WorldWideScience

Sample records for backfill soils

  1. Relative Density of Backfilled Soil Material around Monopiles for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, Søren Peder Hyldal; Ibsen, Lars Bo; Frigaard, Peter

    2012-01-01

    The relative density of backfilled soil material around offshore monopiles is assessed through experimental testing in the Large Wave Channel (GWK) of the Coastal Research Centre (FZK) in Hannover. The relative density of the backfill material was found to vary between 65 and 80 %. The dependency...... of the relative density of backfill on the maximum pile bending moment is assessed through three-dimensional numerical modeling of a monopile foundation located at the offshore wind farm at Horns Reef, Denmark....

  2. Determination of soil mechanics of salt rock as a potential backfilling material in an underground repository

    International Nuclear Information System (INIS)

    Within the framework of the research and development project 'Backfilling and sealing of boreholes, chambers and roadways in a final dump', the Institute for Underground Dumping chose - from the broad range of possible stowing materials - the material 'salt spoil' and investigated its soil-mechanical properties in detail. Besides the implementation of soil-mechanical standard analyses (determination of the grain size distribution, bulk density, limits of storage density, proctor density, permeabilities, and shear strength) of two selected salt spoils (heap salt and rock salt spoil), the studies concentrated on the determination of the compression behaviour of salt spoil. In order to obtain data on the compaction behaviour of this material in the case of increasing stress, compression tests with obstructed lateral expansion were carried out on a series of spoil samples differing mainly in the composition of grain sizes. In addition to this, for a small number of samples of rock salt spoil, the creep behaviour at constant stress was determined after the compaction phase. (orig./RB)

  3. On grouting strengthening construction of gravel soil back-filled foundation%碎石土回填基础灌浆补强施工

    Institute of Scientific and Technical Information of China (English)

    陶旭东

    2012-01-01

    针对某取水泵站投入运行后场区碎石土回填基础出现沉降的原因进行了分析,通过研究比选采用灌浆加固方案,对灌浆施工关键点及特殊情况处理进行了阐述,以保证场区稳定、安全。%The paper analyzes the reasons for the settlement of the gravel soil back-filled foundation at the site after some pumping station was op erated, and illustrates the key points for the grouting construction and some treatment for some special circumstances by comparing and analyzing the grouting consolidation schemes, so as to ensure the site to be stable and safe.

  4. Backfill design 2012

    International Nuclear Information System (INIS)

    This report describes both the concept and the detailed design of backfilling in KBS-3V deposition tunnels. The purpose of the backfill is to keep the buffer in place, maintain favourable and predictable conditions for the buffer and the canister, and also favourable rock mechanical, hydrological and geochemical conditions in the near-field and to retard the transport of released radionuclides in case of canister failure. In addition to the description of the overall backfill design, detailed designs for the components of the backfill (foundation, block and pellet fill) are provided in this report. The deposition tunnel end plug design is not presented in this document. In the backfill design, the deposition tunnels are to be filled with a foundation layer material, precompacted clay blocks and extruded bentonite pellets. The foundation layer consists of Milos bentonite granules, which are compacted in situ in order to level the deposition tunnel floor, providing an even and stable base for the block filling. On the foundation layer, a rigid assemblage of overlapping layers of pre-compacted blocks made of Friedland clay are installed. The void space between the blocks and the rock wall is filled with extruded pellets made of bentonite similar to raw material of Cebogel QSE product. (orig.)

  5. A New Mode of Coal Mining Under Buildings with Paste-Like Backfill Technology

    Institute of Scientific and Technical Information of China (English)

    崔建强; 孙恒虎; 黄玉诚

    2002-01-01

    The formation of the paste-like backfill technology was introduced briefly in this paper. From the actual cases of coal mines, a new mode of coal mining un der buildings with the technology was proposed. And its specificity was analyzed , and a further introduction to the full-sand-soil solidifying material was given. The main parts of the backfill system, such as the backfill preparation system, the pipeline transportation system, the backfill systems in fully-mechanized mining faces and the backfill process, were presented emphatically.

  6. Uniaxial backfill block compaction

    International Nuclear Information System (INIS)

    The main parts of the project were: to make a literature survey of the previous uniaxial compaction experiments; do uniaxial compaction tests in laboratory scale; and do industrial scale production tests. Object of the project was to sort out the different factors affecting the quality assurance chain of the backfill block uniaxial production and solve a material sticking to mould problem which appeared during manufacturing the blocks of bentonite and cruched rock mixture. The effect of mineralogical and chemical composition on the long term functionality of the backfill was excluded from the project. However, the used smectite-rich clays have been tested for mineralogical consistency. These tests were done in B and Tech OY according their SOPs. The objective of the Laboratory scale tests was to find right material- and compaction parameters for the industrial scale tests. Direct comparison between the laboratory scale tests and industrial scale tests is not possible because the mould geometry and compaction speed has a big influence for the compaction process. For this reason the selected material parameters were also affected by the previous compaction experiments. The industrial scale tests were done in summer of 2010 in southern Sweden. Blocks were done with uniaxial compaction. A 40 tons of the mixture of bentonite and crushed rock blocks and almost 50 tons of Friedland-clay blocks were compacted. (orig.)

  7. Investigations on backfilling and sealing of chambers and shafts in a final salt repository

    International Nuclear Information System (INIS)

    Soil mechanical laboratory investigations as well as geotechnical in situ measurements were carried out. The laboratory tests provided important information on the material behaviour of selected backfill and sealing materials. Initial conclusions on the long-term behaviour of backfill and seals as well as on their interaction with the rock were gained with the results of in situ measurements in backfilled chambers and seals and in the surrounding rock of the Asse salt mine. (orig./DG)

  8. Experimental study on workability of soil-bentonite backfills for vertical slurry cutoff walls%土膨润土系竖向隔离墙材料施工和易性试验研究

    Institute of Scientific and Technical Information of China (English)

    梅丹兵; 杜延军; 刘松玉; 范日东; 杨玉玲

    2016-01-01

    为研究满足各类场地条件下土膨润土系竖向隔离墙材料施工和易性要求的主要施工参数,对钙基膨润土浆液和钠基膨润土浆液进行马氏漏斗黏度试验、API滤失试验和密度测定,并针对砂膨润土、黏性土膨润土、砂黏性土膨润土3类土膨润土系竖向隔离墙材料进行坍落度试验.试验结果表明,钙基膨润土浆液和钠基膨润土浆液的合理膨润土掺量分别为10%和3%.3类土膨润土系竖向隔离墙材料的坍落度与含水率均呈良好的线性正相关性.采用标准坍落筒和迷你锥坍落筒所测定的坍落度结果之间存在统一的经验关系.采用迷你锥坍落筒代替标准坍落筒进行土膨润土系竖向隔离墙材料施工和易性试验时,满足坍落度要求的含水率范围为其液限的1.0~1.6倍,所对应坍落度范围为22~48 mm.%In order to investigate the main construction parameters that meet the workability of soil-bentonite backfills for vertical slurry cutoff walls under various types of site conditions, the marsh fun-nel test, API(American Petroleum Institute) filtrate loss test and density measurement for sodium ben-tonite-water slurries and calcium bentonite-water slurries were carried out.The slump tests of three soil-bentonite backfills, including sandy soil-bentonite, clayey soil-bentonite sandy and soil-clayey soil-bentonite backfills, were measured.The experimental results show that the suitable contents of bentonite for calcium bentonite-water slurries and sodium bentonite-water slurries are 10% and 3%, respectively.The slumps of three soil-bentonite backfills and the water content exhibit a good linear positive correlation.And there exists a uniform correlation between the results based on the standard slump cone and those based on the miniature slump cones.When the standard slump cone is replaced by the miniature slump cone, the water content meeting the requirements of the slump is

  9. On the risk of liquefaction of buffer and backfill

    International Nuclear Information System (INIS)

    The necessary prerequisites for liquefaction of buffers and backfills in a KBS-3 repository exist but the stress conditions and intended densities practically eliminate the risk of liquefaction for single earthquakes with magnitudes up to M=8 and normal duration. For buffers rich in expandable minerals it would be possible to reduce the density at water saturation to 1,700 - 1,800 kg/m3 or even less without any significant risk of liquefaction, while the density at saturation of backfills with 10 - 15% expandable clay should not be reduced to less than about 1,900 kg/m3. Since the proposed densities of both buffers and backfills will significantly exceed these minimum values it is concluded that there is no risk of liquefaction of the engineered soil barriers in a KBS-3 repository even for very significant earthquakes

  10. Backfilling and closure of the deep repository. Assessment of backfill concepts

    International Nuclear Information System (INIS)

    This report presents the results from work made in Phase 1 of the joint SKB-Posiva project 'Backfilling and Closure of the Deep Repository' aiming at selecting and developing materials and techniques for backfilling and closure of a KBS-3 type repository for spent nuclear fuel. The aim of phase 1, performed as a desk study, was to describe the potential of the suggested backfill concepts in terms of meeting SKB and Posiva requirements, select the most promising ones for further investigation, and to describe methods that can be used for determining the performance of the concepts. The backfilling concepts described in this report differ from each other with respect to backfill materials and installation techniques. The concepts studied are the following: Concept A: Compaction of a mixture of bentonite and crushed rock in the tunnel. Concept B: Compaction of natural clay with swelling ability in the tunnel. Concept C: Compaction of non-swelling soil type in the tunnel combined with application of pre-compacted bentonite blocks at the roof. Concept D: Placement of pre-compacted blocks; a number of materials are considered. Concept E: Combination of sections consisting of a) crushed rock compacted in the tunnel and b) pre-compacted bentonite blocks. The bentonite sections are installed regularly above every disposal hole. Concept F: Combination of sections consisting of a) crushed rock compacted in the tunnel and b) pre-compacted bentonite blocks. The distance between the bentonite sections is adapted to the local geology and hydrology.The assessment of the concepts is based on performance requirements set for the backfill in the deposition tunnels for providing a stable and safe environment for the bentonite buffer and canister for the repository service time. In order to do this, the backfill should follow certain guidelines, 'design criteria' concerning compressibility, hydraulic conductivity, swelling ability, long-term stability, effects on the barriers and

  11. Backfilling and closure of the deep repository. Assessment of backfill concepts

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, David; Boergesson, Lennart [Clay Technology AB, Lund (Sweden); Keto, Paula [Saanio Riekkola Oy (Finland); Tolppanen, Pasi [Jaakko Poeyry Infra (Finland); Hansen, Johanna [Posiva Oy, Helsinki (Finland)

    2004-06-01

    This report presents the results from work made in Phase 1 of the joint SKB-Posiva project 'Backfilling and Closure of the Deep Repository' aiming at selecting and developing materials and techniques for backfilling and closure of a KBS-3 type repository for spent nuclear fuel. The aim of phase 1, performed as a desk study, was to describe the potential of the suggested backfill concepts in terms of meeting SKB and Posiva requirements, select the most promising ones for further investigation, and to describe methods that can be used for determining the performance of the concepts. The backfilling concepts described in this report differ from each other with respect to backfill materials and installation techniques. The concepts studied are the following: Concept A: Compaction of a mixture of bentonite and crushed rock in the tunnel. Concept B: Compaction of natural clay with swelling ability in the tunnel. Concept C: Compaction of non-swelling soil type in the tunnel combined with application of pre-compacted bentonite blocks at the roof. Concept D: Placement of pre-compacted blocks; a number of materials are considered. Concept E: Combination of sections consisting of a) crushed rock compacted in the tunnel and b) pre-compacted bentonite blocks. The bentonite sections are installed regularly above every disposal hole. Concept F: Combination of sections consisting of a) crushed rock compacted in the tunnel and b) pre-compacted bentonite blocks. The distance between the bentonite sections is adapted to the local geology and hydrology.The assessment of the concepts is based on performance requirements set for the backfill in the deposition tunnels for providing a stable and safe environment for the bentonite buffer and canister for the repository service time. In order to do this, the backfill should follow certain guidelines, 'design criteria' concerning compressibility, hydraulic conductivity, swelling ability, long-term stability, effects on

  12. The Buffer and Backfill Handbook. Part 2: Materials and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Geodevelopment AB, Lund (Sweden)

    2001-12-01

    Improved technology and prospection yielding more pure and homogeneous raw materials for preparing buffers and backfills will ultimately outdate the clays and ballast materials described in the present part of the Handbook. It describes experimentally investigated materials of potential use in repositories but other, more suitable materials will replace them in the future. The Handbook will hence have to be reviewed regularly, making room for superior materials in future, upgraded Handbook versions. Buffer is the term for dense clay used for embedment of canisters with highly radioactive waste, while backfill is soil used for filling tunnels and shafts in repositories. Examples of soil materials of potential use as buffers and backfills in repositories of KBS-3 type are described in this part of the Handbook. They are: smectitic clay materials intended for preparation of buffers (canister-embedding clay) and used as clay component in artificially prepared tunnel and shaft backfills consisting of mixtures of clay and ballast. Ballast materials intended for backfilling of tunnels and shafts and used as components of artificially prepared backfills. Smectitic natural clay soils intended for use as buffers and backfills. Very fine-grained smectite clay used as grout for sealing rock fractures. In this part of the Handbook for Buffers and Backfills, description of various candidate materials will be made with respect to their mineral composition and physical properties, with respect to the groundwater chemistry that can be expected in a deep repository in Swedish bedrock. Chapter 3 deals with smectitic clay materials intended for embedment of heat-producing canisters with highly radioactive waste. Focus is on the nature of the buffer constituents, i. e. the smectite content, the non-expanding clay minerals colloidal and the accessory non-clay minerals as well as amorphous matter and organic substances. The dominant part of the chapter describes the occurrence and origin

  13. The Buffer and Backfill Handbook. Part 2: Materials and techniques

    International Nuclear Information System (INIS)

    Improved technology and prospection yielding more pure and homogeneous raw materials for preparing buffers and backfills will ultimately outdate the clays and ballast materials described in the present part of the Handbook. It describes experimentally investigated materials of potential use in repositories but other, more suitable materials will replace them in the future. The Handbook will hence have to be reviewed regularly, making room for superior materials in future, upgraded Handbook versions. Buffer is the term for dense clay used for embedment of canisters with highly radioactive waste, while backfill is soil used for filling tunnels and shafts in repositories. Examples of soil materials of potential use as buffers and backfills in repositories of KBS-3 type are described in this part of the Handbook. They are: smectitic clay materials intended for preparation of buffers (canister-embedding clay) and used as clay component in artificially prepared tunnel and shaft backfills consisting of mixtures of clay and ballast. Ballast materials intended for backfilling of tunnels and shafts and used as components of artificially prepared backfills. Smectitic natural clay soils intended for use as buffers and backfills. Very fine-grained smectite clay used as grout for sealing rock fractures. In this part of the Handbook for Buffers and Backfills, description of various candidate materials will be made with respect to their mineral composition and physical properties, with respect to the groundwater chemistry that can be expected in a deep repository in Swedish bedrock. Chapter 3 deals with smectitic clay materials intended for embedment of heat-producing canisters with highly radioactive waste. Focus is on the nature of the buffer constituents, i. e. the smectite content, the non-expanding clay minerals colloidal and the accessory non-clay minerals as well as amorphous matter and organic substances. The dominant part of the chapter describes the occurrence and origin

  14. Research on backfilling and sealing of Rooms and Galleries in a repository in salt

    International Nuclear Information System (INIS)

    The multibarrier concept for the final disposal of radioactive wastes comprises backfilling and sealing of the mine in order to guarantee a safe enclosure of the waste. To provide for these properties, soil mechanical laboratory as well as geotechnical in situ measurements were carried out at the Asse mine. The soil mechanical investigations were performed on salt grit and precompacted backfilling material of different grain-size distribution and clay admixtures. They showed a significant dependence upon permeability and compression velocity of the type and quantity of clay used. A favourable grain-size distribution of the salt results in an acceleration of its compaction ability. Besides the investigation on a laboratory scale, first conclusions were obtained on the long-term in situ behaviour of backfilled chambers and seals and their corresponding geomechanical interaction with the surrounding rock. The geotechnical in situ stress and deformation measurements in an approximately 27.000 m3 large chamber have so far shown no supporting effect against the surrounding rock four years after backfilling. A compaction of up to 3% of the backfill was registered. In situ measurements as well as laboratory tests on drilling cores from 60 years old backfill showed porosities of approximately 7% and a compaction effect of the backfill from the wall, decreasing towards the centre of the chamber due to the converging rock. 108 figs., 8 refs., 24 tabs

  15. Numerical simulation of heat dissipation processes in underground power cable system situated in thermal backfill and buried in a multilayered soil

    International Nuclear Information System (INIS)

    Highlights: • A practical thermal analysis of underground power cable system. • The geological measurements were performed for cable line placement location. • Dry zone formation effect included in soil and FTB thermal conductivity formula. • A simplified FEM model of underground power cable system. • The computational numerical code validation with ANSYS. - Abstract: This paper presents the thermal analysis of the underground transmission line, planned to be installed in one of the Polish power plants. The computations are performed by using the Finite Element Method (FEM) code, developed by the authors. The paper considers a system of three power cables arranged in flat (in-line) formation. The cable line is buried in the multilayered soil. The soil layers characteristic and thermal properties are determined from geological measurements. Different conditions of cable bedding are analyzed including power cables placement in the FTB or direct burial in a mother ground. The cable line burial depth, measured from the ground level, varies from 1 m to 2.5 m. Additionally, to include the effect of dry zones formation on the temperature distribution in cable line and surroundings, soil and FTB thermal conductivities are considered as a temperature-dependent. The proposed approach for determining the temperature-dependent thermal conductivity of soil layers is discussed in detail. The FEM simulation results are also compared with the results of the simulation that consider soil layers as homogeneous materials. Therefore, thermal conductivity is assumed to be constant for each layer. The results obtained by using the FEM code, developed by the authors, are compared with the results of ANSYS simulations, and a good agreement was found

  16. Systematic Selection and Application of Backfill in Underground Mines

    OpenAIRE

    Masniyom, Manoon

    2009-01-01

    The use of backfill in underground mining is increasing due to need for systematic backfilling of mine openings and workings to avoid surface damage, increase safety and contribution to sustainable mining. This study is to investigate backfill materials and new methods suited for systematic selection and application of backfill in underground mines. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special a...

  17. Flowable Backfill Materials from Bottom Ash for Underground Pipeline

    Directory of Open Access Journals (Sweden)

    Kyung-Joong Lee

    2014-04-01

    Full Text Available The purpose of this study was to investigate the relationship between strength and strain in manufacturing controlled low strength materials to recycle incineration bottom ash. Laboratory tests for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. The optimum mixing ratios were 25%–45% of in-situ soil, 30% of bottom ash, 10%–20% of fly ash, 0%–3% of crumb rubber, 3% of cement, and 22% of water. Each mixture satisfied the standard specifications: a minimum 20 cm of flowability and 127 kPa of unconfined compressive strength. The average secant modulus (E50 was (0.07–0.08 qu. The ranges of the internal friction angle and cohesion for mixtures were 36.5°–46.6° and 49.1–180 kPa, respectively. The pH of all of the mixtures was over 12, which is strongly alkaline. Small-scale chamber tests for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. Vertical deflection of 0.88–2.41 mm and horizontal deflection of 0.83–3.72 mm were measured during backfilling. The vertical and horizontal deflections of controlled low strength materials were smaller than that of sand backfill.

  18. Colonization of compacted backfill materials by microorganisms

    International Nuclear Information System (INIS)

    Experiments were carried out to investigate the occurrence of pore clogging in backfill by bacterial activity. Four differently prepared and treated backfill materials were used to determine the effects of the quality and preparation method of the backfill materials on the occurrence of pore clogging. The backfills were compacted in permeameters which were infused with either groundwater or sterile distilled water. A constant pressure was applied to increase the rate of saturation. Results showed different inflow rates for the four materials despite the use of the same packing method for each specimen, the same dry density for each backfill and indications of similar initial pore volumes. These differences were likely caused by the fact that the two slowest-flowing permeameters contained a mixture of Na-bentonite and illitic shale simulating a glacial lake clay. Hydraulic conductivities measured ranged from 5 x 10-11 m/s to 5 x 10-12 m/s for the backfills containing glacial lake clay and 4 x 10-12 m/s to 9 s 10-13 m/s for the backfills containing a mixture of Na-bentonite and illitic shale. Weekly samples of outflow from the permeameters were analyzed microbially. Aerobic heterotrophs were low initially but stabilized around 106 to 107 colony forming units (CFU)/mL after about one week. Anaerobic heterotrophs stabilized at around 102 to 103 CFU/mL. Sulphate-reducing bacteria (SRB) were measured by the most probable number (MPN) method. Results showed low initial numbers but they stabilized around 104 MPN/mL after one to two months. No significant numbers of aerobic or anaerobic sulphur oxidizing bacteria were found. Enumeration of methanogens indicated that they were generally present in the permeameters that contained non-autoclaved backfill. Results are partially inconclusive because of the lack of confirmation of methane gas present in the headspace of part of the MPN culture tubes. Microbial pore clogging was not evident for the two fastest-flowing permeameters

  19. A Historical Review of WIPP Backfill Development

    Energy Technology Data Exchange (ETDEWEB)

    Brush, L.H.; Krumhansl, J.L.; Molecke, M.A.; Papenguth, H.W.

    1999-07-15

    Backfills have been part of Sandia National Laboratories' [Sandia's] Waste Isolation Pilot Plant [WIPP] designs for over twenty years. Historically, backfill research at Sandia has depended heavily on the changing mission of the WIPP facility. Early testing considered heat producing, high level, wastes. Bentonite/sand/salt mixtures were evaluated and studies focused on developing materials that would retard brine ingress, sorb radionuclides, and withstand elevated temperatures. The present-day backfill consists of pure MgO [magnesium oxide] in a pelletized form and is directed at treating the relatively low contamination level, non-heat producing, wastes actually being disposed of in the WIPP. It's introduction was motivated by the need to scavenging CO{sub 2} [carbon dioxide] from decaying organic components in the waste. However, other benefits, such as a substantial desiccating capacity, are also being evaluated. The MgO backfill also fulfills a statutory requirement for assurance measures beyond those needed to demonstrate compliance with the US Environmental Protection Agency [EPA] regulatory release limits. However, even without a backfill, the WIPP repository design still operates within EPA regulatory release limits.

  20. A Historical Review of WIPP Backfill Development

    International Nuclear Information System (INIS)

    Backfills have been part of Sandia National Laboratories' [Sandia's] Waste Isolation Pilot Plant [WIPP] designs for over twenty years. Historically, backfill research at Sandia has depended heavily on the changing mission of the WIPP facility. Early testing considered heat producing, high level, wastes. Bentonite/sand/salt mixtures were evaluated and studies focused on developing materials that would retard brine ingress, sorb radionuclides, and withstand elevated temperatures. The present-day backfill consists of pure MgO [magnesium oxide] in a pelletized form and is directed at treating the relatively low contamination level, non-heat producing, wastes actually being disposed of in the WIPP. It's introduction was motivated by the need to scavenging CO2 [carbon dioxide] from decaying organic components in the waste. However, other benefits, such as a substantial desiccating capacity, are also being evaluated. The MgO backfill also fulfills a statutory requirement for assurance measures beyond those needed to demonstrate compliance with the US Environmental Protection Agency [EPA] regulatory release limits. However, even without a backfill, the WIPP repository design still operates within EPA regulatory release limits

  1. Performance of cemented coal gangue backfill

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qin-li; WANG Xin-min

    2007-01-01

    Possibility of cemented gangue backfill was studied with gangue of Suncun Coal Mine, Xinwen Coal Group, Shandong,and fly ash of nearby thermal power plant, in order to treat enormous coal gangue on a large scale and to recovery safety coal pillars.The results indicate that coal gangue is not an ideal aggregate for pipeline gravity flow backfill, but such disadvantages of gangue as bad fluidity and serious pipe wear can be overcome by addition of fly ash. It is approved that quality indexes such as strength and dewatering ratio and piping feature of slurry can satisfy requirement of cemented backfill if mass ratio of cement to fly ash to gangue higher middle and long term comprehensive strength.

  2. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    OpenAIRE

    Qingliang Chang; Jianhang Chen; Huaqiang Zhou; Jianbiao Bai

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology a...

  3. Theoretical study of backfilling trenches bulldozer equipped with a screw intensifier

    OpenAIRE

    de Krol, R. van

    2015-01-01

    The advantages of a bulldozer with a screw intensifier when the backfilling of trenches, compared with the traditional method of filling. Shows cross-sectional shapes of the soil in the inter-track space screw intensifier and formulas for their determination. Given the method of determining the angular velocity of the screw in the intensifier nezabivanii dump coil and balancing the soil is above the auger intensifier.

  4. Retention Capability of Local Backfill Materials 1-Simulated Disposal Environment

    International Nuclear Information System (INIS)

    In Egypt, a shallow ground disposal facility was the chosen option for the disposal of low and and intermediate radioactive wastes. The impact of the waste disposal facility on the environment depends on the nature of the barriers, which intend to limit and control contaminant migration. Owing to their physical, chemical and mechanical characteristics. Local soil materials were studied to illustrate the role of the back fill as part of an optimized safety multi-barrier system, which can provide the required level of protection of the environment and meet economic and regulatory requirements. A theoretical model was proposed to calculate the transport phenomena through the backfill materials. The credibility and validity of the proposed model was checked by the experimental results obtained from a three-arms arrangement system. The obtained data for the distribution coefficient (Kd) and the apparent diffusion coefficient (Da) were in good agreement with those previously obtained in the literatures. Taking in consideration the prevailing initial conditions, the data calculated by the theoretical model applied show a reasonable agreement with the results obtained from experimental work. Prediction of radioactive cesium migration through the backfill materials using the proposed model was performed as a function of distance. The results obtained show that after 100 years, a fraction not exceeding 1E-9 of the original activity could be detected at 1m distance away from the waste material

  5. Time-dependent nuclide transport through backfill into a fracture

    International Nuclear Information System (INIS)

    This paper presents a transient analysis of radionuclide transport through backfill into a fissure. This report considers a waste canister surrounded by backfill in a borehole intersected by a fracture, in water-saturated rock. Radionuclides are released at a constant concentration C/sub s/ at the waste surface into the backfill. Ground water flows in the fissure. We assume no ground-water flow in the backfill, so that radionuclide transport through the backfill is controlled by molecular diffusion. 3 refs., 2 figs

  6. Assessment of backfill design for KBS-3V repository

    International Nuclear Information System (INIS)

    Posiva and SKB initiated a joint programme BACLO (Backfilling and Closure of the Deep repository) in 2003 with the aim to develop methods and materials for backfilling of deposition tunnels. This report summarises the work done in the third and final phase of the BACLO programme. The main objective of this phase was to study how the various processes active during backfill installation and saturation as well as technical constraints affect its design basis. The work focused on the performance and technical feasibility of a block backfill concept, which calls for filling the majority of the tunnel volume with pre-compacted backfill blocks and the remaining volume with bentonite pellets. Several backfill composition alternatives were chosen for study and they consisted of clay materials with differing amounts of swelling minerals. A large body of information was gained on the effect of different processes on the performance of these backfill options, e.g. water inflow, piping, erosion, self-healing, homogenisation and interaction between backfill and buffer in various laboratory and small-scale field tests. More practical tests included e.g. studies how the blocks and pellets could be installed to the deposition tunnel. Based on the new information on the effect of the processes investigated and the estimated achievable block filling degree and backfill density, recommendations were made concerning material selection, backfill layout and technical issues. In addition, issues requiring further attention to verify the long-term performance of the proposed backfill concept are identified and listed

  7. Assessment of backfill design for KBS-3V repository

    Energy Technology Data Exchange (ETDEWEB)

    Keto, Paula (B+tech, Eurajoki (Finland)); Dixon, David (AECL, Harwell (United Kingdom)); Jonsson, Esther; Gunnarsson, David (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Boergesson, Lennart (Clay Technology AB, Lund (Sweden)); Hansen, Johanna (Posiva (Finland))

    2009-12-15

    Posiva and SKB initiated a joint programme BACLO (Backfilling and Closure of the Deep repository) in 2003 with the aim to develop methods and materials for backfilling of deposition tunnels. This report summarises the work done in the third and final phase of the BACLO programme. The main objective of this phase was to study how the various processes active during backfill installation and saturation as well as technical constraints affect its design basis. The work focused on the performance and technical feasibility of a block backfill concept, which calls for filling the majority of the tunnel volume with pre-compacted backfill blocks and the remaining volume with bentonite pellets. Several backfill composition alternatives were chosen for study and they consisted of clay materials with differing amounts of swelling minerals. A large body of information was gained on the effect of different processes on the performance of these backfill options, e.g. water inflow, piping, erosion, self-healing, homogenisation and interaction between backfill and buffer in various laboratory and small-scale field tests. More practical tests included e.g. studies how the blocks and pellets could be installed to the deposition tunnel. Based on the new information on the effect of the processes investigated and the estimated achievable block filling degree and backfill density, recommendations were made concerning material selection, backfill layout and technical issues. In addition, issues requiring further attention to verify the long-term performance of the proposed backfill concept are identified and listed

  8. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    Directory of Open Access Journals (Sweden)

    Qingliang Chang

    2014-01-01

    Full Text Available Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application.

  9. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    Science.gov (United States)

    Chang, Qingliang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737

  10. Tunnel backfill erosion by dilute water

    International Nuclear Information System (INIS)

    The goal was to estimate smectite release from tunnel backfill due to dilute groundwater pulse during post glacial conditions. The plan was to apply VTT's two different implementations (BESWD and BESWS) of well-known model of Neretnieks et al. (2009). It appeared difficult to produce repeatable results using this model in COMSOL 4.2 environment, therefore a semi-analytical approximate approach was applied, which enabled to take into account both different geometry and smectite content in tunnel backfill as compared to buffer case. The results are quite similar to buffer results due to the decreasing effect of smaller smectite content and the increasing effect of larger radius. (orig.)

  11. Tunnel backfill erosion by dilute water

    Energy Technology Data Exchange (ETDEWEB)

    Olin, M. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2014-03-15

    The goal was to estimate smectite release from tunnel backfill due to dilute groundwater pulse during post glacial conditions. The plan was to apply VTT's two different implementations (BESW{sub D} and BESW{sub S}) of well-known model of Neretnieks et al. (2009). It appeared difficult to produce repeatable results using this model in COMSOL 4.2 environment, therefore a semi-analytical approximate approach was applied, which enabled to take into account both different geometry and smectite content in tunnel backfill as compared to buffer case. The results are quite similar to buffer results due to the decreasing effect of smaller smectite content and the increasing effect of larger radius. (orig.)

  12. Some characteristics of potential backfill materials

    International Nuclear Information System (INIS)

    A backfill material is one of the multiple barriers that may be involved in the disposal of nuclear waste. Such backfill should be a desiccant with the hydrous product having acceptable stability; it should sorb any released radioisotopes, and it should reseal any breached site. The backfill must also have acceptable thermal conductivity. This report presents data on the rate of hydration and the nature of the product of reaction of some candidate backfill materials with water and with brine. Thermal conductivity data is reported for both the reactants and the products. Granular MgO at 1500C completely hydrates in less than 10 hours. At 600C and 200C, such extensive hydration requires about 100 and 1000 hours, respectively. The product of the reaction is stable to more than 3000C. A doped discalcium silicate was less reactive and the product contains less water of crystallization than the MgO. The reaction product of dicalcium silicate is cementous, but it has low thermal stability. Bentonite readily reacts with water and expands. The reaction product has the properties of vermiculite, which indicates that magnesium ions have diffused into the bentonite structure and are not simply adsorbed on the surface. If bentonite is emplaced in a saline environment, the properties of vermiculite, the reaction product, should also be considered. The thermal conductivity of MgO, discalcium silicate, and bentonite is primarily dependent on the porosity of the sample. A slight increase in thermal conductivity was found with increased temperature, in contrast to most rocks. If the conductive data for the different materials is equated to the same porosity, MgO has the superior thermal conductivity compared to bentonite or discalcium silicate

  13. Wormhole Formation in RSRM Nozzle Joint Backfill

    Science.gov (United States)

    Stevens, J.

