WorldWideScience

Sample records for background germanium detectors

  1. Astroparticle physics with a customized low-background broad energy Germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, Craig E.; Amman, M.; Avignone, Frank T.; Back, Henning O.; Barabash, Alexander S.; Barbeau, P. S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Bugg, William; Burritt, Tom H.; Busch, Matthew; Capps, Greg L.; Chan, Yuen-Dat; Collar, J. I.; Cooper, R. J.; Creswick, R.; Detwiler, Jason A.; Diaz, J.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, Steven R.; Ely, James H.; Esterline, James H.; Farach, H. A.; Fast, James E.; Fields, N.; Finnerty, P.; Fujikawa, Brian; Fuller, Erin S.; Gehman, Victor M.; Giovanetti, G. K.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Harper, Gregory; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Hossbach, Todd W.; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, Mary; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Miley, Harry S.; Miller, M. L.; Mizouni, Leila; Myers, Allan W.; Nomachi, Masaharu; Orrell, John L.; Peterson, David; Phillips, D.; Poon, Alan; Prior, Gersende; Qian, J.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Rodriguez, Larry; Rykaczewski, Krzysztof P.; Salazar, Harold; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Steele, David; Strain, J.; Swift, Gary; Thomas, K.; Timkin, V.; Tornow, W.; Van Wechel, T. D.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Wilkerson, J. F.; Wolfe, B. A.; Xiang, W.; Yakushev, E.; Yaver, Harold; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.; Zimmerman, S.

    2011-10-01

    The Majorana Collaboration is building the Majorana Demonstrator, a 60 kg array of high purity germanium detectors housed in an ultra-low background shield at the Sanford Underground Laboratory in Lead, SD. The Majorana Demonstrator will search for neutrinoless double-beta decay of 76Ge while demonstrating the feasibility of a tonne-scale experiment. It may also carry out a dark matter search in the 1-10 GeV/c² mass range. We have found that customized Broad Energy Germanium (BEGe) detectors produced by Canberra have several desirable features for a neutrinoless double-beta decay experiment, including low electronic noise, excellent pulse shape analysis capabilities, and simple fabrication. We have deployed a customized BEGe, the Majorana Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and shield at the Kimballton Underground Research Facility in Virginia. This paper will focus on the detector characteristics and measurements that can be performed with such a radiation detector in a low-background environment.

  2. Astroparticle Physics with a Customized Low-Background Broad Energy Germanium Detector

    CERN Document Server

    Aalseth, C E; Avignone, F T; Back, H O; Barabash, A S; Barbeau, P S; Bergevin, M; Bertrand, F E; Boswell, M; Brudanin, V; Bugg, W; Burritt, T H; Busch, M; Capps, G; Chan, Y-D; Collar, J I; Cooper, R J; Creswick, R; Detwiler, J A; Diaz, J; Doe, P J; Efremenko, Yu; Egorov, V; Ejiri, H; Elliott, S R; Ely, J; Esterline, J; Farach, H; Fast, J E; Fields, N; Finnerty, P; Fujikawa, B; Fuller, E; Gehman, V M; Giovanetti, G K; Guiseppe, V E; Gusey, K; Hallin, A L; Harper, G C; Hazama, R; Henning, R; Hime, A; Hoppe, E W; Hossbach, T W; Howe, M A; Johnson, R A; Keeter, K J; Keillor, M; Keller, C; Kephart, J D; Kidd, M F; Knecht, A; Kochetov, O; Konovalov, S I; Kouzes, R T; Leviner, L; Loach, J C; Luke, P N; MacMullin, S; Marino, M G; Martin, R D; Mei, D -M; Miley, H S; Miller, M L; Mizouni, L; Meyers, A W; Nomachi, M; Orrell, J L; Peterson, D; Phillips, D G; Poon, A W P; Prior, G; Qian, J; Radford, D C; Rielage, K; Robertson, R G H; Rodriguez, L; Rykaczewski, K P; Salazar, H; Schubert, A G; Shima, T; Shirchenko, M; Steele, D; Strain, J; Swift, G; Thomas, K; Timkin, V; Tornow, W; Van Wechel, T D; Vanyushin, I; Varner, R L; Vetter, K; Wilkerson, J F; Wolfe, B A; Xiang, W; Yakushev, E; Yaver, H; Young, A R; Yu, C -H; Yumatov, V; Zhang, C; Zimmerman, S

    2010-01-01

    The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg array of high purity germanium detectors housed in an ultra-low background shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA DEMONSTRATOR will search for neutrinoless double-beta decay of 76Ge while demonstrating the feasibility of a tonne-scale experiment. It may also carry out a dark matter search in the 1-10 GeV/c^2 mass range. We have found that customized Broad Energy Germanium (BEGe) detectors produced by Canberra have several desirable features for a neutrinoless double-beta decay experiment, including low electronic noise, excellent pulse shape analysis capabilities, and simple fabrication. We have deployed a customized BEGe, the MAJORANA Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and shield at the Kimballton Underground Research Facility in Virginia. This paper will focus on the detector characteristics and measurements that can be performed with such a radiation detector in a ...

  3. Experimental test of the background rejection, through imaging capability, of a highly segmented AGATA germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Doncel, M., E-mail: doncel@usal.e [Laboratorio de Radiaciones Ionizantes, Universidad de Salamanca (Spain); Recchia, F. [INFN sezione di Padova, Padova (Italy); Quintana, B. [Laboratorio de Radiaciones Ionizantes, Universidad de Salamanca (Spain); Gadea, A. [IFIC Valencia, Valencia (Spain); INFN Laboratori Nazionali di Legnaro, Legnaro (Italy); Farnea, E. [INFN sezione di Padova, Padova (Italy)

    2010-10-21

    The development of highly segmented germanium detectors as well as the algorithms to identify the position of the interaction within the crystal opens the possibility to locate the {gamma}-ray source using Compton imaging algorithms. While the Compton-suppression shield, coupled to the germanium detector in conventional arrays, works also as an active filter against the {gamma} rays originated outside the target, the new generation of position sensitive {gamma}-ray detector arrays has to fully rely on tracking capabilities for this purpose. In specific experimental conditions, as the ones foreseen at radioactive beam facilities, the ability to discriminate background radiation improves the sensitivity of the gamma spectrometer. In this work we present the results of a measurement performed at the Laboratori Nazionali di Legnaro (LNL) aiming the evaluation of the AGATA detector capabilities to discriminate the origin of the {gamma} rays on an event-by-event basis. It will be shown that, exploiting the Compton scattering formula, it is possible to track back {gamma} rays coming from different positions, assigning them to specific emitting locations. These imaging capabilities are quantified for a single crystal AGATA detector.

  4. Background intercomparison with escape-suppressed germanium detectors in underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Szuecs, Tamas; Bemmerer, Daniel [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany)

    2014-07-01

    A key requirement for underground nuclear astrophysics experiments is the very low background level in germanium detectors underground. The reference for these purposes is the world's so far only underground accelerator laboratory for nuclear astrophysics, LUNA. LUNA is located deep underground in the Gran Sasso laboratory in Italy, shielded from cosmic rays by 1400 m of rock. The background at LUNA was studied in detail using an escape-suppressed Clover-type HPGe detector. Exactly the same detector was subsequently transported to the Felsenkeller underground laboratory in Dresden, shielded by 45 m of rock, and the background was shown to be only a factor of three higher than at LUNA when comparing the escape-suppressed spectra, with interesting consequences for underground nuclear astrophysics. As the next step of a systematic study of the effects of a combination of active and passive shielding on the cosmic ray induced background, this detector is now being brought to the ''Reiche Zeche'' mine in Freiberg/Sachsen, shielded by 150 m of rock. The data from the Freiberg measurement are shown and discussed.

  5. Low background germanium detectors: From environmental laboratory to underground counting facility

    Energy Technology Data Exchange (ETDEWEB)

    Ceuppens, M. [Canberra Semiconductor N.V., Geel (Belgium)]|[Canberra Industries, Inc., Meriden (United States); Verplancke, J. [Canberra Semiconductor N.V., Geel (Belgium)]|[Canberra Industries, Inc., Meriden (United States); Tench, O. [Canberra Semiconductor N.V., Geel (Belgium)]|[Canberra Industries, Inc., Meriden (United States)

    1997-03-01

    Presentation and overview of different Low Level measuring systems ranging from the environmental lab to low-background detection systems and to the deep underground counting facility. Examples and performances for each of these will be given. Attention will be given to the standardised ultra low-background detectors and shields which provide excellent performance without the high cost in time and money associated with custom designed systems. (orig./DG)

  6. Cryogenic readout techniques for germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Benato, G. [University of Zurich, (Switzerland); Cattadori, C. [INFN - Milano Bicocca, (Italy); Di Vacri, A. [INFN LNGS, (Italy); Ferri, E. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy); D' Andrea, V.; Macolino, C. [GSSI/INFN LNGS, (Italy); Riboldi, S. [Universita degli Studi di Milano/INFN Milano, (Italy); Salamida, F. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy)

    2015-07-01

    High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN - Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)

  7. Pulse shapes and surface effects in segmented germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Daniel

    2010-03-24

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of {sup 76}Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope {sup 76}Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  8. Front End Spectroscopy ASIC for Germanium Detectors

    Science.gov (United States)

    Wulf, Eric

    Large-area, tracking, semiconductor detectors with excellent spatial and spectral resolution enable exciting new access to soft (0.2-5 MeV) gamma-ray astrophysics. The improvements from semiconductor tracking detectors come with the burden of high density of strips and/or pixels that require high-density, low-power, spectroscopy quality readout electronics. CMOS ASIC technologies are a natural fit to this requirement and have led to high-quality readout systems for all current semiconducting tracking detectors except for germanium detectors. The Compton Spectrometer and Imager (COSI), formerly NCT, at University of California Berkeley and the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) at Goddard Space Flight Center utilize germanium cross-strip detectors and are on the forefront of NASA's Compton telescope research with funded missions of long duration balloon flights. The development of a readout ASIC for germanium detectors would allow COSI to replace their discrete electronics readout and would enable the proposed Gamma-Ray Explorer (GRX) mission utilizing germanium strip-detectors. We propose a 3-year program to develop and test a germanium readout ASIC to TRL 5 and to integrate the ASIC readout onto a COSI detector allowing a TRL 6 demonstration for the following COSI balloon flight. Our group at NRL led a program, sponsored by another government agency, to produce and integrate a cross-strip silicon detector ASIC, designed and fabricated by Dr. De Geronimo at Brookhaven National Laboratory. The ASIC was designed to handle the large (>30 pF) capacitance of three 10 cm^2 detectors daisy-chained together. The front-end preamplifier, selectable inverter, shaping times, and gains make this ASIC compatible with a germanium cross-strip detector as well. We therefore have the opportunity and expertise to leverage the previous investment in the silicon ASIC for a new mission. A germanium strip detector ASIC will also require precise timing of the signals at

  9. Germanium 70: a gamma ray detector for astrophysics; Le germanium 70: un detecteur de rayons gamma en astrophysique

    Energy Technology Data Exchange (ETDEWEB)

    Durouchoux, P. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee

    1994-12-31

    A thorough study concerning the background noise generated from the germanium detectors used in astrophysics spatial experiences, is presented. These detectors, selected for their energy high definition, are sensitive to cosmic radiations that activate some isotopes contained in the natural germanium and induce background noise through a beta+ decay. This noise component may be notably reduced with utilization of {sup 70}Ge isotope enriched detectors, which do not present such interactions. The predictions have been verified through space tests conducted from Australia in 1992. Preliminary results and prospectives for astrophysics application of the Germanium 70 isotope, are discussed. 6 figs., 2 tabs., 3 refs.

  10. Germanium detector studies in the framework of the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Budjas, Dusan

    2009-05-06

    The GERmanium Detector Array (GERDA) is an ultra-low background experiment under construction at Laboratori Nazionali del Gran Sasso. GERDA will search for {sup 76}Ge neutrinoless double beta decay with an aim for 100-fold reduction in background compared to predecessor experiments. This ambition necessitates innovative design approaches, strict selection of low-radioactivity materials, and novel techniques for active background suppression. The core feature of GERDA is its array of germanium detectors for ionizing radiation, which are enriched in {sup 76}Ge. Germanium detectors are the central theme of this dissertation. The first part describes the implementation, testing, and optimisation of Monte Carlo simulations of germanium spectrometers, intensively involved in the selection of low-radioactivity materials. The simulations are essential for evaluations of the gamma ray measurements. The second part concerns the development and validation of an active background suppression technique based on germanium detector signal shape analysis. This was performed for the first time using a BEGe-type detector, which features a small read-out electrode. As a result of this work, BEGe is now one of the two detector technologies included in research and development for the second phase of the GERDA experiment. A suppression of major GERDA backgrounds is demonstrated, with (0.93{+-}0.08)% survival probability for events from {sup 60}Co, (21{+-}3)% for {sup 226}Ra, and (40{+-}2)% for {sup 228}Th. The acceptance of {sup 228}Th double escape events, which are analogous to double beta decay, was kept at (89{+-}1)%. (orig.)

  11. Extrinsic germanium Blocked Impurity Bank (BIB) detectors

    Science.gov (United States)

    Krabach, Timothy N.; Huffman, James E.; Watson, Dan M.

    1989-01-01

    Ge:Ga blocked-impurity-band (BIB) detectors with long wavelength thresholds greater than 190 microns and peak quantum efficiencies of 4 percent, at an operating temperature of 1.8 K, have been fabricated. These proof of concept devices consist of a high purity germanium blocking layer epitaxially grown on a Ga-doped Ge substrate. This demonstration of BIB behavior in germanium enables the development of far infrared detector arrays similar to the current silicon-based devices. Present efforts are focussed on improving the chemical vapor deposition process used to create the blocking layer and on the lithographic processing required to produce monolithic detector arrays in germanium. Approaches to test the impurity levels in both the blocking and active layers are considered.

  12. Liquid argon as active shielding and coolant for bare germanium detectors. A novel background suppression method for the GERDA 0{nu}{beta}{beta} experiment

    Energy Technology Data Exchange (ETDEWEB)

    Peiffer, J.P.

    2007-07-25

    Two of the most important open questions in particle physics are whether neutrinos are their own anti-particles (Majorana particles) as required by most extensions of the StandardModel and the absolute values of the neutrino masses. The neutrinoless double beta (0{nu}{beta}{beta}) decay, which can be investigated using {sup 76}Ge (a double beta isotope), is the most sensitive probe for these properties. There is a claim for an evidence for the 0{nu}{beta}{beta} decay in the Heidelberg-Moscow (HdM) {sup 76}Ge experiment by a part of the HdM collaboration. The new {sup 76}Ge experiment Gerda aims to check this claim within one year with 15 kg.y of statistics in Phase I at a background level of {<=}10{sup -2} events/(kg.keV.y) and to go to higher sensitivity with 100 kg.y of statistics in Phase II at a background level of {<=}10{sup -3} events/(kg.keV.y). In Gerda bare germanium semiconductor detectors (enriched in {sup 76}Ge) will be operated in liquid argon (LAr). LAr serves as cryogenic coolant and as high purity shielding against external background. To reach the background level for Phase II, new methods are required to suppress the cosmogenic background of the diodes. The background from cosmogenically produced {sup 60}Co is expected to be {proportional_to}2.5.10{sup -3} events/(kg.keV.y). LAr scintillates in UV ({lambda}=128 nm) and a novel concept is to use this scintillation light as anti-coincidence signal for background suppression. In this work the efficiency of such a LAr scintillation veto was investigated for the first time. In a setup with 19 kg active LAr mass a suppression of a factor 3 has been achieved for {sup 60}Co and a factor 17 for {sup 232}Th around Q{sub {beta}}{sub {beta}} = 2039 keV. This suppression will further increase for a one ton active volume (factor O(100) for {sup 232}Th and {sup 60}Co). LAr scintillation can also be used as a powerful tool for background diagnostics. For this purpose a new, very stable and robust wavelength

  13. Electromechanically cooled germanium radiation detector system

    Science.gov (United States)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-02-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++ [1], GAMANL [2], GRPANL [3]and MGAU [4], typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service [5]. The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted.

  14. Sensitivity comparison of intrinsic germanium detectors with various efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Buker, L.M.L.

    1990-12-01

    Scientists today are being asked to measure concentrations of radionuclides at increasingly lower levels. This creates a demand for better resolution detectors with larger efficiencies that can provide the necessary sensitivity to accurately determine low levels of radioactivity. This study has acquired a large volume of empirical data for a wide range of relative efficiency germanium detectors. The purpose was to determine the sensitivity of various efficiency high-purity (P-type) germanium detectors produced by a single manufacturer. Selecting efficiency as the only variable and essentially all other variables remaining constant narrowed the field of detectors to 30. This investigation compares the response for the lower limit of detection (LLD), figure-of-merit (FOM), and minimum detectable activity (MDA) versus efficiency. In addition to the efficiency, the resolution, background, peak-to-Compton (P/C), and crystal shape of a p-type detector are of particular importance when considering the parameters of a detectors performance. A concise summary of the results is that the detector of choice for low energy measurements would be a 25% detector with resolution better than 1.8 keV FWHM for the 1.332 keV energy of Co-60. The detector of choice for energy levels greater than 500 keV would be a high efficiency low background detector. If the entire energy range is of interest, then a 70% low background detector with a high P/C and a resolution better than 1.9 keV would yield the lowest MDA and assure the most efficient counting times. 9 refs., 25 figs., 6 tabs.

  15. MAJORANA Collaboration's Experience with Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, S. [Lawrence Berkeley National Laboratory (LBNL); Abgrall, N. [Lawrence Berkeley National Laboratory (LBNL); Avignone, III, F. T. [University of South Carolina/Oak Ridge National Laboratory (ORNL); Barabash, A.S. [Institute of Theoretical & Experimental Physics (ITEP), Moscow, Russia; Bertrand, F. E. [Oak Ridge National Laboratory (ORNL); Efremenko, Yuri [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Galindo-Uribarri, A [Oak Ridge National Laboratory (ORNL); Radford, D. C. [Oak Ridge National Laboratory (ORNL); Romero-Romero, E. [UTK/ORNL; Varner, R. L. [Oak Ridge National Laboratory (ORNL); White, B. R. [Oak Ridge National Laboratory (ORNL); Wilkerson, J. F. [UNC/Triangle Univ. Nucl. Lab, Durham, NC/ORNL; Yu, C.-H. [Oak Ridge National Laboratory (ORNL); Majorana, [MAJORANA Collaboration

    2015-01-01

    The goal of the Majorana Demonstrator project is to search for 0v beta beta decay in Ge-76. Of all candidate isotopes for 0v beta beta, Ge-76 has some of the most favorable characteristics. Germanium detectors are a well established technology, and in searches for 0v beta beta, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the MAJORANA collaboration made with enriched germanium detectors manufactured by ORTEC (R)(R). The process from production, to characterization and integration in MAJORANA mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.

  16. Germanium detectors and natural radioactivity in food

    Energy Technology Data Exchange (ETDEWEB)

    Garbini, Lucia [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: GeDet-Collaboration

    2013-07-01

    Potassium is a very important mineral for many physiological processes, like fluid balance, protein synthesis and signal transmission in nerves. Many aliments like raisins, bananas or chocolate contain potassium. Natural potassium contains 0.012% of the radioactive isotope Potassium 40. This isotope decays via β{sup +} decay into a metastable state of Argon 40, which reaches its ground state emitting a gamma of 1460 keV. A commercially produced Germanium detector has been used to measure the energy spectra of different selected food samples. It was calibrated with KCl and potassium contents were extracted. Results verify the high potassium content of commonly recommended food samples. However, the measurement quantitatively differ from the expectations in several cases. One of the most interesting results concerns chocolate bars with different percentages of cacao.

  17. Characterisation of a Broad Energy Germanium (BEGe) detector

    Energy Technology Data Exchange (ETDEWEB)

    Barrientos, D., E-mail: diego_barrientos@usal.es [Laboratorio de Radiaciones Ionizantes, University of Salamanca (Spain); Boston, A.J.; Boston, H.C. [Nuclear Physics Group, University of Liverpool (United Kingdom); Quintana, B.; Sagrado, I.C. [Laboratorio de Radiaciones Ionizantes, University of Salamanca (Spain); Unsworth, C.; Moon, S.; Cresswell, J.R. [Nuclear Physics Group, University of Liverpool (United Kingdom)

    2011-08-21

    Characterisation of Germanium detectors used for gamma-ray tracking or medical imaging is one of the current goals in the Nuclear physics community. Good knowledge of detector response to different gamma radiations is needed for this purpose. In order to develop this task, Pulse Shape Analysis (PSA) techniques have been developed for different detector geometries or setups. In this work, we present the results of the application of PSA for a Canberra Broad Energy Germanium (BEGe) detector. This detector was scanned across its front and bottom face using a fully digital data acquisition system; allowing to record detector charge pulse shapes from well defined positions with collimated sources of {sup 241}Am, {sup 22}Na and {sup 137}Cs. With the study of the data acquired, characteristics of the inner detector geometry like crystal limits or positions of contact and isolate can be found, as well as the direction of the axes for the Germanium crystal.

  18. The GALATEA test-facility for High Purity Germanium Detectors

    CERN Document Server

    Abt, I; Doenmez, B; Garbini, L; Irlbeck, S; Majorovits, B; Palermo, M; Schulz, O; Seitz, H; Stelzer, F

    2014-01-01

    GALATEA is a test facility designed to investigate bulk and surface effects in high purity germanium detectors. A vacuum tank houses an infrared screened volume with a cooled detector inside. A system of three stages allows an almost complete scan of the detector. The main feature of GALATEA is that there is no material between source and detector. This allows the usage of alpha and beta sources as well as of a laser beam to study surface effects. A 19-fold segmented true-coaxial germanium detector was used for commissioning.

  19. The GALATEA test-facility for high purity germanium detectors

    Science.gov (United States)

    Abt, I.; Caldwell, A.; Dönmez, B.; Garbini, L.; Irlbeck, S.; Majorovits, B.; Palermo, M.; Schulz, O.; Seitz, H.; Stelzer, F.

    2015-05-01

    GALATEA is a test facility designed to investigate bulk and surface effects in high purity germanium detectors. A vacuum tank houses a cold volume with the detector inside. A system of three precision motorized stages allows an almost complete scan of the detector. The main feature of GALATEA is that there is no material between source and detector. This allows the usage of alpha and beta sources to study surface effects. A 19-fold segmented true-coaxial germanium detector was used for commissioning. A first analysis of data obtained with an alpha source is presented here.

  20. The GALATEA test-facility for high purity germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abt, I.; Caldwell, A.; Dönmez, B.; Garbini, L.; Irlbeck, S.; Majorovits, B.; Palermo, M., E-mail: palermo@mpp.mpg.de; Schulz, O.; Seitz, H.; Stelzer, F.

    2015-05-11

    GALATEA is a test facility designed to investigate bulk and surface effects in high purity germanium detectors. A vacuum tank houses a cold volume with the detector inside. A system of three precision motorized stages allows an almost complete scan of the detector. The main feature of GALATEA is that there is no material between source and detector. This allows the usage of alpha and beta sources to study surface effects. A 19-fold segmented true-coaxial germanium detector was used for commissioning. A first analysis of data obtained with an alpha source is presented here.

  1. Techniques to distinguish between electron and photon induced events using segmented germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kroeninger, K.

    2007-06-05

    Two techniques to distinguish between electron and photon induced events in germanium detectors were studied: (1) anti-coincidence requirements between the segments of segmented germanium detectors and (2) the analysis of the time structure of the detector response. An 18-fold segmented germanium prototype detector for the GERDA neutrinoless double beta-decay experiment was characterized. The rejection of photon induced events was measured for the strongest lines in {sup 60}Co, {sup 152}Eu and {sup 228}Th. An accompanying Monte Carlo simulation was performed and the results were compared to data. An overall agreement with deviations of the order of 5-10% was obtained. The expected background index of the GERDA experiment was estimated. The sensitivity of the GERDA experiment was determined. Special statistical tools were developed to correctly treat the small number of events expected. The GERDA experiment uses a cryogenic liquid as the operational medium for the germanium detectors. It was shown that germanium detectors can be reliably operated through several cooling cycles. (orig.)

  2. A Low-Noise Germanium Ionization Spectrometer for Low-Background Science

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, Craig E.; Colaresi, Jim; Collar, Juan I.; Fast, James E.; Hossbach, Todd W.; Orrell, John L.; Overman, Cory T.; Scholz, Bjorn; Vandevender, Brent A.; Yocum, K. Michael

    2016-12-01

    Recent progress on the development of very low energy threshold high purity germanium ionization spectrometers has produced an instrument of 1.2 kg mass and excellent noise performance. The detector was installed in a low-background cryostat intended for use in a low mass, WIMP dark matter direct detection search. The integrated detector and low background cryostat achieved noise performance of 98 eV full-width half-maximum of an input electronic pulse generator peak and gamma-ray energy resolution of 1.9 keV full-width half-maximum at the 60Co gamma-ray energy of 1332 keV. This Transaction reports the thermal characterization of the low-background cryostat, specifications of the newly prepared 1.2 kg p-type point contact germanium detector, and the ionization spectroscopy – energy resolution and energy threshold – performance of the integrated system.

  3. The GALATEA test facility and a first study of α-induced surface events in a germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Irlbeck, Sabine

    2014-01-30

    Germanium detectors are a choice technology in fundamental research. They are suitable for the search for rare events due to their high sensitivity and excellent energy resolution. As an example, the GERDA (GERmanium Detector Array) experiment searching for neutrinoless double beta decay is described. The observation of this decay would resolve the fundamental question whether the neutrino is its own antiparticle. Especially adapted detector technologies and low background rates needed to detect very rare events such as neutrinoless double beta decays are discussed. The identification of backgrounds originating from the interaction of radiation, especially α-particles, is a focus of this thesis. Low background experiments face problems from α-particles due to unavoidable surface contaminations of the germanium detectors. The segmentation of detectors is used to obtain information about the special characteristics of selected events. The high precision test stand GALATEA was especially designed for surface scans of germanium detectors. As part of this work, GALATEA was completed and commissioned. The final commissioning required major upgrades of the original design which are described in detail. Collimator studies with two commercial germanium detectors are presented. Different collimation levels for a β-source were investigated and crystal axis effects were examined. The first scan with an α-source of the passivated end-plate of a special 19-fold segmented prototype detector mounted in GALATEA is described. The α-induced surface events were studied and characterized. Crosstalk and mirror pulses seen in the segments of the germanium detector were analyzed. The detector studies presented in this thesis will help to further improve the design of germanium detectors for low background experiments.

  4. Active noise canceling system for mechanically cooled germanium radiation detectors

    Science.gov (United States)

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  5. Development of segmented germanium detectors for neutrinoless double beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing

    2009-06-09

    The results from neutrino oscillation experiments indicate that at least two neutrinos have mass. However, the value of the masses and whether neutrinos and anti-neutrinos are identical, i.e., Majorana particles, remain unknown. Neutrinoless double beta decay experiments can help to improve our understanding in both cases and are the only method currently possible to tackle the second question. The GERmanium Detector Array (GERDA) experiment, which will search for the neutrinoless double beta decay of {sup 76}Ge, is currently under construction in Hall A of the INFN Gran Sasso National Laboratory (LNGS), Italy. In order to achieve an extremely low background level, segmented germanium detectors are considered to be operated directly in liquid argon which serves simultaneously as cooling and shielding medium. Several test cryostats were built at the Max-Planck-Institut fuer Physik in Muenchen to operate segmented germanium detectors both in vacuum and submerged in cryogenic liquid. The performance and the background discrimination power of segmented germanium detectors were studied in detail. It was proven for the first time that segmented germanium detectors can be operated stably over long periods submerged in a cryogenic liquid. It was confirmed that the segmentation scheme employed does well in the identification of photon induced background and demonstrated for the first time that also neutron interactions can be identified. The C++ Monte Carlo framework, MaGe (Majorana-GERDA), is a joint development of the Majorana and GERDA collaborations. It is based on GEANT4, but tailored especially to simulate the response of ultra-low background detectors to ionizing radiation. The predictions of the simulation were veri ed to be accurate for a wide range of conditions. Some shortcomings were found and corrected. Pulse shape analysis is complementary to segmentation in identifying background events. Its efficiency can only be correctly determined using reliable pulse

  6. Methods to improve and understand the sensitivity of high purity germanium detectors for searches of rare events

    Energy Technology Data Exchange (ETDEWEB)

    Volynets, Oleksandr

    2012-07-27

    Observation of neutrinoless double beta-decay could answer fundamental questions on the nature of neutrinos. High purity germanium detectors are well suited to search for this rare process in germanium. Successful operation of such experiments requires a good understanding of the detectors and the sources of background. Possible background sources not considered before in the presently running GERDA high purity germanium detector experiment were studied. Pulse shape analysis using artificial neural networks was used to distinguish between signal-like and background-like events. Pulse shape simulation was used to investigate systematic effects influencing the efficiency of the method. Possibilities to localize the origin of unwanted radiation using Compton back-tracking in a granular detector system were examined. Systematic effects in high purity germanium detectors influencing their performance have been further investigated using segmented detectors. The behavior of the detector response at different operational temperatures was studied. The anisotropy effects due to the crystallographic structure of germanium were facilitated in a novel way to determine the orientation of the crystallographic axes.

  7. Environmental Radioactivity: Gamma Ray Spectroscopy with Germanium detector

    Science.gov (United States)

    Vyas, Gargi; Beausang, Cornelius; Hughes, Richard; Tarlow, Thomas; Gell, Kristen; University of Richmond Physics Team

    2013-10-01

    A CF-1000BRL series portable Air Particle Sampler with filter paper as filter media was placed in one indoor and one outdoor location at 100 LPM flow rate on six dates under alternating rainy and warm weather conditions over the course of sixteen days in May 2013. The machine running times spanned between 6 to 69 hours. Each filter paper was then put in a germanium gamma ray detector, and the counts ranged from 93000 to 250000 seconds. The spectra obtained were analyzed by the CANBERRA Genie 2000 software, corrected using a background spectrum, and calibrated using a 20.27 kBq activity multi-nuclide source. We graphed the corrected counts (from detector analysis time)/second (from air sampler running time)/liter (from the air sampler's flow rate) of sharp, significantly big peaks corresponding to a nuclide in every sample against the sample number along with error bars. The graphs were then used to compare the samples and they showed a similar trend. The slight differences were usually due to the different running times of the air sampler. The graphs of about 22 nuclides were analyzed. We also tried to recognize the nuclei to which several gamma rays belonged that were displayed but not recognized by the Genie 2000 software.

  8. PREFACE: 2nd Workshop on Germanium Detectors and Technologies

    Science.gov (United States)

    Abt, I.; Majorovits, B.; Keller, C.; Mei, D.; Wang, G.; Wei, W.

    2015-05-01

    The 2nd workshop on Germanium (Ge) detectors and technology was held at the University of South Dakota on September 14-17th 2014, with more than 113 participants from 8 countries, 22 institutions, 15 national laboratories, and 8 companies. The participants represented the following big projects: (1) GERDA and Majorana for the search of neutrinoless double-beta decay (0νββ) (2) SuperCDMS, EDELWEISS, CDEX, and CoGeNT for search of dark matter; (3) TEXONO for sub-keV neutrino physics; (4) AGATA and GRETINA for gamma tracking; (5) AARM and others for low background radiation counting; (5) as well as PNNL and LBNL for applications of Ge detectors in homeland security. All participants have expressed a strong desire on having better understanding of Ge detector performance and advancing Ge technology for large-scale applications. The purpose of this workshop was to leverage the unique aspects of the underground laboratories in the world and the germanium (Ge) crystal growing infrastructure at the University of South Dakota (USD) by brining researchers from several institutions taking part in the Experimental Program to Stimulate Competitive Research (EPSCoR) together with key leaders from international laboratories and prestigious universities, working on the forefront of the intensity to advance underground physics focusing on the searches for dark matter, neutrinoless double-beta decay (0νββ), and neutrino properties. The goal of the workshop was to develop opportunities for EPSCoR institutions to play key roles in the planned world-class research experiments. The workshop was to integrate individual talents and existing research capabilities, from multiple disciplines and multiple institutions, to develop research collaborations, which includes EPSCor institutions from South Dakota, North Dakota, Alabama, Iowa, and South Carolina to support multi-ton scale experiments for future. The topic areas covered in the workshop were: 1) science related to Ge

  9. Ameliorating neutron damage in orthogonal-strip planar germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, E.G., E-mail: Emily_Jackson@student.uml.edu [Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Hull, E.L. [PHDS Company, 3011 Amherst Road, Knoxville, TN 37921 (United States); Lister, C.J. [Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Pehl, R.H. [PHDS Company, 3011 Amherst Road, Knoxville, TN 37921 (United States)

    2015-02-21

    The segmentation of the electrodes of germanium detectors facilitates gamma-ray imaging and tracking. Replacing the traditional n-type lithium drifted contact is a key to finer segmentation. Amorphous-germanium is a promising alternative contact technology, and large, highly segmented detectors have been fabricated. One factor in adopting any new detector technology is its robustness in hostile environments. Therefore, to explore the effects of neutron damage on position sensitive amorphous-contact germanium gamma-ray detectors and investigate methods for mitigation and repair of damage, two detectors were intentionally exposed to a non-uniform neutron fluence of greater than 4(1) ×10{sup 9} n/cm{sup 2} produced in the {sup 7}Li(p, n){sup 7}Be reaction at the UMass Lowell Van-de-Graaff accelerator. Post-irradiation tests were made on the counters by varying the electric field, the charge deposition rate, the operating temperature, and utilizing various annealing cycles in order to ascertain the robustness of their performance after irradiation.

  10. Germanium Blocked Impurity Band (BIB) detectors

    Science.gov (United States)

    Haller, E. E.; Baumann, H.; Beeman, J. W.; Hansen, W. L.; Luke, P. N.; Lutz, M.; Rossington, C. S.; Wu, I. C.

    1989-01-01

    Information is given in viewgraph form. The advantages of the Si blocked impurity band (BIB) detector invented by M. D. Petroff and M. G. Stabelbroek are noted: smaller detection volume leading to a reduction of cosmic ray interference, extended wavelength response because of dopant wavefunction overlap, and photoconductive gain of unity. It is argued that the stated advantages of Si BIB detectors should be realizable for Ge BIB detectors. Information is given on detector development, subtrate choice and preparation, wafer polising, epitaxy, characterization of epi layers, and preliminary Ge BIB detector test results.

  11. Cosmogenic activation of Germanium and its reduction for low background experiments

    CERN Document Server

    Barabanov, I; Bezrukov, L; Denisov, A; Kornoukhov, V; Sobolevsky, N

    2006-01-01

    Production of $^{60}$Co and $^{68}$Ge from stable isotopes of Germanium by nuclear active component of cosmic rays is a principal background source for a new generation of $^{76}$Ge double beta decay experiments like GERDA and Majorana. The biggest amount of cosmogenic activity is expected to be produced during transportation of either enriched material or already grown crystal. In this letter properties and feasibility of a movable iron shield are discussed. Activation reduction factor of about 10 is predicted by simulations with SHIELD code for a simple cylindrical configuration. It is sufficient for GERDA Phase II background requirements. Possibility of further increase of reduction factor and physical limitations are considered. Importance of activation reduction during Germanium purification and detector manufacturing is emphasized.

  12. Environmental applications for an intrinsic germanium well detector

    Energy Technology Data Exchange (ETDEWEB)

    Stegnar, P.; Eldridge, J.S.; Teasley, N.A.; Oakes, T.W.

    1983-01-01

    The overall performance of an intrinsic germanium well detector for /sup 125/I measurements was investigated in a program of environmental surveillance. Concentrations of /sup 125/I and /sup 131/I were determined in thyroids of road-killed deer showing the highest activities of /sup 125/I in the animals from the near vicinity of Oak Ridge National Laboratory. This demonstrates the utility of road-killed deer as a bioindicator for radioiodine around nuclear facilities. 6 refs., 2 figs., 3 tabs.

  13. Massive silicon or germanium detectors at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Braggio, C. [Dip. Fisica dell' Universita di Ferrara and INFN, via del Paradiso 12, 44100 Ferrara (Italy); Bressi, G. [INFN, sez.Pavia, Via U. Bassi 6, 27100 Pavia (Italy); Carugno, G. [INFN, sez. Padova, Via Marzolo 8, 35131 Padova (Italy); Feltrin, E. [INFN, Lab. Naz. Legnaro, Via dell' Universita 1, 35020 Legnaro (PD) (Italy)]. E-mail: feltrin@lnl.infn.it; Galeazzi, G. [INFN, Lab. Naz. Legnaro, Via dell' Universita 1, 35020 Legnaro (PD) (Italy)

    2006-11-30

    Several massive silicon and germanium home-made detectors, working at cryogenic temperature, have been studied. They are the benchmarking schemes to check the possibility of realizing a semiconductor time projection chamber that could have various interesting applications in weak interaction problems. Reported here are the first results on investigations of charge collection efficiency and metal-semiconductor contact hardness. The leakage current, total depletion voltage and alpha or gamma spectroscopy are presented.

  14. Phonon Quasidiffusion in Cryogenic Dark Matter Search Large Germanium Detectors

    CERN Document Server

    Leman, S W; McCarthy, K A; Pyle, M; Resch, R; Sadoulet, B; Sundqvist, K M; Brink, P L; Cherry, M; Silva, E Do Couto E; Figueroa-Feliciano, E; Mirabolfathi, N; Serfass, B; Tomada, A

    2011-01-01

    We present results on quasidiffusion studies in large, 3 inch diameter, 1 inch thick [100] high purity germanium crystals, cooled to 50 mK in the vacuum of a dilution refrigerator, and exposed with 59.5 keV gamma-rays from an Am-241 calibration source. We compare data obtained in two different detector types, with different phonon sensor area coverage, with results from a Monte Carlo. The Monte Carlo includes phonon quasidiffusion and the generation of phonons created by charge carriers as they are drifted across the detector by ionization readout channels.

  15. Silicon-Germanium Alloys for Infrared Detectors.

    Science.gov (United States)

    1980-04-01

    crystals, aiming at improved crystallinity and higher resistivity and to extend the Czochralski growth method to indium-doped Si-Ge alloys. Our intention...of the disappointingly high boron concentrations achieved in Czochralski growth, we decided to explore a crucible-free method for preparing Si-Ge...material was not high enough to allow an adequately long depletion region in a p-i-n detector. It does not appear that any Czochralski -type growth method

  16. Ultra-Low-Energy Germanium Detector for Neutrino-Nucleus Coherent Scattering and Dark Matter Searches

    CERN Document Server

    Wong, Henry T

    2008-01-01

    The status and plans of a research program on the development of ultra-low-energy germanium detectors with sub-keV sensitivities are reported. We survey the scientific goals which include the observation of neutrino-nucleus coherent scattering, the studies of neutrino magnetic moments, as well as the searches of WIMP dark matter. In particular, a threshold of 100-200 eV and a sub-keV background comparable to underground experiments were achieved with prototype detectors. New limits were set for WIMPs with mass between 3-6 GeV. The prospects of the realization of full-scale experiments are discussed.

  17. Characteristics of GRIFFIN high-purity germanium clover detectors

    Science.gov (United States)

    Rizwan, U.; Garnsworthy, A. B.; Andreoiu, C.; Ball, G. C.; Chester, A.; Domingo, T.; Dunlop, R.; Hackman, G.; Rand, E. T.; Smith, J. K.; Starosta, K.; Svensson, C. E.; Voss, P.; Williams, J.

    2016-06-01

    The Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei, GRIFFIN, is a new experimental facility for radioactive decay studies at the TRIUMF-ISAC laboratory. The performance of the 16 high-purity germanium (HPGe) clover detectors that will make up the GRIFFIN spectrometer is reported. The energy resolution, efficiency, timing resolution, crosstalk and preamplifier properties of each crystal were measured using a combination of analog and digital data acquisition techniques. The absolute efficiency and add-back factors are determined for the energy range of 80-3450 keV. The detectors show excellent performance with an average over all 64 crystals of a FWHM energy resolution of 1.89(6) keV and relative efficiency with respect to a 3 in . × 3 in . NaI detector of 41(1)% at 1.3 MeV.

  18. Modeling of germanium detector and its sourceless calibration

    Directory of Open Access Journals (Sweden)

    Steljić Milijana

    2008-01-01

    Full Text Available The paper describes the procedure of adapting a coaxial high-precision germanium detector to a device with numerical calibration. The procedure includes the determination of detector dimensions and establishing the corresponding model of the system. In order to achieve a successful calibration of the system without the usage of standard sources, Monte Carlo simulations were performed to determine its efficiency and pulse-height response function. A detailed Monte Carlo model was developed using the MCNP-5.0 code. The obtained results have indicated that this method represents a valuable tool for the quantitative uncertainty analysis of radiation spectrometers and gamma-ray detector calibration, thus minimizing the need for the deployment of radioactive sources.

  19. Gamma ray polarimetry using a position sensitive germanium detector

    CERN Document Server

    Kroeger, R A; Kurfess, J D; Phlips, B F

    1999-01-01

    Imaging gamma-ray detectors make sensitive polarimeters in the Compton energy regime by measuring the scatter direction of gamma rays. The principle is to capitalize on the angular dependence of the Compton scattering cross section to polarized gamma rays and measure the distribution of scatter directions within the detector. This technique is effective in a double-sided germanium detector between roughly 50 keV and 1 MeV. This paper reviews device characteristics important to the optimization of a Compton polarimeter, and summarizes measurements we have made using a device with a 5x5 cm active area, 1 cm thickness, and strip-electrodes on a 2 mm pitch.

  20. Development of a segmented n-type germanium detector, and its application to astronomical gamma-ray spectroscopy

    Science.gov (United States)

    Gehrels, N.; Cline, T. L.; Teegarden, B. J.; Tueller, J.; Leventhal, M.; Maccallum, C. J.; Ryge, P.

    1983-01-01

    Extensive calculations and simulations have shown that the instrumental background in a coaxial germanium photon detector flown at balloon altitudes or in space, can be substantially reduced by segmenting the outer contact. The contact is divided into horizontal strips around the side of the detector, giving it many characteristics similar to that of a stack of planar detectors. By choosing different segment coincidence requirements in different energy ranges, one can obtain a factor of approx. 2 increase in sensitivity to spectral lines between 40 keV and 1 MeV, compared with an unsegmented detector. The reverse electrode configuration (using n-type germanium), with the p contact outside, is preferred for this application due to its thin dead layer and resistance to radiation damage in space. A small two segment n type detector is being developed to serve as a prototype for larger multisegment devices. Results of this development effort and of detector tests are presented.

  1. HEROICA: an Underground Facility for the Fast Screening of Germanium Detectors

    CERN Document Server

    Andreotti, E; Maneschg, W; Barros, N; Benato, G; Brugnera, R; Costa, F; Falkenstein, R; Guthikonda, K K; Hegai, A; Hemmer, S; Hult, M; Jaenner, K; Kihm, T; Lehnert, B; Liao, H; Lubashevskiy, A; Lutter, G; Marissens, G; Modenese, L; Pandola, L; Reissfelder, M; Sada, C; Salathe, M; Schmitt, C; Schulz, O; Schwingenheuer, B; Turcato, M; Ur, C; von Sturm, K; Wagner, V; Westermann, J

    2013-01-01

    An infrastructure to characterize germanium detectors has been designed and constructed at the HADES Underground Research Laboratory, located in Mol (Belgium). Thanks to the 223m overburden of clay and sand, the muon flux is lowered by four orders of magnitude. This natural shield minimizes the exposure of radio-pure germanium material to cosmic radiation resulting in a significant suppression of cosmogenic activation in the germanium detectors. The project has been strongly motivated by a special production of germanium detectors for the GERDA experiment. GERDA, currently collecting data at the Laboratori Nazionali del Gran Sasso of INFN, is searching for the neutrinoless double beta decay of 76Ge. In the near future, GERDA will increase its mass and sensitivity by adding new Broad Energy Germanium (BEGe) detectors. The production of the BEGe detectors is done at Canberra in Olen (Belgium), located about 30km from the underground test site. Therefore, HADES is used both for storage of the crystals over night...

  2. Characteristics of Signals Originating Near the Lithium-Diffused N+ Contact of High Purity Germanium P-Type Point Contact Detectors

    CERN Document Server

    Aguayo, E; Avignone, F T; Barabash, A S; Barton, P J; Beene, J R; Bertrand, F E; Boswell, M; Brudanin, V; Busch, M; Chan, Y-D; Christofferson, C D; Collar, J I; Combs, D C; Cooper, R J; Detwiler, J A; Doe, P J; Efremenko, Yu; Egorov, V; Ejiri, H; Elliott, S R; Esterline, J; Fast, J E; Fields, N; Finnerty, P; Fraenkle, F M; Galindo-Uribarri, A; Gehman, V M; Giovanetti, G K; Green, M P; Guiseppe, V E; Gusey, K; Hallin, A L; Hazama, R; Henning, R; Hoppe, E W; Horton, M; Howard, S; Howe, M A; Johnson, R A; Keeter, K J; Kidd, M F; Knecht, A; Kochetov, O; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; Leviner, L E; Loach, J C; Looker, Q; Luke, P N; MacMullin, S; Marino, M G; Martin, R D; Merriman, J H; Miller, M L; Mizouni, L; Nomachi, M; Orrell, J L; Overman, N R; Perumpilly, G; Phillips, D G; Poon, A W P; Radford, D C; Rielage, K; Robertson, R G H; Ronquest, M C; Schubert, A G; Shima, T; Shirchenko, M; Snavely, K J; Steele, D; Strain, J; Timkin, V; Tornow, W; Varner, R L; Vetter, K; Vorren, K; Wilkerson, J F; Yakushev, E; Yaver, H; Young, A R; Yu, C -H; Yumatov, V

    2012-01-01

    A study of signals originating near the lithium-diffused n+ contact of p-type point contact (PPC) high purity germanium detectors (HPGe) is presented. The transition region between the active germanium and the fully dead layer of the n+ contact is examined. Energy depositions in this transition region are shown to result in partial charge collection. This provides a mechanism for events with a well defined energy to contribute to the continuum of the energy spectrum at lower energies. A novel technique to quantify the contribution from this source of background is introduced. Experiments that operate germanium detectors with a very low energy threshold may benefit from the methods presented herein.

  3. Characteristics of Signals Originating near the Lithium-Diffused N+ Contact of High Purity Germanium P-Type Point Contact Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo, E. [Pacific Northwest National Laboratory (PNNL); Amman, M. [Lawrence Berkeley National Laboratory (LBNL); Avignone, F. T. [University of South Carolina/ORNL; Barabash, A.S. [Institute of Theoretical & Experimental Physics, Moscow, Russia; Barton, P. J. [Lawrence Berkeley National Laboratory (LBNL); Beene, James R [ORNL; Bertrand Jr, Fred E [ORNL; Boswell, M. [Los Alamos National Laboratory (LANL); Brudanin, V. [Joint Institute for Nuclear Research, Dubna, Russia; Busch, M. [Duke University; Chan, Y-D [Lawrence Berkeley National Laboratory (LBNL); Christofferson, C. D. [South Dakota School of Mines & Technology, Rapid City, SD; Collar, Juan I. [University of Chicago; Combs, D. C. [University of North Carolina / Triangle Universities Nuclear Lababoratory, Durham; Cooper, Reynold J [ORNL; Detwiler, J.A. [Lawrence Berkeley National Laboratory (LBNL); Doe, P. J. [University of Washington; Efremenko, Yuri [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Egorov, V. [Joint Institute for Nuclear Research, Dubna, Russia; Ejiri, H. [Osaka University; Elliott, S. R. [Los Alamos National Laboratory (LANL); Esterline, J. [Duke University; Fast, J.E. [Pacific Northwest National Laboratory (PNNL); Fields, N. [University of Chicago; Finnerty, P. [University of North Carolina / Triangle Universities Nuclear Lababoratory, Durham; Fraenkle, F. M. [University of North Carolina / Triangle Universities Nuclear Lababoratory, Durham; Galindo-Uribarri, Alfredo {nmn} [ORNL; Gehman, V. M. [Los Alamos National Laboratory (LANL); Giovanetti, G. K. [Univ, of North Carolina & Triangle Universities Nucl. Lab - Durham, NC; Green, M. P. [University of North Carolina / Triangle Universities Nuclear Lababoratory, Durham; Guiseppe, V.E. [University of South Dakota; Gusey, K. [Joint Institute for Nuclear Research, Dubna, Russia; Hallin, A. L. [University of Alberta, Edmonton, Canada; Hazama, R. [Osaka University; Henning, R. [Univ, of North Carolina & Triangle Universities Nucl. Lab - Durham, NC; Hoppe, E.W. [Pacific Northwest National Laboratory (PNNL); Horton, M. [South Dakota School of Mines & Technology, Rapid City, SD; Howard, S. [South Dakota School of Mines and Technology; Howe, M. A. [University of North Carolina / Triangle Universities Nuclear Lababoratory, Durham; Johnson, R. A. [University of Washington, Seattle; Keeter, K.J. [Black Hills State University, Spearfish, SD; Kidd, M. F. [Los Alamos National Laboratory (LANL); Knecht, A. [University of Washington, Seattle; Kochetov, O. [Joint Institute for Nuclear Research, Dubna, Russia; Konovalov, S.I. [Institute of Theoretical & Experimental Physics, Moscow, Russia; Kouzes, R. T. [Pacific Northwest National Laboratory (PNNL); LaFerriere, B. D. [Pacific Northwest National Laboratory (PNNL); Leon, J. [University of Washington, Seattle; Leviner, L. E. [University of North Carolina / Triangle Universities Nuclear Lababoratory, Durham; Loach, J.C. [Lawrence Berkeley National Laboratory (LBNL); Looker, Q. [Lawrence Berkeley National Laboratory (LBNL); Luke, P.N. [Lawrence Berkeley National Laboratory (LBNL); MacMullin, S. [University of North Carolina / Triangle Universities Nuclear Lababoratory, Durham; Marino, M. G. [University of Washington, Seattle; Martin, R.D. [Lawrence Berkeley National Laboratory (LBNL); Merriman, J. H. [Pacific Northwest National Laboratory (PNNL); Miller, M. L. [University of Washington, Seattle; Mizouni, L. [PPNL/Univ. of South Carolina; Nomachi, M. [Osaka University; Orrell, John L. [Pacific Northwest National Laboratory (PNNL); Overman, N. R. [Pacific Northwest National Laboratory (PNNL); Perumpilly, G. [University of South Dakota; Phillips II, D. G. [University of North Carolina / Triangle Universities Nuclear Lababoratory, Durham; Poon, A.W.P. [Lawrence Berkeley National Laboratory (LBNL); et al.

    2013-01-01

    A study of signals originating near the lithium-diffused n+ contact of p-type point contact (PPC) high purity germanium detectors (HPGe) is presented. The transition region between the active germanium and the fully dead layer of the n+ contact is examined. Energy depositions in this transition region are shown to result in partial charge collection. This provides a mechanism for events with a well defined energy to contribute to the continuum of the energy spectrum at lower energies. A novel technique to quantify the contribution from this source of background is introduced. Experiments that operate germanium detectors with a very low energy threshold may benefit from the methods presented herein.

  4. Status report on the International Germanium Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Brodzinski, R.L.; Avignone, F.T.; Collar, J.I.; Courant, H.; Garcia, E.; Guerard, C.K.; Hensley, W.K.; Kirpichnikov, I.V.; Miley, H.S.; Morales, A.; Morales, J.; Nunez-Lagos, R.; Osetrov, S.B.; Pogosov, V.S.; Pomansky, A.A.; Puimedon, J.; Reeves, J.H.; Ruddick, K.; Saenz, C.; Salinas, A.; Sarsa, M.L.; Smolnikov, A.A.; Starostin, A.S.; Tamanyan, A.G.; Vasiliev, S.I.; Villar, J.A. (Pacific Northwest Lab., Richland, WA (United States) Univ. of South Carolina, Columbia, SC (United States) Univ. of Minnesota, Minneapolis, MN (United States) Univ. of Zaragoza (Spain) Inst. for Theoretical and Experimental Physics, Moscow (Russian Federation) Inst. for Nuclear Research, Baksan Neutrino Observatory (Russian Federation) Yerevan Physical Inst., Yerevan (Armenia))

    1993-04-01

    Phase II detector fabrication for the International Germanium Experiment is in progress. Sources of background observed during Phase I are discussed. Cosmogenic [sup 7]Be is measured in germanium. Radium contamination, presumably in electroformed copper, is reported. (orig.)

  5. Status report on the International Germanium Experiment

    Science.gov (United States)

    Brodzinski, R. L.; Avignone, F. T.; Collar, J. I.; Courant, H.; García, E.; Guerard, C. K.; Hensley, W. K.; Kirpichnikov, I. V.; Miley, H. S.; Morales, A.; Morales, J.; Núñez-Lagos, R.; Osetrov, S. B.; Pogosov, V. S.; Pomansky, A. A.; Puimedón, J.; Reeves, J. H.; Ruddick, K.; Sáenz, C.; Salinas, A.; Sarsa, M. L.; Smolnikov, A. A.; Starostin, A. S.; Tamanyan, A. G.; Vasiliev, S. I.; Villar, J. A.

    1993-04-01

    Phase II detector fabrication for the International Germanium Experiment is in progress. Sources of background observed during Phase I are discussed. Cosmogenic 7Be is measured in germanium. Radium contamination, presumably in electroformed copper, is reported.

  6. Backgrounds in AFP Detector Estimation

    CERN Document Server

    Huang, Yicong

    2016-01-01

    The ATLAS Forward Proton (AFP) detectors aim to measure protons that are scattered in the ATLAS interaction point under very small angles ($90-160 \\mu rad$). The diffractive protons detected by the AFP may be accompanied by beam halo. This report presents an estimation of the beam halo backgrounds in the AFP using low pile-up data, and position distributions of the backgrounds in the AFP.

  7. CASCADES: An Ultra-Low-Background Germanium Crystal Array at Pacific Northwest National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Keillor, Martin E.; Aalseth, Craig E.; Day, Anthony R.; Erikson, Luke E.; Fast, James E.; Glasgow, Brian D.; Hoppe, Eric W.; Hossbach, Todd W.; Hyronimus, Brian J.; Miley, Harry S.; Myers, Allan W.; Seifert, Allen; Stavenger, Timothy J.

    2011-07-14

    State-of-the-art treaty verification techniques, environmental surveillance, and physics experiments require increased sensitivity for detecting and quantifying radionuclides of interest. This can be accomplished with new detector designs that establish high detection efficiency and reduced instrument backgrounds. Current research is producing an intrinsic germanium (HPGe) array designed for high detection efficiency, ultra-low-background performance, and sensitive {gamma}-{gamma} coincidence detection. The system design is optimized to accommodate filter paper samples, e.g., samples collected by the Radionuclide Aerosol Sampler/Analyzer. The system will provide high sensitivity for weak collections on atmospheric filter samples (e.g., < 10{sup 5} fissions), as well as offering the potential to gather additional information from higher activity filters using gamma cascade coincidence detection. The first of two HPGe crystal arrays in ultra-low-background vacuum cryostats has been assembled, with the second in progress. Traditional methods for constructing ultra-low-background detectors were followed, including use of materials known to be low in radioactive contaminants, use of ultra-pure reagents, and clean room assembly. The cryostat is constructed mainly from copper electroformed into near-final geometry at Pacific Northwest National Laboratory. Details of the detector assembly and initial background and spectroscopic measurement results are presented; also a description of the custom analysis package used by this project is given.

  8. Impurity distribution in high purity germanium crystal and its impact on the detector performance

    Science.gov (United States)

    Wang, Guojian; Amman, Mark; Mei, Hao; Mei, Dongming; Irmscher, Klaus; Guan, Yutong; Yang, Gang

    High-purity germanium crystals were grown in a hydrogen atmosphere using the Czochralski method. The axial and radial distributions of impurities in the crystals were measured by Hall effect and Photo-thermal ionization spectroscopy (PTIS). Amorphous semiconductor contacts were deposited on the germanium crystals to make detectors. Three planar detectors were fabricated from three crystals with different net carrier concentrations (1.7, 7.9 and 10x1010 cm-3). We evaluated the electrical and spectral performance of three detectors. Measurements of gamma-ray spectra from 137Cs, 241Am and 60Co sources demonstrate that the detectors have excellent energy resolution. The relationship between the impurities and detector's energy resolution was analyzed. Keywords: High-purity germanium crystal, High-purity germanium detector This work is supported by DOE grant DE-FG02-10ER46709 and the state of South Dakota..

  9. Low-energy neutrino and dark matter physics with sub-keV germanium detectors

    Indian Academy of Sciences (India)

    A K Soma; L Singh; M K Singh; V Singh; H T Wong

    2012-11-01

    The TEXONO-CDEX Collaboration (Taiwan experiment on neutrino–China dark matter experiment) explores high-purity germanium (HPGe) detection technology to develop a sub-keV threshold detector for pursuing studies on low mass weakly interacting massive particles (WIMPs), properties of neutrino and the possibilities of neutrino-nucleus coherent scattering observation. This article will introduce the facilities of newly established China Jing-Ping Underground Laboratory (CJPL), preliminary result of cosmic ray background studies at CJPL, the dark matter studies pursued at Kuo-Sheng Neutrino Laboratory (KSNL) and research efforts to accomplish our physics goals.

  10. Discrimination of nuclear and electronic recoil events using plasma effect in germanium detectors

    Science.gov (United States)

    Wei, W.-Z.; Liu, J.; Mei, D.-M.

    2016-07-01

    We report a new method of using the plasma time difference, which results from the plasma effect, between the nuclear and electronic recoil events in high-purity germanium detectors to distinguish these two types of events in the search for rare physics processes. The physics mechanism of the plasma effect is discussed in detail. A numerical model is developed to calculate the plasma time for nuclear and electronic recoils at various energies in germanium detectors. It can be shown that under certain conditions the plasma time difference is large enough to be observable. The experimental aspects in realizing such a discrimination in germanium detectors is discussed.

  11. Discrimination of nuclear and electronic recoil events using plasma effect in germanium detectors

    CERN Document Server

    Wei, W -Z; Mei, D -M

    2016-01-01

    We report a new method of using the plasma time difference, which results from the plasma effect, between the nuclear and electronic recoil events in high-purity germanium detectors to distinguish these two types of events in the search for rare physics processes. The physics mechanism of the plasma effect is discussed in detail. A numerical model is developed to calculate the plasma time for nuclear and electronic recoils at various energies in germanium detectors. It can be shown that under certain conditions the plasma time difference is large enough to be observable. The experimental aspects in realizing such a discrimination in germanium detectors is discussed.

  12. Contribution of a germanium detector in mobile gamma-ray spectrometry. Spectral analysis and performance

    CERN Document Server

    Gutierrez, S; Bourgeois, C

    2002-01-01

    The sensitivity of the germanium semi-conductor detector is 30 times lower than that of the sodium iodide (NaI) detectors frequently used in airborne spectrometry. Its energy resolution however, is 20 times better, giving more accurate identification of radionuclides, especially when complex spectra are involved. The use of the germanium detector in mobile gamma-ray spectrometry provides a large amount of qualitative and quantitative information. In post-accident situations a germanium detector will be sufficient, and should therefore be used in preference to a NaI detector. An algorithm for detecting the total absorption peaks by studying the variations in the spectral profile of germanium gamma-ray spectra has been developed at the CEA. The use of digital filters that take into account the characteristics of the absorption peaks reduces the statistical fluctuations, making possible detection based on the analysis of the first and second derivatives. The absorption peak is then estimated by subtracting the b...

  13. An Implant-Passivated Blocked Impurity Band Germanium Detector for the Far Infrared Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to fabricate a germanium blocked-impurity-band (BIB) detector using a novel process which will enable us to: 1- fabricate a suitably-doped active layer...

  14. An Implant-Passivated Blocked Impurity Band Germanium Detector for the Far Infrared Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to investigate the feasibility of fabricating a germanium blocked-impurity-band (BIB) detector using a novel process which will enable us to: 1- fabricate...

  15. Germanium detectors for nuclear spectroscopy: Current research and development activity at LNL

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, D. R., E-mail: daniel.r.napoli@lnl.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Maggioni, G., E-mail: maggioni@lnl.infn.it; Carturan, S.; Gelain, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Department of Physics and Astronomy “G. Galilei”, University of Padova, Via Marzolo 8, 35121 Padova (Italy); Eberth, J. [Institut für Kernphysik, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln (Germany); Grimaldi, M. G.; Tatí, S. [Department of Physics and Astronomy, University of Catania (Italy); Riccetto, S. [University of Camerino and INFN of Perugia (Italy); Mea, G. Della [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); University of Trento (Italy)

    2016-07-07

    High-purity Germanium (HPGe) detectors have reached an unprecedented level of sophistication and are still the best solution for high-resolution gamma spectroscopy. In the present work, we will show the results of the characterization of new surface treatments for the production of these detectors, studied in the framework of our multidisciplinary research program in HPGe detector technologies.

  16. Bulk and Surface Event Identification in p-type Germanium Detectors

    CERN Document Server

    Yang, L T; Jia, L P; Jiang, H; Li, J; Lin, F K; Lin, S T; Liu, S K; Ma, J L; Sharma, V; Singh, L; Singh, M K; Soma, A K; Yang, S W; Wang, L; Wang, Q; Wong, H T; Yue, Q; Zhao, W

    2016-01-01

    The p-type point-contact germanium detectors, due to its sub-keV sensitivities and low internal radioactivity background, are demonstrated to be competitive tools for light dark matter WIMPs searches and may have potential applications in neutrino physics. These detectors exhibit anomalous surface behavior, which has been characterized and dealt with in previous analysis. However, the analysis method rely on spectral shape assumptions and must use external calibration sources. In this report, we purpose an improved method, where in situ data could be used as calibration sources. Data from CDEX-1 and TEXONO experiments will be re-examined and the results are shown to be consistent with both analysis.

  17. Charge-trap correction and radiation damage in orthogonal-strip planar germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, E.L. [PHDS Corporation, 3011 Amherst Road, Knoxville, TN 37921 (United States); Jackson, E.G.; Lister, C.J. [Physics Department, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Pehl, R.H. [PHDS Corporation, 3011 Amherst Road, Knoxville, TN 37921 (United States)

    2014-10-21

    A charge-carrier trap correction technique was developed for orthogonal strip planar germanium gamma-ray detectors. The trap corrector significantly improves the gamma-ray energy resolution of detectors with charge-carrier trapping from crystal-growth defects and radiation damage. Two orthogonal-strip planar germanium detectors were radiation damaged with 2-MeV neutron fluences of ∼8×10{sup 9} n/cm{sup 2}. The radiation-damaged detectors were studied in the 60–80 K temperature range.

  18. Radium needle used to calibrate germanium gamma-ray detector.

    Science.gov (United States)

    Kamboj, S; Lovett, D; Kahn, B; Walker, D

    1993-03-01

    A standard platinum-iridium needle that contains 374 MBq 226Ra was tested as a source for calibrating a portable germanium detector used with a gamma-ray spectrometer for environmental radioactivity measurements. The counting efficiencies of the 11 most intense gamma rays emitted by 226Ra and its short-lived radioactive progeny at energies between 186 and 2,448 keV were determined, at the full energy peaks, to construct a curve of counting efficiency vs. energy. The curve was compared to another curve between 43 and 1,596 keV obtained with a NIST mixed-radionuclide standard. It was also compared to the results of a Monte Carlo simulation. The 226Ra source results were consistent with the NIST standard between 248 and 1,596 keV. The Monte Carlo simulation gave a curve parallel to the curve for the combined radium and NIST standard data between 250 and 2,000 keV, but at higher efficiency.

  19. Performance and stability tests of bare high purity germanium detectors in liquid argon for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Barnabe Heider, Marik

    2009-05-27

    GERDA will search for neutrinoless double beta decay of {sup 76}Ge by using a novel approach of bare germanium detectors in liquid argon (LAr). Enriched germanium detectors from the previous Heidelberg-Moscow and IGEX experiments have been reprocessed and will be deployed in GERDA Phase-I. At the center of this thesis project is the study of the performance of bare germanium detectors in cryogenic liquids. Identical detector performance as in vacuum cryostats (2.2 keV FWHM at 1.3 MeV) was achieved in cryogenic liquids with a new low-mass detector assembly and contacts. One major result is the discovery of a radiation induced leakage current (LC) increase when operating bare detectors with standard passivation layers in LAr. Charge collection and build-up on the passivation layer were identified as the origin of the LC increase. It was found that diodes without passivation do not exhibit this feature. Three month-long stable operation in LAr at {proportional_to} 5 pA LC under periodic gamma irradiation demonstrated the suitability of the modi ed detector design. Based on these results, all Phase-I detectors were reprocessed without passivation layer and subsequently successfully characterized in LAr in the GERDA underground Detector Laboratory. The mass loss during the reprocessing was {proportional_to}300 g out of 17.9 kg and the exposure above ground {proportional_to} 5 days. This results in a negligible cosmogenic background increase of {proportional_to} 5.10{sup -4} cts/(keV.kg.y) at {sup 76}Ge Q{sub {beta}}{sub {beta}} for {sup 60}Co and {sup 68}Ge. (orig.)

  20. HEROICA: an underground facility for the fast screening of germanium detectors

    Science.gov (United States)

    Andreotti, E.; Garfagnini, A.; Maneschg, W.; Barros, N.; Benato, G.; Brugnera, R.; Costa, F.; Falkenstein, R.; Guthikonda, K. K.; Hegai, A.; Hemmer, S.; Hult, M.; Jänner, K.; Kihm, T.; Lehnert, B.; Liao, H.; Lubashevskiy, A.; Lutter, G.; Marissens, G.; Modenese, L.; Pandola, L.; Reissfelder, M.; Sada, C.; Salathe, M.; Schmitt, C.; Schulz, O.; Schwingenheuer, B.; Turcato, M.; Ur, C.; von Sturm, K.; Wagner, V.; Westermann, J.

    2013-06-01

    HEROICA (Hades Experimental Research Of Intrinsic Crystal Appliances) is an infrastructure to characterize germanium detectors and has been designed and constructed at the HADES Underground Research Laboratory, located in Mol (Belgium). Thanks to the 223 m overburden of clay and sand, the muon flux is lowered by four orders of magnitude. This natural shield minimizes the exposure of radio-pure germanium material to cosmic radiation resulting in a significant suppression of cosmogenic activation in the germanium detectors. The project has been strongly motivated by a special production of germanium detectors for the GERDA experiment. GERDA, currently collecting data at the Laboratori Nazionali del Gran Sasso of INFN, is searching for the neutrinoless double beta decay of 76Ge. In the near future, GERDA will increase its mass and sensitivity by adding new Broad Energy Germanium (BEGe) detectors. The production of the BEGe detectors is done at Canberra in Olen (Belgium), located about 30 km from the underground test site. Therefore, HADES is used both for storage of the crystals over night, during diode production, and for the characterization measurements. A full quality control chain has been setup and tested on the first seven prototype detectors delivered by the manufacturer at the beginning of 2012. The screening capabilities demonstrate that the installed setup fulfills a fast and complete set of measurements on the diodes and it can be seen as a general test facility for the fast screening of high purity germanium detectors. The results are of major importance for a future massive production and characterization chain of germanium diodes foreseen for a possible next generation 1-tonne double beta decay experiment with 76Ge.

  1. High bit rate germanium single photon detectors for 1310nm

    Science.gov (United States)

    Seamons, J. A.; Carroll, M. S.

