellar bodies, increased production and release of lamellar surfactant. No changes of alveolar luminar size were noted. The most significant changes were observed in those dose zones exposed to greater than 2400 rad, suggesting the possibility of an identifiable dose-response relationship. Early detection of radiation pneumonitis by electron microscopy is demonstrated, and qualitative and quantitative correlation of injury with both postirradiation time and dose is presented

  15. Thioredoxin: Inducible radioprotective protein by low-dose radiation

    International Nuclear Information System (INIS)

    Thioredoxin (TRX), that has many biological activities, is radioprotector and a key protein in regulating cellular functions through redox reaction. We observed time course and dose dependent alteration of TRX gene expression in human peripheral lymphocytes after low-dose irradiation. TRX mRNA level increased to a peak, 5.7-fold higher than the control at maximum, 6 h after irradiation, and then decreased. The optimum radiation dose for enhancement of induction of the TRX mRNA was 0.25 Gy. The TRX protein, also increased to a peak, a 3-fold increase at maximum, with the same timing as that for TRX mRNA. Induction of the expression of TRX gene mess followed after ionizing irradiation of lymphocytes from human donors. The similarity of time course between TRX gene expression and induction of radioadaptive response by low-dose radiation suggests that TRX may be involved in adaptive response. (author)

  16. Radiation doses of patients during diagnostic radioisotope administration

    International Nuclear Information System (INIS)

    The concept of Somatic Effective Dose Equivalent is siutable for describing radiation-induced somatic risk because both the Dose Equivalent in individual tissues and also their varying radiation sensitivity are taken into consideration. In view of the age distribution of patients undergoing radionuclide treatment genetic risk plays a minor role. Some 3/4 of all radionuclide investigations involve a Somatic Effective Dose Equivalent which is less than the average natural radiation exposure of the population incurred annually. Using a Risk Factor of 1.25x10-4 Sv-1 and an Incidence Ratio of 0.4 and 0.6 a risk value of the order of 6 for a radiation-induced malignant tumour with lethal effect is calculated for all radionuclide investigations, with the exception of radioiodine; in the latter case a value of the order 4 is calculated. A large number of patients were administered radioiodine in previous years and this radionuclide has an exceptionally high organ dose of apporx. 0.7 Sv. For these reasons this test provides the best possibility to identify theoretically possible radiation effects in the diagnostic dose range. Findings emanating from therapeutic treatment in man and animals show that the Risk Factor of 1x10-2 Sv-1 for induction of thyroid gland carcinomas derived for external irradiation and mixtures of iodine isotopes cannot be applied for internal irradiation from iodine - 131. This is probably due to the considerably lower dose efficiency of this radionuclide, and the Risk Factor should be reduced to approx. 5x10-4 Sv-1. To date, no statistically established increase in thyroid carcinomal incidence could be found for diagnostic dose applications of the order of magnitude 1 Sv. (orig./MG)

  17. Exposure to low dose radiation and its effect

    International Nuclear Information System (INIS)

    The title subjects are easily explained. As an introduction, the concept of the ICRP Recommendation (2007) is explained briefly on its use of radiation protection and management. Natural radiation dose to ordinary Japanese is said to be the average 1.5 mSv/y in contrast to the whole world people, 2.4. Medical radiation dose to Japanese is estimated to amount to 2.3 mSv/y, to American, 3.0, and to people of medically advanced nations, 1.92. There are areas always exposed to the natural high dose radiation like Ramsar 10.2 mSv/y (Iran). The effect of such natural low dose has been shown to be all insignificant on cancer mortality in Yangjian area (3.3 mSv/y) in China, on lung cancer risk due to radon in Japan Misasa spa area (>10 mSv/y), and on cancer mortality among 176 thousands nuclear industry workers in Japan (average accumulated dose 12 mSv), etc. There have been such reports as increased bladder cancer in Chernobyl, increased leukemic relative risk of infants whose fathers worked in Sellafield nuclear facility, and acute death/health-injury of residents in the past Lou-Lan area where Chinese nuclear bombs were tested. Fallout data from 1955 to 2011 shows the process of radioactive materials fallen and peaks were due to nuclear tests and Chernobyl/Fukushima Accidents. Basic studies on low dose effect involve those of the radioadoptive response, radiation hormesis, bystander effect and cluster injury of DNA. In low dose-carcinogenesis relationship, presented are models of linear non-threhold (LNT), those estimating lower risk than LNT like linear quadratic (LQ) model, and higher risk like supra-linear model. Risks leading to cancer formation include the occupation and others like medical doctors, tobacco smoking and various anxieties/stresses. (T.T.)