    2000-01-01

    The RSRM nozzle uses a barrier of RTV rubber upstream of the nozzle O-ring seals. Post flight inspection of the RSRM nozzle continues to reveal occurrence of "wormholes" into the RTV backfill. The term "wormholes", sometimes called "gas paths", indicates a gas flow path not caused by pre-existing voids, but by a little-understood internal failure mode of the material during motor operation. Fundamental understanding of the mechanics of the RSRM nozzle joints during motor operation, nonlinear viscoelastic characterization of the RTV backfill material, identification of the conditions that predispose the RTV to form wormholes, and screening of candidate replacement materials is being pursued by a joint effort between Thiokol Propulsion, NASA, and the Army Propulsion & Structures Directorate at Redstone Arsenal. The performance of the RTV backfill in the joint is controlled by the joint environment. Joint movement, which applies a tension and shear load on the material, coupled with the introduction of high pressure gas in combination create an environment that exceeds the capability of the material to withstand the wormhole effect. Little data exists to evaluate why the material fails under the modeled joint conditions, so an effort to characterize and evaluate the material under these conditions was undertaken. Viscoelastic property data from characterization testing will anchor structural analysis models. Data over a range of temperatures, environmental pressures, and strain rates was used to develop a nonlinear viscoelastic model to predict material performance, develop criteria for replacement materials, and quantify material properties influencing wormhole growth. Three joint simulation analogs were developed to analyze and validate joint thermal barrier (backfill) material performance. Two exploratory tests focus on detection of wormhole failure under specific motor operating conditions. A "validation" test system provides data to "validate" computer models and

  14. Design, production and initial state of the deposition tunnel backfill

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. In the Finnish KBS-3V type repository for spent nuclear fuel the deposition tunnels are closed with backfill consisting of different clay based components and a concrete plug constructed at the mouth of the deposition tunnels. The work described in this paper was initiated by Posiva Oy and is reported in Keto et al. (2012). The objectives of the report was to present the design basis, requirements, design, production and initial state of the backfill and to work as background material for the construction license application for the Finnish repository for spent nuclear fuel. This paper is limited to presenting the backfill part of the work. The performance targets for the backfill are to limit advective flow along the deposition tunnels, keep the buffer in place and contribute to the mechanical stability of deposition tunnels. In addition, the chemical composition of the backfill shall not jeopardize the performance of the buffer, canister or bedrock. The backfill design consists of three different main components: foundation layer installed at site, pre-compacted backfill blocks and bentonite pellets. Approximately 86% of the nominal tunnel volume will be filled with backfill blocks and the remaining volume with the other two components. The backfill blocks consist of Friedland clay from Germany with smectite content between 30-38%. The foundation layer material and pellets consist of bentonite clay from Greece with smectite content of 75-90%. The production chain for backfill consists of excavation and processing of the materials at site, delivery, acceptance of the material batch to production, transport, handling and storage of raw materials and components in different phases and manufacturing and installation of backfill components. Quality control is included in all phases of the production chain. The initial state of the backfill describe the material properties of the components and the average properties

  15. Assessment of the oxygen consumption in the backfill. Geochemical modelling in a saturated backfill

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Domenech, Cristina; Arcos, David; Duro, Lara [Enviros Spain S.L., Barcelona (Spain)

    2006-11-15

    The consumption of oxygen in the deep disposal is a major concern due to the ability of this element to corrode the canisters where high level nuclear wastes (HLNW) are disposed. The anoxic conditions initially present in a deep geologic environment are disturbed by the excavation of the repository facilities. After sealing the deposition holes and tunnels using clay-based materials, oxygen remains dissolved in porewater or as a gas phase in the unsaturated pores. The main mechanisms of oxygen depletion that can be considered in the backfill materials are: (1) diffusion into the surrounding rock and (2) kinetic reactions with accessory minerals and organic matter existing in the backfill. In this report, a set of numerical simulations are carried out in one and two dimensions in order to test the effect on the oxygen concentration in the pore water of all these mechanisms. The backfill considered is a 0/70 mixture of MX-80 bentonite and crushed material from the excavation itself. In addition to organic matter, the solid phases with reducing capacity in the backfill are Fe(II)-bearing minerals: pyrite (FeS{sub 2}) and siderite (FeCO) (as accessory minerals in the bentonite) and Fe-biotite (from the crushed granite). In the simulations, other chemical processes like cation exchange and surface complexation onto clay surfaces, and thermodynamic equilibrium with calcite, gypsum and quartz are considered. Initial composition of porewater is obtained by equilibrating the Forsmark groundwater with the backfill material. The 1D simulation consists of a number of cells with no reactive minerals or organic matter representing granite. The central cell, however, contains oxygen and reactive minerals resembling a backfill. Oxygen is allowed to move only by diffusion. The 2D model simulates the interaction with a backfill of a granitic groundwater flowing through a fracture. Like in the 1D model, the backfill contains oxygen and reactive solids. The results are very similar in

  16. Assessment of the oxygen consumption in the backfill. Geochemical modelling in a saturated backfill

    International Nuclear Information System (INIS)

    The consumption of oxygen in the deep disposal is a major concern due to the ability of this element to corrode the canisters where high level nuclear wastes (HLNW) are disposed. The anoxic conditions initially present in a deep geologic environment are disturbed by the excavation of the repository facilities. After sealing the deposition holes and tunnels using clay-based materials, oxygen remains dissolved in porewater or as a gas phase in the unsaturated pores. The main mechanisms of oxygen depletion that can be considered in the backfill materials are: (1) diffusion into the surrounding rock and (2) kinetic reactions with accessory minerals and organic matter existing in the backfill. In this report, a set of numerical simulations are carried out in one and two dimensions in order to test the effect on the oxygen concentration in the pore water of all these mechanisms. The backfill considered is a 0/70 mixture of MX-80 bentonite and crushed material from the excavation itself. In addition to organic matter, the solid phases with reducing capacity in the backfill are Fe(II)-bearing minerals: pyrite (FeS2) and siderite (FeCO) (as accessory minerals in the bentonite) and Fe-biotite (from the crushed granite). In the simulations, other chemical processes like cation exchange and surface complexation onto clay surfaces, and thermodynamic equilibrium with calcite, gypsum and quartz are considered. Initial composition of porewater is obtained by equilibrating the Forsmark groundwater with the backfill material. The 1D simulation consists of a number of cells with no reactive minerals or organic matter representing granite. The central cell, however, contains oxygen and reactive minerals resembling a backfill. Oxygen is allowed to move only by diffusion. The 2D model simulates the interaction with a backfill of a granitic groundwater flowing through a fracture. Like in the 1D model, the backfill contains oxygen and reactive solids. The results are very similar in both

  17. Backfilling with Fairness and Slack for Parallel Job Scheduling

    International Nuclear Information System (INIS)

    Parallel job scheduling typically combines a basic policy like FCFS with backfilling, i.e. moving jobs to an earlier than their regular scheduling position if they do not delay the jobs ahead in the queue according to the rules of the backfilling approach applied. Commonly used are conservative and easy backfilling which either have worse response times but better predictability or better response times and poor predictability. The paper proposes a relaxation of conservative backfilling by permitting to shift jobs within certain constraints to backfill more jobs and reduce fragmentation and subsequently obtain better response times. At the same time, deviation from fairness is kept low and predictability remains high. The results of the experimentation evaluation show that the goals are met, with response-time performance lying as expected between conservative and easy backfilling.

  18. Magnetic responses to traffic related contamination recorded by backfills: A case study from Tongling City, China

    Science.gov (United States)

    Ma, M. M.; Hu, S. Y.; Lin, H.; Cao, L. W.; Wang, L. S.

    2014-08-01

    With the development of urbanization and industrialization, traffic is creating a serious contamination problem. Conventional methods for contamination testing are generally expensive and time-consuming, while magnetic methods have been suggested to be an economic and non-destructive alternative. In this study, we measured magnetic properties and heavy metal contents in backfills along an urban road side in China, in situ on surface and on samples in vertical sections. Magnetic results and SEM images show the dominance of coarse magnetite, supposed to origin from human activities. Furthermore, there is an obvious decreasing trend of magnetic susceptibility (χ) and several heavy metals (Cu, Mn, Zn, Pb) with increasing distance from the road edge, symmetrically at both road sides, indicating that this is a typical traffic-related contamination signal. The detailed distribution patterns of χ and heavy metals exhibit slight variations in the surface data, probably due to the local topography and surface runoff due to rainfall. In vertical soil cores magnetic parameters show significant positive relationships (r = 0.88-0.99) with concentrations of heavy metals (Cu, Zn, Pb, Fe). Our results suggest that backfills unaffected by the traffic contamination signal and characterized by low χ value can be chosen for contamination monitoring. Despite the complex nature of backfills and the possibility of contamination prior to their transportation to the site, they are especially important for areas where undisturbed soil is not available.

  19. Strata movement controlling effect of waste and fly ash backfillings in fully mechanized coal mining with backfilling face

    Institute of Scientific and Technical Information of China (English)

    Zhang Jixiong; Zhang Qiang; Huang Yanli; Liu Jinwei; Zhou Nan; Zan Dongfeng

    2011-01-01

    A fully mechanized coal mining with backfilling (FMCMB) provides advantages of safety and efficiency for coal mining under buildings,railways,and water bodies.According to the field geological conditions,we analyzed the controlling effect of strata movement by the waste and fly ash backfilling in FMCMB face.Based on the key strata theory,we established the equivalent mining thickness model,and analyzed the action of the bulk factor of backfilling body to the equivalent mining thickness.In addition,we numerically simulated the controlling function of the strata movement by backfilling bodies with different strength.And the numerical simulation result show that the deformation of stratum and the subsidence of surface can be controlled by FMCMB.The result provides references to the effective execution of fully mechanized coal mining with solid waste backfilling in goal.

  20. A numerical evaluation of continuous backfilling in cemented paste backfilled stope through an application of wick drains

    Institute of Scientific and Technical Information of China (English)

    Li Li; Yang Pengyu

    2015-01-01

    Cemented paste backfill (CPB) is gaining popularity in many underground mines worldwide. Sufficient water is added into CPB to make a flowable material for pipe transportation. Barricades are built near the drawpoints to prevent in-rush of the fill slurry. To avoid barricade failures resulting from excessive backfill pressures, backfilling is typically performed with a plug pour followed by a final pour. The inter-val between the two pours should be shortened or removed to increase mining productivity and avoid pipe clogging. Recently, Li proposed to apply wick drains in backfilled stopes to promote drainage and consolidation. The preliminary simulations by considering an instantaneous filling indicated that the drainage of CPB can be significantly accelerated by using wick drains. Barricade was not considered. Here, some new numerical modellings are presented with more representative filling sequences, stope geometry, and different draining configurations. The results illustrate that the stope can be backfilled continuously by using wick drains.

  1. Dedicated heterogeneous node scheduling including backfill scheduling

    Science.gov (United States)

    Wood, Robert R.; Eckert, Philip D.; Hommes, Gregg

    2006-07-25

    A method and system for job backfill scheduling dedicated heterogeneous nodes in a multi-node computing environment. Heterogeneous nodes are grouped into homogeneous node sub-pools. For each sub-pool, a free node schedule (FNS) is created so that the number of to chart the free nodes over time. For each prioritized job, using the FNS of sub-pools having nodes useable by a particular job, to determine the earliest time range (ETR) capable of running the job. Once determined for a particular job, scheduling the job to run in that ETR. If the ETR determined for a lower priority job (LPJ) has a start time earlier than a higher priority job (HPJ), then the LPJ is scheduled in that ETR if it would not disturb the anticipated start times of any HPJ previously scheduled for a future time. Thus, efficient utilization and throughput of such computing environments may be increased by utilizing resources otherwise remaining idle.

  2. Backfilling techniques and materials in underground excavations: Potential alternative backfill materials in use in Posiva's spent fuel repository concept

    International Nuclear Information System (INIS)

    A variety of geologic media options have been proposed as being suitable for safely and permanently disposing of spent nuclear fuel or fuel reprocessing wastes. In Finland the concept selected is construction of a deep repository in crystalline rock (Posiva 1999, 2006; SKB 1999), likely at the Olkiluoto site (Posiva 2006). Should that site prove suitable, excavation of tunnels and several vertical shafts will be necessary. These excavations will need to be backfilled and sealed as emplacement operations are completed and eventually all of the openings will need to be backfilled and sealed. Clay-based materials were selected after extensive review of materials options and the potential for practical implementation in a repository and work over a 30+ year period has led to the development of a number of workable clay-based backfilling options, although discussion persists as to the most suitable clay materials and placement technologies to use. As part of the continuous process of re-evaluating backfilling options in order to provide the best options possible, placement methods and materials that have been given less attention have been revisited. Primary among options that were and continue to be evaluated as a potential backfill are cementitious materials. These materials were included in the list of candidate materials initially screened in the late 1970's for use in repository backfilling. Conventional cement-based materials were quickly identified as having some serious technical limitations with respect their ability to fulfil the identified requirements of backfill. Concerns related to their ability to achieve the performance criteria defined for backfill resulted in their exclusion from large-scale use as backfill in a repository. Development of new, less chemically aggressive cementitious materials and installation technologies has resulted in their re-evaluation. Concrete and cementitious materials have and are being developed that have chemical, durability

  3. Exchangeability of bentonite buffer and backfill materials

    International Nuclear Information System (INIS)

    Clay-based buffer and tunnel backfill materials are important barriers in the KBS-3 repository concept for final disposal of spent nuclear fuel in Finland. One issue that is relevant to material properties is the degree to which different bentonite compositions can be regarded as interchangeable. In Posiva's current repository design, the reference bentonite composition is MX-80, a sodium montmorillonite dominated clay. Posiva would like to be able to use bentonite with Ca-montmorillonite as the dominant clay mineral. However, at this stage, it is not clear what supporting data need to be acquired/defined to be able to place the state of knowledge of Ca-bentonite at the same level as that of Na-bentonite. In this report, the concept of bentonite exchangeability has been evaluated through consideration of how bentonite behaviour may be affected in six key performance-relevant properties, namely (1) mineralogical composition and availability of materials, (2) hydraulic conductivity, (3) mechanical and rheological properties, (4) long-term alteration, (5) colloidal properties, and (6) swelling pressure. The report evaluates implications for both buffer and backfill. Summary conclusions are drawn from these sections to suggest how bentonite exchangeability may be addressed in regulatory assessments of engineered barrier design for a future geological repository for spent fuel in Finland. Some important conclusions are: (a) There are some fundamental differences between Ca- and Na-bentonites such as colloidal behaviour, pore structure and long-term alteration that could affect the exchangeability of these materials as buffer or backfill materials and which should be further evaluated; (b) Additional experimental data are desirable for some issues such as long-term alteration, hydraulic properties and swelling behaviour, (c) The minor mineral content of bentonites is very variable, both between different bentonites and within the same bentonite type, it is not clear

  4. Numerical modeling of subsidence associated with different backfill configurations

    International Nuclear Information System (INIS)

    Due to the continuing use of abandoned mine lands over room and pillar mines it has become important to control the damages caused by surface subsidence. This paper deals with an investigation of the subsidence associated with different backfill configurations. Subsidence corresponding to a typical room and pillar abandoned mine in a number of geological columns were studied by using the finite element method. Subsidence profile was determined by the incorporation of bulking factors and varying depths of backfill. The results of the study show that the grout backfill configurations can be altered to reach a desired subsidence profile. This may increase the ability to protect a structure from large differential settlements without totally backfilling the mine. 10 refs., 5 figs., 4 tabs

  5. Shrinkage of backfill gutta-percha upon cooling

    OpenAIRE

    Lottanti, Silvio; Tauböck, Tobias T; Zehnder, Matthias

    2014-01-01

    INTRODUCTION The temperature and related shrinking kinetics of gutta-percha injected from heat guns are not known; therefore, we investigated them in this study. METHODS The temperatures of 3 different backfill gutta-percha brands extruded from 3 commercially available heat guns set to 200°C were studied. To validate the results, temperature development of 1 gutta-percha brand injected from a heat gun during a simulated backfilling procedure was assessed in single-rooted human teeth contai...

  6. Status of Research on Magnesium Oxide Backfill

    Energy Technology Data Exchange (ETDEWEB)

    PAPENGUTH,HANS W.; KRUMHANSL,JAMES L.; BYNUM,R. VANN; WANG,YIFENG; KELLY,JOHN W.; ANDERSON,HOWARD; NOWAK,E. JAMES

    2000-07-31

    For the WIPP, chemical and physical characteristics of MgO suggest it to be the most beneficial backfill choice, particularly because it has the ability to buffer the aqueous chemical conditions to control actinide volubility. In the current experimental program, the authors are developing a technical basis for taking credit for the complete set of attributes of MgO in geochemical, hydrogeological, and geomechanical technical areas, resulting in an improved conceptual model for the WIPP such as the following. Water uptake by MgO will delay the development of mobile actinides and gas generation by microbes and corrosion. Reduced gas generation will reduce or even eliminate spallings releases. As MgO hydrates, it swells, reducing porosity and permeability, which will inhibit gas flow in the repository, in turn reducing spallings releases. Hydration will also result in a self-sealing mechanism by which water uptake and swelling of MgO adjacent to a groundwater seep cuts off further seepage. Reaction with some groundwaters will produce cementitious materials, which will help to cement waste particles or produce a cohesive solid mass. Larger particles are less likely to be entrained in a spallings release. If sufficient water eventually accumulates in a repository to support microbial gas generation, magnesium carbonate cements will form; also producing good cohesion and strength.

  7. Status of Research on Magnesium Oxide Backfill

    International Nuclear Information System (INIS)

    For the WIPP, chemical and physical characteristics of MgO suggest it to be the most beneficial backfill choice, particularly because it has the ability to buffer the aqueous chemical conditions to control actinide volubility. In the current experimental program, the authors are developing a technical basis for taking credit for the complete set of attributes of MgO in geochemical, hydrogeological, and geomechanical technical areas, resulting in an improved conceptual model for the WIPP such as the following. Water uptake by MgO will delay the development of mobile actinides and gas generation by microbes and corrosion. Reduced gas generation will reduce or even eliminate spallings releases. As MgO hydrates, it swells, reducing porosity and permeability, which will inhibit gas flow in the repository, in turn reducing spallings releases. Hydration will also result in a self-sealing mechanism by which water uptake and swelling of MgO adjacent to a groundwater seep cuts off further seepage. Reaction with some groundwaters will produce cementitious materials, which will help to cement waste particles or produce a cohesive solid mass. Larger particles are less likely to be entrained in a spallings release. If sufficient water eventually accumulates in a repository to support microbial gas generation, magnesium carbonate cements will form; also producing good cohesion and strength

  8. System design of backfill - An ongoing project with the aim to test SKB's backfill installation concept in tunnel conditions

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. SKB in Sweden is developing and implementing concepts for final disposal of spent nuclear fuel. A KBS-3V repository consists of deposition tunnels with copper canisters containing spent fuel placed in vertical deposition holes. The canisters are embedded in highly compacted bentonite. After placement of canisters and bentonite, the deposition tunnels are backfilled with pre-compacted blocks of bentonite stacked on a bed of bentonite pellets. The remaining slot between the blocks and rock wall will be filled with bentonite pellets. The project described in this abstract is an ongoing project aiming to further develop the concept for backfill described in SKB's licence application for a Spent Fuel Repository in Forsmark. Results from this project will give important input for the Preliminary Safety Analysis Report (PSAR) needed to get permission to start the construction of the Spent Fuel Repository. The main objective with this project is to ensure that the method selected for backfill including methods for inspection works as intended with reasonable efficiency. The backfill design needs to be set since it forms the basis for requirements on deposition tunnels, deposition sequence etc. This project System Design of Backfill was started in early 2010 and will continue until the end of 2013. The project budget is 26 MSEK. The work consists of investigations, calculations, laboratory tests, tests in the Bentonite Laboratory and underground tests at Aespoe HRL, Sweden. The project objective is to further develop SKB's reference concept for backfill by performing a system design and to ensure that the reference method works as intended with reasonable efficiency. The stacking pattern for backfill blocks has been developed, see Figure 1. A stacked brick pattern is more stable than a pattern with continuous joints which implies less need for a compacted foundation bed. A conclusion from performed tests is that it is

  9. Tests to determine water uptake behaviour of tunnel backfill

    International Nuclear Information System (INIS)

    A series of 27 large-scale tests have been completed at the 420 level of SKB's Aespoe Hard Rock Laboratory. These tests have examined the influence of natural Aespoe fracture zone water on the movement of water into and through assemblies of Friedland clay blocks and bentonite pellets/ granules. These tests have established the manner in which groundwater may influence backfill and backfilling operations at the repository-scale. Tests have established that it is critical to provide a clay block backfilling system with lateral support and confinement as quickly as possible following block installation. Exposure of the blocks to even low rates of water ingress can result in rapid loss of block cohesion and subsequent slumping of the block materials into the spaces between the blocks and the tunnel walls. Installation of granular or pelletized bentonite clay between the blocks and the walls resulted in a system that was generally stable and not prone to unacceptable short-term strains as water entered. Inflow of water into a backfilled volume does not result in uniform wetting of the pellet/granule filled volume and as a result there is the potential for rapid movement of water from the point(s) of ingress to the downstream face of the backfill. Depending on the inflow rate and flow path(s) developed this flow can be via discrete flow channels that are essentially non-erosive or else they can develop highly erosive flow paths through the clay block materials. Erosion generally tends to be highest in the period immediately following first water exit from the backfill and then decreases as preferential flow paths develop to channel the water directly through the backfill, bypassing large volumes of unsaturated backfill. At the scale examined in this study inflow rates of 0.1 l/min or less do not tend to be immediately problematic when the source is 0.6 m distant from the downstream face of the backfill. At larger scales or longer distances from the working face, it is

  10. Tests to determine water uptake behaviour of tunnel backfill

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David (Atomic Energy of Canada Limited (AECL) (Canada)); Anttila, S.; Viitanen, M. (Poeyry InfRa Oy (Finland)); Keto, Paula (Saanio and Riekkola Oy, Helsinki (Finland))

    2008-12-15

    A series of 27 large-scale tests have been completed at the 420 level of SKB's Aespoe Hard Rock Laboratory. These tests have examined the influence of natural Aespoe fracture zone water on the movement of water into and through assemblies of Friedland clay blocks and bentonite pellets/ granules. These tests have established the manner in which groundwater may influence backfill and backfilling operations at the repository-scale. Tests have established that it is critical to provide a clay block backfilling system with lateral support and confinement as quickly as possible following block installation. Exposure of the blocks to even low rates of water ingress can result in rapid loss of block cohesion and subsequent slumping of the block materials into the spaces between the blocks and the tunnel walls. Installation of granular or pelletized bentonite clay between the blocks and the walls resulted in a system that was generally stable and not prone to unacceptable short-term strains as water entered. Inflow of water into a backfilled volume does not result in uniform wetting of the pellet/granule filled volume and as a result there is the potential for rapid movement of water from the point(s) of ingress to the downstream face of the backfill. Depending on the inflow rate and flow path(s) developed this flow can be via discrete flow channels that are essentially non-erosive or else they can develop highly erosive flow paths through the clay block materials. Erosion generally tends to be highest in the period immediately following first water exit from the backfill and then decreases as preferential flow paths develop to channel the water directly through the backfill, bypassing large volumes of unsaturated backfill. At the scale examined in this study inflow rates of 0.1 l/min or less do not tend to be immediately problematic when the source is 0.6 m distant from the downstream face of the backfill. At larger scales or longer distances from the working face, it

  11. A historical review of Waste Isolation Pilot Plant backfill development

    International Nuclear Information System (INIS)

    Backfills have been part of Sandia National Laboratories' [Sandia's] Waste Isolation Pilot Plant [WIPP] designs for over twenty years. Historically, backfill research at Sandia has depended heavily on the changing mission of the WIPP facility. Early testing considered heat producing, high level, wastes. Bentonite/sand/salt mixtures were evaluated and studies focused on developing materials that would retard brine ingress, sorb radionuclides, and withstand elevated temperatures. The present-day backfill consists of pure MgO [magnesium oxide] in a pelletized form and is directed at treating the relatively low contamination level, non-heat producing, wastes actually being disposed of in the WIPP. Its introduction was motivated by the need to scavenging CO2 [carbon dioxide] from decaying organic components in the waste. However, other benefits, such as a substantial desiccating capacity, are also being evaluated. The MgO backfill also fulfills a statutory requirement for assurance measures beyond those needed to demonstrate compliance with the US Environmental Protection Agency [EPA] regulatory release limits. However, even without a backfill, the WIPP repository design still operates within EPA regulatory release limits

  12. A historical review of Waste Isolation Pilot Plant backfill development

    Energy Technology Data Exchange (ETDEWEB)

    KRUMHANSL,JAMES L.; MOLECKE,MARTIN A.; PAPENGUTH,HANS W.; BRUSH,LAURENCE H.

    2000-06-05

    Backfills have been part of Sandia National Laboratories' [Sandia's] Waste Isolation Pilot Plant [WIPP] designs for over twenty years. Historically, backfill research at Sandia has depended heavily on the changing mission of the WIPP facility. Early testing considered heat producing, high level, wastes. Bentonite/sand/salt mixtures were evaluated and studies focused on developing materials that would retard brine ingress, sorb radionuclides, and withstand elevated temperatures. The present-day backfill consists of pure MgO [magnesium oxide] in a pelletized form and is directed at treating the relatively low contamination level, non-heat producing, wastes actually being disposed of in the WIPP. Its introduction was motivated by the need to scavenging CO{sub 2} [carbon dioxide] from decaying organic components in the waste. However, other benefits, such as a substantial desiccating capacity, are also being evaluated. The MgO backfill also fulfills a statutory requirement for assurance measures beyond those needed to demonstrate compliance with the US Environmental Protection Agency [EPA] regulatory release limits. However, even without a backfill, the WIPP repository design still operates within EPA regulatory release limits.

  13. Ocean disposal of heat generating radioactive waste backfilling requirements

    International Nuclear Information System (INIS)

    This report describes the backfilling requirements arising from the disposal of HGW in deep ocean sediments. The two disposal options considered are the drilled emplacement method and the free fall penetrator method. The materials best suited for filling the voids in the two options are reviewed. Candidate materials are selected following a study of the property requirements of each backfill. Placement methods for the candidate materials, as well as the means available for verifying the quality of the filling, are presented. Finally, an assessment of the overall feasibility of each placement method is given. The main conclusion is that, although the proposed methods are feasible, further work is necessary to test in inactive trials each of the proposed filling methods. Moreover, it is difficult to envisage how two of the backfilling operations in drilled emplacement option can be verified by non destructive methods. (author)

  14. Backfilling of deposition tunnels: Use of bentonite pellets

    International Nuclear Information System (INIS)

    The state of knowledge related to use of bentonite pellets as part of backfill or other gap filling components in repository applications is reviewed. How the pellets interact with adjacent sealing materials and the surrounding rock mass is a critical aspect in determining backfill behaviour. The key features and processes that determine how the pellet component of the KBS-3V deposition tunnel backfill will behave are discussed and recommendations related to what additional information needs to be developed are provided. Experiences related to pellet material composition, size, shape, placement options and more importantly, the density to which they can be placed all indicate that there are significant limitations to the achievable as-placed density of bentonite pellet fill. Low as-placed density of the pellet fill component of the backfill is potentially problematic as the outermost regions of tunnel backfill will be the first region of the backfill to be contacted by water entering the tunnels. It is also through this region that initial water movement along the length of the deposition tunnels will occur. This will greatly influence the operations in a tunnel, especially with respect to situations where water is exiting the downstream face of still open deposition tunnels. Pellet-filled regions are also sensitive to groundwater salinity, susceptible to development of piping features and subsequent mechanical erosion by through flowing water, particularly in the period preceding deposition tunnel closure. A review of the experiences of various organisations considering use of bentonite-pellet materials as part of buffer or backfill barriers is provided in this document. From this information, potential options and limitations to use of pellets or pellet-granule mixtures in backfill are identified. Of particular importance is identification of the apparent upper-limits of dry density to which such materials can to be placed in the field. These bounds will

  15. Piping and erosion in buffer and backfill materials. Current knowledge

    International Nuclear Information System (INIS)

    The water inflow into the deposition holes and tunnels in a repository will mainly take place through fractures in the rock and will lead to that the buffer and backfill will be wetted and homogenised. But in general the buffer and backfill cannot absorb all water that runs through a fracture, which leads to that a water pressure will be generated in the fracture when the inflow is hindered. If the counter pressure and strength of the buffer or backfill is insufficiently high, piping and subsequent erosion may take place. The processes and consequences of piping and erosion have been studied in some projects and several laboratory test series in different scales have been carried through. This brief report describes these tests and the results and conclusions that have emerged. The knowledge of piping and erosion is insufficient today and additional studies are needed and running

  16. Backfilling of deposition tunnels: Use of bentonite pellets

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David (Atomic Energy of Canada Limited (Canada)); Sanden, Torbjoern (Clay Technology AB (Sweden)); Jonsson, Esther (Swedish Nuclear Fuel and Waste Mangaement Co. (Sweden)); Hansen, Johanna (Posiva Oy (Finland))

    2011-02-15

    The state of knowledge related to use of bentonite pellets as part of backfill or other gap filling components in repository applications is reviewed. How the pellets interact with adjacent sealing materials and the surrounding rock mass is a critical aspect in determining backfill behaviour. The key features and processes that determine how the pellet component of the KBS-3V deposition tunnel backfill will behave are discussed and recommendations related to what additional information needs to be developed are provided. Experiences related to pellet material composition, size, shape, placement options and more importantly, the density to which they can be placed all indicate that there are significant limitations to the achievable as-placed density of bentonite pellet fill. Low as-placed density of the pellet fill component of the backfill is potentially problematic as the outermost regions of tunnel backfill will be the first region of the backfill to be contacted by water entering the tunnels. It is also through this region that initial water movement along the length of the deposition tunnels will occur. This will greatly influence the operations in a tunnel, especially with respect to situations where water is exiting the downstream face of still open deposition tunnels. Pellet-filled regions are also sensitive to groundwater salinity, susceptible to development of piping features and subsequent mechanical erosion by through flowing water, particularly in the period preceding deposition tunnel closure. A review of the experiences of various organisations considering use of bentonite-pellet materials as part of buffer or backfill barriers is provided in this document. From this information, potential options and limitations to use of pellets or pellet-granule mixtures in backfill are identified. Of particular importance is identification of the apparent upper-limits of dry density to which such materials can to be placed in the field. These bounds will

  17. 30 CFR 819.19 - Auger mining: Backfilling and grading.

    Science.gov (United States)

    2010-07-01

    ... environment. (5) Spoil placed on the outslope during previous mining operations shall not be disturbed if such... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: Backfilling and grading. 819.19 Section 819.19 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF...

  18. Ion-exchange equilibria and diffusion in engineered backfill

    International Nuclear Information System (INIS)

    Engineered backfill can add confidence to confinement times of high-level nuclear waste stored in geologic media. This paper discusses the design and operation of a unique radial-flow diffusion cell to determine ion migration rates in backfill material under realistic repository conditions. New experimental results were reported for diffusion of CsCl in a background of NaCl into compacted bentonite and bentonite/quartz mixtures. Representation of the measured diffusion rates by the traditional, homogeneous porous-medium model significantly underestimates cesium penetration distances into the backfill. Surface diffusion is suggested as an additional mechanism by which cations transport in swollen montmorillonite; the surface diffusion coefficients for cesium is determined to be approximately 10-7 cm2/s. An electrostatic site-binding model is developed for ion-exchange equilibria on montmorillonite clay. The effect of pH, ionic strength, and specific adsorption are evaluated and compared favorably to new, experimental exchange isotherms measured on disaggregated clay. The electrostatic site-binding model permits a prediction of the influence of backfill compaction on K/sub d/ values. We find that for strongly adsorbing cations, compactions has little effect. However, anions exhibit significant Donnan exclusion with clay compaction. 40 references, 12 figures

  19. Protection against flashback by backfilling with rock salt gruss

    International Nuclear Information System (INIS)

    If wastes are disposed of in deep geological formations, e.g. in salt domes, radiolytically produced hydrogen may escape from the waste forms into the boreholes, forming an inflammable mixture with air. Complementary to part I (Report Juel-Spez--573), here the protection against flashback by salt gruss backfillings, the volume and form of the flammability range are examined. It was found out that salt gruss backfillings, under certain conditions, can prevent flashbacks in hydrogen-air mixtures, the most important condition being that the backfillings contain trickling material of the finest particle size of between 0 and 2 mm. Unfractional backfillings drilled in the domes of rock salt formations meet this requirement in their dry state. Their water content must not exceed 2 mass per cent. For flashback, the flammability point referred to as 'near' is more critical than the one referred to as 'far'. The length-diameter ratio of the hollow space where the mixture is ignited only has a secondary influence on the flashback. It hardly plays a role either whether the surfaces of the flammability ranges are rough or smooth. (orig./BBR)

  20. Analysis of factors affecting the stability of backfill materials

    International Nuclear Information System (INIS)

    Storage of high-level nuclear waste in subsurface repositories involves a backfill material as a physical/chemical barrier between the solid waste canisters and host rock. Chemical, structural, and textural changes due to hydrothermal reaction may degrade the backfill performance over the life of the repository. In order to evaluate the potential for such changes, we have: (1) carried out hydrothermal experiments on candidate backfill materials (smectite, illite, basalt) under conditions analogous to those at the repository, (2) performed a complete characterization of these materials before and after hydrothermal treatment using EMPA, XRD, SEM/EDS, and, especially, STEM/AEM techniques, and (3) reviewed and analyzed geologic systems which are analogous to the backfill systems. These serve as natural experimental systems with ages up to many tens of millions of years. The Umtanum basalt contains up to 25% of immiscible, two-phase glasses and late opal and nontronite in fractures. These materials are especially subject to solution effects and the glass may provide K to groundwater. The kinetics of the smectite to illite and illite to muscovite transitions are primarily controlled by Al/Si diffusion which is sluggish, rather than by rapid alkali ion diffusion. Thus, even though smectite (bentonite), mixed-layer illite/smectite and illite are all metastable phases transitional to muscovite plus other phases, reactions occur so slowly that these phases are retained even within a geologic time scale for temperatures of approximately 150, 200 and 3000C, respectively. A high ratio of Ca/K (perhaps supplied by solution of calcite) inhibits the transitions. If clay layers are compacted to form a continuous matrix, water may be prevented from penetrating the backfill and promoting the clay mineral transition

  1. Backfilling of KBS-3V deposition tunnels - possibilities and limitations

    International Nuclear Information System (INIS)

    By definition for the SKB repository concept, the backfill of KBS-3V deposition tunnels must be so designed that transport of dissolved matter is controlled by diffusion and not by advective water flow. This requires that the hydraulic conductivity of the backfill does not exceed about E-10 m/s. The backfilling materials also have to adequately resist compression caused by upward expansion of the buffer. It must also exert an effective pressure of at least 100 kPa on the rock in order to provide support to the rock and minimize spalling of the rock. These criteria are fulfilled by several approaches and options for backfill materials, placed and compacted layer wise or in the form of blocks of compacted clay powder. Based on the experience from comprehensive lab studies and considering practical issues, SKB has selected a concept where the major part of the backfill consists of stacked blocks that are surrounded by clay pellets. Using this concept a basis for a detailed evaluation, a study of three different techniques for placing the blocks has been undertaken. The three block placement techniques examined are the 'Block', 'Robot', and 'Module' methods. They involve different block sizes and techniques for handling and placing the blocks but the same way of preparing the foundation bed of the blocks and placing the pellet filling. The blasted tunnels have a varying cross section, caused by the orientation of the blast-holes. This requires that a varying fraction of blocks be installed in the backfilling along the blasted tunnel interval if sufficiently high density and low hydraulic conductivity is to be achieved. The efficiency of filling will depend on the type of clay used in the blocks. For example, using Friedland clay for block preparation, the filling efficiency must be 80% while it can be reduced to 60% if more smectite-rich clay is used. The use of a clay with high smectite content increases margins and is concluded to be superior from emplacement point

  2. Backfilling of KBS-3V deposition tunnels - possibilities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Wimelius, Hans (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Pusch, Roland (Geodevelopment International AB, Lund (Sweden))