    2008-04-01

    There is increasing interest in development of high speed, low noise and readily fieldable near infrared (NIR) single photon detectors. InGaAs/InP Avalanche photodiodes (APD) operated in Geiger mode (GM) are a leading choice for NIR due to their preeminence in optical networking. After-pulsing is, however, a primary challenge to operating InGaAs/InP single photon detectors at high frequencies1. After-pulsing is the effect of charge being released from traps that trigger false ("dark") counts. To overcome this problem, hold-off times between detection windows are used to allow the traps to discharge to suppress after-pulsing. The hold-off time represents, however, an upper limit on detection frequency that shows degradation beginning at frequencies of ~100 kHz in InGaAs/InP. Alternatively, germanium (Ge) single photon avalanche photodiodes (SPAD) have been reported to have more than an order of magnitude smaller charge trap densities than InGaAs/InP SPADs2, which allowed them to be successfully operated with passive quenching2 (i.e., no gated hold off times necessary), which is not possible with InGaAs/InP SPADs, indicating a much weaker dark count dependence on hold-off time consistent with fewer charge traps. Despite these encouraging results suggesting a possible higher operating frequency limit for Ge SPADs, little has been reported on Ge SPAD performance at high frequencies presumably because previous work with Ge SPADs has been discouraged by a strong demand to work at 1550 nm. NIR SPADs require cooling, which in the case of Ge SPADs dramatically reduces the quantum efficiency of the Ge at 1550 nm. Recently, however, advantages to working at 1310 nm have been suggested which combined with a need to increase quantum bit rates for quantum key distribution (QKD) motivates examination of Ge detectors performance at very high detection rates where InGaAs/InP does not perform as well. Presented in this paper are measurements of a commercially available Ge APD

  2. Extraction of Physics Signals Near Threshold with Germanium Detectors in Neutrino and Dark Matter Experiments

    CERN Document Server

    Soma, A K; Lin, F K; Singh, M K; Jiang, H; Liu, S K; Singh, L; Wu, Y C; Yang, L T; Zhao, W; Agartioglu, M; Asryan, G; Chuang, Y C; Deniz, M; Hsu, C L; Hsu, Y H; Huang, T R; Li, H B; Li, J; Liao, F T; Liao, H Y; Lin, C W; Lin, S T; Ma, J L; Sharma, V; Shen, Y T; Singh, V; Su, J; Subrahmanyam, V S; Tseng, C H; Wang, J J; Wong, H T; Xu, Y; Yang, S W; Yu, C X; Yuan, X C; Yue, Q; Zeyre, M

    2014-01-01

    Germanium ionization detectors with sensitivities as low as 100 eVee open new windows for the studies of neutrino and dark matter physics. The physics motivations of sub-keV germanium detectors are summarized. The amplitude of physics signals is comparable to those due to fluctuations of the pedestal electronic noise. Various experimental issues have to be attended before the promises of this new detector technique can be fully exploited. These include quenching factors, energy definition and calibration, signal triggering and selection together with their associated inefficiencies derivation. The efforts and results of an R&D program to address these challenges are presented.

  3. A Search of Low-Mass WIMPs with p-type Point Contact Germanium Detector in the CDEX-1 Experiment

    CERN Document Server

    Zhao, W; Kang, K J; Cheng, J P; Li, Y J; Wong, H T; Lin, S T; Chang, J P; Chen, J H; Chen, Q H; Chen, Y H; Deng, Z; Du, Q; Gong, H; Hao, X Q; He, H J; He, Q J; Huang, H X; Huang, T R; Jiang, H; Li, H B; Li, J; Li, J M; Li, X; Li, X Y; Li, Y L; Lin, F K; Liu, S K; Lü, L C; Ma, H; Ma, J L; Mao, S J; Qin, J Q; Ren, J; Ruan, X C; Sharma, V; Shen, M B; Singh, L; Singh, M K; Soma, A K; Su, J; Tang, C J; Wang, J M; Wang, L; Wang, Q; Wu, S Y; Wu, Y C; Xianyu, Z Z; Xiao, R Q; Xing, H Y; Xu, F Z; Xu, Y; Xu, X J; Xue, T; Yang, L T; Yang, S W; Yi, N; Yu, C X; Yu, H; Yu, X Z; Zeng, M; Zeng, X H; Zeng, Z; Zhang, L; Zhang, Y H; Zhao, M G; Zhou, Z Y; Zhu, J J; Zhu, W B; Zhu, X Z; Zhu, Z H

    2016-01-01

    The CDEX-1 experiment conducted a search of low-mass (< 10 GeV/c2) Weakly Interacting Massive Particles (WIMPs) dark matter at the China Jinping Underground Laboratory using a p-type point-contact germanium detector with a fiducial mass of 915 g at a physics analysis threshold of 475 eVee. We report the hardware set-up, detector characterization, data acquisition and analysis procedures of this experiment. No excess of unidentified events are observed after subtraction of known background. Using 335.6 kg-days of data, exclusion constraints on the WIMP-nucleon spin-independent and spin-dependent couplings are derived.

  4. Analysis of the dead layer of a detector of germanium with code ultrapure Monte Carlo SWORD-GEANT; Analisis del dead layer de un detector de germanio ultrapuro con el codigo de Monte Carlo SWORDS-GEANT

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, S.; Querol, A.; Ortiz, J.; Rodenas, J.; Verdu, G.

    2014-07-01

    In this paper the use of Monte Carlo code SWORD-GEANT is proposed to simulate an ultra pure germanium detector High Purity Germanium detector (HPGe) detector ORTEC specifically GMX40P4, coaxial geometry. (Author)

  5. Demonstration of Surface Electron Rejection with Interleaved Germanium Detectors for Dark Matter Search

    CERN Document Server

    Agnese, R; Balakishiyeva, D; Thakur, R Basu; Bauer, D A; Borgland, A; Brandt, D; Brink, P L; Bunker, R; Cabrera, B; Caldwell, D O; Cerdeno, D G; Chagani, H; Cherry, M; Cooley, J; Cornell, B; Crewdson, C H; Cushman, P; Daal, M; Di Stefano, P C F; Silva, E Do Couto E; Doughty, T; Esteban, L; Fallows, S; Figueroa-Feliciano, E; Fox, J; Fritts, M; Godfrey, G L; Golwala, S R; Hall, J; Harris, H R; Hasi, J; Hertel, S A; Hines, B A; Hofer, T; Holmgren, D; Hsu, L; Huber, M E; Jastram, A; Kamaev, O; Kara, B; Kelsey, M H; Kenany, S A; Kennedy, A; Kenney, C J; Kiveni, M; Koch, K; Loer, B; Asamar, E Lopez; Mahapatra, R; Mandic, V; Martinez, C; McCarthy, K A; Mirabolfathi, N; Moffatt, R A; Moore, D C; Nadeau, P; Nelson, R H; Novak, L; Page, K; Partridge, R; Pepin, M; Phipps, A; Prasad, K; Pyle, M; Qiu, H; Radpour, R; Rau, W; Redl, P; Reisetter, A; Resch, R W; Ricci, Y; Saab, T; Sadoulet, B; Sander, J; Schmitt, R; Schneck, K; Schnee, R W; Scorza, S; Seitz, D; Serfass, B; Shank, B; Speller, D; Tomada, A; Villano, A N; Welliver, B; Wright, D H; Yellin, S; Yen, J J; Young, B A; Zhang, J

    2013-01-01

    SuperCDMS, a direct search for WIMPs, is currently operating a 9-kg array of cryogenic germanium (Ge) detectors in the Soudan Underground Laboratory. These detectors, known as iZIPs, use ionization and phonon sensors placed symmetrically on both sides of a Ge crystal to measure both charge and athermal phonons from each particle interaction. The information from each event provides excellent discrimination between electron recoils and nuclear recoils, as well as discrimination between events on the detector surface and those in the interior. To demonstrate the surface electron rejection capabilities, two $^{210}$Pb sources were installed facing detectors, producing $\\sim$130 beta decays/hr. In $\\sim$800 live hours, no events leaked into the WIMP signal region in the recoil energy range 8--115 keVr, providing an upper limit to the surface event leakage fraction of $1.7 \\times 10^{-5}$ at 90% C.L. This rejection factor demonstrates that surface electrons would produce $< 0.6$ event background in the 0.3 ton-...

  6. Demonstration of surface electron rejection with interleaved germanium detectors for dark matter searches

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; Balakishiyeva, D.; Saab, T.; Welliver, B. [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States); Anderson, A. J.; Figueroa-Feliciano, E.; Hertel, S. A.; McCarthy, K. A. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Basu Thakur, R. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illnois 61801 (United States); Bauer, D. A.; Holmgren, D.; Hsu, L.; Loer, B.; Schmitt, R. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Borgland, A.; Brandt, D.; Brink, P. L.; Do Couto E Silva, E.; Godfrey, G. L.; Hasi, J. [SLAC National Accelerator Laboratory/Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Collaboration: The SuperCDMS Collaboration; and others

    2013-10-14

    The SuperCDMS experiment in the Soudan Underground Laboratory searches for dark matter with a 9-kg array of cryogenic germanium detectors. Symmetric sensors on opposite sides measure both charge and phonons from each particle interaction, providing excellent discrimination between electron and nuclear recoils, and between surface and interior events. Surface event rejection capabilities were tested with two {sup 210}Pb sources producing ∼130 beta decays/hr. In ∼800 live hours, no events leaked into the 8–115 keV signal region, giving upper limit leakage fraction 1.7 × 10{sup −5} at 90% C.L., corresponding to < 0.6 surface event background in the future 200-kg SuperCDMS SNOLAB experiment.

  7. Demonstration of Surface Electron Rejection with Interleaved Germanium Detectors for Dark Matter Searches

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; Anderson, A. J.; Balakishiyeva, D.; Basu Thakur, R.; Bauer, D. A.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Cerdeno, D. G.; Chagani, H.; Cherry, M.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; Di Stefano, P. C.; Do Couto E Silva, E.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Fox, J.; Fritts, M.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Harris, H. R.; Hasi, J.; Hertel, S. A.; Hines, B. A.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kenany, S.; Kennedy, A.; Kenney, C. J.; Kiveni, M.; Koch, K.; Loer, B.; Lopez Asamar, E.; Mahapatra, R.; Mandic, V.; Martinez, C.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Moore, D. C.; Nadeau, P.; Nelson, R. H.; Novak, L.; Page, K.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Radpour, R.; Rau, W.; Redl, P.; Reisetter, A.; Resch, R. W.; Ricci, Y.; Saab, T.; Sadoulet, B.; Sander, J.; Schmitt, R.; Schneck, K.; Schnee, Richard; Scorza, S.; Seitz, D.; Serfass, B.; Shank, B.; Speller, D.; Tomada, A.; Villano, A. N.; Welliver, B.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2013-10-17

    The SuperCDMS experiment in the Soudan Underground Laboratory searches for dark matter with a 9-kg array of cryogenic germanium detectors. Symmetric sensors on opposite sides measure both charge and phonons from each particle interaction, providing excellent discrimination between electron and nuclear recoils, and between surface and interior events. Furthermore, surface event rejection capabilities were tested with two 210Pb sources producing ~130 beta decays/hr. We found that in ~800 live hours, no events leaked into the 8–115 keV signal region, giving upper limit leakage fraction 1.7 x 10-5 at 90% C.L., corresponding to<0.6 surface event background in the future 200-kg SuperCDMS SNOLAB experiment.

  8. Differentiation of Bulk and Surface Events in p-type Point-Contact Germanium Detectors for Light WIMP Searches

    CERN Document Server

    Li, H B

    2013-01-01

    The p-type point-contact germanium detectors are novel techniques offering kg-scale radiation sensors with sub-keV sensitivities. They have been used for light Dark Matter WIMPs searches and may have potential applications in neutrino physics. There are, however, anomalous surface behaviour which needs to be characterized and understood. We describe the methods and results of a research program whose goals are to identify the bulk and surface events via software pulse shape analysis techniques, and to devise calibration schemes to evaluate the selection efficiency factors. Efficiencies-corrected background spectra from the low-background facility at Kuo-Sheng Neutrino Laboratory are derived.

  9. Performance of bare high-purity germanium detectors in liquid argon for the GERDA experiment

    CERN Document Server

    Heider, Marik Barnabé; Chkvorets, Oleg; Di Vacri, Assunta; Gusev, Konstantin; Schönert, Stefan; Shirchenko, Mark

    2008-01-01

    The GERmanium Detector Array, GERDA, will search for neutrinoless double beta decay in 76Ge at the National Gran Sasso Laboratory of the INFN. Bare high-purity germanium detectors enriched in 76Ge will be submerged in liquid argon serving simultaneously as a shield against external radioactivity and as a cooling medium. In GERDA Phase-I, reprocessed enriched-Ge detectors, which were previously operated by the Heidelberg-Moscow and IGEX collaborations, will be redeployed. Before operating the enriched detectors, tests are performed with non-enriched bare HPGe detectors in the GERDA underground Detector Laboratory to test the Phase-I detector assembly, the detector handling protocols, the refurbishment technology and to study the long-term stability in liquid argon. The leakage currents in liquid argon and liquid nitrogen have been extensively studied under varying gamma irradiation conditions. In total three non-enriched high-purity p-type prototype germanium detectors have been operated successfully. The dete...

  10. Gamma-Ray Background Variability in Mobile Detectors

    Science.gov (United States)

    Aucott, Timothy John

    . This is accomplished by making many hours of background measurements with a truck-mounted system, which utilizes high-purity germanium detectors for spectroscopy and sodium iodide detectors for coded aperture imaging. This system also utilizes various peripheral sensors, such as panoramic cameras, laser ranging systems, global positioning systems, and a weather station to provide context for the gamma-ray data. About three hundred hours of data were taken in the San Francisco Bay Area, covering a wide variety of environments that might be encountered in operational scenarios. These measurements were used in a source injection study to evaluate the sensitivity of different algorithms (imaging and spectroscopy) and hardware (sodium iodide and high-purity germanium detectors). These measurements confirm that background distributions in large, mobile detector systems are dominated by systematic, not statistical variations, and both spectroscopy and imaging were found to substantially reduce this variability. Spectroscopy performed better than the coded aperture for the given scintillator array (one square meter of sodium iodide) for a variety of sources and geometries. By modeling the statistical and systematic uncertainties of the background, the data can be sampled to simulate the performance of a detector array of arbitrary size and resolution. With a larger array or lower resolution detectors, however imaging was better able to compensate for background variability.

  11. Germanium detector test-stands at the Max Planck Institute for Physics and alpha interactions on passivated surfaces

    Science.gov (United States)

    Gooch, C.; Garbini, L.; Abt, I.; Schulz, O.; Palermo, M.; Majorovits, B.; Liao, H.-Y.; Liu, X.; Seitz, H.

    2015-05-01

    The GeDetgroup at the Max Planck Institute for Physics in Munich, Germany, operates a number of test stands in order to conduct research on novel germanium detectors. The test stands are of a unique design and construction that provide the ability to probe the properties of new detector types. The GALATEA test stand was especially designed for surface scans, specifically a-induced surface events, a problem faced in low background experiments due to unavoidable surface contamination of detectors. A special 19-fold segmented coaxial prototype detector has already been investigated inside GALATEA with an a-source. A top surface scan provided insight into the physics underneath the passivation layer. Detector segmentation provides a direct path towards background identification and characterisation. With this in mind, a 4-fold segmentation scheme was implemented on a broad-energy point-contact detector and is being investigated inside the groups K1 test stand. A cryogenic test-stand where detectors can be submerged directly in liquid nitrogen or argon is also available. The goal is to establish segmentation as a viable option to reduce background in future large scale experiments.

  12. Dark Matter Search with sub-keV Germanium Detectors at the China Jinping Underground Laboratory

    CERN Document Server

    Yue, Qian

    2012-01-01

    Germanium detectors with sub-keV sensitivities open a window to search for low-mass WIMP dark matter. The CDEX-TEXONO Collaboration is conducting the first research program at the new China Jinping Underground Laboratory with this approach. The status and plans of the laboratory and the experiment are discussed.

  13. Dark Matter Search with Sub-Kev Germanium Detectors at the China Jinping Underground Laboratory

    Science.gov (United States)

    Yue, Qian; Wong, Henry T.

    2013-12-01

    Germanium detectors with sub-keV sensitivities open a window to search for low-mass WIMP dark matter. The CDEX-TEXONO Collaboration is conducting the first research program at the new China Jinping Underground Laboratory with this approach. The status and plans of the laboratory and the experiment are discussed.

  14. \\textsc{MaGe} - a {\\sc Geant4}-based Monte Carlo Application Framework for Low-background Germanium Experiments

    CERN Document Server

    Boswell, Melissa; Detwiler, Jason A; Finnerty, Padraic; Henning, Reyco; Gehman, Victor M; Johnson, Rob A; Jordan, David V; Kazkaz, Kareem; Knapp, Markus; Kröninger, Kevin; Lenz, Daniel; Leviner, Lance; Liu, Jing; Liu, Xiang; MacMullin, Sean; Marino, Michael G; Mokhtarani, Akbar; Pandola, Luciano; Schubert, Alexis G; Schubert, Jens; Tomei, Claudia; Volynets, Oleksandr

    2010-01-01

    We describe a physics simulation software framework, MAGE, that is based on the GEANT4 simulation toolkit. MAGE is used to simulate the response of ultra-low radioactive background radiation detectors to ionizing radiation, specifically the MAJORANA and GERDA neutrinoless double-beta decay experiments. MAJORANA and GERDA use high-purity germanium detectors to search for the neutrinoless double-beta decay of 76Ge, and MAGE is jointly developed between these two collaborations. The MAGE framework contains the geometry models of common objects, prototypes, test stands, and the actual experiments. It also implements customized event generators, GEANT4 physics lists, and output formats. All of these features are available as class libraries that are typically compiled into a single executable. The user selects the particular experimental setup implementation at run-time via macros. The combination of all these common classes into one framework reduces duplication of efforts, eases comparison between simulated data...

  15. CoGeNT: A Search for Low-Mass Dark Matter using p-type Point Contact Germanium Detectors

    CERN Document Server

    Aalseth, C E; Colaresi, J; Collar, J I; Leon, J Diaz; Fast, J E; Fields, N E; Hossbach, T W; Knecht, A; Kos, M S; Marino, M G; Miley, H S; Miller, M L; Orrell, J L; Yocum, K M

    2013-01-01

    CoGeNT employs p-type point-contact (PPC) germanium detectors to search for Weakly Interacting Massive Particles (WIMPs). By virtue of its low energy threshold and ability to reject surface backgrounds, this type of device allows an emphasis on low-mass dark matter candidates (WIMP mass around 10 GeV/c2). We report on the characteristics of the PPC detector presently taking data at the Soudan Underground Laboratory, elaborating on aspects of shielding, data acquisition, instrumental stability, data analysis, and background estimation. A detailed background model is used to investigate the low energy excess of events previously reported, and to assess the possibility of temporal modulations in the low-energy event rate. We conclude that the technique is ideally suited to search for the annual modulation signature expected from dark matter particle interactions in the region of WIMP mass and coupling favored by the DAMA/LIBRA claim.

  16. Background reduction in cryogenic detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Daniel A.; /Fermilab

    2005-04-01

    This paper discusses the background reduction and rejection strategy of the Cryogenic Dark Matter Search (CDMS) experiment. Recent measurements of background levels from CDMS II at Soudan are presented, along with estimates for future improvements in sensitivity expected for a proposed SuperCDMS experiment at SNOLAB.

  17. Resonance-enhanced waveguide-coupled silicon-germanium detector

    CERN Document Server

    Alloatti, Luca

    2016-01-01

    A photodiode with 0.55$\\pm$0.1 A/W responsivity at a wavelength of 1176.9 nm has been fabricated in a 45 nm microelectronics silicon-on-insulator foundry process. The resonant waveguide photodetector exploits carrier generation in silicon-germanium (SiGe) within a microring which is compatible with high-performance electronics. A 3 dB bandwidth of 5 GHz at -4 V bias is obtained with a dark current of less than 20 pA.

  18. High-precision efficiency calibration of a high-purity co-axial germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Blank, B., E-mail: blank@cenbg.in2p3.fr [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Souin, J.; Ascher, P.; Audirac, L.; Canchel, G.; Gerbaux, M.; Grévy, S.; Giovinazzo, J.; Guérin, H.; Nieto, T. Kurtukian; Matea, I. [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Bouzomita, H.; Delahaye, P.; Grinyer, G.F.; Thomas, J.C. [Grand Accélérateur National d' Ions Lourds, CEA/DSM, CNRS/IN2P3, Bvd Henri Becquerel, BP 55027, F-14076 CAEN Cedex 5 (France)

    2015-03-11

    A high-purity co-axial germanium detector has been calibrated in efficiency to a precision of about 0.15% over a wide energy range. High-precision scans of the detector crystal and γ-ray source measurements have been compared to Monte-Carlo simulations to adjust the dimensions of a detector model. For this purpose, standard calibration sources and short-lived online sources have been used. The resulting efficiency calibration reaches the precision needed e.g. for branching ratio measurements of super-allowed β decays for tests of the weak-interaction standard model.

  19. A New Expression for the Full Energy Peak Efficiency of a High Pure Germanium Detector

    CERN Document Server

    Medhat, M E; Awaad, Z

    2001-01-01

    An empirical expression for the full energy photo-peak efficiency in terms of gamma-ray energy (E) and the vertical distance from the detector surface (d) (i.e. efficiency = function (d,E)) has been obtained for a high pure germanium detector (HPGe) using different standard sources. Comparison of the calculated efficiencies and the experimentally measured values for the energy range from 59.5-1332.2 keV and a source-to-detector distance of 5-30 cm showed that the theoretical values agree with the experiment.

  20. Empirical Correction of Crosstalk in a Low-Background Germanium γ–γ Analysis System

    Energy Technology Data Exchange (ETDEWEB)

    Keillor, Martin E.; Erikson, Luke E.; Aalseth, Craig E.; Day, Anthony R.; Fuller, Erin S.; Glasgow, Brian D.; Hoppe, Eric W.; Hossbach, Todd W.; Mizouni, Leila K.; Myers, Allan W.; Overman, Cory T.; Seifert, Allen; Stavenger, Timothy J.

    2013-05-01

    ABSTRACT The Pacific Northwest National Laboratory is currently developing a custom software suite capable of automating many of the tasks required to accurately analyze coincident signals within gamma spectrometer arrays. During the course of this work, significant crosstalk was identified in the energy determination for spectra collected with a new low-background intrinsic germanium (HPGe) array at PNNL. The HPGe array is designed for high detection efficiency, ultra-low-background performance, and sensitive gamma gamma coincidence detection. The first half of the array, a single cryostat containing 7 HPGe crystals, was recently installed into a new shallow underground laboratory facility. This update will present a brief review of the germanium array, describe the observed crosstalk, and present a straight-forward empirical correction that significantly reduces the impact of this crosstalk on the spectroscopic performance of the system.

  1. CDEX-1 1 kg point-contact germanium detector for low mass dark matter searches

    Science.gov (United States)

    Kang, Ke-Jun; Yue, Qian; Wu, Yu-Cheng; Cheng, Jian-Ping; Li, Yuan-Jing; Bai, Yang; Bi, Yong; Chang, Jian-Ping; Chen, Nan; Chen, Ning; Chen, Qing-Hao; Chen, Yun-Hua; Chuang, Yo-Chun; Deng, Zhi; Du, Qiang; Gong, Hui; Hao, Xi-Qing; He, Qing-Ju; Hu, Xin-Hui; Huang, Han-Xiong; Huang, Teng-Rui; Jiang, Hao; Li, Hau-Bin; Li, Jian-Min; Li, Jin; Li, Jun; Li, Xia; Li, Xin-Ying; Li, Xue-Qian; Li, Yu-Lan; Liao, Heng-Yi; Lin, Fong-Kay; Lin, Shin-Ted; Liu, Shu-Kui; Lü, Lan-Chun; Ma, Hao; Mao, Shao-Ji; Qin, Jian-Qiang; Ren, Jie; Ren, Jing; Ruan, Xi-Chao; Shen, Man-Bin; Lakhwinder, Singh; Manoj, Kumar Singh; Arun, Kumar Soma; Su, Jian; Tang, Chang-Jian; Tseng, Chao-Hsiung; Wang, Ji-Min; Wang, Li; Wang, Qing; Wong Tsz-King, Henry; Wu, Shi-Yong; Wu, Wei; Wu, Yu-Cheng; Xing, Hao-Yang; Xu, Yin; Xue, Tao; Yang, Li-Tao; Yang, Song-Wei; Yi, Nan; Yu, Chun-Xu; Yu, Hao; Yu, Xun-Zhen; Zeng, Xiong-Hui; Zeng, Zhi; Zhang, Lan; Zhang, Yun-Hua; Zhao, Ming-Gang; Zhao, Wei; Zhong, Su-Ning; Zhou, Zu-Ying; Zhu, Jing-Jun; Zhu, Wei-Bin; Zhu, Xue-Zhou; Zhu, Zhong-Hua

    2013-12-01

    The CDEX collaboration has been established for direct detection of light dark matter particles, using ultra-low energy threshold point-contact p-type germanium detectors, in China JinPing underground Laboratory (CJPL). The first 1 kg point-contact germanium detector with a sub-keV energy threshold has been tested in a passive shielding system located in CJPL. The outputs from both the point-contact P+ electrode and the outside N+ electrode make it possible to scan the lower energy range of less than 1 keV and at the same time to detect the higher energy range up to 3 MeV. The outputs from both P+ and N+ electrode may also provide a more powerful method for signal discrimination for dark matter experiment. Some key parameters, including energy resolution, dead time, decay times of internal X-rays, and system stability, have been tested and measured. The results show that the 1 kg point-contact germanium detector, together with its shielding system and electronics, can run smoothly with good performances. This detector system will be deployed for dark matter search experiments.

  2. A Detector for Cosmic Microwave Background Polarimetry

    Science.gov (United States)

    Wollack, E.; Cao, N.; Chuss, D.; Hsieh, W.-T.; Moseley, S. Harvey; Stevenson, T.; U-yen, K.

    2008-01-01

    We present preliminary design and development work on polarized detectors intended to enable Cosmic Microwave Background polarization measurements that will probe the first moments of the universe. The ultimate measurement will be challenging, requiring background-limited detectors and good control of systematic errors. Toward this end, we are integrating the beam control of HE-11 feedhorns with the sensitivity of transition-edge sensors. The coupling between these two devices is achieved via waveguide probe antennas and superconducting microstrip lines. This implementation allows band-pass filters to be incorporated on the detector chip. We believe that a large collection of single-mode polarized detectors will eventually be required for the reliable detection of the weak polarized signature that is expected to result from gravitational waves produced by cosmic inflation. This focal plane prototype is an important step along the path to this detection, resulting in a capability that will enable various future high performance instrument concepts.

  3. A Detector for Cosmic Microwave Background Polarimetry

    Science.gov (United States)

    Wollack, E.; Cao, N.; Chuss, D.; Hsieh, W.-T.; Moseley, S. Harvey; Stevenson, T.; U-yen, K.

    2008-01-01

    We present preliminary design and development work on polarized detectors intended to enable Cosmic Microwave Background polarization measurements that will probe the first moments of the universe. The ultimate measurement will be challenging, requiring background-limited detectors and good control of systematic errors. Toward this end, we are integrating the beam control of HE-11 feedhorns with the sensitivity of transition-edge sensors. The coupling between these two devices is achieved via waveguide probe antennas and superconducting microstrip lines. This implementation allows band-pass filters to be incorporated on the detector chip. We believe that a large collection of single-mode polarized detectors will eventually be required for the reliable detection of the weak polarized signature that is expected to result from gravitational waves produced by cosmic inflation. This focal plane prototype is an important step along the path to this detection, resulting in a capability that will enable various future high performance instrument concepts.

  4. Simulation study comparing high-purity germanium and cadmium zinc telluride detectors for breast imaging

    Science.gov (United States)

    Campbell, D. L.; Peterson, T. E.

    2014-11-01

    We conducted simulations to compare the potential imaging performance for breast cancer detection with High-Purity Germanium (HPGe) and Cadmium Zinc Telluride (CZT) systems with 1% and 3.8% energy resolution at 140 keV, respectively. Using the Monte Carlo N-Particle (MCNP5) simulation package, we modelled both 5 mm-thick CZT and 10 mm-thick HPGe detectors with the same parallel-hole collimator for the imaging of a breast/torso phantom. Simulated energy spectra were generated, and planar images were created for various energy windows around the 140 keV photopeak. Relative sensitivity and scatter and the torso fractions were calculated along with tumour contrast and signal-to-noise ratios (SNR). Simulations showed that utilizing a ±1.25% energy window with an HPGe system better suppressed torso background and small-angle scattered photons than a comparable CZT system using a -5%/+10% energy window. Both systems provided statistically similar contrast and SNR, with HPGe providing higher relative sensitivity. Lowering the counts of HPGe images to match CZT count density still yielded equivalent contrast between HPGe and CZT. Thus, an HPGe system may provide equivalent breast imaging capability at lower injected radioactivity levels when acquiring for equal imaging time.

  5. Neutrino and dark matter physics with sub-keV germanium detectors

    Indian Academy of Sciences (India)

    Arun Kumar Soma; Lakhwinder Singh; Manoj Kumar Singh; Venktesh Singh; Henry T Wong; on behalf of the TEXONO Collaboration

    2014-11-01

    Germanium detectors with sub-keV sensitivities open a window to study neutrino physics to search for light weakly interacting massive particle (WIMP) dark matter. We summarize the recent results on spin-independent couplings of light WIMPs from the TEXONO experiment at the Kuo-Sheng Reactor Neutrino Laboratory. Highlights of the physics motivation, our R&D programme, as well as the status and plans are presented.

  6. Development of a one-dimensional microstrip germanium detector for Compton scattering experiment at SPring-8

    CERN Document Server

    Toyokawa, H; Mizumaki, M; Sakurai, Y; Suzuki, M; Hiraoka, N; Sakai, N

    2001-01-01

    Two prototypes of a one-dimensional microstrip germanium detector were fabricated with seven strips, having different pitches of 200 and 350 mu m. Owing to its insensitivity to hole-diffusion process, the latter one has attained a spatial resolution as high as 350 mu m, an energy resolution better than 1.4%, and a peak efficiency around 50% at an X-ray energy of 80 keV.

  7. GIOVE: a new detector setup for high sensitivity germanium spectroscopy at shallow depth

    Energy Technology Data Exchange (ETDEWEB)

    Heusser, G.; Weber, M.; Hakenmueller, J.; Lindner, M.; Maneschg, W.; Simgen, H.; Stolzenburg, D.; Strecker, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Laubenstein, M. [Laboratori Nazionali del Gran Sasso, Assergi (Italy)

    2015-11-15

    We report on the development and construction of the high-purity germanium spectrometer setup GIOVE (Germanium Inner Outer VEto), recently built and now operated at the shallow underground laboratory of the Max-Planck-Institut fuer Kernphysik, Heidelberg. Particular attention was paid to the design of a novel passive and active shield, aiming at efficient rejection of environmental and muon induced radiation backgrounds. The achieved sensitivity level of ≤ 100μBq kg{sup -1} for primordial radionuclides from U and Th in typical γ ray sample screening measurements is unique among instruments located at comparably shallow depths and can compete with instruments at far deeper underground sites. (orig.)

  8. GIOVE - A New Detector Setup for High Sensitivity Germanium Spectroscopy At Shallow Depth

    CERN Document Server

    Heusser, Gerd; Hakenmüller, Janina; Laubenstein, Matthias; Lindner, Manfred; Maneschg, Werner; Simgen, Hardy; Stolzenburg, Dominik; Strecker, Herbert

    2015-01-01

    We report on the development and construction of the high-purity germanium spectrometer setup GIOVE (Germanium Inner Outer Veto), recently built and now operated at the shallow underground laboratory of the Max-Planck-Institut f\\"ur Kernphysik, Heidelberg. Particular attention was paid to the design of a novel passive and active shield, aiming at efficient rejection of environmental and muon induced radiation backgrounds. The achieved sensitivity level of <100 {\\mu}Bq/kg for primordial radionuclides from U and Th in typical {\\gamma} ray sample screening measurements is unique among instruments located at comparably shallow depths and can compete with instruments at far deeper underground sites.

  9. Background radiation measurement with water Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bertou, X., E-mail: bertou@cab.cnea.gov.a [CONICET/CNEA, Centro Atomico Bariloche (Argentina); Observatorio Pierre Auger, Av. San Martin Norte 304, 5613 Malarguee (Argentina)

    2011-05-21

    Water Cherenkov Detectors have the nice property of being mostly calorimeters for cosmic ray induced electrons and photons, while providing a clear signal for muons. At large energy deposited in the detector, they observe small extended air showers. This makes them interesting detectors to study the background of cosmic ray secondaries. Using low threshold scaler counters, one can follow the flux of cosmic rays on top of the atmosphere, and/or study atmospheric effects on the cosmic ray shower development. In this paper, background data from the Pierre Auger Observatory are presented. These data are searched for short time-scale variation (one second scale, as expected from Gamma Ray Bursts), and larger time-scale variations, showing modulation effects due to Solar activity (Forbush decreases). Rapid changes in the background flux are also observed during the crossing of storms over the 3000 km{sup 2} of the ground array.

  10. The CDEX-1 1 kg Point-Contact Germanium Detector for Low Mass Dark Matter Searches

    CERN Document Server

    Kang, Ke-Jun; Wu, Yu-Cheng; Cheng, Jian-Ping; Li, Yuan-Jing; Bai, Yang; Bi, Yong; Chang, Jian-Ping; Chen, Nan; Chen, Ning; Chen, Qing-Hao; Chen, Yun-Hua; Chuang, You-Chun; Dend, Zhi; Du, Qiang; Gong, Hui; Hao, Xi-Qing; He, Qing-Ju; Hu, Xin-Hui; Huang, Han-Xiong; Huang, Teng-Rui; Jiang, Hao; Li, Hau-Bin; Li, Jian-Min; Li, Jin; Li, Jun; Li, Xia; Li, Xin-Ying; Li, Xue-Qian; Li, Yu-Lan; Liao, Heng-Ye; Lin, Fong-Kay; Lin, Shin-Ted; Liu, Shu-Kui; Lv, Lan-Chun; Ma, Hao; Mao, Shao-Ji; Qin, Jian-Qiang; Ren, Jie; Ren, Jing; Ruan, Xi-Chao; Shen, Man-Bin; Singh, Lakhwinder; Singh, Manoj Kumar; Soma, Arun Kumar; Su, Jian; Tang, Chang-Jian; Tseng, Chao-Hsiung; Wang, Ji-Min; Wang, Li; Wang, Qing; Wong, Tsz-King Henry; Wu, Shi-Yong; Wu, Wei; Xing, Hao-Yang; Xu, Yin; Xue, Tao; Yang, Li-Tao; Yang, Song-Wei; Yi, Nan; Yu, Chun-Xu; Yu, Hao; Yu, Xun-Zhen; Zeng, Xiong-Hui; Zeng, Zhi; Zhang, Lan; Zhang, Yun-Hua; Zhao, Ming-Gang; Zhao, Wei; Zhong, Su-Ning; Zhou, Zu-Ying; Zhu, Jing-Jun; Zhu, Wei-Bin; Zhu, Xue-Zhou; Zhu, Zhong-Hua

    2013-01-01

    The CDEX Collaboration has been established for direct detection of light dark matter particles, using ultra-low energy threshold p-type point-contact germanium detectors, in China JinPing underground Laboratory (CJPL). The first 1 kg point-contact germanium detector with a sub-keV energy threshold has been tested in a passive shielding system located in CJPL. The outputs from both the point-contact p+ electrode and the outside n+ electrode make it possible to scan the lower energy range of less than 1 keV and at the same time to detect the higher energy range up to 3 MeV. The outputs from both p+ and n+ electrode may also provide a more powerful method for signal discrimination for dark matter experiment. Some key parameters, including energy resolution, dead time, decay times of internal X-rays, and system stability, have been tested and measured. The results show that the 1 kg point-contact germanium detector, together with its shielding system and electronics, can run smoothly with good performances. This...

  11. A search for bremsstrahlung solar axions using the Majorana low-background BEGe detector at Kimballton (MALBEK)

    CERN Document Server

    Abgrall, N; Avignone, F T; Barabash, A S; Bertrand, F E; Boswell, M; Brudanin, V; Busch, M; Caldwell, A S; Chan, Y-D; Christofferson, C D; Combs, D C; Cooper, R J; Creswick, R J; Detwiler, J A; Doe, P J; Efremenko, Yu; Egorov, V; Elliott, S R; Fast, J E; Finnerty, P; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guiseppe, V E; Gusev, K; Hegai, A; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Keeter, K J; Kidd, M F; Knecht, A; Kochetov, O; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; Leviner, L E; Loach, J C; MacMullin, J; MacMullin, S; Marino, M G; Martin, R D; Mertens, S; Orrell, J L; O'Shaughnessy, C; Overman, N R; Phillips, D G; Poon, A W P; Pushkin, K; Radford, D C; Robertson, R G H; Ronquest, M C; Schubert, A G; Shanks, B; Shirchenko, M; Snavely, K J; Snyder, N; Steele, D; Suriano, A M; Thompson, J; Timkin, V; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Xu, W; Yakushev, E; Young, A R; Yu, C H; Yumatov, V

    2014-01-01

    A low-background, high-purity germanium detector has been used to search for evidence of low-energy, bremsstrahlung-generated solar axions. An upper bound of $1.36\\times 10^{-11}$ $(95\\% CL)$ is placed on the direct coupling of DFSZ model axions to electrons. The prospects for the sensitivity of the Majorana Demonstrator array of point-contact germanium detectors to solar axions are discussed in the context of the model-independent annual modulation due to the seasonal variation of the earth-sun distance.

  12. Background reduction of a spherical gaseous detector

    Science.gov (United States)

    Fard, Ali Dastgheibi; Loaiza, Pia; Piquemal, Fabrice; Giomataris, Ioannis; Gray, David; Gros, Michel; Magnier, Patrick; Navick, Xavier-François; Savvidis, Ilias

    2015-08-01

    The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of detector. It consists of a large spherical volume filled with gas, using a single detection readout channel. The detector allows 100 % detection efficiency. SEDINE is a low background version of SPC installed at the Laboratoire Souterrain de Modane (LSM) underground laboratory (4800 m.w.e) looking for rare events at very low energy threshold, below 100 eV. This work presents the details on the chemical cleaning to reduce internal 210Pb surface contamination on the copper vessel and the external radon reduction achieved via circulation of pure air inside anti-radon tent. It will be also show the radon measurement of pure gases (Ar, N, Ne, etc) which are used in the underground laboratory for the low background experiments.

  13. Background reduction of a spherical gaseous detector

    Energy Technology Data Exchange (ETDEWEB)

    Fard, Ali Dastgheibi [Laboratoire Souterrain de Modane, France ali.dastgheibi-fard@lsm.in2p3.fr (France); Loaiza, Pia; Piquemal, Fabrice [Laboratoire Souterrain de Modane (France); Giomataris, Ioannis; Gray, David; Gros, Michel; Magnier, Patrick; Navick, Xavier-François [CEA Saclay - IRFU/SEDI - 91191 Gif sur Yvette (France); Savvidis, Ilias [Aristotle University of Thessaloniki (Greece)

    2015-08-17

    The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of detector. It consists of a large spherical volume filled with gas, using a single detection readout channel. The detector allows 100 % detection efficiency. SEDINE is a low background version of SPC installed at the Laboratoire Souterrain de Modane (LSM) underground laboratory (4800 m.w.e) looking for rare events at very low energy threshold, below 100 eV. This work presents the details on the chemical cleaning to reduce internal {sup 210}Pb surface contamination on the copper vessel and the external radon reduction achieved via circulation of pure air inside anti-radon tent. It will be also show the radon measurement of pure gases (Ar, N, Ne, etc) which are used in the underground laboratory for the low background experiments.

  14. A high resolution germanium detector array for hypernuclear studies at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Gerl, Juergen; Kojouharova, Jasmina; Kojouharov, Ivan [GSI Darmstadt (Germany); Iazzi, Felice [Politecnico, Torino (Italy); INFN, Torino (Italy); Pochodzalla, Josef; Rittgen, Kai; Sahin, Cihan [Institute for Nuclear Physics, JGU Mainz (Germany)

    2014-07-01

    The PANDA experiment, planned at the FAIR facility in Darmstadt, aims at the high resolution γ-spectroscopy of double Λ hypernuclei. For this purpose a devoted detector setup is required, consisting of a primary nuclear target, an active secondary target and a germanium detector array for the γ-spectroscopy. Due to the limited space within the PANDA detector a compact design is required. In particular the conventional LN{sub 2} cooling system must be replaced by an electro mechanical device and a new arrangement of the crystals is needed. This presentation shows the progress in the development of the germanium detectors. First results of in-beam measurements at COSY with a new electro mechanically cooled single crystal prototype are presented. Digital pulse shape analysis is used to disentangle pile up events due to the high event rate. This analysis technique also allows to recover the high original energy resolution in case of neutron damage. Finally the status of the new triple crystal detector prototype is given.

  15. Electron and Gamma Background in CRESST Detectors

    CERN Document Server

    Lang, R F; Bauer, M; Bavykina, I; Bento, A; Brown, A; Bucci, C; Ciemniak, C; Coppi, C; Deuter, G; Von Feilitzsch, F; Hauff, D; Henry, S; Huff, P; Imber, J; Ingleby, S; Isaila, C; Jochum, J; Kiefer, M; Kimmerle, M; Kraus, H; Lanfranchi, J -C; Majorovits, B; Malek, M; McGowan, R; Mikhailik, V B; Pantic, E; Petricca, F; Pfister, S; Potzel, W; Pröbst, F; Roth, S; Rottler, K; Sailer, C; Schäffner, K; Schmaler, J; Scholl, S; Seidel, W; Stodolsky, L; Tolhurst, A J B; Usherov, I; Westphal, W

    2009-01-01

    The CRESST experiment monitors 300g CaWO_4 crystals as targets for particle interactions in an ultra low background environment. In this paper, we analyze the background spectra that are recorded by three detectors over many weeks of data taking. Understanding these spectra is mandatory if one wants to further reduce the background level, and allows us to cross-check the calibration of the detectors. We identify a variety of sources, such as intrinsic contaminations due to primordial radioisotopes and cosmogenic activation of the target material. In particular, we detect a 3.6keV X-ray line from the decay of 41-Ca with an activity of (26\\pm4)\\mu Bq, corresponding to a ratio 41-Ca/40-Ca=(2.2\\pm0.3)\\times10^{-16}.

  16. Amorphous Silicon-Germanium Films with Embedded Nanocrystals for Thermal Detectors with Very High Sensitivity

    Directory of Open Access Journals (Sweden)

    Cesar Calleja

    2016-01-01

    Full Text Available We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nanocrystals in a plasma enhanced chemical vapor deposition (PECVD reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR, which is a signature of the sensitivity in thermal detectors (microbolometers. Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9% K−1. Our results show that amorphous silicon-germanium films with embedded nanocrystals can be used as thermosensitive films in high performance infrared focal plane arrays (IRFPAs used in commercial thermal cameras.

  17. Characterization of segmented large volume, high purity germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [Koeln Univ. (Germany). Inst. fuer Kernphysik

    2006-07-01

    {gamma}-ray tracking in future HPGe arrays like AGATA will rely on pulse shape analysis (PSA) of multiple {gamma}-interactions. For this purpose, a simple and fast procedure was developed which enabled the first full characterization of a segmented large volume HPGe detector. An analytical model for the hole mobility in a Ge crystal lattice was developed to describe the hole drift anisotropy with experimental velocity values along the crystal axis as parameters. The new model is based on the drifted Maxwellian hole distribution in Ge. It is verified by reproducing successfully experimental longitudinal hole anisotropy data. A comparison between electron and hole mobility shows large differences for the longitudinal and tangential velocity anisotropy as a function of the electrical field orientation. Measurements on a 12 fold segmented, n-type, large volume, irregular shaped HPGe detector were performed in order to determine the parameters of anisotropic mobility for electrons and holes as charge carriers created by {gamma}-ray interactions. To characterize the electron mobility the complete outer detector surface was scanned in small steps employing photopeak interactions at 60 keV. A precise measurement of the hole drift anisotropy was performed with 356 keV rays. The drift velocity anisotropy and crystal geometry cause considerable rise time differences in pulse shapes depending on the position of the spatial charge carrier creation. Pulse shapes of direct and transient signals are reproduced by weighting potential calculations with high precision. The measured angular dependence of rise times is caused by the anisotropic mobility, crystal geometry, changing field strength and space charge effects. Preamplified signals were processed employing digital spectroscopy electronics. Response functions, crosstalk contributions and averaging procedures were taken into account implying novel methods due to the segmentation of the Ge-crystal and the digital electronics

  18. Automatic energy calibration of germanium detectors using fuzzy set theory

    CERN Document Server

    Stezowski, O; Prevost, A; Smith, A G; Wall, R

    2002-01-01

    With the advent of multi-detector arrays, many tasks that are usually performed by physicists, such as energy calibration, become very time consuming. There is therefore a need to develop more and more complex algorithms able to mimic human expertise. Fuzzy logic proposes a theoretical framework to build algorithms that are close to the human way of thinking. In this paper we apply fuzzy set theory in order to develop an automatic procedure for energy calibration. The algorithm, based on fuzzy concepts, has been tested on data taken with the EUROBALL IV gamma-ray array.

  19. Monte Carlo uncertainty analysis of germanium detector response to gamma-rays with energies below 1 MeV

    NARCIS (Netherlands)

    Maleka, PP; Maucec, M

    2005-01-01

    Monte Carlo method was used to simulate the pulse-height response function of high-precision germanium (HPGe) detector for photon energies below 1 MeV. The calculations address the uncertainty estimation due to inadequate specifications of source positioning and to variations in the detector's physi

  20. Prospects of cold dark matter searches with an ultra-low-energy germanium detector

    CERN Document Server

    Wong, H T

    2007-01-01

    The report describes the research program on the development of ultra-low-energy germanium detectors, with emphasis on WIMP dark matter searches. A threshold of 100 eV is achieved with a 20 g detector array, providing a unique probe to the low-mas WIMP. Present data at a surface laboratory is expected to give rise to comparable sensitivities with the existing limits at the $\\rm{5 - 10 GeV}$ WIMP-mass range. The projected parameter space to be probed with a full-scale, kilogram mass-range experiment is presented. Such a detector would also allow the studies of neutrino-nucleus coherent scattering and neutrino magnetic moments.

  1. Measurement of the dead layer thickness in a p-type point contact germanium detector

    Science.gov (United States)

    Jiang, Hao; Yue, Qian; Li, Yu-Lan; Kang, Ke-Jun; Li, Yuan-Jing; Li, Jin; Lin, Shin-Ted; Liu, Shu-Kui; Ma, Hao; Ma, Jing-Lu; Su, Jian; Tsz-King Wong, Henry; Yang, Li-Tao; Zhao, Wei; Zeng, Zhi

    2016-09-01

    A 994 g mass p-type PCGe detector has been deployed during the first phase of the China Dark matter EXperiment, aiming at direct searches for light weakly interacting massive particles. Measuring the thickness of the dead layer of a p-type germanium detector is an issue of major importance since it determines the fiducial mass of the detector. This work reports a method using an uncollimated 133Ba source to determine the dead layer thickness. The experimental design, data analysis and Monte Carlo simulation processes, as well as the statistical and systematic uncertainties are described. A dead layer thickness of 1.02 mm was obtained based on a comparison between the experimental data and the simulated results. Supported by National Natural Science Foundation of China (10935005, 10945002, 11275107, 11175099)

  2. Atomic ionization by sterile-to-active neutrino conversion and constraints on dark matter sterile neutrinos with germanium detectors

    Science.gov (United States)

    Chen, Jiunn-Wei; Chi, Hsin-Chang; Lin, Shin-Ted; Liu, C.-P.; Singh, Lakhwinder; Wong, Henry T.; Wu, Chih-Liang; Wu, Chih-Pan

    2016-05-01

    The transition magnetic moment of a sterile neutrino can give rise to its conversion to an active neutrino through radiative decay or nonstandard interaction (NSI) with matter. For sterile neutrinos of keV-mass as dark matter candidates, their decay signals are actively searched for in cosmic x-ray spectra. In this work, we consider the NSI that leads to atomic ionization, which can be detected by direct dark matter experiments. It is found that this inelastic scattering process for a nonrelativistic sterile neutrino has a pronounced enhancement in the differential cross section at energy transfer about half of its mass, manifesting experimentally as peaks in the measurable energy spectra. The enhancement effects gradually smear out as the sterile neutrino becomes relativistic. Using data taken with low-threshold low-background germanium detectors, constraints on sterile neutrino mass and its transition magnetic moment are derived and compared with those from astrophysical observations.

  3. Evaluations of the commercial spectrometer systems for safeguards applications using the germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vo, D.T.

    1998-12-31

    Safeguards applications require the best spectrometer systems with excellent resolution, stability, and throughput. Instruments must perform well in all the situations and environments. Data communication to the computer should be convenient, fast, and reliable. The software should have all the necessary tools and be ease to use. Portable systems should be small in size, lightweight, and have a long battery life. Nine commercially available spectrometer systems are tested with both the planar and coaxial germanium detectors. Considering the performance of the Digital Signal Processors (DSP), digital-based spectroscopy may be the future of gamma-ray spectroscopy.

  4. Program LEP to addition of gamma spectra from germanium detectors; Programa LEPS para suma de espectros gammas de detectores de germanio

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.

    1986-07-01

    The LEP program, written in FORTRAN IV, performs the addition of two spectra, collected with different detectors, from the same sample. This application, adds the two gamma spectra obtained from two opposite LEPS Germanium Detectors (Low Energy Photon Spectrometer), correcting the differences (channel/energy) between both two spectra, and fitting them before adding. The total-spectrum is recorded at the computer memory as a single spectrum. The necessary equipment, to run this program is: - Two opposite germanium detectors, with their associate electronics. - Multichannel analyzer (2048 memory channel minimum) - Computer on-line interfacing to multichannel analyzer. (Author) 4 refs.

  5. Program LEP to addition of gamma spectra from germanium detectors; Programa LEPS para suma de espectros gammas de detectores de germanio

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.

    1986-07-01

    The LEP program, written in FORTRAN IV, performs the addition of two spectra, collected with different detectors, from the same sample. This application, adds the two gamma spectra obtained from two opposite LEPS Germanium Detectors (Low Energy Photon Spectrometer), correcting the differences (channel/energy) between both two spectra, and fitting them before adding. The total-spectrum is recorded at the computer memory as a single spectrum. The necessary equipment, to run this program is: - Two opposite germanium detectors, with their associate electronics. - Multichannel analyzer (2048 memory channel minimum) - Computer on-line interfacing to multichannel analyzer. (Author) 4 refs.

  6. CDMS Detector Fabrication Improvements and Low Energy Nuclear Recoil Measurements in Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Jastram, Andrew [Texas A & M Univ., College Station, TX (United States)

    2015-12-01

    As the CDMS (Cryogenic Dark Matter Search) experiment is scaled up to tackle new dark matter parameter spaces (lower masses and cross-sections), detector production efficiency and repeatability becomes ever more important. A dedicated facility has been commissioned for SuperCDMS detector fabrication at Texas A&M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods, equipment, and tuning of process parameters. This work has demonstrated the capability for production of next generation CDMS SNOLAB detectors. Additionally, as the dark matter parameter space is probed further, careful calibrations of detector response to nuclear recoil interactions must be performed in order to extract useful information (in relation to dark matter particle characterzations) from experimental results. A neutron beam of tunable energy is used in conjunction with a commercial radiation detector to characterize ionization energy losses in germanium during nuclear recoil events. Data indicates agreement with values predicted by the Lindhard equation, providing a best-t k-value of 0.146.

  7. Alpha Background Rejection in Bolometer Detectors

    Science.gov (United States)

    Deporzio, Nicholas

    2016-03-01

    This study presents the modification of bolometer detectors used in particle searches to veto or otherwise reject alpha radiation background and the statistical advantages of doing so. Several techniques are presented in detail - plastic film scintillator vetoes, metallic film ionization vetoes, and scintillating bolometer vetoes. Plastic scintillator films are cooled to bolometer temperatures and bombarded with 1.4MeV to 6.0MeV alpha particles representative of documented detector background. Photomultipliers detect this scintillation light and produce a veto signal. Layered metallic films of a primary metal, dielectric, and secondary metal, such as gold-polyethylene-gold films, are cooled to milli-kelvin temperatures and biased to produce a current signal veto when incident 1.4MeV to 6.0MeV alpha particles ionize conduction paths through the film. Modified Zinc Molybdate Bolometers are used to produce scintillation light when stimulated by alpha background. Calibration of veto signal to background energy is presented. Results are used to quantify the statistical impact of such modifications on bolometer searches.

  8. GIOVE: a new detector setup for high sensitivity germanium spectroscopy at shallow depth

    Energy Technology Data Exchange (ETDEWEB)

    Heusser, G., E-mail: gerd.heusser@mpi-hd.mpg.de; Weber, M., E-mail: marc.weber@mpi-hd.mpg.de; Hakenmüller, J. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg (Germany); Laubenstein, M. [Laboratori Nazionali del Gran Sasso, Via G. Acitelli 22, 67100, Assergi, AQ (Italy); Lindner, M.; Maneschg, W.; Simgen, H.; Stolzenburg, D.; Strecker, H. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg (Germany)

    2015-11-09

    We report on the development and construction of the high-purity germanium spectrometer setup GIOVE (Germanium Inner Outer VEto), recently built and now operated at the shallow underground laboratory of the Max-Planck-Institut für Kernphysik, Heidelberg. Particular attention was paid to the design of a novel passive and active shield, aiming at efficient rejection of environmental and muon induced radiation backgrounds. The achieved sensitivity level of ≤100 μBq kg{sup -1} for primordial radionuclides from U and Th in typical γ ray sample screening measurements is unique among instruments located at comparably shallow depths and can compete with instruments at far deeper underground sites.

  9. The ANTARES detector: background sources and effects on detector performance

    CERN Document Server

    Escoffier, S

    2007-01-01

    The ANTARES Collaboration is deploying a large neutrino detector at a depth of 2475 m in the Mediterranean Sea, 40 km off shore from La Seyne-sur-Mer in South France. The construction of this 12-line detector with 75 phototubes per line will be completed early 2008. Data taking has begun since April 2005 with an instrumentation line also equipped with optical modules. The first 5 detector lines are operational since January 2007. The telescope is aimed to observe high energy cosmic neutrinos through the detection of the Cerenkov light produced by up-going induced muons. Background sources are due to atmospheric neutrinos as well as misreconstructed atmospheric muons. Additional backgrounds inherent to the sea water environment come from 40K decay and marine organisms' luminescence. While the contribution of the former is expected to be constant at a level of about 45 kHz, the bioluminescence has shown large time variations, with periods of very high activity, up to several hundred kHz. Description of these ba...

  10. Positional calibrations of the germanium double sided strip detectors for the Compton spectrometer and imager

    Science.gov (United States)

    Lowell, A.; Boggs, S.; Chiu, J. L.; Kierans, C.; McBride, S.; Tseng, C. H.; Zoglauer, A.; Amman, M.; Chang, H. K.; Jean, P.; Lin, C. H.; Sleator, C.; Tomsick, J.; von Ballmoos, P.; Yang, C. Y.

    2016-08-01

    The Compton Spectrometer and Imager (COSI) is a medium energy gamma ray (0.2 - 10 MeV) imager designed to observe high-energy processes in the universe from a high altitude balloon platform. At its core, COSI is comprised of twelve high purity germanium double sided strip detectors which measure particle interaction energies and locations with high precision. This manuscript focuses on the positional calibrations of the COSI detectors. The interaction depth in a detector is inferred from the charge collection time difference between the two sides of the detector. We outline our previous approach to this depth calibration and also describe a new approach we have recently developed. Two dimensional localization of interactions along the faces of the detector (x and y) is straightforward, as the location of the triggering strips is simply used. However, we describe a possible technique to improve the x/y position resolution beyond the detector strip pitch of 2 mm. With the current positional calibrations, COSI achieves an angular resolution of 5.6 +/- 0.1 degrees at 662 keV, close to our expectations from simulations.

  11. Upgraded VIRGO detector(s) and stochastic gravitational waves backgrounds

    CERN Document Server

    Babusci, D

    1999-01-01

    The sensitivity achievable by a pair of VIRGO detectors to stochastic and isotropic gravitational wave backgrounds of cosmological origin is discussed in view of the development of a second VIRGO interferometer. We describe a semi-analytical technique allowing to compute the signal-to-noise ratio for (monotonic or non-monotonic) logarithmic energy spectra of relic gravitons of arbitrary slope. We apply our results to the case of two correlated and coaligned VIRGO detectors and we compute their achievable sensitivities. The maximization of the overlap reduction function is discussed. We focus our attention on a class of models whose expected sensitivity is more promising, namely the case of string cosmological gravitons. We perform our calculations both for the case of minimal string cosmological scenario and in the case of a non-minimal scenario where a long dilaton dominated phase is present prior to the onset of the ordinary radiation dominated phase. In this framework, we study possible improvements of the...

  12. Exploration Of Activity Measurements And Equilibrium Checks For Sediment Dating Using Thick-Window Germanium Detectors

    Science.gov (United States)

    Warner, Jacob A.; Fitzsimmons, Kathryn E.; Reynolds, Eva M.; Gladkis, Laura G.; Timmers, Heiko

    2011-06-01

    Activity measurements on sediment samples for trapped-charge geological dating using gamma-ray spectroscopy are an important verification of the field-site dose rate determination. Furthermore gamma-ray spectroscopy can check if the natural decay series are in secular equilibrium which is a crucial assumption in such dating. Typically the activities of leading members of the Thorium and Uranium decay series are measured, which requires Germanium detectors with thin windows and good energy resolution in order to effectively detect the associated low energy gamma-rays. Such equipment is not always readily available. The potential of conventional Germanium detectors with thick entrance window has been explored towards routine gamma-ray spectroscopy of sediment samples using higher energy gamma-rays. Alternative isotopes, such as Ac-228 and Pb-212 for the Thorium series, and Pa-234m, Ra-226 and Bi-214 for the Uranium series, have been measured in order to determine the mass-specific activity for the respective series and possibly provide a check of secular equilibrium. In addition to measurements of the K-40 activity, with the alternative approach, the activities of both decay series can be accurately determined. The secular equilibrium condition may be tested for the Thorium series. Measurement accuracy for Pa-234m is, however, not sufficient to permit also a reliable check of equilibrium for the Uranium series.

  13. Pulse shape analysis for segmented germanium detectors implemented in graphics processing units

    Energy Technology Data Exchange (ETDEWEB)

    Calore, Enrico, E-mail: enrico.calore@lnl.infn.it [INFN Laboratori Nazionali di Legnaro, Viale Dell' Università 2, I-35020 Legnaro, Padova (Italy); Bazzacco, Dino, E-mail: dino.bazzacco@pd.infn.it [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Recchia, Francesco, E-mail: francesco.recchia@pd.infn.it [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Dipartimento di Fisica e Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2013-08-11

    Position sensitive highly segmented germanium detectors constitute the state-of-the-art of the technology employed for γ-spectroscopy studies. The operation of large spectrometers composed of tens to hundreds of such detectors demands enormous amounts of computing power for the digital treatment of the signals. The use of Graphics Processing Units (GPUs) has been evaluated as a cost-effective solution to meet such requirements. Different implementations and the hardware constraints limiting the performance of the system are examined. -- Highlights: • We implemented the grid-search algorithm in OpenCL in order to be run on GPUs. • We compared its performances in respect to an optimized CPU implementation in C++. • We analyzed the results highlighting the most probable factors limiting their speed. • We propose some solutions to overcome their speed limits.

  14. Measurement of the cosmogenic activation of germanium detectors in EDELWEISS-III

    CERN Document Server

    Armengaud, E; Augier, C; Benoît, A; Bergé, L; Billard, J; Blümer, J; de Boissière, T; Broniatowski, A; Camus, P; Cazes, A; Chapellier, M; Charlieux, F; De Jésus, M; Dumoulin, L; Eitel, K; Foerster, N; Gascon, J; Giuliani, A; Gros, M; Hehn, L; Heuermann, G; Jin, Y; Juillard, A; Kéfélian, C; Kleifges, M; Kozlov, V; Kraus, H; Kudryavtsev, V A; Le-Sueur, H; Marnieros, S; Navick, X -F; Nones, C; Olivieri, E; Pari, P; Paul, B; Piro, M -C; Poda, D; Queguiner, E; Rozov, S; Sanglard, V; Schmidt, B; Scorza, S; Siebenborn, B; Tcherniakhovski, D; Vagneron, L; Weber, M; Yakushev, E

    2016-01-01

    We present a measurement of the cosmogenic activation in the germanium cryogenic detectors of the EDELWEISS III direct dark matter search experiment. The decay rates measured in detectors with different exposures to cosmic rays above ground are converted into production rates of different isotopes. The measured production rates in units of nuclei/kg/day are 82 $\\pm$ 21 for $^3$H, 2.8 $\\pm$ 0.6 for $^{49}$V, 4.6 $\\pm$ 0.7 for $^{55}$Fe, and 106 $\\pm$ 13 for $^{65}$Zn. These results are the most accurate for these isotopes. A lower limit on the production rate of $^{68}$Ge of 74 nuclei/kg/day is also presented. They are compared to model predictions present in literature and to estimates calculated with the ACTIVIA code.

  15. A precise method to determine the activity of a weak neutron source using a germanium detector

    CERN Document Server

    Duke, M J M; Krauss, C B; Mekarski, P; Sibley, L

    2015-01-01

    A standard high purity germanium detector (HPGe) was used to determine the neutron activity of a weak americium-beryllium (AmBe) neutron source. Gamma rays were created through 27Al(n,n'), 27Al(n,gamma) and 1H(n,gamma) reactions induced by the neutrons on aluminum and acrylic disks. A Monte Carlo simulation was developed to model the efficiency of the detector system. The activity of our neutron source was determined to be 305.6 +/- 4.9 n/s. The result is consistent for the different gamma rays and was verified using additional simulations and measurements of the 4483 keV gamma ray produced directly from the AmBe source.

  16. Neutrinoless double-β decay of76Ge: First results from the International Germanium Experiment (IGEX) with six isotopically enriched detectors

    Science.gov (United States)

    Aalseth, C. E.; Avignone, F. T.; Brodzinski, R. L.; Collar, J. I.; Garcia, E.; González, D.; Hasenbalg, F.; Hensley, W. K.; Kirpichnikov, I. V.; Klimenko, A. A.; Miley, H. S.; Morales, A.; Morales, J.; Ortiz de Solórzano, A.; Osetrov, S. B.; Pogosov, V. S.; Puimedón, J.; Reeves, J. H.; Salinas, A.; Sarsa, M. L.; Smolnikov, A. A.; Starostin, A. S.; Tamanyan, A. G.; Vasenko, A. A.; Vasiliev, S. I.; Villar, J. A.

    1999-04-01

    The International Germanium Experiment (IGEX) has six HPGe detectors, isotopically enriched to 86% in 76Ge, containing approximately 90 active moles of 76Ge. Three detectors of 2 kg each operate in the Canfranc Underground Laboratory (Spain) with pulse-shape analysis electronics. One detector (~0.7 kg active volume) has been operating in the Baksan Low-Background Laboratory for several years, and two additional similar detectors will operate in Baksan. A maximum likelihood analysis of 74.84 active mole years of data yields a lower bound T0ν1/2>=0.8×1025 yr (90% C.L.), corresponding to <(0.5-1.5) eV, depending on the theoretical nuclear matrix elements used to extract the neutrino mass parameter.

  17. Neutrinoless double-{beta} decay of {sup 76}Ge: First results from the International Germanium Experiment (IGEX) with six isotopically enriched detectors

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, C.E.; Avignone, F.T. III; Collar, J.I.; Hasenbalg, F. [University of South Carolina, Columbia, South Carolina 29208 (United States); Brodzinski, R.L.; Hensley, W.K.; Miley, H.S.; Reeves, J.H. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Garcia, E.; Gonzalez, D.; Morales, A.; Morales, J.; Ortiz de Solorzano, A.; Puimedon, J.; Salinas, A.; Sarsa, M.L.; Villar, J.A. [University of Zaragoza, 50009 Zaragoza (Spain); Kirpichnikov, I.V.; Starostin, A.S.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, 117259 Moscow (Russia); Klimenko, A.A.; Osetrov, S.B.; Smolnikov, A.A.; Vasiliev, S.I. [Institute for Nuclear Research, Baksan Neutrino Observatory, 361609 Neutrino (Russia); Pogosov, V.S.; Tamanyan, A.G. [Yerevan Physical Institute, 375 036 Yerevan (Armenia)

    1999-04-01

    The International Germanium Experiment (IGEX) has six HPGe detectors, isotopically enriched to 86{percent} in {sup 76}Ge, containing approximately 90 active moles of {sup 76}Ge. Three detectors of 2 kg each operate in the Canfranc Underground Laboratory (Spain) with pulse-shape analysis electronics. One detector ({approximately}0.7 kg active volume) has been operating in the Baksan Low-Background Laboratory for several years, and two additional similar detectors will operate in Baksan. A maximum likelihood analysis of 74.84 active mole years of data yields a lower bound T{sub 1/2}{sup 0{nu}}{ge}0.8{times}10{sup 25}yr (90{percent} C.L.), corresponding to {l_angle}m{sub {nu}}{r_angle}{lt}(0.5{endash}1.5)eV, depending on the theoretical nuclear matrix elements used to extract the neutrino mass parameter. {copyright} {ital 1999} {ital The American Physical Society}

  18. CT detector evaluation with complex random backgrounds

    Science.gov (United States)

    Fan, Helen; Barrett, Harrison H.

    2012-02-01

    Modern computed tomography (CT) uses detector arrays consisting of large numbers of photodiodes with scintil- lator crystals. The number of pixels in the array can play an important role in system performance. Considerable research has been performed on signal detection in flat backgrounds under various conditions, but little has been done with complex, random backgrounds in CT; our work investigates in particular the effect of the number of detector elements on signal detection by a channelized Hotelling observer in a complex background. For this project, a simulated three-dimensional phantom is generated with its attenuation equal to that of water. The phantom contains a smaller central section with random variations to simulate random anatomical structures. Cone-beam projections of the phantom are acquired at different angles and used to calculate the covariance matrix of the raw projection data. Laguerre-Gauss channels are used to reduce the dimensionality of each 2D projection and hence the size of the covariance matrix, but the covariance is still a function of two projection angles. A strong cross-channel correlation is observed as a function of the difference between the angles. A signal with known location and size is used, and the performance of the observer is calculated from the channel outputs at multiple projection angles. A contrast-detail diagram is computed for different variables such as signal size, number of incident x-ray photons, pixel size, etc. At a fixed observer signal-to-noise ratio (SNR), the contrast required to detect a signal increases dramatically as the signal size decreases.

  19. Estimation of background spectrum in a shielded HPGe detector using Monte Carlo simulations.

    Science.gov (United States)

    Medhat, M E; Wang, Yifang

    2014-02-01

    Monte Carlo simulations are powerful tools used to estimate the background γ-radiation detected by high-resolution gamma-ray spectrometry systems with a HPGe (high purity germanium) detector contained inside a lead shield. The purpose of this work was to examine the applicability of Monte Carlo simulations to predict the optimal lead thickness necessary to reduce the background effect in spectrometer measurements. GEANT4 code was applied to simulate the background radiation spectrum at different thicknesses of lead. The simulated results were compared with experimental measurements of background radiation taken at the same shielding thickness. The results show that the background radiation detected depends on the thickness, size and lining of the shield. Simulation showed that 12 cm lead thick is the optimal shielding thickness.