  18. Low dose ionizing radiation exposure and cardiovascular disease mortality: cohort study based on Canadian national dose registry of radiation workers

    International Nuclear Information System (INIS)

    The purpose of our study was to assess the risk of cardiovascular disease (CVD) mortality in a Canadian cohort of 337 397 individuals (169 256 men and 168 141 women) occupationally exposed to ionizing radiation and included in the National Dose Registry (NDR) of Canada. Material and Methods: Exposure to high doses of ionizing radiation, such as those received during radiotherapy, leads to increased risk of cardiovascular diseases. The emerging evidence of excess risk of CVDs after exposure to doses well below those previously considered as safe warrants epidemiological studies of populations exposed to low levels of ionizing radiation. In the present study, the cohort consisted of employees at nuclear power stations (nuclear workers) as well as medical, dental and industrial workers. The mean whole body radiation dose was 8.6 mSv for men and 1.2 mSv for women. Results: During the study period (1951 - 1995), as many as 3 533 deaths from cardiovascular diseases have been identified (3 018 among men and 515 among women). In the cohort, CVD mortality was significantly lower than in the general population of Canada. The cohort showed a significant dose response both among men and women. Risk estimates of CVD mortality in the NDR cohort, when expressed as excess relative risk per unit dose, were higher than those in most other occupational cohorts and higher than in the studies of Japanese atomic bomb survivors. Conclusions: The study has demonstrated a strong positive association between radiation dose and the risk of CVD mortality. Caution needs to be exercised when interpreting these results, due to the potential bias introduced by dosimetry uncertainties, the possible record linkage errors, and especially by the lack of adjustment for non-radiation risk factors. (authors)

  19. Biological equivalent dose studies for dose escalation in the stereotactic synchrotron radiation therapy clinical trials

    International Nuclear Information System (INIS)

    Synchrotron radiation is an innovative tool for the treatment of brain tumors. In the stereotactic synchrotron radiation therapy (SSRT) technique a radiation dose enhancement specific to the tumor is obtained. The tumor is loaded with a high atomic number (Z) element and it is irradiated in stereotactic conditions from several entrance angles. The aim of this work was to assess dosimetric properties of the SSRT for preparing clinical trials at the European Synchrotron Radiation Facility (ESRF). To estimate the possible risks, the doses received by the tumor and healthy tissues in the future clinical conditions have been calculated by using Monte Carlo simulations (PENELOPE code). The dose enhancement factors have been determined for different iodine concentrations in the tumor, several tumor positions, tumor sizes, and different beam sizes. A scheme for the dose escalation in the various phases of the clinical trials has been proposed. The biological equivalent doses and the normalized total doses received by the skull have been calculated in order to assure that the tolerance values are not reached.

  20. Measurements of radiation-dose distributions around a slow positron facility

    International Nuclear Information System (INIS)

    Radiation-dose distributions around a slow-positron facility were measured. Radiation doses were measured by the use of Mg2SiO4: Tb TLD's inside and outside the low energy experimental room while intense electrons bombarding the electron-positron converter. By adding lead and borated polyethylene bricks to cover the converter and positron moderator, background radiations in the measurement room were decreased to a large extent. Photon energy spectra were also observed with a high-purity Ge coaxital detector. These measurements proved the effectiveness of the radiation shields made of powdered iron ore. A distinct peak at 511 keV was observed, the origin of which was probably pair-creation process of X rays streamed through a hole drilled in the thick shielding door in order to guide transporting system of slow positrons. (author)

  1. Radiation dose distribution to CEGB workers in 1978

    International Nuclear Information System (INIS)