    2008-12-15

    By definition for the SKB repository concept, the backfill of KBS-3V deposition tunnels must be so designed that transport of dissolved matter is controlled by diffusion and not by advective water flow. This requires that the hydraulic conductivity of the backfill does not exceed about E-10 m/s. The backfilling materials also have to adequately resist compression caused by upward expansion of the buffer. It must also exert an effective pressure of at least 100 kPa on the rock in order to provide support to the rock and minimize spalling of the rock. These criteria are fulfilled by several approaches and options for backfill materials, placed and compacted layer wise or in the form of blocks of compacted clay powder. Based on the experience from comprehensive lab studies and considering practical issues, SKB has selected a concept where the major part of the backfill consists of stacked blocks that are surrounded by clay pellets. Using this concept a basis for a detailed evaluation, a study of three different techniques for placing the blocks has been undertaken. The three block placement techniques examined are the 'Block', 'Robot', and 'Module' methods. They involve different block sizes and techniques for handling and placing the blocks but the same way of preparing the foundation bed of the blocks and placing the pellet filling. The blasted tunnels have a varying cross section, caused by the orientation of the blast-holes. This requires that a varying fraction of blocks be installed in the backfilling along the blasted tunnel interval if sufficiently high density and low hydraulic conductivity is to be achieved. The efficiency of filling will depend on the type of clay used in the blocks. For example, using Friedland clay for block preparation, the filling efficiency must be 80% while it can be reduced to 60% if more smectite-rich clay is used. The use of a clay with high smectite content increases margins and is concluded to be

  3. Radon emanation from backfilled mill tailings in underground uranium mine

    International Nuclear Information System (INIS)

    Coarser mill tailings used as backfill to stabilize the stoped out areas in underground uranium mines is a potential source of radon contamination. This paper presents the quantitative assessment of radon emanation from the backfilled tailings in Jaduguda mine, India using a cylindrical accumulator. Some of the important parameters such as 226Ra activity concentration, bulk density, bulk porosity, moisture content and radon emanation factor of the tailings affecting radon emanation were determined in the laboratory. The study revealed that the radon emanation rate of the tailings varied in the range of 0.12–7.03 Bq m−2 s−1 with geometric mean of 1.01 Bq m−2 s−1 and geometric standard deviation of 3.39. An increase in radon emanation rate was noticed up to a moisture saturation of 0.09 in the tailings, after which the emanation rate gradually started declining with saturation due to low diffusion coefficient of radon in the saturated tailings. Radon emanation factor of the tailings varied in the range of 0.08–0.23 with the mean value of 0.21. The emanation factor of the tailings with moisture saturation level over 0.09 was found to be about three times higher than that of the absolutely dry tailings. The empirical relationship obtained between 222Rn emanation rate and 226Ra activity concentration of the tailings indicated a significant positive linear correlation (r = 0.95, p < 0.001). This relationship may be useful for quick prediction of radon emanation rate from the backfill material of similar nature. - Highlights: • 222Rn emanation rate of the backfilled tailings varied from 0.12 to 7.03 Bq m−2 s−1. • Good correlation between 222Rn emanation rate and 226Ra activity concentration found. • Higher 222Rn emanation rate was obtained from moist backfilled tailings. • Radon emanation factor of the backfilled tailings varied in the range of 0.08–0.23. • Emanation factor of wet tailings was about 3 times higher than that of dry tailings

  4. Geotechnical investigations on backfill materials in the Asse salt mine

    International Nuclear Information System (INIS)

    The compression behaviour of rock salt grit is being investigated by compression tests at the Asse salt mine. The various test parameters are introduced and their results are discussed. The permeability of rock salt grit with saturated NaCl-brine in dependency upon the grain size and compactness, resp. the porosity, is being determined at the Asse salt mine. The test equipment and the results determined here are shown. In addition to laboratory tests, geotechnical investigations are taking place in a carnallitic chamber of the Asse salt mine which had been backfilled in earlier years. They chiefly concern measurements of the deformation rates in drifts - which were mined between the chambers in remaining pillars - as well as horizontal deformation measurements in the backfilling. (orig./DG)

  5. Backfill as an engineered barrier for nuclear waste management

    International Nuclear Information System (INIS)

    The swelling, plastic flow, and relative impermeability of bentonite and hectorite were observed and measured after wetting with concentrated brines. Measurements of stable values of pH > 6.5 for the interstitial brines in wetted bentonite and hectorite confirmed conditions favorable for precipitation and sorption of transuranics. Values of K/sub d/ > 2000 ml/g were measured for Pu and Am. Calculated estimates of the effectiveness of a one-foot-thick backfill barrier are presented. They show that the breakthrough of Pu and other transuranics (K/sub d/ = 2000 ml/g) can be delayed for 104 to 105 years. The breakthrough of most fission products (K/sub d/ = 200 ml/g) can be delayed for 103 to 104 years, sufficient time for them to decay to very low concentrations. A backfill barrier can contribute significantly to a radioactive waste isolation system

  6. Federal Republic of Germany/backfilling and sealing program - outline

    International Nuclear Information System (INIS)

    After 1978 the Asse salt mine was used exclusively for research work which serves to make available scientific and technical data for the planning, construction and operation of repositories for radioactive wastes. This presentation delineates the advantages of the geological formation rock salt with a view to the final disposal of radioactive wastes subsequent to a short description of the 'Waste Management Concept' of the Federal Republic of Germany. The individual components of the internationally accepted 'Multiple Barrier System' are described, while the technical barriers 'backfilling and sealing' are subject of special consideration. A general formulation of the requirements and objectives of each specific component in the backfilling and sealing system is presented. (orig./DG)

  7. Reactive backfills in radioactive waste disposal selenium sorption on apatite

    International Nuclear Information System (INIS)

    Apatites are investigated as possible high performance material for reactive backfills in radioactive waste disposal. An experimental study showed an excellent selenite retaining rate and established the main characteristic of this element sorption on natural and synthetic apatites. Thermodynamical parameters have been calculated and integrated in a geochemical computer code in order to demonstrate the excellent potentialities of the apatite as a trap mineral for the selenium. (A.L.B.)

  8. Approach for Measuring Swelling Stress of Buffer Backfilling Material

    OpenAIRE

    Ming Zhang; Huyuan Zhang; Suli Cui; Lingyan Jia

    2012-01-01

    The characteristics of swelling stress of buffer backfilling material have been studied by forcebalance method and constant volume test method in this paper. The constant volume test apparatus was designed by the authors. Results show that swelling stress changing with time is a little different between the two methods. The value of swelling stress measured by constant volume test is more accurate; besides, uptaking water with time could also be monitored by constant volume test. The constant...

  9. Groundwater recovery problems associated with opencast mine backfills

    OpenAIRE

    Reed, S M

    1986-01-01

    The research outlined in this thesis is concerned with the environmental aspects of groundwater re-establishment as a consequence of surface mining. No principal effects which have been identified as being detrimental to the restored land area are as follows; i). The vertical and horizontal displacements of backfill materials following restoration, and ii). The pollution of groundwater from contact with weathered rockfill materials. The research into settlement has attempted to cl...

  10. Water quality and hydrologic impacts of disposal of uranium mill tailings by backfilling

    International Nuclear Information System (INIS)

    Backfilling of the sand portion of spent uranium mill tailings has been practised for years in the Grants Mineral Belt of New Mexico, USA. Until recently, it has been limited to abandoned stopes requiring roof support to enable continued ore production. Recent environmental regulations of surface disposal make backfilling an increasingly attractive alternative for disposal of a greater fraction of the tails. This paper discusses the impacts of the backfill process on groundwater resources. Immediate and long-term hydrologic effects are evaluated. Whereas backfilling does lead to some changes in minewater flows, these changes are localized, of slight magnitude, and of short duration. In the long term, backfilling will have inconsequential impact on regional hydrology. Short- and long-term water quality impacts are considered. In general, backfill decant is contaminated with the same constituents found in normal mine wastewater, but at elevated concentrations. During the backfill process, backfill decant is returned to the surface and treated along with dewatering discharge. In the longer term, there may exist some potential for contaminants mobilized from backfill media in a flooded mine to migrate into the surrounding aquifer. It is predicted that low groundwater velocities and geochemical interactions including precipitation will together prevent any backfill-caused deterioration of regional groundwater quality. (author)

  11. Effect of Initial Backfill Temperature on the Deformation Behavior of Early Age Cemented Paste Backfill That Contains Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Aixiang Wu

    2016-01-01

    Full Text Available Enhancing the knowledge on the deformation behavior of cemented paste backfill (CPB in terms of stress-strain relations and modulus of elasticity is significant for economic and safety reasons. In this paper, the effect of the initial backfill temperature on the CPB’s stress-strain behavior and modulus of elasticity is investigated. Results show that the stress-strain relationship and the modulus of elasticity behavior of CPB are significantly affected by the curing time and initial temperature of CPB. Additionally, the relationship between the modulus of elasticity and unconfined compressive strength (UCS and the degree of hydration was evaluated and discussed. The increase of UCS and hydration degree leads to an increase in the modulus of elasticity, which is not significantly affected by the initial temperature.

  12. The Buffer and Backfill Handbook. Part 3: Models for calculation of processes and behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Geodevelopment AB, Lund (Sweden)

    2003-01-15

    nature. They are coupled to other processes and affected by various restrictions such as limited access to water and transient interaction with dissolved species. This makes the issue of coupled models very important but almost all the models and codes that are being used in predicting the behaviour of buffers and backfills in a repository are simplified and incomplete with respect to the hydrothermal processes. This is because of the lack of understanding of the involved physico-chemical mechanisms, for which consideration of the behaviour of the clay on the microstructural level is required. Chapter 3 deals with microstructural issues focusing on particle interaction and void distribution in buffers and backfills with special respect to swelling pressure and permeation of fluids and gas. Chapter 4 deals with heat transport in fully and partly water saturated buffer clays. It includes mathematical formulation of empirically deduced material models of heat conductivity and gives examples of how this quantity can be evaluated from laboratory experiments. Chapter 5 deals with flow of water in liquid and vapour form in fully and partly water saturated buffers and backfills. The presented material models are intended for practical use and imply that potential theory in the form of Navier/Stoke's laws for analytical solution or numerical methods are valid. Chapter 6 gives the basis of currently used material models for anion and cation diffusion through smectitic soil. Complexation may cause considerable deviation from theoretically derived migration rates and only diffusive transport of species that do not undergo chemical reactions is treated here. Focus is on outlining the formulation of theoretical models for evaluation of diffusion coefficients from controlled experiments. As for water transport, the solution of practical 2 and 3D problems is made by use of potential theory, applying analytical or numerical techniques, which are not treated here. Chapter 7 deals

  13. The Buffer and Backfill Handbook. Part 3: Models for calculation of processes and behaviour

    International Nuclear Information System (INIS)

    nature. They are coupled to other processes and affected by various restrictions such as limited access to water and transient interaction with dissolved species. This makes the issue of coupled models very important but almost all the models and codes that are being used in predicting the behaviour of buffers and backfills in a repository are simplified and incomplete with respect to the hydrothermal processes. This is because of the lack of understanding of the involved physico-chemical mechanisms, for which consideration of the behaviour of the clay on the microstructural level is required. Chapter 3 deals with microstructural issues focusing on particle interaction and void distribution in buffers and backfills with special respect to swelling pressure and permeation of fluids and gas. Chapter 4 deals with heat transport in fully and partly water saturated buffer clays. It includes mathematical formulation of empirically deduced material models of heat conductivity and gives examples of how this quantity can be evaluated from laboratory experiments. Chapter 5 deals with flow of water in liquid and vapour form in fully and partly water saturated buffers and backfills. The presented material models are intended for practical use and imply that potential theory in the form of Navier/Stoke's laws for analytical solution or numerical methods are valid. Chapter 6 gives the basis of currently used material models for anion and cation diffusion through smectitic soil. Complexation may cause considerable deviation from theoretically derived migration rates and only diffusive transport of species that do not undergo chemical reactions is treated here. Focus is on outlining the formulation of theoretical models for evaluation of diffusion coefficients from controlled experiments. As for water transport, the solution of practical 2 and 3D problems is made by use of potential theory, applying analytical or numerical techniques, which are not treated here. Chapter 7 deals with gas

  14. Backfilling technology and strata behaviors in fully mechanized coal mining working face

    Institute of Scientific and Technical Information of China (English)

    Zhang Qiang; Zhang Jixiong; Huang Yanli; Ju Feng

    2012-01-01

    Based on the principle of fully mechanized backfilling and coal mining technology and combined with theXingtai Coal Mine conditions,we mainly optimized the coal mining equipment and adjusted the coal mining method in the Xingtai Coal Mine 7606 working face for implementation this technology,Firstly,we define the practical backfilling process as the "(from backfilling scraper conveyor's) head to tail backfilling,step by step swinging up of the tamping arm.gradual compacting,moving formed backfilling scraper conveyor when the second tamping arm cannot pass and connecting the immediate roof by back material push front material movement".Meanwhile,the stress changes of backfill body in coal mined out area was monitored by stress sensors,and the roof caving law was analyzed by monitoring the dynamic subsidence of -210 west roadway of this face.The site tests results show that using this new backfilling and coal mining integrated technology,the production capacity in the 7606 working face can reach to 283,000 ton a year,and 282,000 ton of solid materials (waste and fly ash) is backfilled,which meets the needs of high production and efficiency.The goaf was compactly backfilled with solid material and the strata behavior was quite desirable,with an actual maximum vertical stress of the backfill body of 5.5 MPa.Backfill body control the movement of overburden within a certain range,and there is no collapses of major areas in the overlying strata upon backfilled gob.The maximum subsidence and speed were 231 mm and 15.75 mm/d respectively,which proved the practical significance of this integrated technology.

  15. Geotechnical charcterization of coal refuse for use as a backfill material

    OpenAIRE

    Bowman, Charles H

    1991-01-01

    Both active and residual mine subsidence resulting from underground coal mining have caused surface damage to land and structures. A method of subsidence mitigation successfully used abroad, and to a much lesser extent in U.S. coal mines, is backfilling. In addition to the possible benefits of subsidence mitigation, backfilling has the potential to increase coal recovery, enhance ventilation control, and to minimize mine fires. Backfilling can also be used as a means of mine refuse disposal, ...

  16. Swelling behavior of GMZ01 buffer/backfill material under flexible boundary condition

    International Nuclear Information System (INIS)

    In the high-level radioactive waste geological repository, the swelling properties of buffer/backfill material play an important role for insuring the long-term stability and safety of the repository. Traditionally, soil swelling behavior has been thoroughly examined under two extreme boundary conditions that included constant volume and constant stress. However, there exist infinite possible intermediate conditions that are neither constant volume nor constant stress and are termed flexible boundary conditions. In literature, the information on soil swelling behavior under flexible boundary condition is limited. In this investigation, a special flexible load ring-type device was developed to perform swelling tests on Gaomiaozi (GMZ01) bentonite under flexible boundary conditions, where the applied stress increases with increasing volume at a specified function. The initial dry density of the soil sample is 1.7 g/cm3, the applied initial axial stress is 0.2 MPa. The results indicate that the developed load ring-type device is effective to characterize the swelling behavior of soil sample under flexible boundary conditions; both the swelling strain and swelling pressure increase with increasing flooding time and then gradually reach stabilization, and the void ratio of the sample increases linearly with increasing swelling pressure; with increasing stiffness of the load ring, the finial swelling stain decreases while the final swelling pressure increases. For the tested soil sample, as the stiffness of the load ring increases from 278.5 N/mm to 2152 N/mm, the final equilibrium swelling strain decreases from 15.88% to 6.84%, while the final equilibrium swelling pressure increases from 0.59 MPa to 1.50 MPa. The experimental results highlights that choosing an appropriate swelling testing technique to simulate the field conditions is essential for design and evaluation of soil swelling potential. (authors)

  17. Effects of grouting, shotcreting and concrete leachates on backfill geochemistry

    International Nuclear Information System (INIS)

    The use of concrete to seal open fractures (grouting) and to impermeabilise the deposition tunnels (shotcreting) has been envisaged in the construction of a high level nuclear waste (HLNW) repository according to SKB designs. Nevertheless, the geochemical effect of using concrete in the repository is not fully understood. Concrete degradation due to the interaction with groundwater can affect the performance of other repository barriers, such as the backfill material used for sealing the deposition tunnels. One of the main effects of concrete degradation is the generation of alkaline plumes. For this reason, SKB is currently planning to use a type of concrete whose degradation result in lower pH values than those developed with Ordinary Portland Cement (OPC). In order to assess the long-term geochemical effect of including low-pH concrete elements in a HLNW repository, we performed a 2D reactive-transport model of a backfilled deposition tunnel that intersects a hydraulic conductive fracture which has been partially grouted. An additional case has been modelled where part of the deposition tunnel walls were covered with a shotcrete layer. The modelling results predict the development of a high-alkalinity plume, larger in the case of considering a grouted fracture, accompanied by the precipitation of CSH-phases in the fracture. However, the effect on the backfill material is only significant if concrete is in contact with the backfill (shotcrete case). In order to conduct these models, and considering that at the beginning of the present work there was not a specific composition for such a low-pH concrete, its composition has been assumed in order to meet the expected geochemical evolution of concrete degradation according to SKB expectations. This is a pH of pore water of around 11 and the degradation of CSH phases resulting in a source for Ca and Si into the system. For this reason, jennite and tobermorite have been selected, although it is known that jennite is

  18. Effects of grouting, shotcreting and concrete leachates on backfill geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Miguel; Arcos, David; Duro, Lara [Enviros Consulting, Valldoreix, Barc elona (Spain)

    2007-11-15

    The use of concrete to seal open fractures (grouting) and to impermeabilise the deposition tunnels (shotcreting) has been envisaged in the construction of a high level nuclear waste (HLNW) repository according to SKB designs. Nevertheless, the geochemical effect of using concrete in the repository is not fully understood. Concrete degradation due to the interaction with groundwater can affect the performance of other repository barriers, such as the backfill material used for sealing the deposition tunnels. One of the main effects of concrete degradation is the generation of alkaline plumes. For this reason, SKB is currently planning to use a type of concrete whose degradation result in lower pH values than those developed with Ordinary Portland Cement (OPC). In order to assess the long-term geochemical effect of including low-pH concrete elements in a HLNW repository, we performed a 2D reactive-transport model of a backfilled deposition tunnel that intersects a hydraulic conductive fracture which has been partially grouted. An additional case has been modelled where part of the deposition tunnel walls were covered with a shotcrete layer. The modelling results predict the development of a high-alkalinity plume, larger in the case of considering a grouted fracture, accompanied by the precipitation of CSH-phases in the fracture. However, the effect on the backfill material is only significant if concrete is in contact with the backfill (shotcrete case). In order to conduct these models, and considering that at the beginning of the present work there was not a specific composition for such a low-pH concrete, its composition has been assumed in order to meet the expected geochemical evolution of concrete degradation according to SKB expectations. This is a pH of pore water of around 11 and the degradation of CSH phases resulting in a source for Ca and Si into the system. For this reason, jennite and tobermorite have been selected, although it is known that jennite is

  19. Behavior of Radionuclides and RCRA Elements in Tank Backfill Grouts

    International Nuclear Information System (INIS)

    One approach to decommissioning emptied high-level waste tanks is to backfill them with grout. Because of the long lives and high toxicity of some of the contaminants, the chemical behavior of the contaminants in the grout need to be understood, especially as the grout ages and weathers over long times. In this paper, the sequestration of technetium and iodine in contact with two grout formulations, and their component materials, is discussed. Preliminary results are presented of experiments examining the solubility of actinides in contact with the grouts as pH is lowered and carbonate content increased, representing conditions of a weathered grout system. (authors)

  20. Chemical behaviour of montmorillonite in a final repository backfill

    International Nuclear Information System (INIS)

    With a view to supplementing an earlier report (NTB 86-12, EIR 576), publications appearing in the interim period have been evaluated. Particular emphasis was placed on the thermodynamic status of the clay minerals, the long term stability of montmorillonite and interactions with other repository components. Smectites and illites are presumably thermodynamically unstable and even the formation of metastable solubility equilibria is questionable. Basic problems are thus encountered when formulating equilibrium models for the clay/water interaction. It can be concluded from investigations of argillaceous sediments that, given a repository temperature of 50 to 60 degrees C, a maximum of 50 % of the montmorillonite will alter to illite over a period of around 108 years. The formation of such illite/smectite interstratifications does not impair the function of the backfill material. Since the alteration of calcium montmorillonite is very restricted in comparison with that of the sodium variant, a calcium bentonite should be foreseen as the backfill material. Magnetite is probably unstable in the presence of montmorillonite. The thermodynamic data and experimental results necessary to allow a reliable assessment of potential interactions between the bentonite and the steel canister corrosions products are lacking. Given the current state of knowledge, the formation of iron-rich microcrystalline layer silicates is to be expected. Montmorillonite in contact with alkaline cement pore-waters reacts to form zeolites. This alteration is linked with a volume increase and a loss of plasticity. (author) 127 refs., 31 figs., 4 tabs

  1. The backfilling and sealing of radioactive waste repositories. V. 2. Figure - Tables - Appendices

    International Nuclear Information System (INIS)

    The two volumes of this report present a review study about backfilling and sealing of radioactive waste repositories in granites, argillaceous and salt formations. Volume 2 contains all the figures, table and appendices A detailed account of candidate backfill materials is given in a standardized format

  2. The Buffer and Backfill Handbook. Part 1: Definitions, basic relationships and laboratory methods

    International Nuclear Information System (INIS)

    Part 1 of this Handbook is focused on description of fundamental issues of soil physical and chemical arts and on soil mechanical definitions and relationships. Part 2 comprises a material data basis including also preparation and field testing methods. Part 3 provides a collection of physical and mathematical models and examples of how they can and should be applied. The present document, which has been prepared by Geodevelopment AB in co-operation with Scandia Consult AB and Clay Technology AB, Sweden, and with TVO, Finland, makes up Part 1. Most of the data and information emanate from the work that Geodevelopment AB and Clay Technology AB have performed for SKB but a number of results from experiments made in and for other organizations have been included as well. A significant number of experimental procedures and ways of characterizing buffers and backfills are included. The experience from the comprehensive international Stripa Project, concerning both systematic material investigations in the laboratory and the full-scale field experiments, has contributed significantly to this report. However, similar and additional information gained from later work in SKB's Aespoe Hard Rock Laboratory and from NAGRA and also from other waste-isolation projects have helped to make this document of assumed international interest

  3. The Buffer and Backfill Handbook. Part 1: Definitions, basic relationships and laboratory methods

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Geodevelopment AB, Lund (Sweden)

    2002-04-01

    Part 1 of this Handbook is focused on description of fundamental issues of soil physical and chemical arts and on soil mechanical definitions and relationships. Part 2 comprises a material data basis including also preparation and field testing methods. Part 3 provides a collection of physical and mathematical models and examples of how they can and should be applied. The present document, which has been prepared by Geodevelopment AB in co-operation with Scandia Consult AB and Clay Technology AB, Sweden, and with TVO, Finland, makes up Part 1. Most of the data and information emanate from the work that Geodevelopment AB and Clay Technology AB have performed for SKB but a number of results from experiments made in and for other organizations have been included as well. A significant number of experimental procedures and ways of characterizing buffers and backfills are included. The experience from the comprehensive international Stripa Project, concerning both systematic material investigations in the laboratory and the full-scale field experiments, has contributed significantly to this report. However, similar and additional information gained from later work in SKB's Aespoe Hard Rock Laboratory and from NAGRA and also from other waste-isolation projects have helped to make this document of assumed international interest.

  4. 江西省某冶炼厂遗留尾砂场重金属污染特征%Evaluation on heavy metal pollution of backfilling fields of a melting factory in Jiangxi

    Institute of Scientific and Technical Information of China (English)

    丁凝; 刘建明; 孙峰

    2014-01-01

    By using single -factor pollution index method and Nemerow index method,the paper mainly investigates into the heavy metals( Pb,Cd,Cu,Zn,Cr,Ni,As)content and pollution on the backfilling fields in a melting factory of JiangXi. The backfilling fields were used to contain waste residue generated from the melting production. The result indicated that all the backfilling fields had a highly standard-exceeding content of Cu ,Zn,Ni,and As in soil. Except the deep soil of back-filling field No. 2,soils in other sampling spots contained heavy metals with their comprehensive pol-lution index higher than 1 ,implying soils in all backfilling fields were seriously contaminated by heavy meatless.%以江西省某冶炼厂生产过程中遗留在厂内各尾砂池中的废渣为研究对象,利用单因子污染指数法和内梅罗综合污染指数法相结合的方法对其重金属污染状况进行评价。结果表明:各尾砂池土壤中铜、锌、镍、砷超标倍数高,且除尾砂池2深层土壤外,其他样点重金属内梅罗综合污染指数均远大于1,显示各尾砂池土壤均为重污染土壤。

  5. Radionuclide sorption and migration studies of getters for backfill barriers

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, E.J.

    1980-07-01

    Bentonite and hectorite clay minerals were chosen for study and development as potential backfill materials for testing in the proposed Waste Isolation Pilot Plant (WIPP), a radioactive waste repository and test facility in bedded salt. This choice of materials was based on initial screening results which are presented and on the predicted physical properties of these materials. These properties were verified experimentally in concentrated brines specific to the WIPP site. Distribution coefficients, K/sub d/, were calculated from batch sorption measurements on bentonite and hectorite in the nearly saturated brines A and B. The resulting K/sub d/ values were in the range of (1 to 5) x 10/sup 3/ ml/g for europium; (2 to 40) x 10/sup 3/ ml/g for plutonium(IV); and (4 to 16) x 10/sup 3/ ml/g for americium(III). A silica- and calcite-containing sand mixed with bentonite and hectorite acted as a sorber of americium(III) but was merely an inert diluent for plutonium(IV). Pertechnetate anions (TcO/sub 4//sup -/) sorbed on activated charcoal with K/sub d/ values in the range of (0.2 to 0.4) x 10/sup 3/ ml/g. Pertechnetate, cesium, and strontium ions in brine were not sorbed appreciably by bentonite or hectorite. Although experimental evidence is given for a possible role of solubility in the sorption of europium on getters, other data presented here and evidence from the literature are inconsistent with a simple single reaction sorption mechanism. It is concluded that a backfill containing bentonite on hectorite and activated charcoal is potentially an effective barrier to the migration of Eu(III), Pu(IV), and Am(III) cations and, with further development, to the migration of TcO/sub 4//sup -/ anions as well.

  6. Radionuclide sorption and migration studies of getters for backfill barriers

    International Nuclear Information System (INIS)

    Bentonite and hectorite clay minerals were chosen for study and development as potential backfill materials for testing in the proposed Waste Isolation Pilot Plant (WIPP), a radioactive waste repository and test facility in bedded salt. This choice of materials was based on initial screening results which are presented and on the predicted physical properties of these materials. These properties were verified experimentally in concentrated brines specific to the WIPP site. Distribution coefficients, K/sub d/, were calculated from batch sorption measurements on bentonite and hectorite in the nearly saturated brines A and B. The resulting K/sub d/ values were in the range of (1 to 5) x 103 ml/g for europium; (2 to 40) x 103 ml/g for plutonium(IV); and (4 to 16) x 103 ml/g for americium(III). A silica- and calcite-containing sand mixed with bentonite and hectorite acted as a sorber of americium(III) but was merely an inert diluent for plutonium(IV). Pertechnetate anions (TcO4-) sorbed on activated charcoal with K/sub d/ values in the range of (0.2 to 0.4) x 103 ml/g. Pertechnetate, cesium, and strontium ions in brine were not sorbed appreciably by bentonite or hectorite. Although experimental evidence is given for a possible role of solubility in the sorption of europium on getters, other data presented here and evidence from the literature are inconsistent with a simple single reaction sorption mechanism. It is concluded that a backfill containing bentonite on hectorite and activated charcoal is potentially an effective barrier to the migration of Eu(III), Pu(IV), and Am(III) cations and, with further development, to the migration of TcO4- anions as well

  7. Design and application of solid, dense backfill advanced mining technology with two pre-driving entries

    Institute of Scientific and Technical Information of China (English)

    Zhang Qiang; Zhang Jixiong; Guo Shuai; Gao Rui; Li Weikang

    2015-01-01

    New solid backfill mining technology provides unique technical advantages for‘three-under’ coal min-ing which refers to coal resources trapped under buildings, railways, and water bodies. This technology has a much higher recovery rate and can effectively control the surface subsidence. However, successful application of this technology depends heavily on geological conditions. To avoid the disadvantages asso-ciated with downward mining and overhead backfilling with this new technology, a new advanced solid backfill mining design with two pre-driving entries is proposed here to ensure the backfill effect. Taking Huayuan coal mine as an example, this paper tests the double gob-side entries retaining with no pillar left scheme and optimizes an integrated technology setup for backfill mining and gob-side entry retain-ing. Field applications show that the recovery rate increased from 40%for strip mining to 85%for backfill mining. Moreover, the new backfill technology allowed for better control over the surrounding rock deformation caused by the gob-side entry retaining effect and better control of ground subsidence as compared to strip mining.

  8. Research on U-steel yieldable support with backfill technology in rock roadway

    Institute of Scientific and Technical Information of China (English)

    LUO Yong; CHANG Ju-cai

    2009-01-01

    The loading on U-steel yieldable support cannot be organically combined with the law of strata behaviors from the surrounding rocks of roadway. In order to effectively solve the problem, U-steel yieldable support with backfill material and the performance requirements of backfill material were analyzed on the basis of structural mechanics. The mechanical properties of backfill material selected were tested in the laboratory, and the test results show that the ratio of the backfill material complies with the requirements of backfill technology; it can effectively optimize the relationship between the support and the surrounding rock, and the filling layer can avoid the partial stress concentration and fully improve the support performance. Compared with U-steel yieldable support with gangue filling, the filed application shows that the supporting result of U-steel yieldable support with backfill technology is satisfactory, the stress on U-steel yieldable support with backfill technology decreases greatly and distributes uniformly, convergence of the surrounding rock of roadway is decreased by more than 50%, and the surrounding rocks of roadway are controlled effectively.

  9. Research on U-steel yieldable support with backfill technology in rock roadway

    Energy Technology Data Exchange (ETDEWEB)

    Yong Luo; Ju-cai Chang [Huainan Mining Group Co. Ltd., Huainan (China). Postdoctoral Scientific Research Station

    2009-12-15

    The loading on U-steel yieldable support cannot be organically combined with the law of strata behaviors from the surrounding rocks of roadway. In order to effectively solve the problem, U-steel yieldable support with backfill material and the performance requirements of backfill material were analyzed on the basis of structural mechanics. The mechanical properties of backfill material selected were tested in the laboratory, and the test results show that the ratio of the backfill material complies with the requirements of backfill technology; it can effectively optimize the relationship between the support and the surrounding rock, and the filling layer can avoid the partial stress concentration and fully improve the support performance. Compared with U-steel yieldable support with gangue filling, the filed application shows that the supporting result of U-steel yieldable support with backfill technology is satisfactory, the stress on U-steel yieldable support with backfill technology decreases greatly and distributes uniformly, convergence of the surrounding rock of roadway is decreased by more than 50%, and the surrounding rocks of roadway are controlled effectively.

  10. Physical response of backfill materials to mineralogical changes in a basalt environment

    International Nuclear Information System (INIS)

    Backfill materials surrounding waste canisters in a high-level nuclear waste repository are capable of ensuring very slow flow of groundwater past the canisters, and thereby increase the safety of the repository. However, in the design of a repository it will be necessary to allow for possible changes in the backfill. In this experimental program, changes in permeability, swelling behavior, and plastic behavior of the backfill at the temperatures, pressures, and radiation levels expected in a repository are investigated. The emphasis is on investigation of relevant phenomena and evaluation of experimental procedures for use in licensing procedures. The permeability of a slightly compacted sand-clay mixture containing 25% bentonite, with a dry bulk density of 1.59 g/cm3, was determined to be 0.9 x 10-18 m2 in liquid water at 25 and 2000C, respectively. This is sufficiently low to demonstrate the potential effectiveness of proposed materials. In practice, fractures in the host rock may form short circuits around the backfill, so an even lower flow rate is probable. However, alteration by any of several mechanisms is expected to change the properties of the backfill. Crushed basalt plus bentonite is a leading candidate backfill for a basalt repository. Experiments show that basalt reacts with groundwater vapor or with liquid groundwater producing smectites, zeolites, silica, and other products that may be either beneficial or detrimental to the long-term performance of the backfill. Concentration of groundwater salts in the backfill by evaporation would cause immediate, but possibly reversible, reduction of the swelling abaility of bentonite. Moreover, under some circumstances, gamma radiolysis of moist air in the backfill could produce up to 0.5 mole of nitric acid or ammonia per liter of pore space. 27 references, 7 figures, 4 tables

  11. Engineering solution for the backfilling and sealing of radioactive waste repositories

    International Nuclear Information System (INIS)

    To ensure the safety of radioactive waste deep disposal, backfilling and sealing materials (engineered barriers) have to be used to fill residual voids. For granite medium, stress is put on emplacement techniques for cement- and clay-based materials, including in-situ validation. For clay medium, mined repository and deep boreholes drilled from the surface are considered. In the case of the first solution, the thermomechanical behaviour of a clay backfill is studied. In the same way, backfill made of excavated crushed salt is considered and thermomechanical properties evaluated by means of laboratory tests and in-situ experiments. Finally, basic works on quality assurance procedures and historic concretes behaviour are reported

  12. Realizing of Optimization of Binder Backfill Material Under Certain Strength with Fuzzy Sets

    Institute of Scientific and Technical Information of China (English)

    崔明义; 胡华

    2001-01-01

    The main factors deciding the compressive strength of binder backfill body are tailing density and binder dosage in binder backfill materials. Based on the antecedent of certain pulp density, the method of increasing the tailing density and reducing the binder dosage, or the manner of cutting down the tailing density and gaining the binder dosage are taken to guarantee the strength of backfill body. The problem that should be solved is how to determine the tailing density and the binder dosage rationally. This paper tries to realize the correct selection of the tailing density and the binder dosage in computer with the method of fuzzy mathematics.