  20. Limits on light weakly interacting massive particles from the CDEX-1 experiment with a p -type point-contact germanium detector at the China Jinping Underground Laboratory

    Science.gov (United States)

    Yue, Q.; Zhao, W.; Kang, K. J.; Cheng, J. P.; Li, Y. J.; Lin, S. T.; Chang, J. P.; Chen, N.; Chen, Q. H.; Chen, Y. H.; Chuang, Y. C.; Deng, Z.; Du, Q.; Gong, H.; Hao, X. Q.; He, H. J.; He, Q. J.; Huang, H. X.; Huang, T. R.; Jiang, H.; Li, H. B.; Li, J. M.; Li, J.; Li, J.; Li, X.; Li, X. Y.; Li, Y. L.; Liao, H. Y.; Lin, F. K.; Liu, S. K.; Lü, L. C.; Ma, H.; Mao, S. J.; Qin, J. Q.; Ren, J.; Ren, J.; Ruan, X. C.; Shen, M. B.; Singh, L.; Singh, M. K.; Soma, A. K.; Su, J.; Tang, C. J.; Tseng, C. H.; Wang, J. M.; Wang, L.; Wang, Q.; Wong, H. T.; Wu, S. Y.; Wu, Y. C.; Wu, Y. C.; Xianyu, Z. Z.; Xiao, R. Q.; Xing, H. Y.; Xu, F. Z.; Xu, Y.; Xu, X. J.; Xue, T.; Yang, L. T.; Yang, S. W.; Yi, N.; Yu, C. X.; Yu, H.; Yu, X. Z.; Zeng, X. H.; Zeng, Z.; Zhang, L.; Zhang, Y. H.; Zhao, M. G.; Zhou, Z. Y.; Zhu, J. J.; Zhu, W. B.; Zhu, X. Z.; Zhu, Z. H.; CDEX Collaboration

    2014-11-01

    We report results of a search for light dark matter weakly interacting massive particles (WIMPs) with CDEX-1 experiment at the China Jinping Underground Laboratory, based on 53.9 kg-days of data from a p -type point-contact germanium detector enclosed by a NaI(Tl) crystal scintillator as anti-Compton detector. The event rate and spectrum above the analysis threshold of 475 eVee are consistent with the understood background model. Part of the allowed regions for WIMP-nucleus coherent elastic scattering at WIMP mass of 6-20 GeV are probed and excluded. Independent of interaction channels, this result contradicts the interpretation that the anomalous excesses of the CoGeNT experiment are induced by dark matter, since identical detector techniques are used in both experiments.

  1. Measurement of 238U muonic x-rays with a germanium detector setup

    Energy Technology Data Exchange (ETDEWEB)

    Esch, Ernst I [Los Alamos National Laboratory; Jason, Andrew [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory; Hoteling, Nathan J [Los Alamos National Laboratory; Heffner, Robert H [Los Alamos National Laboratory; Adelmann, Andreas [PAUL SCHERRER INSTITUT; Stocki, Trevor [HEALTH CANADA; Mitchell, Lee [NAVAL RESEARCH LAB

    2009-01-01

    In the field of nuclear non-proliferation muon interactions with materials are of great interest. This paper describes an experiment conducted at the Paul Scherrer Institut (PSI) in Switzerland where a muon beam is stopped in a uranium target. The muons produce characteristic muonic x-rays. Muons will penetrate shielding easily and the produced characteristic x-rays can be used for positive isotope identification. Furthermore, the x-rays for uranium isotopes lie in the energy range of 6-7 MeV, which allows them to have an almost optimal mean free path in heavy shielding such as lead or steel. A measurement was conducted at PSI to prove the feasibility of detecting muonic x-rays from a large sample of depleted uranium (several kilograms) with a germanium detector. In this paper, the experimental setup and analysis of the measurement itself is presented.

  2. Study of the inactive layer of a germanium detector: experimental and Monte Carlo simulation treatments

    Energy Technology Data Exchange (ETDEWEB)

    Zevallos-Chavez, Juan Y.; Pires, Carlos Augusto; Zahn, Guilherme Soares [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: juan@if.usp.br; Genezini, Frederico Antonio [Centro Regional de Ciencias Nucleares (CRCN), Recife, PE (Brazil)). E-mail: Cruz, Manoel Tiago F. da (Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    2005-07-01

    The detection efficiency of a Germanium detector was measured in the energy range of 80 keV up to 1 MeV. A model function to fit the efficiency data was used, containing an absorbing window factor. The results were compared with a Monte Carlo simulation of the photon interactions where, the nominal dimensions were varied in order to check the low-energy behavior of the efficiency curve. The Monte Carlo results showed to be in good agreement with the experimental ones when the nominal dimensions of the crystal, except for its dead layer thickness, were used. This difference in the dead layer was attributed to its non-uniformity. (author)

  3. A prototype High Purity Germanium detector for high resolution gamma-ray spectroscopy at high count rates

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J., E-mail: rjcooper@lbl.gov [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Amman, M.; Luke, P.N. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Vetter, K. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-09-21

    Where energy resolution is paramount, High Purity Germanium (HPGe) detectors continue to provide the optimum solution for gamma-ray detection and spectroscopy. Conventional large-volume HPGe detectors are typically limited to count rates on the order of ten thousand counts per second, however, limiting their effectiveness for high count rate applications. To address this limitation, we have developed a novel prototype HPGe detector designed to be capable of achieving fine energy resolution and high event throughput at count rates in excess of one million counts per second. We report here on the concept, design, and initial performance of the first prototype device.

  4. Large-aperture germanium detector package for picosecond photon counting in the 0.5-1.6-microm range.

    Science.gov (United States)

    Prochazka, I; Hamal, K; Greene, B; Kunimori, H

    1996-09-01

    We report the design, construction, and parameters of a detector package based on a germanium avalanche photodiode operated in the Geiger mode cooled to 77 K. The new design of the active quenching circuit, proper diode structure, and cryogenic cooling setup permitted us to increase the detector's active area to 0.1-mm diameter while maintaining an acceptable dark-count rate, timing resolution, and photon-counting sensitivity at 1.54 microm. The active-area size and the compact design of the detector package permitted its application in satellite laser ranging at 0.532- and 1.543-microm wavelengths, yielding subcentimeter ranging precision.

  5. Characterization and performance of germanium detectors with sub-keV sensitivities for neutrino and dark matter experiments

    Science.gov (United States)

    Soma, A. K.; Singh, M. K.; Singh, L.; Kumar, G. Kiran; Lin, F. K.; Du, Q.; Jiang, H.; Liu, S. K.; Ma, J. L.; Sharma, V.; Wang, L.; Wu, Y. C.; Yang, L. T.; Zhao, W.; Agartioglu, M.; Asryan, G.; Chang, Y. Y.; Chen, J. H.; Chuang, Y. C.; Deniz, M.; Hsu, C. L.; Hsu, Y. H.; Huang, T. R.; Jia, L. P.; Kerman, S.; Li, H. B.; Li, J.; Liao, F. T.; Liao, H. Y.; Lin, C. W.; Lin, S. T.; Marian, V.; Ruan, X. C.; Sevda, B.; Shen, Y. T.; Singh, M. K.; Singh, V.; Sonay, A.; Su, J.; Subrahmanyam, V. S.; Tseng, C. H.; Wang, J. J.; Wong, H. T.; Xu, Y.; Yang, S. W.; Yu, C. X.; Yue, Q.; Zeyrek, M.

    2016-11-01

    Germanium ionization detectors with sensitivities as low as 100 eVee (electron-equivalent energy) open new windows for studies on neutrino and dark matter physics. The relevant physics subjects are summarized. The detectors have to measure physics signals whose amplitude is comparable to that of pedestal electronic noise. To fully exploit this new detector technique, various experimental issues including quenching factors, energy reconstruction and calibration, signal triggering and selection as well as evaluation of their associated efficiencies have to be attended. The efforts and results of a research program to address these challenges are presented.

  6. Germanium crystal dimensions and their influences on the observed peak-to-background distributions

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, W. [GSF-Forschungszentrum fuer Umwelt und Gesundheit, Inst. fuer Strahlenschutz, AG-Personendosimetrie, Oberschleissheim (Germany); Koenig, K. [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany). Inst. fuer Strahlenhygiene

    1997-03-01

    This description applies to the parameters of in vivo and in vitro detection systems as they relate to the type of the detector (or arrangements of detectors) and the performance of the choice. In detail, measurements of a set of pulse-height distributions were done to determine the influence from the detector-crystal dimensions on the peak-to-background variation for point and volume sources as well as ambient radiation. The current capability in suppression of Compton scattered {gamma}-rays using coincidence/anti-coincidence arrangements both for in vivo and in vitro system are presented. Criteria and relations as well as advantages and disadvantages of the applicability are discussed. (orig.)

  7. Radial position of single-site gamma-ray interactions from a parametric pulse shape analysis of germanium detector signals

    CERN Document Server

    Orrell, J L; Cooper, M W; Kephart, J D; Seifert, C E; Orrell, John L.; Aalseth, Craig E.; Cooper, Matthew W.; Kephart, Jeremy D.; Seifert, Carolyn E.

    2007-01-01

    Pulse shape analysis of germanium gamma-ray spectrometer signals can yield information on the radial position of individual gamma-ray interactions within the germanium crystal. A parametric pulse shape analysis based on calculation of moments of the reconstructed current pulses from a closed-ended coaxial germanium detector is used to preferentially select single-site gamma-ray interactions. The double escape peak events from the 2614.5 keV gamma-ray of 208-Tl are used as a training set to optimize the single-site event selection region in the pulse shape parameter space. A collimated source of 320.1 keV gamma-rays from 51-Cr is used to scan different radial positions of the same semi-coaxial germanium detector. The previously trained single-site selection region is used to preferentially identify the single-site photoelectric absorption events from the 320.1 keV full-energy peak. From the identified events, a comparison of the pulse shape parameter space distributions between different scan positions allows ...

  8. Simulation of natural radioactivity backgrounds in the central detector

    CERN Document Server

    Li, Xinying; Wen, Liangjian; Li, Weidong; You, Zhengyun; Yu, Chunxu; Zhang, Yumei; Lin, Tao

    2015-01-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is an experiment proposed to determine the neutrino mass hierarchy and probe the fundamental properties of neutrino oscillation. The JUNO central detector is a spherical liquid scintillator detector with 20 kton fiducial mass. It is required to achieve a $3\\%/\\sqrt{E(MeV)}$ energy resolution with very low radioactive background, which is a big challenge to the detector design. In order to ensure the detector performance can meet the physics requirements, reliable detector simulation is necessary to provide useful information for detector design. A simulation study of natural radioactivity backgrounds in the JUNO central detector has been performed to guide the detector design and set requirements to the radiopurity of detector materials.

  9. Monte Carlo simulation of background characteristics of a HPGe detector operating underground in the Gran Sasso National Laboratory.

    Science.gov (United States)

    Breier, R; Laubenstein, M; Povinec, P P

    2017-08-01

    Monte Carlo (MC) simulation of background components of an ultra-low background high purity germanium (HPGe) detector operating in a deep underground laboratory was carried out. The results show that the background of the HPGe detector is about two orders of magnitude higher than the MC prediction when accounting only for cosmic-ray induced background. The difference is due to natural radioactivity in the parts surrounding the Ge detector. To get reasonable agreement between MC simulations and the experiment, a contamination in the parts surrounding the Ge crystal from (40)K, (208)Tl and (214)Bi of 0.1mBqkg(-1) was required to include in the simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Limits on light WIMPs from the CDEX-1 experiment with a p-type point-contact germanium detector at the China Jingping Underground Laboratory

    CERN Document Server

    Yue, Q; Kang, K J; Cheng, J P; Li, Y J; Lin, S T; Chang, J P; Chen, N; Chen, Q H; Chen, Y H; Chuang, Y C; Deng, Z; Du, Q; Gong, H; Hao, X Q; He, H J; He, Q J; Huang, H X; Huang, T R; Jiang, H; Li, H B; Li, J M; Li, J; Li, X; Li, X Y; Li, Y L; Liao, H Y; Lin, F K; Liu, S K; Lv, L C; Ma, H; Mao, S J; Qin, J Q; Ren, J; Ruan, X C; Shen, M B; Singh, L; Singh, M K; Soma, A K; Su, J; Tang, C J; Tseng, C H; Wang, J M; Wang, L; Wang, Q; Wong, H T; Wu, S Y; Wu, Y C; Xianyu, Z Z; Xiao, R Q; Xing, H Y; Xu, F Z; Xu, Y; Xu, X J; Xue, T; Yang, L T; Yang, S W; Yi, N; Yu, C X; Yu, H; Yu, X Z; Zeng, X H; Zeng, Z; Zhang, L; Zhang, Y H; Zhao, M G; Zhou, Z Y; Zhu, J J; Zhu, W B; Zhu, X Z; Zhu, Z H

    2014-01-01

    We report results of a search for light Dark Matter WIMPs with CDEX-1 experiment at the China Jingping Underground Laboratory, based on 53.9 kg-days of data from a p-type point-contact germanium detector enclosed by a NaI(Tl) crystal scintillator as anti-Compton detector. All events above the analysis threshold of 475 eVee can be quantitatively accounted for with the understood background channels, and there is no excess of residual events. An order of magnitude improvement in the sensitivities of spin-independent elastic cross-section over our previous results is achieved. Part of the allowed regions at WIMP mass of 6-20 GeV are probed and excluded.

  11. Limits on Low-Mass WIMP Dark Matter with an Ultra-Low-Energy Germanium Detector at 220 eV Threshold

    CERN Document Server

    Lin, Shin-Ted

    2008-01-01

    An energy threshold of (220$\\pm$10) eV was achieved at an efficiency of 50% with a four-channel ultra-low-energy germanium detector each with an active mass of 5 g\\cite{wimppaper}. This provides a unique probe to WIMP dark matter with mass below 10 GeV. With low background data taken at the Kuo-Sheng Laboratory, constraints on WIMPs in the galactic halo were derived. Both spin-independent WIMP-nucleon and spin-dependent WIMP-neutron bounds improve over previous results for WIMP mass between 3$-$6 GeV. These results, together with those on spin-dependent couplings, will be presented. Sensitivities for full-scale experiments were projected. This detector technique makes the unexplored sub-keV energy window accessible for new neutrino and dark matter experiments.

  12. Limits on Light WIMPs with a Germanium Detector at 172 eVee threshold at the China Jinping Underground Laboratory

    CERN Document Server

    Liu, S K; Kang, K J; Cheng, J P; Wong, H T; Li, Y J; Lin, S T; Chang, J P; Chen, N; Chen, Q H; Chen, Y H; Chuang, Y C; Deng, Z; Du, Q; Gong, H; Hao, X Q; He, H J; He, Q J; Huang, H X; Huang, T R; Jiang, H; Li, H B; Li, J M; Li, J; Li, X; Li, X Q; Li, X Y; Li, Y L; Liao, H Y; Lin, F K; Lü, L C; Ma, H; Mao, S J; Qin, J Q; Ren, J; Ruan, X C; Shen, M B; Singh, L; Singh, M K; Soma, A K; Su, J; Tang, C J; Tseng, C H; Wang, J M; Wang, L; Wang, Q; Wu, S Y; Wu, Y C; Xianyu, Z Z; Xiao, R Q; Xing, H Y; Xu, F Z; Xu, Y; Xu, X J; Xue, T; Yang, C W; Yang, L T; Yang, S W; Yi, N; Yu, C X; Yu, H; Yu, X Z; Zeng, X H; Zeng, Z; Zhang, L; Zhang, Y H; Zhao, M G; Zhao, W; Zhou, Z Y; Zhu, J J; Zhu, W B; Zhu, X Z; Zhu, Z H

    2014-01-01

    The China Dark Matter Experiment reports results on light WIMP dark matter searches at the China Jinping Underground Laboratory with a germanium detector array with a total mass of 20 g. The physics threshold achieved is 172 eVee at 50% signal efficiency. With 0.784 kg-days of data, exclusion region on spin-independent coupling with the nucleon is derived, improving over our earlier bounds at WIMP mass less than 4.6 GeV.

  13. A germanium hybrid pixel detector with 55μm pixel size and 65,000 channels

    Science.gov (United States)

    Pennicard, D.; Struth, B.; Hirsemann, H.; Sarajlic, M.; Smoljanin, S.; Zuvic, M.; Lampert, M. O.; Fritzsch, T.; Rothermund, M.; Graafsma, H.

    2014-12-01

    Hybrid pixel semiconductor detectors provide high performance through a combination of direct detection, a relatively small pixel size, fast readout and sophisticated signal processing circuitry in each pixel. For X-ray detection above 20 keV, high-Z sensor layers rather than silicon are needed to achieve high quantum efficiency, but many high-Z materials such as GaAs and CdTe often suffer from poor material properties or nonuniformities. Germanium is available in large wafers of extremely high quality, making it an appealing option for high-performance hybrid pixel X-ray detectors, but suitable technologies for finely pixelating and bump-bonding germanium have not previously been available. A finely-pixelated germanium photodiode sensor with a 256 by 256 array of 55μm pixels has been produced. The sensor has an n-on-p structure, with 700μm thickness. Using a low-temperature indium bump process, this sensor has been bonded to the Medipix3RX photoncounting readout chip. Tests with the LAMBDA readout system have shown that the detector works successfully, with a high bond yield and higher image uniformity than comparable high-Z systems. During cooling, the system is functional around -80°C (with warmer temperatures resulting in excessive leakage current), with -100°C sufficient for good performance.

  14. Performance of a compact multi-crystal high-purity germanium detector array for measuring coincident gamma-ray emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris; Daigle, Stephen; Buckner, Matt [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Erikson, Luke E.; Runkle, Robert C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Stave, Sean C., E-mail: Sean.Stave@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Champagne, Arthur E.; Cooper, Andrew; Downen, Lori [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Glasgow, Brian D. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kelly, Keegan; Sallaska, Anne [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States)

    2015-05-21

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the {sup 14}N(p,γ){sup 15}O{sup ⁎} reaction for several transition energies at an effective center-of-mass energy of 163 keV. Owing to the granular nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within their uncertainties with the past measurements. Details of the analysis and detector performance are presented.

  15. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Daigle, Stephen [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Buckner, Matt [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Erikson, Luke E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Runkle, Robert C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, Sean C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Champagne, Art [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Cooper, Andrew [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Downen, Lori [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Glasgow, Brian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kelly, Keegan [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Sallaska, Anne [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States)

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  16. The 14N(p,gamma)15O reaction studied with a composite germanium detector

    CERN Document Server

    Marta, M; Bemmerer, D; Broggini, C; Caciolli, A; Corvisiero, P; Costantini, H; Elekes, Z; Fulop, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyurky, Gy; Imbriani, G; Junker, M; Lemut, A; Limata, B; Mazzocchi, C; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P; Vomiero, A

    2011-01-01

    The rate of the carbon-nitrogen-oxygen (CNO) cycle of hydrogen burning is controlled by the 14N(p,gamma)15O reaction. The reaction proceeds by capture to the ground states and several excited states in O-15. In order to obtain a reliable extrapolation of the excitation curve to astrophysical energy, fits in the R-matrix framework are needed. In an energy range that sensitively tests such fits, new cross section data are reported here for the four major transitions in the 14N(p,gamma)15O reaction. The experiment has been performed at the Laboratory for Underground Nuclear Astrophysics (LUNA) 400 kV accelerator placed deep underground in the Gran Sasso facility in Italy. Using a composite germanium detector, summing corrections have been considerably reduced with respect to previous studies. The cross sections for capture to the ground state and to the 5181, 6172, and 6792 keV excited states in O-15 have been determined at 359, 380, and 399 keV beam energy. In addition, the branching ratios for the decay of the...

  17. The characteristics of a low background germanium gamma ray spectrometer at China JinPing Underground Laboratory.

    Science.gov (United States)

    Zeng, Zhi; Mi, Yuhao; Ma, Hao; Cheng, Jianping; Su, Jian; Yue, Qian

    2014-09-01

    A low background germanium gamma ray spectrometer, GeTHU, has been installed at China JinPing Underground Laboratory (CJPL). The integral background count rate of the spectrometer was 0.629 cpm between 40 and 2700 keV, the origins of which were studied by Monte Carlo simulation. Detection limits and efficiencies were calculated for selected gamma peaks. Some samples of rare event experiments were measured and (137)Cs contamination was found in boric acid. GeTHU will be mainly used to measure environmental samples and screen materials in dark matter and double beta decay experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The characteristics of a low background germanium gamma ray spectrometer at China JinPing underground Laboratory

    CERN Document Server

    Mi, Yuhao; Zeng, Zhi; Cheng, Jianping; Su, Jian; Yue, Qian

    2014-01-01

    A low background germanium gamma ray spectrometer, GeTHU, has been installed at China JinPing underground Laboratory. The integral background count rate between 40 and 2700 keV was 0.6 cpm, and the origin was studied by Monte Carlo simulation. Detection limits and efficiencies were calculated for selected gamma peaks. Boric acid and silica sand samples were measured and 137Cs contamination was found in boric acid. GeTHU will be mainly used to measure environmental samples and screen materials in dark matter experiments.

  19. Impact of detector efficiency and energy resolution on gamma-ray background rejection in mobile spectroscopy and imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Aucott, Timothy J., E-mail: Timothy.Aucott@SRS.gov [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Bandstra, Mark S. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Negut, Victor; Curtis, Joseph C. [University of California, Berkeley, Department of Nuclear Engineering, Berkeley, CA (United States); Meyer, Ross E.; Chivers, Daniel H. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Vetter, Kai [University of California, Berkeley, Department of Nuclear Engineering, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States)

    2015-07-21

    The presence of gamma-ray background significantly reduces detection sensitivity when searching for radioactive sources in the field, and the systematic variability in the background will limit the size and energy resolution of systems that can be used effectively. An extensive survey of the background was performed using both sodium iodide and high-purity germanium. By using a bivariate negative binomial model for the measured counts, these measurements can be resampled to simulate the performance of a detector array of arbitrary size and resolution. The response of the system as it moved past a stationary source was modeled for spectroscopic and coded aperture imaging algorithms and used for source injection into the background. The performance of both techniques is shown for various sizes and resolutions, as well as the relative performance for sodium iodide and germanium. It was found that at smaller detector sizes or better energy resolution, spectroscopy has higher detection sensitivity than imaging, while imaging is better suited to larger or poorer resolution detectors.

  20. A Background-Free Direction-Sensitive Neutron Detector2 A Background-Free Direction-Sensitive Neutron Detector

    CERN Document Server

    Roccaro, Alvaro; Ahlen, S; Avery, D; Inglis, A; Battat, J; Dujmic, D; Fisher, P; Henderson, S; Kaboth, A; Kohse, G; Lanza, R; Monroe, J; Sciolla, G; Skvorodnev, N; Wellenstein, H; Yamamoto, R

    2009-01-01

    We show data from a new type of detector that can be used to determine neutron flux, energy distribution, and direction of neutron motion for both fast and thermal neutrons. Many neutron detectors are plagued by large backgrounds from x-rays and gamma rays, and most current neutron detectors lack single-event energy sensitivity or any information on neutron directionality. Even the best detectors are limited by cosmic ray neutron backgrounds. All applications (neutron scattering and radiography, measurements of solar and cosmic ray neutron flux, measurements of neutron interaction cross sections, monitoring of neutrons at nuclear facilities, oil exploration, and searches for fissile weapons of mass destruction) will benefit from the improved neutron detection sensitivity and improved measurements of neutron properties made possible by this detector. The detector is free of backgrounds from x-rays, gamma rays, beta particles, relativistic singely charged particles and cosmic ray neutrons. It is sensitive to th...

  1. Background Measurements from Balloon-Borne CZT Detectors

    OpenAIRE

    Jenkins, Johnathan A; Narita, Tomohiko; Grindlay, Jonathan E.; Bloser, Peter F.; Stahle, Carl; Parker, Brad; Barthelmy, Scott

    2002-01-01

    We report detector characteristics and background measurements from two prototype imaging CZT detectors flown on a scientific balloon payload in May 2001. The detectors are both platinum-contact 10mm x 10mm x 5mm CZT crystals, each with a 4 $\\times$ 4 array of pixels tiling the anode. One is made from IMARAD horizontal Bridgman CZT, the other from eV Products high-pressure Bridgman material. Both detectors were mounted side-by-side in a flip-chip configuration and read out by a 32-channel IDE...

  2. Limits on light WIMPs with a germanium detector at 177 eVee threshold at the China Jinping Underground Laboratory

    Science.gov (United States)

    Liu, S. K.; Yue, Q.; Kang, K. J.; Cheng, J. P.; Wong, H. T.; Li, Y. J.; Lin, S. T.; Chang, J. P.; Chen, N.; Chen, Q. H.; Chen, Y. H.; Chuang, Y. C.; Deng, Z.; Du, Q.; Gong, H.; Hao, X. Q.; He, H. J.; He, Q. J.; Huang, H. X.; Huang, T. R.; Jiang, H.; Li, H. B.; Li, J. M.; Li, J.; Li, J.; Li, X.; Li, X. Q.; Li, X. Y.; Li, Y. L.; Liao, H. Y.; Lin, F. K.; Lü, L. C.; Ma, H.; Mao, S. J.; Qin, J. Q.; Ren, J.; Ren, J.; Ruan, X. C.; Shen, M. B.; Singh, L.; Singh, M. K.; Soma, A. K.; Su, J.; Tang, C. J.; Tseng, C. H.; Wang, J. M.; Wang, L.; Wang, Q.; Wu, S. Y.; Wu, Y. C.; Wu, Y. C.; Xianyu, Z. Z.; Xiao, R. Q.; Xing, H. Y.; Xu, F. Z.; Xu, Y.; Xu, X. J.; Xue, T.; Yang, C. W.; Yang, L. T.; Yang, S. W.; Yi, N.; Yu, C. X.; Yu, H.; Yu, X. Z.; Zeng, X. H.; Zeng, Z.; Zhang, L.; Zhang, Y. H.; Zhao, M. G.; Zhao, W.; Zhou, Z. Y.; Zhu, J. J.; Zhu, W. B.; Zhu, X. Z.; Zhu, Z. H.; CDEX Collaboration

    2014-08-01

    The China Dark Matter Experiment reports results on light WIMP dark matter searches at the China Jinping Underground Laboratory with a germanium detector array with a total mass of 20 g. The physics threshold achieved is 177 eVee ("ee" represents electron equivalent energy) at 50% signal efficiency. With 0.784 kg-days of data, exclusion region on spin-independent coupling with the nucleon is derived, improving over our earlier bounds at WIMP mass less than 4.6 GeV.

  3. A low background Micromegas detector for the CAST experiment

    CERN Document Server

    Abbon, P.; Aune, S.; Besin, D.; Cazaux, S.; Contrepois, P.; Duportail, N.; Ferrer Ribas, E.; Gros, M.; Irastorza, I.G.; Giganon, A.; Giomataris, I.; Riallot, M.; Zaffanela, G.; Fanourakis, G.; Geralis, T.; Kousouris, K.; Zachariadou, K.; Dafni, T.; Decker, T.; Hill, R.; Pivovaroff, M.; Soufli, R.; Morales, J.

    2005-01-01

    A low background Micromegas detector has been operating on the CAST experiment at CERN for the search of solar axions during the first phase of the experiment (2002-2004). The detector operated efficiently and achieved a very low level of background rejection ($5\\times 10^{-5}$ counts keV$^{-1}$cm$^{-2}$s$^{-1}$) thanks to its good spatial and energy resolution as well as the low radioactivity materials used in the construction of the detector. For the second phase of the experiment (2005-2007), the detector will be upgraded by adding a shielding and including focusing optics. These improvements should allow for a background rejection better than two orders of magnitude.

  4. Status of the Germanium Detector Array (GERDA) in the search of neutrinoless ββ decays of 76Ge at LNGS

    Science.gov (United States)

    Schönert, S.; Abt, I.; Altmann, M.; Bakalyarov, A. M.; Barabanov, I.; Bauer, C.; Bauer, M.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Bettini, A.; Bezrukov, L.; Brudanin, V.; Bolotsky, V. P.; Caldwell, A.; Cattadori, C.; Chirchenko, M. V.; Chkvorets, O.; Demidova, E.; di Vacri, A.; Eberth, J.; Egorov, V.; Farnea, E.; Gangapshev, A.; Gasparro, J.; Grabmayr, P.; Grigoriev, G. Y.; Gurentsov, V.; Gusev, K.; Hampel, W.; Heusser, G.; Heisel, M.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Jochum, J.; Junker, M.; Katulina, S.; Kiko, J.; Kirpichnikov, I. V.; Klimenko, A.; Knapp, M.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kröninger, K.; Kuzminov, V. V.; Laubenstein, M.; Lebedev, V. I.; Liu, X.; Majorovits, B.; Marissens, G.; Nemchenok, I.; Pandola, L.; Peiffer, P.; Pullia, A.; Alvarez, C. R.; Sandukovsky, V.; Scholl, S.; Schreiner, J.; Schwan, U.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Stelzer, F.; Tikhomirov, A. V.; Tomei, C.; Ur, C. A.; Vasenko, A. A.; Vasiliev, S.; Weißhaar, D.; Wojcik, M.; Yanovich, E.; Yurkowski, J.; Zhukov, S. V.; Zocca, F.; Zuzel, G.

    2006-12-01

    The Germanium Detector Array (GERDA) in the search for neutrinoless ββ decays of 76Ge at LNGS will operate bare germanium diodes enriched in 76Ge in an (optional active) cryogenic fluid shield to investigate neutrinoless ββ decay with a sensitivity of T 1/2 > 2 × 1026 yr after an exposure of 100 kg yr. Recent progress includes the installation of the first underground infrastructures at Gran Sasso, the completion of the enrichment of 37.5 kg of germanium material for detector construction, prototyping of low-mass detector support and contacts, and front-end and DAQ electronics, as well as the preparation for construction of the cryogenic vessel and water tank.

  5. The International Germanium Experiment (IGEX) in 1993

    Energy Technology Data Exchange (ETDEWEB)

    Avignone, F.T. (University of South Carolina, Columbia, SC 29208 (United States)); Brodzinski, R.L. (Pacific Northwest Laboratory, Battelle Blvd., Richland, WA 99352 (United States)); Collar, J.I. (University of South Carolina, Columbia, SC 29208 (United States)); Courant, H. (University of Minnesota, Minneapolis, MN 55455 (United States)); Garcia, E. (University of Zaragoza, Zaragoza (Spain)); Guerard, C.K. (University of South Carolina, Columbia, SC 29208 (United States)); Hensley, W.K. (Pacific Northwest Laboratory, Battelle Blvd., Richland, WA 99352 (United States)); Kirpichnikov, I.V. (Institute for Theoretical and Experimental Physics, 117 259 Moscow (Russian Federation)); Klimenko, A.A. (Institute for Nuclear Research, Baksan Neutrino Observatory, 361 609 Neutrino (Russian Federation)); Morales, A. (University of Zaragoza, Zaragoza (Spain)); Morales, J. (University of Zaragoza, Zaragoza (Spain)); Miley, H.S. (Pacific Northwest Laboratory, Battelle Blvd., Richland, WA

    1994-05-01

    The data collected from the first set of three IGEX enriched germanium detectors have been analyzed. The best background obtained was less than 0.3counts/keV/kg/y near 2MeV, obtained in the Homestake gold mine in Lead, SD, USA. Data combined from all the detectors yield T[sub 1/2][sup 0][>=]qslant1.0x10[sup 24]y (90% CL). The first detector produced in the second phase of the experiment is a 2.15kg germanium crystal of 2.16keV FWHM at 1332keV. Several experiences with the first group of detectors have led to improvements in the mechanical design of the copper cryostat. Also, low background materials research done in the last two years has lowered the specific activity of the electroformed copper. The new detector is currently operating in the Homestake gold mine. ((orig.))

  6. The International Germanium Experiment (IGEX) in 1993

    Science.gov (United States)

    Avignone, F. T.; Brodzinski, R. L.; Collar, J. I.; Courant, H.; Garcia, E.; Guerard, C. K.; Hensley, W. K.; Kirpichnikov, I. V.; Klimenko, A. A.; Morales, A.; Morales, J.; Miley, H. S.; Nunez-Lagos, R.; Osetrov, S. B.; Pogosov, V. S.; Pomansky, A. A.; Puimedon, J.; Reeves, J. H.; Ruddick, K.; Saenz, C.; Salinas, A.; Sarsa, M. L.; Smolnikov, A. A.; Starostin, A. S.; Tamanyan, A. G.; Umatov, V. I.; Vasiliev, S. I.; Villar, J. A.

    1994-05-01

    The data collected from the first set of three IGEX enriched germanium detectors have been analyzed. The best background obtained was less than 0.3 counts/keV/kg/y near 2 MeV, obtained in the Homestake gold mine in Lead, SD, USA. Data combined from all the detectors yield T{1}/{2}0τ ≥ 1.0 × 10 24y (90% CL) . The first detector produced in the second phase of the experiment is a 2.15 kg germanium crystal of 2.16 keV FWHM at 1332 keV. Several experiences with the first group of detectors have led to improvements in the mechanical design of the copper cryostat. Also, low background materials research done in the last two years has lowered the specific activity of the electroformed copper. The new detector is currently operating in the Homestake gold mine.

  7. Background measurements from balloon-born imaging CZT detectors

    Science.gov (United States)

    Jenkins, Jonathan A.; Narita, Tomohiko; Grindlay, Jonathan E.; Bloser, Peter F.; Stahle, Carl M.; Parker, Bradford H.; Barthelmy, Scott D.

    2003-03-01

    We report detector characteristics and background measurements from two prototype imaging CdZnTe (CZT) detectors flown on a scientific balloon payload in May 2001. The detectors are both platinum-contact 10 mm × 10 mm × 5 mm CZT crystals, each with a 4 × 4 array of pixels tiling the anode. One is made from IMARAD horizontal Bridgman CZT, the other from eV Products high-pressure Bridgman CZT. Both detectors were mounted side-by-side in a flip-chip configuration and read out by a 32-channel IDE VA/TA ASIC preamp/shaper. We enclosed the detectors in the same 40o field-of-view collimator used in our previously-reported September 2000 flight. I-V curves for the detectors are diode-like, and we find that the platinum contacts adhere significantly better to the CZT surfaces than gold to previosu detectors. The detectors and instrumentation performed well in a 20-hour balloon flight on 23/24 May 2001. Although we discovered a significant instrumental background component in flight, it was possible to measure and subtract this component from the spectra. The resulting IMARAD detector background spectrum reaches ~5×10-3 counts cm-2s-1keV-1 at 100 keV and has a power-law index of ~2 at hgih energies. The eV Products detector has a similar spectrum, although there is more uncertainty in the enregy scale because of calibration complications.

  8. Status report on the International Germanium Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Brodzinski, R.L.; Hensley, W.K.; Miley, H.S.; Reeves, J.H. [Pacific Northwest Lab., Richland, WA (United States); Avignone, F.T.; Collar, J.I.; Guerard, C.K. [South Carolina Univ., Columbia, SC (United States); Courant, H.; Ruddick, K. [Minnesota Univ., Minneapolis, MN (United States); Kirpichnikov, I.V.; Starostin, A.S. [AN SSSR, Moscow (Russian Federation). Inst. Teoreticheskoj i Eksperimental`noj Fiziki; Garcia, E.; Morales, A.; Morales, J.; Nunez-Lagos, R.; Puimedon, J.; Saenz, C.; Salinas, A.; Sarasa, M.L.; Villar, J.A. [Zaragoza Univ. (Spain); Osetrov, S.B.; Pomansky, A.A.; Smolnikov, A.A.; Vasiliev, S.I. [AN SSSR, Moscow (Russian Federation). Inst. Yadernykh Issledovanij; Pogosov, V.S.; Tamanyan, A.G. [Erevanskij Fizicheskij Inst., Erevan (Armenia)

    1992-06-01

    Phase II detector fabrication for the International Germanium Experiment is awaiting resolution of technical details observed during Phase I. Measurements of fiducial volume, configuration of the tansistor-reset preamplifier stage, and sources of background are discussed. Cosmogenic {sup 7}Be is measured in germanium. Radium contamination in electroformed copper reported. The 2{nu} double- beta decay half-life of {sup 76}Ge measured with a Phase I detector is in reasonable agreement with previously reported values. No events are observed in the vicinity of the O{nu} double-beta decay energy.

  9. Investigation of a background suppression transimpedance amplifier for photovoltaic detectors

    Science.gov (United States)

    Metzger, Ferdinand J., Jr.

    1992-12-01

    The current generation of transimpedance amplifier based detector systems are limited by opamp saturation when operating at a high gain or in the presence of a large background signal. To eliminate saturation, an amplifier that is frequency dependent is developed. Additionally, the noise sources in the conventional transimpedance amplifier and photovoltaic detector are quantified for comparison to any modified circuit. Initial results indicate that the frequency dependent detector system is a viable system, however, further development is required. Further research of this technology is expected to support future infrared and long range detection applications.

  10. Search for Pauli exclusion principle violating atomic transitions and electron decay with a p-type point contact germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Chu, P. -H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Finnerty, P. S.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O’Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C. -H.; Yumatov, V.; Zhitnikov, I.

    2016-11-11

    A search for Pauli-exclusion-principle-violating K electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of s at 90% C.L. It is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation.

  11. Background Measurements from Balloon-Borne CZT Detectors

    CERN Document Server

    Jenkins, J A; Grindlay, J E; Bloser, P F; Stahle, C K; Parker, B; Barthelmy, S D; Jenkins, Johnathan A; Narita, Tomohiko; Grindlay, Jonathan E.; Bloser, Peter F.; Stahle, Carl; Parker, Brad; Barthelmy, Scott

    2002-01-01

    We report detector characteristics and background measurements from two prototype imaging CZT detectors flown on a scientific balloon payload in May 2001. The detectors are both platinum-contact 10mm x 10mm x 5mm CZT crystals, each with a 4 $\\times$ 4 array of pixels tiling the anode. One is made from IMARAD horizontal Bridgman CZT, the other from eV Products high-pressure Bridgman material. Both detectors were mounted side-by-side in a flip-chip configuration and read out by a 32-channel IDE VA/TA ASIC preamp/shaper. We enclosed the detectors in the same 40deg field-of-view collimator (comprisinga graded passive shield and plastic scintillator) used in our previously-reported September 2000 flight. I-V curves for the detectors are diode-like, and we find that the platinum contacts adhere significantly better to the CZT surfaces than gold to previous detectors. The detectors and instrumentation performed well in a 20-hour balloon flight on 23/24 May 2001. Although we discovered a significant instrumental back...

  12. Characterization of a broad energy germanium detector and application to neutrinoless double beta decay search in Ge-76

    CERN Document Server

    Agostini, M; Brugnera, R; Cattadori, C M; D'Andragora, A; di Vacri, A; Garfagnini, A; Laubenstein, M; Pandola, L; Ur, C A

    2010-01-01

    The performance of a 630 g commercial broad energy germanium (BEGe) detector has been systematically investigated. Energy resolution, linearity, stability vs. high-voltage (HV) bias, thickness and uniformity of dead layers have been measured and found to be excellent. Special attention has been dedicated to the study of the detector response as a function of bias HV. The nominal depletion voltage being 3000 V, the detector under investigation shows a peculiar behavior for biases around 2000 V: in a narrow range of about 100 V the charge collection is strongly reduced. The detector seems to be composed by two parts: a small volume around the HV contact where charges are efficiently collected as at higher voltage, and a large volume where charges are poorly collected. A qualitative explanation of this behavior is presented. An event-by-event pulse shape analysis based on A/E (maximum amplitude of the current pulse over the total energy released in the detector) has been applied to events in different energy reg...

  13. CALDER: Cryogenic light detectors for background-free searches

    Science.gov (United States)

    Cardani, L.; Bellini, F.; Casali, N.; Castellano, M. G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; Di Domizio, S.; Tomei, C.; Vignati, M.

    2015-08-01

    The development of background-free detectors is essential for experiments searching for rare events. Bolometers, that are among the most competitive devices for the study of neutrino-less double beta decay (0νDBD) and Dark Matter interactions, suffer from the absence of techniques that allow to identify the nature of the interacting particles. This limit can be overcome by coupling the bolometer to an independent device for the measurement of the light emitted by interactions, as the combined read-out of the bolometric and light signals allows to identify and reject particles different from those of interest. CUORE, the most advanced bolometric experiment for 0νDBD searches, could disentangle the electrons produced by 0νDBD from the dangerous background due to α particles, by measuring the (tiny) Cherenkov light emitted by electrons and not by α's. LUCIFER, a project based on ZnSe scintillating bolometers for the study of 82Se 0νDBD, would be competitive also in the search of Dark Matter interactions if equipped with light detectors that allow to distinguish and reject the background due to electrons and γ's. These advances require cryogenic detectors characterized by noise lower than 20 eV, large active area, wide temperature range of operation, high radio-purity and ease in fabricating hundreds of channels. The CALDER collaboration aims to develop such detectors by exploiting the superb energy resolution and natural multiplexed read-out provided by Kinetic Inductance Detectors.

  14. A Novel Low Background Cryogenic Detector for Radon in Gas

    Science.gov (United States)

    Wójcik, Marcin; Zuzel, Grzegorz

    2007-03-01

    A prototype of a new detector for measurements of radon in gases and radon emanation investigations is presented. It is based on the low-temperature collection of 222Rn on a stainless steel plate and the following counting of emitted alpha particles using a standard ORTEC semiconductor detector for alpha spectroscopy. A low background of the constructed system was achieved, in the order of 25 counts per day for the 222Rn energy window. Relatively high detection efficiency of 32 % in 2π geometry, and large volume of the detector allow radon concentration measurements at the level of 12 mBq/m3 with a 30 % accuracy. The detector can be also used to measure short-lived 220Rn. In the next step we plan to improve the system so that we could reach the sensitivity of 1 mBq/m3. This can be achieved by reducing the background, improving the detection efficiency and/or increasing the active volume of the detector (with respect to the prototype).

  15. Focusing of a new germanium counter type : the composite detector. Uses of the TREFLE detector in the EUROGAM multidetector; Mise au point d`un nouveau type de compteur germanium: le detecteur composite. Utilisation du detecteur TREFLE dans le multidetecteur EUROGAM

    Energy Technology Data Exchange (ETDEWEB)

    Han, L.

    1995-05-01

    The aim of this thesis is the development of new types of germanium detectors: the composite detectors. Two types of prototypes are then conceived: the stacked planar detector (EDP) and the assembly of coaxial diodes (TREFLE). They are designed for the multidetector EUROGAM destined to the research of nuclear structure at high angular momentum. The four planar diodes of EDP detector were of 7 cm diameter and of 15 to 20 mm thick. The difference between the calculated and measured photopic efficiency is observed. The importance of surface channel induces a weak resistance of neutron damages. The sputtering method for the surface treatment reducing the germanium dead layer as well as a rule of selection concerning the impurity concentration and the thickness of crystal is helpful for the later production of germanium detector. The CLOVER detector consist of for mean size crystals in the same cryostat. The photopic efficiency is much larger than that of the greatest monocrystal detector. And the granulation of composite detector allowed the Doppler broadening correction of gamma ray observed in the nuclear reaction where the recoil velocity is very high. This new type of detector enable the linear polarization measurement of gamma ray. Twenty-four CLOVER detector are actually mounted in the EUROGAM array. The characteristics measured in source as well as in beam, reported in this thesis, meet exactly the charge account. (author). 47 refs., 61 figs., 18 tabs.

  16. Infrared microspectroscopic imaging using a large radius germanium internal reflection element and a focal plane array detector.

    Science.gov (United States)

    Patterson, Brian M; Havrilla, George J; Marcott, Curtis; Story, Gloria M

    2007-11-01

    Previously, we established the ability to collect infrared microspectroscopic images of large areas using a large radius hemisphere internal reflection element (IRE) with both a single point and a linear array detector. In this paper, preliminary work in applying this same method to a focal plane array (FPA) infrared imaging system is demonstrated. Mosaic tile imaging using a large radius germanium hemispherical IRE on a FPA Fourier transform infrared microscope imaging system can be used to image samples nearly 1.5 mm x 2 mm in size. A polymer film with a metal mask is imaged using this method for comparison to previous work. Images of hair and skin samples are presented, highlighting the complexity of this method. Comparisons are made between the linear array and FPA methods.

  17. Gamma-ray observations of SN 1987A with an array of high-purity germanium detectors

    Science.gov (United States)

    Sandie, W. G.; Nakano, G. H.; Chase, L. F., Jr.; Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Paciesas, W.

    A balloonborne gamma-ray spectrometer comprising an array of high-purity n-type germanium detectors was flown from Alice Springs, Northern Territory, Australia, on May 29 - 30, 1987, 96 days after the observed neutrino pulse. SN 1987A was within the 22-deg field of view for about 3300 s during May 29.9 - 30.3 UT. No excess gamma rays were observed at energies appropriate to the Ni(56) - Co(56) decay chain or from other lines in the energy region from 0.1 to 3.0 MeV. The data imply that there was less than 2.5×10-4 solar masses of Co(56) exposed to the Earth at the time of the observation. Additional balloon-borne observations are planned.

  18. Development of low background germanium spectrometer for measurement of neutrino magnetic moment

    CERN Document Server

    Beda, A G; Starostin, A S

    2000-01-01

    The prospects for a search for neutrino magnetic moment down to (3-5)centre dot 10 sup - sup 1 sup 1 of the Bohr magneton with the use of low background Ge-NaI spectrometer built in ITEP are discussed. The lowest level of background for shallow setups was achieved in the preliminary test measurements of background. This result and estimations of additional sources of the background in a reactor experiment testify that using the low background Ge-NaI spectrometer with mass of Ge-crystal of 2 kg it is possible to achieve above objective, that will be one order of magnitude better than the present experimental limit.

  19. A Study of Nuclear Recoil Backgrounds in Dark Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Westerdale, Shawn S. [Princeton U.

    2016-01-01

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the $1-1000$ GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering from nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating ($\\alpha$, n)yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and

  20. Characterization and modeling of a low background HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Dokania, N.; Singh, V.; Mathimalar, S. [India-based Neutrino Observatory, Tata Institute of Fundamental Research, Mumbai 400 005 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Nanal, V., E-mail: nanal@tifr.res.in [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400 005 (India); Pal, S.; Pillay, R.G. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400 005 (India)

    2014-05-01

    A high efficiency, low background counting setup has been made at TIFR consisting of a special HPGe detector (∼70%) surrounded by a low activity copper+lead shield. Detailed measurements are performed with point and extended geometry sources to obtain a complete response of the detector. An effective model of the detector has been made with GEANT4 based Monte Carlo simulations which agrees with experimental data within 5%. This setup will be used for qualification and selection of radio-pure materials to be used in a cryogenic bolometer for the study of Neutrinoless Double Beta Decay in {sup 124}Sn as well as for other rare event studies. Using this setup, radio-impurities in the rock sample from India-based Neutrino Observatory (INO) site have been estimated.

  1. Characterization and modeling of a low background HPGe detector

    CERN Document Server

    Dokania, N; Mathimalar, S; Nanal, V; Pal, S; Pillay, R G

    2013-01-01

    A high efficiency, low background counting setup has been made at TIFR consisting of a special HPGe detector ($\\sim$70$\\%$) surrounded by a low activity copper+lead shield. Detailed measurements are performed with point and extended geometry sources to obtain a complete response of the detector. An effective model of the detector has been made with GEANT4 based Monte Carlo simulations which agrees with experimental data within 5$\\%$. This setup will be used for qualification and selection of radio-pure materials to be used in a cryogenic bolometer for the study of Neutrinoless Double Beta Decay in $^{124}$Sn as well as for other rare event studies. Using this setup, radio-impurities in the rock sample from India-based Neutrino Observatory (INO) site have been estimated.

  2. Beam-induced backgrounds in detectors at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Adrian

    2008-11-15

    There is general consensus in the high-energy physics community that the next particle collider to be built should be a linear electron-positron accelerator. Such a machine, colliding point-like particles with a well-defined initial state, would be an ideal complement to the Large Hadron Collider (LHC) and would allow high-precision measurements of the new physics phenomena that are likely to be discovered at the TeV energy scale. The most advanced project in that context is the International Linear Collider (ILC), aiming for a centre-of-mass energy of 500 GeV and a luminosity of 2 x 10{sup 34} cm{sup -2}s{sup -1} in its first stage. One of the detector concepts that are currently being developed and studied is the so-called International Large Detector (ILD). A prime feature of the ILD concept is the usage of a Time Projection Chamber (TPC) as the main tracker, which allows to reach the required momentum resolution, but which also has excellent particle identification capabilities and a highly robust and efficient tracking. The beam-beam interaction of the strongly focused particle bunches at the ILC will produce beamstrahlung photons, which can in turn scatter to electron-positron pairs. These pairs are a major source of detector backgrounds. This thesis explains the methods to study the effects of beam-induced electron-positron pair backgrounds with Mokka, a full detector simulation for the ILC that is based on Geant4, and it presents the simulation results for different detector configurations and various small modifications. The main focus of the simulations and their analysis is on the vertex detector and the TPC, but results for the inner silicon trackers and the hadronic calorimeters are shown as well. (orig.)

  3. GEANT4 simulation of photo-peak efficiency of small high purity germanium detectors for nuclear power plant applications

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Shakeel Ur; Mirza, Sikander M. [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan); Mirza, Nasir M., E-mail: nmm@pieas.edu.p [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan); Siddique, Muhammad Tariq [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)

    2011-01-15

    GEANT4 - based Monte Carlo simulations have been carried out for the determination of photo-peak efficiency of heavily shielded small high purity germanium detector (HPGe) used for monitoring radiation levels in nuclear power plants. The GEANT4 simulated values of HPGe detector efficiency for point as well as for disk sources, for two different values of collimator diameter, have been found in good agreement with the corresponding published results obtained by using the MCNP code. The work has been extended to study the effect of radial displacement of a source relative to a detector on photo-peak efficiency for both point and disk source, and at various values of {gamma}-ray energies. Also the effect of disk source radius on photo-peak efficiency has been studied. Besides the results of different available physics models in GEANT4 have also been compared. The computed values of efficiency for point as well as for disk sources using the Penelope and Livermore physics models have been found correspondingly consistent for various values of {gamma}-ray energies while some differences (e.g., Penelope model yields 6.3% higher values of photo-peak efficiency for E{gamma} = 1.332 MeV, 10 mm collimator diameter) have been observed in the corresponding valued obtained by using the Standard physics model.

  4. CALDER: Cryogenic light detectors for background-free searches

    Energy Technology Data Exchange (ETDEWEB)

    Cardani, L. [Dipartimento di Fisica - Sapienza Università di Roma, Roma - Italy and Physics Department, Princeton University, Princeton, NJ (United States); Bellini, F.; Casali, N.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; Vignati, M. [Dipartimento di Fisica - Sapienza Università di Roma and INFN - Sezione di Roma, Roma - Italy (Italy); Castellano, M. G. [Istituto di Fotonica e Nanotecnologie - CNR, Roma - Italy (Italy); Colantoni, I. [Dipartimento di Fisica - Sapienza Università di Roma (Italy); Di Domizio, S. [Dipartimento di Fisica, Università di Genova, Genova - Italy and INFN Sezione di Genova, Genova - Italy (Italy); Tomei, C. [INFN - Sezione di Roma, Roma - Italy (Italy)

    2015-08-17

    The development of background-free detectors is essential for experiments searching for rare events. Bolometers, that are among the most competitive devices for the study of neutrino-less double beta decay (0νDBD) and Dark Matter interactions, suffer from the absence of techniques that allow to identify the nature of the interacting particles. This limit can be overcome by coupling the bolometer to an independent device for the measurement of the light emitted by interactions, as the combined read-out of the bolometric and light signals allows to identify and reject particles different from those of interest. CUORE, the most advanced bolometric experiment for 0νDBD searches, could disentangle the electrons produced by 0νDBD from the dangerous background due to α particles, by measuring the (tiny) Cherenkov light emitted by electrons and not by α’s. LUCIFER, a project based on ZnSe scintillating bolometers for the study of {sup 82}Se 0νDBD, would be competitive also in the search of Dark Matter interactions if equipped with light detectors that allow to distinguish and reject the background due to electrons and γ’s. These advances require cryogenic detectors characterized by noise lower than 20 eV, large active area, wide temperature range of operation, high radio-purity and ease in fabricating hundreds of channels. The CALDER collaboration aims to develop such detectors by exploiting the superb energy resolution and natural multiplexed read-out provided by Kinetic Inductance Detectors.

  5. A search for particle dark matter using cryogenic germanium and silicon detectors in the one- and two- tower runs of CDMS-II at Soudan

    Energy Technology Data Exchange (ETDEWEB)

    Ogburn, IV, Reuben Walter [Stanford Univ., CA (United States)

    2008-06-01

    Images of the Bullet Cluster of galaxies in visible light, X-rays, and through gravitational lensing confirm that most of the matter in the universe is not composed of any known form of matter. The combined evidence from the dynamics of galaxies and clusters of galaxies, the cosmic microwave background, big bang nucleosynthesis, and other observations indicates that 80% of the universe's matter is dark, nearly collisionless, and cold. The identify of the dar, matter remains unknown, but weakly interacting massive particles (WIMPs) are a very good candidate. They are a natural part of many supersymmetric extensions to the standard model, and could be produced as a nonrelativistic, thermal relic in the early universe with about the right density to account for the missing mass. The dark matter of a galaxy should exist as a spherical or ellipsoidal cloud, called a 'halo' because it extends well past the edge of the visible galaxy. The Cryogenic Dark Matter Search (CDMS) seeks to directly detect interactions between WIMPs in the Milky Way's galactic dark matter halo using crystals of germanium and silicon. Our Z-sensitive ionization and phonon ('ZIP') detectors simultaneously measure both phonons and ionization produced by particle interactions. In order to find very rare, low-energy WIMP interactions, they must identify and reject background events caused by environmental radioactivity, radioactive contaminants on the detector,s and cosmic rays. In particular, sophisticated analysis of the timing of phonon signals is needed to eliminate signals caused by beta decays at the detector surfaces. This thesis presents the firs two dark matter data sets from the deep underground experimental site at the Soudan Underground Laboratory in Minnesota. These are known as 'Run 118', with six detectors (1 kg Ge, 65.2 live days before cuts) and 'Run 119', with twelve detectors (1.5 kg Ge, 74.5 live days before cuts). They have

  6. Application of the Broad Energy Germanium detector: A technique for elucidating β-decay schemes which involve daughter nuclei with very low energy excited states

    Science.gov (United States)

    Venhart, M.; Wood, J. L.; Boston, A. J.; Cocolios, T. E.; Harkness-Brennan, L. J.; Herzberg, R.-D.; Joss, D. T.; Judson, D. S.; Kliman, J.; Matoušek, V.; Motyčák, Š.; Page, R. D.; Patel, A.; Petrík, K.; Sedlák, M.; Veselský, M.

    2017-03-01

    A technique for elucidating β-decay schemes of isotopes with a large density of states at low excitation energy has been developed, in which a Broad Energy Germanium (BEGe) detector is used in conjunction with coaxial hyper-pure germanium detectors. The power of this technique is demonstrated using the example of 183Hg decay. Mass-separated samples of 183Hg were produced by a deposition of the low-energy radioactive-ion beam delivered by the ISOLDE facility at CERN. The excellent energy resolution of the BEGe detector allowed γ-ray energies to be determined with a precision of a few tens of eV, which was sufficient for the analysis of the Rydberg-Ritz combinations (in conjunction with γ-γ coincidences) in the level scheme. The timestamped structure of the data was used for unambiguous separation of γ rays arising from the decay of 183Hg from those due to the daughter decays.

  7. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring

    Science.gov (United States)

    2008-09-01

    cm3, ~ 3 kg, ~ 140 %, or larger). Maintenance-free Stirling -cycle mechanical coolers are being used. These coolers have operating lifetimes...photograph of the complete RASA 1 detector system is shown in Figure 1. The detector is cooled to temperatures below 50 K when the cooler is...cryostat- cooler combination can ultimately serve as a viable detector unit for RASA detector systems . During the pursuit of the microphonic noise

  8. Final Report for Monitoring of Reactor Antineutrinos with Compact Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Orrell, John L.; Collar, J. I.

    2009-07-01

    This 2008 NCMR project has pursued measurement of the antineutrino-nucleus coherent scattering interaction using a low-energy threshold germanium gamma-ray spectrometer of roughly one-half kilogram total mass. These efforts support development of a compact system for monitoring the antineutrino emission from nuclear reactor cores. Such a monitoring system is relevant to nuclear safeguards and nuclear non-proliferation in general by adding a strong method for assuring quantitative material balance of special nuclear material in the nuclear fuel cycle used in electricity generation.

  9. Background simulations for the Large Area Detector onboard LOFT

    DEFF Research Database (Denmark)

    Campana, Riccardo; Feroci, Marco; Ettore, Del Monte

    2013-01-01

    is essential to assess the scientific performance of the mission and optimize the design of its main instrument, the Large Area Detector (LAD). In this paper the results of an extensive Geant-4 simulation of the instrumentwillbe discussed, showing the main contributions to the background and the design...... solutions for its reduction and control. Our results show that the current LOFT/LAD design is expected to meet its scientific requirement of a background rate equivalent to 10 mCrab in 2aEuro'30 keV, achieving about 5 mCrab in the most important 2-10 keV energy band. Moreover, simulations show...... an anticipated modulation of the background rate as small as 10 % over the orbital timescale. The intrinsic photonic origin of the largest background component also allows for an efficient modelling, supported by an in-flight active monitoring, allowing to predict systematic residuals significantly better than...

  10. Effect of Advanced Synthetically Enhanced Detector Resolution Algorithm on Specificity and Sensitivity of Portable High Purity Germanium Gamma Detector Spectra

    Science.gov (United States)

    2009-06-01

    with a 50 mm diameter and 30 mm deep Ge crystal and low power Stirling Cooler . The detector is shown in Figure 9. 28 Figure 9. Ortec...recording some characteristics of their average behavior. The common behavior of particles in the physical system is then concluded from the 14...modeling. With increased computational power, Monte Carlo simulations of detector systems have become a complement to experimental detector work

  11. Study on Optical Filter Heating in Background Limited Detector Experiments

    Science.gov (United States)

    Bueno, J.; de Visser, P. J.; Doyle, S.; Baselmans, J. J. A.

    2014-09-01

    Cryogenic test setups with controlled stray light environments capable of reaching ultra-low radiative background levels are required to test far infrared (FIR) and submillimeter (sub-mm) wave radiation detectors for future space based observatories. In recent experiments (Nature Commun 5:3130, 2014), in which 1.54 THz radiation was coupled onto an antenna-coupled kinetic inductance detector (KID), we found a higher than expected optical loading. We show that this can be explained by assuming heating of the metal mesh IR filters and re-radiation onto the KID. Note that the total power from the cryogenic black body source used in the experiments (at T = - K) is much larger than the power inside the - THz band we use to calibrate our detector. The out-of-band radiation can have up to 5 orders of magnitude more power than inside the - THz band of interest. A strategy to mitigate the filter heating problem is presented, and when it is implemented, the validated upper limit for stray light at the detector level is down to few aW.

  12. Search for Pauli Exclusion Principle Violating Atomic Transitions and Electron Decay with a P-type Point Contact Germanium Detector

    CERN Document Server

    Abgrall, N; Avignone, F T; Barabash, A S; Bertrand, F E; Bradley, A W; Brudanin, V; Busch, M; Buuck, M; Caldwell, A S; Chan, Y-D; Christofferson, C D; Chu, P -H; Cuesta, C; Detwiler, J A; Dunagan, C; Efremenko, Yu; Ejiri, H; Elliott, S R; Finnerty, P S; Galindo-Uribarri, A; Gilliss, T; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guinn, I S; Guiseppe, V E; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Jasinski, B R; Keeter, K J; Kidd, M F; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; MacMullin, J; Martin, R D; Massarczyk, R; Meijer, S J; Mertens, S; Orrell, J L; O'Shaughnessy, C; Poon, A W P; Radford, D C; Rager, J; Rielage, K; Robertson, R G H; Romero-Romero, E; Shanks, B; Shirchenko, M; Suriano, A M; Tedeschi, D; Trimble, J E; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Wiseman, C; Xu, W; Yakushev, E; Yu, C -H; Yumatov, V; Zhitnikov, I

    2016-01-01

    A search for Pauli-exclusion-principle-violating K-alpha electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of 5.8x10^30 seconds at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the x-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of 6.8x10^30 seconds at 90 C.L. It is estimated that the MAJORANA DEMONSTRATOR, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of 76-Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation.

  13. Search for Pauli exclusion principle violating atomic transitions and electron decay with a p-type point contact germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N.; Bradley, A.W.; Chan, Y.D.; Mertens, S.; Poon, A.W.P. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arnquist, I.J.; Hoppe, E.W.; Kouzes, R.T.; LaFerriere, B.D.; Orrell, J.L. [Pacific Northwest National Laboratory, Richland, WA (United States); Avignone, F.T. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Barabash, A.S.; Konovalov, S.I.; Yumatov, V. [National Research Center ' ' Kurchatov Institute' ' Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bertrand, F.E.; Galindo-Uribarri, A.; Radford, D.C.; Varner, R.L.; White, B.R.; Yu, C.H. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Brudanin, V.; Shirchenko, M.; Vasilyev, S.; Yakushev, E.; Zhitnikov, I. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Busch, M. [Duke University, Department of Physics, Durham, NC (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Buuck, M.; Cuesta, C.; Detwiler, J.A.; Gruszko, J.; Guinn, I.S.; Leon, J.; Robertson, R.G.H. [University of Washington, Department of Physics, Center for Experimental Nuclear Physics and Astrophysics, Seattle, WA (United States); Caldwell, A.S.; Christofferson, C.D.; Dunagan, C.; Howard, S.; Suriano, A.M. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Chu, P.H.; Elliott, S.R.; Goett, J.; Massarczyk, R.; Rielage, K. [Los Alamos National Laboratory, Los Alamos, NM (United States); Efremenko, Yu. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Ejiri, H. [Osaka University, Research Center for Nuclear Physics, Ibaraki, Osaka (Japan); Finnerty, P.S.; Gilliss, T.; Giovanetti, G.K.; Henning, R.; Howe, M.A.; MacMullin, J.; Meijer, S.J.; O' Shaughnessy, C.; Rager, J.; Shanks, B.; Trimble, J.E.; Vorren, K.; Xu, W. [Triangle Universities Nuclear Laboratory, Durham, NC (United States); University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States); Green, M.P. [North Carolina State University, Department of Physics, Raleigh, NC (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Guiseppe, V.E.; Tedeschi, D.; Wiseman, C. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Jasinski, B.R. [University of South Dakota, Department of Physics, Vermillion, SD (United States); Keeter, K.J. [Black Hills State University, Department of Physics, Spearfish, SD (United States); Kidd, M.F. [Tennessee Tech University, Cookeville, TN (United States); Martin, R.D. [Queen' s University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON (Canada); Romero-Romero, E. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Vetter, K. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); University of California, Department of Nuclear Engineering, Berkeley, CA (United States); Wilkerson, J.F. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States)

    2016-11-15

    A search for Pauli-exclusion-principle-violating K{sub α} electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of 5.8 x 10{sup 30} s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of 6.8 x 10{sup 30} s at 90% C.L. It is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of {sup 76}Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation. (orig.)

  14. Low background detector with enriched 116CdWO4 crystal scintillators to search for double beta decay of 116Cd

    CERN Document Server

    Barabash, A S; Bernabei, R; Boiko, R S; Cappella, F; Caracciolo, V; Chernyak, D M; Cerulli, R; Danevich, F A; Di Vacri, M L; Dossovitskiy, A E; Galashov, E N; Incicchitti, A; Kobychev, V V; Konovalov, S I; Kovtun, G P; Kudovbenko, V M; Laubenstein, M; Mikhlin, A L; Nisi, S; Poda, D V; Podviyanuk, R B; Polischuk, O G; Shcherban, A P; Shlegel, V N; Solopikhin, D A; Stenin, Yu G; Tretyak, V I; Umatov, V I; Vasiliev, Ya V; Virich, V D

    2011-01-01

    A cadmium tungstate crystal boule enriched in $^{116}$Cd to 82% with mass of 1868 g was grown by the low-thermal-gradient Czochralski technique. The isotopic composition of cadmium and the trace contamination of the crystal were estimated by High Resolution Inductively Coupled Plasma Mass-Spectrometry. The crystal scintillators produced from the boule were subjected to characterization that included measurements of transmittance and energy resolution. A low background scintillation detector with two $^{116}$CdWO$_4$ crystal scintillators (586 g and 589 g) was developed. The detector was running over 1727 h deep underground at the Gran Sasso National Laboratories of the INFN (Italy), which allowed to estimate the radioactive contamination of the enriched crystal scintillators. The radiopurity of a third $^{116}$CdWO$_4$ sample (326 g) was tested with the help of ultra-low background high purity germanium $\\gamma$ detector. Monte Carlo simulations of double $\\beta$ processes in $^{116}$Cd were used to estimate ...

  15. Neutron Damage in Mechanically-Cooled High-Purity Germanium Detectors for Field-Portable Prompt Gamma Neutron Activation Analysis (PGNAA) Systems

    Energy Technology Data Exchange (ETDEWEB)

    E.H. Seabury; C.J. Wharton; A.J. Caffrey; J.B. McCabe; C. DeW. Van Siclen

    2013-10-01

    Prompt Gamma Neutron Activation (PGNAA) systems require the use of a gamma-ray spectrometer to record the gamma-ray spectrum of an object under test and allow the determination of the object’s composition. Field-portable systems, such as Idaho National Laboratory’s PINS system, have used standard liquid-nitrogen-cooled high-purity germanium (HPGe) detectors to perform this function. These detectors have performed very well in the past, but the requirement of liquid-nitrogen cooling limits their use to areas where liquid nitrogen is readily available or produced on-site. Also, having a relatively large volume of liquid nitrogen close to the detector can impact some assessments, possibly leading to a false detection of explosives or other nitrogen-containing chemical. Use of a mechanically-cooled HPGe detector is therefore very attractive for PGNAA applications where nitrogen detection is critical or where liquid-nitrogen logistics are problematic. Mechanically-cooled HPGe detectors constructed from p-type germanium, such as Ortec’s trans-SPEC, have been commercially available for several years. In order to assess whether these detectors would be suitable for use in a fielded PGNAA system, Idaho National Laboratory (INL) has been performing a number of tests of the resistance of mechanically-cooled HPGe detectors to neutron damage. These detectors have been standard commercially-available p-type HPGe detectors as well as prototype n-type HPGe detectors. These tests compare the performance of these different detector types as a function of crystal temperature and incident neutron fluence on the crystal.

  16. Multichroic Bolometric Detector Architecture for Cosmic Microwave Background Polarimetry Experiments

    Science.gov (United States)

    Suzuki, Aritoki

    Characterization of the Cosmic Microwave Background (CMB) B-mode polarization signal will test models of inflationary cosmology, as well as constrain the sum of the neutrino masses and other cosmological parameters. The low intensity of the B-mode signal combined with the need to remove polarized galactic foregrounds requires a sensitive millimeter receiver and effective methods of foreground removal. Current bolometric detector technology is reaching the sensitivity limit set by the CMB photon noise. Thus, we need to increase the optical throughput to increase an experiment's sensitivity. To increase the throughput without increasing the focal plane size, we can increase the frequency coverage of each pixel. Increased frequency coverage per pixel has additional advantage that we can split the signal into frequency bands to obtain spectral information. The detection of multiple frequency bands allows for removal of the polarized foreground emission from synchrotron radiation and thermal dust emission, by utilizing its spectral dependence. Traditionally, spectral information has been captured with a multi-chroic focal plane consisting of a heterogeneous mix of single-color pixels. To maximize the efficiency of the focal plane area, we developed a multi-chroic pixel. This increases the number of pixels per frequency with same focal plane area. We developed multi-chroic antenna-coupled transition edge sensor (TES) detector array for the CMB polarimetry. In each pixel, a silicon lens-coupled dual polarized sinuous antenna collects light over a two-octave frequency band. The antenna couples the broadband millimeter wave signal into microstrip transmission lines, and on-chip filter banks split the broadband signal into several frequency bands. Separate TES bolometers detect the power in each frequency band and linear polarization. We will describe the design and performance of these devices and present optical data taken with prototype pixels and detector arrays. Our

  17. Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Christopher Sean [Univ. of California, Berkeley, CA (United States)

    1998-05-01

    This research has shown that epilayers with residual impurity concentrations of 5 x 1013 cm-3 can be grown by producing the purest Pb available in the world. These epilayers have extremely low minority acceptor concentrations, which is ideal for fabrication of IR absorbing layers. The Pb LPE growth of Ge also has the advantageous property of gettering Cu from the epilayer and the substrate. Epilayers have been grown with intentional Sb doping for IR absorption on lightly doped substrates. This research has proven that properly working Ge BIB detectors can be fabricated from the liquid phase as long as pure enough solvents are available. The detectors have responded at proper wavelengths when reversed biased even though the response did not quite reach minimum wavenumbers. Optimization of the Sb doping concentration should further decrease the photoionization energy of these detectors. Ge BIB detectors have been fabricated that respond to 60 cm-1 with low responsivity. Through reduction of the minority residual impurities, detector performance has reached responsivities of 1 A/W. These detectors have exhibited quantum efficiency and NEP values that rival conventional photoconductors and are expected to provide a much more sensitive tool for new scientific discoveries in a number of fields, including solid state studies, astronomy, and cosmology.