    The ICRP system of dose limitation requires that few if any workers are exposed at the dose limit of 5 rem per year. The dose limit was fixed on the assumption that risks would be acceptable if doses were distributed among classified workers in a manner comparable with a reference log-normal distribution published by the United Nations Scientific Committee on the Effects of Ionizing Radiation. Although it is well-known from earlier publications that the doses to classified workers at CEGB nuclear sites are low, a further analysis shows that they are distributed according to a log-normal function with parameters showing a distribution of risks considerably better than those considered acceptable by ICRP. In 1978 the collective dose to 6,856 classified workers on CEGB nuclear sites was 1,635 man-rem. The mean individual dose was 0.24 rem, corresponding to 0.41 man-rem per MW. The log normal distribution of individual doses shows a median dose of 0.15 rem, compared with a median dose of 0.5 rem in the UNSCEAR reference distribution. (author)

  2. Biological effects of high level natural background radiation on human population residing in Kerala coast, South West India

    International Nuclear Information System (INIS)

    The populations residing in Kerala coast are exposed to elevated natural background radiation since many generations. Extensive studies conducted by Bio-Medical group, Bhabha Atomic Research Center have generated wealth of data from this area dealing with epidemiology, monitoring the newborns for malformations, Health Audit Survey, Dosimetry and biological studies using cytogenetic and molecular biology techniques. Our studies on congenital malformations and chromosomal anomalies in children born to parents residing in High Level Natural Radiation Areas in Kerala have not shown any significant difference from normal radiation areas. Screening of over 1,25,000 consecutively born children showed an incidence rate which is comparable in both areas. Other factors such as consanguinity, maternal age and gravida status are more significant contributors than radiation dose to the risk for having malformation in child. Radiation prevalent in the HLNRA is in the dose range of above 1.5 to about 50 mGy per year which translates to doses in the range of nGy per hour. This clearly indicate the number of cells exposed to radiations will be one in few thousand or ten thousands. This throws up challenges in our capability to investigate the effects of radiation on cells. It has become imperative to develop and exploit techniques which will detect responses in single cells and would be able screen large number of cells at a time. Developments in cell biology and molecular biology are now giving us these capabilities. Use of flowcytometer and next generation sequencing would enable us to address many of these questions and provide meaningful approaches to understand the effects of such low dose radiation

  3. Radiation Dose from Voiding Cystourethrography (VCUG) Examination in Children

    International Nuclear Information System (INIS)

    Introduction: The purpose of this study is to determine entrance skin dose (ESD) from fluoroscopy and radiography procedures in voiding cystourethrography (VCUG) studies of pediatric patients by dose-area product (DAP) recording. Methods: Radiation doses received by 70 patients underwent VCUG procedures were determined by the DAP Meter, Wellh?fer Dosimetrie GmbH, Germany) directly coupled to the x-ray tube window (Philips Omni Diagnost Eleva) and an electrometer connected to a computer for data collection. The study revealed the radiation dose for VCUG and the baseline data on the entrance skin dose, ESD, dose area-product (DAP) and the effective dose, E, to establish local reference dose levels for VCUG in pediatric patients. Results: The mean(minimum-maximum) ESD, DAP and the effective dose of pediatric patients in 4 age ranges were 3.41(1-9) mGy, 46.58 (21.90-158.90) cGycm2 and 0.10(0.05-0.33) mSv for 0- 1 years, 6.80(2-16) mGy, 115.55 (20.70-258.70)cGycm2 and 0.24(0.04-0.54) mSv for >1-5 years, 11.76 (3-23) mGy, 292.28 (88.90-593.50)cGycm2 and 0.61(0.19-1.25) mSv for >5-10 years, and 20.50(10-42) mGy, 575.98(255.60-1247.80) cGycm2 and 1.12(0.54-2.62) mSv for >10-15 years respectively. Discussion: The dose levels for VCUG as recommended by the national reference doses (NRDs) of UK are classified at patient age of 0-1 years, 90 cGy.cm2, >1-5 years, 110 cGy.cm2, >5-10 years, 210 cGy.cm2 and >10-15 years, 470 cGy.cm2 respectively. Conclusions: The mean DAP of pediatric patients were higher than the dose level as recommended by NRD at the age range >1-5, >5-10 and >10-15 years. The limitation in this study was the non uniform in the number of patients at the higher age. Attempts could be made to lower the radiation dose to avoid the higher risk of developing radiation-induced cancer in children. (author)