  13. Evaluation of using synthetic zeolite as a backfill material in radioactive waste disposal facility

    International Nuclear Information System (INIS)

    The fundamental safety concept for the disposal of radioactive wastes is to isolate the waste from the accessible environment for a period sufficiently long to allow substantial decay of the radionuclides and to limit release of residual radionuclides into the accessible environment. The underground disposal of radioactive waste is based upon a multi barrier concept. Backfill material is an important component of a multi-barrier disposal facility for low and intermediate level radioactive wastes. For long-term performance assessment of radioactive repositories, knowledge concerning the migration of radionuclides in the backfill material is required. Radionuclide migration through porous media (backfill materials) is governed by diffusion, advection, dispersion, retardation, and radionuclide decay. The work presented in this thesis is an examination of the feasibility of using synthetic zeolite NaA-X blend prepared from fly ash (FA) as backfill material in the proposed radioactive waste disposal facility in Egypt. The migration behavior of cesium and strontium ions, as two of the most important radionuclides commonly encountered in the Egyptian waste streams, through the proposed backfill material is studied using mathematical models. This approach considers the advective and dispersive transport of solutes dissolved in groundwater, which may undergo linear sorption (i.e retardation) and simple first order decay. To achieve these goals, the following investigations were carried out:1- Review of the materials most commonly used as engineered backfill to identify the important features to be considered in the examination of the proposed backfill material (zeolite Na A-X blend).2- Sorption experimental investigation aimed to study the sorption properties of the candidate backfill material towards the concerned radionuclides, cesium and strontium. Such studies are performed to establish clear understanding of the principle factors that control the sorption process, i

  14. The backfilling and sealing of radioactive waste repositories. V. 1. Text - Reference - List of symbols

    International Nuclear Information System (INIS)

    The report is in two volumes: Volume 1 contains the main text, the references and a list of symbols, and Volume 2, all the figues, tables and appendices. In Volume 1, backfilling and sealing is considered in relation to the geological, physical and chemical environments. There follows a detailed evaluation of the role and performance of the backfilling and sealing system in terms of thermal, hydraulic, chemical buffering, radionuclide retention, mechanical properties and behaviour as well as longevity. The results of the listing, screening and classification of a comprehensive range of candidate backfill materials are summarized. The different candidate materials are examined

  15. A numerical study of macro-mesoscopic mechanical properties of gangue backfill under biaxial compression

    Institute of Scientific and Technical Information of China (English)

    Huang Zhimin; Ma Zhanguo; Zhang Lei; Gong Peng; Zhang Yankun; Liu Fei

    2016-01-01

    Based on the Particle Flow Code (PFC2D) program, we set up gangue backfill models with different gangue contents and bond strength, and studied the stress–strain behaviours, the pattern of shear band and force chains, motion and fragmentation of particles under biaxial compression. The results show that when the bond strength or contents of gangue are high, the peak strength is high and the phenomena of post-peak softening and fluctuation are obvious. When gangue contents are low, the shape of the shear band is sym-metrical and most strong force chains transfer in soil particles. With an increase in gangue content, the shape of the shear band becomes irregular and the majority of strong force chains turn to transfer in gangue particles gradually, most of which distribute along the axial direction. When the gangue content is higher than 50%, the interconnectivity of strong force chains decreases gradually;at the same time, the strong force chains become tilted and the stability of the system tends to decrease. With an increase in external loading, the coordination numbers of the system increase at first and then decrease and the main pattern of force chains changes into columnar from annular. However, after the forming of the advanta-geous shear band, the force chains external to the shear band maintain their columnar shape while the inner ones bend obviously. As a result, annular force chains form.

  16. Salt content impact on the unsaturated property of bentonite-sand buffer backfilling materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ming [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China); Zhang Huyuan, E-mail: p1314lvp@yahoo.com.cn [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China); Jia Lingyan; Cui Suli [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer SWCC and infiltration process of bentonite-sand mixtures is researched. Black-Right-Pointing-Pointer The k{sub u} of bentonite-sand mixtures was evaluated as the buffer backfilling materials. Black-Right-Pointing-Pointer Salt content impacting on the unsaturated property of bentonite-sand materials is small. - Abstract: Bentonite mixed with sand is often considered as possible engineered barrier in deep high-level radioactive waste disposal in China. In the present work, the vapor transfer technique and water infiltration apparatus were used to measure the soil water characteristic curve (SWCC) and unsaturated hydraulic conductivity (k{sub u}) of bentonite-sand mixtures (B/S) effected by salt content. Results show, the water-holding capacity and k{sub u} increase slightly with the concentration of Na{sup +} in pore liquid increasing from 0 g/L to 12 g/L, similar with the solution concentration of Beishan groundwater in China. Salt content in the laboratory produced only one order of magnitude increase in k{sub u}, which is the 'safe' value. The different pore liquid concentrations used in this study led to small differences in thickness of diffuse double layer of bentonite in mixtures, this might explain why some differences have been found in final values of k{sub u}.

  17. FY:15 Transport Properties of Run-of-Mine Salt Backfill ? Unconsolidated to Consolidated.

    Energy Technology Data Exchange (ETDEWEB)

    Dewers, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Leigh, Christi D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-28

    The nature of geologic disposal of nuclear waste in salt formations requires validated and verified two-phase flow models of transport of brine and gas through intact, damaged, and consolidating crushed salt. Such models exist in other realms of subsurface engineering for other lithologic classes (oil and gas, carbon sequestration etc. for clastics and carbonates) but have never been experimentally validated and parameterized for salt repository scenarios or performance assessment. Models for waste release scenarios in salt back-fill require phenomenological expressions for capillary pressure and relative permeability that are expected to change with degree of consolidation, and require experimental measurement to parameterize and validate. This report describes a preliminary assessment of the influence of consolidation (i.e. volume strain or porosity) on capillary entry pressure in two phase systems using mercury injection capillary pressure (MICP). This is to both determine the potential usefulness of the mercury intrusion porosimetry method, but also to enable a better experimental design for these tests. Salt consolidation experiments are performed using novel titanium oedometers, or uniaxial compression cells often used in soil mechanics, using sieved run-of-mine salt from the Waste Isolation Pilot Plant (WIPP) as starting material. Twelve tests are performed with various starting amounts of brine pore saturation, with axial stresses up to 6.2 MPa (~900 psi) and temperatures to 90°C. This corresponds to UFD Work Package 15SN08180211 milestone “FY:15 Transport Properties of Run-of-Mine Salt Backfill – Unconsolidated to Consolidated”. Samples exposed to uniaxial compression undergo time-dependent consolidation, or creep, to various degrees. Creep volume strain-time relations obey simple log-time behavior through the range of porosities (~50 to 2% as measured); creep strain rate increases with temperature and applied stress as expected. Mercury porosimetry

  18. Use of cemented paste backfill in arsenic-rich tailings

    Science.gov (United States)

    Hamberg, Roger; Maurice, Christian; Alakangas, Lena

    2015-04-01

    Gold is extracted by cyanide leaching from inclusions in arsenopyrite from a mine in the north of Sweden. The major ore mineral assemblage consists of pyrrhotite and arsenopyrite-loellingite. Effluents from the gold extraction were treated with Fe2(SO4)3, with the aim to form stable As-bearing Fe-precipitates (FEP). The use of the method called cemented paste backfill (CPB) is sometimes suggested for the management of tailings. In CPB, tailings are commonly mixed with low proportions (3 - 7 %) of cement and backfilled into underground excavated area. To reduce costs, amendments such as granulated blast furnace slag (GBFS), biofuel fly ash (BFA) and cement kiln dust (CKD) are used for partial replacement of cement in CPB due to their pozzolanic and alkaline properties. The objective for this study was to evaluate the leaching behaviour of As in CPB-mixtures with low proportions (1 - 3 %) of BFA and ordinary cement and unmodified tailings. The selection of CPB-recipies was made based on technical and economical criterias to adress the demands deriving from the mining operations. Speciation of the As in ore and tailings samples revealed that mining processes have dissolved the majority of the arsenopyrite in the ore, causing secondary As phases to co-precipitate with newly formed FEP:s. Tank leaching tests (TLT) and weathering cells (WCT) were used to compare leaching behaviour in a monolithic mass contra a crushed material. Quantification of the presumed benefit of CPB was made by calculation of the cumulative leaching of As. Results from the leaching tests (TLT and WCT) showed that the inclusion of As-rich tailings into a cementitious matrix increased leaching of As. This behaviour could partially be explained by an increase of pH. The addition of alkaline binder materials to tailings increased As leaching due to the relocation of desorbed As from FEPs into less acid-tolerant species such as Ca-arsenates and cementitious As-phases. Unmodified tailings generated an

  19. Thermo-Hydraulic Modelling of Buffer and Backfill

    International Nuclear Information System (INIS)

    The temporal evolution of saturation, liquid pressure and temperature in the components of the engineered barrier system was studied using numerical methods. A set of laboratory tests was conducted to calibrate the parameters employed in the models. The modelling consisted of thermal, hydraulic and thermo-hydraulic analysis in which the significant thermo-hydraulic processes, parameters and features were identified. CODEBRIGHT was used for the finite element modelling and supplementary calculations were conducted with analytical methods. The main objective in this report is to improve understanding of the thermo-hydraulic processes and material properties that affect buffer behaviour in the Olkiluoto repository and to determine the parametric requirements of models for the accurate prediction of this behaviour. The analyses consisted of evaluating the influence of initial canister temperature and gaps in the buffer, and the role played by fractures and the rock mass located between fractures in supplying water for buffer and backfill saturation. In the thermo-hydraulic analysis, the primary processes examined were the effects of buffer drying near the canister on temperature evolution and the manner in which heat flow affects the buffer saturation process. Uncertainties in parameters and variations in the boundary conditions, modelling geometry and thermo-hydraulic phenomena were assessed with a sensitivity analysis. The material parameters, constitutive models, and assumptions made were carefully selected for all the modelling cases. The reference parameters selected for the simulations were compared and evaluated against laboratory measurements. The modelling results highlight the importance of understanding groundwater flow through the rock mass and from fractures in the rock in order to achieve reliable predictions regarding buffer saturation, since saturation times could range from a few years to tens of thousands of years depending on the hydrogeological

  20. Deep repository - engineered barrier systems. Assessment of backfill materials and methods for deposition tunnels

    International Nuclear Information System (INIS)

    The main objectives of this report are to: 1) present density criteria considering deposition tunnels for the investigated backfill materials, 2) evaluate what densities can be achieved with the suggested backfill methods, 3) compare the density criteria to achievable densities, 4) based on this comparison evaluate the safety margin for the combinations of backfill materials and methods and, 5) make recommendations for further investigations and development work. The backfilling methods considered in this report are compaction of backfill material in situ in the tunnel and placement of pre-compacted blocks and pellets. The materials investigated in the second phase of the SKB-Posiva backfilling project can be divided into three main categories: 1. Bentonite clays: two high-grade Na-bentonites from Wyoming (MX-80 and SPV200), one low-grade bentonite from Kutch (India Asha 230), and one high and one low-grade Ca-bentonite from Milos (Deponite CA-N and Milos backfill). The high-grade bentonites are used in different bentonite-ballast mixtures. 2. Smectite-rich mixed-layer clays: one from Dnesice-Plzensko Jih (DPJ) located in the Czech Republic and one from Northern Germany (Friedland clay). Mixtures of bentonite and ballast: Mixtures consisting of high-grade bentonite (0, 40 and 50 w-%) and crushed rock with different type of grain size distribution or sand. The relationships between dry densities and hydraulic conductivity, swelling pressure and compressibility in saturated state for these materials were investigated. Most of the tests were performed with a groundwater salinity of 3.5%. This salinity is comparable to sea water and can be expected to be at the high end of salinities occurring during the assessment period. The purpose of the investigations was to determine the dry densities required to meet the function indicator criteria. These densities are referred to as the density criteria. However throughout the assessment period a loss of material and thus

  1. Method for the determination of the retention capacity of backfill materials and seals for gaseous radionuclides

    International Nuclear Information System (INIS)

    With the aid of radioindicator technology, the retention capacity of two backfill materials (iron ore and country rock) for the gases CH4, CO, CO2 (all 14C), HT, HTO, 131I2, CH3131I, 85Kr and 222Rn and was determined by performing fixed bed column experiments. In the experiments, iodine was converted to iodide and bound to the backfill materials obtained from the Konrad mine (R > 3x104). HTO and 14CO2 passed through the backfill material bed with a time delay. The other indicators showed no interaction with the backfill material. In addition to the retardation factors (R), the effective diffusion coefficients (D) were also determined. For all indicators, this value was in the range 0.16 cm2/s to 0.42 cm2/s. With 10 refs., 9 tabs., 4 figs

  2. Deep repository - engineered barrier systems. Assessment of backfill materials and methods for deposition tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, David; Moren, Lena; Sellin, Patrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Keto, Paula [Saanio and Riekkola Oy, Helsinki (Finland)

    2006-09-15

    The main objectives of this report are to: 1) present density criteria considering deposition tunnels for the investigated backfill materials, 2) evaluate what densities can be achieved with the suggested backfill methods, 3) compare the density criteria to achievable densities, 4) based on this comparison evaluate the safety margin for the combinations of backfill materials and methods and, 5) make recommendations for further investigations and development work. The backfilling methods considered in this report are compaction of backfill material in situ in the tunnel and placement of pre-compacted blocks and pellets. The materials investigated in the second phase of the SKB-Posiva backfilling project can be divided into three main categories: 1. Bentonite clays: two high-grade Na-bentonites from Wyoming (MX-80 and SPV200), one low-grade bentonite from Kutch (India Asha 230), and one high and one low-grade Ca-bentonite from Milos (Deponite CA-N and Milos backfill). The high-grade bentonites are used in different bentonite-ballast mixtures. 2. Smectite-rich mixed-layer clays: one from Dnesice-Plzensko Jih (DPJ) located in the Czech Republic and one from Northern Germany (Friedland clay). Mixtures of bentonite and ballast: Mixtures consisting of high-grade bentonite (0, 40 and 50 w-%) and crushed rock with different type of grain size distribution or sand. The relationships between dry densities and hydraulic conductivity, swelling pressure and compressibility in saturated state for these materials were investigated. Most of the tests were performed with a groundwater salinity of 3.5%. This salinity is comparable to sea water and can be expected to be at the high end of salinities occurring during the assessment period. The purpose of the investigations was to determine the dry densities required to meet the function indicator criteria. These densities are referred to as the density criteria. However throughout the assessment period a loss of material and thus

  3. REQUIREMENT OF FLUIDITY OF HIGH WATER CONTENT MATERIALS FORTHE GETWAY-SIDE BACKFILLING TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    QiTaiyue; MaNianjie

    1996-01-01

    Through analyzing the effects of water consumption, diameter of solid particle, and flow velocity on the fluidity of high water content material slurry, the relationship among the fluidity, the isotropy of the slurry, and the pumping facilities applied in getway-side backfilling has been found. And the requirment of fluidity of high water content material for the design of getway-side backfilling technique is put forward in the paper.

  4. Experimental and Numerical Modeling of Seismic Earth Pressures on Retaining Walls with Cohesive Backfills

    OpenAIRE

    CANDIA, GABRIEL ALFONSO

    2013-01-01

    Observations from recent earthquakes show that all types of retaining structures with non-liquefiable backfills perform very well and there is limited evidence of damage or failures related to seismic earth pressures. Even retaining structures designed only for static loading have performed well during strong ground motions suggesting that special seismic design provisions may not be required in some cases. The objective of this study was to characterize the seismic interaction of backfill-wa...

  5. Effects of bituminous layer as backfill material on mechanical behavior in tunnel model

    OpenAIRE

    Moriyoshi, Akihiro; Takano, Shin-ei; Urata, Hiroyuki; Suzuki, Tetsuya; Yoshida, Takaki

    2001-01-01

    This paper describes the effects of bituminous material as a backfill material on mechanical behavior in model tunnel in laboratory. It is known that load spreading and relaxation of bituminous material are good properties. Then if we use bituminous material as a backfill material of tunnel, the tunnel will have waterproof, good load spreading property. We used new bituminous material (Aquaphalt) which can solidify in water. We conducted relaxation test in tension for new bituminous mat...

  6. Rheological Properties of Cemented Tailing Backfill and the Construction of a Prediction Model

    OpenAIRE

    Liu Lang; KI-IL Song; Dezheng Lao; Tae-Hyuk Kwon

    2015-01-01

    Workability is a key performance criterion for mining cemented tailing backfill, which should be defined in terms of rheological parameters such as yield stress and plastic viscosity. Cemented tailing backfill is basically composed of mill tailings, Portland cement, or blended cement with supplementary cement material (fly ash and blast furnace slag) and water, among others, and it is important to characterize relationships between paste components and rheological properties to optimize the w...

  7. Dessicant materials screening for backfill in a salt repository

    International Nuclear Information System (INIS)

    Maintaining an anhydrous environment around nuclear waste stored in a salt repository is a concern which can be alleviated by using a desiccant material for backfilling. Such a desiccant should desiccate a brine yet be non deliquescent, the hydrated product should have moderate thermal stability, and the desiccant should have a high capacity and be readily available. From a literature search MgO and CaO were identified for detailed study. These oxides, and an intimate mixture of the two obtained by calcining dolomite, were used in experiments to further determine their suitability. They proved to be excellent desiccants with a high water capacity. The hydrates of both have moderate thermal stability and a high water content. Both MgO and CaO react in an alkaline chloride brine forming oxychloride compounds with different waters of crystallization. Some of these compounds are the Sorel Cements. CaO hydrates to Ca(OH)2 which carbonates with CO2 in air to form CaCO3 and release the hydrated water. Thus the intimate mixture of CaO and MgO from calcined dolomite may serve as a desiccant and remove CO2 from the repository atmosphere

  8. Dessicant materials screening for backfill in a salt repository

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, D.R.

    1980-10-01

    Maintaining an anhydrous environment around nuclear waste stored in a salt repository is a concern which can be alleviated by using a desiccant material for backfilling. Such a desiccant should desiccate a brine yet be non deliquescent, the hydrated product should have moderate thermal stability, and the desiccant should have a high capacity and be readily available. From a literature search MgO and CaO were identified for detailed study. These oxides, and an intimate mixture of the two obtained by calcining dolomite, were used in experiments to further determine their suitability. They proved to be excellent desiccants with a high water capacity. The hydrates of both have moderate thermal stability and a high water content. Both MgO and CaO react in an alkaline chloride brine forming oxychloride compounds with different waters of crystallization. Some of these compounds are the Sorel Cements. CaO hydrates to Ca(OH)/sub 2/ which carbonates with CO/sub 2/ in air to form CaCO/sub 3/ and release the hydrated water. Thus the intimate mixture of CaO and MgO from calcined dolomite may serve as a desiccant and remove CO/sub 2/ from the repository atmosphere.

  9. Design, production and initial state of the backfill and plug in deposition tunnels

    International Nuclear Information System (INIS)

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the backfill and plug in deposition tunnels for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides input to the operational safety report, SR-Operation, on how the backfill and plug shall be handled and installed. The report presents the design premises and reference designs of the backfill and plug in deposition tunnels and verifies their conformity to the design premises. It also describes the production of the backfill from excavation and delivery of backfill material to installation in the deposition tunnel, and gives an outline of the installation of the plug. Finally, the initial states of the backfill and plug and their conformity to the reference designs and design premises are presented

  10. Design, production and initial state of the backfill and plug in deposition tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Lennart; Gunnarsson, David; Johannesson, Lars-Erik; Jonsson, Esther

    2010-12-15

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the backfill and plug in deposition tunnels for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides input to the operational safety report, SR-Operation, on how the backfill and plug shall be handled and installed. The report presents the design premises and reference designs of the backfill and plug in deposition tunnels and verifies their conformity to the design premises. It also describes the production of the backfill from excavation and delivery of backfill material to installation in the deposition tunnel, and gives an outline of the installation of the plug. Finally, the initial states of the backfill and plug and their conformity to the reference designs and design premises are presented

  11. Mechanical interaction buffer/backfill. Finite element calculations of the upward swelling of the buffer against both dry and saturated backfill

    International Nuclear Information System (INIS)

    The mechanical interaction between the buffer material in the deposition hole and the backfill material in the deposition tunnel is an important process in the safety assessment since the primary function of the backfill is to keep the buffer in place and not allow it to expand too much and thereby loose too much of its density and barrier properties. In order to study the upwards swelling of the buffer and the subsequent density reduction a number of finite element calculations have been performed. The calculations have been done with the FE-program Abaqus with 3D-models of a deposition hole and the deposition tunnel. In order to refine the modelling only the two extreme cases of completely un-wetted (dry) and completely water saturated (wet) backfill have been modelled. For the wet case the influence of different factors has been studied while only one calculation of the dry case has been done. The calculated upwards swelling of the buffer varied between 2 and 15 cm for the different wet cases while it was about 10 cm for the dry case. In the wet reference case the E-modulus of the block and pellets fillings was 50 MPa and 3.24 MPa respectively, the friction angle between the buffer and the rock and canister was 8.7 deg and there were no swelling pressure from the backfill. There is a strong influence of the friction angle on both the upwards swelling and the canister heave. The friction is important for preventing especially canister displacements. The unrealistic case of no friction yielded strong unacceptable influence on the buffer with an upwards swelling of 15 cm and a strong heave of 5 cm of the canister. The influence of the backfill stiffness is as expected strong. Both buffer swelling and canister heave are twice as large at the E-modulus E = 25 MPa than at the E-modulus E = 100 MPa. The influence of the stiffness of the pellets filling is not strong since there are no pellets on the floor in the model used. The influence of the swelling pressure of the

  12. Mechanical interaction buffer/backfill. Finite element calculations of the upward swelling of the buffer against both dry and saturated backfill

    Energy Technology Data Exchange (ETDEWEB)

    Boergesson, Lennart (Clay Technology AB, Lund (Sweden)); Hernelind, Jan (5T-Engineering AB, Vaesteraas (Sweden))

    2009-10-15

    The mechanical interaction between the buffer material in the deposition hole and the backfill material in the deposition tunnel is an important process in the safety assessment since the primary function of the backfill is to keep the buffer in place and not allow it to expand too much and thereby loose too much of its density and barrier properties. In order to study the upwards swelling of the buffer and the subsequent density reduction a number of finite element calculations have been performed. The calculations have been done with the FE-program Abaqus with 3D-models of a deposition hole and the deposition tunnel. In order to refine the modelling only the two extreme cases of completely un-wetted (dry) and completely water saturated (wet) backfill have been modelled. For the wet case the influence of different factors has been studied while only one calculation of the dry case has been done. The calculated upwards swelling of the buffer varied between 2 and 15 cm for the different wet cases while it was about 10 cm for the dry case. In the wet reference case the E-modulus of the block and pellets fillings was 50 MPa and 3.24 MPa respectively, the friction angle between the buffer and the rock and canister was 8.7 deg and there were no swelling pressure from the backfill. There is a strong influence of the friction angle on both the upwards swelling and the canister heave. The friction is important for preventing especially canister displacements. The unrealistic case of no friction yielded strong unacceptable influence on the buffer with an upwards swelling of 15 cm and a strong heave of 5 cm of the canister. The influence of the backfill stiffness is as expected strong. Both buffer swelling and canister heave are twice as large at the E-modulus E = 25 MPa than at the E-modulus E = 100 MPa. The influence of the stiffness of the pellets filling is not strong since there are no pellets on the floor in the model used. The influence of the swelling pressure of the

  13. 2D and 3D finite element analysis of buffer-backfill interaction

    International Nuclear Information System (INIS)

    Methods for backfilling and sealing of disposal tunnels in an underground repository for spent nuclear fuel are studied in cooperation between Finland (Posiva Oy) and Sweden (Svensk Kaernbraenslehantering AB, SKB) in 'BAckfilling and CLOsure of the deep repository' (Baclo) programme. Baclo phase III included modelling task force SP1: Finite element modelling of deformation of the backfill due to swelling of the buffer. The objective of the finite element modelling of the backfill was to study the interaction between the buffer and backfilling. The calculations aimed to find out how large deformations can happen in the buffer-backfill interface causing loosening of the buffer bentonite above the canister. The criterion used was that the saturated density of the buffer right above the canister should be higher than 1990 kg/m3. This report presents the results of finite element numerical analyses carried out by Wesi Geotecnica Srl. The modelling calculations were conducted with the so-called OL1-2 deposition tunnel geometry (Juvankoski 2009). Several parameters have been considered, varying from geometry variations to different mechanical constitutive models for different components of the model. In all analyses it has been assumed that the buffer material is fully saturated, thus exerting the isotropic swelling pressure estimated in the range 7 MPa .. 15 MPa, against a fully-dry backfill, which is no doubt the 'worst case scenario' with the highest risk to lead in decrease in dry density of the buffer. Friedland clay has been considered for backfill blocks and 30/70 mixture for foundation bed on which backfill blocks are installed. Preliminarily, finite element analyses have been performed with newly released PLAXIS 2D 2010 within the assumption of axial symmetry, the purpose of this first set of calculations being the evaluation of most relevant parameters influencing the deformations of buffer material. Hence, full 3D calculations have been performed with PLAXIS 3D

  14. The repair of ground cover of Bolivia-Brazil gas pipeline near Paraguay River crossing, in a swamp soft soil region, using geo synthetics reinforced backfilling; Reparo da cobertura do gasoduto Bolivia-Brasil junto ao Rio Paraguai, em trecho com solo mole, utilizando aterro reforcado com geosinteticos

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Cesar Augusto; Jorge, Kemal Vieira; Bechuate Filho, Pedro [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Campo Grande, MS (Brazil). Gerencia Regional Centro Oeste (CRGO); Teixeira, Sidnei H.C. [Geohydrotech Engenharia S.C. Ltda., Braganca Paulista, SP (Brazil)

    2005-07-01

    TBG - Transportadora Gasoduto Bolivia-Brasil S.A, executes routine maintenance works at the Gas Pipeline Right of Way, seeking its integrity. In the wetlands of Pantanal, near the Paraguay river crossing, the organic-alluvial soil was submitted to the process of subsidence. This process, associated with the river water flow erosion, shrank the soil volume and diminished or extinguished the pipeline land cover. The pipeline was exposed to the environment, and submitted to tension stresses and the risk of low cycle fatigue during the floods. The cathodic protection system also had to be evaluated, specially in the drought. To mitigate the problem, the embankment technique was adopted using sandy soil, reinforced with polyester geo-webs and with woven polipropene geo-textiles. The solution also used geo-webs with soil-cement as protection elements against the degradation of the geo-textiles blankets. Some monitoring works are associated with those interventions: monitoring of cathodic protection; topographical verification of horizontal and vertical displacements of the pipeline; levels of land covering, and rainfalls and flood measurement. The base of the embankment was built with hydraulic transported soil, and at the end consistently supported the gas pipeline. (author)

  15. Optimization of backfill pellet properties AASKAR DP2 - Laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Linus; Sanden, Torbjoern [Clay Technology AB, Lund (Sweden)

    2012-12-15

    Bentonite pellets are planned to be used as a part of the backfill in the Swedish spent nuclear fuel deep repository concept KBS-3. This report describes testing and evaluation of different backfill pellet candidates. The work completed included testing of both pellet material and pellet type. The materials tested were sourced from India (ASHA), Greece (IBECO, 2 products) and Wyoming USA (MX-80 clay). The majority of the tests were completed on the ASHA clay as well as the IBECO-RWC-BF products, with only limited testing of the others. The pellets tested were manufactured using both extrusion and roller compaction techniques and had different sizes and geometries. The following tests have been performed and are presented in this report: 1. General tests. Water content, bulk density and dry density have been determined for both the pellet filling and the individual pellets. The compressibility of the pellet filling was tested with CRS-tests and the strength of the individual pellets was tested with a special compression test. The water content varied from 11.3% to 18.7% and was highest for the extruded pellets. The dry density was somewhat higher for the roller-compacted pellets and their compressibility was lower. The strength of the individual pellets was generally higher for the extruded pellets. 2. Erosion. The pellet filling will be exposed to groundwater inflow when installed in the tunnel. This flow could possibly cause significant erosion on the pellet filling. Erosion tests have been performed with comparisons in erosion resistance made on the various material- and pellet-types. The influence of variations in water salinity and flow rates was also tested. The IBECO extruded 6- and 10- mm diameter rods and the compacted Posiva spec.-A pellet filling seem to have the lowest tendency to erode. It is also the IBECO extruded pellet filling that withstands variations in water salinity and flow rates best. 3. Water storing capacity. The pellet filling

  16. Optimization of backfill pellet properties AASKAR DP2-Laboratory tests

    International Nuclear Information System (INIS)

    Bentonite pellets are planned to be used as a part of the backfill in the Swedish spent nuclear fuel deep repository concept KBS-3. This report describes testing and evaluation of different backfill pellet candidates. The work completed included testing of both pellet material and pellet type. The materials tested were sourced from India (ASHA), Greece (IBECO, 2 products) and Wyoming USA (MX-80 clay). The majority of the tests were completed on the ASHA clay as well as the IBECO-RWC-BF products, with only limited testing of the others. The pellets tested were manufactured using both extrusion and roller compaction techniques and had different sizes and geometries. The following tests have been performed and are presented in this report: 1. General tests. Water content, bulk density and dry density have been determined for both the pellet filling and the individual pellets. The compressibility of the pellet filling was tested with CRS-tests and the strength of the individual pellets was tested with a special compression test. The water content varied from 11.3% to 18.7% and was highest for the extruded pellets. The dry density was somewhat higher for the roller-compacted pellets and their compressibility was lower. The strength of the individual pellets was generally higher for the extruded pellets. 2. Erosion. The pellet filling will be exposed to groundwater inflow when installed in the tunnel. This flow could possibly cause significant erosion on the pellet filling. Erosion tests have been performed with comparisons in erosion resistance made on the various material- and pellet-types. The influence of variations in water salinity and flow rates was also tested. The IBECO extruded 6- and 10- mm diameter rods and the compacted Posiva spec.-A pellet filling seem to have the lowest tendency to erode. It is also the IBECO extruded pellet filling that withstands variations in water salinity and flow rates best. 3. Water storing capacity. The pellet filling's ability to

  17. Deep repository - engineered barrier systems. Assessment of backfill materials and methods for deposition tunnels

    International Nuclear Information System (INIS)

    The main objectives of this report are to: (1) present density criteria considering deposition tunnels for the investigated backfill materials, (2) evaluate what densities can be achieved with the suggested backfill methods, (3) compare the density criteria to achievable densities, (4) based on this comparison evaluate the safety margin for the combinations of backfill materials and methods and, (5) make recommendations for further investigations and development work. The backfilling methods considered in this report are compaction of backfill material in situ in the tunnel and placement of pre-compacted blocks and pellets. The materials investigated in the second phase of the SKB-Posiva backfilling programme can be divided into three main categories: (1) Bentonite clays: two high-grade Na-bentonites from Wyoming (MX-80 and SPV200), one low-grade bentonite from Kutch (India Asha 2 0), and one high- and one low-grade Ca-bentonite from Milos (Deponite CA-N and Milos backfill). The highgrade bentonites are used in different bentonite-ballast mixtures. (2) Smectite-rich mixed-layer clays: one from Dnesice-Plzensko Jih (DPJ) located in the Czech Republic and one from Northern Germany (Friedland clay). (3) Mixtures of bentonite and ballast: Mixtures consisting of high-grade bentonite (30, 40 and 50 w-%) and crushed rock with different type of grain size distribution or sand. The general conclusion from the comparison between estimated achievable densities and the density criteria is that placing pre-compacted blocks of swelling clay or 50/50 mixture and pellets in the tunnel results in the highest safety margin. (orig.)

  18. Vertical transportation system of solid material for backfilling coal mining technology

    Institute of Scientific and Technical Information of China (English)

    Ju Feng; Zhang Jixiong; Zhang Qiang

    2012-01-01

    For transportation of solid backfill material such as waste and fly ash from the surface to the bottom of the shaft in a fully mechanized backfilling coal backfilling coal mining technology,we developed a new vertical transportation system to transport this type of solid backfill material.Given the demands imposed on safely in feeding this material,we also investigated the structure and basic parameter of this system.For a mine in the Xingtai mining area the results show that:(1) a vertical transportation system should include three main parts,i.e.,a feeding borehole,a maintenance chamber and a storage silo; (2) we determined that 486 mm is a suitable diameter for bore holes,the diameter of the storage silo is 6 m and its height 30 m in this vertical transportation system; (3) a conical buffer was developed to absorb the impact during the feeding process.To ensure normal implementation of fully mechanized backfilling coal mining technology and the safety of underground personnel,we propose a series of security technologies for anti-blockage,storage silo cleaning.high pressure air release and aspiration.This vertical transporting system has been applied in one this particular mine,which has fed about 4 million tons solid material with a feeding depth of 350 m and safely exploited 3 million tons of coal.