  18. Muon background studies for shallow depth Double - Chooz near detector

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, H. [Laboratoire Astroparticule et Cosmologie (APC) - Université Paris 7. Paris (France)

    2015-08-17

    Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine the muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector.

  19. Study of the material photon and electron background and the liquid argon detector veto efficiency of the CDEX-10 experiment

    CERN Document Server

    Su, Jian; MA, Hao; Yue, Qian; Cheng, Jian-Ping; Chang, Jian-Ping; Chen, Nan; Chen, Ning; Chen, Qing-Hao; Chen, Yun-Hua; Chuang, Yo-Chun; Deng, Zhi; Du, Qiang; Gong, Hui; Hao, Xi-Qing; He, Qing-Ju; Huang, Han-Xiong; Huang, Teng-Rui; Jiang, Hao; Kang, Ke-Jun; Li, Hau-Bin; Li, Jian-Min; Li, Jin; Li, Jun; Li, Xia; Li, Xin-Ying; Li, Xue-Qian; Li, Yu-Lan; Li, Yuan-Jing; Liao, Heng-Yi; Lin, Fong-Kay; Lin, Shin-Ted; Liu, Shu-Kui; Lü, Lan-Chun; Mao, Shao-Ji; Qin, Jian-Qiang; Ren, Jie; Ren, Jing; Ruan, Xi-Chao; Shen, Man-Bin; Singh, Lakhwinder; Singh, Manoj Kumar; Soma, Arun Kumar; Tang, Chang-Jian; Tseng, Chao-Hsiung; Wang, Ji-Min; Wang, Li; Wang, Qing; Wong, Henry Tsz-King; Wu, Shi-Yong; Wu, Yu-Cheng; Xing, Hao-Yang; Xu, Yin; Xue, Tao; Yang, Li-Tao; Yang, Song-Wei; Yi, Nan; Yu, Chun-Xu; Yu, Hao; Yu, Xun-Zhen; Zeng, Xiong-Hui; Zhang, Lan; Zhang, Yun-Hua; Zhao, Ming-Gang; Zhao, Wei; Zhou, Zu-Ying; Zhu, Jing-Jun; Zhu, Wei-Bin; Zhu, Xue-Zhou; Zhu, Zhong-Hua

    2014-01-01

    The China Dark Matter Experiment (CDEX) is located at the China Jinping underground laboratory (CJPL) and aims to directly detect the WIMP flux with high sensitivity in the low mass region. Here we present a study of the predicted photon and electron backgrounds including the background contribution of the structure materials of the germanium detector, the passive shielding materials, and the intrinsic radioactivity of the liquid argon that serves as an anti-Compton active shielding detector. A detailed geometry is modeled and the background contribution has been simulated based on the measured radioactivities of all possible components within the GEANT4 program. Then the photon and electron background level in the energy region of interest (<10^-2 events kg-1 day-1 keV-1 (cpkkd)) is predicted based on Monte Carlo simulations. The simulated result is consistent with the design goal of CDEX-10 experiment, 0.1 cpkkd, which shows that the active and passive shield design of CDEX-10 is effective and feasible.

  20. Study of the material photon and electron background and the liquid argon detector veto efficiency of the CDEX-10 experiment

    Science.gov (United States)

    Su, Jian; Zeng, Zhi; Ma, Hao; Yue, Qian; Cheng, Jian-Ping; Chang, Jian-Ping; Chen, Nan; Chen, Ning; Chen, Qing-Hao; Chen, Yun-Hua; Chuang, Yo-Chun; Deng, Zhi; Du, Qiang; Gong, Hui; Hao, Xi-Qing; He, Qing-Ju; Huang, Han-Xiong; Huang, Teng-Rui; Jiang, Hao; Kang, Ke-Jun; Li, Hau-Bin; Li, Jian-Min; Li, Jin; Li, Jun; Li, Xia; Li, Xin-Ying; Li, Xue-Qian; Li, Yu-Lan; Li, Yuan-Jing; Liao, Heng-Yi; Lin, Fong-Kay; Lin, Shin-Ted; Liu, Shu-Kui; Lü, Lan-Chun; Mao, Shao-Ji; Qin, Jian-Qiang; Ren, Jie; Ren, Jing; Ruan, Xi-Chao; Shen, Man-Bin; Lakhwinder, Singh; Manoj, Kumar Singh; Arun, Kumar Soma; Tang, Chang-Jian; Tseng, Chao-Hsiung; Wang, Ji-Min; Wang, Li; Wang, Qing; Wong Tsz-King, Henry; Wu, Shi-Yong; Wu, Yu-Cheng; Xing, Hao-Yang; Xu, Yin; Xue, Tao; Yang, Li-Tao; Yang, Song-Wei; Yi, Nan; Yu, Chun-Xu; Yu, Hao; Yu, Xun-Zhen; Zeng, Xiong-Hui; Zhang, Lan; Zhang, Yun-Hua; Zhao, Ming-Gang; Zhao, Wei; Zhou, Zu-Ying; Zhu, Jing-Jun; Zhu, Wei-Bin; Zhu, Xue-Zhou; Zhu, Zhong-Hua; CDEX Collaboration

    2015-03-01

    The China Dark Matter Experiment (CDEX) is located at the China Jinping Underground Laboratory (CJPL) and aims to directly detect the weakly interacting massive particles (WIMP) flux with high sensitivity in the low mass region. Here we present a study of the predicted photon and electron backgrounds including the background contribution of the structure materials of the germanium detector, the passive shielding materials, and the intrinsic radioactivity of the liquid argon that serves as an anti-Compton active shielding detector. A detailed geometry is modeled and the background contribution has been simulated based on the measured radioactivities of all possible components within the GEANT4 program. Then the photon and electron background level in the energy region of interest (<10-2events·kg1·day-1·keV-1 (cpkkd)) is predicted based on Monte Carlo simulations. The simulated result is consistent with the design goal of the CDEX-10 experiment, 0.1cpkkd, which shows that the active and passive shield design of CDEX-10 is effective and feasible. Supported by National Natural Science Foundation of China (11175099, 10935005, 10945002, 11275107, 11105076) and State Key Development Program of Basic Research of China (2010CB833006)

  1. Differentiating hidden sector dark matter from light WIMPs with Germanium detectors

    Science.gov (United States)

    Foot, R.

    2013-06-01

    Light WIMP dark matter and hidden sector dark matter have been proposed to explain the DAMA, CoGeNT and CRESST-II data. Both of these approaches feature spin independent elastic scattering of dark matter particles on nuclei. Light WIMP dark matter invokes a single particle species which interacts with ordinary matter via contact interactions. By contrast hidden sector dark matter is typically multi-component and is assumed to interact via the exchange of a massless mediator. Such hidden sector dark matter thereby predicts a sharply rising nuclear recoil spectrum, dR/dER∼1/ER2 due to this dynamics, while WIMP dark matter predicts a spectrum which depends sensitively on the WIMP mass, mχ. We compare and contrast these two very different possible origins of the CoGeNT low energy excess. In the relevant energy range, the recoil spectra predicted by these two theories approximately agree provided mχ ≃ 8.5 GeV - close to the value favoured from fits to the CoGeNT and CDMS low energy data. Forthcoming experiments including C-4, CDEX, and the MAJORANA demonstrator, are expected to provide reasonably precise measurements of the low energy Germanium recoil spectrum, including the annual modulation amplitude, which should differentiate between these two theoretical possibilities.

  2. Atomic ionization by sterile-to-active neutrino conversion and constraints on dark matter sterile neutrinos with germanium detectors

    CERN Document Server

    Chen, Jiunn-Wei; Lin, Shin-Ted; Liu, C -P; Singh, Lakhwinder; Wong, Henry T; Wu, Chih-Liang; Wu, Chih-Pan

    2016-01-01

    The transition magnetic moment of a sterile-to-active neutrino conversion gives rise to not only radiative decay of a sterile neutrino, but also its non-standard interaction (NSI) with matter. For sterile neutrinos of keV-mass as dark matter candidates, their decay signals are actively searched for in cosmic X-ray spectra. In this work, we consider the NSI that leads to atomic ionization, which can be detected by direct dark matter experiments. It is found that this inelastic scattering process for a nonrelativistic sterile neutrino has a pronounced enhancement in the differential cross section at energy transfer about half of its mass, manifesting experimentally as peaks in the measurable energy spectra. The enhancement effects gradually smear out as the sterile neutrino becomes relativistic. Using data taken with germanium detectors that have fine energy resolution in keV and sub-keV regimes, constraints on sterile neutrino mass and its transition magnetic moment are derived and compared with those from ast...

  3. Laser-interferometric Detectors for Gravitational Wave Background at 100 MHz : Detector Design and Sensitivity

    CERN Document Server

    Nishizawa, Atsushi; Akutsu, Tomotada; Arai, Koji; Yamamoto, Kazuhiro; Tatsumi, Daisuke; Nishida, Erina; Sakagami, Masa-aki; Chiba, Takeshi; Takahashi, Ryuichi; Sugiyama, Naoshi

    2007-01-01

    Recently, observational searches for gravitational wave background (GWB) have developed and given direct and indirect constraints on the energy density of GWB in a broad range of frequencies. These constraints have already rejected some theoretical models of large GWB spectra. However, at 100 MHz, there is no strict upper limit from direct observation, though the indirect limit by He4 abundance due to big-bang nucleosynthesis exists. In this paper, we propose an experiment with laser interferometers searching GWB at 100 MHz. We considered three detector designs and evaluated the GW response functions of a single detector. As a result, we found that, at 100 MHz, the most sensitive detector is the design, a so-called synchronous recycling interferometer, which has better sensitivity than an ordinary Fabry-Perot Michelson interferometer by a factor of 3.3 at 100 MHz. We also give the best sensitivity achievable at 100 MHz with realistic experimental parameters.

  4. FOUR PI CALIBRATION AND MODELING OF A BARE GERMANIUM DETECTOR IN A CYLINDRICAL FIELD SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Dewberry, R.; Young, J.

    2011-04-29

    In reference 1 the authors described {gamma}-ray holdup assay of a Mossbauer spectroscopy instrument where they utilized two axial symmetric cylindrical shell acquisitions and two disk source acquisitions to determine Am-241 and Np-237 contamination. The measured contents of the two species were determined using a general detector efficiency calibration taken from a 12-inch point source.2 The authors corrected the raw spectra for container absorption as well as for geometry corrections to transform the calibration curve to the applicable axial symmetric cylindrical source - and disk source - of contamination. The authors derived the geometry corrections with exact calculus that are shown in equations (1) and (2) of our Experimental section. A cylindrical shell (oven source) acquisition configuration is described in reference 3, where the authors disclosed this configuration to gain improved sensitivity for holdup measure of U-235 in a ten-chamber oven. The oven was a piece of process equipment used in the Savannah River Plant M-Area Uranium Fuel Fabrication plant for which a U-235 holdup measurement was necessary for its decontamination and decommissioning in 2003.4 In reference 4 the authors calibrated a bare NaI detector for these U-235 holdup measurements. In references 5 and 6 the authors calibrated a bare HpGe detector in a cylindrical shell configuration for improved sensitivity measurements of U-235 in other M-Area process equipment. Sensitivity was vastly improved compared to a close field view of the sample, with detection efficiency of greater than 1% for the 185.7-keV {gamma}-ray from U-235. In none of references 3 - 7 did the authors resolve the exact calculus descriptions of the acquisition configurations. Only the empirical efficiency for detection of the 185.7-keV photon from U-235 decay was obtained. Not until the 2010 paper of reference 1 did the authors derive a good theoretical description of the flux of photons onto the front face of a detector

  5. FOUR PI CALIBRATION AND MODELING OF A BARE GERMANIUM DETECTOR IN A CYLINDRICAL FIELD SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Dewberry, R.; Young, J.

    2011-04-29

    In reference 1 the authors described {gamma}-ray holdup assay of a Mossbauer spectroscopy instrument where they utilized two axial symmetric cylindrical shell acquisitions and two disk source acquisitions to determine Am-241 and Np-237 contamination. The measured contents of the two species were determined using a general detector efficiency calibration taken from a 12-inch point source.2 The authors corrected the raw spectra for container absorption as well as for geometry corrections to transform the calibration curve to the applicable axial symmetric cylindrical source - and disk source - of contamination. The authors derived the geometry corrections with exact calculus that are shown in equations (1) and (2) of our Experimental section. A cylindrical shell (oven source) acquisition configuration is described in reference 3, where the authors disclosed this configuration to gain improved sensitivity for holdup measure of U-235 in a ten-chamber oven. The oven was a piece of process equipment used in the Savannah River Plant M-Area Uranium Fuel Fabrication plant for which a U-235 holdup measurement was necessary for its decontamination and decommissioning in 2003.4 In reference 4 the authors calibrated a bare NaI detector for these U-235 holdup measurements. In references 5 and 6 the authors calibrated a bare HpGe detector in a cylindrical shell configuration for improved sensitivity measurements of U-235 in other M-Area process equipment. Sensitivity was vastly improved compared to a close field view of the sample, with detection efficiency of greater than 1% for the 185.7-keV {gamma}-ray from U-235. In none of references 3 - 7 did the authors resolve the exact calculus descriptions of the acquisition configurations. Only the empirical efficiency for detection of the 185.7-keV photon from U-235 decay was obtained. Not until the 2010 paper of reference 1 did the authors derive a good theoretical description of the flux of photons onto the front face of a detector

  6. 18F half-life measurement using a high-purity germanium detector.

    Science.gov (United States)

    Han, Jubong; Lee, K B; Park, T S; Lee, J M; Oh, P J; Lee, S H; Kang, Y S; Ahn, J K

    2012-11-01

    The half-life of (18)F has been measured using HPGe detectors with a (137)Cs reference source. The counting ratio of 511 keV γ-rays from (18)F to 622 keV γ-rays from (137)Cs was fitted for the half-life with a weighted least-square method. Uncertainties due to the systematic effects arising from the measurement of a high activity (18)F source were studied in detail. The half-life of (18)F was found to be (109.72±0.19) min. The result is in a good agreement with the recommended value of (109.728±0.019) min evaluated at the Laborotaire National Henri Becquerel (LNHB).

  7. Development of ultra pure germanium epi layers for blocked impurity band far infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, M.P.

    1991-05-01

    The main goals of this paper are: (1) To develop a low-pressure CVD (LPCVD) process that allows epitaxial growth at lower temperatures. Lower temperatures will allow the achievement of a sharp dopant profile at the substrate/epi-layer interface. Less out-diffusion from the substrate would allow the use of thinner epitaxial layers, which would lead to a larger depletion width in the photoactive region. LPCVD also avoids, to a great extent, gas-phase nucleation, which would cause Ge particulates to fall onto the wafer surface during growth. (2) To reduce high levels of oxygen and copper present at the wafer interface, as observed by secondary ion mass spectroscopy (SIMS). In order to achieve high-quality epitaxial layers, it is imperative that the substrate surface be of excellent quality. (3) To make and test detectors, after satisfactory epitaxial layers have been made.

  8. An Ultra-Low Background PMT for Liquid Xenon Detectors

    CERN Document Server

    Akerib, D S; Bernard, E; Bernstein, A; Bradley, A; Byram, D; Cahn, S B; Carmona-Benitez, M C; Carr, D; Chapman, J J; Chan, Y-D; Clark, K; Coffey, T; deViveiros, L; Dragowsky, M; Druszkiewicz, E; Edwards, B; Faham, C H; Fiorucci, S; Gaitskell, R J; Gibson, K R; Hall, C; Hanhardt, M; Holbrook, B; Ihm, M; Jacobsen, R G; Kastens, L; Kazkaz, K; Larsen, N; Lee, C; Lesko, K; Lindote, A; Lopes, M I; Lyashenko, A; Malling, D C; Mannino, R; McKinsey, D; Mei, D; Mock, J; Morii, M; Nelson, H; Neves, F; Nikkel, J A; Pangilinan, M; Pech, K; Phelps, P; Shutt, T; Silva, C; Skulski, W; Solovov, V N; Sorensen, P; Spaans, J; Stiegler, T; Sweany, M; Szydagis, M; Taylor, D; Thomson, J; Tripathi, M; Uvarov, S; Verbus, J R; Walsh, N; Webb, R; White, J T; Wlasenko, M; Wolfs, F L H; Woods, M; Zhang, C

    2012-01-01

    Results are presented from radioactivity screening of two models of photomultiplier tubes designed for use in current and future liquid xenon experiments. The Hamamatsu 5.6 cm diameter R8778 PMT, used in the LUX dark matter experiment, has yielded a positive detection of four common radioactive isotopes: 238U, 232Th, 40K, and 60Co. Screening of LUX materials has rendered backgrounds from other detector materials subdominant to the R8778 contribution. A prototype Hamamatsu 7.6 cm diameter R11410 MOD PMT has also been screened, with benchmark isotope counts measured at <0.4 238 U / <0.3 232 Th / <8.3 40 K / 2.0+-0.2 60 Co mBq/PMT. This represents a large reduction, equal to a change of \\times 1/24 238U / \\times 1/9 232Th / \\times 1/8 40K per PMT, between R8778 and R11410 MOD, concurrent with a doubling of the photocathode surface area (4.5 cm to 6.4 cm diameter). 60Co measurements are comparable between the PMTs, but can be significantly reduced in future R11410 MOD units through further material selec...

  9. Physics validation studies for muon collider detector background simulations

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Aaron Owen; /Northern Illinois U.

    2011-07-01

    Within the broad discipline of physics, the study of the fundamental forces of nature and the most basic constituents of the universe belongs to the field of particle physics. While frequently referred to as 'high-energy physics,' or by the acronym 'HEP,' particle physics is not driven just by the quest for ever-greater energies in particle accelerators. Rather, particle physics is seen as having three distinct areas of focus: the cosmic, intensity, and energy frontiers. These three frontiers all provide different, but complementary, views of the basic building blocks of the universe. Currently, the energy frontier is the realm of hadron colliders like the Tevatron at Fermi National Accelerator Laboratory (Fermilab) or the Large Hadron Collider (LHC) at CERN. While the LHC is expected to be adequate for explorations up to 14 TeV for the next decade, the long development lead time for modern colliders necessitates research and development efforts in the present for the next generation of colliders. This paper focuses on one such next-generation machine: a muon collider. Specifically, this paper focuses on Monte Carlo simulations of beam-induced backgrounds vis-a-vis detector region contamination. Initial validation studies of a few muon collider physics background processes using G4beamline have been undertaken and results presented. While these investigations have revealed a number of hurdles to getting G4beamline up to the level of more established simulation suites, such as MARS, the close communication between us, as users, and the G4beamline developer, Tom Roberts, has allowed for rapid implementation of user-desired features. The main example of user-desired feature implementation, as it applies to this project, is Bethe-Heitler muon production. Regarding the neutron interaction issues, we continue to study the specifics of how GEANT4 implements nuclear interactions. The GEANT4 collaboration has been contacted regarding the minor

  10. Monte Carlo simulation of gamma-ray interactions in an over-square high-purity germanium detector for in-vivo measurements

    Science.gov (United States)

    Saizu, Mirela Angela

    2016-09-01

    The developments of high-purity germanium detectors match very well the requirements of the in-vivo human body measurements regarding the gamma energy ranges of the radionuclides intended to be measured, the shape of the extended radioactive sources, and the measurement geometries. The Whole Body Counter (WBC) from IFIN-HH is based on an “over-square” high-purity germanium detector (HPGe) to perform accurate measurements of the incorporated radionuclides emitting X and gamma rays in the energy range of 10 keV-1500 keV, under conditions of good shielding, suitable collimation, and calibration. As an alternative to the experimental efficiency calibration method consisting of using reference calibration sources with gamma energy lines that cover all the considered energy range, it is proposed to use the Monte Carlo method for the efficiency calibration of the WBC using the radiation transport code MCNP5. The HPGe detector was modelled and the gamma energy lines of 241Am, 57Co, 133Ba, 137Cs, 60Co, and 152Eu were simulated in order to obtain the virtual efficiency calibration curve of the WBC. The Monte Carlo method was validated by comparing the simulated results with the experimental measurements using point-like sources. For their optimum matching, the impact of the variation of the front dead layer thickness and of the detector photon absorbing layers materials on the HPGe detector efficiency was studied, and the detector’s model was refined. In order to perform the WBC efficiency calibration for realistic people monitoring, more numerical calculations were generated simulating extended sources of specific shape according to the standard man characteristics.

  11. Comparison of background in underground HPGe-detectors in different lead shield configurations.

    Science.gov (United States)

    Hult, Mikael; Lutter, Guillaume; Yüksel, Ayhan; Marissens, Gerd; Misiaszek, Marcin; Rosengård, Ulf

    2013-11-01

    In underground HPGe-detector systems where the cosmic ray induced background is low, it is often difficult to assess the location of background sources. In this study, background counting rates of different HPGe-detectors in different lead shields are reported with the aim of better understanding background sources. To further enhance the understanding of the variations of environmental parameters, the background as a function of time over a long period was also studied. © 2013 Elsevier Ltd. All rights reserved.

  12. Gamma radiation induced background determination for (n,γ) measurements with 4π detectors.

    Energy Technology Data Exchange (ETDEWEB)

    Reifarth, R.; Browne, J. C.; Esch, E. I.; Haight, R. C.; O& #x27; Donnell, J. M.; Kronenberg, A.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2003-07-29

    The main focus of this report is to investigate possibilities to disentangle the target originating γ- background from background caused by scattered neutrons at the sample assuming a DANCE like detector to measure detect the capture events.

  13. Rejection of surface background in thermal detectors: The ABSuRD project

    Energy Technology Data Exchange (ETDEWEB)

    Canonica, L., E-mail: lucia.canonica@lngs.infn.it [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Biassoni, M.; Brofferio, C. [Università di Milano Bicocca e INFN Sezione di Milano Bicocca, Milano (Italy); Bucci, C.; Calvano, S.; Di Vacri, M.L. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Goett, J. [Los Alamos National Laboratory, Los Alamos, NM (United States); Gorla, P. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Pavan, M. [Università di Milano Bicocca e INFN Sezione di Milano Bicocca, Milano (Italy); Yeh, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2013-12-21

    Thermal detectors have recently achieved a leading role in the fields of Neutrinoless Double Beta Decay and Dark Matter searches thanks to their excellent energy resolution and to the wide choice of absorber materials. In these fields the background coming from surface contaminations is frequently dominant. ABSuRD (A Background Surface Rejection Detector) is a scintillation-based approach for tagging this type of background. We discuss the innovative application of this technique in non-scintillating bolometric detectors which will allow for a more favorable signal to background ratio.

  14. Background studies for a ton-scale argon dark matter detector (ArDM)

    CERN Document Server

    Kaufmann, L

    2006-01-01

    The ArDM project aims at operating a large noble liquid detector to search for direct evidence of Weakly Interacting Massive Particles (WIMP) as Dark Matter in the universe. Background sources relevant to ton-scale liquid and gaseous argon detectors, such as neutrons from detector components, muon-induced neutrons and neutrons caused by radioactivity of rock, as well as the internal $^{39}Ar$ background, are studied with simulations. These background radiations are addressed with the design of an appropriate shielding as well as with different background rejection potentialities. Among them the project relies on event topology recognition, event localization, density ionization discrimination and pulse shape discrimination. Background rates, energy spectra, characteristics of the background-induced nuclear recoils in liquid argon, as well as the shielding performance and rejection performance of the detector are described.

  15. Monte Carlo analysis of the influence of germanium dead layer thickness on the HPGe gamma detector experimental efficiency measured by use of extended sources.

    Science.gov (United States)

    Chham, E; García, F Piñero; El Bardouni, T; Ferro-García, M Angeles; Azahra, M; Benaalilou, K; Krikiz, M; Elyaakoubi, H; El Bakkali, J; Kaddour, M

    2014-09-22

    We have carried out a study to figure out the influence of crystal inactive-layer thickness on gamma spectra measured by an HPGe detector. The thickness of this dead layer (DL) is not known (no information about it was delivered by the manufacturer) due to the existence of a transition zone where photons are increasingly absorbed. To perform this analyses a virtual model of a Canberra HPGe detector was produced with the aid of MCNPX 2.7 code. The main objective of this work is to produce an optimal modeling for our GPGe detector. To this end, the study included the analysis of the total inactive germanium layer thickness and the active volume that are needed in order to obtain the smallest discrepancy between calculated and experimental efficiencies. Calculations and measurements were performed for all of the radionuclides included in a standard calibration gamma cocktail solution. Different geometry sources were used: a Marinelli and two other new sources represented as S(1) and S(2). The former was used for the determination of the active volume, whereas the two latter were used for the determination of the face and lateral DL, respectively. The model was validated by comparing calculated and experimental full energy peak efficiencies in the 50-1900keV energy range. the results show that the insertion of the DL parameter in the modeling is absolutely essential to reproduce the experimental results, and that the thickness of this DL varies from one position to the other on the detector surface.

  16. Employing a Cerenkov detector for the thickness measurement of X-rays in a scattering background

    Institute of Scientific and Technical Information of China (English)

    LI Shu-Wei; KANG Ke-Jun; WANG Yi; LI Jin; LI Yuan-Jing; ZHANG Qing-Jun

    2010-01-01

    The variation in environmental scattering background is a major source of systematic errors in X-ray inspection and measurement systems.As the energy of these photons consisting of environmental scattering background is much lower generally,the Cerenkov detectors having the detection threshold are likely insensitive to them and able to exclude their influence.A thickness measurement experiment is designed to verify the idea by employing a Cerenkov detector and an ionizing chamber for comparison.Furthermore,it is also found that the application of the Cerenkov detectors is helpful to exclude another systematic error from the variation of low energy components in the spectrum incident on the detector volume.

  17. Radiation and Background Levels in a CLIC Detector due to Beam-Beam Effects Optimisation of Detector Geometries and Technologies

    CERN Document Server

    Sailer, André; Lohse, Thomas

    2013-01-10

    The high charge density---due to small beam sizes---and the high energy of the proposed CLIC concept for a linear electron--positron collider with a centre-of-mass energy of up to 3~TeV lead to the production of a large number of particles through beam-beam interactions at the interaction point during every bunch crossing (BX). A large fraction of these particles safely leaves the detector. A still significant amount of energy will be deposited in the forward region nonetheless, which will produce secondary particles able to cause background in the detector. Furthermore, some particles will be created with large polar angles and directly cause background in the tracking detectors and calorimeters. The main sources of background in the detector, either directly or indirectly, are the incoherent $mathrm{e}^{+}mathrm{e}^{-}$ pairs and the particles from $gammagamma ightarrow$ hadron events. The background and radiation levels in the detector have to be estimated, to study if a detector is feasible, that can han...

  18. Precise muon drift tube detectors for high background rate conditions

    CERN Document Server

    Engl, Albert; Dünnweber, Wolfgang

    The muon spectrometer of the ATLAS-experiment at the Large H adron Collider consists of drift tube chambers, which provide the precise m easurement of trajec- tories of traversing muons. In order to determine the moment um of the muons with high precision, the measurement of the position of the m uon in a single tube has to be more accurate than σ ≤ 100 m. The large cross section of proton-proton-collisions and th e high luminosity of the accelerator cause relevant background of neutrons and γ s in the muon spectrome- ter. During the next decade a luminosity upgrade [1] to 5 10 34 cm − 2 s − 1 is planned, which will increase the background counting rates consider ably. In this context this work deals with the further development of the existing drift chamber tech- nology to provide the required accuracy of the position meas urement under high background conditions. Two approaches of improving the dri ft tube chambers are described: • In regions of moderate background rates a faster and more lin ear ...

  19. Development of a low-level background gamma-ray spectrometer by KRISS.

    Science.gov (United States)

    Lee, K B; Park, Tae Soon; Lee, Jong Man; Oh, Phil-Je; Lee, Sang-Han

    2008-01-01

    A new low-level background and high-efficiency gamma-ray spectrometric system, to be used mainly for the activity certification of natural-matrix certified reference materials (CRMs) and environmental reference materials (RMs) that has been developed on the grounds of the Korea Research Institute of Standards and Science (KRISS). The spectrometer consists of a low-background high-purity germanium detector with a relative efficiency of 120% and various shielding devices to reduce radiation background. The cabinet-shaped device made of 10ton of shielding materials encloses the germanium detector for protection against background from natural radioactivity and neutrons. Three plates of 50-mm-thick plastic scintillation detectors on top of the passive shielding cabinet suppress cosmogenic background by detecting high-energetic cosmic muons bombarding the germanium detector. The measured background rate of the spectrometer for the energy range 50-3000keV was 1.72s(-1).

  20. Radon backgrounds in the DEAP-1 liquid argon based Dark Matter detector

    CERN Document Server

    Amaudruz, P -A; Beltran, B; Boudjemline, K; Caldwell, M G Boulay B Cai T; Chen, M; Chouinard, R; Cleveland, B T; Contreras, D; Dering, K; Duncan, F; Ford, R; Giuliani, R Gagnon F; Golovko, M Gold V V; Gorel, P; Graham, K; Grant, D R; Hakobyan, R; Hallin, A L; Harvey, P; Hearns, C; Jillings, C J; Kuźniak, M; Lawson, I; Li, O; Lidgard, J; Liimatainen, P; Lippincott, W H; Mathew, R; McDonald, A B; McElroy, T; McFarlane, K; McKinsey, D; Muir, A; Nantais, C; Nicolics, K; Nikkel, J; Noble, T; O'Dwyer, E; Olsen, K S; Ouellet, C; Pasuthip, P; Pollmann, T; Rau, W; Retiere, F; Ronquest, M; Skensved, P; Sonley, T; Vázquez-Jáuregui, E; Veloce, L; Ward, M

    2012-01-01

    The DEAP-1 \\SI{7}{kg} single phase liquid argon scintillation detector was operated underground at SNOLAB in order to test the techniques and measure the backgrounds inherent to single phase detection, in support of the DEAP-3600 Dark Matter detector. Backgrounds in DEAP are controlled through material selection, construction techniques, pulse shape discrimination and event reconstruction. This report details the analysis of background events observed in three iterations of the DEAP-1 detector, and the measures taken to reduce them. The $^{222}$Rn decay rate in the liquid argon was measured to be between 16 and \\SI{26}{\\micro\\becquerel\\per\\kilogram}. We found that the background spectrum near the region of interest for Dark Matter detection in the final DEAP-1 detector generation is well described considering events from three sources: radon daughters decaying on the surface of the active volume, the expected rate of electromagnetic events misidentified as nuclear recoils due to inefficiencies in the pulse sh...

  1. Tagging Spallation Backgrounds with Showers in Water-Cherenkov Detectors

    CERN Document Server

    Li, Shirley Weishi

    2015-01-01

    Cosmic-ray muons and especially their secondaries break apart nuclei ("spallation") and produce fast neutrons and beta-decay isotopes, which are backgrounds for low-energy experiments. In Super-Kamiokande, these beta decays are the dominant background in 6--18 MeV, relevant for solar neutrinos and the diffuse supernova neutrino background. In a previous paper, we showed that these spallation isotopes are produced primarily in showers, instead of in isolation. This explains an empirical spatial correlation between a peak in the muon Cherenkov light profile and the spallation decay, which Super-Kamiokande used to develop a new spallation cut. However, the muon light profiles that Super-Kamiokande measured are grossly inconsistent with shower physics. We show how to resolve this discrepancy and how to reconstruct accurate profiles of muons and their showers from their Cherenkov light. We propose a new spallation cut based on these improved profiles and quantify its effects. Our results can significantly benefit ...

  2. Surface events in HPGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abt, Iris; Dinter, Sabine; Faulstich, Florian; Majorovits, Bela; Stelzer, Franz [Max-Planck-Institut fuer Physik, Munich (Germany)

    2011-07-01

    Events on or close to the surface of high purity germanium, HPGe, detectors can introduce backgrounds in low background applications of such devices. The Galatea test-stand, especially developed and constructed at the MPI fuer Physik allows an almost full surface scan of a detector with alpha and beta sources. Events induced by alpha and beta particles can be characterized and surface effects can be studied. First comparisons between data and Monte Carlo are presented.

  3. Research on the application of germanium detectors in GPON%面向GPON的硅基锗探测器应用研究

    Institute of Scientific and Technical Information of China (English)

    程鲁腾; 杨楠; 杨华山; 刘光祖; 陈相宁; 张洪国; 江伟

    2016-01-01

    In past several decades,silicon photonics technology has been well-developed and applied to optical inter-connects,data communications,and sensing.Many key components,such as waveguides,modulators,isolators, detectors and lasers on silicon-on-isolator, have been studied and reached high performance. Silicon-based germanium detectors have become a hot research topic in recent years because of their excellent photoelectric properties,such as high bandwidth,small footprint,and CMOS(Complementary Metal Oxide Semiconductor)com-patibility.Recently,they have been widely applied to many optical-electronic devices or communication systems.In this work,silicon-based germanium detectors for GPON(Gigabit-capable Passive Optical Networks)applications have been systematically studied.In order to meet the current requirements of GPON access network standard,the photoelectric conversion characteristics of the silicon-based germanium detectors have been investigated.A simple and practical testing platform utilizing a BERT(bit error rate tester)has been built up to take experimental data and characterize the photoelectric performance of germanium detectors which have important properties in practical optical communication technologies. Eye diagrams have shown that the detector can reliably perform under 2.5 Gbps rate, detecting 2-level modulation symbols, which may be potentially useful in GPON optical communication networks.Several schemes of reducing bit error rate have also been discussed.The CDR(clock and data recovery)has significantly improved the eye diagram and reduced the bit error rate.Other related data or result analysis have also been measured and analyzed in the paper.Data have shown that the proposed testing scheme is feasible.This test provides a possible solution and technical data for the application of silicon based germanium detectors in GPON.Further experimental test and data analysis are in process,and may be reported in the forth-coming publications.%锗硅

  4. ALFA detector, Background removal and analysis for elastic events

    CERN Document Server

    Belaloui, Nazim

    2017-01-01

    I worked on the ALFA project, which has the aim to measure the total cross section in PP collisions as a function of t, the momentum transfer by measuring the scattering angle of the protons. This measurement is done for all available energies; so far 7, 8 and 13 TeV. There are many analysis steps and we have focused on enhancing the signal-to-noise ratio. First of all I tried to be more familiar with ROOT, worked on understanding the code used to access to the data, plotting histograms, then cutting-off background.

  5. Machine-Related Backgrounds in the SiD Detector at ILC

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, D.S.; Mokhov, N.V.; Striganov, S.I.; /Fermilab; Kostin, M.A.; /Michigan State U., NSCL; Tropin, I.S.; /Tomsk Polytechnic U.

    2006-08-01

    With a multi-stage collimation system and magnetic iron spoilers in the tunnel, the background particle fluxes on the ILC detector can be substantially reduced. At the same time, beam-halo interactions with collimators and protective masks in the beam delivery system create fluxes of muons and other secondary particles which can still exceed the tolerable levels for some of the ILC sub-detectors. Results of modeling of such backgrounds in comparison to those from the e{sup +}e{sup -} interactions are presented in this paper for the SiD detector.

  6. An investigation of the background electron emissions in the LUX detector

    Science.gov (United States)

    Xu, Jingke; LUX Collaboration

    2016-03-01

    Dual phase noble liquid detectors have demonstrated exceptional capability towards rare event detection. However, the ultimate sensitivity of such detectors at very low energies is limited by the emission of delayed ionization electrons and of uncorrelated spontaneous background electrons, generated by a variety of physical mechanisms, and originating from both the bulk liquid and detector surfaces. Using the LUX detector as an example, I will present an investigation of the different electron emission phenomena in Xe TPCs at different time scales since previous energy depositions in the detector, and attempt to identify the sources of these electrons. I will also discuss the relevance of this study for noble liquid physics and for the characterization of Xe TPC detectors.

  7. Scalable background-limited polarization-sensitive detectors for mm-wave applications

    CERN Document Server

    Rostem, Karwan; Appel, John W; Bennett, Charles L; Chuss, David T; Colazo, Felipe A; Crowe, Erik; Denis, Kevin L; Essinger-Hileman, Tom; Marriage, Tobias A; Moseley, Samuel H; Stevenson, Thomas R; Towner, Deborah W; U-Yen, Kongpop; Wollack, Edward J

    2014-01-01

    We report on the status and development of polarization-sensitive detectors for millimeter-wave applications. The detectors are fabricated on single-crystal silicon, which functions as a low-loss dielectric substrate for the microwave circuitry as well as the supporting membrane for the Transition-Edge Sensor (TES) bolometers. The orthomode transducer (OMT) is realized as a symmetric structure and on-chip filters are employed to define the detection bandwidth. A hybridized integrated enclosure reduces the high-frequency THz mode set that can couple to the TES bolometers. An implementation of the detector architecture at Q-band achieves 90% efficiency in each polarization. The design is scalable in both frequency coverage, 30-300 GHz, and in number of detectors with uniform characteristics. Hence, the detectors are desirable for ground-based or space-borne instruments that require large arrays of efficient background-limited cryogenic detectors.

  8. Scalable Background-Limited Polarization-Sensitive Detectors for mm-wave Applications

    Science.gov (United States)

    Rostem, Karwan; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Chuss, David T.; Colazo, Felipe A.; Crowe, Erik; Denis, Kevin L.; Essinger-Hileman, Tom; Marriage, Tobias A.; Moseley, Samuel H.; Stevenson, Thomas R.; Towner, Deborah W.; U-Yen, Kongpop; Wollack, Edward J.

    2014-01-01

    We report on the status and development of polarization-sensitive detectors for millimeter-wave applications. The detectors are fabricated on single-crystal silicon, which functions as a low-loss dielectric substrate for the microwave circuitry as well as the supporting membrane for the Transition-Edge Sensor (TES) bolometers. The orthomode transducer (OMT) is realized as a symmetric structure and on-chip filters are employed to define the detection bandwidth. A hybridized integrated enclosure reduces the high-frequency THz mode set that can couple to the TES bolometers. An implementation of the detector architecture at Q-band achieves 90% efficiency in each polarization. The design is scalable in both frequency coverage, 30-300 GHz, and in number of detectors with uniform characteristics. Hence, the detectors are desirable for ground-based or space-borne instruments that require large arrays of efficient background-limited cryogenic detectors.

  9. New results in the ITEP/YePI double beta-decay experiment with enriched germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vasenko, A.A.; Kirpichnikov, I.V.; Kuznetsov, V.A.; Starostin, A.S. (Institute for Theoretical and Experimental Physics, Bolshaya Cheremushkinskaya 25, Moscow 117259 (SU)); Djanyan, A.G.; Pogosov, V.S.; Shachysisyan, S.P.; Tamanyan, A.G. (Yerevan Physical Institute, Markaryan 2, Yerevan 375036 (SU))

    1990-07-20

    This paper reports the search for double beta-decay of {sup 76}Ge carried out with a detector fabricated of enriched material (85% abundance of {sup 76}Ge compared with 7.8% natural abundance). Measurements have been performed by the ITEP/YePI team in the Avan salt mine, 245 meters underground, situated in Yerevan, Armenia. Evidence for two-neutrino double beta-decay of {sub 76}Ge with half-life of T{sub 1/2}(2v) = (9 {plus minus} 1 {center dot} 10{sup 20})y was obtained. New limits for neutrinoless double beta-decay, T{sub 1/2}(Ov) {gt} 1.3 {times} 10{sup 24}y, and double beta-decay with majoron emission T{sub 1/2}(Ov,B) {gt} 1 {times} 10{sup 22}y were obtained at 68% CL from mean background fluctuations. Limit for Ov-decay derived by the maximum likelihood method was T{sub 1/2} {gt} 2.0 {times} 10{sup 24}y.

  10. Intrinsic noise of a superheated droplet detector for neutron background measurements in massively shielded facilities

    Science.gov (United States)

    Fernandes, Ana C.; Morlat, Tomoko A.; Felizardo, Miguel; Kling, Andreas; Marques, José G.; Prudêncio, Maria I.; Marques, Rosa; Carvalho, Fernando P.; Roche, Ignácio Lázaro; Girard, Thomas A.

    2017-09-01

    Superheated droplet detectors are a promising technique to the measurement of low-intensity neutron fields, as detectors can be rendered insensitive to minimum ionizing radiations. We report on the intrinsic neutron-induced signal of C2ClF5 devices fabricated by our group that originate from neutron- and alpha-emitting impurities in the detector constituents. The neutron background was calculated via Monte Carlo simulations using the MCNPX-PoliMi code in order to extract the recoil distributions following neutron interaction with the atoms of the superheated liquid. Various nuclear techniques were employed to characterise the detector materials with respect to source isotopes (238U, 232Th and 147Sm) for the normalisation of the simulations and also light elements (B, Li) having high (α, n) neutron production yields. We derived a background signal of 10-3 cts/day in a 1 liter detector of 1-3 wt.% C2ClF5, corresponding to a detection limit in the order of 10-8 n cm-2s-1. Direct measurements in a massively shielded underground facility for dark matter search have confirmed this result. With the borosilicate detector containers found to be the dominant background source in current detectors, possibilities for further noise reduction by 2 orders of magnitude based on selected container materials are discussed.

  11. Pulse-shape analysis for gamma background rejection in thermal neutron radiation using CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kavrigin, P., E-mail: pavel.kavrigin@cividec.at [Vienna University of Technology (Austria); Finocchiaro, P., E-mail: finocchiaro@lns.infn.it [INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Griesmayer, E., E-mail: erich.griesmayer@cividec.at [Vienna University of Technology (Austria); Jericha, E., E-mail: jericha@ati.ac.at [Vienna University of Technology (Austria); Pappalardo, A., E-mail: apappalardo@lns.infn.it [INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Weiss, C., E-mail: Christina.Weiss@cern.ch [Vienna University of Technology (Austria); European Organisation for Nuclear Research (CERN), Geneva (Switzerland)

    2015-09-21

    A novel technique for the rejection of gamma background from charged-particle spectra was demonstrated using a CVD diamond detector with a {sup 6}Li neutron converter installed at a thermal neutron beamline of the TRIGA research reactor at the Atominstitut (Vienna University of Technology). Spectra of the alpha particles and tritons of {sup 6}Li(n,T){sup 4}He thermal neutron capture reaction were separated from the gamma background by a new algorithm based on pulse-shape analysis. The thermal neutron capture in {sup 6}Li is already used for neutron flux monitoring, but the ability to remove gamma background allows using a CVD diamond detector for thermal neutron counting. The pulse-shape analysis can equally be applied to all cases where the charged products of an interaction are absorbed in the diamond and to other background particles that fully traverse the detector.

  12. Simulation and modeling of BEGe detectors for GERDA phase II

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Matteo; Barnabe Heider, Marik; Budjas, Dusan; Schoenert, Stefan [Max-Plank-Institute fuer Kernphysik, Heidelberg (Germany); Ur, Calin A. [INFN - Padova (Italy); Bellotti, Enrico; Cattadori, Carla [INFN - Milano (Italy); Di Vacri, Assunta; Pandola, Luciano [INFN - LNGS, L' Aquila (Italy); Garfagnini, Alberto [INFN - Padova (Italy); University of Padova (Italy)

    2010-07-01

    The GERDA experiment aims to search for the neutrinoless double beta decay of {sup 76}Ge by using high purity germanium detectors enriched in {sup 76}Ge. The background suppression in the GERDA experiment can be achieved by analyzing the time-development of the detector signals. To investigate the pulse shape discrimination capabilities of Broad Energy Germanium (BEGe) detectors, a complete simulation of the signal formation and evolution was developed. The results of the simulations will be presented and compared with measurements. The characteristic shapes of the BEGe detector signals and their dependence of the interaction position are discussed.

  13. Systematic investigation of background sources in neutron flux measurements with a proton-recoil silicon detector

    Science.gov (United States)

    Marini, P.; Mathieu, L.; Acosta, L.; Aïche, M.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I.

    2017-01-01

    Proton-recoil detectors (PRDs), based on the well known standard H(n,p) elastic scattering cross section, are the preferred instruments to perform precise quasi-absolute neutron flux measurements above 1 MeV. The limitations of using a single silicon detector as PRD at a continuous neutron beam facility are investigated, with the aim of extending such measurements to neutron energies below 1 MeV. This requires a systematic investigation of the background sources affecting the neutron flux measurement. Experiments have been carried out at the AIFIRA facility to identify these sources. A study on the role of the silicon detector thickness on the background is presented and an energy limit on the use of a single silicon detector to achieve a neutron flux precision better than 1% is given.

  14. Using standard calibrated geometries to characterize a coaxial high purity germanium gamma detector for Monte Carlo simulations

    NARCIS (Netherlands)

    van der Graaf, E. R.; Dendooven, P.; Brandenburg, S.

    2014-01-01

    A detector model optimization procedure based on matching Monte Carlo simulations with measurements for two experimentally calibrated sample geometries which are frequently used in radioactivity measurement laboratories results in relative agreement within 5% between simulated and measured efficienc

  15. Cosmic-ray induced background intercomparison with actively shielded HPGe detectors at underground locations

    CERN Document Server

    Szücs, T; Reinhardt, T P; Schmidt, K; Takács, M P; Wagner, A; Wagner, L; Weinberger, D; Zuber, K

    2015-01-01

    The main background above 3\\,MeV for in-beam nuclear astrophysics studies with $\\gamma$-ray detectors is caused by cosmic-ray induced secondaries. The two commonly used suppression methods, active and passive shielding, against this kind of background were formerly considered only as alternatives in nuclear astrophysics experiments. In this work the study of the effects of active shielding against cosmic-ray induced events at a medium deep location is performed. Background spectra were recorded with two actively shielded HPGe detectors. The experiment was located at 148\\,m below the surface of the Earth in the Reiche Zeche mine in Freiberg, Germany. The results are compared to data with the same detectors at the Earth's surface, and at depths of 45\\,m and 1400\\,m, respectively.

  16. Background optimization for a new spherical gas detector for very light WIMP detection

    CERN Document Server

    Dastgheibi-Fard, Ali; Gerbierb, G; Derree, J; Gros, M; Magnier, P; Jourde, D; Bougamont, E; Navick, X-F; Papaevangelou, T; Galan, J; Tsiledakis, G; Piquemal, F; Zampaolo, M; Loaiza, P; Savvidis, I

    2014-01-01

    The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of par- ticle detector, with a broad range of applications. Its main features include a very low energy threshold independent of the volume (due to its very low capacitance), a good energy resolution, robustness and a single detection readout channel, in its simplest version. Applications range from radon emanation gas monitoring, neutron flux and gamma counting and spectroscopy to dark matter searches, in particular low mass WIMPs and coherent neutrino scattering measure- ment. Laboratories interested in these various applications share expertise within the NEWS (New Experiments With Sphere) network. SEDINE, a low background prototype installed at underground site of Laboratoire Souterrain de Modane is currently being operated and aims at measuring events at very low energy threshold, around 100 eV. We will present the energy cali- bration with 37Ar, the surface background reduction, the measurement of detector background...

  17. Modeling and simulation of beam induced backgrounds measured by ATLAS Forward Proton (AFP) detector

    CERN Document Server

    Huang, Yicong

    The ATLAS Forward Proton (AFP) detector is a forward detector of the ATLAS experiment at CERN. Its main goal is to trigger diffractive protons in collisions at the Large Hadron Collider (LHC). To achieve this, the detector has to be placed very close to the beam. Inevitable consequence is that its measurements can be easily affected by the beam induced background. This thesis presents a study of the beam induced background in the AFP detector and discuss methods for its removal. The Geant4 simulations and data, including non-colliding bunches are used to identify characteristic features of beam induced backgrounds. A method using combination of signals detected by the AFP detector and the Minimum Bias Trigger Scintillators (MBTS) is used to selected single diffractive event namely on low pile-up data taken during the first AFP physics run in 2016. Finally, an estimate of the beam induced backgrounds level in data together with a study of the radiation environment at the AFP stations was made, comparing result...

  18. The MAJORANA DEMONSTRATOR: An R&D project towards a tonne-scale germanium neutrinoless double-beta decay search

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, Craig E; Amman, M; Amsbaugh, John F; Avignone, F. T.; Back, Henning O; Barabash, A; Barbeau, Phil; Beene, Jim; Bergevin, M; Bertrand, F; Boswell, M; Brudanin, V; Bugg, William; Burritt, Tom H; Chan, Yuen-Dat; Collar, J I; Cooper, R J; Creswick, R; Detwiler, Jason A; Doe, P J; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H; Elliott, Steven R; Ely, James H; Esterline, James H; Farach, H A; Fast, James E; Fields, N; Finnerty, P; Fujikawa, Brian; Fuller, Erin S; Gehman, Victor; Giovanetti, G K; Guiseppe, Vincente; Gusey, K; Hallin, A L; Hazama, R; Henning, Reyco; Hime, Andrew; Hoppe, Eric W; Hossbach, Todd W; Howe, M A; Johnson, R A; Keeter, K; Keillor, Martin E; Keller, C; Kephart, Jeremy D; Kidd, Mary; Kochetov, Oleg; Konovalov, S; Kouzes, Richard T; Lesko, Kevin; Leviner, L; Loach, J C; Luke, P; MacMullin, S; Marino, Michael G; Mei, Dong-Ming; Miley, Harry S; Miller, M; Mizouni, Leila K; Montoya, A; Myers, A W; Nomachi, Masaharu; Odom, Brian; Orrell, John L; Phillips, D; Poon, Alan; Prior, Gersende; Qian, J; Radford, D C; Rielage, Keith; Robertson, R G. H.; Rodriguez, Larry; Rykaczewski, Krzysztof P; Schubert, Alexis G; Shima, T; Shirchenko, M; Strain, J; Thomas, K; Thompson, Robert C; Timkin, V; Tornow, W; Van Wechel, T D; Vanyushin, I; Vetter, Kai; Warner, Ray A; Wilkerson, J; Wouters, Jan; Yakushev, E; Young, A; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C L; Zimmerman, S

    2009-12-17

    The MAJORANA collaboration is pursuing the development of the so-called MAJORANA DEMONSTRATOR. The DEMONSTRATOR is intended to perform research and development towards a tonne-scale germanium-based experiment to search for the neutrinoless double-beta decay of 76Ge. The DEMONSTRATOR can also perform a competitive direct dark matter search for light WIMPs in the 1-10GeV/c2 mass range. It will consist of approximately 60 kg. of germanium detectors in an ultra-low background shield located deep underground at the Sanford Underground Laboratory in Lead, SD. The DEMONSTRATOR will also perform background and technology studies, and half of the detector mass will be enriched germanium. This talk will review the motivation, design, technology and status of the Demonstrator.

  19. The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

    CERN Document Server

    Schubert, A G; Avignone, F T; Back, H O; Barabash, A S; Bergevin, M; Bertrand, F E; Boswell, M; Brudanin, V; Busch, M; Chan, Y-D; Christofferson, C D; Collar, J I; Combs, D C; Cooper, R J; Detwiler, J A; Leon, J; Doe, P J; Efremenko, Yu; Egorov, V; Ejiri, H; Elliott, S R; Esterline, J; Fast, J E; Fields, N; Finnerty, P; Fraenkle, F M; Gehman, V M; Giovanetti, G K; Green, M P; Guiseppe, V E; Gusey, K; Hallin, A L; Hazama, R; Henning, R; Hime, A; Hoppe, E W; Horton, M; Howard, S; Howe, M A; Johnson, R A; Keeter, K J; Keillor, M E; Keller, C; Kephart, J D; Kidd, M F; Knecht, A; Kochetov, O; Konovalov, S I; Kouzes, R T; LaFerriere, B; LaRoque, B H; Leviner, L E; Loach, J C; MacMullin, S; Marino, M G; Martin, R D; Mei, D -M; Merriman, J; Miller, M L; Mizouni, L; Nomachi, M; Orrell, J L; Overman, N; Phillips, D G; Poon, A W P; Perumpilly, G; Prior, G; Radford, D C; Rielage, K; Robertson, R G H; Ronquest, M C; Shima, T; Shirchenko, M; Snavely, K J; Sobolev, V; Steele, D; Strain, J; Thomas, K; Timkin, V; Tornow, W; Vanyushin, I; Varner, R L; Vetter, K; Vorren, K; Wilkerson, J F; Wolfe, B A; Yakushev, E; Young, A R; Yu, C ?H; Yumatov, V; Zhan, C

    2011-01-01

    The observation of neutrinoless double-beta decay would determine whether the neutrino is a Majorana particle and provide information on the absolute scale of neutrino mass. The MAJORANA Collaboration is constructing the DEMONSTRATOR, an array of germanium detectors, to search for neutrinoless double-beta decay of 76-Ge. The DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76-Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment. Operation of the DEMONSTRATOR aims to determine whether a future tonne-scale germanium experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76-Ge neutrinoless double-beta decay Q-value of 2039 keV.

  20. The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Alexis G.; Aguayo, Estanislao; Avignone, F. T.; Zhang, C.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Leon, Jonathan D.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, M.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, Mark; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Phillips, D.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Sobolev, V.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, Werner; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2012-09-28

    The observation of neutrinoless double-beta decay would determine whether the neutrino is a Majorana particle and provide information on the absolute scale of neutrino mass. The MAJORANA Collaboration is constructing the DEMONSTRATOR, an array of germanium detectors, to search for neutrinoless double-beta decay of 76Ge. The DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment. Operation of the DEMONSTRATOR aims to determine whether a future tonne-scale germanium experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76Ge neutrinoless double-beta decay Q-value of 2039 keV.

  1. A simple methodology for characterization of germanium coaxial detectors by using Monte Carlo simulation and evolutionary algorithms.

    Science.gov (United States)

    Guerra, J G; Rubiano, J G; Winter, G; Guerra, A G; Alonso, H; Arnedo, M A; Tejera, A; Gil, J M; Rodríguez, R; Martel, P; Bolivar, J P

    2015-11-01

    The determination in a sample of the activity concentration of a specific radionuclide by gamma spectrometry needs to know the full energy peak efficiency (FEPE) for the energy of interest. The difficulties related to the experimental calibration make it advisable to have alternative methods for FEPE determination, such as the simulation of the transport of photons in the crystal by the Monte Carlo method, which requires an accurate knowledge of the characteristics and geometry of the detector. The characterization process is mainly carried out by Canberra Industries Inc. using proprietary techniques and methodologies developed by that company. It is a costly procedure (due to shipping and to the cost of the process itself) and for some research laboratories an alternative in situ procedure can be very useful. The main goal of this paper is to find an alternative to this costly characterization process, by establishing a method for optimizing the parameters of characterizing the detector, through a computational procedure which could be reproduced at a standard research lab. This method consists in the determination of the detector geometric parameters by using Monte Carlo simulation in parallel with an optimization process, based on evolutionary algorithms, starting from a set of reference FEPEs determined experimentally or computationally. The proposed method has proven to be effective and simple to implement. It provides a set of characterization parameters which it has been successfully validated for different source-detector geometries, and also for a wide range of environmental samples and certified materials.

  2. Optimization of the Transport Shield for Neutrinoless Double Beta-decay Enriched Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.; Reid, Douglas J.; Fast, James E.

    2012-04-15

    This document presents results of an investigation of the material and geometry choice for the transport shield of germanium, the active detector material used in 76Ge neutrinoless double beta decay searches. The objective of this work is to select the optimal material and geometry to minimize cosmogenic production of radioactive isotopes in the germanium material. The design of such a shield is based on the calculation of the cosmogenic production rate of isotopes that are known to cause interfering backgrounds in 76Ge neutrinoless double beta decay searches.

  3. Rejection of Alpha Surface Background in Non-scintillating Bolometric Detectors: The ABSuRD Project

    Science.gov (United States)

    Biassoni, M.; Brofferio, C.; Bucci, C.; Canonica, L.; di Vacri, M. L.; Gorla, P.; Pavan, M.; Yeh, M.

    2016-08-01

    Due to their excellent energy resolution values and the vast choice of possible materials, bolometric detectors are currently widely used in the physics of rare events. A limiting aspect for bolometers rises from their inability to discriminate among radiation types or surface from bulk events. It has been demonstrated that the main limitation to sensitivity for purely bolometric detectors is represented by surface alpha contaminations, causing a continuous background that cannot be discriminated. A new scintillation-based technique for the rejection of surface alpha background in non-scintillating bolometric experiments is proposed in this work. The idea is to combine a scintillating and a high sensitivity photon detector with a non-scintillating absorber. We present results showing the possibility to reject events due to alpha decay at or nearby the surface of the crystal.

  4. Background model for a NaI (Tl) detector devoted to dark matter searches

    Science.gov (United States)

    Cebrián, S.; Cuesta, C.; Amaré, J.; Borjabad, S.; Fortuño, D.; García, E.; Ginestra, C.; Gómez, H.; Martínez, M.; Oliván, M. A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.

    2012-09-01

    NaI (Tl) is a well known high light yield scintillator. Very large crystals can be grown to be used in a wide range of applications. In particular, such large crystals are very good-performing detectors in the search for dark matter, where they have been used for a long time and reported first evidence of the presence of an annual modulation in the detection rate, compatible with that expected for a dark matter signal. In the frame of the ANAIS (Annual modulation with NaI Scintillators) dark matter search project, a large and long effort has been carried out in order to characterize the background of sodium iodide crystals. In this paper we present in detail our background model for a 9.6 kg NaI (Tl) detector taking data at the Canfranc Underground Laboratory (LSC): most of the contaminations contributing to the background have been precisely identified and quantified by different complementary techniques such as HPGe spectrometry, discrimination of alpha particles vs. beta/gamma background by Pulse Shape Analysis (PSA) and coincidence techniques; then, Monte Carlo (MC) simulations using Geant4 package have been carried out for the different contributions. Only a few assumptions are required in order to explain most of the measured background at high energy, supporting the goodness of the proposed model for the present ANAIS prototype whose background is dominated by 40K bulk contamination. At low energy, some non-explained background components are still present and additional work is required to improve background understanding, but some plausible background sources contributing in this range have been studied in this work. Prospects of achievable backgrounds, at low and high energy, for the ANAIS-upgraded detectors, relying on the proposed background model conveniently scaled, are also presented.

  5. Hard X-ray polarimetry with position sensitve germanium detectors. Studies of the recombination transitions into highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Tashenov, Stanislav

    2005-07-01

    In this work a first study of the photon polarization for the process of radiative recombination has been performed. This was done at the ESR storage ring at GSI for uranium ions colliding with N2 at various collision energies. For this measurement a high purity Ge Pixel Detector with a 4 x 4 segmentation matrix was applied. The investigation was performed at the Gas-jet target of the ESR. The detector was placed at 60 and 90 observation angles. The sensitivity of the Compton scattering effect to the linear polarization of the X-Ray radiation was employed for the polarization measurement. Detailed investigations of the scattering and geometrical effects inside the detector were performed in order to develop a method to interpret the experimental data and extract the degree of the linear polarization in the hard X-Ray regime with a high precision. A special emphasis was given to the geometry of the detector and it's influence on the measured pixel-to-pixel Compton scattering intensities. The developed method enabled to achieve a precision of the order of 10% with the Pixel Detector which is dominated by the statistical uncertainties. The obtained results show a good agreement with the theoretical values derived from the exact relativistic calculations. For the case of the linear polarization of the K-REC photons, the measured data con rm the theoretical prediction that strong depolarization effects occur for high projectile charges in the forward hemisphere. The latter is in disagreement with the nonrelativistic theory which predicts a 100 % polarization regardless of the emission angle. (orig.)

  6. Radiogenic and Muon-Induced Backgrounds in the LUX Dark Matter Detector

    CERN Document Server

    Akerib, D S; Bai, X; Bailey, A J; Balajthy, J; Bernard, E; Bernstein, A; Bradley, A; Byram, D; Cahn, S B; Carmona-Benitez, M C; Chan, C; Chapman, J J; Chiller, A A; Chiller, C; Coffey, T; Currie, A; de Viveiros, L; Dobi, A; Dobson, J; Druszkiewicz, E; Edwards, B; Faham, C H; Fiorucci, S; Flores, C; Gaitskell, R J; Gehman, V M; Ghag, C; Gibson, K R; Gilchriese, M G D; Hall, C; Hertel, S A; Horn, M; Huang, D Q; Ihm, M; Jacobsen, R G; Kazkaz, K; Knoche, R; Larsen, N A; Lee, C; Lindote, A; Lopes, M I; Malling, D C; Mannino, R; McKinsey, D N; Mei, D -M; Mock, J; Moongweluwan, M; Morad, J; Murphy, A St J; Nehrkorn, C; Nelson, H; Neves, F; Ott, R A; Pangilinan, M; Parker, P D; Pease, E K; Pech, K; Phelps, P; Reichhart, L; Shutt, T; Silva, C; Solovov, V N; Sorensen, P; O'Sullivan, K; Sumner, T J; Szydagis, M; Taylor, D; Tennyson, B; Tiedt, D R; Tripathi, M; Uvarov, S; Verbus, J R; Walsh, N; Webb, R; White, J T; Witherell, M S; Wolfs, F L H; Woods, M; Zhang, C

    2014-01-01

    The Large Underground Xenon (LUX) dark matter experiment aims to detect rare low-energy interactions from Weakly Interacting Massive Particles (WIMPs). The radiogenic backgrounds in the LUX detector have been measured and compared with Monte Carlo simulation. Measurements of LUX high-energy data have provided direct constraints on all background sources contributing to the background model. The expected background rate from the background model for the 85.3 day WIMP search run is $(2.6\\pm0.2_{\\textrm{stat}}\\pm0.4_{\\textrm{sys}})\\times10^{-3}$~events~keV$_{ee}^{-1}$~kg$^{-1}$~day$^{-1}$ in a 118~kg fiducial volume. The observed background rate is $(3.6\\pm0.4_{\\textrm{stat}})\\times10^{-3}$~events~keV$_{ee}^{-1}$~kg$^{-1}$~day$^{-1}$, consistent with model projections. The expectation for the radiogenic background in a subsequent one-year run is presented.

  7. Reduction of radioactive backgrounds in electroformed copper for ultra-sensitive radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, E.W., E-mail: eric.hoppe@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Aalseth, C.E.; Farmer, O.T.; Hossbach, T.W.; Liezers, M.; Miley, H.S.; Overman, N.R. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Reeves, J.H. [Reeves and Son LLC, 10 Albert Ave., Richland, WA 99352 (United States)

    2014-11-11

    Ultra-pure construction materials are required for the next generation of neutrino physics, dark matter and environmental science applications. These materials are also important for use in high-purity germanium spectrometers used in screening materials for radiopurity. The next-generation science applications require materials with radiopurity levels at or below 1 μBq/kg {sup 232}Th and {sup 238}U. Yet radiometric analysis lacks sensitivity below ∼10 μBq/kg for the U and Th decay chains. This limits both the selection of clean materials and the validation of purification processes. Copper is an important high-purity material for low-background experiments due to the ease with which it can be purified by electrochemical methods. Electroplating for purification into near-final shapes, known as electroforming, is one such method. Continued refinement of the copper electroforming process is underway, for the first time guided by an ICP-MS based assay method that can measure {sup 232}Th and {sup 238}U near the desired purity levels. An assay of electroformed copper at a μBq/kg level has been achieved and is described. The implications of electroformed copper at or better than this purity on next-generation low-background experiments are discussed.

  8. Balloon flight background measurement with actively-shielded planar and imaging CZT detectors

    Science.gov (United States)

    Bloser, Peter F.; Narita, Tomohiko; Jenkins, Jonathan A.; Perrin, Marshall; Murray, Ruth; Grindlay, Jonathan E.

    2002-01-01

    We present results from the flight of two prototype CZT detectors on a scientific balloon payload in September 2000. The first detector, referred to as CZT1, consisted of a 10 mm x 10 mm x 2 mm CZT crystal with a single gold planar electrode readout. This detector was shielded by a combination of a passive collimator in the front, giving a 40 degree field of view and surrounded by plastic scintillator, and a thick BGO crystal in the rear. The second detector, CZT2, comprised two 10 mm x 10 mm x 5 mm CZT crystals, one made of eV Products high pressure Bridgman material and the other of IMARAD horizontal Bridgman material, each fashioned with a 4 x 4 array of gold pixels on a 2.5 mm pitch. The pixellated detectors were flip-chip-mounted side by side and read out by a 32-channel ASIC. This detector was also shielded by a passive/plastic collimator in the front, but used only additional passive/plastic shielding in the rear. Both experiments were flown from Ft. Sumner, NM on September 19, 2000 on a 24 hour balloon flight. Both instruments performed well. CZT1 recorded a non-vetoed background level at 100 keV of approximately 1 x 10-3 cm-2s-1keV-1. Raising the BGO threshold from 50 keV to approximately 1 MeV produced only an 18% increase in this level. CZT2 recorded a background at 100 keV of approximately 4 times 10-3 cts cm-2s-1keV-1 in the eV Products detector and approximately 6 x 10-3 cts cm-2s-1keV-1 in the IMARAD detector, a difference possibly due to our internal background subtracting procedure. Both CZT1 and CZT2 spectra were in basic agreement with Monte Carlo simulations, though both recorded systematically higher count rates at high energy than predicted. No lines were observed, indicating that neutron capture reactions, at least those producing decay lines at a few 100 keV, are not significant components of the CZT background. Comparison of the CZT1 and CZT2 spectra indicates that passive/plastic shielding may provide adequately low background levels for

  9. Final Technical Report for DUSEL Research and Development on Sub-Kelvin Germanium Detectors for Ton Scale Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, Blas

    2012-09-10

    We have supported one graduate student and a small percentage of fabrication staff on $135k per year for three years plus one no cost extension year on this DUSEL R&D grant. There were three themes within our research program: (1) how to improve the radial sensitivity for single sided phonon readout with four equal area sensors of which three form a central circle and fourth a surrounding ring; (2) how to instrument double sided phonon readouts which will give us better surface event rejection and increased fiducial volume for future CDMS style detectors; and (3) can we manufacture much larger Ge detectors using six inch diameter material which is not suitable for standard gamma ray spectroscopy.

  10. Background model of NaI(Tl) detectors for the ANAIS Dark Matter Project

    CERN Document Server

    Amare, J; Cuesta, C; Garcia, E; Martinez, M; Olivan, M A; Ortigoza, Y; de Solorzano, A Ortiz; Pobes, C; Puimedon, J; Sarsa, M L; Villar, J A; Villar, P

    2015-01-01

    A thorough understanding of the background sources is mandatory in any experiment searching for rare events. The ANAIS (Annual Modulation with NaI(Tl) Scintillators) experiment aims at the confirmation of the DAMA/LIBRA signal at the Canfranc Underground Laboratory (LSC). Two NaI(Tl) crystals of 12.5 kg each produced by Alpha Spectra have been taking data since December 2012. The complete background model of these detectors and more precisely in the region of interest will be described. Preliminary background analysis of a new 12.5 kg crystal received at Canfranc in March 2015 will be presented too. Finally, the power of anticoincidence rejection in the region of interest has been analyzed in a 4x 5 12.5 kg detector matrix.