  4. Hematological effects of low dose radiation

    International Nuclear Information System (INIS)

    Results of an analysis of the leukemia incidence in children of Belarus in 1979-2006 are discussed in the present report. It was found that approximately 244 (95% CI from 149 to 348) additional leukemias manifested in children of Belarus in 1986-1997. Assuming radiation origin of additional leukemias the following risks were established in the report for this period: RR = 1.28 (95% CI from 1.17 to 1.39); ERR = 17.7% per 1 mSv (95% CI from 10.8 to 25.2% per 1 mSv), EAR = 57/104 PYSv (95% CI from 34.8 to 81.3/ 104 PYSv), AR = 21.6% (95%CI is from 13.2 to 30.8%). (authors)

  5. Brain Radiation Information Data Exchange (BRIDE): integration of experimental data from low-dose ionising radiation research for pathway discovery

    OpenAIRE

    Karapiperis, Christos; Kempf, Stefan J.; Quintens, Roel; Azimzadeh, Omid; Vidal, Victoria Linares; Pazzaglia, Simonetta; Bazyka, Dimitry; Mastroberardino, Pier G.; Scouras, Zacharias G.; Tapio, Soile; BENOTMANE, MOHAMMED ABDERRAFI; Ouzounis, Christos A

    2016-01-01

    Background The underlying molecular processes representing stress responses to low-dose ionising radiation (LDIR) in mammals are just beginning to be understood. In particular, LDIR effects on the brain and their possible association with neurodegenerative disease are currently being explored using omics technologies. Results We describe a light-weight approach for the storage, analysis and distribution of relevant LDIR omics datasets. The data integration platform, called BRIDE, contains inf...

  6. Ovarian radiation dose during dynamic cystourethrography using videorecording and photofluorography

    Energy Technology Data Exchange (ETDEWEB)

    Westby, M.; Sandbu, J.; Jahren, R.; Asmussen, M.

    The ovarian radiation dose in dynamic cystourethrography was estimated by thermoluminescence dosimetry in a phantom and in 26 patients. The urodynamic examination technique was standardized and included fluoroscopy with videorecording and rapid sequence 100 mm fluorography. The examination was performed in the lateral position with dosimeters in the vagina, uterine cavity and rectum. The total dose in the midline was 13 mGy per examination, which compares with 12 mGy in urography.

  7. Ovarian radiation dose during dynamic cystourethrography using videorecording and photofluorography

    International Nuclear Information System (INIS)

    The ovarian radiation dose in dynamic cystourethrography was estimated by thermoluminescence dosimetry in a phantom and in 26 patients. The urodynamic examination technique was standardized and included fluoroscopy with videorecording and rapid sequence 100 mm fluorography. The examination was performed in the lateral position with dosimeters in the vagina, uterine cavity and rectum. The total dose in the midline was 13 mGy per examination, which compares with 12 mGy in urography. (orig.)

  8. Cytogenetic effects of low ionising radiation doses and biological dosimetry

    OpenAIRE

    Gricienė, Birutė

    2010-01-01

    The intensive use of ionising radiation (IR) sources and development of IR technology is related to increased exposure and adverse health risk to workers and public. The unstable chromosome aberration analysis in the group of nuclear energy workers (N=84) has shown that doses below annual dose limit (50 mSv) can induce chromosome aberrations in human peripheral blood lymphocytes. Significantly higher frequencies of the total chromosome aberrations were determened in the study group when compa...