  19. Mechanical analyses of WIPP disposal rooms backfilled with either crushed salt or crushed salt-bentonite

    International Nuclear Information System (INIS)

    In this paper numerical calculations of disposal room configurations at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM are presented. Specifically, the behavior of either crushed salt or a crushed salt- bentonite mixture, when used as a backfill material in disposal rooms, is modeled in conjunction with the creep behavior of the surrounding intact salt. The backfill consolidation model developed at Sandia National Laboratories was implemented into the SPECTROM-32 finite element program. This model includes nonlinear elastic as well as deviatoric and volumetric creep components. Parameters for the models were determined from laboratory tests with deviatoric and hydrostatic loadings. The performance of the intact salt creep model previously implemented into SPECTROM-32 is well documented. Results from the SPECTROM-32 analyses were compared to a similar study conducted by Sandia National Laboratories using the SANCHO finite element program. The calculated deformations and stresses from the SPECTROM-32 and SANCHO analyses agree reasonably well despite differences in constitutive models and modeling methodology. These results provide estimates of the backfill consolidation through time. The trends in the backfill consolidation can then be used to estimate the permeability of the backfill and subsequent radionuclide transport

  20. Effect of localized water uptake on backfill hydration and water movement in a backfilled tunnel: half-scale tests at Aespoe Bentonite Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D. [Atomic Energy of Canada Limited, Chalk River (Canada); Jonsson, E. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hansen, J. [Posiva Oy, Olkiluoto (Finland); Hedin, M. [Aangpannefoereningen, Stockholm (Sweden); Ramqvist, G. [Eltekno AB, Figeholm (Sweden)

    2011-04-15

    The report describes the outcome of the work within the project 'SU508.20 Impact of water inflow in deposition tunnels'. Project decision SKB doc 1178871 Version 3.0. Two activity plans have been used for the field work: AP TD SU50820-09-019 and AP TD SU 50820-09-071. SKB and Posiva have been examining those processes that may have particularly strong effects on the evolution of a newly backfilled deposition tunnel in a KBS-3V repository. These assessments have involved the conduct of increasingly large and complex laboratory tests and simulations of a backfilled tunnel section. In this series of four tests, the effect of water inflow into a backfilled tunnel section via an intersecting fracture feature was evaluated. The tests included the monitoring of mock-ups where water entered via the simulated fractures as well as evaluation of what the effect of isolated tunnel sections caused by localized water inflow would have on subsequent evolution of these isolated sections. It was found that even a slowly seeping fracture can have a substantial effect on the backfill evolution as it will cause development of a gasket-like feature that effectively cuts of air and water movement from inner to outer regions of the backfilled tunnel. Water entering via these fractures will ultimately move out of the tunnel via a single discrete flow path, in a manner similar to what was observed in previous 1/2-scale and smaller simulations. If the low-rate of water inflow from fracture is the only source of water inflow to the tunnel this will result in hydraulic behaviour similar to that observed for a single inflow point in previous tests. The presence of a fracture feature will however result in a larger proportion of water uptake by the process of suction than might occur in a point inflow situation and hence a more uniform water distribution will be present in the pellet fill. This also results in a greater tendency for water to be absorbed into the adjacent block fill

  1. Effect of localized water uptake on backfill hydration and water movement in a backfilled tunnel: half-scale tests at Aespoe Bentonite Laboratory

    International Nuclear Information System (INIS)

    The report describes the outcome of the work within the project 'SU508.20 Impact of water inflow in deposition tunnels'. Project decision SKB doc 1178871 Version 3.0. Two activity plans have been used for the field work: AP TD SU50820-09-019 and AP TD SU 50820-09-071. SKB and Posiva have been examining those processes that may have particularly strong effects on the evolution of a newly backfilled deposition tunnel in a KBS-3V repository. These assessments have involved the conduct of increasingly large and complex laboratory tests and simulations of a backfilled tunnel section. In this series of four tests, the effect of water inflow into a backfilled tunnel section via an intersecting fracture feature was evaluated. The tests included the monitoring of mock-ups where water entered via the simulated fractures as well as evaluation of what the effect of isolated tunnel sections caused by localized water inflow would have on subsequent evolution of these isolated sections. It was found that even a slowly seeping fracture can have a substantial effect on the backfill evolution as it will cause development of a gasket-like feature that effectively cuts of air and water movement from inner to outer regions of the backfilled tunnel. Water entering via these fractures will ultimately move out of the tunnel via a single discrete flow path, in a manner similar to what was observed in previous 1/2-scale and smaller simulations. If the low-rate of water inflow from fracture is the only source of water inflow to the tunnel this will result in hydraulic behaviour similar to that observed for a single inflow point in previous tests. The presence of a fracture feature will however result in a larger proportion of water uptake by the process of suction than might occur in a point inflow situation and hence a more uniform water distribution will be present in the pellet fill. This also results in a greater tendency for water to be absorbed into the adjacent block fill material and

  2. Managing the risks of the backfill production line from material acquisition to installation

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. The tunnel backfill of Finnish KBS-3V type repository for spent nuclear fuel consists of foundation layer that is installed at site, pre-compacted backfill blocks that fill most of the tunnel and bentonite pellets to fill the gap between blocks and tunnel wall. In order to ensure the quality, availability, and timely delivery of backfill materials and components, and further to ensure the fulfillment of the requirements and specifications set for backfilling of deposition tunnels, the backfill production line was explored step-by-step, and risks related were defined and analyzed. The work described in this paper was initiated by Posiva Oy and is reported in Keto et al. (2012). The first part of the backfill production line is described in Figure 1 for Friedland clay that is designed to be used for the backfill blocks. It consists of excavation, processing and delivery of materials to backfill production facility. Second part of the production line consists of manufacturing of the backfill components, and the third part is the installation. A preliminary risk assessment was done in 2011 for the acquisition of Friedland clay and manufacturing and installation of foundation layer, blocks and pellets. The critical points of the production line were determined using a material flow description where risk is defined as a probability of something unwanted to happen times the severity of the consequences. Risk analysis was performed by going through the whole backfill production line step by step and analyzing all the incidents, which have occurred (or might occur) during the backfilling operations. A risk number from 1 to 25 was given to each step of the chain depending on how long delay the problem causes and how often it occurs. Low risk was the target for each step of the chain, medium risk was considered tolerable, for high risks management actions to decrease the risk number were considered and extremely high risks

  3. Testing of candidate waste-package backfill and canister materials for basalt

    International Nuclear Information System (INIS)

    The Basalt Waste Isolation Project (BWIP) is developing a multiple-barrier waste package to contain high-level nuclear waste as part of an overall system (e.g., waste package, repository sealing system, and host rock) designed to isolate the waste in a repository located in basalt beneath the Hanford Site, Richland, Washington. The three basic components of the waste package are the waste form, the canister, and the backfill. An extensive testing program is under way to determine the chemical, physical, and mechanical properties of potential canister and backfill materials. The data derived from this testing program will be used to recommend those materials that most adequately perform the functions assigned to the canister and backfill

  4. Identification and evaluation of appropriate backfills for the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    A backfill system has been designed for the Waste Isolation Pilot Plant (WIPP) which will control the chemical environment of the post-closure repository to a domain where the actinide solubility is within its lowest region. The actinide solubility is highly dependent on the chemical species which constitute the fluid, the resulting pH of the fluid, and the oxidation state of the actinide which is stable under the specific conditions. The use of magnesium oxide (MgO) has the backfill material not only controls the pH of the expected fluids, but also effectively removes carbonate from the system, which has a significant impact on actinide solubility. The backfill selection process, emplacement system design, and confirmatory experimental results are presented

  5. Borehole Heat Exchanger Systems: Hydraulic Conductivity and Frost-Resistance of Backfill Materials

    Science.gov (United States)

    Anbergen, Hauke; Sass, Ingo

    2016-04-01

    Ground source heat pump (GSHP) systems are economic solutions for both, domestic heating energy supply, as well as underground thermal energy storage (UTES). Over the past decades the technology developed to complex, advanced and highly efficient systems. For an efficient operation of the most common type of UTES, borehole heat exchanger (BHE) systems, it is necessary to design the system for a wide range of carrier fluid temperatures. During heat extraction, a cooled carrier fluid is heated up by geothermal energy. This collected thermal energy is energetically used by the heat pump. Thereby the carrier fluid temperature must have a lower temperature than the surrounding underground in order to collect heat energy. The steeper the thermal gradient, the more energy is transferred to the carrier fluid. The heat injection case works vice versa. For fast and sufficient heat extraction, even over long periods of heating (winter), it might become necessary to run the BHE with fluid temperatures below 0°C. As the heat pump runs periodically, a cyclic freezing of the pore water and corresponding ice-lens growth in the nearfield of the BHE pipes becomes possible. These so called freeze-thaw-cycles (FTC) are a critical state for the backfill material, as the sealing effect eventually decreases. From a hydrogeological point of view the vertical sealing of the BHE needs to be secured at any time (e.g. VDI 4640-2, Draft 2015). The vertical hydraulic conductivity of the BHE is influenced not only by the permeability of the grouting material itself, but by the contact area between BHE pipes and grout. In order to assess the sealing capacity of grouting materials a laboratory testing procedure was developed that measures the vertical hydraulic conductivity of the system BHE pipe and grout. The key features of the procedure are: • assessment of the systeḿs hydraulic conductivity • assessment of the systeḿs hydraulic conductivity after simulation of freeze-thaw-cycle

  6. Research and development of buffer/backfilling material in deep geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    The author reviews the R and D of buffer/backfilling materials in deep geological disposal of high-level radioactive waste, and summarizes the research findings about buffer/backfilling material's properties including water permeability, heat property, swelling property. The direction for the future study of this field is pointed out

  7. Roadway backfill method to prevent geo-hazards induced by room and pillar mining: a case study in Changxing coal mine, China

    OpenAIRE

    Zhang, Jixiong; Li, Meng; Zhou, Nan; Gao, Rui

    2016-01-01

    Coal mines in the western areas of China experience low mining rates and induce many geo-hazards when using the room and pillar mining method. In this research, we proposed a roadway backfill method during longwall mining to target these problems. We tested the mechanical properties of the backfill materials to determine a reasonable ratio of backfill materials for the driving roadway during longwall mining. We also introduced the roadway layout and the backfill mining technique required for ...

  8. Buffer, backfill and closure process report for the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Sellin, Patrik (ed.)

    2010-11-15

    This report gives an account of how processes in buffer, deposition tunnel backfill and the closure important for the long-term evolution of a KBS-3 repository for spent nuclear fuel, will be documented in the safety assessment SR-Site

  9. Fluid transport along gutta-percha backfills with and without sealer

    NARCIS (Netherlands)

    Wu, MK; van der Sluis, LWM; Wesselink, PR

    2004-01-01

    Objective. The use of heat may influence the sealing ability of sealer. The aim of this study was to compare the fluid transport along the gutta-percha backfill portion when different sealers were used or no sealer at all. Study design. Four groups consisting of the roots of maxillary and mandibular

  10. The Community project on engineering aspects of backfilling and sealing of radioactive waste repositories

    International Nuclear Information System (INIS)

    This report summarizes the work carried out under CEC contracts about engineering aspects of backfilling and sealing of radioactive waste repositories, for the time period 1983-84. It complements a previous report (ref. EUR 9283) on the same topic, this latter covering the period 1980-82

  11. Buffer, backfill and closure process report for the safety assessment SR-Site

    International Nuclear Information System (INIS)

    This report gives an account of how processes in buffer, deposition tunnel backfill and the closure important for the long-term evolution of a KBS-3 repository for spent nuclear fuel, will be documented in the safety assessment SR-Site

  12. Evaluation of the effect of sodium silicate addition to mine backfill, Gelfill − Part 1

    Directory of Open Access Journals (Sweden)

    M. Kermani

    2015-06-01

    Full Text Available In this paper, the mechanical properties of sodium silicate-fortified backfill, called Gelfill, were investigated by conducting a series of laboratory experiments. Two configurations were tested, i.e. Gelfill and cemented hydraulic fill (CHF. The Gelfill has an alkali activator such as sodium silicate in its materials in addition to primary materials of mine backfill which are tailings, water and binders. Large numbers of samples of Gelfill and CHF with various mixture designs were cast and cured for over 28 d. The mechanical properties of samples were investigated using uniaxial compression test, and the results were compared with those of reference samples made without sodium silicate. The test results indicated that the addition of an appropriate amount of an alkali activator such as sodium silicate can enhance the mechanical (uniaxial compressive strength and physical (water retention properties of backfill. The microstructure analysis conducted by mercury intrusion porosimetry (MIP revealed that the addition of sodium silicate can modify the pore size distribution and total porosity of Gelfill, which can contribute to the better mechanical properties of Gelfill. It was also shown that the time and rate of drainage in the Gelfill specimens are less than those in CHF specimens made without sodium silicate. Finally, the study showed that the addition of sodium silicate can reduce the required setting time of mine backfill, which can contribute to increase mine production in accordance with the mine safety.

  13. Evaluation of the effect of sodium silicate addition to mine backfill, Gelfill L Part 1

    Institute of Scientific and Technical Information of China (English)

    M. Kermani; F.P. Hassani; E. Aflaki; M. Benzaazoua; M. Nokken

    2015-01-01

    In this paper, the mechanical properties of sodium silicate-fortified backfill, called Gelfill, were investi-gated by conducting a series of laboratory experiments. Two configurations were tested, i.e. Gelfill and cemented hydraulic fill (CHF). The Gelfill has an alkali activator such as sodium silicate in its materials in addition to primary materials of mine backfill which are tailings, water and binders. Large numbers of samples of Gelfill and CHF with various mixture designs were cast and cured for over 28 d. The me-chanical properties of samples were investigated using uniaxial compression test, and the results were compared with those of reference samples made without sodium silicate. The test results indicated that the addition of an appropriate amount of an alkali activator such as sodium silicate can enhance the mechanical (uniaxial compressive strength) and physical (water retention) properties of backfill. The microstructure analysis conducted by mercury intrusion porosimetry (MIP) revealed that the addition of sodium silicate can modify the pore size distribution and total porosity of Gelfill, which can contribute to the better mechanical properties of Gelfill. It was also shown that the time and rate of drainage in the Gelfill specimens are less than those in CHF specimens made without sodium silicate. Finally, the study showed that the addition of sodium silicate can reduce the required setting time of mine backfill, which can contribute to increase mine production in accordance with the mine safety.

  14. Numerical simulation of wave-induced scour and backfilling processes beneath submarine pipelines

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Baykal, Cüneyt; Sumer, B. Mutlu;

    2014-01-01

    A fully-coupled hydrodynamic/morphodynamic numerical model is presented and utilized for the simulation of wave-induced scour and backfilling processes beneath submarine pipelines. The model is based on solutions to Reynolds-averaged Navier–Stokes equations, coupled with k−ω turbulence closure...

  15. Backfilling of a Scour Hole around a Pile in Waves and Current

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Petersen, Thor Ugelvig; Locatelli, Luca;

    2013-01-01

    This paper presents the results of an experimental investigation of the backfilling of scour holes around circular piles. Scour holes around a pile are generated either by a current or a wave. Subsequently, the flow climate is changed from current to wave, combined waves and current, or wave to a...

  16. Radiocolloid migration through backfill-surrounding porous media in semi-infinite cylindrical geometry

    International Nuclear Information System (INIS)

    Numerical simulation of radionuclide migration as a form of colloid in two dimentional cylindrical geometry were conducted. Due to the relatively strong filtration phenomena in backfill material of waste repository, colloid concentrations decay out very rapidly along the geosphere. Inside the backfill material, diffusional transport of radiocolloid is known to be relatively dominant than that of advection. The flow conditions of the waste repository groundwater can be represented with a dimensionless Peclet number. If the Peclet number is lower than 2, which means diffusion is dominant transport mechanism, general Finite Difference Method (FDM) cannot predict the migration behavior of the colloid exactly due to the numerical error. Instead, so called Central Difference Method (CDM) is applicable for the low Peclet number problems. outside the backfill media, where advection is the controlling transport process with Peclet number being greater than 2, the upwind numerical scheme would be a powerful tool. Most of the experiments simulating the radionuclide migration were conducted at high flow conditions, and the theoretical modelling about the experiments typically neglected the role of the diffusion in filtration mechanism. In this paper the two-dimensional CDM scheme and CDM-upwind scheme are developed to describe radio-colloid migration in two-dimensional porous media using potential flow theorem. Then the mass fluxes at a given position inside the backfill are predicted

  17. Efficacy of backfilling and other engineered barriers in a radioactive waste repository in salt

    International Nuclear Information System (INIS)

    In the United States, investigation of potential host geologic formations was expanded in 1975 to include hard rocks. Potential groundwater intrusion is leading to very conservative and expensive waste package designs. Recent studies have concluded that incentives for engineered barriers and 1000-year canisters probably do not exist for reasonable breach scenarios. The assumption that multibarriers will significantly increase the safety margin is also questioned. Use of a bentonite backfill for surrounding a canister of exotic materials was developed in Sweden and is being considered in the US. The expectation that bentonite will remain essentially unchanged for hundreds of years for US repository designs may be unrealistic. In addition, thick bentonite backfills will increase the canister surface temperature and add much more water around the canister. The use of desiccant materials, such as CaO or MgO, for backfilling seems to be a better method of protecting the canister. An argument can also be made for not using backfill material in salt repositories since the 30-cm-thick space will provide for hole closure for many years and will promote heat transfer via natural convection. It is concluded that expensive safety systems are being considered for repository designs that do not necessarily increase the safety margin. It is recommended that the safety systems for waste repositories in different geologic media be addressed individually and that cost-benefit analyses be performed

  18. Development and validation of a CFD model predicting the backfill process of a nuclear waste gallery

    Energy Technology Data Exchange (ETDEWEB)

    Gopala, Vinay Ramohalli, E-mail: gopala@nrg.eu [Nuclear Research and consultancy Group (NRG), P.O. Box 25, 1755 ZG Petten (Netherlands); Lycklama a Nijeholt, Jan-Aiso [Nuclear Research and consultancy Group (NRG), P.O. Box 25, 1755 ZG Petten (Netherlands); Bakker, Paul [Van Hattum en Blankevoort, Woerden (Netherlands); Haverkate, Benno [Nuclear Research and consultancy Group (NRG), P.O. Box 25, 1755 ZG Petten (Netherlands)

    2011-07-15

    Research highlights: > This work presents the CFD simulation of the backfill process of Supercontainers with nuclear waste emplaced in a disposal gallery. > The cement-based material used for backfill is grout and the flow of grout is modelled as a Bingham fluid. > The model is verified against an analytical solution and validated against the flowability tests for concrete. > Comparison between backfill plexiglas experiment and simulation shows a distinct difference in the filling pattern. > The numerical model needs to be further developed to include segregation effects and thixotropic behavior of grout. - Abstract: Nuclear waste material may be stored in underground tunnels for long term storage. The example treated in this article is based on the current Belgian disposal concept for High-Level Waste (HLW), in which the nuclear waste material is packed in concrete shielded packages, called Supercontainers, which are inserted into these tunnels. After placement of the packages in the underground tunnels, the remaining voids between the packages and the tunnel lining is filled-up with a cement-based material called grout in order to encase the stored containers into the underground spacing. This encasement of the stored containers inside the tunnels is known as the backfill process. A good backfill process is necessary to stabilize the waste gallery against ground settlements. A numerical model to simulate the backfill process can help to improve and optimize the process by ensuring a homogeneous filling with no air voids and also optimization of the injection positions to achieve a homogeneous filling. The objective of the present work is to develop such a numerical code that can predict the backfill process well and validate the model against the available experiments and analytical solutions. In the present work the rheology of Grout is modelled as a Bingham fluid which is implemented in OpenFOAM - a finite volume-based open source computational fluid dynamics

  19. Development and validation of a CFD model predicting the backfill process of a nuclear waste gallery

    International Nuclear Information System (INIS)

    Research highlights: → This work presents the CFD simulation of the backfill process of Supercontainers with nuclear waste emplaced in a disposal gallery. → The cement-based material used for backfill is grout and the flow of grout is modelled as a Bingham fluid. → The model is verified against an analytical solution and validated against the flowability tests for concrete. → Comparison between backfill plexiglas experiment and simulation shows a distinct difference in the filling pattern. → The numerical model needs to be further developed to include segregation effects and thixotropic behavior of grout. - Abstract: Nuclear waste material may be stored in underground tunnels for long term storage. The example treated in this article is based on the current Belgian disposal concept for High-Level Waste (HLW), in which the nuclear waste material is packed in concrete shielded packages, called Supercontainers, which are inserted into these tunnels. After placement of the packages in the underground tunnels, the remaining voids between the packages and the tunnel lining is filled-up with a cement-based material called grout in order to encase the stored containers into the underground spacing. This encasement of the stored containers inside the tunnels is known as the backfill process. A good backfill process is necessary to stabilize the waste gallery against ground settlements. A numerical model to simulate the backfill process can help to improve and optimize the process by ensuring a homogeneous filling with no air voids and also optimization of the injection positions to achieve a homogeneous filling. The objective of the present work is to develop such a numerical code that can predict the backfill process well and validate the model against the available experiments and analytical solutions. In the present work the rheology of Grout is modelled as a Bingham fluid which is implemented in OpenFOAM - a finite volume-based open source computational fluid

  20. Stiffness of Railway Soil-Steel Structures

    OpenAIRE

    Machelski Czesław

    2015-01-01

    The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness) become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffne...

  1. Water saturation phase of the buffer and backfill in the KBS-3V concept. Special emphasis given to the influence of the backfill on the wetting of the buffer

    International Nuclear Information System (INIS)

    The wetting and rate of saturation of the buffer and backfill materials in a KBS- V repository from the rock fractures and the rock matrix have been investigated by a large number of different finite element models and calculations. For most models the FE-code ABAQUS has been used but for investigation of the influence of trapped air in the backfill FE-code Code Bright was used. Both codes include completely coupled THM models, which have been used, but for some calculations it has been sufficient to limit the models to only use the hydraulic or thermohydraulic parts of the models. The following analyses have been made: 1. The influence of the backfill properties and wetting conditions on the water saturation phase of the buffer has been investigated with the old FEM-model used in earlier wetting calculations for SR-97. The old calculations have been updated regarding the influence of the backfill. The model is 2-dimensional with axial symmetry around the axis of the deposition hole. These calculations show that there is strong influence of wetting from the backfill if the rock is rather dry (Krock = 10-13 m/s), while the influence is low if the rock is rather wet (Krock = 10-12 m/s). At Krock = 10-13 m/s the time to saturation decreases with a factor 2 in the absence of fractures and with a factor 1.5 with two fractures intersecting the hole when water is supplied from the backfill (30/70) compared to when no water is available. A completely dry rock yields very long time to saturation and of course decisive influence of the water supply from the backfill. If water is freely available at a water pressure of 5 MPa in the backfill it takes 250-500 years to reach full saturation of the buffer. If the water available in the backfill is limited to the initial amount (completely dry rock also around the tunnel and thus no addition of water from the rock in the tunnel) it will take several thousands years to reach some kind of equilibrium with a degree of saturation in

  2. Development of backfill material as an engineered barrier in the waste package system. Interim topical report

    International Nuclear Information System (INIS)

    A backfill barrier, emplaced between the containerized waste and the host rock, can both protect the other engineered barriers and act as a primary barrier to the release of radionuclides from the waste package. Attributes that a backfill should provide in order to carry out its required function have been identified. Primary attributes are those that have a direct effect upon the release and transport of radionuclides from the waste package. Supportive attributes do not directly affect radionuclide release but are necessary to support the primary attributes. The primary attributes, in order of importance, are: minimize (retard or exclude) the migration of ground water between the host rock and the waste canister system; retard the migration of selected chemical species (corrosive species and radionuclides) in the ground water; control the Eh and pH of the ground water within the waste-package environment. The supportive attributes are: self-seal any cracks or discontinuities in the backfill or interfacing host geology; retain performance properties at all repository temperatures; retain peformance properties during and after receiving repository levels of gamma radiation; conduct heat from the canister system to the host geology; retain mechanical properties and provide resistance to applied mechanical forces; retain morphological stability and compatibility with structural barriers and with the host geology for required period of time. Screening and selection of candidate backfill materials has resulted in a preliminary list of materials for testing. Primary emphasis has been placed on sodium and calcium bentonites and zeolites used in conjunction with quartz sand or crushed host rock. Preliminary laboratory studies have concentrated on permeability, sorption, swelling pressure, and compaction properties of candidate backfill materials

  3. Bentonite as backfill in a final repository for high-level waste: chemical aspects

    International Nuclear Information System (INIS)

    The present Nagra concept for disposal of high-level waste foresees emplacing the steel containers enclosing the borosilicate glass in tunnels at a depth of 1000 to 1500 m. These tunnels are to be backfilled with bentonite. Bentonites are suitable as a backfill due to their swelling capability, their low hydraulic conductivity and their sorption properties. This report is restricted to chemical aspects of the backfill material: swelling capability, sorption properties and long-term stability. Under repository conditions, the swelling of monmorillonite upon water inflow is primarily innercrystalline. Cation adsorption, which is important for nuclide retention in the repository, can be described by appropriate models. It can be concluded from natural analogue studies and from laboratory experiments that the properties of the backfill material will not alter significantly over a periode of 10/sup 6/ years. Nevertheless in the long term, the formulation of mixed-layer illite/monmorillonite cannot be ruled out. Such mixed-layer clays still have good swelling and sorption properties. Given the quantity ratios foreseen, no adverse changes due to radioactive decay are to be expected. The interaction between the bentonite and the container corrosion products must, in the absence of literature data, be investigated experimentally. The type of reaction products expected (iron-containing clay minerals) and the high bentonite/iron ratio lead to the conclusion that the function of the backfill need not be impaired by these processes. Because of its better stability, a calcium bentonite is preferable to the sodium variant. A low iron content is desirable because, under reducing conditions, the surface charge of the montorillonite is increased by reduction of iron(III). Organic and sulphidic contaminants should also be kept to a minimum

  4. Development of backfill material as an engineered barrier in the waste package system- Interim topical report

    Energy Technology Data Exchange (ETDEWEB)

    Wheelwright, E.J.; Hodges, F.N.; Bray, L.A.; Westsik, J.H. Jr.; Lester, D.H.; Nakai, T.L.; Spaeth, M.E.; Stula, R.T.

    1981-09-01

    A backfill barrier, emplaced between the containerized waste and the host rock, can both protect the other engineered barriers and act as a primary barrier to the release of radionuclides from the waste package. Attributes that a backfill should provide in order to carry out its required function have been identified. Primary attributes are those that have a direct effect upon the release and transport of radionuclides from the waste package. Supportive attributes do not directly affect radionuclide release but are necessary to support the primary attributes. The primary attributes, in order of importance, are: minimize (retard or exclude) the migration of ground water between the host rock and the waste canister system; retard the migration of selected chemical species (corrosive species and radionuclides) in the ground water; control the Eh and pH of the ground water within the waste-package environment. The supportive attributes are: self-seal any cracks or discontinuities in the backfill or interfacing host geology; retain performance properties at all repository temperatures; retain peformance properties during and after receiving repository levels of gamma radiation; conduct heat from the canister system to the host geology; retain mechanical properties and provide resistance to applied mechanical forces; retain morphological stability and compatibility with structural barriers and with the host geology for required period of time. Screening and selection of candidate backfill materials has resulted in a preliminary list of materials for testing. Primary emphasis has been placed on sodium and calcium bentonites and zeolites used in conjunction with quartz sand or crushed host rock. Preliminary laboratory studies have concentrated on permeability, sorption, swelling pressure, and compaction properties of candidate backfill materials.

  5. Rheological Properties of Cemented Tailing Backfill and the Construction of a Prediction Model

    Directory of Open Access Journals (Sweden)

    Liu Lang

    2015-04-01

    Full Text Available Workability is a key performance criterion for mining cemented tailing backfill, which should be defined in terms of rheological parameters such as yield stress and plastic viscosity. Cemented tailing backfill is basically composed of mill tailings, Portland cement, or blended cement with supplementary cement material (fly ash and blast furnace slag and water, among others, and it is important to characterize relationships between paste components and rheological properties to optimize the workability of cemented tailing backfill. This study proposes a combined model for predicting rheological parameters of cemented tailing backfill based on a principal component analysis (PCA and a back-propagation (BP neural network. By analyzing experimental data on mix proportions and rheological parameters of cemented tailing backfill to determine the nonlinear relationships between rheological parameters (i.e., yield stress and viscosity and mix proportions (i.e., solid concentrations, the tailing/cement ratio, the specific weight, and the slump, the study constructs a prediction model. The advantages of the combined model were as follows: First, through the PCA, original multiple variables were represented by two principal components (PCs, thereby leading to a 50% decrease in input parameters in the BP neural network model, which covered 98.634% of the original data. Second, in comparison to conventional BP neural network models, the proposed model featured a simpler network architecture, a faster training speed, and more satisfactory prediction performance. According to the test results, any error between estimated and expected output values from the combined prediction model based on the PCA and the BP neural network was within 5%, reflecting a remarkable improvement over results for BP neural network models with no PCA.

  6. Paste-like self-flowing transportation backfilling technology based on coal gangue

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-min; ZHAO Bin; ZHANG Chuan-shu; ZHANG Qin-li

    2009-01-01

    A paste-like self-flowing pipeline transportation backfilling technology with coal gangue as aggregate is proposed to remove the potential damage caused by coal gangue piles. As well, the difficult problems of recovering high quality safety coal pillars and deep mining of the Suncun Coal Mine (SCM), Xinwen Coal Group, Shandong are resolved. The physical-chemical properties of coal gangue, optimized proportion of materials, backfilling system and craft in the SCM were studied in the laboratory and then an industrial test was carried out on high quality coal pillars under a town. The results show that finely crushed kaolinized and fresh gangue with granularity less than 5 mm can be used as aggregate with fly ash to replace part of the cement and a compos-ite water reducer as an additive, accounting for 1.0%-1.5% of the total amount of cement and fly ash. The recommended proportion is I(cement):4(fly ash): 15(coal gangue), with a mass fraction of 72%-75%, theological paste-like properties and a strength of more than 0.7 MPa at 7 d. The sequence of adding cement, fly ash, water reducer and then coal gangue ensures that the suspended state of the slurry, reducing the wear and jam of pipelines. The working face is advancing continuously by the alternating craft of building block walls with coal gangue and backfilling mined-out gobs with paste-like slurry. The recovery rate is as high as 90% with a backfilling cost of 36.9 Yuan/t, good utilization of coal gangue and no subsidence on the surface. This technology provides a good theoretical basis and application experience for coal mines, cement backfilling with paste-like slurry.

  7. Paste-like self-flowing transportation backfilling technology based on coal gangue

    Energy Technology Data Exchange (ETDEWEB)

    Xin-min Wang; Bin Zhao; Chuan-shu Zhang; Qin-li Zhang [Central South University, Changsha (China). School of Resources and Safety Engineering

    2009-03-15

    A paste-like self-flowing pipeline transportation backfilling technology with coal gangue as aggregate is proposed to remove the potential damage caused by coal gangue piles. As well, the difficult problems of recovering high quality safety coal pillars and deep mining of the Suncun Coal Mine (SCM), Xinwen Coal Group, Shandong are resolved. The physical-chemical properties of coal gangue, optimized proportion of materials, backfilling system and craft in the SCM were studied in the laboratory and then an industrial test was carried out on high quality coal pillars under a town. The results show that finely crushed kaolinized and fresh gangue with granularity less than 5 mm can be used as aggregate with fly ash to replace part of the cement and a composite water reducer as an additive, accounting for 1.0%-1.5% of the total amount of cement and fly ash. The recommended proportion is 1(cement):4(fly ash):15(coal gangue), with a mass fraction of 72%-75%, rheological paste-like properties and a strength of more than 0.7 MPa at 7 d. The sequence of adding cement, fly ash, water reducer and then coal gangue ensures that the suspended state of the slurry, reducing the wear and jam of pipelines. The working face is advancing continuously by the alternating craft of building block walls with coal gangue and backfilling mined-out gobs with paste-like slurry. The recovery rate is as high as 90% with a backfilling cost of 36.9 Yuan/t, good utilization of coal gangue and no subsidence on the surface. This technology provides a good theoretical basis and application experience for coal mines, cement backfilling with paste-like slurry. 17 refs., 6 figs., 3 tabs.

  8. Ring exciting thin layer method applied to the forced vibration test of the Hualien large scale soil-structure interactions (SSI) model

    International Nuclear Information System (INIS)

    The blind prediction and post-test correlation analyses are conducted on the forced vibration tests of the 1/4 scale reinforced concrete cylindrical containment model both before and after backfill. In the present paper described for the case after backfill, the ring exciting thin layer technique was introduced to account realistically for the axisymmetrical irregularity of the soil condition due to the backfill. The computed results demonstrated that the proposed method has a great potential for simulating the dynamic responses of the soil-structure system to the forced vibration. (author). 5 refs., 8 figs

  9. 采空区回填体隧道冒顶塌方处理技术%Treatment Technology on Roof Fall and Landslide of Backfilled Tunnel in Goaf

    Institute of Scientific and Technical Information of China (English)

    谈东亚

    2014-01-01

    以铜陵市五松隧道在施工中遇到的采空区回填体塌方处理为例,针对采空区回填体导致冒顶塌方的特点,从安全顺利的角度,通过临时环向竖向钢支撑加固未塌方段、套管法超前管棚超前预支护、水泥水玻璃注浆加固、预留核心土法开挖支护、回填轻质混凝土、换拱等技术,安全顺利地处理完该塌方,为今后类似工程提供一定的参考。%Based on the example of treatment on backfilled landslide in goaf encountered in Wusong Tunnel construction in Tongling,according to the characteristics of goaf backfilling roof fall and landslide,from the safety angle,measures are used to deal with the landslide,like temporary reinforcement of the sound section with circumferential vertical steel support,ad-vanced support with cuff shed pipe,grouting reinforcement with cement water glass,reservation core soil excavation,backfill-ing of light weight concrete,arch replacement technology,so as to provide references for similar projects in the future.

  10. Soil density and mass attenuation coefficients for use in shielding calculations at the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Compacted, backfilled soil excavated during construction may be used to provide shielding from gamma radiation at the Hanford Waste Vitrification Plant (HWVP). To provide a reasonable estimate of the shielding offered by this backfilled soil, the bulk density and the composition of the emplaced soil must be specified. This study provides an estimate of the bulk density and the mass attenuation coefficients of soil used for calculating gamma-ray shielding attenuation at the HWVP. These estimates are based on measurements taken from soil samples and underlying rock samples at the Hanford Site

  11. Soils

    International Nuclear Information System (INIS)

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  12. Quantitative mineralogy and preliminary pore-water chemistry of candidate buffer and backfill materials for a nuclear fuel waste disposal vault

    International Nuclear Information System (INIS)

    The quantitative mineralogy of seven candidate buffer and backfill materials for a nuclear fuel waste disposal vault is presented. Two of the materials were coarse grained: one a blended very pure silica sand, and the other a crushed plagioclase-rich granite or granodiorite. Five materials were fine-grained soils containing abundant clay minerals. Of these, three were fairly pure, Cretaceous, ash-derived bentonites that contained up to 3 percent of soluble sulphates; one was a freshwater glacial clay containing 59 percent interlayered smectite-illite; and one was a crushed Paleozoic shale containing abundant illite and chlorite. The adsorbed cation regimes and the pore-water chemistry of the clays are discussed

  13. Sorption of plutonium and americium on repository, backfill and geological materials relevant to the JNFL low-level radioactive waste repository at Rokkasho-Mura

    International Nuclear Information System (INIS)

    An integrated program of batch sorption experiments and mathematical modeling has been carried out to study the sorption of plutonium and americium on a series of repository, backfill and geological materials relevant to the JNFL low-level radioactive waste repository at Rokkasho-Mura. The sorption of plutonium and americium on samples of concrete, mortar, sand/bentonite, tuff, sandstone and cover soil has been investigated. In addition, specimens of bitumen, cation and anion exchange resins, and polyester were chemically degraded. The resulting degradation product solutions, alongside solutions of humic and isosaccharinic acids were used to study the effects on plutonium sorption onto concrete, sand/bentonite and sandstone. The sorption behavior of plutonium and americium has been modeled using the geochemical speciation program HARPHRQ in conjunction with the HATCHES database

  14. The simplified convergence rate calculation for salt grit backfilled caverns in rock salt

    International Nuclear Information System (INIS)

    Within the research and development project 3609R03210 of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, different methods were investigated, which are used for the simplified calculation of convergence rates for mining cavities in salt rock that have been backfilled with crushed salt. The work concentrates on the approach of Stelte and on further developments based on this approach. The work focuses on the physical background of the approaches. Model specific limitations are discussed and possibilities for further development are pointed out. Further on, an alternative approach is presented, which implements independent material laws for the convergence of the mining cavity and the compaction of the crushed salt backfill.