  11. Optimal Location of Two Laser-interferometric Detectors for Gravitational Wave Backgrounds at 100 MHz

    CERN Document Server

    Nishizawa, Atsushi; Akutsu, Tomotada; Arai, Koji; Yamamoto, Kazuhiro; Tatsumi, Daisuke; Nishida, Erina; Sakagami, Masa-aki; Chiba, Takeshi; Takahashi, Ryuichi; Sugiyama, Naoshi

    2008-01-01

    Recently, observational searches for gravitational wave background (GWB) have been developed and given constraints on the energy density of GWB in a broad range of frequencies. These constraints have already resulted in the rejection of some theoretical models of relatively large GWB spectra. However, at 100 MHz, there is no strict upper limit from direct observation, though an indirect limit exists due to He4 abundance due to big-bang nucleosynthesis. In our previous paper, we investigated the detector designs that can effectively respond to GW at high frequencies, where the wavelength of GW is comparable to the size of a detector, and found that the configuration, a so-called synchronous-recycling interferometer is best at these sensitivity. In this paper, we investigated the optimal location of two synchronous-recycling interferometers and derived their cross-correlation sensitivity to GWB. We found that the sensitivity is nearly optimized and hardly changed if two coaligned detectors are located within a ...

  12. Monte Carlo simulations for the optimisation of low-background Ge detector designs

    Energy Technology Data Exchange (ETDEWEB)

    Hakenmueller, Janina; Heusser, Gerd; Maneschg, Werner; Schreiner, Jochen; Simgen, Hardy; Stolzenburg, Dominik; Strecker, Herbert; Weber, Marc; Westernmann, Jonas [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Laubenstein, Matthias [Laboratori Nazionali del Gran Sasso, Via G. Acitelli 22, 67100 Assergi L' Aquila (Italy)

    2015-07-01

    Monte Carlo simulations for the low-background Ge spectrometer Giove at the underground laboratory of MPI-K, Heidelberg, are presented. In order to reduce the cosmogenic background at the present shallow depth (15 m w.e.) the shielding of the spectrometer includes an active muon veto and a passive shielding (lead and borated PE layers). The achieved background suppression is comparable to Ge spectrometers operated in much greater depth. The geometry of the detector and the shielding were implemented using the Geant4-based toolkit MaGe. The simulations were successfully optimised by determining the correct diode position and active volume. With the help of the validated Monte Carlo simulation the contribution of the single components to the overall background can be examined. This includes a comparison between simulated results and measurements with different fillings of the sample chamber. Having reproduced the measured detector background in the simulation provides the possibility to improve the background by reverse engineering of the passive and active shield layers in the simulation.

  13. Design of Dual-Polarization Horn-Coupled Kinetic Inductance Detectors for Cosmic Microwave Background Polarimetry

    CERN Document Server

    Bryan, Sean; Che, George; Day, Peter; Flanigan, Daniel; Johnson, Bradley R; Jones, Glenn; Kjellstrand, Bjorn; Limon, Michele; Mauskopf, Philip; McCarrick, Heather; Miller, Amber; Smiley, Brian

    2015-01-01

    Mapping the polarization of the Cosmic Microwave Background is yielding exciting data on the origin of the universe, the reionization of the universe, and the growth of cosmic structure. Kilopixel arrays represent the current state of the art, but advances in detector technology are needed to enable the larger detector arrays needed for future measurements. Here we present a design for single-band dual-polarization Kinetic Inductance Detectors (KIDs) at 20% bandwidths centered at 145, 220, and 280 GHz. The detection and readout system is nearly identical to the successful photon-noise-limited aluminum Lumped-Element KIDs that have been recently built and tested by some of the authors. Fabricating large focal plane arrays of the feed horns and quarter-wave backshorts requires only conventional precision machining. Since the detectors and readout lines consist only of a single patterned aluminum layer on a SOI wafer, arrays of the detectors can be built commercially or at a standard university cleanroom.

  14. Countermeasure against blinding attacks on low-noise detectors with a background-noise-cancellation scheme

    Science.gov (United States)

    Lee, Min Soo; Park, Byung Kwon; Woo, Min Ki; Park, Chang Hoon; Kim, Yong-Su; Han, Sang-Wook; Moon, Sung

    2016-12-01

    We developed a countermeasure against blinding attacks on low-noise detectors with a background-noise-cancellation scheme in quantum key distribution (QKD) systems. Background-noise cancellation includes self-differencing and balanced avalanche photon diode (APD) schemes and is considered a promising solution for low-noise APDs, which are critical components in high-performance QKD systems. However, its vulnerability to blinding attacks has been recently reported. In this work, we propose a countermeasure that prevents this potential security loophole from being used in detector blinding attacks. An experimental QKD setup is implemented and various tests are conducted to verify the feasibility and performance of the proposed method. The obtained measurement results show that the proposed scheme successfully detects occurring blinding-attack-based hacking attempts.

  15. Efficiency Studies and Simulations of a Neutron Background Veto for Dark Matter Detectors

    Science.gov (United States)

    Westerdale, Shawn; Shields, Emily; Xu, Jingke; Calaprice, Frank

    2013-04-01

    In direct WIMP dark matter detection experiments, neutrons from cosmogenic sources and nuclear reactions in detector materials can provide backgrounds indistinguishable from WIMP signals. To reduce this background, an active neutron veto filled with a boron-loaded scintillator is being developed. The scintillator used will be pseudocumene, mixed with trimethyl borate as a boron source, and a PPO wavelength shifter. Such a veto would detect neutrons in the volume surrounding the detector, allowing coincident background events in the detector to be rejected. Neutrons are captured by the ^10B with a high cross section, resulting in an α and ^7Li. The scintillation from the nuclear products is heavily quenched to an equivalent electron energy as low as 50 keV. To detect this, it is necessary to have high light collection efficiency. To model the neutron veto concept, light yield measurements were taken for a small prototype filled with the scintillator mixture and lined with a Lumirror reflector. These results were reproduced in GEANT4 and in an independent simulation. We then applied the simulations to the DarkSide-50 neutron veto to predict its neutron rejection power. Results from measurements taken with the prototype and from the simulation will be presented.

  16. Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parametrization

    Science.gov (United States)

    Agishev, Ravil; Gross, Barry; Moshary, Fred; Gilerson, Alexander; Ahmed, Samir

    2006-08-01

    In this paper, we developed a simple approach to predict the APD/PMT (avalanche photodiode/photomultiplier) lidar detector performance in the presence of residual skylight background. By normalizing all relevant photodetector noise sources to the quantum noise, we obtain quantitative expressions for the degradation of the signal-to-noise ratio (SNR), the increasing threshold sensitivity of and decreasing lidar operation range. To apply the formalism to any lidar photodetectors operating in the ultra violet, visible and near-infrared spectral regions and to perform a comparative analysis of PMT and APD capabilities as the best photodetectors for ultra-violet (UV), visible (Vis) and near infra-red (NIR) lidar, we utilize a set of spectral characteristics that are built from an envelope of individual PMT and APD component responses. On this basis, the general analysis of system performance under intense background conditions is developed, and practical recommendations on detector use for each spectral region are given. The dimensionless formalism and the generalized detector spectral models used allows our analysis to be applied to nearly any lidar receiver operating over very different signal/background situations.

  17. Estimation of Cosmic Induced Contamination in Ultra-low Background Detector Materials

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.; Berguson, Timothy J.; Greene, Austen T.

    2012-08-01

    Executive Summary This document presents the result of investigating a way to reliably determine cosmic induced backgrounds for ultra-low background materials. In particular, it focuses on those radioisotopes produced by the interactions with cosmic ray particles in the detector materials that act as a background for experiments looking for neutrinoless double beta decay. This investigation is motivated by the desire to determine background contributions from cosmic ray activation of the electroformed copper that is being used in the construction of the MAJORANA DEMONSTRATOR. The most important radioisotope produced in copper that contributes to the background budget is 60Co, which has the potential to deposit energy in the region of interest of this experiment. Cobalt-60 is produced via cosmic ray neutron collisions in the copper. This investigation aims to provide a method for determining whether or not the copper has been exposed to cosmic radiation beyond the threshold which the Majorana Project has established as the maximum exposure. This threshold is set by the Project as the expected contribution of this source of background to the overall background budget. One way to estimate cosmic ray neutron exposure of materials on the surface of the Earth is to relate it to the cosmic ray muon exposure. Muons are minimum-ionizing particles and the available technologies to detect muons are easier to implement than those to detect neutrons. We present the results of using a portable, ruggedized muon detector, the µ-Witness made by our research group, for determination of muon exposure of materials for the MAJORANA DEMONSTRATOR. From the muon flux measurement, this report presents a method to estimate equivalent sea-level exposure, and then infer the neutron exposure of the tracked material and thus the cosmogenic activation of the copper. This report combines measurements of the muon flux taken by the µ-Witness detector with Geant4 simulations in order to assure our

  18. First look at Gamma-ray background lines in the SPI Ge detector spectra

    Science.gov (United States)

    Wunderer, C. B.; Weidenspointner, G.; Cordier, B.; Diehl, R.; Jean, P.; v. Kienlin, A.; Knoedlseder, J.; Leleux, P.; Lichti, G.; Roques, J.-P.; Schanne, S.; Schoenfelder, V.; Shrader, C.; Skinner, G.; Strong, A.; Sturner, S.; Teegarden, B.; Vedrenne, G.

    2003-03-01

    ESA's INTEGRAL observatory has been launched successfully on October 17, 2002. Since November 2002, the 19 Ge detectors comprising the camera of one of its main instruments, the Spectrometer SPI, have been recording data. They cover the energy range from ˜ 20 keV to ˜ 8 MeV. The spectrometer is particularly suited to the observations of gamma-ray line emission from astrophysical objects of interest. However, since many astrophysically interesting lines have energies very close to energies of some instrumental background lines, and since some astrophysically interesting radioactive isotopes are also produced within spacecraft and instrument materials by cosmic-ray activation, a detailed study of the gamma-ray background lines seen with the SPI Ge detectors is necessary. We present the first steps taken towards understanding the line components of the gamma-ray background observed with SPI. This includes both isotope identification and preliminary studies of temporal variations. Emphasis is placed on the energy regions of particular interest to astrophysics, especially around the 60Fe and 26Al lines. Preliminary sensitivity estimates for some astrophysically interesting lines will also be presented. This work has been supported by the DLR.

  19. Study of v interactions and background estimation in the OPERA emulsion film detector

    CERN Document Server

    Janicskó-Csáthy, József

    The OPERA (Oscillation Project with Emulsion tRacking Apparatus ) experiment or CNGS1 was approved in 2001 by CERN and presently is under construction. Data-taking is expected to start in 2006. The experiment is designated to the νμ  ντ oscillation search. OPERA is a hybrid detector comprising a number of electronic detectors and a specially designed nuclear emulsion stack interlaced with lead plates. The total target mass of the detector will be about 1.8 kt. This impressive mass needed for neutrino detection is combined with an even more impressive spatial resolution of about a m , characteristic of the nuclear emulsion technique. The detection of ντ is based on the observation of the decay of the τ lepton. The fine grained structure of nuclear emulsions offers the possibility to directly observe such a decay and by the means of kinematical analysis can be clearly separated from background events. Nuclear emulsions will be produced and processed in industrial quantities and the readout will be don...

  20. In vivo measurement of actinides in the human lung. [Calibration and comparison of Phoswich, large-area proportional counter, and intrinsic germanium planar array detector systems

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, A.L.; Campbell, G.W.; Griffith, R.V.

    1979-11-06

    The problems associated with the in vivo detection and measurement of actinides in the human lung are discussed together with various measurement systems currently in use. In particular, the methods and calibration procedures employed at the Lawrence Livermore Laboratory, namely, the use of twin Phoswich detectors and a new, more realistic, tissue-equivalent phantom, are described. Methods for the measurement of chest-wall thickness, fat content, and normal human background counts are also discussed. Detection-efficiency values and minimum detectable activity estimates are given for three common actinides, /sup 238/Pu, /sup 239/Pu, and /sup 241/Am.

  1. A Polarization Sensitive Bolometric Detector for Observations of the Cosmic Microwave Background

    CERN Document Server

    Jones, W C; Bock, J J; Lange, A E

    2002-01-01

    We have developed a bolometric detector that is intrinsically sensitive to linear polarization which is optimized for making measurements of the polarization of the cosmic microwave background radiation. The receiver consists of a pair of co-located silicon nitride micromesh absorbers which couple anisotropically to linearly polarized radiation through a corrugated waveguide structure. This system allows simultaneous background limited measurements of the Stokes I and Q parameters over ~ 30% bandwidths at frequencies from ~ 60 to 600 GHz. Since both linear polarizations traverse identical optical paths from the sky to the point of detection, the susceptibility to systematic effects is minimized. The amount of uncorrelated noise between the two polarization senses is limited to the quantum limit of thermal and photon shot noise, while drifts in the relative responsivity to orthogonal polarizations are limited to the effect of non-uniformity in the thin film deposition of the leads and the intrinsic thermistor ...

  2. High-sensitive spectrometer of fast neutrons and the results of fast neutron background flux measurements at the Gallium-Germanium Solar Neutrino Experiment

    CERN Document Server

    Abdurashitov, J N; Kalikhov, A V; Matushko, V L; Shikhin, A A; Yants, V E; Zaborskaia, O S

    2002-01-01

    The principle of operation, design, registration system and main characteristics of a fast neutron spectrometer are described. The spectrometer is intended for direct measurements of ultra low fluxes of fast neutrons. It is sensitive to neutron fluxes of 10 sup - sup 7 cm sup - sup 2 s sup - sup 1 and lower. The detection efficiency of fast neutrons with simultaneous energy measurement was determined from Monte-Carlo simulation to be equal to 0.11+-0.01. The background counting rate in the detector corresponds to a neutron flux of (6.5+-2.1)x10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in the range 1.0-11.0 MeV. The natural neutron flux from the surrounding mine rock at the depth of 4600 m of water equivalent was measured to be (7.3+-2.4)x10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in the range 1.0-11.0 MeV. The flux of fast neutrons in the SAGE main room was measured to be <2.3x10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in 1.0-11.0 MeV energy range.

  3. Characterisation and mitigation of beam-induced backgrounds observed in the ATLAS detector during the 2011 proton-proton run

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien

    2013-01-01

    This paper presents a summary of beam-induced backgrounds observed in the ATLAS detector and discusses methods to tag and remove background contaminated events in data. Trigger-rate based monitoring of beam-related backgrounds is presented. The correlations of backgrounds with machine conditions, such as residual pressure in the beam-pipe, are discussed. Results from dedicated beam-background simulations are shown, and their qualitative agreement with data is evaluated. Data taken during the passage of unpaired, i.e. non-colliding, proton bunches is used to obtain background-enriched data samples. These are used to identify characteristic features of beam-induced backgrounds, which then are exploited to develop dedicated background tagging tools. These tools, based on observables in the Pixel detector, the muon spectrometer and the calorimeters, are described in detail and their efficiencies are evaluated. Finally an example of an application of these techniques to a monojet analysis is given, which demonstra...

  4. Characterization of gaseous detectors at the CERN Gamma Irradiation Facility: GEM performance in presence of high background radiation

    CERN Document Server

    AUTHOR|(CDS)2097588

    Muon detection is an efficient tool to recognize interesting physics events over the high background rate expected at the Large Hadron Collider (LHC) at CERN. The muon systems of the LHC experiments are based on gaseous ionization detectors. In view of the High-Luminosity LHC (HL-LHC) upgrade program, the increasing of background radiation could affect the gaseous detector performance, especially decreasing the efficiency and shortening the lifetime through ageing processes. The effects of charge multiplication, materials and gas composition on the ageing of gaseous detectors have been studied for decades, but the future upgrade of LHC requires additional studies on this topic. At the CERN Gamma Irradiation Facility (GIF++), a radioactive source of cesium-137 with an activity of 14 TBq is used to reproduce reasonably well the expected background radiation at HL-LHC. A muon beam has been made available to study detector performance. The characterization of the beam trigger will be discussed in the present w...

  5. Germanium: From Its Discovery to SiGe Devices

    Energy Technology Data Exchange (ETDEWEB)

    Haller, E.E.

    2006-06-14

    Germanium, element No.32, was discovered in 1886 by Clemens Winkler. Its first broad application was in the form of point contact Schottky diodes for radar reception during WWII. The addition of a closely spaced second contact led to the first all-solid-state electronic amplifier device, the transistor. The relatively low bandgap, the lack of a stable oxide and large surface state densities relegated germanium to the number 2 position behind silicon. The discovery of the lithium drift process, which made possible the formation of p-i-n diodes with fully depletable i-regions several centimeters thick, led germanium to new prominence as the premier gamma-ray detector. The development of ultra-pure germanium yielded highly stable detectors which have remained unsurpassed in their performance. New acceptors and donors were discovered and the electrically active role of hydrogen was clearly established several years before similar findings in silicon. Lightly doped germanium has found applications as far infrared detectors and heavily Neutron Transmutation Doped (NTD) germanium is used in thermistor devices operating at a few milliKelvin. Recently germanium has been rediscovered by the silicon device community because of its superior electron and hole mobility and its ability to induce strains when alloyed with silicon. Germanium is again a mainstream electronic material.

  6. A High Spectral Resolution Observation of the Soft X-ray Diffuse Background with Thermal Detectors

    CERN Document Server

    McCammon, D; Apodaca, E; Tiest, W B; Cui, W; Deiker, S W; Galeazzi, M; Juda, M; Lesser, A; Mihara, T; Morgenthaler, J P; Sanders, W T; Zhang, J; Figueroa-Feliciano, E; Kelley, R L; Moseley, S H; Mushotzky, R F; Porter, F S; Stahle, C K; Szymkowiak, A E

    2002-01-01

    A high spectral resolution observation of the diffuse X-ray background in the 60 - 1000 eV energy range has been made using an array of thirty-six 1 mm^2 micro-calorimeters flown on a sounding rocket. Detector energy resolution ranged from 5-12 eV FWHM, and a composite spectrum of ~ 1 steradian of the background centered at l = 90, b = +60 was obtained with a net resolution of ~ 9 eV. The target area includes bright 1/4 keV regions, but avoids Loop I and the North Polar Spur. Lines of C VI, O VII, and O VIII are clearly detected with intensities of 5.4 +/- 2.3, 4.8 +/- 0.8, and 1.6 +/- 0.4 photons cm^-2 s^-1 sr^-1, respectively. The oxygen lines alone account for a majority of the diffuse background observed in the ROSAT R4 band that is not due to resolved extragalactic discrete sources. We also have a positive detection of the Fe-M line complex near 70 eV at an intensity consistent with previous upper limits that indicate substantial gas phase depletion of iron. We include a detailed description of the instr...

  7. submitter Study of Backgrounds to Black Hole Events in the ATLAS Detector

    CERN Document Server

    Han, Sang Hee

    large extra dimension model with black hole mass MBH = sˆ, where sˆ is the parton-parton Centre of Momentum System (CMS) energy squared. In the large extra dimension model, quantum gravity can become strong at a TeV energy scale in the bulk space-time, and could lead to microscopic black holes being produced and observed by the LHC experiments. Once black holes are produced in the collider, they will decay to the SM particles by Hawking evaporation. Under this scenario, an analysis was carried out to determine the significance of black hole signals above some SM backgrounds in the ATLAS detector. Five event selection criteria were app...

  8. submitter Study of Backgrounds to Black Hole Events in the ATLAS Detector

    CERN Document Server

    Han, Sang Hee

    large extra dimension model with black hole mass MBH = sˆ, where sˆ is the parton-parton Centre of Momentum System (CMS) energy squared. In the large extra dimension model, quantum gravity can become strong at a TeV energy scale in the bulk space-time, and could lead to microscopic black holes being produced and observed by the LHC experiments. Once black holes are produced in the collider, they will decay to the SM particles by Hawking evaporation. Under this scenario, an analysis was carried out to determine the significance of black hole signals above some SM backgrounds in the ATLAS detector. Five event selection criteria were app...

  9. Study of the CMS RPC detector performance in high radiation background conditions

    CERN Document Server

    Miguel Colin, Osvaldo

    2017-01-01

    The RPC system at the CMS Detector is operating successfully from beginning of the data taking. The high instantaneous luminosity causes an extremely high flux of ionizing particles. The long period of operation (Run1 and Run2) in a huge radiation background conditions, gives the opportunity to study the operation capability of the RPCs and also to predict a data-driven extrapolation about the expecting particle rates at HL LHC (High Luminosity) scenario. The obtained results in terms of measured rate, currents and integrated charged will be presented in the poster. When it is possible they will be compared to the relevant results obtained from the dedicated study where a set of test chambers have been irradiated at GIF++ laboratory setup.

  10. Investigation of background in large-area neutron detectors due to alpha emission from impurities in aluminium

    CERN Document Server

    Birch, J; Clergeau, J -F; van Esch, P; Ferraton, M; Guerard, B; Hall-Wilton, R; Hultman, L; Höglund, C; Jensen, J; Khaplanov, A; Piscitelli, F

    2015-01-01

    Thermal neutron detector based on films of $^{10}$B$_4$C have been developed as an alternative to $^3$He detectors. In particular, The Multi-Grid detector concept is considered for future large area detectors for ESS and ILL instruments. An excellent signal-to-background ratio is essential to attain expected scientific results. Aluminium is the most natural material for the mechanical structure of of the Multi-Grid detector and other similar concepts due to its mechanical and neutronic properties. Due to natural concentration of $\\alpha$ emitters, however, the background from $\\alpha$ particles misidentified as neutrons can be unacceptably high. We present our experience operating a detector prototype affected by this issue. Monte Carlo simulations have been used to confirm the background as $\\alpha$ particles. The issues have been addressed in the more recent implementations of the Multi-Grid detector by the use of purified aluminium as well as Ni-plating of standard aluminium. The result is the reduction in...

  11. Latest Results from the PICO-2L Dark Matter Detector, and the identification and mitigation of particulate-induced backgrounds

    Science.gov (United States)

    Baxter, Daniel; PICO Collaboration

    2016-03-01

    The PICO Collaboration has taken a key step toward a background-free bubble chamber for WIMP dark matter detection. An unexpected background of unknown origin limited WIMP searches in the PICO-2L and PICO-60 detectors at SNOLAB in 2013 and 2014. Recent efforts targeting particulate contamination in the active volume of PICO-2L have reduced this background by at least one order of magnitude, to a rate below the known neutron background in the detector. The resulting data set the most stringent limit to date from a direct detection experiment on spin-dependent WIMP-proton interactions. I will present a comparison of the background-limited Run-1 of PICO-2L with the new results from Run-2, identifying particulate as the primary source of the previously unexplained background. I will describe the engineering and operational controls now being implemented to eliminate this background in the PICO-60 detector, with the goal of a background-free run using our large detector within the next year. Supported in part by Department of Energy award #DE-SC0012161.

  12. Characterisation of an ultra low-background point contact HPGe well-detector for an underground laboratory.

    Science.gov (United States)

    Hult, Mikael; Marissens, Gerd; Stroh, Heiko; Lutter, Guillaume; Tzika, Faidra; Marković, Nikola

    2017-08-03

    Since a few years there are well-type HPGe-detectors with a small, point-like, anode contacts available commercially. This paper describes the characterisation of the first ultra low-background, so-called, SAGe™ well detector with regards to resolution and background performance. Inside a passive lead/copper shield in the underground laboratory HADES a background count rate of 690 ± 6d(-1) (268 ± 3d(-1) per kg Ge) was recorded 19 months after taking it underground. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. On the use of mercury as a means of locating background sources in ultra low-background HPGe-detector systems

    Energy Technology Data Exchange (ETDEWEB)

    Hult, M. [European Commission-Joint Research Centre-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, GB-2440 Geel (Belgium)], E-mail: mikael.hult@ec.europa.eu; Gasparro, J.; Lindahl, P.; Marissens, G.; Fessler, A. [European Commission-Joint Research Centre-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, GB-2440 Geel (Belgium); Johnston, Peter N. [Applied Physics, Royal Melbourne Institute of Technology, GPO Box 2476V, Melbourne 3001 (Australia)

    2008-06-15

    In low-level gamma-ray spectrometry, it is common to measure large samples in order to obtain low detection limits for the massic activity (in mBq/kg). These samples have significant shielding effects. In order to study whether the background sources in three ultra low-background HPGe detectors were located in the detector or in the shield, Marinelli beakers filled with hyperpure mercury were measured. Although the measurements were hampered by the presence of cosmogenically produced {sup 194}Hg, information regarding the major background location of {sup 40}K, {sup 60}Co, {sup 137}Cs, {sup 210}Pb, {sup 226}Ra, {sup 228}Ra and {sup 228}Th could be obtained.

  14. Characterization and first experimental application of space-resolving, energy-dispersive germanium detectors for the precision spectroscopy on heavy ions; Charakterisierung und erster experimenteller Einsatz von ortsaufloesenden, energiedispersiven Germanium-Detektoren zur Praezisionsspektroskopie an schweren Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Spillmann, Uwe

    2009-02-15

    First the actual status of the research for the 1s Lamb shift on heaviest systems as well as studies on the polarization of the radiative recombination radiation into the K shell of uranium are presented. On this base future precision experiments at storage rings are discussed. then follows a survey presentation of the GSI accelerator facility. Especially the experimental storage ring ESR is described, at which the experiments mentioned above were performed. Then an introduction to the fundamental understanding of the physical processes in the detection of X-radiation in semiconductor detectors is given. The following chapter discusses the detection technique of the Compton polarimetry and some experimental concepts for this. Then by means of a 4 x 4 pixel Ge(i) detector system, by which for the first time the K-REC radiation from uranium was measured at the ESR, an overview about the Monte-Carlo software EGS4 is given, which was applied to the efficiency correction in the evaluation phase and for the estimation of the detector behaviour during the planning phase of the new detectors. A presentation of the 1D and 2D microstrip detector system as well as the performed laboratory measurements follows. The results for the characterization of the 2D microstrip detector system at the synchrotron-radiation source ESRF in view of its application with the FOCAL spectrometer are thereafter described. The results of first test measurement on the Compton polarimetry, which were also performed at the ESRF, are then presented. Finally first experimental results, which wer obtained by the novel planar structured Ge(i) detectors, are shown.

  15. Fission-product yields for thermal-neutron fission of /sup 243/Cm determined from measurements with a high-resolution low-energy germanium gamma-ray detector

    Energy Technology Data Exchange (ETDEWEB)

    Merriman, L.D.

    1984-04-01

    Cumulative fission-product yields have been determined for 13 gamma rays emitted during the decay of 12 fission products created by thermal-neutron fission of /sup 243/Cm. A high-resolution low-energy germanium detector was used to measure the pulse-height spectra of gamma rays emitted from a 77-nanogram sample of /sup 243/Cm after the sample had been irradiated by thermal neutrons. Analysis of the data resulted in the identification and matching of gamma-ray energies and half-lives to individual radioisotopes. From these results, 12 cumulative fission product yields were deduced for radionuclides with half-lives between 4.2 min and 84.2 min. 7 references.

  16. Top quark production background studies using the ATLAS detector at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Radics, Balint [Universitaet Bonn (Germany)

    2008-07-01

    Precision measurements of top quark pair production cross section are an important test of the Standard Model and are necessary for any study of effects beyond the Standard Model. At the ATLAS detector of the Large Hadron Collider clean signals from physics processes with high branching ratios, significant missing transverse energy and isolated high transverse momentum leptons are expected to be triggered with high efficiency. Having such clean data samples accurate determination of the cross section in the t+ anti t{yields}bl{nu}{sub l}bjj semileptonic channel will be limited by the level of understanding of the shape as well as the ratio of signal to combinatorial background events, the later of which can be the result of misreconstructed (anti)top quarks and also the existence of possible additional extra partons in the final state. A study on the shape of the combinatorial background in different Alpgen and Mc {sup rate} {sup at} NLO samples for the process gg{yields}t+ anti t+N partons is performed.

  17. Simulation of a low-background proton detector for studying low-energy resonances relevant in thermonuclear reactions

    CERN Document Server

    Perez-Loureiro, D

    2016-01-01

    A new detector is being developed at the National Superconducting Cyclotron Laboratory (NSCL) to measure low energy charged-particles from beta-delayed particle emission. These low energy particles are very important for nuclear astrophysics studies. The use of a gaseous system instead of a solid state detector decreases the sensitivity to betas while keeping high efficiency for higher mass charged particles like protons or alphas. This low sensitivity to betas minimizes their contribution to the background down to 150 keV. A detailed simulation tool based on \\textsc{Geant4} has been developed for this future detector.

  18. Study on spatial resolution of micromegas as a neutron detector under condition of high neutron flux and γ ray background

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-Xin; ZHANG Yi; WANG Ji-Jin; HU Bi-Tao

    2009-01-01

    In this paper Micromegas has been designed to detect neutrons. The simulation of the spatial reso-lution of Micromegas as neutron detector is carried out by GEANT4 toolkit. The neutron track reconstruction method based on the time coincidence technology is employed in the present work. The influence of the flux of incident 14 MeV neutron and high gamma background on the spatial resolution is carefully studied. Our results show that the spatial resolution of the detector is sensitive to the neutron flux, but insensitive to the intensity of γ background if the neutron track reconstruction method proposed by our group is used. The γ insensitivity makes it possible for us to use the Micromegas detector under condition which has high γ-rays background.

  19. Germanium junction detectors. Theoretical and practical factors governing their use in radiation spectrometry; Detecteurs a jonction au germanium. Elements theoriques et pratiques pour l'utilisation en spectrometrie de rayonnements

    Energy Technology Data Exchange (ETDEWEB)

    Hors, M.; Philis, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    Semi-conductor detectors have recently greatly increased the possibilities available to nuclear spectroscopists for the study of {alpha}, {beta} and {gamma} radiations. Their use in radio-chemistry has encouraged us to study their principle, their mechanism and also the conditions under which they can be used. The first part, which is theoretical, consists of a summary of what should be known concerning the best use of junction detectors, in particular Ge (Li) detectors. The second part, which is experimental, summarizes the laboratory work carried out over a period of one year on Ge (Li) detectors. Stress is laid on the possibilities presented by the use of these detectors as photo-electric spectrometers, and also on the precautions required. Amongst the numerous results presented, the resolution of 2.52 keV obtained for the {gamma} radiation of 145.5 keV for {sup 141}Ce may be particularly noted. (authors) [French] Les detecteurs a semi-conducteurs ont recemment accru les possibilites offertes aux spectroscopistes nucleaires pour l'etude des radiations {alpha}, {beta}, {gamma}. Leurs utilisations en radiochimie nous ont incite a en etudier le principe, le mecanisme et d'autre part les conditions d'emploi. La premiere partie, theorique, rappelle l'essentiel de ce qu'il est utile de connaitre pour une utilisation optimale des detecteurs a jonctions et en particulier des detecteurs Ge (Li). La deuxieme partie, experimentale, resume les travaux realises au laboratoire pendant un an avec des detecteurs Ge (Li). Nous insistons sur les possibilites offertes et les precautions a prendre dans l'utilisation de ces detecteurs comme spectrometres photoelectriques. Parmi les nombreux resultats presentes, citons la resolution de 2,52 keV obtenue pour le rayonnement {gamma} de 145 f5 keV du {sup 141}Ce. (auteurs)

  20. A novel background reduction strategy for high level triggers and processing in gamma-ray Cherenkov detectors

    CERN Document Server

    Cabras, G; De Lotto, B; De Maria, M M; De Sabata, F; Mansutti, O; Frailis, M; Persic, M; Bigongiari, C; Doro, M; Mariotti, M; Peruzzo, L; Saggion, A; Scalzotto, V; Paoletti, R; Scribano, A; Turini, N; Moralejo, A; Tescaro, D

    2008-01-01

    Gamma ray astronomy is now at the leading edge for studies related both to fundamental physics and astrophysics. The sensitivity of gamma detectors is limited by the huge amount of background, constituted by hadronic cosmic rays (typically two to three orders of magnitude more than the signal) and by the accidental background in the detectors. By using the information on the temporal evolution of the Cherenkov light, the background can be reduced. We will present here the results obtained within the MAGIC experiment using a new technique for the reduction of the background. Particle showers produced by gamma rays show a different temporal distribution with respect to showers produced by hadrons; the background due to accidental counts shows no dependence on time. Such novel strategy can increase the sensitivity of present instruments.

  1. Balloon Flight Background Measurement with Actively-Shielded Planar and Imaging CZT Detectors

    OpenAIRE

    Bloser, P. F.; Narita, T; Jenkins, J. A.; Perrin, M.; Murray, R.; Grindlay, J.E.

    2001-01-01

    We present results from the flight of two prototype CZT detectors on a scientific balloon payload in September 2000. The first detector, referred to as ``CZT1,'' consisted of a 10 mm x 10 mm x 2 mm CZT crystal with a single gold planar electrode readout. This detector was shielded by a combination of a passive collimator surrounded by plastic scintillator and a thick BGO crystal in the rear. The second detector, ``CZT2,'' comprised two 10 mm x 10 mm x 5 mm CZT crystals, one made of eV Product...

  2. Experimental study of the atmospheric neutrino backgrounds for proton decay to positron and neutral pion searches in water Cherenkov detectors

    CERN Document Server

    Mine, S; Andringa, S; Aoki, S; Argyriades, J; Asakura, K; Ashie, R; Berghaus, F; Berns, H; Bhang, H; Blondel, A; Borghi, S; Bouchez, J; Burguet-Castell, J; Casper, D; Catala, J; Cavata, C; Cervera-Villanueva, Anselmo; Chen, S M; Cho, K O; Choi, J H; Dore, U; Espinal, X; Fechner, M; Fernández, E; Fujii, Y; Fukuda, Y; Gomez-Cadenas, J; Gran, R; Hara, T; Hasegawa, M; Hasegawa, T; Hayato, Y; Helmer, R L; Hiraide, K; Hosaka, J; Ichikawa, A K; Iinuma, M; Ikeda, A; Ishida, T; Ishihara, K; Ishii, T; Ishitsuka, M; Itow, Y; Iwashita, T; Jang, H I; Jeon, E J; Jeong, I S; Joo, K K; Jover, G; Jung, C K; Kajita, T; Kameda, J; Kaneyuki, K; Kato, I; Kearns, E; Kim, C O; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kim, J Y; Kim, S B; Kitching, P; Kobayashi, K; Kobayashi, T; Konaka, A; Koshio, Y; Kropp, W; Kudenko, Yu; Kuno, Y; Kurimoto, Y; Kutter, T; Learned, J; Likhoded, S; Lim, I T; Loverre, P F; Ludovici, L; Maesaka, H; Mallet, J; Mariani, C; Matsuno, S; Matveev, V; McConnel, K; McGrew, C; Mikheyev, S; Minamino, A; Mineev, O; Mitsuda, C; Miura, M; Moriguchi, Y; Moriyama, S; Nakadaira, T; Nakahata, M; Nakamura, K; Nakano, I; Nakaya, T; Nakayama, S; Namba, T; Nambu, R; Nawang, S; Nishikawa, K; Nitta, K; Nova, F; Novella, P; Obayashi, Y; Okada, A; Okumura, K; Oser, S M; Oyama, Y; Pac, M Y; Pierre, F; Rodríguez, A; Saji, C; Sakuda, M; Sánchez, F; Scholberg, K; Schroeter, R; Sekiguchi, M; Shiozawa, M; Shiraishi, K; Sitjes, G; Smy, M; Sobel, H; Sorel, M; Stone, J; Sulak, L; Suzuki, A; Suzuki, Y; Tada, M; Takahashi, T; Takenaga, Y; Takeuchi, Y; Taki, K; Takubo, Y; Tamura, N; Tanaka, M; Terri, R; T'Jampens, S; Tornero-Lopez, A; Totsuka, Y; Vagins, M; Whitehead, L; Walter, C W; Wang, W; Wilkes, R J; Yamada, S; Yamada, Y; Yamamoto, S; Yanagisawa, C; Yershov, N; Yokoyama, H; Yokoyama, M; Yoo, J; Yoshida, M; Zalipska, J

    2008-01-01

    The atmospheric neutrino background for proton decay to positron and neutral pion in ring imaging water Cherenkov detectors is studied with an artificial accelerator neutrino beam for the first time. In total, about 314,000 neutrino events corresponding to about 10 megaton-years of atmospheric neutrino interactions were collected by a 1,000 ton water Cherenkov detector (KT). The KT charged-current single neutral pion production data are well reproduced by simulation programs of neutrino and secondary hadronic interactions used in the Super-Kamiokande (SK) proton decay search. The obtained proton to positron and neutral pion background rate by the KT data for SK from the atmospheric neutrinos whose energies are below 3 GeV is about two per megaton-year. This result is also relevant to possible future, megaton-scale water Cherenkov detectors.

  3. pn-CCDs in a Low-Background Environment: Detector Background of the CAST X-ray Telescope

    CERN Document Server

    Kuster, M.; Rodriquez, A.; Kotthaus, R.; Brauninger, H.; Franz, J.; Friedrich, P.; Hartmann, R.; Kang, D.; Lutz, G.; Struder, L.

    2005-01-01

    The CAST experiment at CERN (European Organization of Nuclear Research) searches for axions from the sun. The axion is a pseudoscalar particle that was motivated by theory thirty years ago, with the intention to solve the strong CP problem. Together with the neutralino, the axion is one of the most promising dark matter candidates. The CAST experiment has been taking data during the last two years, setting an upper limit on the coupling of axions to photons more restrictive than from any other solar axion search in the mass range below 0.1 eV. In 2005 CAST will enter a new experimental phase extending the sensitivity of the experiment to higher axion masses. The CAST experiment strongly profits from technology developed for high energy physics and for X-ray astronomy: A superconducting prototype LHC magnet is used to convert potential axions to detectable X-rays in the 1-10 keV range via the inverse Primakoff effect. The most sensitive detector system of CAST is a spin-off from space technology, a Wolter I ty...

  4. Fast-neutron induced background in LaBr{sub 3}:Ce detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kiener, J., E-mail: Jurgen.Kiener@csnsm.in2p3.fr [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); Tatischeff, V.; Deloncle, I. [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); Séréville, N. de [Institut de Physique Nucléaire d' Orsay, CNRS-IN2P3 and Université Paris-Sud, 91406 Orsay (France); Laurent, P. [CEA/IRFU Service d' Astrophysique, Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette (France); Laboratoire Astroparticules et Cosmologie (APC), 10, rue A. Domon et L. Duquet, 75205 Paris (France); Blondel, C. [Laboratoire AIM, CEA/IRFU, Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette (France); Chabot, M. [Institut de Physique Nucléaire d' Orsay, CNRS-IN2P3 and Université Paris-Sud, 91406 Orsay (France); Chipaux, R. [CEA/DMS/IRFU/SEDI, CEA Saclay, 91191 Gif sur Yvette (France); Coc, A. [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); Dubos, S. [Laboratoire AIM, CEA/IRFU, Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette (France); Gostojic, A. [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); and others

    2015-10-21

    The response of a scintillation detector with a cylindrical 1.5-in. LaBr{sub 3}:Ce crystal to incident neutrons has been measured in the energy range E{sub n} = 2–12 MeV. Neutrons were produced by proton irradiation of a Li target at E{sub p} = 5–14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr{sub 3}:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced γ rays emitted by the LaBr{sub 3}:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr{sub 3}:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the results of simulations to predict the response of LaBr{sub 3}:Ce detectors for a range of crystal sizes to neutron irradiation in the energy range E{sub n} = 0.5–10 MeV.

  5. Mineral commodity profiles: Germanium

    Science.gov (United States)

    Butterman, W.C.; Jorgenson, John D.

    2005-01-01

    Overview -- Germanium is a hard, brittle semimetal that first came into use a half-century ago as a semiconductor material in radar units and as the material from which the first transistor was made. Today it is used principally as a component of the glass in telecommunications fiber optics; as a polymerization catalyst for polyethylene terephthalate (PET), a commercially important plastic; in infrared (IR) night vision devices; and as a semiconductor and substrate in electronics circuitry. Most germanium is recovered as a byproduct of zinc smelting, although it also has been recovered at some copper smelters and from the fly ash of coal-burning industrial powerplants. It is a highly dispersed element, associated primarily with base-metal sulfide ores. In the United States, germanium is recovered from zinc smelter residues and manufacturing scrap and is refined by two companies at four germanium refineries. One of the four refineries is dedicated to processing scrap. In 2000, producers sold zone-refined (high-purity) germanium at about $1,250 per kilogram and electronic-grade germanium dioxide (GeO2) at $800 per kilogram. Domestic refined production was valued at $22 million. Germanium is a critical component in highly technical devices and processes. It is likely to remain in demand in the future at levels at least as high as those of 2000. U.S. resources of germanium are probably adequate to meet domestic needs for several decades.

  6. UK low-background infrastructure for delivering SuperNEMO

    CERN Document Server

    Liu, Xin Ran

    2015-01-01

    SuperNEMO is a next generation neutrinoless double beta decay experiment with a design capability to reach a half-life sensitivity of $10^{26}$ years corresponding to an effective Majorana neutrino mass of $\\langle m_{\\beta\\beta} \\rangle$ $<$ 50 - 100 meV. To achieve this sensitivity, stringent radio-purity requirements are imposed resulting in an equally stringent screening programme. Dedicated facilities have been established in the UK for screening and selection of detector construction materials. Gamma ray spectroscopy using high-purity germanium (HPGe) detectors has been the standard method for the measurement of material contamination. A low-background facility has been established at Boulby Underground Laboratory. The first results from the 2 current HPGe detector are shown. Radon is one of the most critical backgrounds for SuperNEMO and most other low background experiments. It can enter the detector either through diffusion, contamination during construction or emanation from the detector material...

  7. Fast-neutron induced background in LaBr3:Ce detectors

    CERN Document Server

    Kiener, J; Deloncle, I; de Séréville, N; Laurent, P; Blondel, C; Chabot, M; Chipaux, R; Coc, A; Dubos, S; Gostojic, A; Goutev, N; Hamadache, C; Hammache, F; Horeau, B; Limousin, O; Ouichaoui, S; Prévot, G; Rodríguez-Gasén, R; Yavahchova, M S

    2015-01-01

    The response of a scintillation detector with a cylindrical 1.5-inch LaBr3:Ce crystal to incident neutrons has been measured in the energy range En = 2-12 MeV. Neutrons were produced by proton irradiation of a Li target at Ep = 5-14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr3:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced gamma rays emitted by the LaBr3:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr3:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the resul...

  8. Study of radiation background at the north crossing point of the BEPC Ⅱ in collision mode%Study of radiation background at the north crossing point of the BEPC Ⅱ in collision mode

    Institute of Scientific and Technical Information of China (English)

    莫晓虎; 秦庆; 屈化民; 王贻芳; 徐金强; 张天保; 张建勇; 张清江; Achasov Mikhail; 蔡啸; 傅成栋; Harris Fred; 刘倩; Muchnoi Nikolay

    2011-01-01

    Understanding the radiation background at the north crossing point (NCP) in the tunnel of BEPCII is crucial for the performance safety of the High Purity Germanium (HPGe) detector, and in turn of great significance for long-term stable running of the ener

  9. Lowering the background level and the energy threshold of Micromegas x-ray detectors for axion searches

    CERN Document Server

    Iguaz, F J; Aznar, F; Castel, J F; Dafni, T; Davenport, M; Ferrer-Ribas, E; Galan, J; Garcia, J A; Garza, J G; Giomataris, I; Irastorza, I G; Papaevangelou, T; Rodriguez, A; Tomas, A; Vafeiadis, T; Yildiz, S C

    2014-01-01

    Axion helioscopes search for solar axions by their conversion in x-rays in the presence of high magnetic fields. The use of low background x-ray detectors is an essential component contributing to the sensitivity of these searches. In this work, we review the recent advances on Micromegas detectors used in the CERN Axion Solar Telescope (CAST) and proposed for the future International Axion Observatory (IAXO). The actual setup in CAST has achieved background levels below 10$^{-6}$ keV$^{-1}$ cm$^{-2}$ s$^{-1}$, a factor 100 lower than the first generation of Micromegas detectors. This reduction is based on active and passive shielding techniques, the selection of radiopure materials, offline discrimination techniques and the high granularity of the readout. We describe in detail the background model of the detector, based on its operation at CAST site and at the Canfranc Underground Laboratory (LSC), as well as on Geant4 simulations. The best levels currently achieved at LSC are low than 10$^{-7}$ keV$^{-1}$ ...

  10. Sources of machine-induced background in the ATLAS and CMS detectors at the CERN Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, R.; et al.,

    2013-11-21

    One source of experimental background in the CERN Large Hadron Collider (LHC) is particles entering the detectors from the machine. These particles are created in cascades, caused by upstream interactions of beam protons with residual gas molecules or collimators. We estimate the losses on the collimators with SixTrack and simulate the showers with FLUKA and MARS to obtain the flux and distribution of particles entering the ATLAS and CMS detectors. We consider some machine configurations used in the first LHC run, with focus on 3.5 TeV operation as in 2011. Results from FLUKA and MARS are compared and a very good agreement is found. An analysis of logged LHC data provides, for different processes, absolute beam loss rates, which are used together with further simulations of vacuum conditions to normalize the results to rates of particles entering the detectors. We assess the relative importance of background from elastic and inelastic beam-gas interactions, and the leakage out of the LHC collimation system, and show that beam-gas interactions are the dominating source of machine-induced background for the studied machine scenarios. Our results serve as a starting point for the experiments to perform further simulations in order to estimate the resulting signals in the detectors.

  11. Background rejection capabilities of a Compton imaging telescope setup with a DSSD Ge planar detector and AGATA

    Energy Technology Data Exchange (ETDEWEB)

    Doncel, M., E-mail: doncel@usal.es [Laboratorio de Radiaciones Ionizantes, Universidad de Salamanca (Spain); Quintana, B. [Laboratorio de Radiaciones Ionizantes, Universidad de Salamanca (Spain); Gadea, A. [IFIC Valencia, Valencia (Spain); Recchia, F.; Farnea, E. [INFN sezione di Padova, Padova (Italy)

    2011-08-21

    In this work, we show the first Monte Carlo results about the performance of the Ge array which we propose for the DESPEC experiment at FAIR, when the background algorithm developed for AGATA is applied. The main objective of our study is to characterize the capabilities of the {gamma}-spectroscopy system, made up of AGATA detectors in a semi-spherical distribution covering a 1{pi} solid angle and a set of planar Ge detectors in a daisy configuration, to discriminate between {gamma} sources placed at different locations.

  12. Background optimization for a new spherical gas detector for very light WIMP detection

    OpenAIRE

    Dastgheibi-Fard, Ali; Giomataris, I.; Gerbierb, G.; Derree, J.; M. Gros; Magnier, P.; Jourde, D.; Bougamont, E .; Navick, X-F.; Papaevangelou, T.; Galan, J.; Tsiledakis, G.; Piquemal, F.; Zampaolo, M.; Loaiza, P.

    2014-01-01

    The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of par- ticle detector, with a broad range of applications. Its main features include a very low energy threshold independent of the volume (due to its very low capacitance), a good energy resolution, robustness and a single detection readout channel, in its simplest version. Applications range from radon emanation gas monitoring, neutron flux and gamma counting and spectroscopy to dark matter searches, in...

  13. Balloon Flight Background Measurement with Actively-Shielded Planar and Imaging CZT Detectors

    CERN Document Server

    Bloser, P F; Jenkins, J A; Perrin, M; Murray, R; Grindlay, J E

    2001-01-01

    We present results from the flight of two prototype CZT detectors on a scientific balloon payload in September 2000. The first detector, referred to as ``CZT1,'' consisted of a 10 mm x 10 mm x 2 mm CZT crystal with a single gold planar electrode readout. This detector was shielded by a combination of a passive collimator surrounded by plastic scintillator and a thick BGO crystal in the rear. The second detector, ``CZT2,'' comprised two 10 mm x 10 mm x 5 mm CZT crystals, one made of eV Products high pressure Bridgman material and the other of IMARAD horizontal Bridgman material, each fashioned with a 4 x 4 array of gold pixels on a 2.5 mm pitch. The pixellated detectors were flip-chip-mounted side by side and read out by a 32-channel ASIC. This detector was also shielded by a passive/plastic collimator in the front, but used only additional passive/plastic shielding in the rear. Both experiments were flown from Ft. Sumner, NM on September 19, 2000 on a 24 hour balloon flight. CZT1 recorded a non-vetoed backgro...

  14. LArGe: active background suppression using argon scintillation for the GERDA 0νββ-experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Budjas, D.; Schoenert, S. [Technische Universitaet Muenchen, Munich (Germany); Barnabe-Heider, M. [Technische Universitaet Muenchen, Munich (Germany); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Cattadori, C. [Universita degli Studi di Milano, Milan (Italy); INFN, Milan (Italy); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institut for Nuclear Research, Moscow (Russian Federation); Gusev, K. [Technische Universitaet Muenchen, Munich (Germany); Joint Institut for Nuclear Research, Dubna (Russian Federation); National Research Center Kurchatov Institut, Moscow (Russian Federation); Heisel, M.; Smolnikov, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Junker, M. [Laboratori Nazionali del Gran Sasso, Assergi (Italy); Klimenko, A.; Lubashevskiy, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Joint Institut for Nuclear Research, Dubna (Russian Federation); Pelczar, K. [Jagellonian University, Cracow (Poland); Zuzel, G. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Jagellonian University, Cracow (Poland)

    2015-10-15

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for future application in the GERDA experiment. Similar to GERDA, LArGe operates bare germanium detectors submersed into liquid argon (1 m{sup 3}, 1.4tons), which in addition is instrumented with photomultipliers to detect argon scintillation light. The scintillation signals are used in anti-coincidence with the germanium detectors to effectively suppress background events that deposit energy in the liquid argon. The background suppression efficiency was studied in combination with a pulse shape discrimination (PSD) technique using a BEGe detector for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10{sup 3} have been achieved. First background data of LArGe with a coaxial HPGe detector (without PSD) yield a background index of (0.12 - 4.6) x 10{sup -2} cts/(keV kg year) (90 % C.L.), which is at the level of GERDA Phase I. Furthermore, for the first time we monitor the natural {sup 42}Ar abundance (parallel to GERDA), and have indication for the 2νββ-decay in natural germanium. These results show the effectivity of an active liquid argon veto in an ultra-low background environment. As a consequence, the implementation of a liquid argon veto in GERDA Phase II is pursued. (orig.)

  15. Liquid scintillators and liquefied rare gases for particle detectors. Background-determination in Double Chooz and scintillation properties of liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Martin Alexander

    2012-11-27

    Evidence for physics beyond the well-established standard model of particle physics is found in the sector of neutrino physics, in particular in neutrino oscillations, and in experimental hints requiring the presence of Dark Matter. Neutrino oscillations demand the neutrinos to be massive and at least four additional parameters, three mixing angles and one phase, are introduced. A non-vanishing value for the third mixing angle, {theta}{sub 13}, has only recently been found, amongst others by the reactor antineutrino disappearance experiment Double Chooz. This experiment detects anti {nu}{sub e}'s by means of the Inverse Beta Decay (IBD), which has a clear signature that can very effectively be discriminated from most of the background. However, some background still survives the selection cuts applied to the data, partly induced by radioactivity. In order to determine the amount of radioimpurities in the detector, germanium spectroscopy measurements and neutron activation analyses have been carried out for various parts of the Double Chooz far detector. A dedicated Monte-Carlo simulation was performed to obtain the singles event rate induced by the identified radioimpurities in the fiducial volume of Double Chooz. In the present thesis, parts from the outer detector systems, as well as components of the inner detector liquids were measured. In sum, a singles rate of less than 0.35 Hz above the antineutrino detection threshold of 0.7 MeV has been found. This is by far below the design goal of Double Chooz of {proportional_to} 20 Hz. The analysis of bismuth-polonium (BiPo) coincidences in the first Double Chooz data allows to directly determine the number of decays from the U- and the Th-decay chain in the active detector parts. Assuming radioactive equilibrium, concentrations of (1.71{+-}0.08).10{sup -14}(g)/(g) for uranium and (8.16{+-}0.49).10{sup -14}(g)/(g) for thorium have been found, which are also well below the design goal of Double Chooz (2.10{sup -13

  16. Improved constraints on WIMPs from the International Germanium Experiment IGEX

    CERN Document Server

    Morales, A; Brodzinski, R L; Cebrián, S; García, E; Irastorza, I G; Kirpichnikov, I V; Klimenko, A A; Miley, H S; Morales, J; De Solorzano, A O; Osetrov, S B; Pogosov, V S; Puimedón, J; Reeves, J H; Sarsa, M L; Smolnikov, A A; Tamanyan, A G; Vasenko, A A; Vasilev, S I; Villar, J A

    2002-01-01

    One IGEX 76Ge double-beta decay detector is currently operating in the Canfranc Underground Laboratory in a search for dark matter WIMPs, through the Ge nuclear recoil produced by the WIMP elastic scattering. A new exclusion plot, has been derived for WIMP-nucleon spin-independent interactions. To obtain this result, 40 days of data from the IGEX detector (energy threshold E \\~ 4 keV), recently collected, have been analyzed. These data improve the exclusion limits derived from all the other ionization germanium detectors in the mass region from 20 GeV to 200 GeV, where a WIMP supposedly responsible for the annual modulation effect reported by the DAMA experiment would be located. The new IGEX exclusion contour enters, by the first time, the DAMA region by using only raw data, with no background discrimination, and excludes its upper left part. It is also shown that with a moderate improvement of the detector performances, the DAMA region could be fully explored.

  17. Neutron induced background gamma activity in low-level Ge-spectroscopy systems

    Science.gov (United States)

    Jovančević, N.; Krmar, M.; Mrda, D.; Slivka, J.; Bikit, I.

    2010-01-01

    Two high purity germanium (HPGe) detectors were located in two different passive shields: one in pre-WW II iron and the second in commercial low background lead. Gamma lines emitted after neutron capture, as well as after inelastic scattering on the germanium crystal were detected and then analyzed. The thermal and fast neutron fluxes were calculated and their values were compared for the two different kinds of detector shield. Several materials having different neutron slowing-down properties were packed in Marinelli geometry, positioned on the lead shielded detector and measured for around 10 6 s. The main goal was to estimate a possible influence of the sample on the intensity of the neutron induced Ge gamma lines. On the iron-shielded detector a massive (3 in. thick) NaI Compton suppression system showed a measurable activity from neutron capture and inelastic scattering on sodium and iodine nuclei.

  18. Measurement of Yields and Fluctuations using Background and Calibration Data from the LUX Detector

    Science.gov (United States)

    Pease, Evan; LUX Collaboration

    2016-03-01

    The Large Underground Xenon (LUX) detector is a 350-kg liquid xenon (LXe) time-projection chamber designed for the direct detection of weakly-interacting massive particles (WIMPs), a leading dark matter candidate. LUX operates on the 4850-foot level of the Sanford Underground Research Facility in Lead, SD. Monoenergetic electronic recoil (ER) peaks in the WIMP search and calibration data from the first underground science run of the LUX detector have been used to measure ER light and charge yields in LXe between 5.2 keV and 662 keV. The energy resolution of the LUX detector at these energies will also be presented. Recombination fluctuations are observed to follow a linear dependence on the number of ions for the energies in this study, and this dependence is consistent with low-energy measurements made with a tritium beta source in the LUX detector. Using these results and additional measurements of the recoil bands from tritium and D-D neutron calibrations, I will compare recombination fluctuations in LXe response to electronic and nuclear recoils. The presenter is supported by the U.S. Department of Energy, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under contract DE-AC05-06OR23100.

  19. Characterization, 1064 nm photon signals and background events of a tungsten TES detector for the ALPS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dreyling-Eschweiler, J.; Doebrich, B.; Januschek, F.; Lindner, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Bastidon, N.; Horns, D. [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik

    2015-02-15

    The high efficiency, low-background, and single-photon detection with transition-edge sensors (TES) is making this type of detector attractive in widely different types of application. In this paper, we present first characterizations of a TES to be used in the Any Light Particle Search (ALPS) experiment searching for new fundamental ultra-light particles. Firstly, we describe the setup and the main components of the ALPS TES detector (TES, millikelvin-cryostat and SQUID read-out) and their performances. Secondly, we explain a dedicated analysis method for single-photon spectroscopy and rejection of non-photon background. Finally, we report on results from extensive background measurements. Considering an event-selection, optimized for a wavelength of 1064 nm, we achieved a background suppression of ∝10{sup -3} with a ∝ 50 % efficiency for photons passing the selection. The resulting overall efficiency was 23 % with a dark count rate of 8.6.10{sup -3} s{sup -1}. We observed that pile-up events of thermal photons are the main background component.

  20. Multi-chroic dual-polarization bolometric detectors for studies of the Cosmic Microwave Background

    CERN Document Server

    Suzuki, Aritoki; Edwards, Jennifer; Engargiola, Greg; Ghribi, Adnan; Holzapfel, William; Lee, Adrian T; Meng, Xiao Fan; Myers, Michael J; O'Brient, Roger; Quealy, Erin; Rebeiz, Gabriel; Richards, Paul; Rosen, Darin; Siritanasak, Praween

    2012-01-01

    We are developing multi-chroic antenna-coupled TES detectors for CMB polarimetry. Multi-chroic detectors increase the mapping speed per focal plane area and provide greater discrimination of polarized galactic foregrounds with no increase in weight or cryogenic cost. In each pixel, a silicon lens-coupled dual polarized sinuous antenna collects light over a two-octave frequency band. The antenna couples the broadband millimeter wave signal into microstrip transmission lines, and on-chip filter banks split the broadband signal into several frequency bands. Separate TES bolometers detect the power in each frequency band and linear polarization. We will describe the design and performance of these devices and present optical data taken with prototype pixels. Our measurements show beams with percent level ellipticity, percent level cross-polarization leakage, and partitioned bands using banks of 2, 3, and 7 filters. We will also describe the development of broadband anti-reflection coatings for the high dielectric...

  1. Sources of machine-induced background in the ATLAS and CMS detectors at the CERN Large Hadron Collider

    CERN Document Server

    Bruce, R; Boccone, V; Bregliozzi, G; Burkhardt, H; Cerutti, F; Ferrari, A; Huhtinen, M; Lechner, A; Levinsen, Y; Mereghetti, A; Mokhov, N V; Tropin, I S; Vlachoudis, V

    2013-01-01

    One source of experimental background in the CERN Large Hadron Collider (LHC) is particles entering the detectors from the machine. These particles are created in cascades, caused by upstream interactions of beam protons with residual gas molecules or collimators. We estimate the losses on the collimators with SixTrack and simulate the showers with FLUKA and MARS to obtain the flux and distribution of particles entering the ATLAS and CMS detectors. We consider some machine configurations used in the first LHC run, with focus on 3.5 TeV operation as in 2011. Results from FLUKA and MARS are compared and a very good agreement is found. An analysis of logged LHC data provides, for different processes, absolute beam loss rates, which are used together with further simulations of vacuum conditions to normalize the results to rates of particles entering the detectors. We assess the relative importance of background from elastic and inelastic beam-gas interactions, and the leakage out of the LHC collimation system, a...

  2. Reducing 68Ge Background in Dark Matter Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Orrell, John L.

    2011-03-01

    Experimental searches for dark matter include experiments with sub-0.5 keV-energy threshold high purity germanium detectors. Experimental efforts, in partnership with the CoGeNT Collaboration operating at the Soudan Underground Laboratory, are focusing on energy threshold reduction via noise abatement, reduction of backgrounds from cosmic ray generated isotopes, and ubiquitous environmental radioactive sources. The most significant cosmic ray produced radionuclide is 68Ge. This paper evaluates reducing this background by freshly mining and processing germanium ore. The most probable outcome is a reduction of the background by a factor of two, and at most a factor of four. A very cost effective alternative is to obtain processed Ge as soon as possible and store it underground for 18 months.

  3. Reducing 68Ge Background in Dark Matter Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Orrell, John L.

    2011-03-01

    Experimental searches for dark matter include experiments with sub-0.5 keV-energy threshold high purity germanium detectors. Experimental efforts, in partnership with the CoGeNT Collaboration operating at the Soudan Underground Laboratory, are focusing on energy threshold reduction via noise abatement, reduction of backgrounds from cosmic ray generated isotopes, and ubiquitous environmental radioactive sources. The most significant cosmic ray produced radionuclide is 68Ge. This paper evaluates reducing this background by freshly mining and processing germanium ore. The most probable outcome is a reduction of the background by a factor of two, and at most a factor of four. A very cost effective alternative is to obtain processed Ge as soon as possible and store it underground for 18 months.

  4. Characterisation of two AGATA asymmetric high purity germanium capsules

    Energy Technology Data Exchange (ETDEWEB)

    Colosimo, S.J., E-mail: sjc@ns.ph.liv.ac.uk [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Moon, S.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Harkness-Brennan, L.; Judson, D.S. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Lazarus, I.H. [STFC Daresbury, Daresbury, Warrington WA4 4AD (United Kingdom); Nolan, P.J. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Simpson, J. [STFC Daresbury, Daresbury, Warrington WA4 4AD (United Kingdom); Unsworth, C. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom)

    2015-02-11

    The AGATA spectrometer is an array of highly segmented high purity germanium detectors. The spectrometer uses pulse shape analysis in order to track Compton scattered γ-rays to increase the efficiency of nuclear spectroscopy studies. The characterisation of two high purity germanium detector capsules for AGATA of the same A-type has been performed at the University of Liverpool. This work will examine the uniformity of performance of the two capsules, including a comparison of the resolution and efficiency as well as a study of charge collection. The performance of the capsules shows good agreement, which is essential for the efficient operation of the γ-ray tracking array.

  5. First Dark Matter Limits from a Large-Mass, Low-Background Superheated Droplet Detector

    CERN Document Server

    Collar, J.I.; Girard, T.A.; Limagne, D.; Miley, H.S.; Waysand, G.

    2000-01-01

    We report on the fabrication aspects and calibration of the first large active mass ($\\sim15$ g) modules of SIMPLE, a search for particle dark matter using Superheated Droplet Detectors (SDDs). While still limited by the statistical uncertainty of the small data sample on hand, the first weeks of operation in the new underground laboratory of Rustrel-Pays d'Apt already provide a sensitivity to axially-coupled Weakly Interacting Massive Particles (WIMPs) competitive with leading experiments, confirming SDDs as a convenient, low-cost alternative for WIMP detection.

  6. First background-free limit from a directional dark matter experiment: results from a fully fiducialised DRIFT detector

    CERN Document Server

    Battat, J B R; Daw, E; Dorofeev, A; Ezeribe, A C; Gauvreau, J -L; Gold, M; Harton, J L; Landers, J M; Law, E; Lee, E R; Loomba, D; Lumnah, A; Matthews, J A J; Miller, E H; Monte, A; Mouton, F; Murphy, A StJ; Paling, S M; Phan, N; Robinson, M; Sadler, S W; Scarff, A; Schuckman, F; Snowden-Ifft, D P; Spooner, N J C; Telfer, S; Vahsen, S E; Walker, D; Warner, D; Yuriev, L

    2014-01-01

    The addition of O2 to gas mixtures in time projection chambers containing CS2 has recently been shown to produce multiple negative ions that travel at slightly different velocities. This allows a measurement of the absolute position of ionising events in the z (drift) direction. In this work, we apply the z-fiducialisation technique to a directional dark matter search. In particular, we present results from a 46.3 live-day source-free exposure of the DRIFT-IId detector run in this completely new mode. With full-volume fiducialisation, we have achieved the first background-free operation of a directional detector. The resulting exclusion curve for spin-dependent WIMP-proton interactions reaches 0.9 pb at 100 GeV/c2, a factor of 2 better than our previous work. We describe the automated analysis used here, and argue that detector upgrades, implemented after the acquisition of these data, will bring an additional factor of >3 improvement in the near future.

  7. Low-Background Experiments with High Pressure Gas Scintillation Proportional Detector

    OpenAIRE

    Akimov, D.Yu.; Burenkov, A. A; Kuzichev, V. F.; Morgunov, V. L.; Solovov, V.N.

    1997-01-01

    A scintillation proportional counter with wavelength shifting fiber readout filled with Xe or Kr under a pressure of up to 20 atm is proposed for the low-background experiments on search for dark matter of the Universe and 2K-decay of 78 Kr.

  8. Cooling System for a Frame-Store PN-CCD Detector for Low Background Application

    CERN Document Server

    Pereira, H; Santos Silva, P; Kuster, M; Lang, P

    2012-01-01

    The astroparticle physics experiment CERN Axion Solar Telescope (CAST) aims to detect hypothetical axions or axion-like particles produced in the Sun by the Primakoff process. A Large Hadron Collider (LHC) prototype superconducting dipole magnet provides a 9 T transverse magnetic field for the conversion of axions into detectable X-ray photons. These photons are detected with an X-ray telescope and a novel type of frame-store CCD detector built from radio-pure materials, installed in the optics focal plane. A novel type of cooling system has been designed and built based on krypton-filled cryogenic heat pipes, made out of oxygen-free radiopure copper, and a Stirling cryocooler as cold source. The heat pipes provide an efficient thermal coupling between the cryocooler and the CCD which is kept at stable temperatures between 150 and 230 K within an accuracy of 0.1 K. A graded-Z radiation shield, also serving as a gas cold-trap operated at 120 K, is implemented to reduce the surface contamination of the CCD wind...

  9. Development of a Novel Diamond Based Detector for Machine Induced Background and Luminosity Measurements

    CERN Document Server

    Hempel, Maria

    2017-01-01

    The Large Hadron Collider (LHC) is the largest particle accelerator and storage ring in the world,used to investigate fundamentals of particle physics and to develop at the same time the technology of accelerators and detectors. Four main experiments, located around the LHC ring, provideinsight into the nature of particles and search for answers to as yet unexplained phenomena in theuniverse. These four experiments are ATLAS (A Toroidal LHC Apparatus), ALICE (A Large IonCollider Experiment), CMS (Compact Muon Solenoid) and LHCb (LHC beauty). Two proton orheavy ion beams circulate in the LHC and are brought into collision in the four experiments.The physics potential of each experiment is determined by the luminosity, which is a ratio of thenumber of the events during a certain time period to the cross section of a physics process. Ameasurement of the luminosity is therefore essential to determine the cross section of interestingphysics processes.In addition, safe and high-quality data-taking requires stable b...

  10. Low-Background Counting at Homestake

    Science.gov (United States)

    Marshall, Iseley

    2009-10-01

    Background characterization at Homestake is an ongoing project crucial to the experiments located there. From neutrino physics to WIMP detection, low-background materials and their screening require highly sensitive detectors. Naturally, shielding is needed to lower ``noise'' in these detectors. Because of its vast depth, Homestake will be effective in shielding against cosmic-ray radiation. This means little, however, if radiation from materials used still interferes. Specifically, our group is working on designing the first low-background counting facility at the Homestake mine. Using a high-purity germanium crystal detector from ORTEC, measurements will be taken within a shield that is made to specifically account for radiation underground and fits the detector. Currently, in the design, there is a layer of copper surrounded by an intricate stainless steel casing, which will be manufactured air tight to accommodate for nitrogen purging. Lead will surround the stainless steel shell to further absorb gamma rays. A mobile lift system has been designed for easy access to the detector. In the future, this project will include multiple testing stations located in the famous Davis Cavern where future experiments will have the ability to use the site as an efficient and accurate counting facility for their needs (such as measuring radioactive isotopes in materials). Overall, this detector (and its shield system) is the beginning of a central testing facility that will serve Homestake's scientific community.

  11. Systematic Uncertainties in High-Rate Germanium Data

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Andrew J.; Fast, James E.; Fulsom, Bryan G.; Pitts, William K.; VanDevender, Brent A.; Wood, Lynn S.