  9. Total ionizing dose radiation performance of ONO antifuse fpga

    International Nuclear Information System (INIS)

    The ONO antifuse configuration was discribed. The Conduction mechanism of electron-hole pairs due to ionizing in the ONO material was analyzed.The TID(Total Ionizing Dose) Radiation performance of ONO antifuse FPGA (A1460A and A40MX04) were test ,the current as a function of total dose and function failure point were obtained. All of results proved that this ONO antifuse have better TID performance than general single SiO2. (authors)

  10. Effects of sterilising doses of gamma radiation on drugs

    International Nuclear Information System (INIS)

    Effects of gamma radiation on drugs in solid state and aqueous solution were studied after application of doses of 2.5 and 5.0 Mrad (dose rate 0.1 Mrad/hour). Whereas solid substances only showed colour changes dissolved substances were decomposed to a somewhat higher degree than by heating in an autoclave at a temperature of 120 0C. (author)

  11. Radiation dose from Chernobyl forests: assessment using the 'forestpath' model

    International Nuclear Information System (INIS)

    Contaminated forests can contribute significantly to human radiation dose for a few decades after initial contamination. Exposure occurs through harvesting the trees, manufacture and use of forest products for construction materials and paper production, and the consumption of food harvested from forests. Certain groups of the population, such as wild animal hunters and harvesters of berries, herbs and mushrooms, can have particularly large intakes of radionuclides from natural food products. Forestry workers have been found to receive radiation doses several times higher than other groups in the same area. The generic radionuclide cycling model 'forestpath' is being applied to evaluate the human radiation dose and risks to population groups resulting from living and working near the contaminated forests. The model enables calculations to be made to predict the internal and external radiation doses at specific times following the accident. The model can be easily adjusted for dose calculations from other contamination scenarios (such as radionuclide deposition at a low and constant rate as well as complex deposition patterns). Experimental data collected in the forests of Southern Belarus are presented. These data, together with the results of epidemiological studies, are used for model calibration and validation

  12. Update on radiation safety and dose reduction in pediatric neuroradiology

    International Nuclear Information System (INIS)

    The number of medical X-ray imaging procedures is growing exponentially across the globe. Even though the overall benefit from medical X-ray imaging procedures far outweighs any associated risks, it is crucial to take all necessary steps to minimize radiation risks to children without jeopardizing image quality. Among the X-ray imaging studies, except for interventional fluoroscopy procedures, CT studies constitute higher dose and therefore draw considerable scrutiny. A number of technological advances have provided ways for better and safer CT imaging. This article provides an update on the radiation safety of patients and staff and discusses dose optimization in medical X-ray imaging within pediatric neuroradiology. (orig.)

  13. Radiation dose required for the vulcanization of natural rubber latex

    International Nuclear Information System (INIS)

    The radiation dose required for the vulcanization of natural rubber latex was optimized. To enhance the crosslinking, several sensitizers were used. Among the sensitizers, n-butyl acrylate (n-BA) alone was found to be the best one. The effects of concentration of n-BA, mixing and standing time of latex with n-BA on the tensile properties of latex film were investigated. 12 kGy radiation dose, 5 phr n-BA and 30-40 min of mixing time were found to be the optimum conditions for irradiation. (author)

  14. Radiation processing and high-dose dosimetry at ANSTO

    International Nuclear Information System (INIS)

    The Radiation Technology group at ANSTO is part of the Physics Division and provides services and advice in the areas of gamma irradiation and high-dose dosimetry. ANSTO's irradiation facilities are designed for maximum dose uniformity and provide a precision irradiation service unique in Australia. Radiation Technology makes and sells reference and transfer standard dosimeters which are purchased by users and suppliers of commercial irradiation services in Australia and the Asia-Pacific region. A calibration service is also provided for dosimeters purchased from other suppliers

  15. Justification of permissible doses of radiation during prolonged space flights

    Science.gov (United States)

    Grigoryev, Y. G.; Abel, K.; Varteres, V.; Nilolov, N.; Karpfel, Z.; Prislichka, M.

    1974-01-01

    Maximum permissible radiation doses for astronauts are reported based on chronic radiation experiments with dogs and actual measurements during space flights. Observed were clinical conditions, peripheral blood and marrow, the state of the cardiovascular system, higher nervous activity, the state of the vestibular analyzer, the organ of vision, spermatogenic function and the ability to reproduce, the state of immunity and a number of biological indices in blood and tissues. The following maximum permissible doses are determined as preliminary values: 1 year of flight - 200 rem; 2 years of flight - 250 rem; 3 years of flight - 275 rem.