  15. EXPERIMENTAL AND NUMERICAL INVESTIGATION OF FLEXIBLE BURIED PIPE DEFORMATION BEHAVIOR UNDER VARIOUS BACKFILL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Niyazi Uğur TERZİ

    2009-01-01

    Full Text Available Deformation characteristics of polyethylene based flexible pipes are different than rigid pipes such as concrete and iron pipes. Deflection patterns and stress-strain behaviors of flexible pipes have strict relation between the engineering properties of backfill and its settlement method. In this study, deformation behavior of a 100 mm HDPE flexible pipe under vertical loads is investigated in laboratory conditions. Steel test box, pressurized membrane, raining system, linear position transducers and strain gauge rosettes are used in the laboratory tests. In order to analyze the buried pipe performance; Masada Derivation Formula which is mostly used by designers is employed. According to the test and mathematical studies, it is understood that relative density of backfill and its settlement method is a considerable effect on buried pipe performance and Masada Derivation method is very efficient for predicting the pipe performance.

  16. Determination of internal pressure and the backfill gas composition of nuclear fuel rods

    International Nuclear Information System (INIS)

    An important consideration in the nuclear fuel manufacturing is the measurement of the helium atmosphere pressure and its composition analysis inside the nuclear fuel rod. In this work it is presented a system used to measure the internal pressure and to determine the backfill gas composition of fuel rods. The system is composed of an expansion chamber provided of a seals system to assure that when rod is drilled, the gas stays contained inside the expansion chamber. The system is connected to a pressure measurement digital system: Baratron MKS 310-AHS-1000. Range 1000 mm Hg from which the pressure readings are taken when this is stabilized in all the system. After a gas sample is sent toward a Perkin Elmer gas chromatograph, model 8410 with thermal conductivity detector to get the corresponding chromatogram and doing the necessary calculations for obtaining the backfill gas composition of the rod in matter. (Author)

  17. Backfill as an engineered barrier for nuclear waste management. [Bentonite-hectorite

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, E.J.

    1979-01-01

    The swelling, plastic flow, and relative impermeability of bentonite and hectorite were observed and measured after wetting with concentrated brines. Measurements of stable values of pH > 6.5 for the interstitial brines in wetted bentonite and hectorite confirmed conditions favorable for precipitation and sorption of transuranics. Values of K/sub d/ > 2000 ml/g were measured for Pu and Am. Calculated estimates of the effectiveness of a one-foot-thick backfill barrier are presented. They show that the breakthrough of Pu and other transuranics (K/sub d/ = 2000 ml/g) can be delayed for 10/sup 4/ to 10/sup 5/ years. The breakthrough of most fission products (K/sub d/ = 200 ml/g) can be delayed for 10/sup 3/ to 10/sup 4/ years, sufficient time for them to decay to very low concentrations. A backfill barrier can contribute significantly to a radioactive waste isolation system.

  18. A mathematical model of the behaviour of concrete backfill in an underground waste repository

    International Nuclear Information System (INIS)

    This report concerns the mathematical modelling by the finite element method of the behaviour of concrete, one of the candidate materials for use in the backfilling and sealing of underground repositories for radioactive waste. The present study is predominantly concerned with the development of a mathematical model for use within the ADINA finite element code to predict the time-dependent performance of concrete as a backfilling and sealing material. The finite element material model developed accounts for the ageing of concrete, multi-axial creep and creep recovery, the effect of external environmental humidity and changing internal temperatures. The model compares favourably with available published experimental data for maturing concrete but requires considerable further validation against a wider range of experimental results. (author)

  19. The chemistry of blended cements and backfills intended for use in radioactive waste disposal

    International Nuclear Information System (INIS)

    This project was initiated by Her Majesty's Inspectorate of Pollution (HMIP) at the time when UK NIREX had announced its intention to develop a repository for low and intermediate level nuclear waste in the vicinity of Sellafield. In this repository setting, two main barriers existed to the return of radio-isotopes to the biosphere: the natural, or geologic and hydrogeologic barriers, and the man-made barriers. These latter comprise relatively short-lived containers as well as an engineered backfill. The backfill was designed to condition a high pH in the repository, thereby lowering the solubility of many long-lived radionuclides yet not confine gases, which might be generated from chemical and radioactive waste within the repository vault. The Environment Agency for England and Wales had already taken independent steps to examine the suitability of alkaline backfills, based on Portland cement, limestone flour and Ca(OH)2, for the man-made barriers. Preliminary data on post-closure repository performance assessment at Sellafield suggested the importance of two additional factors which had not hitherto been considered in assessments: (i) temperature: Inclusion of heat generating waste could drive temperatures up to ∼80 deg. C in the post closure phase; (ii) salinity of deep groundwater: Much previous work has been done in initially-pure water but borehole analyses indicated high salinity at depth. Other potential deep repositories could also be saline. These impacts were likely to occur together throughout much of the post-closure phase: backfills were likely to be in prolonged contact with hot, saline groundwater. Previous studies demonstrated that cements achieve their performance by a sacrificial action. It is however essential that the cementitious materials should not dissolve too rapidly if prolonged backfill performance lifetimes are to be achieved. By dissolving cement backfills condition permeating water to a high pH and thereby lower the solubilities of

  20. Implementation of chemical controls through a backfill system for the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    A backfill system has been designed for the WIPP which will control the chemical environment of the post-closure repository to a domain where the actinide solubility is within its lowest region. The actinide solubility is highly dependent on the chemical species which constitute the fluid, the resulting pH of the fluid, and oxidation state of the actinide which is stable under the specific conditions. The implementation of magnesium oxide (MgO) as the backfill material not only controls the pH of the expected fluids but also effectively removes the carbonate from the system, which has a significant impact for actinide solubility. The selection process, emplacement system, design, and confirmatory experimental results are presented

  1. Multiple determinations of isotope diffusion in cementitious backfills and Ordinary Portland Cement (OPC) monoliths

    International Nuclear Information System (INIS)

    The full text of publication follows: The UK concept for geological disposal of intermediate level (ILW) and low level waste (LLW) includes backfill materials based on admixtures of Ordinary Portland Cement (OPC). It is expected that the evolution of these backfill materials will generate high pH conditions and the corrosion of the metal canisters used for disposal will promote a low Eh environment. This combination of conditions within the near field of the Geological Disposal Facility (GDF) will reduce the solubility of many radionuclides and retard migration. In addition, sorption to some of the cementitious phases may contribute significantly to the retardation of many radionuclides. It is clearly important to understand how diffusion of radionuclides contributes to the overall migration from the repository. However, it remains practically difficult to isolate the effect of diffusion from other processes such as sorption and advection which may also occur in the near field and far fields of the GDF. This presentation describes a series of experiments undertaken to evaluate the diffusion of a selection of relevant radionuclides in saturated backfills (including the NIREX reference vault backfill, NRVB) and OPC matrices. The experiments build upon a significant number of related sorption studies previously undertaken by the radiochemistry group at Loughborough University and complement a series of small scale advection experiments also being undertaken. The experimental technique uses small pre-cast blocks (monoliths) of the matrix under investigation. An appropriate concentration of the isotope of interest is introduced in a cavity in the centre of the block, which is then sealed, and finally, placed in a solution previously equilibrated with the matrix. The increase in concentration of the isotope in the external solution is then determined at defined time intervals. The interpretation of the results is undertaken with methods conventionally used for geological

  2. EXPERIMENTAL AND NUMERICAL INVESTIGATION OF FLEXIBLE BURIED PIPE DEFORMATION BEHAVIOR UNDER VARIOUS BACKFILL CONDITIONS

    OpenAIRE

    TERZİ, Niyazi Uğur; Sönmez YILDIRIM

    2009-01-01

    Deformation characteristics of polyethylene based flexible pipes are different than rigid pipes such as concrete and iron pipes. Deflection patterns and stress-strain behaviors of flexible pipes have strict relation between the engineering properties of backfill and its settlement method. In this study, deformation behavior of a 100 mm HDPE flexible pipe under vertical loads is investigated in laboratory conditions. Steel test box, pressurized membrane, raining system, linear position transdu...

  3. Paste backfill of shallow mine workings for land reclamation in Canmore, Alberta

    International Nuclear Information System (INIS)

    The coal mining history in Canmore, Alberta was presented along with reclamation activities that mine regulators carried out following closure of the mines after nearly 100 years of underground mining. The 7 seams that were mined commercially extend over distances of a few hundred feet and have been displaced by faults. Voids and collapsed rubble in shallow underground workings pose a risk of potential ground subsidence that can affect the stability of surface structures and infrastructure, including the planned development of the proposed Three Sisters Mountain Village on land above the abandoned mines. The village includes plans for 10,000 residential homes, 2 golf courses, and a resource centre. A mine works mitigation program involved drilling primary injection boreholes on a 15 m grid pattern to map the constraint zones in order to gain a better perspective of the subsidence issues as well as the effects of subsidence on structural stress and public safety. When determining mitigation criteria, various land uses and ranges of subsidence hazards were considered to be compatible with each land use. A paste backfill composed of aggregate from a locally available till overburden site was mixed with cement and injected into the void spaces. This paper described the cemented paste backfill injection method; confirmatory methods; maximum volume and pressure criteria; survey for ground uplift; and borehole camera and manual checks for cemented paste backfill in adjacent boreholes. Quality control testing was carried out by means of slump tests. It was concluded that cemented paste backfill mix could be used successfully to stabilize abandoned mine workings for land recovery. 8 refs., 5 tabs., 7 figs

  4. Retardation of radionuclides in back-fill materials of TVO VLJ repository and in rocks

    International Nuclear Information System (INIS)

    Retardation and diffusion in rock and rock-bentonite back-fill of the following reactor waste elements are reviewed: carbon, cobalt, nickel, strontium, technetium, iodine, cesium, plutonium and americium. Such conservative values for distribution coefficients and diffusion coefficients are proposed for the use in safety assessment of the final disposal of the waste that they lead to overestimations in biosphere radiation doses. Also more realistic values are proposed

  5. Modeling coupled blast/structure interaction with Zapotec, benchmark calculations for the Conventional Weapon Effects Backfill (CONWEB) tests.

    Energy Technology Data Exchange (ETDEWEB)

    Bessette, Gregory Carl

    2004-09-01

    Modeling the response of buried reinforced concrete structures subjected to close-in detonations of conventional high explosives poses a challenge for a number of reasons. Foremost, there is the potential for coupled interaction between the blast and structure. Coupling enters the problem whenever the structure deformation affects the stress state in the neighboring soil, which in turn, affects the loading on the structure. Additional challenges for numerical modeling include handling disparate degrees of material deformation encountered in the structure and surrounding soil, modeling the structure details (e.g., modeling the concrete with embedded reinforcement, jointed connections, etc.), providing adequate mesh resolution, and characterizing the soil response under blast loading. There are numerous numerical approaches for modeling this class of problem (e.g., coupled finite element/smooth particle hydrodynamics, arbitrary Lagrange-Eulerian methods, etc.). The focus of this work will be the use of a coupled Euler-Lagrange (CEL) solution approach. In particular, the development and application of a CEL capability within the Zapotec code is described. Zapotec links two production codes, CTH and Pronto3D. CTH, an Eulerian shock physics code, performs the Eulerian portion of the calculation, while Pronto3D, an explicit finite element code, performs the Lagrangian portion. The two codes are run concurrently with the appropriate portions of a problem solved on their respective computational domains. Zapotec handles the coupling between the two domains. The application of the CEL methodology within Zapotec for modeling coupled blast/structure interaction will be investigated by a series of benchmark calculations. These benchmarks rely on data from the Conventional Weapons Effects Backfill (CONWEB) test series. In these tests, a 15.4-lb pipe-encased C-4 charge was detonated in soil at a 5-foot standoff from a buried test structure. The test structure was composed of a

  6. DUSCOBS - a depleted-uranium silicate backfill for transport, storage, and disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    A Depleted Uranium Silicate COntainer Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside storage, transport, and repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill all void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (1) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (2) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. In addition, the DUSCOBS improves the integrity of the package by acting as a packing material and ensures criticality control for the package during SNF storage and transport. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments

  7. Performance of concrete backfilling materials for shafts and tunnels in rock formations. Volume 2: mathematical modelling

    International Nuclear Information System (INIS)

    This report (Part 2) describes the mathematical modelling studies carried out within a research project into the performance of concrete backfilling materials for shafts and tunnels comprising a hard rock geological disposal repository for High Level, Heat Generating Wastes or Intermediate Level Wastes with long lived isotopes. The objective, is to demonstrate that concrete will serve as a beneficial engineered barrier, part of a multi-barrier system, in isolating potentially harmful radionuclides from the biosphere. The report recognises that the backfill cannot be considered in isolation and that there are many interactions between the primary repository elements of host rock, waste and backfill. The interactions considered include mechanical, thermal, creep and moisture movement. Analyses were carried out using the ADINA finite element system, by programmed analytical formulae and using the TEMPOR program (for thermally driven moisture migration in concrete). The emphasis has been directed at establishing basic mathematical approaches to the understanding and quantification of the phenomena involved and applying them to simplified and idealised repository scenarios. The methods devised lay foundations for future work on more defined disposal scenarios

  8. Use of inorganic sorbents for treatment of liquid radioactive waste and backfill of underground repositories

    International Nuclear Information System (INIS)

    This document presents the results of a four year Co-ordinated Research Programme (CRP) on the ''Use of Inorganic Sorbents for Treatment of Liquid Radioactive Waste and Backfill of Underground Repositories'' (1987-1991). Many countries have research programmes aiming at developing processes which would provide efficient and safe concentration of radionuclides in waste streams into solid materials which could then be reliably immobilized into forms suitable for long term storage or disposal. Use of inorganic sorbents for this purpose is very attractive because of their resistance to radiation and chemical attack, strong affinity for one or more radionuclides, their compatibility with likely immobilization matrices and their availability at low cost. According to the fundamental multibarrier concept for disposal of radioactive waste, backfill material is one of the important engineered barriers. Inorganic materials such as clays, naturally occurring zeolites (clinoptilolite, modenite and chabasite) are promising backfill materials. Research in technical uses of inorganic material applications was covered within the framework of the Co-ordinated Research Programme reported in this technical document. Final contributions by participants at the last Research Co-ordination Meeting held in Rez, Czechoslovakia, from 4 to 8 November 1991, are presented here. Refs, figs and tabs

  9. Development of a quantitative accelerated sulphate attack test for mine backfill

    Science.gov (United States)

    Shnorhokian, Shahe

    Mining operations produce large amounts of tailings that are either disposed of in surface impoundments or used in the production of backfill to be placed underground. Their mineralogy is determined by the local geology, and it is not uncommon to come across tailings with a relatively high sulphide mineral content, including pyrite and pyrrhotite. Sulphides oxidize in the presence of oxygen and water to produce sulphate and acidity. In the concrete industry, sulphate is known to produce detrimental effects by reacting with the cement paste to produce the minerals ettringite and gypsum. Because mine backfill uses tailings and binders---including cement---it is therefore prone to sulphate attack where the required conditions are met. Currently, laboratory tests on mine backfill mostly measure mechanical properties such as strength parameters, and the study of the chemical aspects is restricted to the impact of tailings on the environment. The potential of sulphate attack in mine backfill has not been studied at length, and no tests are conducted on binders used in backfill for their resistance to attack. Current ASTM guidelines for sulphate attack tests have been deemed inadequate by several authors due to their measurement of only expansion as an indicator of attack. Furthermore, the tests take too long to perform or are restricted to cement mortars only, and not to mixed binders that include pozzolans. Based on these, an accelerated test for sulphate attack was developed in this work through modifying and compiling procedures that had been suggested by different authors. Small cubes of two different binders were fully immersed in daily-monitored sodium sulphate and sulphuric acid solutions for a total of 28 days, after 7 days of accelerated curing at 50°C. In addition, four binders were partially immersed in the same solutions for 8 days for an accelerated attack process. The two procedures were conducted in tandem with leach tests using a mixed solution of

  10. Water uptake by and movement through a Backfilled KBS-3V deposition tunnel: results of large-scale simulations

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Posiva and SKB initiated a joint programme BACLO (Backfilling and Closure of the Deep repository) in 2003 with the aim to develop methods and clay-based materials for backfilling the deposition tunnels of a repository utilizing the KBS-3V deposition concept. This paper summarises the results obtained in intermediate and large-scale simulations to evaluate water movement into and through backfill consisting of bentonite pellets and pre-compacted clay blocks. The main objectives of Baclo Phase III were related to examining backfill materials, deposition concepts and their importance to the clay-block and pellet backfilling concept. Bench-scale studies produced a large body of information on how various processes (e.g. water inflow, piping, erosion, self-healing, homogenisation and interaction between backfill and buffer), might affect the hydro-mechanical evolution of backfill components. The tests described in this paper examined the movement of water into and through assemblies of clay blocks and bentonite pellets/granules and represent a substantial up-scaling and inclusion of parameters that more closely simulate a field situation. In total, 27 intermediate-scale tests have been completed and 18 large-scale tests (∼ 1/2-tunnel cross-section) will be completed at SKB's Aespoe HRL by mid 2010. At intermediate-scale, point inflow rates ranging from 0.01 to 1.0 l/min were applied to block - dry pellet assemblies and water movement into and through the system was monitored. Tests determined that it is critical to provide clay blocks with lateral support and confinement as quickly as possible following block installation. Exposure of the blocks to even low rates of water ingress can result in rapid loss of block cohesion and subsequent slumping of the block materials into the spaces between the blocks and the tunnel walls. Installation of granular or pelletized bentonite clay between the blocks and the walls

  11. Analysis on Backfill Mining of “Under Three” Coal in Zhouyuanshan Mine and Strata Movement Law

    Directory of Open Access Journals (Sweden)

    Weijian Yu

    2013-09-01

    Full Text Available In order to solve the problem of "under three" (under railways, buildings and water bodies coal pillar mining, analysis on backfill mining and strata movement law is carried on in 24 mining district of Zhouyuanshan coal mine. First of all, according to the engineering geology and strata occurrence condition in 24 mining district of Zhouyuanshan coal mine, FLAC2D software be used to establish a two-dimensional numerical model and to analyze and calculate the full caving method, strip method and backfill method and then gaining that backfill mining method is beneficial to improve the protection level of surface buildings and facilities. Then, using the theory of strata control and method of related mechanics to analyze the strata movement law and strata control principle of backfill mining, considering that supporting role of backfill body is mainly on lateral reinforcement of coal pillar and vertical supporting role of overlying strata, forming a cooperative control system of "bearing strata + coal pillar + backfill body" and deducing the equilibrium equations when it is in steady state. At last, using the numerical analysis method, respectively analyzing the surface subsidence of the corresponding important buildings of the three profiles of C-8 exploration line ,C-6 exploration line and A-A (cross section of the profile of C-8 exploration line after using backfill coal mining in 24 mining district. The results show that: the surface subsidence and horizontal deformation basically control within 30 mm and the surface deformation curvature of buildings generally in 0.1×10-3 /km in 24 mining district of Zhouyuanshan coal mine, which accord with the relevant standards and requirements.

  12. Sorption of cesium and strontium from concentrated brines by backfill barrier materials

    International Nuclear Information System (INIS)

    The sorption of radionuclides from potentially intruding groundwater at a nuclear waste repository is a major chemical function of backfill barriers. In this study, various materials (including clays, zeolites and an inorganic ion exchanger) were screened for the sorption of the fission products cesium and strontium in concentrated brines. Representative brines A and B for the Waste Isolation Pilot Plant (WIPP), a proposed radioactive waste repository and test facility in bedded salt were used. Sorption properties were quantified using empirical distribution coefficients, k/sub d/. Of the materials examined, sodium titanate had the highest k/sub d/ for the sorption of Sr(II) in both brine A (k/sub d/ = 125 ml/g) and brine B(k/sub d/ = 500 to 600 ml/g). A mordenite-type zeolite was the most effective getter for Cs(I) in brine A (k/sub d = 27 ml/g), while illite yielded the highest k/sub d/ for Cs(I) in brine B (k/sub d/ = 115 ml/g). The relative merit of these k/sub d/ values is evaluated in terms of calculated estimates of breakthrough times for a backfill barrier containing the getter. Results show that a backfill mixture containing these getters is potentially an effective barrier to the migration of Sr(II) and Cs(I), although further study (especially for the sorption of cesium from brine A) is recommended. Initial mechanistic studies revealed competing ion effects which would support an ion exchange mechanism. K/sub d/'s were constant over a Sr(II) concentration range of 10-11 to 10-5 M and a Cs(I) concentration range of 10-8 to 10-5 M, supporting the choice of a linear sorption isotherm as a model for the results. Constant batch composition was shown to be attained within one week

  13. Sorption of cesium and strontium from concentrated brines by backfill barrier materials

    Energy Technology Data Exchange (ETDEWEB)

    Winslow, C D

    1981-03-01

    The sorption of radionuclides from potentially intruding groundwater at a nuclear waste repository is a major chemical function of backfill barriers. In this study, various materials (including clays, zeolites and an inorganic ion exchanger) were screened for the sorption of the fission products cesium and strontium in concentrated brines. Representative brines A and B for the Waste Isolation Pilot Plant (WIPP), a proposed radioactive waste repository and test facility in bedded salt were used. Sorption properties were quantified using empirical distribution coefficients, k/sub d/. Of the materials examined, sodium titanate had the highest k/sub d/ for the sorption of Sr(II) in both brine A (k/sub d/ = 125 ml/g) and brine B(k/sub d/ = 500 to 600 ml/g). A mordenite-type zeolite was the most effective getter for Cs(I) in brine A (k/sub d = 27 ml/g), while illite yielded the highest k/sub d/ for Cs(I) in brine B (k/sub d/ = 115 ml/g). The relative merit of these k/sub d/ values is evaluated in terms of calculated estimates of breakthrough times for a backfill barrier containing the getter. Results show that a backfill mixture containing these getters is potentially an effective barrier to the migration of Sr(II) and Cs(I), although further study (especially for the sorption of cesium from brine A) is recommended. Initial mechanistic studies revealed competing ion effects which would support an ion exchange mechanism. K/sub d/'s were constant over a Sr(II) concentration range of 10/sup -11/ to 10/sup -5/ M and a Cs(I) concentration range of 10/sup -8/ to 10/sup -5/ M, supporting the choice of a linear sorption isotherm as a model for the results. Constant batch composition was shown to be attained within one week.

  14. Transport of actinides and Tc through a bentonite backfill containing small quantities of iron or copper

    International Nuclear Information System (INIS)

    In the Swedish concept for final disposal of high-level radioactive waste, compacted bentonite has been proposed as a suitable backfill. The apparent diffusivity (Da) of the actinides U, Pu, Np and the fission product Tc in compacted bentonite mixed with 1% Fe(0), Fe(II), Cu(0) or Cu(II) has been measured in an inert nitrogen atmosphere. The results indicate, especially in the case of Fe(0) or Fe(II), reduction from the higher oxidation state Np(V), U(VI) and Tc(VII) probably to Np(IV), U(IV) and Tc(IV). (orig.)

  15. Chemistry and performance of blended cements and backfills for use in radioactive waste disposal

    International Nuclear Information System (INIS)

    The ability of NaCl and MgSO4 to impair the performance of Portland cement, blended cements containing slag and fly ash and of a permeable backfill have been measured. Performance is determined by decrease in pH, changes in mineralogy and loss of physical coherence. Experiments have been made at 25, 55 and 85 C and extensively backed up by chemical models of cement performance. NaCl, up to 1.5M, has a comparatively slight impact on performance but MgSO4 rapidly and almost quantitatively reacts, lowering system pH''s to 2 and magnesium silicates with gypsum

  16. Deep repository - Engineered barrier system. Erosion and sealing processes in tunnel backfill materials investigated in laboratory

    International Nuclear Information System (INIS)

    SKB in Sweden and Posiva in Finland are developing and plan to implement similar disposal concepts for the final disposal of spent nuclear fuel. Co-operation and joint development work between Posiva and SKB with the overall objective to develop backfill concepts and techniques for sealing and closure of the repository have been going on for several years. The investigation described in this report is intended to acquire more knowledge regarding the behavior of some of the candidate backfilling materials. Blocks made of three different materials (Friedland clay, Asha 230 or a bentonite/ballast 30/70 mixture) as well as different bentonite pellets have been examined. The backfill materials will be exposed to an environment simulating that in a tunnel, with high relative humidity and water inflow from the rock. The processes and properties investigated are: 1. Erosion properties of blocks and pellets (Friedland blocks, MX-80 pellets, Cebogel QSE pellets, Minelco and Friedland granules). 2. Displacements of blocks after emplacement in a deposition drift (Blocks of Friedland, Asha 230 and Mixture 30/70). 3. The ability of these materials to seal a leaking in-situ cast plug cement/rock but also other fractures in the rock (MX-80 pellets). 4. The self healing ability after a piping scenario (Blocks of Friedland, Asha 230 Mixture 30/70 and also MX-80 pellets). 5. Swelling and cracking of the compacted backfill blocks caused by relative humidity. The erosion properties of Friedland blocks were also investigated in Phase 2 of the joint SKBPosiva project 'Backfilling and Closure of the Deep Repository, BACLO, which included laboratory scale experiments. In this phase of the project (3) some completing tests were performed with new blocks produced for different field tests. These blocks had a lower density than intended and this has an influence on the erosion properties measured. The erosion properties of MX-80 pellets were also investigated earlier in the project but an

  17. BEHAVIOUR OF BACKFILL MATERIALS FOR ELECTRICAL GROUNDING SYSTEMS UNDER HIGH VOLTAGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    S. C. LIM

    2015-06-01

    Full Text Available Backfill materials like Bentonite and cement are effective in lowering grounding resistance of electrodes for a considerable period. During lightning, switching impulses and earth fault occurrences in medium and high voltage networks, the grounding system needs to handle extremely high currents either for a short duration or prolonged period respectively. This paper investigates the behaviour of bentonite, cement and sand under impulse and alternating high voltage (50Hz conditions. Fulguritic-formation was observed in all materials under alternating high voltage. The findings reveal that performance of grounding systems under high voltage conditions may significantly change from the outcomes anticipated at design stage.

  18. Backfilling with mixtures of bentonite/ballast materials or natural smectitic clay?

    International Nuclear Information System (INIS)

    Comparison of the performance of backfills of mixed MX-80 and crushed rock ballast, and a natural smectitic clay, represented by the German Friedland clay, shows that the latter performs better than mixtures with up to 30 % MX-80. Considering cost, Friedland clay prepared to yield air-dry powder grains is cheaper than mixtures of 30 % MX-80 and crushed ballast. Both technically and economically it appears that the Friedland clay is a competitive alternative to mixtures of 30 % MX-80 and crushed ballast. However, it remains to be demonstrated on a full scale that Friedland clay ground to a suitable grain size distribution can be acceptably compacted on site

  19. Mechanics of non-saturated soils

    International Nuclear Information System (INIS)

    This book presents the different ways to approach the mechanics of non saturated soils, from the physico-chemical aspect to the mechanical aspect, from the experiment to the theoretical modeling, from the laboratory to the workmanship, and from the microscopic scale to the macroscopic one. Content: water and its representation; experimental bases of the behaviour of non-saturated soils; transfer laws in non-saturated environment; energy approach of the behaviour of non-saturated soils; homogenization for the non-saturated soils; plasticity and hysteresis; dams and backfilling; elaborated barriers. (J.S.)

  20. Backfill Mining Technology and Development Tendency in China Coal Mine%我国煤矿充填开采技术及其发展趋势

    Institute of Scientific and Technical Information of China (English)

    胡炳南

    2012-01-01

    Based on the requirements of the sustainable development and environment protection, the paper stated the necessity of the backfill mining in mine. With the collection and analysis on the application of 20 typical backfill mining faces in China, the paper systematically stated the technical features and suitable conditions of the mine roadway heading with the rejects backfill, conventional longwall mining with the rejects backfill, fully mechanized longwall coal mining with rejects backfill, high water material backfill and others. The solid rejects backfill of mine roadway heading is suitale for minor output and important protected buildings places. The longwall fully mech- anized mining with solid rejects and paste backfill is saitable for the meohanized coal mining and conventional mining under the protected buildings places. The high water backfill materia is suitable for the mine with shortage of backfill material and a single seam. The coal pro- duction, backfill value, coal recovery rate, cost per ton of coal, backfill rate, convergence value, subsidence value, subsidence reduction rate, deformation value and protected area were provide as the evaluation indexes of the backfill mining effect. Finally, a fruther study should be conducted on high efficient backfill mining, backfill space sealing and others.%基于煤矿可持续发展与环境保护的要求,阐述了煤矿充填开采的必要性,通过收集分析我国20个典型充填开采应用实例,系统论述了巷道掘进抛矸充填、长壁普采矸石充填、长壁综采矸石充填、膏体充填和高水充填等技术特点,得出了巷道掘进矸石充填适用于配采和重要保护场合,长壁综采矸石和膏体充填适用于主采和普通保护场合,高水充填适用于缺少充填材料和单一煤层场合;提出了采煤量、充填量、采出率、吨煤成本、充满率、移近量、下沉量、减沉率、变形量和保护面积可作为充填开采效果的评价指

  1. New approach for helium backfilling and leak testing seal-welded capsules in a hot cell

    International Nuclear Information System (INIS)

    Under the guidance of the US Department of Energy (DOE), Westinghouse Hanford Company (WHC) and Battelle's Pacific Northwest Laboratory (PNL) have undertaken a joint venture to manufacture sealed gamma sources using 137Cs in the form of 137CsCl. The gamma sources are used primarily by the medical industry for sterilization, blood and tissue irradiation, and various research applications. The energetic gamma (0.662 meV) and dispersion characteristics of the CsCl feed material pose stringent containment and shielding requirements. The PNL's shielded materials facility (SMF) located at Hanford was selected for this work because of its ability to meet those requirements. Production of the double-encapsulated 137Cs gamma sources includes preparing the feed material (sectioning, dissolution, and filtration), forming pellets, loading capsules, helium backfilling, welding, and helium leak testing. Development of the remotely operated equipment used in this process required innovative solutions to difficult problems by both WHC and PNL engineers. As a result, several new technologies were developed that have the potential for use in a variety of remote applications. Of particular interest is a new process for backfilling capsules with helium and subsequently welding and leak testing the capsules

  2. Assessment of arsenic immobilization in synthetically prepared cemented paste backfill specimens.

    Science.gov (United States)

    Coussy, Samuel; Benzaazoua, Mostafa; Blanc, Denise; Moszkowicz, Pierre; Bussière, Bruno

    2012-01-01

    Mine tailings coming from the exploitation of sulphide and/or gold deposits can contain significant amounts of arsenic (As), highly soluble in conditions of weathering. Open mine voids backfilling techniques are now widely practiced by modern mining companies to manage the tailings. The most common one is called cemented paste backfill (CPB), and consists of tailings mixed with low amounts of hydraulic binders (3-5%) and a high proportion of water (typically 25%). The CPB is transported through a pipe network, to be placed in the mine openings. CPB provides storage benefits and underground support during mining operations. Moreover, this technique could also enhance contaminant stabilization, by fixing the contaminants in the binder matrix. CPB composites artificially spiked with As were synthesized in laboratory, using two types of hydraulic binders: a Portland cement, and a mix of fly ash and Portland cement. After curing duration of 66 days, the CPB samples were subjected to several leaching tests in various experimental conditions in order to better understand and then predict the As geochemical behaviour within CPBs. The assessment of the As release indicates that this element is better stabilized in Portland cement-based matrices rather than fly ash-based matrices. The As mobility differs in these two matrices, mainly because of the different As-bearing minerals formed during hydration processes. However, the total As depletion does not exceed 5% at the end of the most aggressive leaching test, indicating that As is well immobilized in the two types of CPB. PMID:22054566

  3. Evaluation of Computational Method of High Reynolds Number Slurry Flow for Caverns Backfilling

    Energy Technology Data Exchange (ETDEWEB)

    Bettin, Giorgia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    The abandonment of salt caverns used for brining or product storage poses a significant environmental and economic risk. Risk mitigation can in part be address ed by the process of backfilling which can improve the cavern geomechanical stability and reduce the risk o f fluid loss to the environment. This study evaluate s a currently available computational tool , Barracuda, to simulate such process es as slurry flow at high Reynolds number with high particle loading . Using Barracuda software, a parametric sequence of simu lations evaluated slurry flow at Re ynolds number up to 15000 and loading up to 25%. Li mitations come into the long time required to run these simulation s due in particular to the mesh size requirement at the jet nozzle. This study has found that slurry - jet width and centerline velocities are functions of Re ynold s number and volume fractio n The solid phase was found to spread less than the water - phase with a spreading rate smaller than 1 , dependent on the volume fraction. Particle size distribution does seem to have a large influence on the jet flow development. This study constitutes a first step to understand the behavior of highly loaded slurries and their ultimate application to cavern backfilling.