    2016-10-06

    For many nuclear material safeguards inspections, spectroscopic gamma detectors are required which can achieve high event rates (in excess of 10^6 s^-1) while maintaining very good energy resolution for discrimination of neighboring gamma signatures in complex backgrounds. Such spectra can be useful for non-destructive assay (NDA) of spent nuclear fuel with long cooling times, which contains many potentially useful low-rate gamma lines, e.g., Cs-134, in the presence of a few dominating gamma lines, such as Cs-137. Detectors in use typically sacrifice energy resolution for count rate, e.g., LaBr3, or visa versa, e.g., CdZnTe. In contrast, we anticipate that beginning with a detector with high energy resolution, e.g., high-purity germanium (HPGe), and adapting the data acquisition for high throughput will be able to achieve the goals of the ideal detector. In this work, we present quantification of Cs-134 and Cs-137 activities, useful for fuel burn-up quantification, in fuel that has been cooling for 22.3 years. A segmented, planar HPGe detector is used for this inspection, which has been adapted for a high-rate throughput in excess of 500k counts/s. Using a very-high-statistic spectrum of 2.4*10^11 counts, isotope activities can be determined with very low statistical uncertainty. However, it is determined that systematic uncertainties dominate in such a data set, e.g., the uncertainty in the pulse line shape. This spectrum offers a unique opportunity to quantify this uncertainty and subsequently determine required counting times for given precision on values of interest.

  12. Attenuated total internal reflection infrared microspectroscopic imaging using a large-radius germanium internal reflection element and a linear array detector.

    Science.gov (United States)

    Patterson, Brian M; Havrilla, George J

    2006-11-01

    The number of techniques and instruments available for Fourier transform infrared (FT-IR) microspectroscopic imaging has grown significantly over the past few years. Attenuated total internal reflectance (ATR) FT-IR microspectroscopy reduces sample preparation time and has simplified the analysis of many difficult samples. FT-IR imaging has become a powerful analytical tool using either a focal plane array or a linear array detector, especially when coupled with a chemometric analysis package. The field of view of the ATR-IR microspectroscopic imaging area can be greatly increased from 300 x 300 microm to 2500 x 2500 microm using a larger internal reflection element of 12.5 mm radius instead of the typical 1.5 mm radius. This gives an area increase of 70x before aberrant effects become too great. Parameters evaluated include the change in penetration depth as a function of beam displacement, measurements of the active area, magnification factor, and change in spatial resolution over the imaging area. Drawbacks such as large file size will also be discussed. This technique has been successfully applied to the FT-IR imaging of polydimethylsiloxane foam cross-sections, latent human fingerprints, and a model inorganic mixture, which demonstrates the usefulness of the method for pharmaceuticals.

  13. Gravitational wave background from sub-luminous GRBs: prospects for second and third generation detectors

    CERN Document Server

    Howell, E; Corsi, A; Coward, D; Burman, R

    2010-01-01

    We assess the detection prospects of a gravitational wave background associated with sub-luminous gamma-ray bursts (SL-GRBs). We assume that the central engines of a significant proportion of these bursts are provided by newly born magnetars and consider two plausible GW emission mechanisms. Firstly, the deformation-induced triaxial GW emission from a newly born magnetar. Secondly, the onset of a secular bar-mode instability, associated with the long lived plateau observed in the X-ray afterglows of many gamma-ray bursts (Corsi & Meszaros 2009a). With regards to detectability, we find that the onset of a secular instability is the most optimistic scenario: under the hypothesis that SL-GRBs associated with secularly unstable magnetars occur at a rate of (48; 80)Gpc^{-3}yr^{-1} or greater, cross-correlation of data from two Einstein Telescopes (ETs) could detect the GW background associated to this signal with a signal-to-noise ratio of 3 or greater after 1 year of observation. Assuming neutron star spindow...

  14. Reduction of Radioactive Backgrounds in Electroformed Copper for Ultra-Sensitive Radiation Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Eric W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Aalseth, Craig E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Farmer, Orville T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hossbach, Todd W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liezers, Martin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miley, Harry S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Overman, Nicole R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Reeves, James H. [Reeves and Son LLC., Richland, WA (United States)

    2014-07-07

    Abstract Ultra-pure construction materials are required for the next generation of neutrino physics, dark matter and environmental science applications. These new efforts require materials with purity levels at or below 1 uBq/kg 232Th and 238U. Yet radiometric analysis lacks sensitivity below ~10 uBq/kg for the U and Th decay chains. This limits both the selection of clean materials and the validation of purification processes. Copper is an important high-purity material for low-background experiments due to the ease with which it can be purified by electrochemical methods. Electroplating for purification into near-final shapes, known as electroforming, is one such method. Continued refinement of the copper electroforming process is underway, for the first time guided by an ICP-MS based assay method that can measure 232Th and 238U near the desired purity levels. An assay of electroformed copper at 10 uBq/kg for 232Th has been achieved and is described. The implications of electroformed copper at or better than this purity on next-generation low-background experiments are discussed.

  15. LArGe - Active background suppression using argon scintillation for the GERDA $0\

    CERN Document Server

    Agostini, M; Budjáš, D; Cattadori, C; Gangapshev, A; Gusev, K; Heisel, M; Junker, M; Klimenko, A; Lubashevskiy, A; Pelczar, K; Schönert, S; Smolnikov, A; Zuzel, G

    2015-01-01

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for future application in the GERDA experiment. Similar to GERDA, LArGe operates bare germanium detectors submersed into liquid argon (1 m$^3$, 1.4 tons), which in addition is instrumented with photomultipliers to detect argon scintillation light. The scintillation signals are used in anti-coincidence with the germanium detectors to effectively suppress background events that deposit energy in the liquid argon. The background suppression efficiency was studied in combination with a pulse shape discrimination (PSD) technique using a BEGe detector for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times $10^3$ have been achieved. First background data of LArGe with a coaxial HPGe detector (without PSD) yield a background index of (0.12$-$4.6)$\\cdot 10^{-2}$ cts/(keV$\\cdot$kg$\\cdot$y) (90% C.L.), which is at the level of GERDA Phase I. Fu...

  16. Neutron induced activity in natural and enriched {sup 70}Ge detectors

    Energy Technology Data Exchange (ETDEWEB)

    Naya, J.E. [Toulouse-3 Univ., 31 (France). Centre d`Etude Spatiale des Rayonnements]|[NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)]|[Universities Space Research Association, 7501 Forbes Blvd, 206, Seabrook, MD 20706-2253 (United States); Jean, P.; Albernhe, F.; Borrel, V.; Lavigne, J.M.; Vedrenne, G.; von Ballmoos, P. [Toulouse-3 Univ., 31 (France). Centre d`Etude Spatiale des Rayonnements; Barthelmy, S.D. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)]|[Universities Space Research Association, 7501 Forbes Blvd, 206, Seabrook, MD 20706-2253 (United States); Bartlett, L.M.; Gehrels, N.; Parsons, A.; Tueller, J. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Cordier, B. [Service d`Astrophysique du CEA, CEN de Saclay, 91191 Gif sur Yvette, Cedex (France); Leleux, P. [Institut de Physique Nucleaire, 2 chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Teegarden, B.J. [Toulouse-3 Univ., 31 (France). Centre d`Etude Spatiale des Rayonnements]|[NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    1997-09-11

    The results of irradiations of isotopically enriched and natural Ge detectors with a neutron beam are presented. The analysis of the gamma-ray lines generated by decay of neutron induced unstable nuclei have provided us with a direct measurement of relevant interaction cross sections. Within a factor of 2, measurements and predictions are in good agreement. These results have important implications for the instrumental background in astrophysical gamma-ray spectrometers using germanium detectors. We confirm the reduction of the {beta}-background component, which dominates the continuum background in the 0.1-1 MeV energy range, using {sup 70}Ge enriched detectors. We clearly identify {beta}{sup +} decays inside the detector as a significant source of continuum background in the 1-4 MeV energy range. This component is about 2 times more intense in {sup 70}Ge enriched detectors than in natural ones. This is mainly due to the enhanced yield of {sup 69}Ge and {sup 68}Ga isotopes. The choice of either natural or {sup 70}Ge enriched as optimum detector material depends on the energies of astrophysical interest. Detectors made of enriched {sup 70}Ge are more appropriate for studies at energies below 1 MeV. For higher energies natural germanium is slightly better. The possibility of rejecting most of {beta}-background component by applying alternative analysis techniques makes natural Ge an appropriate material for future gamma-ray spectrometers. (orig.). 15 refs.

  17. Neutron background signal in superheated droplet detectors of the Phase II SIMPLE dark matter search

    CERN Document Server

    Fernandes, A C; Felizardo, M; Girard, T A; Ramos, A R; Marques, J G; Prudêncio, M I; Marques, R; Carvalho, F P; Lázaro, I

    2015-01-01

    The simulation of the neutron background for Phase II of the SIMPLE direct dark matter search experiment is described, including further improvements relatively to previously reported data. Spontaneous fission and decay-induced (\\alpha,n) reactions originating in $^{238}$U and $^{232}$Th naturally present in the experiment materials were considered. The model employs the Monte Carlo MCNP neutron transport code, using a realistic geometry description and measured radioassays and material compositions as input. Tabled (\\alpha,n) yields, measured detection efficiencies and evaluated cross section data were used. The energy distribution of the recoiling nuclei is dealt with a distinct code. A thorough uncertainty analysis of the simulated results is performed that addresses statistical and most non-statistical uncertainties. The estimated recoil event rate is 0.367 $\\pm$ 0.002(stat.) $\\pm$ 0.064 (non-stat.) evt/kgd, a 10$\\%$ increase in the previous reported result.

  18. New method of 85Kr reduction in a noble gas based low-background detector

    CERN Document Server

    Akimov, D Yu; Burenkov, A A; Hall, C; Kovalenko, A G; Kuzminov, V V; Simakov, G E

    2016-01-01

    Krypton-85 is an anthropogenic beta-decaying isotope which produces low energy backgrounds in dark matter and neutrino experiments, especially those based upon liquid xenon. Several technologies have been developed to reduce the Kr concentration in such experiments. We propose to augment those separation technologies by first adding to the xenon an 85Kr-free sample of krypton in an amount much larger than the natural krypton that is already present. After the purification system reduces the total Kr concentration to the same level, the final 85Kr concentration will have been reduced even further by the dilution factor. A test cell for measurement of the activity of various Kr samples has been assembled, and the activity of 25-year-old Krypton has been measured. The measured activity agrees well with the expected activity accounting for the 85Kr abundance of the earth atmosphere in 1990 and the half-life of the isotope. Additional tests with a Kr sample produced in the year 1944 (before the atomic era) have be...

  19. Ge/GaAs heterostructure matrix detector

    Energy Technology Data Exchange (ETDEWEB)

    Kostamo, P. [Optoelectronics Laboratory, Helsinki University of Technology, P.O. Box 3500, 02015 HUT (Finland)]. E-mail: pasi.kostamo@hut.fi; Saeynaetjoki, A. [Optoelectronics Laboratory, Helsinki University of Technology, P.O. Box 3500, 02015 HUT (Finland); Knuuttila, L. [Optoelectronics Laboratory, Helsinki University of Technology, P.O. Box 3500, 02015 HUT (Finland); Lipsanen, H. [Optoelectronics Laboratory, Helsinki University of Technology, P.O. Box 3500, 02015 HUT (Finland); Andersson, H. [Oxford Instruments Analytical Oy (United Kingdom); Banzuzi, K. [Oxford Instruments Analytical Oy (United Kingdom); Nenonen, S. [Oxford Instruments Analytical Oy (United Kingdom); Sipilae, H. [Oxford Instruments Analytical Oy (United Kingdom); Vaijaervi, S. [Oxford Instruments Analytical Oy (United Kingdom); Lumb, D. [Science Payload and Advanced Concepts Office, ESA/ESTEC, Nordwijk (Netherlands)

    2006-07-01

    In this paper we present a novel germanium/gallium arsenide heterostructure X-ray detector with the active volume of germanium. The heterostructure is fabricated by depositing a gallium arsenide layer on a high-purity germanium wafer in a vertical metalorganic vapor-phase epitaxy system. This approach provides a new alternative to traditional lithium diffused n+ contact which is not easily applicable for finely pixelated detectors. The detector chip fabrication utilizing this kind of heterostructure is straightforward and only standard lithographic processes need to be applied. Electrical properties of the small format detector matrices are studied. Very low reverse biased current at 77 K is observed. It is concluded that the diffusion of arsenic in germanium results in an n-type germanium layer under the epitaxial gallium arsenide.

  20. Analysis techniques for background rejection at the Majorana Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Cuestra, Clara [University of Washington; Rielage, Keith Robert [Los Alamos National Laboratory; Elliott, Steven Ray [Los Alamos National Laboratory; Xu, Wenqin [Los Alamos National Laboratory; Goett, John Jerome III [Los Alamos National Laboratory

    2015-06-11

    The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 40-kg modular HPGe detector array to search for neutrinoless double beta decay in 76Ge. In view of the next generation of tonne-scale Ge-based 0νββ-decay searches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. The background rejection techniques to be applied to the data include cuts based on data reduction, pulse shape analysis, event coincidences, and time correlations. The Point Contact design of the DEMONSTRATOR's germanium detectors allows for significant reduction of gamma background.

  1. Analysis techniques for background rejection at the MAJORANA DEMONSTRATOR

    Energy Technology Data Exchange (ETDEWEB)

    Cuesta, C.; Buuck, M.; Detwiler, J. A.; Gruszko, J.; Guinn, I. S.; Leon, J.; Robertson, R. G. H. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA (United States); Abgrall, N.; Bradley, A. W.; Chan, Y-D.; Mertens, S.; Poon, A. W. P. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arnquist, I. J.; Hoppe, E. W.; Kouzes, R. T.; LaFerriere, B. D.; Orrell, J. L. [Pacific Northwest National Laboratory, Richland, WA (United States); Avignone, F. T. [Department of Physics and Astronomy, University of South Carolina, Columbia, SC (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Baldenegro-Barrera, C. X.; Bertrand, F. E. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); and others

    2015-08-17

    The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 40- kg modular HPGe detector array to search for neutrinoless double beta decay in {sup 76}Ge. In view of the next generation of tonne-scale Ge-based 0νβ β-decay searches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. The background rejection techniques to be applied to the data include cuts based on data reduction, pulse shape analysis, event coincidences, and time correlations. The Point Contact design of the DEMONSTRATOR’s germanium detectors allows for significant reduction of gamma background.

  2. Analysis techniques for background rejection at the MAJORANA DEMONSTRATOR

    CERN Document Server

    Cuesta, C; Arnquist, I J; Avignone, F T; Baldenegro-Barrera, C X; Barabash, A S; Bertrand, F E; Bradley, A W; Brudanin, V; Busch, M; Buuck, M; Byram, D; Caldwell, A S; Chan, Y-D; Christofferson, C D; Detwiler, J A; Efremenko, Yu; Ejiri, H; Elliott, S R; Galindo-Uribarri, A; Gilliss, T; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guinn, I S; Guiseppe, V E; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Jasinski, B R; Keeter, K J; Kidd, M F; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; MacMullin, J; Martin, R D; Meijer, S J; Mertens, S; Orrell, J L; O'Shaughnessy, C; Poon, A W P; Radford, D C; Rager, J; Rielage, K; Robertson, R G H; Romero-Romero, E; Shanks, B; Shirchenko, M; Snyder, N; Suriano, A M; Tedeschi, D; Trimble, J E; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Wiseman, C; Xu, W; Yakushev, E; Yu, C -H; Yumatov, V; Zhitnikov, I

    2015-01-01

    The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 40-kg modular HPGe detector array to search for neutrinoless double beta decay in 76Ge. In view of the next generation of tonne-scale Ge-based 0nbb-decay searches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. The background rejection techniques to be applied to the data include cuts based on data reduction, pulse shape analysis, event coincidences, and time correlations. The Point Contact design of the DEMONSTRATOR 0s germanium detectors allows for significant reduction of gamma background.

  3. Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    OpenAIRE

    Onofre, A.; Castro, Nuno Filipe Silva Fernandes; ATLAS Collaboration

    2016-01-01

    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge a...

  4. Study of radiation background at the north crossing point

    Institute of Scientific and Technical Information of China (English)

    MO Xiao-Hu; QIN Qing; QU Hua-Min; WANG Yi-Fang; XU Jin-Qiang; ZHANG Tian-Bao; ZHANG Jian-Yong; ZHANG Qing-Jiang; Achasov Mikhail; CAI Xiao; FU Cheng-Dong; Harris Fred; LIU Qian; Muchnoi Nikolay

    2011-01-01

    Understanding the radiation background at the north crossing point (NCP) in the tunnel of BEPCII is crucial for the performance safety of the High Purity Germanium (HPGe) detector, and in turn of great significance for long-term stable running of the energy measurement system. Therefore, as the first step, a NaI(Tl) detector is constructed to continuously measure the radiation level of photons as background for future experiments. Furthermore, gamma and neutron dosimeters are utilized to explore the radiation distribution in the vicinity of the NCP where the HPGe detector will be located. Synthesizing all obtained information, the shielding for neutron irradiation is studied based on model-dependent theoretical analysis.

  5. On the time response of background obtained in γ-ray spectroscopy experiments using LaBr3(Ce) detectors with different shielding

    Science.gov (United States)

    Régis, J.-M.; Dannhoff, M.; Jolie, J.; Müller-Gatermann, C.; Saed-Samii, N.

    2016-03-01

    Employing the γ-γ fast-timing technique with LaBr3(Ce) scintillator detectors allows the direct determination of lifetimes of nuclear excited states with a lower limit of about 5 ps. This limit is increased as soon as background is present in the coincidence spectra underneath the full-energy peaks of the γ-γ cascade. Our aim was to identify the components of the γ-ray background by systematic γ-γ fast-timing measurements using different types of γ shielding within a large γ-ray spectrometer. The energy dependent physical zero-time response was measured using background-free full-energy peak events from the 152Eu γ-ray source. This is compared with the time response of the (Compton-) background distribution as obtained using the prompt 60Co γ-ray source. The time response of the typical Compton background is about 15 ps faster than the time response of background-free full-energy peak events. Below about 500 keV, a second type of background contributes by the detection of Compton-scattered γ rays generated in the materials of the spectrometer around the detector. Due to the additional time-of-flight of the Compton-scattered γ rays, this low-energy background is largely delayed. Compared with a bare cylindrical 1.5 in . × 1.5 in . LaBr3(Ce) detector, the BGO-shielded detector in the Compton-suppression mode improves the peak-to-total ratio by a factor of 1.66(5), while the Pb-shielded detector only slightly reduces the low-energy background.

  6. Detector developments for the hypernuclear programme at PANDA

    CERN Document Server

    Achenbach, P; Lorente, A Sanchez; Majos, S Sánchez

    2011-01-01

    The technical design of the PANDA experiment at the future FAIR facility next to GSI is progressing. At the proposed anti-proton storage ring the spectroscopy of double Lambda hypernuclei is one of the four main topics which will be addressed by the Collaboration. The hypernuclear experiments require (i) a dedicated internal target, (ii) an active secondary target of alternating silicon and absorber material layers, (iii) high purity germanium (HPGe) detectors, and (iv) a good particle identification system for low momentum kaons. All systems need to operate in the presence of a high magnetic field and a large hadronic background. The status of the detector developments for this programme is summarized.

  7. Limits on uranium and thorium bulk content in GERDA Phase I detectors

    CERN Document Server

    Agostini, M; Bakalyarov, A M; Balata, M; Barabanov, I; Baudis, L; Bauer, C; Becerici-Schmidt, N; Bellotti, E; Belogurov, S; Belyaev, S T; Benato, G; Bettini, A; Bezrukov, L; Bode, T; Borowicz, D; Brudanin, V; Brugnera, R; Caldwell, A; Cattadori, C; Chernogorov, A; D'Andrea, V; Demidova, E V; di Vacri, A; Domula, A; Doroshkevich, E; Egorov, V; Falkenstein, R; Fedorova, O; Freund, K; Frodyma, N; Gangapshev, A; Garfagnini, A; Grabmayr, P; Gurentsov, V; Gusev, K; Hakemüller, J; Hegai, A; Heisel, M; Hemmer, S; Hofmann, W; Hult, M; Inzhechik, L V; Csathy, J Janicsko; Jochum, J; Junker, M; Kazalov, V; Kihm, T; Kirpichnikov, I V; Kirsch, A; Kish, A; Klimenko, A; Kneißl, R; Knöpfle, K T; Kochetov, O; Kornoukhov, V N; Kuzminov, V V; Laubenstein, M; Lazzaro, A; Lebedev, V I; Lehnert, B; Liao, H Y; Lindner, M; Lippi, I; Lubashevskiy, A; Lubsandorzhiev, B; Lutter, G; Macolino, C; Majorovits, B; Maneschg, W; Medinaceli, E; Mingazheva, R; Misiaszek, M; Moseev, P; Nemchenok, I; Palioselitis, D; Panas, K; Pandola, L; Pelczar, K; Pullia, A; Riboldi, S; Rumyantseva, N; Sada, C; Salamida, F; Salathe, M; Schmitt, C; Schneider, B; Schönert, S; Schreiner, J; Schütz, A -K; Schulz, O; Schwingenheuer, B; Selivanenko, O; Shevchik, E; Shirchenko, M; Simgen, H; Smolnikov, A; Stanco, L; Stepaniuk, M; Vanhoefer, L; Vasenko, A A; Veresnikova, A; von Sturm, K; Wagner, V; Walter, M; Wegmann, A; Wester, T; Wiesinger, C; Wojcik, M; Yanovich, E; Zhitnikov, I; Zhukov, S V; Zinatulina, D; Zuber, K; Zuzel, G

    2016-01-01

    Internal contaminations of $^{238}$U, $^{235}$U and $^{232}$Th in the bulk of high purity germanium detectors are potential backgrounds for experiments searching for neutrinoless double beta decay of $^{76}$Ge. The data from GERDA Phase~I have been analyzed for alpha events from the decay chain of these contaminations by looking for full decay chains and for time correlations between successive decays in the same detector. No candidate events for a full chain have been found. Upper limits on the activities in the range of a few nBq/kg for $^{226}$Ra, $^{227}$Ac and $^{228}$Th, the long-lived daughter nuclides of $^{238}$U, $^{235}$U and $^{232}$Th, respectively, have been derived. With these upper limits a background index in the energy region of interest from $^{226}$Ra and $^{228}$Th contamination is estimated which satisfies the prerequisites of a future ton scale germanium double beta decay experiment.

  8. Ultra-Low Noise Germanium Neutrino Detection system (ULGeN).

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Palmer, Belkis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barton, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-07-01

    Monitoring nuclear power plant operation by measuring the antineutrino flux has become an active research field for safeguards and non-proliferation. We describe various efforts to demonstrate the feasibility of reactor monitoring based on the detection of the Coherent Neutrino Nucleus Scattering (CNNS) process with High Purity Germanium (HPGe) technology. CNNS detection for reactor antineutrino energies requires lowering the electronic noise in low-capacitance kg-scale HPGe detectors below 100 eV as well as stringent reduction in other particle backgrounds. Existing state- of-the-art detectors are limited to an electronic noise of 95 eV-FWHM. In this work, we employed an ultra-low capacitance point-contact detector with a commercial integrated circuit preamplifier- on-a-chip in an ultra-low vibration mechanically cooled cryostat to achieve an electronic noise of 39 eV-FWHM at 43 K. We also present the results of a background measurement campaign at the Spallation Neutron Source to select the area with sufficient low background to allow a successful first-time measurement of the CNNS process.

  9. Gamma-gamma coincidence performance of LaBr3:Ce scintillation detectors vs HPGe detectors in high count-rate scenarios.

    Science.gov (United States)

    Drescher, A; Yoho, M; Landsberger, S; Durbin, M; Biegalski, S; Meier, D; Schwantes, J

    2017-04-01

    A radiation detection system consisting of two cerium doped lanthanum bromide (LaBr3:Ce) scintillation detectors in a gamma-gamma coincidence configuration has been used to demonstrate the advantages that coincident detection provides relative to a single detector, and the advantages that LaBr3:Ce detectors provide relative to high purity germanium (HPGe) detectors. Signal to noise ratios of select photopeak pairs for these detectors have been compared to high-purity germanium (HPGe) detectors in both single and coincident detector configurations in order to quantify the performance of each detector configuration. The efficiency and energy resolution of LaBr3:Ce detectors have been determined and compared to HPGe detectors. Coincident gamma-ray pairs from the radionuclides (152)Eu and (133)Ba have been identified in a sample that is dominated by (137)Cs. Gamma-gamma coincidence successfully reduced the Compton continuum from the large (137)Cs peak, revealed several coincident gamma energies characteristic of these nuclides, and improved the signal-to-noise ratio relative to single detector measurements. LaBr3:Ce detectors performed at count rates multiple times higher than can be achieved with HPGe detectors. The standard background spectrum consisting of peaks associated with transitions within the LaBr3:Ce crystal has also been significantly reduced. It is shown that LaBr3:Ce detectors have the unique capability to perform gamma-gamma coincidence measurements in very high count rate scenarios, which can potentially benefit nuclear safeguards in situ measurements of spent nuclear fuel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. BACKGROUND TRACK DENSITY REDUCTION OF 50-HZ-HV ECE-PROCESSED THICK POLYCARBONATE DETECTORS TO IMPROVE LOWER DETECTION LIMIT.

    Science.gov (United States)

    Sohrabi, M; Hakimi, A; Soltani, Z

    2016-12-01

    A recent novel development of 50-Hz-HV ECE of 1-mm-thick and 250-µm-thick polycarbonate track detectors (PCTDs) has proved some promising results for some health physics, dosimetry and ion-beam-related applications. The method while proved having some good characteristics for some applications provided a relatively higher background track density (BGTD) in particular when very high voltages are applied to the PCTDs. In order to decrease the minimum detection limit (MDL) of the PCTDs and to further promote its applications for low dose, the BGTD was reduced by applying a layer removal methodology applying ethylendiamine (EDA). The effects of EDA concentrations (50, 60, 65, 70, 75, 80, 85 and 90 %) in water at room temperature (26°C) and soaking durations up to 100 min at different EDA concentration on BGTD reduction were studied. The thickness of the layer removed from the surface of a PCTD highly depends on the soaking time and EDA concentration; it increases as the EDA concentration increases up to for example 700 µm after 2 h of soaking in the EDA solution. After ∼10 min of soaking duration at any of the above-stated concentrations, the BGTD reaches its minimum value, a value which differs from concentration to concentration. An EDA concentration of 85 % in water provided the lowest BGTD of 64.06 ± 3.12 tracks cm(- 2); ∼6 times lower than that of its original value. It is shown that the layer removal process does not change the registration characteristics of the PCTD and its appearance significantly. The MDL of the PCTDs depends strongly on the BGTD. The MDL values for a desired confidence level were also studied by three calculation methods. The results of the BGTD and the MDL studies under different conditions applied are presented and discussed.

  11. Simulation of background reduction and Compton suppression in a low-background HPGe spectrometer at a surface laboratory

    Science.gov (United States)

    Niu, Shun-Li; Cai, Xiao; Wu, Zhen-Zhong; Liu, Yi; Xie, Yu-Guang; Yu, Bo-Xiang; Wang, Zhi-Gang; Fang, Jian; Sun, Xi-Lei; Sun, Li-Jun; Liu, Ying-Biao; Gao, Long; Zhang, Xuan; Zhao, Hang; Zhou, Li; Lü, Jun-Guang; Hu, Tao

    2015-08-01

    High-purity germanium (HPGe) detectors are well suited to analyse the radioactivity of samples. In order to reduce the environmental background for an ultra-low background HPGe spectrometer, low-activity lead and oxygen free copper are installed outside the probe to shield from gamma radiation, with an outer plastic scintillator to veto cosmic rays, and an anti-Compton detector to improve the peak-to-Compton ratio. Using Geant4 tools and taking into account a detailed description of the detector, we optimize the sizes of these detectors to reach the design requirements. A set of experimental data from an existing HPGe spectrometer was used to compare with the simulation. For the future low-background HPGe detector simulation, considering different thicknesses of BGO crystals and anti-coincidence efficiency, the simulation results show that the optimal BGO thickness is 5.5 cm, and the peak-to-Compton ratio of 40K is raised to 1000 when the anti-coincidence efficiency is 0.85. In the background simulation, 15 cm oxygen-free copper plus 10 cm lead can reduce the environmental gamma rays to 0.0024 cps/100 cm3 Ge (50 keV-2.8 MeV), which is about 10-5 of the environmental background.

  12. An actively vetoed Clover gamma-detector for nuclear astrophysics at LUNA

    CERN Document Server

    Szucs, T; Broggini, C; Caciolli, A; Confortola, F; Corvisiero, P; Elekes, Z; Formicola, A; Fulop, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyurky, Gy; Imbriani, G; Junker, M; Lemut, A; Marta, M; Mazzocchi, C; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P

    2010-01-01

    An escape-suppressed, composite high-purity germanium detector of the Clover type has been installed at the Laboratory for Underground Nuclear Astrophysics (LUNA) facility, deep underground in the Gran Sasso Laboratory, Italy. The laboratory gamma-ray background of the Clover detector has been studied underground at LUNA and, for comparison, also in an overground laboratory. Spectra have been recorded both for the single segments and for the virtual detector formed by online addition of all four segments. The effect of the escape-suppression shield has been studied as well. Despite their generally higher intrinsic background, escape-suppressed detectors are found to be well suited for underground nuclear astrophysics studies. As an example for the advantage of using a composite detector deep underground, the weak ground state branching of the Ep = 223 keV resonance in the 24Mg(p,gamma)25Al reaction is determined with improved precision.

  13. Germanium geochemistry and mineralogy

    Science.gov (United States)

    Bernstein, L.R.

    1985-01-01

    Germanium is enriched in the following geologic environments: 1. (1) iron meteorites and terrestrial iron-nickel; 2. (2) sulfide ore deposits, particularly those hosted by sedimentary rocks; 3. (3) iron oxide deposits; 4. (4) oxidized zones of Ge-bearing sulfide deposits; 5. (5) pegmatites, greisens, and skarns; and 6. (6) coal and lignitized wood. In silicate melts, Ge is highly siderophile in the presence of native iron-nickel; otherwise, it is highly lithophile. Among silicate minerals, Ge is concentrated in those having less polymerized silicate tetrahedra such as olivine and topaz. In deposits formed from hydrothermal solutions, Ge tends to be enriched mostly in either sulfides or in fluorine-bearing phases; it is thus concentrated both in some hydrothermal sulfide deposits and in pegmatites, greisens, and skarns. In sulfide deposits that formed from solutions having low to moderate sulfur activity, Ge is concentrated in sphalerite in amounts up to 3000 ppm. Sulfide deposits that formed from solutions having higher sulfur activity allowed Ge to either form its own sulfides, particularly with Cu, or to substitute for As, Sn, or other metals in sulfosalts. The Ge in hydrothermal fluids probably derives from enrichment during the fractional crystallization of igneous fluids, or is due to the incorporation of Ge from the country rocks, particularly from those containing organic material. Germanium bonds to lignin-derivative organic compounds that are found in peat and lignite, accounting for its common concentration in coals and related organic material. Germanium is precipitated from water together with iron hydroxide, accounting for its concentration in some sedimentary and supergene iron oxide deposits. It also is able to substitute for Fe in magnetite in a variety of geologic environments. In the oxidized zone of Ge-bearing sulfide deposits, Ge is concentrated in oxides, hydroxides, and hydroxy-sulfates, sometimes forming its own minerals. It is particularly

  14. Long-term radiation damage to a spaceborne germanium spectrometer

    CERN Document Server

    Kurczynski, P; Hull, E L; Palmer, D; Harris, M J; Seifert, H; Teegarden, B J; Gehrels, N; Cline, T L; Ramaty, R; Sheppard, D; Madden, N W; Luke, P N; Cork, C P; Landis, D A; Malone, D F; Hurley, K

    1999-01-01

    The Transient Gamma-Ray Spectrometer aboard the Wind spacecraft in deep space has observed gamma-ray bursts and solar events for four years. The germanium detector in the instrument has gradually deteriorated from exposure to the approx 10 sup 8 p/cm sup 2 /yr(>100 MeV) cosmic-ray flux. Low-energy tailing and loss of efficiency, attributed to hole trapping and conversion of the germanium from n- to p-type as a result of crystal damage, were observed. Raising the detector bias voltage ameliorated both difficulties and restored the spectrometer to working operation. Together, these observations extend our understanding of the effects of radiation damage to include the previously unsuccessfully studied regime of long-term operation in space. (author)

  15. A low background-rate detector for ions in the 5 to 50 keV energy range to be used for radioisotope dating with a small cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, P.G.

    1986-11-25

    Accelerator mass spectrometry in tandem Van de Graaff accelerators has proven successful for radioisotope dating small samples. We are developing a 20 cm diameter 30 to 40 keV cyclotron dedicated to high-sensitivity radioisotope dating, initially for /sup 14/C. At this energy, range and dE/dx methods of particle identification are impossible. Thus arises the difficult problem of reliably detecting 30 to 40 keV /sup 14/C at 10/sup -2/ counts/sec in the high background environment of the cyclotron, where lower energy ions, electrons, and photons bombard the detector at much higher rates. We have developed and tested an inexpensive, generally useful ion detector that allows dark-count rates below 10/sup -4/ counts/sec and excellent background suppression. With the cyclotron tuned near the /sup 13/CH background peak, to the frequency for /sup 14/C, the detector suppresses the background to 6 x 10/sup -4/ counts/sec. For each /sup 14/C ion the detectors grazing-incidence Al/sub 2/O/sub 3/ conversion dynode emits about 20 secondary electrons, which are independently multiplied in separate pores of a microchannel plate. The output signal is proportional to the number of secondary electrons, allowing pulse-height discrimination of background. We have successfully tested the detector with positive /sup 12/C, /sup 23/Na, /sup 39/K, /sup 41/K, /sup 85/Rb, /sup 87/Rb, and /sup 133/Cs at 5 to 40 keV, and with 36 keV negative /sup 12/C and /sup 13/CH. It should detect ions and neutrals of all species, at energies above 5 keV, with good efficiency and excellent background discrimination. Counting efficiency and background discrimination improve with higher ion energy. The detector can be operated at least up to 2 x 10/sup -7/ Torr and be repeatedly exposed to air. The maximum rate is 10/sup 6.4/ ions/sec in pulse counting mode and 10/sup 9.7/ ions/sec in current integrating mode.

  16. Hafnium germanium telluride

    Science.gov (United States)

    Jang, Gyung-Joo; Yun, Hoseop

    2008-01-01

    The title hafnium germanium telluride, HfGeTe4, has been synthesized by the use of a halide flux and structurally characterized by X-ray diffraction. HfGeTe4 is isostructural with stoichiometric ZrGeTe4 and the Hf site in this compound is also fully occupied. The crystal structure of HfGeTe4 adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of face-sharing Hf-centered bicapped trigonal prisms and corner-sharing Ge-centered tetra­hedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps. PMID:21202163

  17. Hafnium germanium telluride

    Directory of Open Access Journals (Sweden)

    Hoseop Yun

    2008-05-01

    Full Text Available The title hafnium germanium telluride, HfGeTe4, has been synthesized by the use of a halide flux and structurally characterized by X-ray diffraction. HfGeTe4 is isostructural with stoichiometric ZrGeTe4 and the Hf site in this compound is also fully occupied. The crystal structure of HfGeTe4 adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of face-sharing Hf-centered bicapped trigonal prisms and corner-sharing Ge-centered tetrahedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps.

  18. Measurements on a prototype segmented Clover detector

    CERN Document Server

    Shepherd, S L; Cullen, D M; Appelbe, D E; Simpson, J; Gerl, J; Kaspar, M; Kleinböhl, A; Peter, I; Rejmund, M; Schaffner, H; Schlegel, C; France, G D

    1999-01-01

    The performance of a segmented Clover germanium detector has been measured. The segmented Clover detector is a composite germanium detector, consisting of four individual germanium crystals in the configuration of a four-leaf Clover, housed in a single cryostat. Each crystal is electrically segmented on its outer surface into four quadrants, with separate energy read-outs from nine crystal zones. Signals are also taken from the inner contact of each crystal. This effectively produces a detector with 16 active elements. One of the purposes of this segmentation is to improve the overall spectral resolution when detecting gamma radiation emitted following a nuclear reaction, by minimising Doppler broadening caused by the opening angle subtended by each detector element. Results of the tests with sources and in beam will be presented. The improved granularity of the detector also leads to an improved isolated hit probability compared with an unsegmented Clover detector. (author)

  19. Low Background Signal Readout Electronics for the MAJORANA DEMONSTRATOR

    Energy Technology Data Exchange (ETDEWEB)

    Guinn, I. [University of Washington, Seattle; Abgrall, N. [Lawrence Berkeley National Laboratory (LBNL); Avignone, III, F. T. [University of South Carolina/Oak Ridge National Laboratory (ORNL); Bertrand, F. E. [Oak Ridge National Laboratory (ORNL); Efremenko, Yuri [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Galindo-Uribarri, A [Oak Ridge National Laboratory (ORNL); Green, M. P. [Oak Ridge National Laboratory (ORNL); Radford, D. C. [Oak Ridge National Laboratory (ORNL); Romero-Romero, E. [UTK/ORNL; Varner, R. L. [Oak Ridge National Laboratory (ORNL); White, B. R. [Oak Ridge National Laboratory (ORNL); Wilkerson, J. F. [UNC/Triangle Univ. Nucl. Lab, Durham, NC/ORNL; Yu, C.-H. [Oak Ridge National Laboratory (ORNL); Majorana, [MAJORANA Collaboration

    2015-01-01

    The MAJORANA DEMONSTRATOR is a planned 40 kg array of Germanium detectors intended to demonstrate the feasibility of constructing a tonne-scale experiment that will seek neutrinoless double beta decay (0 nu beta beta) in Ge-76. Such an experiment would require backgrounds of less than 1 count/tonne-year in the 4 keV region of interest around the 2039 keV Q-value of the beta beta decay. Designing low-noise electronics, which must be placed in close proximity to the detectors, presents a challenge to reaching this background target. This paper will discuss the MAJORANA collaboration's solutions to some of these challenges.

  20. Low Background Signal Readout Electronics for the MAJORANA DEMONSTRATOR

    Energy Technology Data Exchange (ETDEWEB)

    Guinn, I.; Abgrall, N.; Arnquist, Isaac J.; Avignone, Frank T.; Baldenegro-Barrera, C. X.; Barabash, Alexander S.; Bertrand, F.; Bradley, A. W.; Brudanin, V.; Busch, Matthew; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, C. D.; Cuesta, C.; Detwiler, Jason A.; Efremenko, Yuri; Ejiri, H.; Elliott, Steven R.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Henning, Reyco; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Jasinski, B. R.; Keeter, K.; Kidd, M. F.; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; Leon, Jonathan D.; MacMullin, J.; Martin, R. D.; Meijer, S. J.; Mertens, S.; Orrell, John L.; O' Shaughnessy, C.; Poon, Alan; Radford, D. C.; Rager, J.; Rielage, Keith; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, Anne-Marie; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, Chang-Hong; Yumatov, Vladimir; Zhitnikov, I.

    2015-03-18

    The Majorana Demonstrator (MJD)[1] is an array of p-type point contact (PPC) high purity Germanium (HPGe) detectors intended to search for neutrinoless double beta decay (0vBB decay) in 76Ge. MJD will consist of 40 kg of detectors, 30 kg of which will be isotopically enriched to 87% 76Ge. The array will consist of 14 strings of four or ve detectors placed in two separate cryostats. One of the main goals of the experiment is to demonstrate the feasibility of building a tonne-scale array of detectors to search for 0vBB decay with a much higher sensitivity. This involves acheiving backgrounds in the 4 keV region of interest (ROI) around the 2039 keV Q-value of the BB decay of less than 1 count/ROI-t-y. Because many backgrounds will not directly scale with detector mass, the specific background goal of MJD is less than 3 counts/ROI-t-y.

  1. Low Background Signal Readout Electronics for the MAJORANA DEMONSTRATOR

    CERN Document Server

    Guinn, I; Avignone, F T; Barabash, A S; Bertrand, F E; Brudanin, V; Busch, M; Buuck, M; Byram, D; Caldwell, A S; Chan, Y-D; Christofferson, C D; Cuesta, C; Detwiler, J A; Efremenko, Yu; Ejiri, H; Elliott, S R; Galindo-Uribarri, A; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guiseppe, V E; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Jasinski, B R; Keeter, K J; Kidd, M F; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; MacMullin, J; Martin, R D; Meijer, S J; Mertens, S; Orrell, J L; O'Shaughnessy, C; Overman, N R; Poon, A W P; Radford, D C; Rager, J; Rielage, K; Robertson, R G H; Romero-Romero, E; Ronquest, M C; Shanks, B; Shirchenko, M; Snyder, N; Suriano, A M; Tedeschi, D; Trimble, J E; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Wiseman, C; Xu, W; Yakushev, E; Yu, C-H; Yumatov, V

    2015-01-01

    The MAJORANA DEMONSTRATOR is a planned 40 kg array of Germanium detectors intended to demonstrate the feasibility of constructing a tonne-scale experiment that will seek neutrinoless double beta decay ($0\

  2. Measuring External Sources of Background (R&D) at Homestake

    Science.gov (United States)

    Mei, Dongming; Chan, Yuen-Dat; Elliott, Steve; Gray, Frederick; Keller, Christina; Sun, Yongchen

    2008-04-01

    Measuring external sources of radioactivity at the DUSEL site is the key to success in low-energy neutrino and dark matter (WIMP searches) experiments. Natural radioactivity can be measured using germanium and NaI detectors. Muon-induced neutrons and (a,n) neutrons will be measured utilizing liquid scintillators and germanium detectors through the 72Ge(n,nxe) reaction. External sources of background, particularly fast neutrons and cosmogenic radioactivity from muon-induced processes, are background matter that must be eliminated for underground experiments in pursuit of double beta decay, WIMPs, and oscillations of low-energy neutrinos. However, muon-induced neutron production rates with heavy elements, such as lead and copper, are not well understood. The discrepancy between the measurements and FLUKA simulations is as large as about a factor of 3. This discrepancy needs be understood for the muon- induced fast neutron production rate in lead and copper, which are the most popular materials for shielding underground experiments. We propose an experiment at 300-ft level to measure the muon-induced fast neutron production rate in different targets.

  3. The Germanium Dichotomy in Martian Meteorites

    Science.gov (United States)

    Humayun, M.; Yang, S.; Righter, K.; Zanda, B.; Hewins, R. H.

    2016-01-01

    Germanium is a moderately volatile and siderophile element that follows silicon in its compatibility during partial melting of planetary mantles. Despite its obvious usefulness in planetary geochemistry germanium is not analyzed routinely, with there being only three prior studies reporting germanium abundances in Martian meteorites. The broad range (1-3 ppm) observed in Martian igneous rocks is in stark contrast to the narrow range of germanium observed in terrestrial basalts (1.5 plus or minus 0.1 ppm). The germanium data from these studies indicates that nakhlites contain 2-3 ppm germanium, while shergottites contain approximately 1 ppm germanium, a dichotomy with important implications for core formation models. There have been no reliable germanium abundances on chassignites. The ancient meteoritic breccia, NWA 7533 (and paired meteorites) contains numerous clasts, some pristine and some impact melt rocks, that are being studied individually. Because germanium is depleted in the Martian crust relative to chondritic impactors, it has proven useful as an indicator of meteoritic contamination of impact melt clasts in NWA 7533. The germanium/silicon ratio can be applied to minerals that might not partition nickel and iridium, like feldspars. We report germanium in minerals from the 3 known chassignites, 2 nakhlites and 5 shergottites by LAICP- MS using a method optimized for precise germanium analysis.

  4. Background suppression in TeO{sub 2} bolometers with Neganov-Luke amplified cryogenic light detectors

    Energy Technology Data Exchange (ETDEWEB)

    Willers, Michael; Lanfranchi, Jean-Come; Oberauer, Lothar; Schoenert, Stefan [Technische Universitaet Muenchen, Physik Department E15, James Franck Strasse, 85748 Garching (Germany); Excellence Cluster Universe, Technische Universitaet Muenchen, Boltzmannstr. 2, 85748, Garching (Germany); Muenster, Andrea; Potzel, Walter; Roth, Sabine; Wawoczny, Stephan; Zoeller, Andreas [Technische Universitaet Muenchen, Physik Department E15, James Franck Strasse, 85748 Garching (Germany); Giuliani, Andrea [Centre de Sciences Nucleaires et de Sciences de la Matiere, 91405 Orsay Campus (France)

    2015-07-01

    The Neganov-Luke (NL) effect offers a promising way to increase the sensitivity of cryogenic light detectors at low energies. In this talk we show that a highly efficient discrimination between α and e{sup -}/γ induced events in TeO{sub 2} crystals (used in the search for the neutrinoless double beta decay) can be achieved by measuring the Cherenkov radiation emitted by high-energetic electrons within the crystal. By using NL amplified light detectors, a suppression of ∝99% of α-induced events with energies close to the Q-value of {sup 130}Te at ∝2.5 MeV has been achieved for the first time while simultaneously accepting 99.8% of all e{sup -}/γ-induced events.

  5. A Micromegas-based low-background x-ray detector coupled to a slumped-glass telescope for axion research

    CERN Document Server

    Aznar, F; Christensen, F E; Dafni, T; Decker, T A; Ferrer-Ribas, E; Garcia, J A; Giomataris, I; Gracia, J G; Hailey, C J; Hill, R M; Iguaz, F J; Irastorza, I G; Jakobsen, A C; Luzon, G; Mirallas, H; Papaevangelou, T; Pivovaroff, M J; Ruz, J; Vafeiadis, T; Vogel, J K

    2015-01-01

    We report on the design, construction and operation of a low background x-ray detection line composed of a shielded Micromegas (micromesh gaseous structure) detector of the microbulk technique. The detector is made from radiopure materials and is placed at the focal point of a $\\sim$~5 cm diameter, 1.3 m focal-length, cone-approximation Wolter I x-ray telescope (XRT) comprised of thermally-formed (or "slumped") glass substrates deposited with multilayer coatings. The system has been conceived as a technological pathfinder for the future International Axion Observatory (IAXO), as it combines two of the techniques (optic and detector) proposed in the conceptual design of the project. It is innovative for two reasons: it is the first time an x-ray optic has been designed and fabricated specifically for axion research, and the first time a Micromegas detector has been operated with an x-ray optic. The line has been installed at one end of the CERN Axion Solar Telescope (CAST) magnet and is currently looking for s...

  6. Design of athermal phonon light detector for reducing alpha recoil background of next-gen CUORE 0 νββ experiment

    Science.gov (United States)

    Camilleri, Joseph; Pyle, Matt; Kolomensky, Yury; Cuore Collaboration; Cdms Collaboration

    2017-01-01

    The current generation of bolometric 0 νββ experiments, including CUORE, expect degraded alpha recoils to be the dominant background restricting experimental sensitivity. The CUPID project will aim to improve the sensitivity of CUORE by over an order of magnitude, and search for 0 νββ in the entire region of parameter space consistent with the inverted neutrino mass hierarchy. Surface contamination of Cu support structures for CUORE's 130Te crystal bolometers is primarily responsible for these unwanted alpha recoils. Electronic signals produced near Qββ (2.53 MeV) have been shown to produce Cherenkov radiation on the order of 100 eV in 130Te crystals. The heavier and slower alpha particles of comparable energy in the region of interest do not produce a Cherenkov signal, allowing for discrimination via a high-resolution cryogenic light detector. A photon detector with energy resolution <10 eV is necessary. We will discuss how athermal phonon collection calorimeter technology developed by the CDMS collaboration over the past decade can be scaled to produce such a sensitive detector, while also satisfying requirements for scintillating crystal alternatives. We will also present the current status of the detector development. NSF: NSF PHY-1314881.

  7. Study of a Multivariate Approach for the Background Rejection in the Scattering of Two Like-Charge $W^{\\pm}$ Bosons with the ATLAS Detector at the LHC

    CERN Document Server

    AUTHOR|(CDS)2100403; Kobel, Michael; Straessner, Arno

    This thesis presents the study of a multivariate approach for the background rejection in the scattering of two like-charge $W^{\\pm}$ bosons with the ATLAS detector at the Large Hadron Collider. The scattering process can be accessed through the measurement of purely electroweak production of two like-charge $W^{\\pm}$ bosons and two jets in the fully leptonic decay channel of the $W^{\\pm}$ bosons. Although the characteristic signature of the final state of this production process already reduces most Standard Model backgrounds, other processes exist that leave the same experimental signature in the detector. QCD-initiated production of a $W^{\\pm}$ boson and a $Z$ boson in association with two jets with leptonic decay of the $W^{\\pm}$ and the $Z$ boson accounts for the largest background contribution. Thus, the focus of this thesis is set on the rejection of this background. As a very promising technique for this classification problem, boosted decision trees are studied in this thesis. The variable ranking of...

  8. Low background signal readout electronics for the MAJORANA DEMONSTRATOR

    Energy Technology Data Exchange (ETDEWEB)

    Guinn, I.; Buuck, M.; Cuesta, C.; Detwiler, J. A.; Gruszko, J.; Leon, J.; Robertson, R. G. H. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA (United States); Abgrall, N.; Bradley, A. W.; Chan, Y-D.; Mertens, S.; Poon, A. W. P. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arnquist, I. J.; Hoppe, E. W.; Kouzes, R. T.; LaFerriere, B. D.; Orrell, J. L. [Pacific Northwest National Laboratory, Richland, WA (United States); Avignone, F. T. [Department of Physics and Astronomy, University of South Carolina, Columbia, SC (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Baldenegro-Barrera, C. X.; Bertrand, F. E. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); and others

    2015-08-17

    The MAJORANA Collaboration will seek neutrinoless double beta decay (0νββ) in {sup 76}Ge using isotopically enriched p-type point contact (PPC) high purity Germanium (HPGe) detectors. A tonne-scale array of HPGe detectors would require background levels below 1 count/ROI-tonne-year in the 4 keV region of interest (ROI) around the 2039 keV Q-value of the decay. In order to demonstrate the feasibility of such an experiment, the MAJORANA DEMONSTRATOR, a 40 kg HPGe detector array, is being constructed with a background goal of < 3 count/ROI-tonne-year, which is expected to scale down to < 1 count/ROI-tonne-year for a tonne-scale experiment. The signal readout electronics, which must be placed in close proximity to the detectors, present a challenge toward reaching this background goal. This talk will discuss the materials and design used to construct signal readout electronics with low enough backgrounds for the MAJORANA DEMONSTRATOR.

  9. Low Background Signal Readout Electronics for the MAJORANA DEMONSTRATOR

    CERN Document Server

    Guinn, I; Arnquist, I J; Avignone, F T; Baldenegro-Barrera, C X; Barabash, A S; Bertrand, F E; Bradley, A W; Brudanin, V; Busch, M; Buuck, M; Byram, D; Caldwell, A S; Chan, Y-D; Christofferson, C D; Cuesta, C; Detwiler, J A; Efremenko, Yu; Ejiri, H; Elliott, S R; Galindo-Uribarri, A; Gilliss, T; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guiseppe, V E; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Jasinski, B R; Keeter, K J; Kidd, M F; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; MacMullin, J; Martin, R D; Meijer, S J; Mertens, S; Orrell, J L; O'Shaughnessy, C; Poon, A W P; Radford, D C; Rager, J; Rielage, K; Robertson, R G H; Romero-Romero, E; Shanks, B; Shirchenko, M; Snyder, N; Suriano, A M; Tedeschi, D; Trimble, J E; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Wiseman, C; Xu, W; Yakushev, E; Yu, C -H; Yumatov, V; Zhitnikov, I

    2015-01-01

    The MAJORANA Collaboration will seek neutrinoless double beta decay (0nbb) in 76Ge using isotopically enriched p-type point contact (PPC) high purity Germanium (HPGe) detectors. A tonne-scale array of HPGe detectors would require background levels below 1 count/ROI-tonne-year in the 4 keV region of interest (ROI) around the 2039 keV Q-value of the decay. In order to demonstrate the feasibility of such an experiment, the MAJORANA DEMONSTRATOR, a 40 kg HPGe detector array, is being constructed with a background goal of <3 counts/ROI-tonne-year, which is expected to scale down to <1 count/ROI-tonne-year for a tonne-scale experiment. The signal readout electronics, which must be placed in close proximity to the detectors, present a challenge toward reaching this background goal. This talk will discuss the materials and design used to construct signal readout electronics with low enough backgrounds for the MAJORANA DEMONSTRATOR.

  10. Low Background Signal Readout Electronics for the Majorana Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Guinn, Ian [University of Washington; Rielage, Keith Robert [Los Alamos National Laboratory; Elliott, Steven Ray [Los Alamos National Laboratory; Xu, Wenqin [Los Alamos National Laboratory; Goett, John Jerome III [Los Alamos National Laboratory

    2015-06-11

    The MAJORANA Collaboration will seek neutrinoless double beta decay (0νββ) in 76Ge using isotopically enriched p-type point contact (PPC) high purity Germanium (HPGe) detectors. A tonne-scale array of HPGe detectors would require background levels below 1 count/ROI-tonne-year in the 4 keV region of interest (ROI) around the 2039 keV Q-value of the decay. In order to demonstrate the feasibility of such an experiment, the MAJORANA DEMONSTRATOR, a 40 kg HPGe detector array, is being constructed. The DEMONSTRATOR has a background goal of < 3 counts/ROI-tonne-year, which is expected to scale down to < 1 count/ROI-tonne-year for a one tonne experiment. The signal readout electronics, which must be placed in close proximity to the detectors, present a challenge toward reaching this background goal. This paper discusses the materials and design used to construct signal readout electronics with low enough backgrounds for the MAJORANA DEMONSTRATOR.

  11. Low Background Signal Readout Electronics for the Majorana Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Guinn, Ian [University of Washington; Rielage, Keith Robert [Los Alamos National Laboratory; Elliott, Steven Ray [Los Alamos National Laboratory; Xu, Wenqin [Los Alamos National Laboratory; Goett, John Jerome III [Los Alamos National Laboratory

    2015-06-11

    The MAJORANA Collaboration will seek neutrinoless double beta decay (0νββ) in 76Ge using isotopically enriched p-type point contact (PPC) high purity Germanium (HPGe) detectors. A tonne-scale array of HPGe detectors would require background levels below 1 count/ROI-tonne-year in the 4 keV region of interest (ROI) around the 2039 keV Q-value of the decay. In order to demonstrate the feasibility of such an experiment, the MAJORANA DEMONSTRATOR, a 40 kg HPGe detector array, is being constructed. The DEMONSTRATOR has a background goal of < 3 counts/ROI-tonne-year, which is expected to scale down to < 1 count/ROI-tonne-year for a one tonne experiment. The signal readout electronics, which must be placed in close proximity to the detectors, present a challenge toward reaching this background goal. This paper discusses the materials and design used to construct signal readout electronics with low enough backgrounds for the MAJORANA DEMONSTRATOR.

  12. Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    Science.gov (United States)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arduini, G.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruce, R.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gongadze, A.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kentaro, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Manjarres Ramos, J.; Mann, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; dit Latour, B. Martin; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; McFadden, N. C.; McGoldrick, G.; McKee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muskinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palm, M.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; RØhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2016-05-01

    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was observed, is presented. Correlations between backgrounds and beam intensity losses in special fills with very high β* are studied.

  13. On the (In)Efficiency of the Cross-Correlation Statistic for Gravitational Wave Stochastic Background Signals with Non-Gaussian Noise and Heterogeneous Detector Sensitivities

    CERN Document Server

    Lionel, Martellini

    2015-01-01

    Under standard assumptions including stationary and serially uncorrelated Gaussian gravitational wave stochastic background signal and noise distributions, as well as homogenous detector sensitivities, the standard cross-correlation detection statistic is known to be optimal in the sense of minimizing the probability of a false dismissal at a fixed value of the probability of a false alarm. The focus of this paper is to analyze the comparative efficiency of this statistic, versus a simple alternative statistic obtained by cross-correlating the \\textit{squared} measurements, in situations that deviate from such standard assumptions. We find that differences in detector sensitivities have a large impact on the comparative efficiency of the cross-correlation detection statistic, which is dominated by the alternative statistic when these differences reach one order of magnitude. This effect holds even when both the signal and noise distributions are Gaussian. While the presence of non-Gaussian signals has no mate...

  14. The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

    CERN Document Server

    Elliott, S R; Aguayo, E; Avignone, F T; Barabash, A S; Bertrand, F E; Boswell, M; Brudanin, V; Busch, M; Caldwell, A S; Chan, Y-D; Christofferson, C D; Combs, D C; Detwiler, J A; Doe, P J; Efremenko, Yu; Egorov, V; Ejiri, H; Esterline, J; Fast, J E; Finnerty, P; Fraenkleo, F M; Galindo-Uribarri, A; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guiseppe, V E; Gusev, K; Hallin, A L; Hazama, R; Hegai, A; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Keeter, K J; Kidd, M F; Kochetov, O; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; Leviner, L E; Loach, J C; MacMullin, S; Martin, R D; Mertens, S; Mizouni, L; Nomachi, M; Orrell, J L; OShaughnessy, C; Overman, N R; Phillips, D G; Poon, A W P; Pushkin, K; Radford, D C; Rielage, K; Robertson, R G H; Ronquest, M C; Schubert, A G; Shanks, B; Shima, T; Shirchenko, M; Snavely, K J; Snyder, N; Soin, A; Strain, J; Suriano, A M; Timkin, V; Tornow, W; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Xu, W; Yakushev, E; Young, A R; Yu, C -H; Yumatov, V

    2013-01-01

    The {\\sc Majorana} collaboration is searching for neutrinoless double beta decay using $^{76}$Ge, which has been shown to have a number of advantages in terms of sensitivities and backgrounds. The observation of neutrinoless double-beta decay would show that lepton number is violated and that neutrinos are Majorana particles and would simultaneously provide information on neutrino mass. Attaining sensitivities for neutrino masses in the inverted hierarchy region, $15 - 50$ meV, will require large, tonne-scale detectors with extremely low backgrounds, at the level of $\\sim$1 count/t-y or lower in the region of the signal. The {\\sc Majorana} collaboration, with funding support from DOE Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the {\\sc Demonstrator}, an array consisting of 40 kg of p-type point-contact high-purity germanium (HPGe) detectors, of which $\\sim$30 kg will be enriched to 87% in $^{76}$Ge. The {\\sc Demonstrator} is being constructed in a clean room laboratory facility at...

  15. Results of low energy background measurements with the Liquid Scintillation Detector (LSD) of the Mont Blanc Laboratory

    Science.gov (United States)

    Aglietta, M.; Badino, G.; Bologna, G. F.; Castagnoli, C.; Fulgione, W.; Galeotti, P.; Saavedra, O.; Trinchero, G. C.; Vernetto, S.; Dadykin, V. L.

    1985-01-01

    The 90 tons liquid scintillation detector (LSD) is fully running since October 1984, at a depth of 5,200 hg/sq cm of standard rock underground. The main goal is to search for neutrino bursts from collapsing stars. The experiment is very sensitive to detect low energy particles and has a very good signature to gamma-rays from (n,p) reaction which follows the upsilon e + p yields n + e sup + neutrino capture. The analysis of data is presented and the preliminary results on low energy measurements are discussed.

  16. Two-Dimensional Spatial Imaging of Charge Transport in Germanium Crystals at Cryogenic Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Moffatt, Robert [Stanford U.

    2016-01-01

    In this dissertation, I describe a novel apparatus for studying the transport of charge in semiconductors at cryogenic temperatures. The motivation to conduct this experiment originated from an asymmetry observed between the behavior of electrons and holes in the germanium detector crystals used by the Cryogenic Dark Matter Search (CDMS). This asymmetry is a consequence of the anisotropic propagation of electrons in germanium at cryogenic temperatures. To better model our detectors, we incorporated this effect into our Monte Carlo simulations of charge transport. The purpose of the experiment described in this dissertation is to test those models in detail. Our measurements have allowed us to discover a shortcoming in our most recent Monte Carlo simulations of electrons in germanium. This discovery would not have been possible without the measurement of the full, two-dimensional charge distribution, which our experimental apparatus has allowed for the first time at cryogenic temperatures.

  17. Far Infrared Spectrometry of the Cosmic Background Radiation

    Science.gov (United States)

    Mather, J. C.

    1974-01-01

    I describe two experiments to measure the cosmic background radiation near 1 mm wavelength. The first was a ground-based search for spectral lines, made with a Fabry-Perot interferometer and an InSb detector. The second is a measurement of the spectrum from 3 to 18 cm{sup -1}, made with a balloon-borne Fourier transform spectrometer. It is a polarizing Michelson interferometer, cooled in liquid helium, and operated with a germanium bolometer. I give the theory of operation, construction details, and experimental results. The first experiment was successfully completed but the second suffered equipment malfunction on its first flight. I describe the theory of Fourier transformations and give a new understanding of convolutional phase correction computations. I discuss for infrared bolometer calibration procedures, and tabulate test results on nine detectors. I describe methods of improving bolometer sensitivity with immersion optics and with conductive film blackening.

  18. Background suppression for a top quark mass measurement in the lepton+jets t anti t decay channel and alignment of the ATLAS silicon detectors with cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Goettfert, Tobias

    2010-01-21

    The investigation of top quark properties will be amongst the first measurements of observables of the Standard Model of particle physics at the Large Hadron Collider. This thesis deals with the suppression of background sources contributing to the event sample used for the determination of the top quark mass. Several techniques to reduce the contamination of the selected sample with events from W+jets production and combinatorial background from wrong jet associations are evaluated. The usage of the jet merging scales of a k{sub T} jet algorithm as event shapes is laid out and a multivariate technique (Fisher discriminant) is applied to discriminate signal from physics background. Several kinematic variables are reviewed upon their capability to suppress wrong jet associations. The second part presents the achievements on the alignment of the silicon part of the Inner Detector of the ATLAS experiment. A well-aligned tracking detector will be crucial for measurements that involve particle trajectories, e.g. for reliably identifying b-quark jets. Around 700,000 tracks from cosmic ray muons are used to infer the alignment of all silicon modules of ATLAS using the track-based local {chi}{sup 2} alignment algorithm. Various additions to the method that deal with the peculiarities of alignment with cosmic rays are developed and presented. The achieved alignment precision is evaluated and compared to previous results. (orig.)

  19. Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arduini, Gianluigi; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela

    2016-01-01

    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was obse...

  20. Simulation of background reduction and Compton depression in low-background HPGe spectrometer at a surface laboratory

    CERN Document Server

    Niu, ShunLi; Wu, ZhenZhong; Xie, YuGuang; Yu, BoXiang; Wang, ZhiGang; Fang, Jian; Sun, XiLei; Sun, LiJun; Liu, YingBiao; Gao, Long; Zhang, Xuan; Zhao, Hang; Zhou, Li; Lv, JunGuang; Hu, Tao

    2014-01-01

    High-purity germanium detectors are well suited to analysis the radioactivity of samples. In order to reduce the environmental background, low-activity lead and oxygen free copper are installed outside of the probe to shield gammas, outmost is a plastic scintillator to veto the cosmic rays, and an anti-Compton detector can improve the Peak-to-Compton ratio. Using the GEANT4 tools and taking into account a detailed description of the detector, we optimize the sizes of the detectors to reach the design indexes. A group of experimental data from a HPGe spectrometer in using were used to compare with the simulation. As to new HPGe Detector simulation, considering the different thickness of BGO crystals and anti-coincidence efficiency, the simulation results show that the optimal thickness is 5.5cm, and the Peak-to-Compton ratio of 40K is raised to 1000 when the anti-coincidence efficiency is 0.85. As the background simulation, 15 cm oxygen-free copper plus 10 cm lead can reduce the environmental gamma rays to 0.0...

  1. Low-background Gamma Spectroscopy at Sanford Underground Laboratory

    Science.gov (United States)

    Chiller, Christopher; Alanson, Angela; Mei, Dongming

    2014-03-01

    Rare-event physics experiments require the use of material with unprecedented radio-purity. Low background counting assay capabilities and detectors are critical for determining the sensitivity of the planned ultra-low background experiments. A low-background counting, LBC, facility has been built at the 4850-Level Davis Campus of the Sanford Underground Research Facility to perform screening of material and detector parts. Like many rare event physics experiments, our LBC uses lead shielding to mitigate background radiation. Corrosion of lead brick shielding in subterranean installations creates radon plate-out potential as well as human risks of ingestible or respirable lead compounds. Our LBC facilities employ an exposed lead shield requiring clean smooth surfaces. A cleaning process of low-activity silica sand blasting and borated paraffin hot coating preservation was employed to guard against corrosion due to chemical and biological exposures. The resulting lead shield maintains low background contribution integrity while fully encapsulating the lead surface. We report the performance of the current LBC and a plan to develop a large germanium well detector for PMT screening. Support provided by Sd governors research center-CUBED, NSF PHY-0758120 and Sanford Lab.

  2. Study of linearity and internal background for LaBr3(Ce) γ-ray scintillation detector

    Science.gov (United States)

    Lavagno, A.; Gervino, G.; Scarfone, A.

    2013-08-01

    Cerium-doped lanthanum bromide, LaBr3(Ce), crystal is the latest among the scintillation counters and shows same attracting properties for γ spectroscopy that makes it a suitable solution for security, medical, geophysics and high energy physics applications. LaBr3(Ce) exhibits a proportional light yield response to γ-ray energy. Very good linearity was seen up to 2 MeV. LaBr3(Ce) has also relatively high intrinsic radiation background due to naturally occurring 138La and 227Ac radioisotopes. A good use of LaBr3(Ce) needs an accurate determination of the self-activity, particularly when low background is required or when events are collected at very low trigger rates. The impact of internal background on energy resolution and linearity is discussed.

  3. A Micromegas-based low-background x-ray detector coupled to a slumped-glass telescope for axion research

    DEFF Research Database (Denmark)

    Aznar, F.; Castel, J.; Christensen, F. E.

    2015-01-01

    -approximation Wolter I x-ray telescope (XRT) assembled from thermally-formed (or "slumped") glass substrates deposited with multilayer coatings. The system has been conceived as a technological pathfinder for the future International Axion Observatory (IAXO), as it combines two of the techniques (optic and detector......) proposed in the conceptual design of the project. It is innovative for two reasons: it is the first time an x-ray optic has been designed and fabricated specifically for axion research, and the first time a Micromegas detector has been operated with an x-ray optic. The line has been installed at one end...... of the CERN Axion Solar Telescope (CAST) magnet and is currently looking for solar axions. The combination of the XRT and Micromegas detector provides the best signal-to-noise ratio obtained so far by any detection system of the CAST experiment with a background rate of 5.4×10−3 counts per hour in the energy...

  4. Beam backgrounds in the ATLAS detector during LHC loss map tests at beta*=40cm and beta*=80cm at Ebeam=6.5 TeV

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    In this note the beam-background measurements with the ATLAS detector during lossmap tests of the LHC are described. Loss maps taken at beta*=40 cm and the normal 2015 setting of beta*=80 cm are compared. In the first case several collimator settings were explored, resulting in significant changes of beam backgrounds in ATLAS. Besides the studies of the dependence of background on collimation, which are important for optimisation of the LHC performance, these tests provide a clean environment to study the relative importance of beam halo losses on the experiment. The results show that the halo-related component of beam background in ATLAS decreases exponentially with increasing aperture of the tertiary collimators, the slope in terms of nominal sigma being about -0.5. From the data it is also shown that in normal operation conditions of LHC run 2 the beam halo losses contribute at most at the percent level to the total background, the dominant part coming from beam-gas interactions. The data are also used to ...