  16. Update on radiation safety and dose reduction in pediatric neuroradiology

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh, Mahadevappa [Johns Hopkins University School of Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States)

    2015-09-15

    The number of medical X-ray imaging procedures is growing exponentially across the globe. Even though the overall benefit from medical X-ray imaging procedures far outweighs any associated risks, it is crucial to take all necessary steps to minimize radiation risks to children without jeopardizing image quality. Among the X-ray imaging studies, except for interventional fluoroscopy procedures, CT studies constitute higher dose and therefore draw considerable scrutiny. A number of technological advances have provided ways for better and safer CT imaging. This article provides an update on the radiation safety of patients and staff and discusses dose optimization in medical X-ray imaging within pediatric neuroradiology. (orig.)

  17. Assessment of Environmental Gamma Radiation Dose Rate in Ardabil and Sarein in 2009

    Directory of Open Access Journals (Sweden)

    M Alighadri

    2011-10-01

    Full Text Available Background and Objectives: Gamma rays, the most energetic photons within the any other wave in the electromagnetic spectrum, pose enough energy to form charged particles and adversely affect human health. Provided that the external exposure of human beings to natural environmental gamma radiation normally exceeds that from all man-made sources combined, environmental gamma dose rate and corresponding annual effective dose were determined in the cities of Ardabil and Sar Ein.Materials and Methods: Outdoor environmental gamma dose rates were measured using an Ion Chamber Survey Meter in 48 selected locations (one in city center and the remaining in cardinal and ordinal directions in Ardabil and Sar Ein. Ten more locations were monitored along the hot springs effluent in Sar Ein. Measurements of gamma radiation dose rate were performed at 20 and 100 cm above the ground for a period of one hour.Results: Average outdoor environmental gamma dose rate were determined as 265, 219, and 208  for Ardabil, Sar Ein, and along the hot spring effluent, respectively. The annual affective dose for Ardabil and Sar Ein residents were estimated to be 1.45 and 1.39 mSv, respectively.Conclusion: Calculated annual effective dose of 1.49 and 1.35 are appreciably higher than the population weighted average exposure to environmental gamma radiation worldwide and that analysis of soil content to different radionuclide is suggested.

  18. Detecting a non-Gaussian stochastic background of gravitational radiation

    CERN Document Server

    Drasco, S; Drasco, Steve; Flanagan, Eanna E.

    2002-01-01

    We derive a detection method for a stochastic background of gravitational waves produced by events where the ratio of the average time between events to the average duration of an event is large. Such a signal would sound something like popcorn popping. Our derivation is based on the somewhat unrealistic assumption that the duration of an event is smaller than the detector time resolution.

  19. Detecting a non-Gaussian stochastic background of gravitational radiation

    OpenAIRE

    Drasco, Steve; Flanagan, Eanna E.

    2001-01-01

    We derive a detection method for a stochastic background of gravitational waves produced by events where the ratio of the average time between events to the average duration of an event is large. Such a signal would sound something like popcorn popping. Our derivation is based on the somewhat unrealistic assumption that the duration of an event is smaller than the detector time resolution.

  20. Hawking's radiation in non-stationary rotating de Sitter background

    CERN Document Server

    Ibohal, Ng; 10.1007/s10509-011-0606-0

    2011-01-01

    Hawking's radiation effect of Klein-Gordon scalar field, Dirac particles and Maxwell's electromagnetic field in the non-stationary rotating de Sitter cosmological space-time is investigated by using a method of generalized tortoise co-ordinates transformation. The locations and the temperatures of the cosmological horizons of the non-stationary rotating de Sitter model are derived. It is found that the locations and the temperatures of the rotating cosmological model depend not only on the time but also on the angle. The stress-energy regularization techniques are applied to the two dimensional analog of the de Sitter metrics and the calculated stress-energy tensor contains the thermal radiation effect.