  4. Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff

    International Nuclear Information System (INIS)

    This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application

  5. Evaluation of a new method to estimate the hydration time of the tunnel backfill

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Urban (Computer-aided Fluid Engineering AB, Lyckeby (Sweden))

    2010-12-15

    A safety assessment of a repository requires that all stages (excavation, waste emplacement, etc) of a repository are analysed and understood. In this report the time after the waste emplacement will be in focus. One important issue during this phase is the saturation of the tunnel backfill. After the installation of the backfill, 30-50% of the pore space is filled with air; this volume will eventually be filled with water and it is the time scale for this hydration process that needs to be estimated. A method to estimate the hydration time of a repository has been suggested and evaluated. The key idea in the suggested method is to 'create' the volume initially filled with air by the use of the specific storage term and hence be able to stay within the single phase framework. A series of test cases, defined and simulated in /Boergesson et al. 2006/, are used to demonstrate and evaluate the method. Encouraging results have been obtained. It is also shown that the simulation model can be applied to a real world case

  6. Coupled thermal-hydro analysis of unsaturated buffer and backfill in a high-level waste repository

    International Nuclear Information System (INIS)

    Highlights: • The sensitivity analysis was carried out for the thermal-hydro model parameters. • The temperature distribution was sensitive to a change in the degree of saturation. • The degree of saturation distribution was sensitive to a variation in temperature. • A coupled TH behavior in the buffer and backfill of KRS repository was analyzed. - Abstract: The buffer and backfill are the major components of an engineered barrier system (EBS) for a high level waste (HLW) repository. Reliable EBS performance assessment requires the delicate numerical modeling of the buffer and backfill. This study carried out the sensitivity analysis of thermal-hydro (TH) model parameters, and based on its results, the coupled TH analysis of an unsaturated buffer and backfill in an HLW repository. The temperature distribution was sensitive to a change in the degree of saturation and thus the thermal conductivity, and the degree of saturation distribution was sensitive to a variation in temperature and thus water viscosity. The decay heat of HLW from a canister dissipated out through the buffer and backfill into the surrounding rock. The temperature was higher closer to the canister and was lower farther from the canister. The temperature in the backfill was overall lower than that in the buffer, but both temperatures were approached slowly over a long time. The peak temperature was located at the center of the interface line between the canister and buffer, and was 107 °C at the elapsed time of 0.47 year. Re-saturation occurred in the order of the backfill and then a buffer as groundwater was intruded from the surrounding rock. The wetting of the backfill was initiated from the wall of the tunnel and the upper wall of deposition hole, and it then proceeded toward the inside. The buffer was wetted from the wall of the deposition toward the canister. The latest re-saturation location was a bit above from the center axis of the canister, at which the re-saturation period of

  7. Direct methods of soil-structure interaction analysis for earthquake loadings

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J. B.; Kim, J. M.; Kim, Y. S. and others [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1993-07-15

    The objectives of this study are to review the methods of soil- structure interaction system analysis, particularly the direct method, and to carry out the blind prediction analysis of the Forced Vibration Test(FVT) before backfill in the course of Hualien LSST project. The scope and contents of this study are as follows : theoretical review on soil-structure interaction analysis methods, free-field response analysis methods, modelling methods of unbounded exterior region, hualien LSST FVT blind prediction analysis before backfill. The analysis results are found to be very well compared with the field test results.

  8. Residual porosity and permeability of compacting salt grit backfill. REPOPERM - phase 1

    International Nuclear Information System (INIS)

    The direct disposal of spent nuclear fuel elements in BSK3 canisters in deep vertical boreholes is supposed to allow a safe long-term confinement in the host rock by backfilling of the holes using similar salt grit. The assessment of a long-term safe isolation of finally disposed radioactive wastes is usually performed using simulation models. Due to the lack of experimental data on the residual porosities of during the compacting process this issue is of increasing importance for the verification of a complete confinement within the safety concept of direct waste repositories. The Contribution covers the following topics: Determination of the state of knowledge on mechanical and hydraulic properties; development of a THMC model for a generic repository borehole; laboratory experiments with accompanying modeling calculations and planning of an in-situ experiment for complete confinement. The described investigations are the preliminary work for the subsequent project phase.

  9. Status of assessment tools on the performance guarantee contents of backfill, bulkhead, tunnel and pit

    International Nuclear Information System (INIS)

    In order to contribute to the safety standards and guidelines which a regulator will decide, a state-of-the-art assessment method is investigated and summarized in tables about performance guarantee contents of backfill, bulkhead, tunnel (access, main, connecting, disposal) and disposal pit. In addition, examples of assessment tools are described. In this report, summary of (1) basic properties of bentonite, including swelling, mechanical and hydraulic properties, (2) long-term behavior of bentonite, including extrusion/erosion into host rock, and alteration, (3) effect of high pH plume from cementitious material and (4) mechanical stability of the near-field is described. Check points, assessment methods for (based on the data obtained from the experimental results, the estimation value obtained from empirical equations and database, and the modeling calculations) and latest results of these R and D programs were also summarized. (author)

  10. Backfilling with mixtures of bentonite/ballast materials or natural smectitic clay?

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, (Sweden)

    1998-10-01

    Comparison of the performance of backfills of mixed MX-80 and crushed rock ballast, and a natural smectitic clay, represented by the German Friedland clay, shows that the latter performs better than mixtures with up to 30 % MX-80. Considering cost, Friedland clay prepared to yield air-dry powder grains is cheaper than mixtures of 30 % MX-80 and crushed ballast. Both technically and economically it appears that the Friedland clay is a competitive alternative to mixtures of 30 % MX-80 and crushed ballast. However, it remains to be demonstrated on a full scale that Friedland clay ground to a suitable grain size distribution can be acceptably compacted on site 14 refs, 32 figs, 6 tabs

  11. Porewater salinity and the development of swelling pressure in bentonite-based buffer and backfill materials

    International Nuclear Information System (INIS)

    At the depths proposed for a nuclear fuel waste repository, it is likely that saline groundwater conditions will be encountered in the granitic rocks of Finland and Canada. The potential for saline groundwater to influence of the ability of bentonite-based buffer and backfilling materials to swell and thereby generate swelling pressure has been reviewed. Based on the data collected from existing literature, it would appear that porewater salinities as high as 100 g/l will not compromise the ability of confined, bentonite-based materials to develop a swelling pressure of at least 100 kPa on its confinement, provided the effective clay dry density (ECDD), exceeds approximately 0.9 Mg/m3. At densities less than approximately 0.9 Mg/m3 the swelling pressure of bentonite-based materials may be reduced and become sensitive to salt concentration. The influence of porewater salinity on swelling pressure can be compared on the basis of the ECDD required to develop 100 kPa of swelling pressure. In order to generate 100 kPa of swelling pressure an ECDD of approximately 0.7 Mg/m3 is required to be present under fresh water or brackish porewater conditions. This density would need to be increased to approximately 0.9 Mg/m3 where the groundwater conditions were saline. The impact that groundwater salinity will have on density specifications for buffer and backfilling materials are discussed with reference to the nuclear fuel waste disposal concepts of Finland and Canada. (orig.)

  12. Engineered Barrier System - Long-term Stability of Buffer and Backfill. Synthesis and extended abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Apted, Mick; Arthur, Randy [Monitor Scientific LLC, Denver, CO (United States); Savage, Dave [Quintessa Ltd., Nottingham (GB)] (eds.)

    2005-09-15

    SKI is preparing to review the license applications being developed by the Swedish Nuclear Fuel and Waste Management Company (SKB) for an encapsulation plant and a deep repository for the geological disposal of spent nuclear fuel. As part of its preparation, SKI is conducting a series of technical workshops on key aspects of the Engineered Barrier System (EBS) of the repository. This workshop concerns the longterm stability of the buffer and the backfill. Previous workshops have addressed the overall concept for long-term integrity of the EBS, the manufacturing, testing and QA of the EBS and the performance confirmation for the EBS. The goal of this work is to achieve a comprehensive overview of all aspects of SKB's EBS work prior to the handling of forthcoming license applications. The reports from the EBS workshops will be used as one important basis in future review work. The workshops involve the gathering of a sufficient number of independent experts in different subjects of relevance to the particular aspect of EBS. A workshop starts with presentations and discussions among these experts. Following this, SKB presents recent results and responds to questions as part of an informal hearing. Finally, the independent experts and the SKI staff examine the SKB responses from different viewpoints. This report aims to summarise the issues discussed at the buffer and backfill workshop and to extract the essential viewpoints that have been expressed. The report is not a comprehensive record of the discussions and individual statements made by workshop participants should be regarded as opinions rather than proven facts. This reports includes apart from the workshop synthesis, questions to SKB identified prior or during the workshop, and extended abstracts for introductory presentations.

  13. Engineered Barrier System - Long-term Stability of Buffer and Backfill. Synthesis and extended abstracts

    International Nuclear Information System (INIS)

    SKI is preparing to review the license applications being developed by the Swedish Nuclear Fuel and Waste Management Company (SKB) for an encapsulation plant and a deep repository for the geological disposal of spent nuclear fuel. As part of its preparation, SKI is conducting a series of technical workshops on key aspects of the Engineered Barrier System (EBS) of the repository. This workshop concerns the longterm stability of the buffer and the backfill. Previous workshops have addressed the overall concept for long-term integrity of the EBS, the manufacturing, testing and QA of the EBS and the performance confirmation for the EBS. The goal of this work is to achieve a comprehensive overview of all aspects of SKB's EBS work prior to the handling of forthcoming license applications. The reports from the EBS workshops will be used as one important basis in future review work. The workshops involve the gathering of a sufficient number of independent experts in different subjects of relevance to the particular aspect of EBS. A workshop starts with presentations and discussions among these experts. Following this, SKB presents recent results and responds to questions as part of an informal hearing. Finally, the independent experts and the SKI staff examine the SKB responses from different viewpoints. This report aims to summarise the issues discussed at the buffer and backfill workshop and to extract the essential viewpoints that have been expressed. The report is not a comprehensive record of the discussions and individual statements made by workshop participants should be regarded as opinions rather than proven facts. This reports includes apart from the workshop synthesis, questions to SKB identified prior or during the workshop, and extended abstracts for introductory presentations

  14. Porewater salinity and the development of swelling pressure in bentonite-based buffer and backfill materials

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D.A. [Atomic Energy of Canada Limited (Canada)

    2000-06-01

    At the depths proposed for a nuclear fuel waste repository, it is likely that saline groundwater conditions will be encountered in the granitic rocks of Finland and Canada. The potential for saline groundwater to influence of the ability of bentonite-based buffer and backfilling materials to swell and thereby generate swelling pressure has been reviewed. Based on the data collected from existing literature, it would appear that porewater salinities as high as 100 g/l will not compromise the ability of confined, bentonite-based materials to develop a swelling pressure of at least 100 kPa on its confinement, provided the effective clay dry density (ECDD), exceeds approximately 0.9 Mg/m{sup 3}. At densities less than approximately 0.9 Mg/m{sup 3} the swelling pressure of bentonite-based materials may be reduced and become sensitive to salt concentration. The influence of porewater salinity on swelling pressure can be compared on the basis of the ECDD required to develop 100 kPa of swelling pressure. In order to generate 100 kPa of swelling pressure an ECDD of approximately 0.7 Mg/m{sup 3} is required to be present under fresh water or brackish porewater conditions. This density would need to be increased to approximately 0.9 Mg/m{sup 3} where the groundwater conditions were saline. The impact that groundwater salinity will have on density specifications for buffer and backfilling materials are discussed with reference to the nuclear fuel waste disposal concepts of Finland and Canada. (orig.)

  15. Preliminary results from water content and density measurements of the backfill and buffer in the prototype repository at Aespoe HRL

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Since 2001 the Prototype Repository at Aespoe Hard Rock Laboratory has been carried out as a large-scale experimental installation of the KBS-3 Swedish/Finnish concept for final disposal of spent nuclear fuel. The Prototype Repository consists of a total of six full-scale deposition holes with a centre distance of 6 m, located in a TBM tunnel at a depth of 450 m. Each deposition hole is fitted with a full-scale bentonite buffer, consisting of altogether 14 blocks and a full-scale canister, Figure 1. The canisters are equipped with heaters to simulate the heat from spent nuclear fuel. There are two sections of the installation; The inner section (I) consisting of four deposition holes (no. 1-4) with buffer and canister, and the outer section (II) consisting of two deposition holes (no. 5-6). The deposition tunnel is filled with a mixture of crushed rock and bentonite (30% of bentonite). A massive concrete plug, designed to withstand full water and swelling pressures, separates the test area from the open tunnel system and a second plug separates the two sections. This layout provides two more or less independent test sections. The outer section was opened and retrieved during 2011. The backfill was excavated with a back-hoe loader in layers of two metres. Samples were taken in these layers with the object of determining density and water content. Important items of the backfill to examine were the contact between backfill and the tunnel wall and the contact between the buffer and backfill in the deposition holes. The water content of the backfill was determined by drying samples in an oven at a temperature of 105 C for 24 h and the density was determined by weighting the sample both in air and merged into paraffin oil with known density. Altogether more than 900 tons of backfill material was excavated from the tunnel and more than 1100 samples, distributed over 11 sections, were taken for determining the water

  16. Plasticity in soil-structure interaction applied to cut-and-cover tunnels

    OpenAIRE

    Plumey, Sylvain; Muttoni, Aurelio; Vulliet, Laurent; Labiouse, Vincent

    2004-01-01

    Cut-and-cover tunnels behavior at ultimate limit state depends strongly on the interactions between the foundation soil, the backfill and the reinforced concrete structure. Characterization of the potential failure modes of these types of structure necessitates taking into account every major mechanical property of each components. The influence of the structure plastic behavior on the ultimate limit state of the soil-structure system is discussed through a basic case study of soil mechanics....

  17. Characterization of a backfill candidate material, IBECO-RWC-BF Baclo Project - Phase 3 Laboratory tests

    International Nuclear Information System (INIS)

    A backfill candidate material, IBECO-RWC-BF, which origin from Milos, Greece, has been investigated. The material was delivered both as granules and as pellets. The investigation described in this report aimed to characterize the material and evaluate if it can be used in a future repository. The following investigations have been done and are presented in this report: 1. Standard laboratory tests. Water content, liquid limit and swelling potential are examples on standard tests that have been performed. 2. Block manufacturing. The block compaction properties of the material have been determined. A first test was performed in laboratory but also tests in large scale have been performed. After finishing the test phase, 60 tons of blocks were manufactured at Hoeganaes Bjuf AB. The blocks will be used in large scale laboratory tests at Aespoe HRL. 3. Mechanical parameters. The compressibility of the material was investigated with oedometer tests (four tests) where the load was applied in steps after saturation. The evaluated oedometer modulus varied between 34.50 MPa. Tests were made to evaluate the elastic parameters of the material (E, ν). Altogether three tests were made on specimens with dry densities of about 1,710 kg/m3. The evaluated E-modulus and Poisson's ratio varied between 231-263 MPa and 0.16-0.19 respectively. The strength of the material, both the compressive strength and the tensile strength were measured on specimens compacted to different dry densities. The test results yielded a relation between density and the two types of strength. Furthermore, tests have been made in order to determine the compressibility of the unsaturated filling of pellets. Two tests were made where the pellets were loosely filled in a Proctor cylinder and then compressed at a constant rate of strain during continuously measurement of the applied load. 4. Swelling pressure and hydraulic conductivity. There is, as expected, a very clear influence of the dry density on the

  18. Overview on backfill materials and permeable reactive barriers for nuclear waste disposal facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Holt, Kathleen Caroline; Hasan, Mahmoud A. (Egyptian Atomic Energy Authority, Cairo, Egypt)

    2003-10-01

    A great deal of money and effort has been spent on environmental restoration during the past several decades. Significant progress has been made on improving air quality, cleaning up and preventing leaching from dumps and landfills, and improving surface water quality. However, significant challenges still exist in all of these areas. Among the more difficult and expensive environmental problems, and often the primary factor limiting closure of contaminated sites following surface restoration, is contamination of ground water. The most common technology used for remediating ground water is surface treatment where the water is pumped to the surface, treated and pumped back into the ground or released at a nearby river or lake. Although still useful for certain remediation scenarios, the limitations of pump-and-treat technologies have recently been recognized, along with the need for innovative solutions to ground-water contamination. Even with the current challenges we face there is a strong need to create geological repository systems for dispose of radioactive wastes containing long-lived radionuclides. The potential contamination of groundwater is a major factor in selection of a radioactive waste disposal site, design of the facility, future scenarios such as human intrusion into the repository and possible need for retrieving the radioactive material, and the use of backfills designed to keep the radionuclides immobile. One of the most promising technologies for remediation of contaminated sites and design of radioactive waste repositories is the use of permeable reactive barriers (PRBs). PRBs are constructed of reactive material(s) to intercept and remove the radionuclides from the water and decontaminate the plumes in situ. The concept of PRBs is relatively simple. The reactive material(s) is placed in the subsurface between the waste or contaminated area and the groundwater. Reactive materials used thus far in practice and research include zero valent iron

  19. Overview on backfill materials and permeable reactive barriers for nuclear waste disposal facilities

    International Nuclear Information System (INIS)

    A great deal of money and effort has been spent on environmental restoration during the past several decades. Significant progress has been made on improving air quality, cleaning up and preventing leaching from dumps and landfills, and improving surface water quality. However, significant challenges still exist in all of these areas. Among the more difficult and expensive environmental problems, and often the primary factor limiting closure of contaminated sites following surface restoration, is contamination of ground water. The most common technology used for remediating ground water is surface treatment where the water is pumped to the surface, treated and pumped back into the ground or released at a nearby river or lake. Although still useful for certain remediation scenarios, the limitations of pump-and-treat technologies have recently been recognized, along with the need for innovative solutions to ground-water contamination. Even with the current challenges we face there is a strong need to create geological repository systems for dispose of radioactive wastes containing long-lived radionuclides. The potential contamination of groundwater is a major factor in selection of a radioactive waste disposal site, design of the facility, future scenarios such as human intrusion into the repository and possible need for retrieving the radioactive material, and the use of backfills designed to keep the radionuclides immobile. One of the most promising technologies for remediation of contaminated sites and design of radioactive waste repositories is the use of permeable reactive barriers (PRBs). PRBs are constructed of reactive material(s) to intercept and remove the radionuclides from the water and decontaminate the plumes in situ. The concept of PRBs is relatively simple. The reactive material(s) is placed in the subsurface between the waste or contaminated area and the groundwater. Reactive materials used thus far in practice and research include zero valent iron

  20. Role of a buffer component within an engineered barrier waste package and a preliminary evaluation of bentonite as a backfill material

    International Nuclear Information System (INIS)

    This paper deals with the functions, properties, and compositions of backfill components to be used in the geologic disposal of high-level nuclear waste in basalt. A conceptual design for a repository located in basalt is being developed by the Basalt Waste Isolation Project (BWIP) in which these backfill components are part of the waste package and the repository sealing system (rooms, tunnels, and shafts). The first part of the paper concerns the role of a buffer component which is located between the primary and secondary physical barriers of the waste package (the canister and overpack). The second part of the paper deals with the chemical and physical properties of bentonite, which is a primary candidate for a backfill material both in the outer backfill barrier of the waste package and in the rooms, tunnels, and shafts above the waste package

  1. Fat metaplasia and backfill are key intermediaries in the development of sacroiliac joint ankylosis in patients with ankylosing spondylitis

    DEFF Research Database (Denmark)

    Maksymowych, Walter P; Wichuk, Stephanie; Chiowchanwisawakit, Praveena;

    2014-01-01

    OBJECTIVE: Fat metaplasia in bone marrow on T1-weighted magnetic resonance imaging (MRI) scans may develop after resolution of inflammation in patients with ankylosing spondylitis (AS) and may predict new bone formation in the spine. Similar tissue, termed backfill, may also fill areas of excavated...... bone in the sacroiliac (SI) joints and may reflect resolution of inflammation and tissue repair at sites of erosions. The purpose of this study was to test our hypothesis that SI joint ankylosis develops following repair of erosions and that tissue characterized by fat metaplasia is a key intermediary...... step in this pathway. METHODS: We used the Spondyloarthritis Research Consortium of Canada (SPARCC) SI structural lesion score (SSS) method to assess fat metaplasia, erosions, backfill, and ankylosis on MRIs of the SI joints in 147 patients with AS monitored for 2 years. Univariate and multivariate...

  2. Experimental studies on the inventory of cement-derived colloids in the pore water of a cementitious backfill material

    International Nuclear Information System (INIS)

    The potential role of near-field colloids for the colloid-facilitated migration of radionuclides has stimulated investigations concerning the generation and presence of colloids in the near-field of a repository for low- and intermediate level waste (L/ILW). The highly gas permeable mortar (Nagra designation: mortar M1) is currently favoured as backfill material for the engineered barrier of the planned Swiss L/ILW repository. The cementitious backfill is considered to be a chemical environment with some potential for colloid generation. In a series of batch-style laboratory experiments the physico-chemical processes controlling the inventory of colloids in cement pore water of the backfill were assessed for chemical conditions prevailing in the initial stage of the cement degradation. In these experiments, backfill mortar M1 or quartz, respectively, which may be used as aggregate material for the backfill, were immersed in artificial cement pore water (a NaOH/KOH rich cement fluid). Colloid concentrations in the cement pore water were recorded as a function of time for different experimental settings. The results indicate that a colloid-colloid interaction process (coagulation) controlled the colloid inventory. The mass concentration of dispersed colloids was found to be typically lower than 0.02 ppm in undisturbed batch systems. An upper-bound value was estimated to be 0.1 ppm taking into account uncertainties on the measurements. To assess the potential for colloid generation in a dynamic system, colloid concentrations were determined in the pore water of a column filled with backfill mortar. The chemical conditions established in the mortar column corresponded to conditions observed in the second stage of the cement degradation (a Ca(OH)2- controlled cement system). In this dynamic system, the upper-bound value for the colloid mass concentration was estimated to be 0.1 ppm. Implications for radionuclide mobility were deduced taking into account the experimental

  3. An experimental study on factors affecting the leachability of Cs-137 in cement matrix and leaching model with backfill

    International Nuclear Information System (INIS)

    Various factors affecting the leachability of Cs-137 in cement matrix have been investigated. Factors investigated include such as pressure curing, vibration curing, pressure leaching, the effect of the clay addition, ion-exchange resin(IRN-77) addition, and CO2 or air injection. Leaching experiments were conducted by the method recommended by IAEA. To analyze the experimental results, pore structure analysis of cement matrices was carried out by BET method. Cement matrices may not contact directly with underground water in real repository, since the surroundings of disposed drums are filled with backfill. Thus, the effect of backfill to the leachability has been investigated. The well-known diffusion theory was utilized to predict long term leach rate and cumulative fraction leached of Cs-137 or non-radioactive species. (Author)

  4. Experimental studies on the inventory of cement-derived colloids in the pore water of a cementitious backfill material

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, E

    2001-06-01

    The potential role of near-field colloids for the colloid-facilitated migration of radionuclides has stimulated investigations concerning the generation and presence of colloids in the near-field of a repository for low- and intermediate level waste (L/ILW). The highly gas permeable mortar (Nagra designation: mortar M1) is currently favoured as backfill material for the engineered barrier of the planned Swiss L/ILW repository. The cementitious backfill is considered to be a chemical environment with some potential for colloid generation. In a series of batch-style laboratory experiments the physico-chemical processes controlling the inventory of colloids in cement pore water of the backfill were assessed for chemical conditions prevailing in the initial stage of the cement degradation. In these experiments, backfill mortar M1 or quartz, respectively, which may be used as aggregate material for the backfill, were immersed in artificial cement pore water (a NaOH/KOH rich cement fluid). Colloid concentrations in the cement pore water were recorded as a function of time for different experimental settings. The results indicate that a colloid-colloid interaction process (coagulation) controlled the colloid inventory. The mass concentration of dispersed colloids was found to be typically lower than 0.02 ppm in undisturbed batch systems. An upper-bound value was estimated to be 0.1 ppm taking into account uncertainties on the measurements. To assess the potential for colloid generation in a dynamic system, colloid concentrations were determined in the pore water of a column filled with backfill mortar. The chemical conditions established in the mortar column corresponded to conditions observed in the second stage of the cement degradation (a Ca(OH){sub 2{sup -}} controlled cement system). In this dynamic system, the upper-bound value for the colloid mass concentration was estimated to be 0.1 ppm. Implications for radionuclide mobility were deduced taking into account the

  5. Numerical Simulation of Heat Transfer Characteristics of Horizontal Ground Heat Exchanger in Frozen Soil Layer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A simplified numerical model of heat transfer characteristics of horizontal ground heat exchanger (GHE) in the frozen soil layer is presented and the steady-state distribution of temperature field is simulated. Numerical results show that the frozen depth mainly depends on the soil's moisture content and ambient temperature. The heat transfer loss of horizontal GHE tends to grow with the increase of the soil's moisture content and the decrease of ambient temperature. Backfilled materials with optimal thermal conductivity can reduce the thermal loss effectively in the frozen soil. The applicability of the Chinese national standard "Technical Code for Ground Source Heat Pump (GB 50366-2005)" is verified. For a ground source heat pump project, the feasible layout of horizontal GHE should be determined based on the integration of the soil's structure, backfilled materials,weather data, and economic analysis.

  6. Analysis on Backfill Mining of “Under Three” Coal in Zhouyuanshan Mine and Strata Movement Law

    OpenAIRE

    Weijian Yu; Bo Xu; Tao Feng; Xinyuan Chen

    2013-01-01

    In order to solve the problem of "under three" (under railways, buildings and water bodies) coal pillar mining, analysis on backfill mining and strata movement law is carried on in 24 mining district of Zhouyuanshan coal mine. First of all, according to the engineering geology and strata occurrence condition in 24 mining district of Zhouyuanshan coal mine, FLAC2D software be used to establish a two-dimensional numerical model and to analyze and calculate the full caving method, strip method a...

  7. Crushed aggregate-betonite mixtures as backfill material for the Finnish repositories of low- and intermediate-level radioactive wastes

    International Nuclear Information System (INIS)

    Backfill materials consisting of three components: crushed rock aggregate, finely ground rock aggregate and bentonite (3 to 2 per cent of weight) were studied. The production and installation procedures of the material were evaluated. Laboratory tests were made to determine the hydraulic conductivity and swelling potential of the materials. Chemical tests were made on the different materials and groundwaters. Mineralogical changes of the clay fraction were estimated. (author)

  8. Deep repository - Engineered barrier system. Wetting and homogenization processes in backfill materials. Laboratory tests for evaluating modeling parameters

    International Nuclear Information System (INIS)

    SKB in Sweden and Posiva in Finland are developing and implementing similar disposal concepts for the final disposal of spent nuclear fuel. A co-operation and joint development work between Posiva and SKB with the overall objective to develop backfill concepts and techniques for sealing and closure of the repository have been going on for several years. The backfill materials investigated where: Asha 230B and Friedland for use as block materials and Cebogel QSE, MX-80, Minelco and Friedland for use as pellets material. The issues investigated were: 1. Homogenization processes of highly compacted backfill blocks and pellet filling during saturation. The influence of different materials and water salinity was studied. 2. Water uptake processes for different materials and different water types. Clay specimens were put in contact with water at one end and after a certain time the tests were terminated and the water content distribution determined. 3. The water retention curve was determined for the two block materials. The results of these investigations will be used for modeling purposes either directly (retention curve) or indirectly by modeling of the tests

  9. Buffer and backfill process report for the safety assessment SR-Can

    International Nuclear Information System (INIS)

    This document compiles information on processes in the buffer and deposition tunnel backfill relevant for long-term safety of a KBS-repository. It supports the safety assessment SR-Can, which is a preparatory step for a safety assessment that will support the licence application for a final repository in Sweden. The purpose of the process reports is to document the scientific knowledge of the processes to a level required for an adequate treatment of the processes in the safety assessment. The documentation is not exhaustive from a scientific point of view, since such a treatment is neither necessary for the purposes of the safety assessment nor possible within the scope of an assessment. However, it must be sufficiently detailed to motivate, by arguments founded on scientific understanding, the treatment of each process in the safety assessment. The purpose is further to determine how to handle each process in the safety assessment at an appropriate degree of detail, and to demonstrate how uncertainties are taken care of, given the suggested handling

  10. Assessment of strength properties of cemented paste backfill by ultrasonic pulse velocity test.

    Science.gov (United States)

    Yılmaz, Tekin; Ercikdi, Bayram; Karaman, Kadir; Külekçi, Gökhan

    2014-07-01

    Ultrasonic pulse velocity (UPV) test is one of the most popular non-destructive techniques used in the assessment of the mechanical properties of concrete or rock materials. In this study, the effects of binder type/dosage, water to cement ratio (w/c) and fines content (ultrasonic pulse velocity (UPV) of cemented paste backfill (CPB) samples were investigated and correlated with the corresponding unconfined compressive strength (UCS) data. A total of 96 CPB samples prepared at different mixture properties were subjected to the UPV and UCS tests at 7, 14, 28 and 56-days of curing periods. UPV and UCS of CPB samples of ordinary Portland cement (CEM I 42.5 R) and sulphate resistant cement (SRC 32.5) initially increased rapidly, but, slowed down after 14 days. However, UPV and UCS of CPB samples of the blast furnace slag cement (CEM III/A 42.5 N) steadily increased between 7 and 56 days. Increasing binder dosage or reducing w/c ratio and fines content (<20 μm) increased the UCS and UPV of CPB samples. UPV was found to be particularly sensitive to fines content. UCS data were correlated with the corresponding UPV data. A linear relation appeared to exist between the UCS and UPV of CPB samples. These findings have demonstrated that the UPV test can be reliably used for the estimation of the strength of CPB samples. PMID:24602334

  11. Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings.

    Science.gov (United States)

    Ercikdi, Bayram; Cihangir, Ferdi; Kesimal, Ayhan; Deveci, Haci; Alp, Ibrahim

    2010-07-15

    This study presents the effect of three different water-reducing admixtures (WRAs) on the rheological and mechanical properties of cemented paste backfill (CPB) samples. A 28-day strength of > or = 0.7 MPa and the maintenance of the stability (i.e. > or = 0.7 MPa) over 360 days of curing were desired as the design criteria. Ordinary Portland cement (OPC) and Portland composite cement (PCC) were used as binders at 5 wt.% dose. WRAs were initially tested to determine the dosage of a WRA for a required consistency of 7'' for CPB mixtures. A total of 192 CPB samples were then prepared using WRAs. The utilization of WRAs enhanced the flow characteristics of the CPB mixture and allowed to achieve the same consistency at a lower water-to-cement ratio. For OPC, the addition of WRAs appeared to improve the both short- and long-term performance of CPB samples. However, only polycarboxylate-based superplasticiser produced the desired 28-day strength of > or = 0.7 MPa when PCC was used as the binder. These findings suggest that WRAs can be suitably exploited for CPB of sulphide-rich tailings to improve the strength and stability in short and long terms allowing to reduce binder costs in a CPB plant. PMID:20382473

  12. Coupled effect of cement hydration and temperature on hydraulic behavior of cemented tailings backfill

    Institute of Scientific and Technical Information of China (English)

    WU Di; CAI Si-jing

    2015-01-01

    Cemented tailings backfill (CTB) is made by mixing cement, tailings and water together, thus cement hydration and water seepage flow are the two crucial factors affecting the quality of CTB. Cement hydration process can release significant amount of heat to raise the temperature of CTB and in turn increase the rate of cement hydration. Meanwhile, the progress of cement hydration consumes water and produces hydration products to change the pore structures within CTB, which further influences the hydraulic behavior of CTB. In order to understand the hydraulic behavior of CTB, a numerical model was developed by coupling the hydraulic, thermal and hydration equations. This model was then implemented into COMSOL Multiphysics to simulate the evolutions of temperature and water seepage flow within CTB versus curing time. The predicted outcomes were compared with correspondent experimental results, proving the validity and availability of this model. By taking advantage of the validated model, effects of various initial CTB and curing temperatures, cement content, and CTB's geometric shapes on the hydraulic behavior of CTB were demonstrated numerically. The presented conclusions can contribute to preparing more environmentally friendly CTB structures.

  13. Composite backfill materials for radioactive waste isolation by deep burial in salt

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, E.J.

    1980-01-01

    Bentonite and hectorite were found to sorb Pu(IV) and Am(III) from concentrated brines with distribution coefficients K/sub d/ > 3000 ml/g. The permeability of bentonite to brine was less than 1 microdarcy at a confining pressure of 18 MPa, the expected lithostatic pressure at the 800 m level in a salt repository. Getters for sorption of TcO/sub 4//sup -/ (K/sub d/ approx. 300 ml/g), I/sup -/ (K/sub d/ greater than or equal to 30 ml/g), Cs (K/sub d/ greater than or equal to 30 ml/g) and Sr (K/sub d/ greater than or equal to approx. 100 ml/g) from brines were identified. Their sorption properties are presented. Thermal conductivity results (>0.5 W/mK) and evidence for bentonite stability in brines at hydrothermal conditions are also given. It is shown by calculated estimates that a 3-ft-thick mixture of bentonite with other getter materials could retain Pu, Am, and TcO/sub 4//sup -/ for >10/sup 4/ years and I/sup -/ for > 10/sup 3/ years. Another tailored mixture could retain Cs for approx. 600 years, Sr for approx. 700 years, TcO/sub 4/ for approx. 4000 years and I/sup -/ for approx. 400 years. The backfill can offer a significant contribution to the isolation capability of a waste package system.

  14. The Bacchus backfill experiment at the Hades underground research facility at Mol, Belgium

    International Nuclear Information System (INIS)

    BACCHUS is the acronym for Backfilling Control experiment for High level wastes in Underground Storage. This large scale experiment is considering a compacted clay-based material around a heater implanted in the host clay in order to investigate the thermal behaviour of the Boom clay as well as the thermal and hydraulical transfers through a highly compacted material. It was developed jointly with CEA/DRDD in Fontenay. Beside the experiment itself and its original design, material characterization and instrumentation survey were important aspects in which considerable experience has been gained. In this respect, the development of specific sensors (thermal shock and Time Domain reflectometry probes) adapted to the particular experimental conditions is worth mentioning. In-situ investigations from the Hades facility have been running from November 1988 (implementation in clay) to August 1990 (end of the 5 months heating phase). Most of the data could be reproduced using the computer code available at CEN/SCK but some important limitations have to be overcome in the future, as for example the behavior of partially saturated materials. 11 refs., 29 figs., 7 tabs

  15. THM modelling of buffer, backfill and other system components. Critical processes and scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, Mattias; Kristensson, Ola; Boergesson, Lennart; Dueck, Ann (Clay Technology AB, Lund (Sweden)); Hernelind, Jan (5T-Engineering AB, Vaesteraas (Sweden))

    2010-03-15

    A number of critical thermo-hydro-mechanical processes and scenarios for the buffer, tunnel backfill and other filling components in the repository have been identified. These processes and scenarios representing different aspects of the repository evolution have been pinpointed and modelled. In total, 22 cases have been modelled. Most cases have been analysed with finite element (FE) calculations, using primarily the two codes Abaqus and Code-Bright. For some cases analytical methods have been used either to supplement the FE calculations or due to that the scenario has a character that makes it unsuitable or very difficult to use the FE method. Material models and element models and choice of parameters as well as presumptions have been stated for all modelling cases. In addition, the results have been analysed and conclusions drawn for each case. The uncertainties have also been analysed. Besides the information given for all cases studied, the codes and material models have been described in a separate so called data report

  16. Mechanical performance and ultrasonic properties of cemented gangue backfill with admixture of fly ash.

    Science.gov (United States)

    Wu, Di; Zhang, Yongliang; Liu, Yucheng

    2016-01-01

    Cemented gangue backfill (CGB) is prepared by mixing cement, coal gangue and water. Fly ash from the combustion of coal is commonly utilized as admixture to improve the mechanical performance and fluidity of CGB, as well as to reduce cost of preparing CGB. Uniaxial compressive strength (UCS) is one of the most commonly used indicators for evaluating the mechanical performance of CGB. Ultrasonic testing, which is a non-destructive measurement, can also be applied to determine the mechanical properties of cementitious materials such as CGB. So this paper investigates the UCS and ultrasonic pulse velocity (UPV) of CGB prepared at different fly ash dosage (19, 20 and 21 wt.%) and solid content (76.5, 77.5 and 78.5 wt.%), versus curing periods of 3-28 days. The UCS and UPV values of CGB increase with increasing fly ash dosage and solid content. In order to find out the correlation between the UCS and UPV values of CGB, different types (linear, logarithmic, exponential and power) of curve fitting are conducted on the CGB samples made at different solid content. An exponential relationship with the correlation coefficient of 0.959 appears to exist between the UCS and UPV for CGB samples. This obtained exponential relationship is validated to be available by performing the t- and F- tests. The results acquired by this paper are capable of providing guidance for utilizing UPV test to estimate the strength of underground CGB structures. PMID:26320702

  17. Buffer and backfill process report for the safety assessment SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Sellin, Patrik (comp.)