  5. Search for an annual modulation of dark-matter signals with a germanium spectrometer at the Sierra Grande Laboratory

    CERN Document Server

    Abriola, D; Brodzinski, R L; Collar, J I; Gregorio, D E D; Farach, H A; García, E; Gattone, A O; Guérard, C K; Hasenbalg, F; Huck, H; Miley, H S; Morales, A; Morales, J; De Solorzano, A O; Puimedón, J; Reeves, J H; Salinas, A; Sarsa, M L; Villar, J A

    1999-01-01

    Data collected during three years with a germanium spectrometer at the Sierra Grande underground laboratory have been analyzed for distinctive features of annual modulation of the signal induced by WIMP dark matter candidates. The main motivation for this analysis was the recent suggestion by the DAMA/NaI Collaboration that a yearly modulation signal could not be rejected at the 90% confidence level when analyzing data obtained with a high-mass low-background scintillator detector. We performed two different analyses of the data: First, the statistical distribution of modulation-significance variables (expected from an experiment running under the conditions of Sierra Grande) was compared with the same variables obtained from the data. Second, the data were analyzed in energy bins as an independent check of the first result and to allow for the possibility of a crossover in the expected signal. In both cases no statistically significant deviation from the null result was found, which could support the hypothe...

  6. The Silicon Cube detector

    Energy Technology Data Exchange (ETDEWEB)

    Matea, I.; Adimi, N. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France); Blank, B. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France)], E-mail: blank@cenbg.in2p3.fr; Canchel, G.; Giovinazzo, J. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France); Borge, M.J.G.; Dominguez-Reyes, R.; Tengblad, O. [Insto. Estructura de la Materia, CSIC, Serrano 113bis, E-28006 Madrid (Spain); Thomas, J.-C. [GANIL, CEA/DSM - CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France)

    2009-08-21

    A new experimental device, the Silicon Cube detector, consisting of six double-sided silicon strip detectors placed in a compact geometry was developed at CENBG. Having a very good angular coverage and high granularity, it allows simultaneous measurements of energy and angular distributions of charged particles emitted from unbound nuclear states. In addition, large-volume Germanium detectors can be placed close to the collection point of the radioactive species to be studied. The setup is ideally suited for isotope separation on-line (ISOL)-type experiments to study multi-particle emitters and was tested during an experiment at the low-energy beam line of SPIRAL at GANIL.

  7. Upgrade of the muon veto and current status of the Dortmund low background HPGe facility

    Energy Technology Data Exchange (ETDEWEB)

    Goessling, Claus; Kroeninger, Kevin; Neddermann, Till; Nitsch, Christian; Quante, Thomas [TU Dortmund, Physik EIV, D-44221 Dortmund (Germany)

    2015-07-01

    The Dortmund Low Background HPGe Facility (DLB) is a germanium facility with heavy shielding located above ground. It's primary task is to provide material screening support for the COBRA experiment which was built to search for neutrinoless double beta decay. Germanium detectors used for low background gamma spectroscopy are usually operated under either a fairly low overburden (O(1m) water equivalent (mwe)) or high overburden, e.g. in specialised underground laboratories (O(>100 mwe)). In between, only a few facilities exist, such as the DLB. The artificial overburden of 10 mwe already shields the weak component of cosmic rays. The lead castle with a state-of-the-art neutron shielding as well as the active anti-cosmics veto detector enable low background gamma spectrometry with the advantage of good accessibility on the university campus. Throughout the last years improvements have been made especially on the cosmics veto and the MC simulation leading to an remarkable low integral background counting rate (40-2700 keV) of about 2.5228(52) counts/kg/min. The talk summarises the completed tasks and presents the current status.

  8. Study on the local atomic structure of germanium in organic germanium compounds by EXAFS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Organic germanium compounds have been extensively applied in medicine as tonics,In this paper,the local structures of two organic germanium compounds,carboxyethylgermanium sesquioxide and polymeric germanium glutamate,were determined by EXAFS.The structure parameters including coordination numbers and bond lengths were reported,and possible structure patterns were discussed.

  9. Background Studies for the MINER Coherent Neutrino Scattering Reactor Experiment

    CERN Document Server

    Agnolet, G; Barker, D; Beck, R; Carroll, T J; Cesar, J; Cushman, P; Dent, J B; De Rijck, S; Dutta, B; Flanagan, W; Fritts, M; Gao, Y; Harris, H R; Hays, C C; Iyer, V; Jastram, A; Kadribasic, F; Kennedy, A; Kubik, A; Ogawa, I; Lang, K; Mahapatra, R; Mandic, V; Martin, R D; Mast, N; McDeavitt, S; Mirabolfathi, N; Mohanty, B; Nakajima, K; Newhouse, J; Newstead, J L; Phan, D; Proga, M; Roberts, A; Rogachev, G; Salazar, R; Sander, J; Senapati, K; Shimada, M; Strigari, L; Tamagawa, Y; Teizer, W; Vermaak, J I C; Villano, A N; Walker, J; Webb, B; Wetzel, Z; Yadavalli, S A

    2016-01-01

    The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 meters) of a 1 MW TRIGA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5 to 20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.

  10. Atomic ionization of germanium by neutrinos from an ab initio approach

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiunn-Wei [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); National Center for Theoretical Sciences and Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China); Chi, Hsin-Chang [Department of Physics, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan (China); Huang, Keh-Ning [Department of Physics, Sichuan University, Chengdu, Sichuan (China); Department of Physics, Fuzhou University, Fuzhou, Fujian (China); Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Liu, C.-P. [Department of Physics, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan (China); Shiao, Hao-Tse [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Singh, Lakhwinder [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Wong, Henry T. [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Wu, Chih-Liang; Wu, Chih-Pan [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China)

    2014-04-04

    An ab initio calculation of atomic ionization of germanium by neutrinos was carried out in the framework of multiconfiguration relativistic random phase approximation and benchmarked by related atomic structure and photoabsorption data. This improves over the conventional approach based on scattering off free electrons whose validity at sub-keV energy transfer is questionable. Limits on neutrino magnetic moments are derived using reactor neutrino data taken with low threshold germanium detectors. Future applications of these atomic techniques will greatly reduce the atomic uncertainties in low-energy neutrino and dark matter detections.

  11. Harmonic Lattice Dynamics of Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Nelin, G.

    1974-07-01

    The phonon dispersion relations of the DELTA-, LAMBDA-, and SIGMA-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field.

  12. Black Germanium fabricated by reactive ion etching

    Science.gov (United States)

    Steglich, Martin; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2016-09-01

    A reactive ion etching technique for the preparation of statistical "Black Germanium" antireflection surfaces, relying on self-organization in a Cl2 etch chemistry, is presented. The morphology of the fabricated Black Germanium surfaces is the result of a random lateral distribution of pyramidal etch pits with heights around (1450 ± 150) nm and sidewall angles between 80° and 85°. The pyramids' base edges are oriented along the crystal directions of Germanium, indicating a crystal anisotropy of the etching process. In the Vis-NIR, the tapered Black Germanium surface structure suppresses interface reflection to structure in optoelectronics and IR optics.

  13. Hydrothermal synthesis of bismuth germanium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, Timothy J.

    2016-12-13

    A method for the hydrothermal synthesis of bismuth germanium oxide comprises dissolving a bismuth precursor (e.g., bismuth nitrate pentahydrate) and a germanium precursor (e.g., germanium dioxide) in water and heating the aqueous solution to an elevated reaction temperature for a length of time sufficient to produce the eulytite phase of bismuth germanium oxide (E-BGO) with high yield. The E-BGO produced can be used as a scintillator material. For example, the air stability and radioluminescence response suggest that the E-BGO can be employed for medical applications.

  14. On the feasibility of employing solar-like oscillators as detectors for the stochastic background of gravitational waves

    CERN Document Server

    Siegel, Daniel M

    2014-01-01

    We present a hydrodynamic model that describes excitation of linear stellar oscillations by a stochastic background of gravitational waves (SBGW) of astrophysical and cosmological origin. We find that this excitation mechanism is capable of generating solar g-mode amplitudes close to or comparable with values expected from excitation by turbulent convection, which is considered to be the main driving force for solar-like oscillations. A method is presented that places direct upper bounds on the SBGW in a frequency range, in which the SBGW is expected to contain rich astrophysical information. Employing estimates for solar g-mode amplitudes, the proposed method is demonstrated to have the potential to compete with sensitivities reached by gravitational wave experiments in other frequency ranges.

  15. Structural Design Parameters for Germanium

    Science.gov (United States)

    Salem, Jon; Rogers, Richard; Baker, Eric

    2017-01-01

    The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A* 1.7), it is not as anisotropic as SiC, NiAl, or Cu. Thus the fracture toughness was similar on the 100, 110, and 111 planes, however, measurements associated with randomly oriented grinding cracks were 6 to 30 higher. Crack extension in ring loaded disks occurred on the 111 planes due to both the lower fracture energy and the higher stresses on stiff 111 planes. Germanium exhibits a Weibull scale effect, but does not exhibit significant slow crack growth in distilled water. (n 100), implying that design for quasi static loading can be performed with scaled strength statistics. Practical values for engineering design are a fracture toughness of 0.69 0.02 MPam (megapascals per square root meter) and a Weibull modulus of m 6 2. For well ground and reasonable handled coupons, average fracture strength should be greater than 40 megapascals. Aggregate, polycrystalline elastic constants are Epoly 131 gigapascals, vpoly 0.22.

  16. L3 experiment's detector : BGO assembly hall

    CERN Multimedia

    CERN

    1987-01-01

    The detector is a multi-layered cylindrical set of different devices, each of them measuring physical quantities relevant to the reconstruction of the collision under study. The three main outer layers are the electro-magnetic calorimeter (also called BGO because it's made of Bismuth Germanium Oxide), the hadronic calorimeter (HCAL) and the muon detector.

  17. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  18. Development of cryogenic low background detector based on enriched zinc molybdate crystal scintillators to search for neutrinoless double beta decay of $^{100}$Mo

    CERN Document Server

    Chernyak, Dmitry

    2015-01-01

    ZnMoO$_4$ scintillators with a mass of $\\sim$ 0.3 kg, as well as Zn$^{100}$MoO$_4$ crystals enriched in the isotope $^{100}$Mo were produced for the first time by using the low-thermal-gradient Czochralski technique. The optical and luminescent properties of the produced crystals were studied to estimate the progress in crystal growth quality. The low-temperature tests with a 313 g ZnMoO$_4$ and two enriched Zn$^{100}$MoO$_4$ crystals were performed aboveground in the Centre de Sciences Nucl\\'eaires et de Sciences de la Mati\\`ere. The low background measurements with a three ZnMoO$_4$ and two enriched detectors installed in the EDELWEISS set-up at the Laboratoire Souterrain de Modane were carried out. To optimize the light collection in ZnMoO$_4$ scintillating bolometers, we have simulated the collection of scintillation photons in a detector module for different geometries by Monte Carlo method using the GEANT4 package. Response to the 2$\

  19. Enhanced electromagnetic showers initiated by 20-180 GeV gamma rays on aligned thick germanium crystals

    Energy Technology Data Exchange (ETDEWEB)

    Baurichter, A.; Kirsebom, K.; Medenwaldt, R.; Mikkelsen, U.; Moeller, S.P.; Uggerhoej, E.; Worm, T.; Kononets, Y.V.; Elsener, K.; Ballestrero, S.; Sona, P.; Biino, C.; Connell, S.H.; Sellschop, J.P.F.; Vilakazi, Z.Z.; Apyan, A.; Avakian, R.O.; Ispirian, K.A.; Taroian, S.P

    1999-06-01

    The distribution of the energy released in a silicon detector placed on the downstream side of thick germanium single crystals bombarded by 20-180 GeV gamma rays along directions close to the <1 1 0> axis or along a random direction has been investigated. A large enhancement of the shower for axial incidence of the gamma rays has been found. The response of the system composed of a germanium crystal and a silicon detector to single gamma rays as a function of their energy has been deduced and compared with existing Monte Carlo simulations.

  20. Enhanced electromagnetic showers initiated by 20-180 GeV gamma rays on aligned thick germanium crystals

    Science.gov (United States)

    Baurichter, A.; Kirsebom, K.; Medenwaldt, R.; Mikkelsen, U.; Møller, S. P.; Uggerhøj, E.; Worm, T.; Kononets, Y. V.; Elsener, K.; Ballestrero, S.; Sona, P.; Biino, C.; Connell, S. H.; Sellschop, J. P. F.; Vilakazi, Z. Z.; Apyan, A.; Avakian, R. O.; Ispirian, K. A.; Taroian, S. P.

    1999-06-01

    The distribution of the energy released in a silicon detector placed on the downstream side of thick germanium single crystals bombarded by 20-180 GeV gamma rays along directions close to the axis or along a random direction has been investigated. A large enhancement of the shower for axial incidence of the gamma rays has been found. The response of the system composed of a germanium crystal and a silicon detector to single gamma rays as a function of their energy has been deduced and compared with existing Monte Carlo simulations.

  1. Laser synthesis of germanium tin alloys on virtual germanium

    Science.gov (United States)

    Stefanov, S.; Conde, J. C.; Benedetti, A.; Serra, C.; Werner, J.; Oehme, M.; Schulze, J.; Buca, D.; Holländer, B.; Mantl, S.; Chiussi, S.

    2012-03-01

    Synthesis of heteroepitaxial germanium tin (GeSn) alloys using excimer laser processing of a thin 4 nm Sn layer on Ge has been demonstrated and studied. Laser induced rapid heating, subsequent melting, and re-solidification processes at extremely high cooling rates have been experimentally achieved and also simulated numerically to optimize the processing parameters. "In situ" measured sample reflectivity with nanosecond time resolution was used as feedback for the simulations and directly correlated to alloy composition. Detailed characterization of the GeSn alloys after the optimization of the processing conditions indicated substitutional Sn concentration of up to 1% in the Ge matrix.

  2. L3 detector: BGO assembly

    CERN Multimedia

    CERN

    1989-01-01

    Explanation and presentation of its construction ( Feb-March 1989). The detector is a multi-layered cylindrical set of different devices, each of them measuring physical quantities relevant to the reconstruction of the collision under study. The three main outer layers are the electro-magnetic calorimeter (also called BGO because it's made of Bismuth Germanium Oxide), the hadronic calorimeter (HCAL) and the muon detector.

  3. LA-ICP/MS Analysis of Plastics as a Method to Support Polymer Assay in the Assessment of Materials for Low Background Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Bliss, Mary; Farmer, Orville T.; Thomas, Linda MP; Liezers, Martin

    2016-03-12

    Ultra low-background radiation measurements are essential to several large-scale physics investigations, such as those involving neutrinoless double-beta decay, dark matter detection (such as SuperCDMS), and solar neutrino detection. There is a need for electrically and thermally insulating dielectric materials with extremely low-background radioactivity for detector construction. This need is best met with plastics. Most currently available structural plastics have milliBecquerel-per-kilogram total intrinsic radioactivity. Modern low-level detection systems require a large variety of plastics with low microBecquerel-per-kilogram levels. However, the assay of polymer materials for extremely low levels of radioactive elements, uranium and thorium in particular, presents new challenges. It is only recently that any certified reference materials (CRMs) for toxic metals such as lead or cadmium in plastics have become available. However, there are no CRMs for uranium or thorium in thermoplastics. This paper discusses our assessment of the use of laser ablation (LA) for sampling and inductively coupled plasma mass spectrometry (ICP-MS) for analysis of polyethylene (PE) samples, with an emphasis on uranium determination. Using a CRM for lead in PE, we examine LA and ICP-MS parameters that determine whether the total atom efficiencies for uranium and lead are similar, and explore methods to use the lead content in a plastic as part of the process of estimating or determining the uranium content by LA-ICP-MS.

  4. Multiagency Urban Search Experiment Detector and Algorithm Test Bed

    Science.gov (United States)

    Nicholson, Andrew D.; Garishvili, Irakli; Peplow, Douglas E.; Archer, Daniel E.; Ray, William R.; Swinney, Mathew W.; Willis, Michael J.; Davidson, Gregory G.; Cleveland, Steven L.; Patton, Bruce W.; Hornback, Donald E.; Peltz, James J.; McLean, M. S. Lance; Plionis, Alexander A.; Quiter, Brian J.; Bandstra, Mark S.

    2017-07-01

    In order to provide benchmark data sets for radiation detector and algorithm development, a particle transport test bed has been created using experimental data as model input and validation. A detailed radiation measurement campaign at the Combined Arms Collective Training Facility in Fort Indiantown Gap, PA (FTIG), USA, provides sample background radiation levels for a variety of materials present at the site (including cinder block, gravel, asphalt, and soil) using long dwell high-purity germanium (HPGe) measurements. In addition, detailed light detection and ranging data and ground-truth measurements inform model geometry. This paper describes the collected data and the application of these data to create background and injected source synthetic data for an arbitrary gamma-ray detection system using particle transport model detector response calculations and statistical sampling. In the methodology presented here, HPGe measurements inform model source terms while detector response calculations are validated via long dwell measurements using 2"×4"×16" NaI(Tl) detectors at a variety of measurement points. A collection of responses, along with sampling methods and interpolation, can be used to create data sets to gauge radiation detector and algorithm (including detection, identification, and localization) performance under a variety of scenarios. Data collected at the FTIG site are available for query, filtering, visualization, and download at muse.lbl.gov.

  5. Germanium multiphase equation of state

    Science.gov (United States)

    Crockett, S. D.; De Lorenzi-Venneri, G.; Kress, J. D.; Rudin, S. P.

    2014-05-01

    A new SESAME multiphase germanium equation of state (EOS) has been developed utilizing the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element.

  6. Measurement of photoelectron yield of the CDEX-10 liquid argon detector prototype

    Science.gov (United States)

    Chen, Qing-Hao; Yue, Qian; Cheng, Jian-Ping; Kang, Ke-Jun; Li, Yuan-Jing; Lin, Shin-Ted; Tang, Chang-Jian; Xing, Hao-Yang; Yu, Xun-Zhen; Zeng, Ming; Zhu, Jing-Jun

    2016-11-01

    The China Dark Matter Experiment (CDEX) is a low background experiment at China Jinping Underground Laboratory (CJPL) designed to directly detect dark matter with a high-purity germanium (HPGe) detector. In the second phase, CDEX-10, which has a 10 kg germanium array detector system, a liquid argon (LAr) anti-Compton active shielding and cooling system is proposed. To study the properties of the LAr detector, a prototype with an active volume of 7 liters of liquid argon was built and operated. The photoelectron yields, as a critically important parameter for the prototype detector, have been measured to be 0.051-0.079 p.e./keV for 662 keV γ rays at different positions. The good agreement between the experimental and simulation results has provided a reasonable understanding and determination of the important parameters such as the surviving fraction of the excimers, the absorption length for 128 nm photons in liquid argon, the reflectivity of Teflon and so on.

  7. Photoelectron yield in the prototype of the liquid argon detector for CDEX-10

    CERN Document Server

    Chen, Qing-Hao; Cheng, Jian-Ping; Kang, Ke-Jun; Li, Yuan-Jing; Lin, Shin-Ted; Tang, Chang-Jian; Xing, Hao-Yang; Yu, Xun-Zhen; Zeng, Ming

    2015-01-01

    The China Dark Matter Experiment (CDEX) is a low background experiment at China Jinping Underground Laboratory (CJPL) designed to directly detect dark matter with a high-purity germanium (HPGe) detector. In the second phase CDEX-10 with 10 kg germanium array detector system, the liquid argon (LAr) anti-Compton active shielding and cooling system is proposed. For purpose of studying the properties of LAr detector, a prototype with an active volume of 7 liters of liquid argon was built and operated. The photoelectron yields, as a critically important parameter for the LAr detector, have been measured to be 0.051-0.079 p.e./keV for 662 keV gamma lines at different positions. The good agreement between the experimental and simulation results has provided a quite reasonable understanding and determination of the important parameters such as the Surviving Fraction of the $Ar_{2}^{*}$ excimers, the absorption length for 128 nm photons in liquid argon, the reflectivity of Teflon and so on.

  8. Low background high efficiency radiocesium detection system based on positron emission tomography technology

    Science.gov (United States)

    Yamamoto, Seiichi; Ogata, Yoshimune

    2013-09-01

    After the 2011 nuclear power plant accident at Fukushima, radiocesium contamination in food became a serious concern in Japan. However, low background and high efficiency radiocesium detectors are expensive and huge, including semiconductor germanium detectors. To solve this problem, we developed a radiocesium detector by employing positron emission tomography (PET) technology. Because 134Cs emits two gamma photons (795 and 605 keV) within 5 ps, they can selectively be measured with coincidence. Such major environmental gamma photons as 40K (1.46 MeV) are single photon emitters and a coincidence measurement reduces the detection limit of radiocesium detectors. We arranged eight sets of Bi4Ge3O12 (BGO) scintillation detectors in double rings (four for each ring) and measured the coincidence between these detectors using PET data acquisition system. A 50 × 50 × 30 mm BGO was optically coupled to a 2 in. square photomultiplier tube (PMT). By measuring the coincidence, we eliminated most single gamma photons from the energy distribution and only detected those from 134Cs at an average efficiency of 12%. The minimum detectable concentration of the system for the 100 s acquisition time is less than half of the food monitor requirements in Japan (25 Bq/kg). These results show that the developed radiocesium detector based on PET technology is promising to detect low level radiocesium.

  9. Low background high efficiency radiocesium detection system based on positron emission tomography technology

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Ogata, Yoshimune [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673 (Japan)

    2013-09-15

    After the 2011 nuclear power plant accident at Fukushima, radiocesium contamination in food became a serious concern in Japan. However, low background and high efficiency radiocesium detectors are expensive and huge, including semiconductor germanium detectors. To solve this problem, we developed a radiocesium detector by employing positron emission tomography (PET) technology. Because {sup 134}Cs emits two gamma photons (795 and 605 keV) within 5 ps, they can selectively be measured with coincidence. Such major environmental gamma photons as {sup 40}K (1.46 MeV) are single photon emitters and a coincidence measurement reduces the detection limit of radiocesium detectors. We arranged eight sets of Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) scintillation detectors in double rings (four for each ring) and measured the coincidence between these detectors using PET data acquisition system. A 50 × 50 × 30 mm BGO was optically coupled to a 2 in. square photomultiplier tube (PMT). By measuring the coincidence, we eliminated most single gamma photons from the energy distribution and only detected those from {sup 134}Cs at an average efficiency of 12%. The minimum detectable concentration of the system for the 100 s acquisition time is less than half of the food monitor requirements in Japan (25 Bq/kg). These results show that the developed radiocesium detector based on PET technology is promising to detect low level radiocesium.

  10. Front-End Electronics for the Array Readout of a Microwave Kinetic Inductance Detector Towards Observation of Cosmic Microwave Background Polarization

    Science.gov (United States)

    Ishitsuka, H.; Ikeno, M.; Oguri, S.; Tajima, O.; Tomita, N.; Uchida, T.

    2016-07-01

    Precise measurements of polarization patterns in cosmic microwave background (CMB) provide deep knowledge about the begin of the Universe. The GroundBIRD experiment aims to measure the CMB polarization by using microwave kinetic inductance detector (MKID) arrays. The MKID is suited to multiplexing. One of our requirements is a MUX factor (the number of readout channels for a single wire pair) of at least 100. If we make frequency combs of the MKIDs with 2-MHz spacing, a bandwidth of 200 MHz satisfies 100 MUX. The analog electronics must consist of an analog-to-digital converter (ADC), digital-to-analog converter (DAC), and local oscillator. We developed our own analog electronics board " RHEA." Two outputs/inputs of DAC/ADC with a 200-MHz clock provide an effective bandwidth of 200 MHz. The RHEA allows us to measure both the amplitude and phase responses of each MKID simultaneously. These data are continuously sampled at a high rate (e.g., 1 kSPS) and with no dead time. We achieved 12 and 14 bits resolution for ADC and DAC, respectively. This corresponds to achieve that our electronics achieved low noise: 1/1000 compared with the detector noise. We also achieved low power consumption compared with that of other electronics development for other experiments. Another important feature is that the board is completely separated from the digital part. Each user can choose their preferred field-programmable array. With the combination of the Kintex-7 evaluation kit from Xilinx, we demonstrated readout of MKID response.

  11. Measurements of gamma (γ)-emitting radionuclides with a high-purity germanium detector: the methods and reliability of our environmental assessments on the Fukushima 1 Nuclear Power Plant accident.

    Science.gov (United States)

    Mimura, Tetsuro; Mimura, Mari; Komiyama, Chiyo; Miyamoto, Masaaki; Kitamura, Akira

    2014-01-01

    The severe accident of Fukushima 1 Nuclear Power Plant due to the Tohoku Region Pacific Coast Earthquake in 11 March 2011 caused wide contamination and pollution by radionuclides in Fukushima and surrounding prefectures. In the current JPR symposium, a group of plant scientists attempted to examine the impact of the radioactive contamination on wild and cultivated plants. Measurements of gamma (γ) radiation from radionuclides in "Fukushima samples", which we called and collected from natural and agricultural areas in Fukushima prefecture were mostly done with a high-purity Ge detector in the Graduate School of Maritime Sciences, Kobe University. In this technical note, we describe the methods of sample preparation and measurements of radioactivity of the samples and discuss the reliability of our data in regards to the International Atomic Energy Agency (IAEA) Interlaboratory comparisons and proficiency test (IAEA proficiency test).

  12. Neutron damage tests of a highly segmented germanium crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ross, T.J. [Physics Department, University of Richmond, Richmond, VA 23173 (United States); Physics Department, University of Surrey, Guildford GU2 7JL (United Kingdom); Beausang, C.W. [Physics Department, University of Richmond, Richmond, VA 23173 (United States)], E-mail: cbeausan@richmond.edu; Lee, I.Y.; Macchiavelli, A.O.; Gros, S.; Cromaz, M.; Clark, R.M.; Fallon, P.; Jeppesen, H. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Allmond, J.M. [Physics Department, University of Richmond, Richmond, VA 23173 (United States)

    2009-07-21

    To evaluate the effect of neutron damage on the performance of highly segmented germanium detectors the P3 prototype detector for the GRETINA array was subjected to a neutron flux of {approx}3x10{sup 9} n/cm{sup 2} over a period of 5 days. During the irradiation, the resolution (full-width half-maximum (FWHM)) of the 1332 keV {sup 60}Co photopeak increased from {approx}1.8 to {approx}6.0 keV while the full-width at tenth maximum (FWTM) increased from {approx}4 keV to more than 12 keV. Following the irradiation the detector was successfully annealed and the energy resolution returned to pre-irradiation values. All detector segments were fully functional before and after the annealing and following multiple room-temperature cycles. A comparison of digitized pulse shapes in the damaged and annealed detector indicates that the effect of extreme neutron damage (FWHM=6 keV) on the position resolution is on the order of {approx}1.7 mm while for 3 keV resolution the position resolution degrades by {approx}0.5 mm.

  13. The Dortmund Low Background Facility - Low-Background Gamma Ray Spectrometry with an Artificial Overburden

    CERN Document Server

    Gastrich, Holger; Klingenberg, Reiner; Kröninger, Kevin; Neddermann, Till; Nitsch, Christian; Quante, Thomas; Zuber, Kai

    2015-01-01

    High-purity germanium (HPGe) detectors used for low-background gamma ray spectrometry are usually operated under either a fairly low overburden of the order of one meter of water equivalent (mw.e.) or a high overburden of the order of 100mw.e. or more, e.g. in specialized underground laboratories. The Dortmund Low Background Facility (DLB) combines the advantages of both approaches. The artificial overburden of 10mw.e. already shields the hadronic component of cosmic rays. The inner shielding, featuring a state-of-the-art neutron shielding and an active muon veto, enables low-background gamma ray spectrometry at an easy-accessible location at the campus of the Technische Universit\\"at Dortmund. The integral background count rate between 40keV and 2700keV is 2.528+-0.004counts/kg/minute. This enables activity measurements of primordial radionuclides in the range of some 10mBq/kg within a week of measurement time.

  14. Low background infrared (LBIR) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Low background infrared (LBIR) facility was originally designed to calibrate user supplied blackbody sources and to characterize low-background IR detectors and...

  15. The GeMSE Facility for Low-Background {\\gamma}-Ray Spectrometry

    CERN Document Server

    Sivers, M v; Rosén, Å V; Schumann, M

    2016-01-01

    We describe a new high-purity germanium (HPGe) detector setup for low-background {\\gamma}-ray spectrometry. The GeMSE facility is dedicated to material screening for rare event searches in astroparticle physics as well as to the characterization of meteorites. It is installed in a medium depth (~620 m.w.e.) underground laboratory in Switzerland in a multi-layer shielding and is equipped with an active muon veto. We have reached a very competitive integral background rate of (246$\\pm$2) counts/day (100-2700 keV) which allows the measurement of radioactive contaminations in the $\\mathcal{O}$(50){\\mu}Bq/kg range. We describe the data analysis based on Bayesian statistics, background simulations, the efficiency calibration and first sample measurements.

  16. A Monte Carlo study for the shielding of γ backgrounds induced by radionuclides for CDEX

    Science.gov (United States)

    Li, Lei; Yue, Qian; Tang, Chang-Jian; Cheng, Jian-Ping; Kang, Ke-Jun; Li, Jian-Min; Li, Jin; Li, Yu-Lan; Li, Yuan-Jing; Ma, Hao; T. Wong, H.; Xue, Tao; Zeng, Zhi

    2011-03-01

    The CDEX (China Dark matter EXperiment) Collaboration will carry out a direct search for WIMPs (Weakly Interacting Massive Particles) using an Ultra-Low Energy Threshold High Purity Germanium (ULE-HPGe) detector at the CJPL (China JinPing deep underground Laboratory). A complex shielding system was designed to reduce backgrounds and a detailed GEANT4 Monte Carlo simulation was performed to study the achievable reduction of γ rays induced by radionuclides and neutron backgrounds by D(γ,n)p reaction. Furthermore, the upper level of allowed radiopurity of shielding materials was estimated under the constraint of the expected goal. Compared with the radiopurity reported by other low-background rare-event experiments, it indicates that the shielding used in the CDEX can be made out of materials with obtainable radiopurity.

  17. A Monte Carlo study for the shielding of γ backgrounds induced by radionuclides for CDEX

    Institute of Scientific and Technical Information of China (English)

    LI Lei; MA Hao; H.W.Wong; XUE Tao; ZENG Zhi; YUE Qian; TANG Chang-Jian; CHENG Jian-Ping; KANG Ke-Jun; LI Jian-Min; LI Jin; LI Yu-Lan; LI Yuan-Jing

    2011-01-01

    The CDEX(China Dark matter EXperiment)Collaboration will carry out a direct search for WIMPs(Weakly Interacting Massive Particles)using an Ultra-Low Energy Threshold High Purity Germanium(ULE-HPGe)detector at the CJPL(China JinPing deep underground Laboratory).A complex shielding system was designed to reduce backgrounds and a detailed GEANT4 Monte Carlo simulation was performed to study the achievable reduction of T rays induced by radionuclides and neutron backgrounds by D(γ,n)p reaction.Furthermore,the upper level of allowed radiopurity of shielding materials was estimated under the constraint of the expected goal.Compared with the radiopurity reported by other low-background rare-event experiments,it indicates that the shielding used in the CDEX can be made out of materials with obtainable radiopurity.

  18. Improved WIMP-search reach of the CDMS II germanium data

    CERN Document Server

    Agnese, R; Asai, M; Balakishiyeva, D; Barker, D; Thakur, R Basu; Bauer, D A; Billard, J; Borgland, A; Bowles, M A; Brandt, D; Brink, P L; Bunker, R; Cabrera, B; Caldwell, D O; Calkins, R; Cerdeño, D G; Chagani, H; Chen, Y; Cooley, J; Cornell, B; Crewdson, C H; Cushman, P; Daal, M; Di Stefano, P C F; Doughty, T; Esteban, L; Fallows, S; Figueroa-Feliciano, E; Godfrey, G L; Golwala, S R; Hall, J; Harris, H R; Hertel, S A; Hofer, T; Holmgren, D; Hsu, L; Huber, M E; Jardin, D; Jastram, A; Kamaev, O; Kara, B; Kelsey, M H; Kennedy, A; Kiveni, M; Koch, K; Leder, A; Loer, B; Asamar, E Lopez; Lukens, P; Mahapatra, R; Mandic, V; McCarthy, K A; Mirabolfathi, N; Moffatt, R A; Oser, S M; Page, K; Page, W A; Partridge, R; Pepin, M; Phipps, A; Prasad, K; Pyle, M; Qiu, H; Rau, W; Redl, P; Reisetter, A; Ricci, Y; Rogers, H E; Saab, T; Sadoulet, B; Sander, J; Schneck, K; Schnee, R W; Scorza, S; Serfass, B; Shank, B; Speller, D; Toback, D; Upadhyayula, S; Villano, A N; Welliver, B; Wilson, J S; Wright, D H; Yang, X; Yellin, S; Yen, J J; Young, B A; Zhang, J

    2015-01-01

    CDMS II data from the 5-tower runs at the Soudan Underground Laboratory were reprocessed with an improved charge-pulse fitting algorithm. Two new analysis techniques to reject surface-event backgrounds were applied to the 612 kg days germanium-detector WIMP-search exposure. An extended analysis was also completed by decreasing the 10 keV analysis threshold to $\\sim$5 keV, to increase sensitivity near a WIMP mass of 8 GeV/$c^2$. After unblinding, there were zero candidate events above a deposited energy of 10 keV and 6 events in the lower-threshold analysis. This yielded minimum WIMP-nucleon spin-independent scattering cross-section limits of $1.8 \\times 10^{-44}$ and $1.18 \\times 10 ^{-41}$ cm$^2$ at 90\\% confidence for 60 and 8.6 GeV/$c^2$ WIMPs, respectively. This improves the previous CDMS II result by a factor of 2.4 (2.7) for 60 (8.6) GeV/$c^2$ WIMPs.

  19. Improved WIMP-search reach of the CDMS II germanium data

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brandt, D.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Calkins, R.; Cerdeno, D. G.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; Di Stefano, P. C.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Harris, H. R.; Hertel, S. A.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Kiveni, M.; Koch, K.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; Mandic, V.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Rogers, H. E.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-10-31

    CDMS II data from the five-tower runs at the Soudan Underground Laboratory were reprocessed with an improved charge-pulse fitting algorithm. Two new analysis techniques to reject surface-event backgrounds were applied to the 612 kg days germanium-detector weakly interacting massive particle (WIMP)-search exposure. An extended analysis was also completed by decreasing the 10 keV analysis threshold to ~5 keV, to increase sensitivity near a WIMP mass of 8 GeV/c2. After unblinding, there were zero candidate events above a deposited energy of 10 keV and six events in the lower-threshold analysis. This yielded minimum WIMP-nucleon spin-independent scattering cross-section limits of 1.8×10-44 and 1.18×10-41 at 90% confidence for 60 and 8.6 GeV/c2 WIMPs, respectively. This improves the previous CDMS II result by a factor of 2.4 (2.7) for 60 (8.6) GeV/c2 WIMPs.

  20. Silicon Germanium Quantum Well Solar Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Quantum-well structures embodied on single crystal silicon germanium drastically enhanced carrier mobilities.  The cell-to-cell circuits of quantum-well PV...

  1. Enhancement of electromagnetic showers initiated by ultrarelativistic electrons in aligned thick germanium crystals

    Science.gov (United States)

    Baurichter, A.; Mikkelsen, U.; Kirsebom, K.; Medenwaldt, R.; Møller, S.; Uggerhøj, E.; Worm, T.; Elsener, K.; Ballestrero, S.; Sona, P.; Romano, J.; Biino, C.; Moore, R.; Vilakazi, Z. Z.

    1996-10-01

    The distribution of the energy deposited in thin silicon detectors placed on the downstream side of a thick germanium single crystal bombarded with a 70, 150 and 250 GeV electron beam along directions close to the axis or {110} and {100} planes has been measured. The enhancement of the shower with respect to random incidence, as reflected in the higher value of the centroid of the distribution, is studied as a function of the incidence angle to the axis or plane.

  2. Metal induced crystallization of silicon germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gjukic, M.

    2007-05-15

    In the framework of this thesis the applicability of the aluminium-induced layer exchange on binary silicon germanium alloys was studied. It is here for the first time shown that polycrstalline silicon-germanium layers can be fabricated over the whole composition range by the aluminium-induced layer exchange. The experimental results prove thet the resulting material exhibits a polycrystalline character with typocal grain sizes of 10-100 {mu}m. Raman measurements confirm that the structural properties of the resulting layers are because of the large crystallites more comparable with monocrystalline than with nano- or microcrystalline silicon-germanium. The alloy ratio of the polycrystalline layer correspondes to the chemical composition of the amorphous starting layer. The polycrystalline silicon-germanium layers possess in the range of the interband transitions a reflection spectrum, as it is otherwise only known from monocrystalline reference layers. The improvement of the absorption in the photovoltaically relevant spectral range aimed by the application of silicon-germanium could be also proved by absorption measurments. Strongly correlated with the structural properties of the polycrystalline layers and the electronic band structure resulting from this are beside the optical properties also the electrical properties of the material, especially the charge-carrier mobility and the doping concentration. For binary silicon-germanium layers the hole concentration of about 2 x 10{sup 18} cm{sup -3} for pure silicon increrases to about 5 x 10{sup 20} cm{sub -3} for pure germanium. Temperature-resolved measurements were applied in order to detect doping levels respectively semiconductor-metal transitions. In the last part of the thesis the hydrogen passivation of polycrystalline thin silicon-germanium layers, which were fabricated by means of aluminium-induced layer exchange, is treated.

  3. Cosmogenic Induced Background Estimation for the MAJORANA DEMONSTRATOR Experiment

    Science.gov (United States)

    White, Brandon; Majorana Collaboration

    2016-09-01

    Neutrino-less double beta (0 νββ) decay experiments probe for such rare events that the suppression and understanding of backgrounds are major experimental concerns. Cosmogenic induced isotopes have the potential to be a major background for such experiments. For the MAJORANA DEMONSTRATOR Experiment 76Ge isotope is used as both detector and source and pure electroformed copper is primarily used for detector housing. The isotopes 68Ge and 60Co are cosmogenically produced when the Germanium and Copper components are near Earth's surface. The decay of these isotopes can mimic events in the region of interest. The experiment is located at the 4850 foot level at the Sanford Underground Research Facility in Lead, South Dakota to suppress cosmogenic activation. In this talk I will present the calculations of cosmogenic backgrounds for the enriched 76Ge and electroformed Copper materials used in the MAJORANA DEMONSTRATOR. The activation is determined by the surface exposure time of materials. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.

  4. Consistent empirical physical formula construction for recoil energy distribution in HPGe detectors using artificial neural networks

    CERN Document Server

    Akkoyun, Serkan

    2012-01-01

    The gamma-ray tracking technique is one of the highly efficient detection method in experimental nuclear structure physics. On the basis of this method, two gamma-ray tracking arrays, AGATA in Europe and GRETA in the USA, are currently being developed. The interactions of neutrons in these detectors lead to an unwanted background in the gamma-ray spectra. Thus, the interaction points of neutrons in these detectors have to be determined in the gamma-ray tracking process in order to improve photo-peak efficiencies and peak-to-total ratios of the gamma-ray peaks. Therefore, the recoil energy distributions of germanium nuclei due to inelastic scatterings of 1-5 MeV neutrons were obtained both experimentally and using artificial neural networks. Also, for highly nonlinear detector response for recoiling germanium nuclei, we have constructed consistent empirical physical formulas (EPFs) by appropriate layered feed-forward neural networks (LFNNs). These LFNN-EPFs can be used to derive further physical functions whic...

  5. Sapphire scintillation tests for cryogenic detectors in the Edelweiss dark matter search

    Energy Technology Data Exchange (ETDEWEB)

    Luca, M

    2007-07-15

    Identifying the matter in the universe is one of the main challenges of modern cosmology and astrophysics. An important part of this matter seems to be made of non-baryonic particles. Edelweiss is a direct dark matter search using cryogenic germanium bolometers in order to look for particles that interact very weakly with the ordinary matter, generically known as WIMPs (weakly interacting massive particles). An important challenge for Edelweiss is the radioactive background and one of the ways to identify it is to use a larger variety of target crystals. Sapphire is a light target which can be complementary to the germanium crystals already in use. Spectroscopic characterization studies have been performed using different sapphire samples in order to find the optimum doping concentration for good low temperature scintillation. Ti doped crystals with weak Ti concentrations have been used for systematic X ray excitation tests both at room temperature and down to 30 K. The tests have shown that the best Ti concentration for optimum room temperature scintillation is 100 ppm and 50 ppm at T = 45 K. All concentrations have been checked by optical absorption and fluorescence. After having shown that sapphire had interesting characteristics for building heat-scintillation detectors, we have tested if using a sapphire detector was feasible within a dark matter search. During the first commissioning tests of Edelweiss-II, we have proved the compatibility between a sapphire heat scintillation detector and the experimental setup. (author)

  6. The GeMSE facility for low-background γ-ray spectrometry

    Science.gov (United States)

    von Sivers, M.; Hofmann, B. A.; Rosén, Å. V.; Schumann, M.

    2016-12-01

    We describe a new high-purity germanium (HPGe) detector setup for low-background γ-ray spectrometry. The GeMSE facility (Germanium Material and meteorite Screening Experiment) is dedicated to material screening for rare event searches in astroparticle physics as well as to the characterization of meteorites. It is installed in a medium depth (~620 m.w.e.) underground laboratory in Switzerland in a multi-layer shielding and is equipped with an active muon veto. We have reached a very competitive integral background rate of (246±2) counts/day (100-2700 keV) and measured a sensitivity of ~0.5-0.6 mBq/kg for long-lived isotopes from the 238U/232Th chains in a ~1 kg sample screened for ~27 days. An extrapolation to higher sample masses and measurement times suggests a maximum sensitivity in the O(50) \\textmu Bq/kg range. We describe the data analysis based on Bayesian statistics, background simulations, the efficiency calibration and first sample measurements.

  7. Background Characterization and Discrimination in the Final Analysis of the CDMS II Phase of the Cryogenic Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Fritts, Matthew C. [Univ. of Minnesota, Minneapolis, MN (United States)

    2011-02-01

    The Cryogenic Dark Matter Search (CDMS) is designed to detectWeakly-Interacting Massive Particles (WIMPs) in the Milky Way halo. The phase known as CDMS II was performed in the Soudan Underground Laboratory. The final set of CDMS II data, collected in 2007-8 and referred to as Runs 125-8, represents the largest exposure to date for the experiment. We seek collisions between WIMPs and atomic nuclei in disk-shaped germanium and silicon detectors. A key design feature is to keep the rate of collisions from known particles producing WIMP-like signals very small. The largest category of such background is interactions with electrons in the detectors that occur very close to one of the faces of the detector. The next largest category is collisions between energetic neutrons that bypass the experimental shielding and nuclei in the detectors. Analytical efforts to discriminate these backgrounds and to estimate the rate at which such discrimination fails have been refined and improved throughout each phase of CDMS. Next-generation detectors for future phases of CDMS require testing at cryogenic test facilities. One such facility was developed at the University of Minnesota in 2007 and has been used continuously since then to test detectors for the next phase of the experiment, known as SuperCDMS.

  8. Detector Simulation and WIMP Search Analysis for the Cryogenic Dark Matter Search Experiment

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Kevin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-06-01

    Astrophysical and cosmological measurements on the scales of galaxies, galaxy clusters, and the universe indicate that 85% of the matter in the universe is composed of dark matter, made up of non-baryonic particles that interact with cross-sections on the weak scale or lower. Hypothetical Weakly Interacting Massive Particles, or WIMPs, represent a potential solution to the dark matter problem, and naturally arise in certain Standard Model extensions. The Cryogenic Dark Matter Search (CDMS) collaboration aims to detect the scattering of WIMP particles from nuclei in terrestrial detectors. Germanium and silicon particle detectors are deployed in the Soudan Underground Laboratory in Minnesota. These detectors are instrumented with phonon and ionization sensors, which allows for discrimination against electromagnetic backgrounds, which strike the detector at rates orders of magnitude higher than the expected WIMP signal. This dissertation presents the development of numerical models of the physics of the CDMS detectors, implemented in a computational package collectively known as the CDMS Detector Monte Carlo (DMC). After substantial validation of the models against data, the DMC is used to investigate potential backgrounds to the next iteration of the CDMS experiment, known as SuperCDMS. Finally, an investigation of using the DMC in a reverse Monte Carlo analysis of WIMP search data is presented.

  9. A Multi-Contact, Low Capacitance HPGe Detector for High Rate Gamma Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Christopher [XIA LLC, Hayward, CA (United States)

    2014-12-04

    The detection, identification and non-destructive assay of special nuclear materials and nuclear fission by-products are critically important activities in support of nuclear non-proliferation programs. Both national and international nuclear safeguard agencies recognize that current accounting methods for spent nuclear fuel are inadequate from a safeguards perspective. Radiation detection and analysis by gamma-ray spectroscopy is a key tool in this field, but no instrument exists that can deliver the required performance (energy resolution and detection sensitivity) in the presence of very high background count rates encountered in the nuclear safeguards arena. The work of this project addresses this critical need by developing a unique gamma-ray detector based on high purity germanium that has the previously unachievable property of operating in the 1 million counts-per-second range while achieving state-of-the-art energy resolution necessary to identify and analyze the isotopes of interest. The technical approach was to design and fabricate a germanium detector with multiple segmented electrodes coupled to multi-channel high rate spectroscopy electronics. Dividing the germanium detector’s signal electrode into smaller sections offers two advantages; firstly, the energy resolution of the detector is potentially improved, and secondly, the detector is able to operate at higher count rates. The design challenges included the following; determining the optimum electrode configuration to meet the stringent energy resolution and count rate requirements; determining the electronic noise (and therefore energy resolution) of the completed system after multiple signals are recombined; designing the germanium crystal housing and vacuum cryostat; and customizing electronics to perform the signal recombination function in real time. In this phase I work, commercial off-the-shelf electrostatic modeling software was used to develop the segmented germanium crystal geometry

  10. From a single encapsulated detector to the spectrometer for INTEGRAL satellite: predicting the peak-to-total ratio at high gamma-energies

    CERN Document Server

    Kshetri, Ritesh

    2012-01-01

    In two recent papers (R. Kshetri, JINST 2012 7 P04008; ibid., P07006), a probabilistic formalism was introduced to predict the response of encapsulated type composite germanium detectors like the SPI (spectrometer for INTEGRAL satellite). Predictions for the peak-to-total and peak-to-background ratios are given at 1.3 MeV for the addback mode of operation. The application of the formalism to clover germanium detector is discussed in two separate papers (R. Kshetri, JINST 2012 7 P07008; ibid., P08015). Using the basic approach developed in those papers, for the first time we present a procedure for calculating the peak-to-total ratio of the cluster detector for gamma-energies up to 8 MeV. Results are shown for both bare and suppressed detectors as well as for the single crystal and addback modes of operation. We have considered the experimental data of (i) peak-to-total ratio at 1.3 MeV, and (ii) single detector efficiency and addback factor for other energies up to 8 MeV. Using this data, an approximate metho...

  11. Germanium content in Polish hard coals

    Directory of Open Access Journals (Sweden)

    Makowska Dorota

    2016-01-01

    Full Text Available Due to the policy of the European Union, it is necessary to search for new sources of scarce raw materials. One of these materials is germanium, listed as a critical element. This semi-metal is widely used in the electronics industry, for example in the production of semiconductors, fibre optics and solar cells. Coal and fly ash from its combustion and gasification for a long time have been considered as a potential source of many critical elements, particularly germanium. The paper presents the results of germanium content determination in the Polish hard coal. 23 coal samples of various coal ranks were analysed. The samples were collected from 15 mines of the Upper Silesian Coal Basin and from one mine of the Lublin Coal Basin. The determination of germanium content was performed with the use of Atomic Absorption Spectrometry with Electrothermal Atomization (GFAAS. The investigation showed that germanium content in the analysed samples was at least twice lower than the average content of this element in the hard coals analysed so far and was in the range of 0.08 ÷ 1.28 mg/kg. Moreover, the content of Ge in the ashes from the studied coals does not exceed 15 mg/kg, which is lower than the average value of Ge content in the coal ashes. The highest content of this element characterizes coals of the Lublin Coal Basin and young coals type 31 from the Vistula region. The results indicate a low utility of the analysed coal ashes as a source of the recovery of germanium. On the basis of the analyses, the lack of the relationship between the content of the element and the ash content in the tested coals was noted. For coals of the Upper Silesian Coal Basin, the relationship between the content of germanium in the ashes and the depth of the seam was observed.

  12. Experimental Search for Solar Axions via Coherent Primakoff Conversion in a Germanium Spectrometer

    CERN Document Server

    Avignone, F T; Brodzinski, R; Collar, J I; Creswick, R J; Di Gregorio, D E; Farach, H A; Gattone, A O; Guérard, C K; Hasenbalg, F; Huck, H; Miley, H S; Morales, A; Morales, J; Nussinov, S; De Solorzano, A O; Reeves, J H; Villar, J; Zioutas, Konstantin

    1998-01-01

    Results are reported of an experimental search for the unique, rapidly varying temporal pattern of solar axions coherently converting into photons via the Primakoff effect in a single crystal germanium detector. This conversion is predicted when axions are incident at a Bragg angle with a crystalline plane. The analysis of approximately 1.94 kg.yr of data from the 1 kg DEMOS detector in Sierra Grande, Argentina, yields a new laboratory bound on axion-photon coupling of $g_{a\\gamma \\gamma} < 2.7\\cdot 10^{-9}$ GeV$^{-1}$, independent of axion mass up to ~ 1 keV.

  13. Realization of the low background neutrino detector Double Chooz. From the development of a high-purity liquid and gas handling concept to first neutrino data

    Energy Technology Data Exchange (ETDEWEB)

    Pfahler, Patrick

    2012-12-17

    Neutrino physics is one of the most vivid fields in particle physics. Within this field, neutrino oscillations are of special interest as they allow to determine driving oscillation parameters, which are collected as mixing angles in the leptonic mixing matrix. The exact knowledge of these parameters is the main key for the investigation of new physics beyond the currently known Standard Model of particle physics. The Double Chooz experiment is one of three reactor disappearance experiments currently taking data, which recently succeeded to discover a non-zero value for the last neutrino mixing angle {Theta}{sub 13}. As successor of the CHOOZ experiment, Double Chooz will use two detectors with improved design, each of them now composed of four concentrically nested detector vessels each filled with different detector liquid. The integrity of this multi-layered structure and the quality of the used detector liquids are essential for the success of the experiment. Within this frame, the here presented work describes the production of two detector liquids, the filling and handling of the Double Chooz far detector and the installation of all necessary hardware components therefore. In order to meet the strict requirements existing for the detector liquids, all components were individually selected in an extensive material selection process at TUM, which compared samples from different companies for their key properties: density, transparency, light yield and radio purity. Based on these measurements, the composition of muon veto scintillator and buffer liquid were determined. For the production of the detector liquids, a simple surface building close to the far detector site was upgraded into a large-scale storage and mixing facility, which allowed to separately, mix, handle and store 90 m{sup 3} of muon veto scintillator and 110 m{sup 3} of buffer liquid. For the muon veto scintillator, a master-solution composed of 4800 l LAB, 180 kg PPO and 1.8 kg of bis/MSB was

  14. Development of silicon-germanium visible-near infrared arrays

    Science.gov (United States)

    Zeller, John W.; Rouse, Caitlin; Efstathiadis, Harry; Haldar, Pradeep; Lewis, Jay S.; Dhar, Nibir K.; Wijewarnasuriya, Priyalal; Puri, Yash R.; Sood, Ashok K.

    2016-05-01

    Photodetectors based on germanium which do not require cooling and can provide good near-infrared (NIR) detection performance offer a low-cost alternative to conventional infrared sensors based on material systems such as InGaAs, InSb, and HgCdTe. As a result of the significant difference in thermal expansion coefficients between germanium and silicon, tensile strain incorporated into Ge epitaxial layers deposited on Si utilizing specialized growth processes can extend the operational range of detection to 1600 nm and longer wavelengths. We have fabricated Ge based PIN photodetectors on 300 mm diameter Si wafers to take advantage of high throughput, large-area complementary metal-oxide semiconductor (CMOS) technology. This device fabrication process involves low temperature epitaxial deposition of Ge to form a thin p+ (boron) Ge seed/buffer layer, and subsequent higher temperature deposition of a thicker Ge intrinsic layer. This is followed by selective ion implantation of phosphorus of various concentrations to form n+ Ge regions, deposition of a passivating oxide cap, and then top copper contacts to complete the PIN detector devices. Various techniques including transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) have been employed to characterize the material and structural properties of the epitaxially grown layers and fabricated detector devices, and these results are presented. The I-V response of the photodetector devices with and without illumination was also measured, for which the Ge based photodetectors consistently exhibited low dark currents of around ~1 nA at -1 V bias.

  15. Recovering germanium from coal ash by chlorination with ammonium chloride

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new process of enriching germanium from coal ash was developed. The process involves in mixing the coal ash and ammonium chloride and then roasting the mixture to produce germanium chloride that is then absorbed by dilute hydrochloric acid and hydrolyzed to germanium oxide. The germanium recovery reached to 80.2% at the optimum condition: mass ratio of NH4Cl/coal ash is 0.15, roasting temperature 400℃ and roasting time 90 min.

  16. Germanium nanowires grown using different catalyst metals

    Energy Technology Data Exchange (ETDEWEB)

    Gouveia, R.C., E-mail: riama@ifsp.edu.br [Departamento de Física – NanO Lab, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235 – SP 310, São Carlos, CEP 13565-905 (Brazil); Área de Ciências, Instituto Federal de Educação Ciência e Tecnologia de São Paulo, Rua Américo Ambrósio, 269, Jd. Canaã, Sertãozinho, CEP 14169-263 (Brazil); Kamimura, H.; Munhoz, R.; Rodrigues, A.D. [Departamento de Física – NanO Lab, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235 – SP 310, São Carlos, CEP 13565-905 (Brazil); Leite, E.R. [Departamento de Química – LIEC, Universidade Federal de São Carlos, São Carlos, CEP 13565-905 (Brazil); Chiquito, A.J. [Departamento de Física – NanO Lab, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235 – SP 310, São Carlos, CEP 13565-905 (Brazil)

    2016-11-01

    Germanium nanowires have been synthesized by the well known vapor-liquid-solid growth mechanism using gold, silver, cooper, indium and nickel as catalyst metals. The influence of metal seeds on nanowires structural and electronic transport properties was also investigated. Electron microscopy images demonstrated that, despite differences in diameters, all nanowires obtained presented single crystalline structures. X-ray patterns showed that all nanowires were composed by germanium with a small amount of germanium oxide, and the catalyst metal was restricted at the nanowires' tips. Raman spectroscopy evidenced the long range order in the crystalline structure of each sample. Electrical measurements indicated that variable range hopping was the dominant mechanism in carrier transport for all devices, with similar hopping distance, regardless the material used as catalyst. Then, in spite of the differences in synthesis temperatures and nanowires diameters, the catalyst metals have not affected the composition and crystalline quality of the germanium nanowires nor the carrier transport in the germanium nanowire network devices. - Highlights: • Ge nanowires were grown by VLS method using Au, Ag, Cu, In and Ni as catalysts. • All nanowires presented high single crystalline quality and long range order. • Devices showed semiconducting behavior having VRH as dominant transport mechanism. • The metal catalyst did not influence structural properties or the transport mechanism.

  17. On the omnipresent background gamma radiation of the continuous spectrum

    Science.gov (United States)

    Banjanac, R.; Maletić, D.; Joković, D.; Veselinović, N.; Dragić, A.; Udovičić, V.; Aničin, I.

    2014-05-01

    The background spectrum of a germanium detector, shielded from the radiations arriving from the lower and open for the radiations arriving from the upper hemisphere, is studied by means of absorption measurements, both in a ground level and in an underground laboratory. The low-energy continuous portion of this background spectrum that peaks at around 100 keV, which is its most intense component, is found to be of very similar shape at the two locations. It is established that it is mostly due to the radiations of the real continuous spectrum, which is quite similar to the instrumental one. The intensity of this radiation is in our cases estimated to about 8000 photons/(m2s·2π·srad) in the ground level laboratory, and to about 5000 photons/(m2s·2π·srad) in the underground laboratory, at the depth of 25 m.w.e. Simulations by GEANT4 and CORSIKA demonstrate that this radiation is predominantly of terrestrial origin, due to environmental gamma radiations scattered off the materials that surround the detector (the "skyshine radiation"), and to a far less extent to cosmic rays of degraded energy.

  18. Semiconductor detectors for soft γ-ray astrophysics

    Science.gov (United States)

    Lebrun, François

    2006-07-01

    The study of γ-ray bursts, compact objects, nucleosynthesis and supernova remnants triggers the most interest today in the soft γ-ray domain. These topics have various experimental requirements with emphasis either on imaging or on spectroscopy. Recent progress has shown the great potential of semiconductor detectors for both applications at the expense of classical scintillators such as NaI or CsI. They also gave insight into their long-term in-orbit behaviour. Room temperature semiconductor detectors, particularly CdTe and CdZnTe, are confirmed as the best choice for imaging applications. As illustrated by the INTEGRAL/ISGRI camera, the CdTe stability is better than expected; its internal background is comparable to that of scintillators, and the spectroscopic degradation in space is slow with a lifetime of about 40 years on an eccentric orbit. Cooled germanium detectors offer the best energy resolution but degrade more rapidly under the cosmic-ray irradiation. However, the INTEGRAL/SPI spectrometer has demonstrated that periodic in-orbit annealings, allowing for a full recovery of the energy resolution, can maintain the spectroscopic performance over several years. Most future projects, focussing on coded mask or Compton telescopes, will take advantage of the semiconductor technology, particularly that related to the ambient temperature detectors.

  19. Boron doping compensation of hydrogenated amorphous and polymorphous germanium thin films for infrared detection applications

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, M., E-mail: mmoreno@inaoep.mx [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Delgadillo, N. [Universidad Autónoma de Tlaxcala, Av. Universidad No. 1, Z. P. 90006 Tlaxcala (Mexico); Torres, A. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Ambrosio, R. [Technology and Engineering Institute, Ciudad Juarez University UACJ, Av. Del Charro 450N, Z. P. 32310 Chihuahua (Mexico); Rosales, P.; Kosarev, A.; Reyes-Betanzo, C.; Hidalga-Wade, J. de la; Zuniga, C.; Calleja, W. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico)

    2013-12-02

    In this work we have studied boron doping of hydrogenated amorphous germanium a-Ge:H and polymorphous germanium (pm-Ge:H) in low regimes, in order to compensate the material from n-type (due to oxygen contamination that commonly occurs during plasma deposition) to intrinsic, and in this manner improve the properties that are important for infrared (IR) detection, as activation energy (E{sub a}) and temperature coefficient of resistance (TCR). Electrical, structural and optical characterization was performed on the films produced. Measurements of the temperature dependence of conductivity, room temperature conductivity (σ{sub RT}), E{sub a} and current–voltage characteristics under IR radiation were performed in the compensated a-Ge:H and pm-Ge:H films. Our results demonstrate that, effectively, the values of E{sub a}, TCR and IR detection are improved on the a-Ge:H/pm-Ge:H films, using boron doping in low regimes, which results of interest for infrared detectors. - Highlights: • We reported boron doping compensation of amorphous and polymorphous germanium. • The films were deposited by plasma enhanced chemical vapor deposition. • The aim is to use the films as thermo-sensing elements in un-cooled microbolometers. • Those films have advantages over boron doped a-Si:H used in commercial detectors.

  20. Neutron-transmutation-doped germanium bolometers

    Science.gov (United States)

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  1. Search for $2\\beta$ decay of $^{106}$Cd with enriched $^{106}$CdWO$_4$ crystal scintillator in coincidence with four HPGe detectors

    CERN Document Server

    Belli, P; Brudanin, V B; Cappella, F; Caracciolo, V; Cerulli, R; Chernyak, D M; Danevich, F A; d'Angelo, S; Di Marco, A; Incicchitti, A; Laubenstein, M; Mokina, V M; Poda, D V; Polischuk, O G; Tretyak, V I; Tupitsyna, I A

    2016-01-01

    A radiopure cadmium tungstate crystal scintillator, enriched in $^{106}$Cd to 66%, with mass of 216 g ($^{106}$CdWO$_4$), was used to search for double beta decay processes in $^{106}$Cd in coincidence with four ultra-low background high purity germanium detectors in a single cryostat. New improved limits on the double beta processes in $^{106}$Cd have been set on the level of $10^{20}- 10^{21}$ yr after 13085 h of data taking. In particular, the half-life limit on the two neutrino electron capture with positron emission, $T_{1/2}^{2\

  2. Simulations of the muon-induced neutron background of the EDELWEISS-II experiment for Dark Matter search

    Energy Technology Data Exchange (ETDEWEB)

    Horn, O.M.

    2007-12-21

    In modern astroparticle physics and cosmology, the nature of Dark Matter is one of the central problems. Particle Dark Matter in form of WIMPs is favoured among many proposed candidates. The EDELWEISS direct Dark Matter search uses Germanium bolometers to detect these particles by nuclear recoils. Here, the use of two signal channels on an event-by-event basis, namely the heat and ionisation signal, enables the detectors to discriminate between electron and nuclear recoils. This technique leaves neutrons in the underground laboratory as the main background for the experiment. Besides ({alpha},n) reactions of natural radioactivity, neutrons are produced in electromagnetic and hadronic showers induced by cosmic ray muons in the surrounding rock and shielding material of the Germanium crystals. To reach high sensitivities, the EDELWEISS-II experiment, as well as other direct Dark Matter searches, has to efficiently suppress this neutron background. The present work is devoted to study the muon-induced neutron flux in the underground laboratory LSM and the interaction rate within the Germanium crystals by using the Monte Carlo simulation toolkit Geant4. To ensure reliable results, the implemented physics in the toolkit regarding neutron production is tested in a benchmark geometry and results are compared to experimental data and other simulation codes. Also, the specific energy and angular distribution of the muon flux in the underground laboratory as a consequence of the asymmetric mountain overburden is implemented. A good agreement of the simulated muon flux is shown in a comparison to preliminary experimental data obtained with the EDELWEISS-II muon veto system. Furthermore, within a detailed geometry of the experimental setup, the muon-induced background rate of nuclear recoils in the bolometers is simulated. Coincidences of recoil events in the Germanium with an energy deposit of the muoninduced shower in the plastic scintillators of the veto system are studied

  3. Interstitial oxygen in germanium and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Artacho, E.; Yndurain, F. [Instituto Nicolas Cabrera and Departamento de Fisica de la Materia Condensada, C-III Universidad Autonoma de Madrid, 28049 Madrid (Spain); Pajot, B. [Groupe de Physique des Solides (Unite Associee au CNRS), Tour 23, Universite Denis Diderot, 2 Place Jussieu, 75251 Paris Cedex 05 (France); Ramirez, R.; Herrero, C.P. [Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Khirunenko, L.I. [Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46, 252650 Kiev 22 (Ukraine); Itoh, K.M. [Department of Applied Physics and Physico-Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223 (Japan); Haller, E.E. [Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720 (United States)

    1997-08-01

    The microscopic structure of interstitial oxygen in germanium and its associated dynamics are studied both experimentally and theoretically. The infrared absorption spectrum is calculated with a dynamical matrix model based on first-principles total-energy calculations describing the potential energy for the nuclear motions. Spectral features and isotope shifts are calculated and compared with available experimental results. From new spectroscopic data on natural and on quasimonoisotopic germanium samples, new isotope shifts have been obtained and compared with the theoretical predictions. The low-energy spectrum is analyzed in terms of a hindered rotor model. A fair understanding of the center is achieved, which is then compared with interstitial oxygen in silicon. The oxygen atom is nontrivially quantum delocalized both in silicon and in germanium, but the physics is shown to be very different: while the Si-O-Si quasimolecule is essentially linear, the Ge-O-Ge structure is puckered. The delocalization in a highly anharmonic potential well of oxygen in silicon is addressed using path-integral Monte Carlo simulations, for comparison with the oxygen rotation in germanium. The understanding achieved with this new information allows us to explain the striking differences between both systems, in both the infrared and the far-infrared spectral regions, and the prediction of the existence of hidden vibrational modes, never directly observed experimentally, but soundly supported by the isotope-shift analysis. {copyright} {ital 1997} {ital The American Physical Society}

  4. Interstitial oxygen in germanium and silicon

    Science.gov (United States)

    Artacho, Emilio; Ynduráin, Félix; Pajot, Bernard; Ramírez, Rafael; Herrero, Carlos P.; Khirunenko, Ludmila I.; Itoh, Kohei M.; Haller, Eugene E.

    1997-08-01

    The microscopic structure of interstitial oxygen in germanium and its associated dynamics are studied both experimentally and theoretically. The infrared absorption spectrum is calculated with a dynamical matrix model based on first-principles total-energy calculations describing the potential energy for the nuclear motions. Spectral features and isotope shifts are calculated and compared with available experimental results. From new spectroscopic data on natural and on quasimonoisotopic germanium samples, new isotope shifts have been obtained and compared with the theoretical predictions. The low-energy spectrum is analyzed in terms of a hindered rotor model. A fair understanding of the center is achieved, which is then compared with interstitial oxygen in silicon. The oxygen atom is nontrivially quantum delocalized both in silicon and in germanium, but the physics is shown to be very different: while the Si-O-Si quasimolecule is essentially linear, the Ge-O-Ge structure is puckered. The delocalization in a highly anharmonic potential well of oxygen in silicon is addressed using path-integral Monte Carlo simulations, for comparison with the oxygen rotation in germanium. The understanding achieved with this new information allows us to explain the striking differences between both systems, in both the infrared and the far-infrared spectral regions, and the prediction of the existence of hidden vibrational modes, never directly observed experimentally, but soundly supported by the isotope-shift analysis.

  5. Polarization sensitivity of a segmented HPGe detector up to 10 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Hutter, C.; Babilon, M.; Bayer, W.; Galaviz, D.; Hartmann, T.; Mohr, P.; Mueller, S.; Rochow, W.; Savran, D.; Sonnabend, K.; Vogt, K.; Volz, S.; Zilges, A. E-mail: zilges@ikp.tu-darmstadt.de

    2002-08-21

    Linear {gamma}-ray polarization can be measured using segmented germanium detectors. The polarization sensitivity of the Compton scattering process leads to asymmetries in the signals of a segmented detector. We have measured the polarization sensitivity of a four-fold segmented large volume germanium detector up to photon energies of approximately 10 MeV for the first time. The detector and its performance are compared to smaller Compton polarimeters which have been analyzed in previous work. A possible application of the described Compton polarimeter will be parity assignments in photon scattering experiments.

  6. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  7. The background in the neutrinoless double beta decay experiment GERDA

    CERN Document Server

    Agostini, M; Andreotti, E; Bakalyarov, A M; Balata, M; Barabanov, I; Heider, M Barnabe; Barros, N; Baudis, L; Bauer, C; Becerici-Schmidt, N; Bellotti, E; Belogurov, S; Belyaev, S T; Benato, G; Bettini, A; Bezrukov, L; Bode, T; Brudanin, V; Brugnera, R; Budjas, D; Caldwell, A; Cattadori, C; Chernogorov, A; Cossavella, F; Demidova, E V; Domula, A; Egorov, V; Falkenstein, R; Ferella, A; Freund, K; Frodyma, N; Gangapshev, A; Garfagnini, A; Gotti, C; Grabmayr, P; Gurentsov, V; Gusev, K; Guthikonda, K K; Hampel, W; Hegai, A; Heisel, M; Hemmer, S; Heusser, G; Hofmann, W; Hult, M; Inzhechik, L V; Ioannucci, L; Csathy, J Janicsko; Jochum, J; Junker, M; Kihm, T; Kirpichnikov, I V; Kirsch, A; Klimenko, A; Knoepfle, K T; Kochetov, O; Kornoukhov, V N; Kuzminov, V V; Laubenstein, M; Lazzaro, A; Lebedev, V I; Lehnert, B; Liao, H Y; Lindner, M; Lippi, I; Liu, X; Lubashevskiy, A; Lubsandorzhiev, B; Lutter, G; Macolino, C; Machado, A A; Majorovits, B; Maneschg, W; Nemchenok, I; Nisi, S; O'Shaughnessy, C; Palioselitis, D; Pandola, L; Pelczar, K; Pessina, G; Pullia, A; Riboldi, S; Sada, C; Salathe, M; Schmitt, C; Schreiner, J; Schulz, O; Schwingenheuer, B; Schoenert, S; Shevchik, E; Shirchenko, M; Simgen, H; Smolnikov, A; Stanco, L; Strecker, H; Tarka, M; Ur, C A; Vasenko, A A; Volynets, O; von Sturm, K; Wagner, V; Walter, M; Wegmann, A; Wester, T; Wojcik, M; Yanovich, E; Zavarise, P; Zhitnikov, I; Zhukov, S V; Zinatulina, D; Zuber, K; Zuzel, G

    2014-01-01

    The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double beta decay of 76Ge. The signature of the signal is a monoenergetic peak at 2039 keV, the Q-value of the decay, Q_bb. To avoid bias in the signal search, the present analysis does not consider all those events, that fall in a 40 keV wide region centered around Q_bb. The main parameters needed for the neutrinoless double beta decay analysis are described. A background model was developed to describe the observed energy spectrum. The model contains several contributions, that are expected on the basis of material screening or that are established by the observation of characteristic structures in the energy spectrum. The model predicts a flat energy spectrum for the blinding window around Q_bb with a background index ranging from 17.6 to 23.8*10^{-3} counts/(keV kg yr). A part of the data not considered before has been used to test if the predictions of the background model...

  8. Conditioning the γ spectrometer for activity measurement at very high background

    Institute of Scientific and Technical Information of China (English)

    YAN Wei-Hua; ZHANG Li-Guo; ZHANG Zhao; XIAO Zhi-Gang

    2012-01-01

    The application of a high purity Germanium (HPGe) γ spectrometer in determining the fuel element burnup in a future reactor is studied.The HPGe detector is exposed by a 60Co source with varying irradiation rate from 10× 103 s-1 to 150× 103 s-1 to simulate the input counting rate in real reactor environment.A 137Cs and a 152Eu source are positioned at given distances to generate a certain event rate in the detector with the former being proposed as a labeling nuclide to measure the burnup of a fuel element.It is shown that both the energy resolution slightly increasing with the irradiation rate and the passthrough rate at high irradiation level match the requirement of the real application.The influence of the background is studied in the different parameter sets used in the specially developed procedure of background subtraction.It is demonstrated that with the typical input irradiation rate and 137Cs intensity relevant to a deep burnup situation,the precision of the 137Cs counting rate in the current experiment is consistently below 2.8%,indicating a promising feasibility of utilizing an HPGe detector in the burnup measurement in future bed-like reactors.

  9. Comparison of organic and inorganic germanium compounds in cellular radiosensitivity and preparation of germanium nanoparticles as a radiosensitizer.

    Science.gov (United States)

    Lin, Ming-Hsing; Hsu, Tzu-Sheng; Yang, Pei-Ming; Tsai, Meng-Yen; Perng, Tsong-Pyng; Lin, Lih-Yuan

    2009-03-01

    The aim of this work is to compare the radiosensitizing effect between organic and inorganic germanium compounds and to investigate whether nanometer-sized germanium particles can act as radiosensitizers. Bis (2-carboxyethylgermanium) sesquioxide (Ge-132), germanium oxide (GeO(2)) and germanium nanoparticles were used in this study. Cell viability was determined by clonogenic survival assay. Cellular DNA damage was evaluated by alkaline comet assay, confocal microscopy and the cellular level of phospho-histone H2AX (gamma-H2AX). Nanometer-sized germanium particles were fabricated. They have a similar radiosensitizing effect as that of GeO(2). Conversely, Ge-132 did not enhance the radiosensitivity of cells. Comet assay was employed to evaluate the level of DNA damage and confirmed that inorganic germanium compounds enhanced cellular radiosensitivity. Notably, the comet assay indicated that the nanoparticle itself caused a higher level of DNA damage. The possibility that germanium nanoparticles per se caused DNA damage was ruled out when the cellular level of gamma-H2AX was examined. We demonstrated that inorganic but not organic germanium compounds exerted radiosensitizing effect in cells. Nanometer-sized germanium particles were fabricated and were able to enhance the radiosensitivity of cells. Confounding effect may occur when comet assay is used to estimate the level of DNA damage in the presence of germanium nanoparticles.

  10. Experimentally determining the relative efficiency of spherically bent germanium and quartz crystals

    Science.gov (United States)

    Brown, G. V.; Beiersdorfer, P.; Hell, N.; Magee, E.

    2016-11-01

    We have used the EBIT-I electron beam ion trap at the Lawrence Livermore National Laboratory and a duplicate Orion High Resolution X-ray Spectrometer (OHREX) to measure the relative efficiency of a spherically bent quartz (10 1 ¯ 1) crystal (2d = 6.687 Å) and a spherically bent germanium (111) crystal (2d = 6.532 Å). L-shell X-ray photons from highly charged molybdenum ions generated in EBIT-I were simultaneously focussed and Bragg reflected by each crystal, both housed in a single spectrometer, onto a single CCD X-ray detector. The flux from each crystal was then directly compared. Our results show that the germanium crystal has a reflection efficiency significantly better than the quartz crystal, however, the energy resolution is significantly worse. Moreover, we find that the spatial focussing properties of the germanium crystal are worse than those of the quartz crystal. Details of the experiment are presented, and we discuss the advantages of using either crystal on a streak-camera equipped OHREX spectrometer.

  11. Imaging the oblique propagation of electrons in germanium crystals at low temperature and low electric field

    Energy Technology Data Exchange (ETDEWEB)

    Moffatt, R. A., E-mail: rmoffatt@stanford.edu; Cabrera, B.; Corcoran, B. M.; Kreikebaum, J. M.; Redl, P.; Shank, B.; Yen, J. J. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Young, B. A. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Department of Physics, Santa Clara University, Santa Clara, California 95053 (United States); Brink, P. L.; Cherry, M.; Tomada, A. [SLAC National Accelerator Facility, Menlo Park, California 94025 (United States); Phipps, A.; Sadoulet, B.; Sundqvist, K. M. [Department of Physics, University of California, Berkeley, California 94720 (United States)

    2016-01-11

    Excited electrons in the conduction band of germanium collect into four energy minima, or valleys, in momentum space. These local minima have highly anisotropic mass tensors which cause the electrons to travel in directions which are oblique to an applied electric field at sub-Kelvin temperatures and low electric fields, in contrast to the more isotropic behavior of the holes. This experiment produces a full two-dimensional image of the oblique electron and hole propagation and the quantum transitions of electrons between valleys for electric fields oriented along the [0,0,1] direction. Charge carriers are excited with a focused laser pulse on one face of a germanium crystal and then drifted through the crystal by a uniform electric field of strength between 0.5 and 6 V/cm. The pattern of charge density arriving on the opposite face is used to reconstruct the trajectories of the carriers. Measurements of the two-dimensional pattern of charge density are compared in detail with Monte Carlo simulations developed for the Cryogenic Dark Matter Search (SuperCDMS) to model the transport of charge carriers in high-purity germanium detectors.

  12. Background estimation techniques search for scalar top-quark production with top quark tagging in the all-hadronic channel at 13 TeV with the CMS detector

    Science.gov (United States)

    Joshi, Yagya; CMS Collaboration

    2017-01-01

    Within the search for supersymmetry in all-hadronic events with missing transverse momentum using top quark tagging the lost lepton and hadronic tau backgrounds estimations will be discussed. The performance of the tagging algorithm for the top candidates as well as the design of the algorithm will be demonstrated for the 2016 proton-proton running period at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. We are presenting our SUSY analysis from CMS Collaboration. This is one of the three talks from our analysis.

  13. Background estimation methods and exclusion limits for scalar top-quark production with top quark tagging in the all-hadronic channel at 13 TeV with the CMS detector

    Science.gov (United States)

    Wei, Hua; CMS Collaboration

    2017-01-01

    Discussed will be estimations of the Z to NuNu and QCD backgrounds with in the search for supersymmetry in all-hadronic events with missing transverse momentum using top quark tagging. This will be done for the 2016 proton-proton running period at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The exclusion limits are set on the masses of potential new particles in the context of three simplified models, T1tttt, T2tt and T5ttcc.

  14. Search for An Annual Modulation in Three Years of CoGeNT Dark Matter Detector Data

    CERN Document Server

    Aalseth, C E; Colaresi, J; Collar, J I; Leon, J Diaz; Fast, J E; Fields, N E; Hossbach, T W; Knecht, A; Kos, M S; Marino, M G; Miley, H S; Miller, M L; Orrell, J L; Yocum, K M

    2014-01-01

    Weakly Interacting Massive Particles (WIMPs) are well-established dark matter candidates. WIMP interactions with sensitive detectors are expected to display a characteristic annual modulation in rate. We release a dataset spanning 3.4 years of operation from a low-background germanium detector, designed to search for this signature. A previously reported modulation persists, concentrated in a region of the energy spectrum populated by an exponential excess of unknown origin. Its phase and period agree with phenomenological expectations, but its amplitude is a factor $\\sim$4-7 larger than predicted for a standard WIMP galactic halo. We consider the possibility of a non-Maxwellian local halo velocity distribution as a plausible explanation, able to help reconcile recently reported WIMP search anomalies.

  15. Results from a Low-Energy Analysis of the CDMS II Germanium Data

    CERN Document Server

    Ahmed, Z; Arrenberg, S; Bailey, C N; Balakishiyeva, D; Baudis, L; Bauer, D A; Brink, P L; Bruch, T; Bunker, R; Cabrera, B; Caldwell, D O; Cooley, J; Cushman, P; Daal, M; DeJongh, F; Dragowsky, M R; Duong, L; Fallows, S; Figueroa-Feliciano, E; Filippini, J; Fritts, M; Golwala, S R; Hall, J; Hennings-Yeomans, R; Hertel, S A; Holmgren, D; Hsu, L; Huber, M E; Kamaev, O; Kiveni, M; Kos, M; Leman, S W; Mahapatra, R; Mandic, V; McCarthy, K A; Mirabolfathi, N; Moore, D; Nelson, H; Ogburn, R W; Phipps, A; Pyle, M; Qiu, X; Ramberg, E; Rau, W; Reisetter, A; Saab, T; Sadoulet, B; Sander, J; Schnee, R W; Seitz, D N; Serfass, B; Sundqvist, K M; Tarka, M; Wikus, P; Yellin, S; Yoo, J; Young, B A; Zhang, J

    2010-01-01

    We report results from a reanalysis of data from the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory. Data taken between October 2006 and September 2008 using eight germanium detectors are reanalyzed with a lowered, 2 keV recoil-energy threshold, to give increased sensitivity to interactions from Weakly Interacting Massive Particles (WIMPs) with masses below ~10 GeV/c^2. This analysis provides stronger constraints than previous CDMS II results for WIMP masses below 9 GeV/c^2 and excludes parameter space associated with possible low-mass WIMP signals from the DAMA/LIBRA and CoGeNT experiments.

  16. Enhanced shower formation in aligned thick germanium crystals and discrimination against charged hadrons

    Science.gov (United States)

    Baurichter, A.; Kirsebom, K.; Medewaldt, R.; Mikkelsen, U.; Møller, S.; Uggerhøj, E.; Worm, T.; Elsener, K.; Ballestrero, S.; Sona, P.; Romano, J.

    1995-11-01

    The distribution of the energy released in a thin silicon detector placed on the downstream side of a thick germanium single crystal bombarded with a 150 GeV electron or pion beam along directions close to the axis or along random directions has been investigated. In view of a possible application to very high energy gamma ray astronomy and particle physics, the intrinsic capability of such a device to reject, on the basis of energy discrimination, unwanted events due to charged hadrons together with the resulting loss of efficiency for the detection of showers initiated by high energy electrons, is determined as a function of the chosen energy threshold.

  17. Spin transport in p-type germanium.

    Science.gov (United States)

    Rortais, F; Oyarzún, S; Bottegoni, F; Rojas-Sánchez, J-C; Laczkowski, P; Ferrari, A; Vergnaud, C; Ducruet, C; Beigné, C; Reyren, N; Marty, A; Attané, J-P; Vila, L; Gambarelli, S; Widiez, J; Ciccacci, F; Jaffrès, H; George, J-M; Jamet, M

    2016-04-27

    We report on the spin transport properties in p-doped germanium (Ge-p) using low temperature magnetoresistance measurements, electrical spin injection from a ferromagnetic metal and the spin pumping-inverse spin Hall effect method. Electrical spin injection is carried out using three-terminal measurements and the Hanle effect. In the 2-20 K temperature range, weak antilocalization and the Hanle effect provide the same spin lifetime in the germanium valence band (≈1 ps) in agreement with predicted values and previous optical measurements. These results, combined with dynamical spin injection by spin pumping and the inverse spin Hall effect, demonstrate successful spin accumulation in Ge. We also estimate the spin Hall angle θ(SHE) in Ge-p (6-7 x 10(-4) at room temperature, pointing out the essential role of ionized impurities in spin dependent scattering.

  18. Indium-carbon pairs in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Tessema, G; Vianden, R [Helmholtz Institut fuer Strahlen-und Kernphysik, Universitaet Bonn, Nussallee 14-16, 53115 Bonn (Germany)

    2003-08-06

    The interactions of carbon with the probe nucleus {sup 111}In have been studied in germanium using the perturbed angular correlation method, which has the ability to detect the microscopic environments of the probe atom by means of the interaction of the nuclear moments of the probe with the surrounding electromagnetic fields. At high dose carbon implantation in germanium two complexes have been identified by their unique quadrupole interaction frequencies. An interaction frequency of {nu}{sub Q1} = 207(1) MHz ({eta} = 0.16(3)) appeared at annealing temperatures below 650 deg. C. Above 650 deg. C, it was replaced by a second interaction frequency of {nu}{sub Q2} 500(1) MHz ({eta} = 0). The frequencies are attributed to two different carbon-indium pairs. The orientation of the corresponding electric field gradients and the thermal stability of the defect complexes are studied.

  19. New method of measurement IN VIVO Combination internal whole body with high-resolution germanium detectors. Rapid response in cross-contamination v; Nuevo metodo de medida in vivo de la combinacion interna en cuerpo entero con detectores de germanio de alta resolucion. respuesta rapida en contaminaciones cruzadas

    Energy Technology Data Exchange (ETDEWEB)

    Navarro Amaro, J. F.; Perez Lopez, B.; Lopez Ponte, M. A.; Navarro Bravo, T.

    2013-07-01

    This test method is a substantial improvement on the current capacities of the Personal Internal Dosimetry Service CIEMAT, as it will in a very short time make accurate measurements in vivo, excellent resolution and low background radiation environment in geometry whole body. The method will complement the existing laboratory [3] and may be used in emergencies or radiological accident in which the complexity of measuring spectra (cross contamination, multipicos interference) require a higher spectral resolution. (Author)

  20. Production, characterization and operation of {sup 76}Ge enriched BEGe detectors in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Bode, T.; Budjas, D.; Janicsko Csathy, J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Allardt, M.; Barros, N.; Domula, A.; Lehnert, B.; Wester, T.; Wilsenach, H.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; D' Andrea, V.; Ioannucci, L.; Junker, M.; Laubenstein, M.; Macolino, C.; Nisi, S.; Zavarise, P. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Gurentsov, V.; Inzhechik, L.V.; Kazalov, V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Baudis, L.; Benato, G.; Walter, M. [Physik Institut der Universitaet Zuerich, Zurich (Switzerland); Bauer, C.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Strecker, H.; Wagner, V.; Wegmann, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Becerici-Schmidt, N.; Caldwell, A.; Liao, H.Y.; Majorovits, B.; O' Shaughnessy, C.; Palioselitis, D.; Schulz, O.; Vanhoefer, L. [Max-Planck-Institut fuer Physik, Munich (Germany); Bellotti, E.; Pessina, G. [Universita Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN Milano Bicocca, Milan (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Sada, C.; Von Sturm, K. [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padua (Italy); INFN Padova, Padua (Italy); Borowicz, D. [Jagiellonian University, Institute of Physics, Cracow (Poland); Joint Institute for Nuclear Research, Dubna (Russian Federation); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Shevchik, E.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C.; Gotti, C. [INFN Milano Bicocca, Milan (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C.; Schuetz, A.K. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Misiaszek, M.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Cracow (Poland); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Hult, M.; Lutter, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Klimenko, A.; Lubashevskiy, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Lippi, I.; Stanco, L.; Ur, C.A. [INFN Padova, Padua (Italy); Pandola, L. [INFN Laboratori Nazionali del Sud, Catania (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano, Dipartimento di Fisica, Milan (Italy); INFN Milano (Italy); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Collaboration: GERDA Collaboration

    2015-02-01

    The GERmanium Detector Array (GERDA) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay (0νββ) of {sup 76}Ge. Germanium detectors made of material with an enriched {sup 76}Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of the experiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new {sup 76}Ge enriched detectors of broad energy germanium (BEGe)- type were produced. A subgroup of these detectors has already been deployed in GERDA during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the {sup 76}Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of GERDA Phase II. (orig.)

  1. Vacancy-indium clusters in implanted germanium

    KAUST Repository

    Chroneos, Alexander I.

    2010-04-01

    Secondary ion mass spectroscopy measurements of heavily indium doped germanium samples revealed that a significant proportion of the indium dose is immobile. Using electronic structure calculations we address the possibility of indium clustering with point defects by predicting the stability of indium-vacancy clusters, InnVm. We find that the formation of large clusters is energetically favorable, which can explain the immobility of the indium ions. © 2010 Elsevier B.V. All rights reserved.

  2. Epitaxial silicon and germanium on buried insulator heterostructures and devices

    Science.gov (United States)

    Bojarczuk, N. A.; Copel, M.; Guha, S.; Narayanan, V.; Preisler, E. J.; Ross, F. M.; Shang, H.

    2003-12-01

    Future microelectronics will be based upon silicon or germanium-on-insulator technologies and will require an ultrathin (<10 nm), flat silicon or germanium device layer to reside upon an insulating oxide grown on a silicon wafer. The most convenient means of accomplishing this is by epitaxially growing the entire structure on a silicon substrate. This requires a high quality crystalline oxide and the ability to epitaxially grow two dimensional, single crystal films of silicon or germanium on top of this oxide. We describe a method based upon molecular beam epitaxy and solid-phase epitaxy to make such structures and demonstrate working field-effect transistors on germanium-on-insulator layers.

  3. Smooth germanium nanowires prepared by a hydrothermal deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.Z., E-mail: lzpei1977@163.com [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhao, H.S. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Tan, W. [Henkel Huawei Electronics Co. Ltd., Lian' yungang, Jiangsu 222006 (China); Yu, H.Y. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Chen, Y.W. [Department of Materials Science, Fudan University, Shanghai 200433 (China); Fan, C.G. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhang, Qian-Feng, E-mail: zhangqf@ahut.edu.cn [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China)

    2009-11-15

    Smooth germanium nanowires were prepared using Ge and GeO{sub 2} as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  4. Bottom-up assembly of metallic germanium.

    Science.gov (United States)

    Scappucci, Giordano; Klesse, Wolfgang M; Yeoh, LaReine A; Carter, Damien J; Warschkow, Oliver; Marks, Nigel A; Jaeger, David L; Capellini, Giovanni; Simmons, Michelle Y; Hamilton, Alexander R

    2015-08-10

    Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (10(19) to 10(20) cm(-3)) low-resistivity (10(-4)Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory.

  5. Platinum germanium ordering in UPtGe

    Science.gov (United States)

    Hoffmann, Rolf-Dieter; Pöttgen, Rainer; Lander, Gerry H.; Rebizant, Jean

    2001-09-01

    The non-centrosymmetric structure of UPtGe was investigated by X-ray diffraction on both powders and single crystals: EuAuGe type, Imm2, a=432.86(5), b=718.81(8), c=751.66(9) pm, wR2=0.0738 for 399 F2 values and 22 variables. The platinum and germanium atoms form two-dimensional layers of puckered Pt 3Ge 3 hexagons with short PtGe intralayer distances of 252 and 253 pm. These condensed two-dimensionally infinite nets are interconnected to each other via weak PtPt contacts with bond distances of 300 pm. The two crystallographically independent uranium atoms are situated above and below the six-membered platinum-germanium rings. The U1 atoms have six closer germanium neighbors while the U2 atoms have six closer platinum neighbors. The group-subgroup relation with the KHg 2 type structure is presented.

  6. Nanoscale resonant-cavity-enhanced germanium photodetectors with lithographically defined spectral response for improved performance at telecommunications wavelengths.

    Science.gov (United States)

    Balram, Krishna C; Audet, Ross M; Miller, David A B

    2013-04-22

    We demonstrate the use of a subwavelength planar metal-dielectric resonant cavity to enhance the absorption of germanium photodetectors at wavelengths beyond the material's direct absorption edge, enabling high responsivity across the entire telecommunications C and L bands. The resonant wavelength of the detectors can be tuned linearly by varying the width of the Ge fin, allowing multiple detectors, each resonant at a different wavelength, to be fabricated in a single-step process. This approach is promising for the development of CMOS-compatible devices suitable for integrated, high-speed, and energy-efficient photodetection at telecommunications wavelengths.

  7. Measurement of the $Z$ production in association with jets at $\\sqrt{s}$ = 8 TeV with the ATLAS detector: background validation, underlying event and fragmentation corrections

    CERN Document Server

    Ortega Gama, Felipe Gilberto

    2015-01-01

    The procedure to validate the Monte Carlo predictions for the $t\\bar{t}$ background in the context of the $Z$+jets analysis using the data taken in 2012 at $\\sqrt{s} =$ 8 TeV with a total integrated luminosity of 20.3 fb$^{-1}$ is presented. Since this is the main background to the analysis, validation is needed to use the Monte Carlo for its description. The generators analyzed were POWHEG interfaced to PYTHIA and MC@NLO. A disagreement in the POWHEG+PYTHIA prediction was found, and in consequence Monte Carlo reweighting was performed. Finally the procedure to get a preliminary sample to compute parton-to-hadron correction factors is presented.

  8. Effect of prolonged annealing on the performance of coaxial Ge gamma-ray detectors

    NARCIS (Netherlands)

    Owens, A.; Brandenburg, S.; Buis, E. -J.; Kozorezov, A. G.; Kraft, S.; Ostendorf, R. W.; Quarati, F.

    2007-01-01

    The effects of prolonged annealing at elevated temperatures have been investigated in a 53 cm(3) closed-end coaxial high purity germanium detector in the reverse electrode configuration. The detector was multiply annealed at 100 degrees C in block periods of 7 days. After each anneal cycle it was co

  9. Radiation Hardening of Silicon Detectors

    CERN Multimedia

    Leroy, C; Glaser, M

    2002-01-01

    %RD48 %title\\\\ \\\\Silicon detectors will be widely used in experiments at the CERN Large Hadron Collider where high radiation levels will cause significant bulk damage. In addition to increased leakage current and charge collection losses worsening the signal to noise, the induced radiation damage changes the effective doping concentration and represents the limiting factor to long term operation of silicon detectors. The objectives are to develop radiation hard silicon detectors that can operate beyond the limits of the present devices and that ensure guaranteed operation for the whole lifetime of the LHC experimental programme. Radiation induced defect modelling and experimental results show that the silicon radiation hardness depends on the atomic impurities present in the initial monocrystalline material.\\\\ \\\\ Float zone (FZ) silicon materials with addition of oxygen, carbon, nitrogen, germanium and tin were produced as well as epitaxial silicon materials with epilayers up to 200 $\\mu$m thickness. Their im...

  10. Features of the gas discharge in the narrow gap micro-pattern gas detectors (MPGD) at a high level of alpha-particles background

    CERN Document Server

    Razin, V I

    2010-01-01

    In given article preliminary results of the research of the electron multiplication in MPGD are presented at a high level of alpha-particles background. This work has expanded borders of understanding of the streamer mode nature. It is seen as a complex from electrostatic and electromagnetic interactions which begin with appearance of the precursor in plasma state. In an inter-electrode gap the plasma oscillations occur, accompanied by longitudinal elastic waves of ionization, which can reach the cathode surface with induced negative charge. With the release of this charge due to previously established conducting channel there is a strong current pulse, accompanied by the emission due to recombination of positive and negative ions and a thin cord or streamer derive. In the aim of the MPGD protection from the spark breakdown at a high level of the alpha-particle background the next gas composition from a buffer, cooling and electronegative components are offered: 70% He +28% CF4 +2% SF6.

  11. Ultraviolet-light-induced processes in germanium-doped silica

    DEFF Research Database (Denmark)

    Kristensen, Martin

    2001-01-01

    A model is presented for the interaction of ultraviolet (UV) light with germanium-doped silica glass. It is assumed that germanium sites work as gates for transferring the excitation energy into the silica. In the material the excitation induces forbidden transitions to two different defect states...

  12. Ionization Collection in Detectors of the Cryogenic Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, Arran T.J. [Univ. of California, Berkeley, CA (United States)

    2016-01-01

    Determining the composition of dark matter is at the forefront of modern scientific research. There is compelling evidence for the existence of vast quantities of dark matter throughout the universe, however it has so-far eluded all direct detection efforts and its identity remains a mystery. Weakly interacting massive particles (WIMPs) are a favored dark matter candidate and have been the primary focus of direct detection for several decades. The Cryogenic Dark Matter Search (CDMS) has developed the Z-dependent Ionization and Phonon (ZIP) detector to search for such particles. Typically made from germanium, these detectors are capable of distinguishing between electromagnetic background and a putative WIMP signal through the simultaneous measurement of ionization and phonons produced by scattering events. CDMS has operated several arrays of these detectors at the Soudan Underground Laboratory (Soudan, MN, USA) resulting in many competitive (often world-leading) WIMP exclusion limits. This dissertation focuses on ionization collection in these detectors under the sub-Kelvin, low electric field, and high crystal purity conditions unique to CDMS. The design and performance of a fully cryogenic HEMT-based amplifier capable of achieving the SuperCDMS SNOLAB ionization energy resolution goal of 100 eVee is presented. The experimental apparatus which has been used to record electron and hole properties under CDMS conditions is described. Measurements of charge transport, trapping, and impact ionization as a function of electric field in two CDMS detectors are shown, and the ionization collection efficiency is determined. The data is used to predict the error in the nuclear recoil energy scale under both CDMSlite and iZIP operating modes. A two species, two state model is developed to describe how ionization collection and space charge generation in CDMS detectors are controlled by the presence of “overcharged” D- donor and A+ acceptor impurity states. The thermal

  13. An MCMC-based waveform analysis with p-type point contact detectors in the MAJORANA DEMONSTRATOR

    Science.gov (United States)

    Shanks, Benjamin; MAJORANA Collaboration

    2017-01-01

    Statistical signal processing can be a powerful tool for extracting as much information as possible from raw data. By fitting data to a physical model of signal generation on an event-by-event basis, it can be used to perform precise event reconstruction and enable efficient background rejection. Searches for neutrinoless double-beta decay must achieve extremely low backgrounds to reach sensitivities required for discovery, and so can benefit greatly from this analysis technique. The MAJORANA DEMONSTRATOR has implemented a Markov Chain Monte Carlo (MCMC) signal processing algorithm to fit waveforms from p-type point contact (PPC) germanium detectors. After a machine learning step to tune detector fields and electronics response parameters, the MCMC algorithm is able to reconstruct the time, energy and position of interactions within the PPC detector. The parameters estimated with this method will find many applications within the DEMONSTRATOR physics program, including background identification and rejection. This will prove important as the DEMONSTRATOR aims to reach its background goal of < 3 counts/tonne/yr in the region of interest. This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.

  14. Data-driven background estimation for the H -> tau+tau- -> lh search at 7 TeV with the ATLAS detector

    CERN Document Server

    The ATLAS collaboration

    2010-01-01

    Events characterised by the presence of an electron or muon, plus a hadronically decaying tau lepton and large missing transverse momentum are searched for in 7 TeV proton-proton collision data at the LHC. This event topology is of interest to the search for Higgs bosons with H -> tau+tau- -> lh (l=e,mu and h=hadronically decaying tau). The total integrated luminosity of the analysed data is 310 nb-1. Candidate events with missing transverse momentum above 20 GeV were found, 12 in the electron and 17 in the muon channels. The sum is consistent with 25+-9 expected from a data-driven background estimation and the observed visible mass distribution is agreed with the shape from the estimation. This note describes how this estimation is made, using information from data and Monte Carlo simulation.

  15. Yunnan Chihong Zinc & Germanium Co.,Ltd.Invested RMB 300 Million for Germanium Project with Output 30 Tons/Year

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>Recently,Yunnan Chihong Zinc & Germanium Co.,Ltd.,an A-share listed company held by Yunnan Metallurgical Group Co.,Ltd.,kicked off its construction of a project for comprehen- sive utilization of lead-zinc associated metal germanium resources to be output at 30 tons/year.It is introduced that the investment

  16. Silicon/Germanium Molecular Beam Epitaxy

    OpenAIRE

    2006-01-01

    Molecular Beam Epitaxy (MBE) is a well-established method to grow low-dimensional structures for research applications. MBE has given many contributions to the rapid expanding research-area of nano-technology and will probably continuing doing so. The MBE equipment, dedicated for Silicon/Germanium (Si/Ge) systems, at Karlstads University (Kau) has been studied and started for the first time. In the work of starting the system, all the built in interlocks has been surveyed and connected, and t...

  17. Tensile strain mapping in flat germanium membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rhead, S. D., E-mail: S.Rhead@warwick.ac.uk; Halpin, J. E.; Myronov, M.; Patchett, D. H.; Allred, P. S.; Wilson, N. R.; Leadley, D. R. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Shah, V. A. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Department of Engineering, University of Warwick, Coventry, CV4 7AL (United Kingdom); Kachkanov, V.; Dolbnya, I. P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Reparaz, J. S. [ICN2 - Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); Sotomayor Torres, C. M. [ICN2 - Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain)

    2014-04-28

    Scanning X-ray micro-diffraction has been used as a non-destructive probe of the local crystalline quality of a thin suspended germanium (Ge) membrane. A series of reciprocal space maps were obtained with ∼4 μm spatial resolution, from which detailed information on the strain distribution, thickness, and crystalline tilt of the membrane was obtained. We are able to detect a systematic strain variation across the membranes, but show that this is negligible in the context of using the membranes as platforms for further growth. In addition, we show evidence that the interface and surface quality is improved by suspending the Ge.

  18. Radiation piezoelectric effect in germanium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1977-06-01

    Irradiation with ionizing particles of a germanium single crystal and uniaxial deformation at right-angles to the particle beam produced an electric field and a corresponding emf due to the radiation piezoelectric effect. Measurements were carried out when such a single crystal was irradiated with ..cap alpha.. particles and protons. The piezoelectric emf increased linearly with the compressive stress and the ..cap alpha..-particle flux intensity. The emf depended weakly on the particle energy. The observed effect was due to the anisotropy resulting from uniaxial deformation.

  19. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  20. Characteristics of a 4-fold segmented clover detectore

    Institute of Scientific and Technical Information of China (English)

    LOU Jian-Ling; LI Zhi-Huan; YE Yan-Lin; JIANG Dong-Xing; HUA Hui; LI Xiang-Qing; ZHANG Shuang-Quan; ZHENG Tao; GE Yu-Cheng; KONG Zan; L(U) Lin-Hui; LI Chen; LU Fei; FAN Feng-Ying; LI Zhong-Yu; CAO Zhong-Xin; MA Li-Ying; Faisal. J. Q.; XU Hu-Shan; HU Zheng-Guo; WANG Meng; LEI Xiang-Guo; DUAN Li-Min; XIAO Zhi-Gang; ZHAN Wen-Long; XIAO Guo-Qing; HUANG Tian-Heng; FU Fen; ZHANG Xue-Heng; ZHENG Chuan; YU Yu-Song; TU Xiao-Lin; ZHANG Ya-Peng; YANG Yan-Yun; ZHANG Hong-Bin; TANG Bin; TIAN Yu-Lin; OUYANG Zhen; HUANG Mei-Rong; XU Zhi-Guo; YUE Ke; GAO Qi

    2009-01-01

    Four high-purity germanium 4-fold segmented Clover detectors have been applied in the experiment of neutron-rich nucleus 21N. The performance of those four Clovers have been tested with radioactive sources and in-beam experiments, and the main results including energy resolution, peak-to-total ratios, the variation of the hit pattern distribution in different crystals of one Clover detector with the energy of γ ray, and absolute full energy peak detection efficiency curve, were presented.

  1. SUSY searches at $\\sqrt{s}$ = 13 TeV with two same-sign leptons or three leptons, jets and $E_T^{miss}$ at the ATLAS detector - Background estimation and latest analysis results.

    CERN Document Server

    Tornambe, Peter; The ATLAS collaboration

    2017-01-01

    This proceeding summarizes a search for supersymmetric phenomena in final states with two leptons (electrons or muons) of the same electric charge or three leptons, jets and missing transverse energy. While the same-sign or three leptons signature is present in many SUSY scenarios, SM processes leading to such events have very small cross-sections. Therefore, this analysis benefits from a small SM background in the signal regions leading to a good sensitivity especially in SUSY scenarios with compressed mass spectra or in which the R-parity is not conserved. The search was performed with the full dataset recorded with the ATLAS detector during the year 2015 and 2016 corresponding to a total integrated luminosity of 36.1 fb$^{-1}$. No significant excess above the Standard Model expectations is observed. The results are interpreted in several simplified supersymmetric models featuring R-parity conservation or R-parity violation, extending the exclusion limits from previous searches.

  2. Effects of Germanium on Movement of Dislocations in p-Type Czochralski Silicon

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    By indentation at room temperature followed by annealing at high temperatures, the pinning effect of germanium on dislocations in germanium-doped Czochralski silicon was investigated. Experimental results show that the dislocations in germanium-doped Czochralski silicon move shorter and slower than those in Czochralski silicon undoping with germanium when the concentration of germanium is over 1×1018 cm-3. The retarding velocity of dislocations is contributed to the dislocations pinning effect of the strain field introduced by the high concentration germanium, and the Ge4B cluster and the oxygen precipitation those are preferred to form at higher concentration germanium.

  3. Detector resolution in positron annihilation Doppler broadening experiments

    Science.gov (United States)

    Heikinheimo, J.; Ala-Heikkilä, J.; Tuomisto, F.

    2017-09-01

    Positron annihilation Doppler broadening spectroscopy characterizes lattice point defects and is sensitive to very small vacancy densities. High-purity germanium detectors are generally used for recording the Doppler broadening spectrum because they provide good energy resolution and stability. However, the energy resolution of a germanium detector is somewhat dependent on the photon absorption geometry in the detector crystal. This change in the energy resolution changes also the Doppler broadening parameters. To observe the dependency of the resolution function and the Doppler broadening parameters, we performed experiments on Si samples in standard sandwich configuration with a Na-22 source. We changed the radiation geometry of the incident gamma photons via altering the distance of the sample-source package from the detector and by adding steel between the source and the detector. We observed the change of the absorption geometry in the germanium detector crystal by doing Monte Carlo simulations. The aim of this study is to help understand and decide what is the best way to compare the Doppler broadening parameters obtained with different measurement setups and even with the same setup when the geometry in the measurements has changed.

  4. Crystal-growth Underground Breeding Extra-sensitive Detectors

    Science.gov (United States)

    Mei, Dongming

    2012-02-01

    CUBED (Center for Ultra-Low Background Experiments at DUSEL) collaborators from USD, SDSMT, SDSU, Sanford Lab, and Lawrence Berkeley National Laboratory are working on the development of techniques to manufacture crystals with unprecedented purity levels in an underground environment that may be used by experiments proposed for DUSEL. The collaboration continues to make significant progress toward its goal of producing high purity germanium crystals. High quality crystals are being pulled on a weekly basis at the temporary surface growth facility located on the USD campus. The characterization of the grown crystals demonstrates that the impurity levels are nearly in the range of the needed impurity level for detector-grade crystals. Currently, the crystals are being grown in high-purity hydrogen atmosphere. With an increase in purity due to the zone refining, the group expects to grow high-purity crystals by the end of 2011. The one third of the grown crystals will be manufactured to be detectors; the remaining will be fabricated in to wafers that have large applications in electro and optical devices as well as solar panels. This would allow the research to be connected to market and create more than 30 jobs and multi millions revenues in a few years.

  5. Solar neutrino physics with low-threshold dark matter detectors

    Science.gov (United States)

    Billard, J.; Strigari, L. E.; Figueroa-Feliciano, E.

    2015-05-01

    Dark matter detectors will soon be sensitive to Solar neutrinos via two distinct channels: coherent neutrino-nucleus and neutrino-electron elastic scatterings. We establish an analysis method for extracting Solar model properties and neutrino properties from these measurements, including the possible effects of sterile neutrinos which have been hinted at by some reactor experiments and cosmological measurements. Even including sterile neutrinos, through the coherent scattering channel, a 1 ton-year exposure with a low-threshold background free Germanium detector could improve on the current measurement of the normalization of the B 8 Solar neutrino flux down to 3% or less. Combining with the neutrino-electron elastic scattering data will provide constraints on both the high- and low-energy survival probability and will improve on the uncertainty on the active-to-sterile mixing angle by a factor of 2. This sensitivity to active-to-sterile transitions is competitive and complementary to forthcoming dedicated short baseline sterile neutrino searches with nuclear decays. Finally, we show that such solar neutrino physics potentials can be reached as long as the signal-to-noise ratio is better than 0.1.

  6. Muonic background in the GERDA 0νββ experiment

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Kai Lorenz

    2014-07-18

    Muons can cause a non-negligible background in rare-event experiments like GERDA which searches for the neutrinoless double-beta decay (0νββ) in the isotope {sup 76}Ge. The kinetic energy of cosmogenic muons depends on the progenitor particle, hence they can have an energy which is high enough to penetrate even the deepest underground laboratory. For this reason GERDA is equipped with a powerful muon veto system which in most parts was developed in Tuebingen. In this work, a plastic scintillator veto was added to the existing water Cherenkov veto in order to protect a weak spot. Existing hardware was maintained, frequently calibrated and faulty modules exchanged when possible. The DAQ and analysis was upgraded in order to run both veto systems simultaneously. The system was simulated with a GEANT4-based Monte-Carlo simulation. Multiplicity and photon spectra of the simulations were found to be in good agreement with the experimental data and give an efficiency for the detection of energy-depositing muons of ε{sup sim}{sub μd}=(99.935±0.015)%. Two external effects were clearly identified in the muon veto data: additional muons originating from the CNGS-beam at CERN and an annual flux modulation due to seasonal atmospheric temperature changes. Both effects were measured with high precision and agree well with other experiments. Coincidences with the germanium detectors were studied and muon-germanium coincidences were clearly identified. By defining a muon cut, a muon rejection efficiency of the germanium detectors of ε{sup Ge}{sub μr}=(99.2{sup +0.3}{sub -0.4})% was found. Two methods were pursued to find radioactive isotopes produced by muons through spallation or neutron activation. The result of both methods is compatible with zero, i.e. no events could be clearly identified. The overall functionality of the muon veto for Phase I of GERDA was successfully maintained and verified.

  7. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.

    2015-06-18

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  8. The Genesis of Lincang Germanium Deposit—A Preliminary Investigation

    Institute of Scientific and Technical Information of China (English)

    胡瑞忠; 叶造军; 等

    1996-01-01

    The mechanism of formation of the Lincang germanium deposit is discussed in the light of the spatial distribution of Ge-rich coal and siliceous rocks,the sulfur isotopic composition of pyrite in the Ge-rich coal,the variation of Ge abundance in the coal seams and the geochemical characteristics of the siliceous rocks.The results show that the siliceous rocks intercalated with the coal seamw were deposited from a hyrothermal medium through which germanium was enriched in the coal beds.The primary source of germanium is thought to be the Gerich granite in the basement of the sedimentary basin.

  9. Temperature-dependant study of phosphorus ion implantation in germanium

    Science.gov (United States)

    Razali, M. A.; Smith, A. J.; Jeynes, C.; Gwilliam, R. M.

    2012-11-01

    We present experimental results on shallow junction formation in germanium by phosphorus ion implantation and standard rapid thermal processing. An attempt is made to improve phosphorus activation by implanting phosphorus at high and low temperature. The focus is on studying the germanium damage and phosphorus activation as a function of implant temperature. Rutherford backscattering spectrometry with channelling and Hall Effect measurements are employed for characterisation of germanium damage and phosphorus activation, respectively. High and low temperature implants were found to be better compared to room temperature implant.

  10. Oxygen defect processes in silicon and silicon germanium

    Energy Technology Data Exchange (ETDEWEB)

    Chroneos, A., E-mail: alexander.chroneos@imperial.ac.uk [Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry CV1 5FB (United Kingdom); Department of Materials, Imperial College London, London SW7 2BP (United Kingdom); Sgourou, E. N.; Londos, C. A. [Solid State Section, Physics Department, University of Athens, Panepistimiopolis, Zografos, 157 84 Athens (Greece); Schwingenschlögl, U. [PSE Division, KAUST, Thuwal 23955-6900 (Saudi Arabia)

    2015-06-15

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  11. Heteroepitaxial growth of relaxed germanium on silicon

    Science.gov (United States)

    Nayfeh, Ammar

    Germanium has a many advantages to silicon as a semiconductor material. Most importantly, Ge has a larger lattice mobility (hole and electron) compared to Si. The larger mobility provides a higher source injection velocity, which translates into higher drive current and smaller gate delay. In addition, the near-infrared photodetection and compatibility with Si technology of Ge-based materials, allow simultaneous fabrication of photodetectors and Si CMOS receiver circuits in a monolithically integrated fashion. The main disadvantage is that germanium based oxides are not stable and but rather soluble in water. But the inevitable shift to high-kappa/metal gate has made Ge a serious option nevertheless. In order for the semiconductor industry to take advantage of the properties of Ge, heterogeneous integration of Ge and Si must be possible since using bulk Ge is not viable. However, Ge growth on Si is hampered by the large lattice mismatch (4%) between Ge and Si which results in growth that is dominated by "islanding" and misfit dislocations. The following thesis, investigates both the islanding and dislocation density issues associated with this problem. A 90% reduction of surface roughness by hydrogen annealing is demonstrated accompanied with a theoretical model to explain these results. Using multi-steps of growth and hydrogen annealing, Ge layers on Si were achieved with dislocation density as low as 1x107cm-2 and Rrms surface roughness of 2.5nm. The method was patented and named, Multiple Hydrogen Annealing for Heteroexpitaxy (MHAH). A complete experimentally based theoretical model is provided that explains these results. In addition, MOSCAPS, a pMOS transistor, and a MSM photodetector are fabricated on the MHAH-Ge substrates. Also high-kappa/metal gate compatibility is demonstrated on MHAH-Ge. The electrical results indicate that MHAH-Ge approaches the electrical quality of bulk Ge. These results point to a promising step in achieving heterogeneous integration

  12. Berkeley Low Background Counting Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Sensitive low background assay detectors and sample analysis are available for non-destructive direct gamma-ray assay of samples. Neutron activation analysis is also...

  13. Positron annihilation in neutron-irradiated germanium

    Energy Technology Data Exchange (ETDEWEB)

    Bartenev, G.M.; Bardyshev, I.I.; Erchak, D.P.; Stel' makh, V.F.; Tsyganov, A.D.

    1979-04-01

    The annealing of radiation defects in a germanium single crystal irradiated with 10/sup 18/ neutrons/cm/sup 2/ was studied by positron annihilation, ESR, and resistivity measurements. It was found that positrons are trapped by radiation defects. The intensity of the narrow component of the angular correlation of the annihilation radiation yielded the concentration of defect clusters in the irradiated sample n/sub d/approx. =3 x 10/sup 14/ cm/sup -3/. Three characteristic annealing stages were identified. At 160--200 /sup 0/C, point defects were annealed within the crystal. At 200--320 /sup 0/C, there was ''loosening'' of the clusters, and the charge state of the defects changed. At 320--550 /sup 0/C, the clusters were annealed.

  14. Raman spectroscopy of hydrogen molecules in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, M. [Technische Universitaet Dresden, 01062 Dresden (Germany)]. E-mail: martin.hiller@physik.phy.tu-dresden.de; Lavrov, E.V. [Technische Universitaet Dresden, 01062 Dresden (Germany); Weber, J. [Technische Universitaet Dresden, 01062 Dresden (Germany)

    2006-04-01

    Single-crystalline germanium samples exposed to hydrogen and/or deuterium plasma are studied by Raman scattering. Two bands at 1980 and 4155cm{sup -1} are assigned to local vibrational modes of Ge-H and H{sub 2}, respectively. Polarization sensitive Raman scattering spectra suggest that the plasma treatment results in {l_brace}111{r_brace} platelets whose basic units are Ge-H bonds. The signal at 4155cm{sup -1} is shown to result from molecular hydrogen trapped within these platelets. Another broad Raman signal around 3930cm{sup -1} seems to be due to H{sub 2} trapped in some other type of voids formed during the plasma treatment. Two sharp peaks at 3826 and 3834cm{sup -1} are assigned to ortho- and para-H{sub 2} trapped at the interstitial T site.

  15. Synthesis of silicon and germanium nanowires.

    Energy Technology Data Exchange (ETDEWEB)

    Clement, Teresa J. (Arizona State University); Hsu, Julia W. P.

    2007-11-01

    The vapor-liquid-solid growth process for synthesis of group-IV semiconducting nanowires using silane, germane, disilane and digermane precursor gases has been investigated. The nanowire growth process combines in situ gold seed formation by vapor deposition on atomically clean silicon (111) surfaces, in situ growth from the gaseous precursor(s), and real-time monitoring of nanowire growth as a function of temperature and pressure by a novel optical reflectometry technique. A significant dependence on precursor pressure and growth temperature for the synthesis of silicon and germanium nanowires is observed, depending on the stability of the specific precursor used. Also, the presence of a nucleation time for the onset of nanowire growth has been found using our new in situ optical reflectometry technique.

  16. Lattice site and thermal stability of transition metals in germanium

    CERN Document Server

    Augustyns, Valérie; Pereira, Lino

    Although the first transistor was based on germanium, current chip technology mainly uses silicon due to its larger abundance, a lower price and higher quality silicon-oxide. However, a very important goal in microelectronics is to obtain faster integrated circuits. The advantages of germanium compared to silicon (e.g. a higher mobility of the charge carriers) motivates further research on germanium based materials. Semiconductor doping (e.g. introducing impurities into silicon and germanium in order to alter - and control - their properties) can be done by ion implantation or by in situ doping, whereby the host material is doped during growth. This thesis focuses on introducing dopants by ion implantation. The implantation as well as the subsequent measurements were performed in ISOLDE (CERN) using the emission channeling technique. Although ion implantation generates undesired defects in the host material (e.g. vacancies), such damage can be reduced by performing the implantation at an elevated temperature....

  17. Solid solubility of germanium in silver

    Energy Technology Data Exchange (ETDEWEB)

    Kazemi, Hamed [Laboratory of Mechanical Metallurgy, Ecole Polytechnique Federale de Lausanne, EPFL, CH-1015 Lausanne (Switzerland); Weber, Ludger, E-mail: ludger.weber@epfl.ch [Laboratory of Mechanical Metallurgy, Ecole Polytechnique Federale de Lausanne, EPFL, CH-1015 Lausanne (Switzerland)

    2012-09-20

    Highlights: Black-Right-Pointing-Pointer The solvus line in the binary Ag-Ge system has been assessed based on measurements of electrical resistivity and specific gravity. Black-Right-Pointing-Pointer The two measurement techniques yield close agreement. Black-Right-Pointing-Pointer The data found in this contribution indicate lower solid solubility than in previous assessments. Black-Right-Pointing-Pointer Redlich-Kister parameters have been evaluated to describe the solvus line. - Abstract: The solid solubility of germanium in silver has been measured in the temperature range of 520 K to 913 K via measurements of density and of electrical conductivity of two near-eutectic Ag-Ge alloys. The atomic fraction of germanium in solid solution varied between 0.014 and 0.089 over the mentioned range of temperature and an extrapolated maximum solubility of 0.093 at the eutectic temperature of 924 K is found. For samples with spheroidized Ge-particles before the equilibrium heat treatments at low temperature for 24 or 48 h, thermodynamic equilibrium was supposedly not achieved at temperatures below 723 K. Much longer heat treatments (tens of days) on the significantly finer as-cast microstructure allowed to reach equilibrium probably down to 600 K. Independently of whether thermodynamic equilibrium was reached or not the electrical conductivity and the density measurements yielded good agreement typically within a few tenth of percent of atomic Ge-concentration in solid solution in {alpha}-Ag for a given temperature. The results are close to, yet consistently slightly lower than, the values given by Owen and Rowland on which the current assessment of the solvus in the Ag-Ge binary is based. More recent results by Filipponi and co-workers are clearly not in agreement with the data presented here.

  18. Promoting cell proliferation using water dispersible germanium nanowires.

    Directory of Open Access Journals (Sweden)

    Michael Bezuidenhout

    Full Text Available Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a natural occurring amino acid that alleviates the environmental and health hazards associated with traditional functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM, High resolution-TEM, and scanning electron microscope (SEM. Using a series of state of the art biochemical and morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence which revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth.

  19. Protective infrared antireflection coating based on sputtered germanium carbide

    Science.gov (United States)

    Gibson, Des; Waddell, Ewan; Placido, Frank

    2011-09-01

    This paper describes optical, durablility and environmental performance of a germanium carbide based durable antireflection coating. The coating has been demonstrated on germanium and zinc selenide infra-red material however is applicable to other materials such as zinc sulphide. The material is deposited using a novel reactive closed field magnetron sputtering technique, offering significant advantages over conventional evaporation processes for germanium carbide such as plasma enhanced chemical vapour deposition. The sputtering process is "cold", making it suitable for use on a wide range of substrates. Moreover, the drum format provide more efficient loading for high throughput production. The use of the closed field and unbalanced magnetrons creates a magnetic confinement that extends the electron mean free path leading to high ion current densities. The combination of high current densities with ion energies in the range ~30eV creates optimum thin film growth conditions. As a result the films are dense, spectrally stable, supersmooth and low stress. Films incorporate low hydrogen content resulting in minimal C-H absorption bands within critical infra-red passbands such as 3 to 5um and 8 to 12um. Tuning of germanium carbide (Ge(1-x)Cx) film refractive index from pure germanium (refractive index 4) to pure germanium carbide (refractive index 1.8) will be demonstrated. Use of film grading to achieve single and dual band anti-reflection performance will be shown. Environmental and durability levels are shown to be suitable for use in harsh external environments.

  20. Optical gain in single tensile-strained germanium photonic wire.

    Science.gov (United States)

    de Kersauson, M; El Kurdi, M; David, S; Checoury, X; Fishman, G; Sauvage, S; Jakomin, R; Beaudoin, G; Sagnes, I; Boucaud, P

    2011-09-12

    We have investigated the optical properties of tensile-strained germanium photonic wires. The photonic wires patterned by electron beam lithography (50 μm long, 1 μm wide and 500 nm thick) are obtained by growing a n-doped germanium film on a GaAs substrate. Tensile strain is transferred in the germanium layer using a Si₃N₄ stressor. Tensile strain around 0.4% achieved by the technique corresponds to an optical recombination of tensile-strained germanium involving light hole band around 1690 nm at room temperature. We show that the waveguided emission associated with a single tensile-strained germanium wire increases superlinearly as a function of the illuminated length. A 20% decrease of the spectral broadening is observed as the pump intensity is increased. All these features are signatures of optical gain. A 80 cm⁻¹ modal optical gain is derived from the variable strip length method. This value is accounted for by the calculated gain material value using a 30 band k · p formalism. These germanium wires represent potential building blocks for integration of nanoscale optical sources on silicon.

  1. Direct Detection of Pu-242 with a Metallic Magnetic Calorimeter Gamma-Ray Detector

    Science.gov (United States)

    Bates, C.; Pies, C.; Kempf, S.; Hengstler, D.; Fleischmann, A.; Gastaldo, L.; Enss, C.; Friedrich, S.

    2016-07-01

    Cryogenic high-resolution γ -ray detectors can improve the accuracy of non-destructive assay (NDA) of nuclear materials in cases where conventional high-purity germanium detectors are limited by line overlap or by the Compton background. We have improved the performance of gamma detectors based on metallic magnetic calorimeters (MMCs) by separating the 0.5 × 2 × 0.25 mm3 Au absorber from the Au:Er sensor with sixteen 30-\\upmu m-diameter Au posts. This ensures that the entire γ -ray energy thermalizes in the absorber before heating the Au:Er sensor, and improves the energy resolution at 35 mK to as low as 90 eV FWHM at 60 keV. This energy resolution enables the direct detection of γ -rays from Pu-242, an isotope that cannot be measured by traditional NDA and whose concentration is therefore inferred through correlations with other Pu isotopes. The Pu-242 concentration of 11.11 ± 0.42 % measured by NDA with MMCs agrees with mass spectrometry results and exceeds the accuracy of correlation measurements.

  2. Background simulations and shielding calculations

    Science.gov (United States)

    Kudryavtsev, Vitaly A.

    2011-04-01

    Key improvements in the sensitivity of the underground particle astrophysics experiments can only be achieved if the radiation causing background events in detectors is well understood and proper measures are taken to suppress it. The background radiation arising from radioactivity and cosmic-ray muons is discussed here together with the methods of its suppression. Different shielding designs are considered to attenuate gamma-rays and neutrons coming from radioactivity in rock and lab walls. Purity of materials used in detector construction is analysed and the background event rates due to the presence of radioactive isotopes in detector components are discussed. Event rates in detectors caused by muon-induced neutrons with and without active veto systems are presented leading to the requirements for the depth of an underground laboratory and the efficiency of the veto system.

  3. Advanced Radiation Detector Development

    Energy Technology Data Exchange (ETDEWEB)

    The University of Michigan

    1998-07-01

    Since our last progress report, the project at The University of Michigan has continued to concentrate on the development of gamma ray spectrometers fabricated from cadmium zinc telluride (CZT). This material is capable of providing energy resolution that is superior to that of scintillation detectors, while avoiding the necessity for cooling associated with germanium systems. In our past reports, we have described one approach (the coplanar grid electrode) that we have used to partially overcome some of the major limitations on charge collection that is found in samples of CZT. This approach largely eliminates the effect of hole motion in the formation of the output signal, and therefore leads to pulses that depend only on the motion of a single carrier (electrons). Since electrons move much more readily through CZT than do holes, much better energy resolution can be achieved under these conditions. In our past reports, we have described a 1 cm cube CZT spectrometer fitted with coplanar grids that achieved an energy resolution of 1.8% from the entire volume of the crystal. This still represents, to our knowledge, the best energy resolution ever demonstrated in a CZT detector of this size.

  4. Enhancing the Detector for Advanced Neutron Capture Experiments

    Directory of Open Access Journals (Sweden)

    Couture A.

    2015-01-01

    Full Text Available The Detector for Advanced Neutron Capture Experiments (DANCE has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. The upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons.

  5. Monte Carlo simulation of the LENA detector system

    Energy Technology Data Exchange (ETDEWEB)

    Howard, C., E-mail: choward@unc.edu [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Iliadis, C.; Champagne, A.E. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2013-11-21

    Many nuclear astrophysics experiments use the singles energy spectrum to measure nuclear cross-sections. It has been shown in previous publications that the use of a high purity germanium (HPGe) detector and a NaI(Tl) annulus in coincidence can lower the background, allowing the measurement of smaller cross-sections. In our previous work, our simulation was only capable of determining both full-energy peak relative efficiencies. Here, we present work which extends our simulation so that we can predict absolute efficiencies, and both coincidence gate efficiencies. We first show that the full-energy peak and the total energy singles efficiency of our HPGe detector simulation agrees well with calibration data. We then present the full-energy peak and total energy efficiency for the NaI(Tl) annulus. Results are presented for our coincidence efficiencies, using three examples. These examples are a comparison to the decay of the 151 keV resonance in the {sup 18}O(p, γ){sup 19}F reaction, a {sup 22}Na point-like calibration source, and {sup 26}Al nuclei distributed in a meteorite fragment. In each case, we present a comparison of data to the simulation and show that, within our uncertainties, we can accurately simulate our measured intensities. -- Highlights: •We create a simulation of our HPGe detector and NaI annulus. •We compare our model to various calibration sources. •We compare energy gating using the simulation. •The simulation predict efficiencies as observed in the data.

  6. Germanium separation and purification by leaching and precipitation

    Institute of Scientific and Technical Information of China (English)

    Saeid Bayat; Sajjad Aghazadeh; Mohammad Noaparast; Mahdi Gharabaghi; Behrooz Taheri

    2016-01-01

    In this research work, extraction and purification of germanium from zinc leach residues (ZLR) were investigated. The results of ICP, XRF, and atomic adsorption spectroscopy (AAS) tests show that contents of germanium, iron, lead, and zinc within the leaching residue were 105×10−6, 3.53%, 10.35%, and 8.8%, respectively. XRD results indicate that the main minerals were in different forms of sulfates (CaSO4·2H2O, PbSO4 and ZnSO4·6H2O), silicate (SiO2), and oxide (Fe2O3). Dissolution of leaching filter cake was carried out using 5 parameters and each in 4 levels (acid concentration, temperature, time, liquid-to-solid ratio, and stirring speed) by Taguchi method (L16), and then optimization of the effective parameters by response surface method. Under optimum conditions, zinc and germanium dissolution efficiencies were 88.71% and 8%, respectively. Leaching tests with sulfuric acid (added di-ammonium oxalate monohydrate) and hydrochloric acid (HCl) on the residues obtained from previous-stage sulfuric acid dissolution, yielded germanium and iron recoveries of 83%, 88%, 40%, and 90%, respectively. Thus, leaching experiment with sulfuric acid (added di-ammonium oxalate monohydrate) was superior to that with hydrochloric acid due to high and low extraction amounts of germanium and iron, respectively. Precipitation experiments revealed that germanium purification with tannic acid presented a better result compared to sodium hydroxide and ammonia. Under optimum conditions, contents of germanium and iron in the solution after precipitation were 0.1505% and 14.7% with precipitation yields of 91% and 52%, respectively.

  7. Enhanced shower formation in aligned thick germanium crystals and discrimination against charged hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Baurichter, A. [Aarhus Univ. (Denmark). Inst. for Synchrotron Radiat.; Kirsebom, K. [Aarhus Univ. (Denmark). Inst. for Synchrotron Radiat.; Medewaldt, R. [Aarhus Univ. (Denmark). Inst. for Synchrotron Radiat.; Mikkelsen, U. [Aarhus Univ. (Denmark). Inst. for Synchrotron Radiat.; Moeller, S. [Aarhus Univ. (Denmark). Inst. for Synchrotron Radiat.; Uggerhoej, E. [Aarhus Univ. (Denmark). Inst. for Synchrotron Radiat.; Worm, T. [Aarhus Univ. (Denmark). Inst. for Synchrotron Radiat.; Elsener, K. [European Organization for Nuclear Research, Geneva (Switzerland); Ballestrero, S. [Dipartimento di Fisica, University of Florence and INFN Sezione di Firenze, Largo E. Fermi 2, 50125 Florence (Italy); Sona, P. [Dipartimento di Fisica, University of Florence and INFN Sezione di Firenze, Largo E. Fermi 2, 50125 Florence (Italy); Romano, J. [Dipartimento di Fisica, University La Sapienza-Rome and INFN Sezione di Roma, P.le A. Moro 5, 00185 Rome (Italy)

    1995-11-01

    The distribution of the energy released in a thin silicon detector placed on the downstream side of a thick germanium single crystal bombarded with a 150 GeV electron or pion beam along directions close to the left angle 110 right angle axis or along random directions has been investigated. In view of a possible application to very high energy gamma ray astronomy and particle physics, the intrinsic capability of such a device to reject, on the basis of energy discrimination, unwanted events due to charged hadrons together with the resulting loss of efficiency for the detection of showers initiated by high energy electrons, is determined as a function of the chosen energy threshold. (orig.).

  8. The background in the 0νββ experiment GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Bode, T.; Budjas, D.; Csathy, J.J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Muenchen (Germany); Allardt, M.; Barros, N.; Domula, A.; Lehnert, B.; Wester, T.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; Ioannucci, L.; Junker, M.; Laubenstein, M.; Macolino, C.; Nisi, S.; Pandola, L.; Zavarise, P. [INFN Laboratori Nazionali del Gran Sasso, LNGS, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Gurentsov, V.; Inzhechik, L.V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Barnabe Heider, M. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Muenchen (Germany); Baudis, L.; Benato, G.; Ferella, A.; Guthikonda, K.K.; Tarka, M.; Walter, M. [Physik Institut der Universitaet Zuerich, Zurich (Switzerland); Bauer, C.; Hampel, W.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Lubashevskiy, A.; Machado, A.A.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Strecker, H.; Wagner, V.; Wegmann, A. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Becerici-Schmidt, N.; Caldwell, A.; Cossavella, F.; Liao, H.Y.; Liu, X.; Majorovits, B.; O' Shaughnessy, C.; Palioselitis, D.; Schulz, O.; Volynets, O. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Bellotti, E.; Pessina, G. [Universita Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN Milano Bicocca, Milan (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Sada, C. [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padua (Italy); INFN Padova, Padua (Italy); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Shevchik, E.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C.; Gotti, C. [INFN Milano Bicocca, Milan (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Cracow (Poland); Gangapshev, A. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Muenchen (Germany); Hult, M.; Lutter, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Klimenko, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Lippi, I.; Stanco, L.; Ur, C.A. [INFN Padova, Padua (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano (IT); INFN Milano, Dipartimento di Fisica, Milan (IT); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (RU); National Research Centre ' ' Kurchatov Institute' ' , Moscow (RU); Sturm, K. von [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padua (IT); INFN Padova, Padua (IT); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (DE)

    2014-04-15

    The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double beta (0νββ) decay of {sup 76}Ge. The signature of the signal is a monoenergetic peak at 2039 keV, the Q{sub ββ} value of the decay. To avoid bias in the signal search, the present analysis does not consider all those events, that fall in a 40 keV wide region centered around Q{sub ββ}. The main parameters needed for the 0νββ analysis are described. A background model was developed to describe the observed energy spectrum. The model contains several contributions, that are expected on the basis of material screening or that are established by the observation of characteristic structures in the energy spectrum. The model predicts a flat energy spectrum for the blinding window around Q{sub ββ} with a background index ranging from 17.6 to 23.8 x 10{sup -3} cts/(keV kg yr). A part of the data not considered before has been used to test if the predictions of the background model are consistent. The observed number of events in this energy region is consistent with the background model. The background at Q{sub ββ} is dominated by close sources,mainly due to {sup 42}K, {sup 214}Bi, {sup 228}Th, {sup 60}Co and α emitting isotopes from the {sup 226}Ra decay chain. The individual fractions depend on the assumed locations of the contaminants. It is shown, that after removal of the known γ peaks, the energy spectrum can be fitted in an energy range of 200 keV around Q{sub ββ} with a constant background. This gives a background index consistent with the full model and uncertainties of the same size. (orig.)

  9. Detector Systems at CLIC

    CERN Document Server

    Simon, Frank

    2011-01-01

    The Compact Linear Collider CLIC is designed to deliver e+e- collisions at a center of mass energy of up to 3 TeV. The detector systems at this collider have to provide highly efficient tracking and excellent jet energy resolution and hermeticity for multi-TeV final states with multiple jets and leptons. In addition, the detector systems have to be capable of distinguishing physics events from large beam-induced background at a crossing frequency of 2 GHz. Like for the detector concepts at the ILC, CLIC detectors are based on event reconstruction using particle flow algorithms. The two detector concepts for the ILC, ILD and SID, were adapted for CLIC using calorimeters with dense absorbers limiting leakage through increased compactness, as well as modified forward and vertex detector geometries and precise time stamping to cope with increased background levels. The overall detector concepts for CLIC are presented, with particular emphasis on the main detector and engineering challenges, such as: the ultra-thi...

  10. A Low Noise 64x64 Germanium Array for Far IR Astronomy Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develope a 64x64 far infrared germanium focal-plane array with the following key design features: 1- Four top-illuminated, 32x32 germanium sub-arrays...

  11. Cosmogenic Backgrounds to 0{\

    CERN Document Server

    :,; Auty, D J; Barbeau, P S; Beck, D; Belov, V; Breidenbach, M; Brunner, T; Burenkov, A; Cao, G F; Chambers, C; Cleveland, B; Coon, M; Craycraft, A; Daniels, T; Danilov, M; Daugherty, S J; Davis, J; Delaquis, S; Der Mesrobian-Kabakian, A; DeVoe, R; Didberidze, T; Dilling, J; Dolgolenko, A; Dolinski, M J; Dunford, M; Fairbank, W; Farine, J; Feldmeier, W; Feyzbakhsh, S; Fierlinger, P; Fudenberg, D; Gornea, R; Graham, K; Gratta, G; Hall, C; Herrin, S; Hughes, M; Jewell, M J; Johnson, A; Johnson, T N; Johnston, S; Karelin, A; Kaufman, L J; Killick, R; Koffas, T; Kravitz, S; Krücken, R; Kuchenkov, A; Kumar, K S; Leonard, D S; Licciardi, C; Lin, Y H; Ling, J; MacLellan, R; Marino, M G; Mong, B; Moore, D; Njoya, O; Nelson, R; Odian, A; Ostrovskiy, I; Piepke, A; Pocar, A; Prescott, C Y; Retière, F; Rowson, P C; Russell, J J; Schubert, A; Sinclair, D; Smith, E; Stekhanov, V; Tarka, M; Tolba, T; Tsang, R; Twelker, K; Vuilleumier, J -L; Waite, A; Walton, J; Walton, T; Weber, M; Wen, L J; Wichoski, U; Wood, J; Yang, L; Yen, Y -R; Zeldovich, O Ya

    2015-01-01

    As neutrinoless double-beta decay experiments become more sensitive and intrinsic radioactivity in detector materials is reduced, previously minor contributions to the background must be understood and eliminated. With this in mind, cosmogenic backgrounds have been studied with the EXO-200 experiment. Using the EXO-200 TPC, the muon flux (through a flat horizontal surface) underground at the Waste Isolation Pilot Plant (WIPP) has been measured to be {\\Phi} = 4.07 $\\pm$ 0.14 (sys) $\\pm$ 0.03 (stat) $\\times$ $10^{-7}$cm$^{-2}$ s$^{-1}$, with a vertical intensity of $I_{v}$ = 2.97$^{+0.14}_{-0.13}$ (sys) $\\pm$ 0.02 (stat) $\\times$ $10^{-7}$cm$^{-2}$ s$^{-1}$ sr$^{-1}$. Simulations of muon-induced backgrounds identified several potential cosmogenic radionuclides, though only 137Xe is a significant background for the 136Xe 0{\

  12. Anisotropic Optical Properties of Layered Germanium Sulfide

    CERN Document Server

    Tan, Dezhi; Wang, Feijiu; Mohamed, Nur Baizura; Mouri, Shinichiro; Sandhaya, Koirala; Zhang, Wenjing; Miyauchi, Yuhei; Ohfuchi, Mari; Matsuda, Kazunari

    2016-01-01

    Two-dimensional (2D) layered materials, transition metal dichalcogenides and black phosphorus, have attracted much interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to their remarkable optical properties and prospects for new devices. Here, we report the anisotropic optical properties of layered 2D monochalcogenide of germanium sulfide (GeS). Three Raman scattering peaks corresponding to the B3g, A1g, and A2g modes with strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at around 1.66 eV that originates from the direct optical transition in GeS at room temperature. Moreover, determination of the polarization dependent characteristics of the PL and absorption reveals...

  13. Hydrogen Bonding in Hydrogenated Amorphous Germanium