    2006-09-15

    This document compiles information on processes in the buffer and deposition tunnel backfill relevant for long-term safety of a KBS-repository. It supports the safety assessment SR-Can, which is a preparatory step for a safety assessment that will support the licence application for a final repository in Sweden. The purpose of the process reports is to document the scientific knowledge of the processes to a level required for an adequate treatment of the processes in the safety assessment. The documentation is not exhaustive from a scientific point of view, since such a treatment is neither necessary for the purposes of the safety assessment nor possible within the scope of an assessment. However, it must be sufficiently detailed to motivate, by arguments founded on scientific understanding, the treatment of each process in the safety assessment. The purpose is further to determine how to handle each process in the safety assessment at an appropriate degree of detail, and to demonstrate how uncertainties are taken care of, given the suggested handling.

  18. Composite backfill materials for radioactive waste isolation by deep burial in salt

    International Nuclear Information System (INIS)

    Bentonite and hectorite were found to sorb Pu(IV) and Am(III) from concentrated brines with distribution coefficients K/sub d/ > 3000 ml/g. The permeability of bentonite to brine was less than 1 microdarcy at a confining pressure of 18 MPa, the expected lithostatic pressure at the 800 m level in a salt repository. Getters for sorption of TcO4- (K/sub d/ approx. 300 ml/g), I- (K/sub d/ greater than or equal to 30 ml/g), Cs (K/sub d/ greater than or equal to 30 ml/g) and Sr (K/sub d/ greater than or equal to approx. 100 ml/g) from brines were identified. Their sorption properties are presented. Thermal conductivity results (>0.5 W/mK) and evidence for bentonite stability in brines at hydrothermal conditions are also given. It is shown by calculated estimates that a 3-ft-thick mixture of bentonite with other getter materials could retain Pu, Am, and TcO4- for >104 years and I- for > 103 years. Another tailored mixture could retain Cs for approx. 600 years, Sr for approx. 700 years, TcO4 for approx. 4000 years and I- for approx. 400 years. The backfill can offer a significant contribution to the isolation capability of a waste package system

  19. SR-Site Data report. THM modelling of buffer, backfill and other system components

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, Mattias; Boergesson, Lennart; Kristensson, Ola (Clay Technology AB, Lund (Sweden))

    2010-03-15

    This report is a supplement to the SR-Site data report. Based on the issues raised in the Process reports concerning THM processes in buffer, backfill and other system components, 22 modelling tasks have been identified, representing different aspects of the repository evolution. The purpose of this data report is to provide parameter values for the materials included in these tasks. Two codes, Code{_}Bright and Abaqus, have been employed for the tasks. The data qualification has focused on the bentonite material for buffer, backfill and the seals for tunnel plugs and bore-holes. All these system components have been treated as if they were based on MX-80 bentonite. The sources of information and documentation of the data qualification for the parameters for MX-80 have been listed. A substantial part of the refinement, especially concerning parameters used for Code{_}Bright, is presented in the report. The data qualification has been performed through a motivated and transparent chain; from measurements, via evaluations, to parameter determinations. The measured data was selected to be as recent, traceable and independent as possible. The data sets from this process are thus regarded to be qualified. The conditions for which the data is supplied, the conceptual uncertainties, the spatial and temporal variability and correlations are briefly presented and discussed. A more detailed discussion concerning the data uncertainty due to precision, bias and representativity is presented for measurements of swelling pressure, hydraulic conductivity, shear strength, retention properties and thermal conductivity. The results from the data qualification are presented as a detailed evaluation of measured data. In order to strengthen the relevance of the parameter values and to confirm previously used relations, either newer or independent measurements have been taken into account in the parameter value evaluation. Previously used relations for swelling pressure, hydraulic

  20. Manufacturing and performance of customized pellets used for buffer and backfill sealing in nuclear waste containment

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Bentonite pellets are proposed for use in filling gaps between highly compacted bentonite and the surrounding rock walls. Previous studies typically focused on using commercially available bentonite pellets with good performance results typically being achieved but no comprehensive evaluations were undertaken. This paper summarizes the results of two recent studies completed on gap filling materials and customized pellets that were intended to see to what degree improvement of the pellet materials and placement density could be achieved and what this would mean to system behaviour. Although the joint project covered a wide range of potential materials and sealing applications, in this presentation, the focus is on the use of bentonite filling material in the outer gap between the rock surface and large highly-compacted bentonite buffer blocks used in Posiva's Reference vertical deposition design. The gap between the deposition hole's wall and the buffer is 50 mm, which should be filled with material prior to tunnel backfilling. The required dry density of the outer gap filling is 920 kg/m3, with an average buffer dry density of 1600 kg/m3 at 100% saturation. At these densities, the thermal, hydraulic and mechanical behaviour of the system meet the requirements set for them. In the first part of this study, various types of commercially-available bentonite granular materials were used alone or in combination with finer material. Different placement methods were used to fill vertical gaps of either 25 or 35 mm width in a small-scale experimental mock-up. The sizes of the rectangular gap mock-up elements used in these tests were approximately 1 m in height and 2 m long. The results from the small scale tests suggest that all the filling materials and methods used during the test would achieve as-placed dry density of 800-1200 kg/m3, depending on material and placement method used. The lowest values were noted from

  1. SR-Site Data report. THM modelling of buffer, backfill and other system components

    International Nuclear Information System (INIS)

    This report is a supplement to the SR-Site data report. Based on the issues raised in the Process reports concerning THM processes in buffer, backfill and other system components, 22 modelling tasks have been identified, representing different aspects of the repository evolution. The purpose of this data report is to provide parameter values for the materials included in these tasks. Two codes, CodeBright and Abaqus, have been employed for the tasks. The data qualification has focused on the bentonite material for buffer, backfill and the seals for tunnel plugs and bore-holes. All these system components have been treated as if they were based on MX-80 bentonite. The sources of information and documentation of the data qualification for the parameters for MX-80 have been listed. A substantial part of the refinement, especially concerning parameters used for CodeBright, is presented in the report. The data qualification has been performed through a motivated and transparent chain; from measurements, via evaluations, to parameter determinations. The measured data was selected to be as recent, traceable and independent as possible. The data sets from this process are thus regarded to be qualified. The conditions for which the data is supplied, the conceptual uncertainties, the spatial and temporal variability and correlations are briefly presented and discussed. A more detailed discussion concerning the data uncertainty due to precision, bias and representativity is presented for measurements of swelling pressure, hydraulic conductivity, shear strength, retention properties and thermal conductivity. The results from the data qualification are presented as a detailed evaluation of measured data. In order to strengthen the relevance of the parameter values and to confirm previously used relations, either newer or independent measurements have been taken into account in the parameter value evaluation. Previously used relations for swelling pressure, hydraulic

  2. Review of the properties and uses of bentonite as a buffer and backfill material

    International Nuclear Information System (INIS)

    Research carried out by SKB on the use and behaviour of bentonite as a buffer and backfill material in a radioactive waste repository has been reviewed. The following research areas have been evaluated: mechanical properties; hydraulic and other transport properties; geochemical properties; thermal properties and resaturation; gas migration; manufacturing and emplacement procedures. This review has shown that SKB has carried out much pioneering and world-leading research on bentonite, particularly with regard to analogue studies, microtextural work and practical manufacturing and emplacement procedures. However, there are a number of subject areas which appear less well addressed than others which require further attention: The extrapolation of experimental results of the mechanical properties of bentonite to repository timescales and repository conditions should be investigated further. There is a need for detailed microstructural analysis of materials as part of experimental programmes. This would enable SKB to build confidence in the interpretations of results and reveal whether the mechanical processes occurring during experimentation truly reflect expectations of the performance of the repository. The large amount of experimental, theoretical, empirical datasets and computer models of the mechanical properties of bentonite need to be collated to form a database which is assessable and relevant to those involved in performance assessment calculations. At present, the valuable results of many excellent research projects on mechanical properties of bentonite buffer are not readily available. There seems to be a relatively poor understanding of the mechanisms of radionuclide diffusion through compacted bentonite. Other international work suggests that diffusion coefficients are much lower than those applied by SKB in its PA work. The importance of surface diffusion to describe diffusion in bentonite for certain chemical species ascribed by SKB is not reflected in

  3. Review of the properties and uses of bentonite as a buffer and backfill material

    Energy Technology Data Exchange (ETDEWEB)

    Savage, D.; Lind, A. [QuantiSci Ltd., Melton Mowbray (United Kingdom); Arthur, R.C. [QuantiSci lnc., Denver, CO (United States)

    1999-05-01

    Research carried out by SKB on the use and behaviour of bentonite as a buffer and backfill material in a radioactive waste repository has been reviewed. The following research areas have been evaluated: mechanical properties; hydraulic and other transport properties; geochemical properties; thermal properties and resaturation; gas migration; manufacturing and emplacement procedures. This review has shown that SKB has carried out much pioneering and world-leading research on bentonite, particularly with regard to analogue studies, microtextural work and practical manufacturing and emplacement procedures. However, there are a number of subject areas which appear less well addressed than others which require further attention: The extrapolation of experimental results of the mechanical properties of bentonite to repository timescales and repository conditions should be investigated further. There is a need for detailed microstructural analysis of materials as part of experimental programmes. This would enable SKB to build confidence in the interpretations of results and reveal whether the mechanical processes occurring during experimentation truly reflect expectations of the performance of the repository. The large amount of experimental, theoretical, empirical datasets and computer models of the mechanical properties of bentonite need to be collated to form a database which is assessable and relevant to those involved in performance assessment calculations. At present, the valuable results of many excellent research projects on mechanical properties of bentonite buffer are not readily available. There seems to be a relatively poor understanding of the mechanisms of radionuclide diffusion through compacted bentonite. Other international work suggests that diffusion coefficients are much lower than those applied by SKB in its PA work. The importance of surface diffusion to describe diffusion in bentonite for certain chemical species ascribed by SKB is not reflected in

  4. Couple mechanics hydraulics and sorption properties of mixtures to evaluate buffer/backfill materials

    International Nuclear Information System (INIS)

    The technique of multi-barrier disposal systems of radwaste has been studying among the world. The buffer materials that retard the migration of nuclides and make the canisters stable play a very important role. To couple engineering and sorption properties to evaluate the buffer/backfill materials, synthetic groundwater (GW) and seawater(SW) were used as the liquid phases to simulate possible conditions for a deep geological disposal in an island. The Rd value of Cs, I and Se (10-4 M ) with respect to various composite ratios of bentonite/ laterite/ quartz sand mixtures were measured using batch sorption tests in GW and SW. De-ionic water (DIW) was used as the liquid phase for Atterberg limit tests, triaxial shear test s and hydraulic conductivity tests to acquire the engineering properties of those mixtures mention above. The Atterberg limit tests results showed that 7 samples are concluded inorganic clays of high plasticity and one is inorganic clays of medium plasticity. The samples with 30% quartz sand content indicate the higher shear strength than those with 50% quartz sand content and very low hydraulic conductivity for all samples are in the same order about 1-10 m/s. The sorption of Cs on mixtures reveals that distribution coefficients (Rds) is higher in GW than those in SW. The Rd s of Cs are inverse proportion to plastic index (PI) in GW and SW as well as the Rds of Se. The sorption of Se on mixtures is affected significantly by composition of solid phase. However, the major affection for sorption of Se is solid phase and that of Cs is liquid phase. Very low sorption of I on all mixtures in GW and SW. Under these experimental conditions, these results reveal that more effective buffer material composition of 30% quartz sand content which PI are 40 to 60. Laterite is more effective sorbent for Cs and Se than Bentonite. (authors)

  5. Deep repository - engineered barrier systems. Half scale tests to examine water uptake by bentonite pellets in a block-pellet backfill system

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David (Atomic Energy of Canada Limited (AECL) (Canada)); Lundin, Cecilia (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Oertendahl, Ellinor (NCC (Sweden)); Hedin, Mikael (Aangpannefoereningen, Stockholm (Sweden)); Ramqvist, Gunnar (Eltekno AB (Sweden))

    2008-12-15

    In order to examine the behaviour of water entering a section of tunnel that had recently been backfilled using a combination of bentonite pellets and compacted, smectitic clay blocks, a series of large-scale tests have been completed. These tests, done at a scale of approximately 0.5 that of an emplacement tunnel were completed in a mock-up constructed in the Buffer Laboratory at SKB's Aespoe Hard Rock Laboratory. A total of 12 tests, undertaken under well controlled conditions were completed, examining the effects of inflow rate, inflow location and time on assemblies of blocks and pellets. Water was supplied to the assembly at rates ranging from 0.1 to 2.5 l/min and the time for water exit, the exit location, potential for erosion of backfill, the rate of water uptake and resistance of the assembly to water influx were all monitored for periods of 3 to 7 days. The testing time was selected to simulate a reasonable duration for unanticipated backfilling interruption. Longer durations were not necessary and risked both the stability of the system and the loss of the early stage conditions through progression of swelling and homogenization. Testing determined that initial water movement through backfill is largely controlled by the pellets. Water influx of up to 30 l/h at a single location was diverted by the pellets forming essentially horizontal flow channels (pipes) along the chamber wall - pellet interface. These piping features directed the majority of the incoming water around the backfill and towards the unconfined downstream face of the assembly. The time required for the water to exit the assembly was dependant on a combination of inflow rate and distance that it needed to travel. Water typically exited the face of the backfill at well-defined location(s) and once established, these features remained for the duration of the test. The exiting water typically carried only limited eroded material but could cause some disruption of the downstream face of

  6. Deep repository - engineered barrier systems. Half scale tests to examine water uptake by bentonite pellets in a block-pellet backfill system

    International Nuclear Information System (INIS)

    In order to examine the behaviour of water entering a section of tunnel that had recently been backfilled using a combination of bentonite pellets and compacted, smectitic clay blocks, a series of large-scale tests have been completed. These tests, done at a scale of approximately 0.5 that of an emplacement tunnel were completed in a mock-up constructed in the Buffer Laboratory at SKB's Aespoe Hard Rock Laboratory. A total of 12 tests, undertaken under well controlled conditions were completed, examining the effects of inflow rate, inflow location and time on assemblies of blocks and pellets. Water was supplied to the assembly at rates ranging from 0.1 to 2.5 l/min and the time for water exit, the exit location, potential for erosion of backfill, the rate of water uptake and resistance of the assembly to water influx were all monitored for periods of 3 to 7 days. The testing time was selected to simulate a reasonable duration for unanticipated backfilling interruption. Longer durations were not necessary and risked both the stability of the system and the loss of the early stage conditions through progression of swelling and homogenization. Testing determined that initial water movement through backfill is largely controlled by the pellets. Water influx of up to 30 l/h at a single location was diverted by the pellets forming essentially horizontal flow channels (pipes) along the chamber wall - pellet interface. These piping features directed the majority of the incoming water around the backfill and towards the unconfined downstream face of the assembly. The time required for the water to exit the assembly was dependant on a combination of inflow rate and distance that it needed to travel. Water typically exited the face of the backfill at well-defined location(s) and once established, these features remained for the duration of the test. The exiting water typically carried only limited eroded material but could cause some disruption of the downstream face of the

  7. Laboratory Study on the Use of Tire Shreds and Rubber-Sand in Backfilled and Reinforced Soil Applications

    OpenAIRE

    Bernal, Andres; Lovell, C. W.; Salgado, Rodrigo

    1996-01-01

    Millions of scrap tires are discarded annually in the United States, the bulk of which are currently landfilled or stockpiled. This consumes valuable landfill space, or, if improperly disposed, creates a fire hazard and provides a prolific breeding ground for rats and mosquitoes. The use of tire shreds as lightweight fill material can sharply reduce the tire disposal problem. The present study, based on laboratory testing and numerical modeling examines the feasibility of incorporating tire s...

  8. Pressurized grout remote backfilling at AML sites near Beulah and Zap, North Dakota

    International Nuclear Information System (INIS)

    The Abandoned Mine Lands (AML) Division of the North Dakota Public Service Commission (PSC) is charged with the reclamation of hazardous abandoned mine sites in North Dakota. Several underground lignite coalmines were operated near the cities of Beulah and Zap, North Dakota, from the early 1900's until about 1955. Coal seams in this area were relatively thick and the overburden generally shallow. As these mines have deteriorated with time, deep collapse features, or sinkholes, have surfaced in many areas. These features are very dangerous, especially when they occur at or near residential and commercial areas and public roads. In the past five years, sinkholes have surfaced beneath a commercial building (boat dealership, lounge, and gas station) and beneath a nearby occupied mobile home north of Beulah. sinkholes have also surfaced near KHOL Radio Station in Beulah and in the right of way of a public road south of Zap. The AML Division has conducted several emergency sinkhole-filling projects in these areas. In 1995--97, the AML Division conducted exploratory drilling which confirmed the presence of collapsing underground mines at these sites. The remediation of these sites around Beulah/Zap will take place over several years and involve three or more separate contracts due to budget considerations. In 1997, the AML Division began reclamation at these sties utilizing pressurized grout remote backfilling. In this technique, a cementitious grout is pumped through cased drill holes directly into the mine cavities to fill them and thereby stabilize the surface from collapse. The successful contractor for Phase One of the project was The Concrete Doctor, Inc. (TCDI). This paper will concentrate on Phase One of this work performed from June through September 1997. This project is especially interesting because grout was pumped through holes drilled inside the occupied commercial building. Grout was also pumped through angled holes that intercepted mined workings directly

  9. Use of engineered soils and other site modifications for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    The U.S. Nuclear Regulatory Commission requires that low-level radioactive waste (LLW) disposal facilities be designed to minimize contact between waste and infiltrating water through the use of site design features. The purpose of this investigation is to identify engineered barriers and evaluate their ability to enhance the long-term performance of an LLW disposal facility. Previously used barriers such as concrete overpacks, vaults, backfill, and engineered soil covers, are evaluated as well as state-of-the-art barriers, including an engineered sorptive soil layer underlying a facility and an advanced design soil cover incorporating a double-capillary layer. The purpose of this investigation is also to provide information in incorporating or excluding specific engineered barriers as part of new disposal facility designs. Evaluations are performed using performance assessment modeling techniques. A generic reference disposal facility design is used as a baseline for comparing the improvements in long-term performance offered by designs incorporating engineered barriers in generic and humid environments. These evaluations simulate water infiltration through the facility, waste leaching, radionuclide transport through the facility, and decay and ingrowth. They also calculate a maximum (peak annual) dose for each disposal system design. A relative dose reduction factor is calculated for each design evaluated. The results of this investigation are presented for concrete overpacks, concrete vaults, sorptive backfill, sorptive engineered soil underlying the facility, and sloped engineered soil covers using a single-capillary barrier and a double-capillary barrier. Designs using combinations of barriers are also evaluated. These designs include a vault plus overpacks, sorptive backfill plus overpacks, and overpack with vault plus sorptive backfill, underlying sorptive soil, and engineered soil cover

  10. Use of engineered soils and other site modifications for low-level radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    The U.S. Nuclear Regulatory Commission requires that low-level radioactive waste (LLW) disposal facilities be designed to minimize contact between waste and infiltrating water through the use of site design features. The purpose of this investigation is to identify engineered barriers and evaluate their ability to enhance the long-term performance of an LLW disposal facility. Previously used barriers such as concrete overpacks, vaults, backfill, and engineered soil covers, are evaluated as well as state-of-the-art barriers, including an engineered sorptive soil layer underlying a facility and an advanced design soil cover incorporating a double-capillary layer. The purpose of this investigation is also to provide information in incorporating or excluding specific engineered barriers as part of new disposal facility designs. Evaluations are performed using performance assessment modeling techniques. A generic reference disposal facility design is used as a baseline for comparing the improvements in long-term performance offered by designs incorporating engineered barriers in generic and humid environments. These evaluations simulate water infiltration through the facility, waste leaching, radionuclide transport through the facility, and decay and ingrowth. They also calculate a maximum (peak annual) dose for each disposal system design. A relative dose reduction factor is calculated for each design evaluated. The results of this investigation are presented for concrete overpacks, concrete vaults, sorptive backfill, sorptive engineered soil underlying the facility, and sloped engineered soil covers using a single-capillary barrier and a double-capillary barrier. Designs using combinations of barriers are also evaluated. These designs include a vault plus overpacks, sorptive backfill plus overpacks, and overpack with vault plus sorptive backfill, underlying sorptive soil, and engineered soil cover.

  11. Research and application of schemes for constructing concrete pillars in large section finishing cut in backfill coal mining

    Institute of Scientific and Technical Information of China (English)

    Sun Qiang; Zhang Jixiong; Ju Feng; Li Linyue; Zhao Xu

    2015-01-01

    Based on the technology of controlling surrounding rock deformation by constructing concrete pillars in large section finishing cut in backfill coal mining, the characteristics of vertical stress on concrete pillars and main factors influencing pillar stability are analyzed. By building a Winkler elastic foundation mechanical model for the support system constituted of coal pillar, backfill body and concrete pillars, mechanical calculation on stability of concrete pillar is carried out to evaluate the pillar stability and safety. Seven numeral models in three schemes with different pillar sizes, inter-row distances and com-pression ratios at the stopes were analyzed through numerical simulation according to width reduction principle. The practice of finishing cut at III644 workface at Yangzhuang coal mine shows that:when the actual compression ratio is 86.5%, construction size inside the finishing cut is 2000 mm ? 2000 mm and the interval between concrete pillars is 2000 mm ? 2000 mm, the pillars can be stable with the maxi-mum movement of two sides of each pillar being only 83 mm and 54 mm, which achieves the expected effect.

  12. Calculation procedure in GOLIA-FAME for pressure adjustment as a function of the compressibility of backfill

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.F.M.

    1991-08-01

    In a repository for radioactive waste in a salt formation there are openings (boreholes and galleries) that are excavated or drilled in order to store the waste into the salt formation. After storage of the waste the remaining openings are backfilled with a salt mixture. The behaviour of the salt mixture is laid down in a relation between the volumetric compression rate of the mix and the compressive working on it. In this report a set of subroutines for the FE-code GOLIA-FAME is described which can be used to model the interaction between the salt and the backfill. An example is described and some numerical tests are presented. The subroutines can easily be implemented in the computer code GOLIA-FAME and can easily be adapted for other specific purposes than described in this report in which the deformation of the structure is related to a pressure change. In the future it will be investigated how the pressure adjustment can be implemented in the Runge-Kutta solution steps of GOLIA-FAME to improve the efficiency of the program. (author). 2 refs.; 9 figs.; 5 tabs.

  13. Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Tyburski, J.R. [I. T. Corp., Albuquerque, NM (United States)

    1993-05-01

    This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

  14. The solubility of nickel and its migration through the cementitious backfill of a geological disposal facility for nuclear waste.

    Science.gov (United States)

    Felipe-Sotelo, M; Hinchliff, J; Field, L P; Milodowski, A E; Holt, J D; Taylor, S E; Read, D

    2016-08-15

    This work describes the solubility of nickel under the alkaline conditions anticipated in the near field of a cementitious repository for intermediate level nuclear waste. The measured solubility of Ni in 95%-saturated Ca(OH)2 solution is similar to values obtained in water equilibrated with a bespoke cementitious backfill material, on the order of 5×10(-7)M. Solubility in 0.02M NaOH is one order of magnitude lower. For all solutions, the solubility limiting phase is Ni(OH)2; powder X-ray diffraction and scanning transmission electron microscopy indicate that differences in crystallinity are the likely cause of the lower solubility observed in NaOH. The presence of cellulose degradation products causes an increase in the solubility of Ni by approximately one order of magnitude. The organic compounds significantly increase the rate of Ni transport under advective conditions and show measurable diffusive transport through intact monoliths of the cementitious backfill material. PMID:27198634

  15. Hydraulic behaviour of bentonite based mixtures in engineered barriers: The Backfill and Plug Test at the Äspö HRL (Sweden)

    OpenAIRE

    Mata Mena, Clemente

    2003-01-01

    In 1996 the Backfill and Plug Test Project started at the Äspö Hard Rock Laboratory (Sweden) managed by SKB (the Swedish Radioactive Waste Agency). The Backfill and Plug Test Project makes up an important part of SKB's research in order to store nuclear waste in a deep geological repository in a safe manner. ENRESA (the Spanish Radioactive Waste Agency) collaborates in this project with the Swedish companies SKB and Clay Technology in characterising the hydro-mechanical behaviour of the backf...

  16. Characterisation of bentonites from Kutch, India and Milos, Greece - some candidate tunnel back-fill materials?

    International Nuclear Information System (INIS)

    During the past decades comprehensive investigations have been made on bentonite clays in order to find optimal components of the multi-barrier system of repositories for radioactive waste. The present study gives a mineralogical characterisation of some selected bentonites, in order to supply some of the necessary background data on the bentonites for evaluating their potential as tunnel back-fill materials. Two bentonites from the island of Milos, Greece (Milos BF 04 and BF 08), and two bentonites from Kutch, India (Kutch BF 04 and BF 08) were analysed for their grain size distribution, cation exchange properties and chemical composition. The mineralogical composition was determined by X-ray diffraction analysis and evaluated quantitatively by use of the Siroquant software. Both the bulk bentonite and the 63 μm. The bentonite is distinguished by a high content of dolomite and calcite, which make up almost 25% of the bulk sample. The major accessory minerals are K-feldspars and plagioclase, whereas the content of sulphur-bearing minerals is very low (0.06% total S). Smectite makes up around 60% of the bulk sample, which has a CEC value of 73 meq/100 g. The pool of interlayer cations has a composition Mg>Ca>>Na>>K. The X-ray diffraction characteristics and the high potassium content (1.03% K2O) of the Na>Mg>>K. The 2O) which indicates that also this smectite may be interstratified with a few percent illitic layers. Based on the charge distribution the smectite should be classified as montmorillonite but in this case Fe predominates over Mg in the octahedral sheet. The structural formula suggests that this smectite has the lowest total layer charge of the smectites examined. Kutch BF 04 contains essentially no particles >63 μm. The bentonite has a high content of titanium and iron-rich accessory minerals, such as anatase, magnetite, hematite and goethite. Other accessory minerals of significance are feldspars and quartz, whereas the content of sulphur

  17. Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill.

    Science.gov (United States)

    Ercikdi, Bayram; Baki, Hakan; İzki, Muhammet

    2013-01-30

    This paper presents the effect of desliming on the short- and long-term strength, stability and rheological properties of cemented paste backfill (CPB) produced from two different mill tailings. A 28-day unconfined compressive strength (UCS) of ≥1.0 MPa and the maintenance of stability over 224 days of curing were selected as the design criteria for the evaluation of paste backfill performance. Desliming induced some changes in the physical, chemical, mineralogical and rheological properties of the tailings. CPB mixture of the deslimed tailings achieved the required consistency at a lower water to cement ratio. The short-term UCSs of CPB samples of the deslimed tailings were found to be 30-100% higher than those samples of the reference tailings at all the binder dosages and curing times. CPB samples of the deslimed tailings achieved the long-term stability at relatively low binder dosages (e.g. 5 wt% c.f. ≥6.1% for the reference tailings). It was also estimated that desliming could allow a 13.4-23.1% reduction in the binder consumption depending apparently on the inherent characteristics of the tailings. Over the curing period, generation of sulphate and acid by the oxidation of pyrite present in the tailings was also monitored to correlate with the strength losses observed in the long term. Scanning electron microscope (SEM) and Mercury Intrusion Porosimetry (MIP) analyses provided an insight into the microstructure of CPB and the formation of secondary mineral phases (i.e. gypsum) confirming the beneficial effect of desliming. These findings suggest that desliming can be suitably exploited for CPB of sulphide-rich mill tailings to improve the strength and stability particularly in the long term and to reduce binder consumption. PMID:23220652

  18. Characterisation of bentonites from Kutch, India and Milos, Greece - some candidate tunnel back-fill materials?

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Siv; Karnland, Ola (Clay Technology AB, Lund (Sweden))

    2009-12-15

    During the past decades comprehensive investigations have been made on bentonite clays in order to find optimal components of the multi-barrier system of repositories for radioactive waste. The present study gives a mineralogical characterisation of some selected bentonites, in order to supply some of the necessary background data on the bentonites for evaluating their potential as tunnel back-fill materials. Two bentonites from the island of Milos, Greece (Milos BF 04 and BF 08), and two bentonites from Kutch, India (Kutch BF 04 and BF 08) were analysed for their grain size distribution, cation exchange properties and chemical composition. The mineralogical composition was determined by X-ray diffraction analysis and evaluated quantitatively by use of the Siroquant software. Both the bulk bentonite and the <1mum fraction were analyzed when relevant. Prior to the chemical analyses the <1 mum fractions were converted to homo-ionic clays and purified by dialysis. The chemical data were used for calculating the structural formula of the smectites. Milos BF 04 contains ca. 10% particles >63 mum. The bentonite is distinguished by a high content of dolomite and calcite, which make up almost 25% of the bulk sample. The major accessory minerals are K-feldspars and plagioclase, whereas the content of sulphur-bearing minerals is very low (0.06% total S). Smectite makes up around 60% of the bulk sample, which has a CEC value of 73 meq/100 g. The pool of interlayer cations has a composition Mg>Ca>>Na>>K. The X-ray diffraction characteristics and the high potassium content (1.03% K{sub 2}O) of the <1 mum fraction suggest that the smectite is interstratified with ca. 10% illitic layers. Based on the charge distribution the smectite should be classified as montmorillonite and according to the structural formula, Mg predominates over Fe in the octahedral sheet. However, remnants of Mg-carbonates, if present, may be a source of error in the formula calculation. Milos BF 08 has a

  19. The influence of the presence of sulphate on methanogenesis in the backfill of a Canadian nuclear fuel waste disposal vault: a laboratory study

    International Nuclear Information System (INIS)

    Microbial gas production in the clay-based buffer and backfill materials of a nuclear waste disposal vault could produce gas bubbles or a separate gas phase, depending on quantities produced and the kinetics of the process. Gas production may affect the performance of the clay-based barriers. Results from previous laboratory experiments suggested that the presence of backfill or backfill clay prevented methane production in groundwater systems, likely because of inherently high sulphate concentrations in the clay. The work presented here shows that methane production in groundwater/clay systems is possible, but only at sulphate concentrations <35 mg/L. Sulphate concentrations in laboratory systems were lowered by the addition of Ba, and also by natural (microbiological or chemical) processes occurring over time (almost 700 d). Nutrient additions (acetate, diesel fuel) appeared to increase the magnitude of methane production but not necessarily speed the onset of methanogenesis. A high pH did not reduce or enhance methanogenesis, and the role of Fe in creating suitable conditions was not clear. Methane production rates in laboratory systems containing groundwater and backfill or backfill clay ranged from 0.1 to 0.125 mole%/d. In the presence of Ba-acetate, a rate as high as 0.7 mole%/d was observed. It is recommended that all microbial gas production experiments be continued for an adequate period of time, because of the considerable time required to develop suitable conditions for methanogenesis in laboratory systems. Methane production rates in water-limited clay environments, such as those expected in a nuclear fuel waste disposal vault, are needed as well as modelling of methane production for incorporation into vault performance optimization and safety assessments. (author)

  20. Direct methods of soil-structure interaction analysis for earthquake loadings(II)

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Chung Bang; Lee, S. R.; Kim, J. M.; Park, K. L.; Oh, S. B.; Choi, J. S.; Kim, Y. S. [Korea Advanced Institute of Science Technology, Daejeon (Korea, Republic of)

    1994-07-15

    In this study, methods for 3-D soil-structure interaction analysis have been studied. They are 3-D axisymmetric analysis method, 3-D axisymmetric finite element method incorporating infinite elements, and 3-D boundary element methods. The computer code, named as 'KIESSI - PF', has been developed which is based on the 3-D axisymmetric finite element method coupled with infinite element method. It is able to simulate forced vibration test results of a soil-structure interaction system. The Hualien FVT post-correlation analysis before backfill and the blind prediction analysis after backfill have been carried out using the developed computer code 'KIESSI - PF'.

  1. Soil Structure Interaction for Integral Abutment Bridge Using Spring Analogy Approach

    International Nuclear Information System (INIS)

    The reaction of the backfill behind the abutments and adjacent to the piles plays a significant role in the behavior of the Integral bridge. The handling of soil-structure interaction in the analysis and design of integral abutment bridges has always been problematic due to its complexity. This study describes the implementation of a 2-D finite element model of IAB system which explicitly incorporates the soil response. The superstructure members and the pile have been represented by means of three-node isoperimetric beam elements with three degree of freedom per node. The Eight node isoperimetric quadrilateral element has been used to model the abutment. The backfill was idealized by uncoupled 'Winkler' spring. The applic1ability of this model is demonstrated by analyzing a single span IA bridge. The results have shown that the shear forces at the tops of the supported piles were only 12% to 16% of the load which at the top of abutment.

  2. Soil Structure Interaction for Integral Abutment Bridge Using Spring Analogy Approach

    Energy Technology Data Exchange (ETDEWEB)

    Thanoon, W A [Faculty Engineering, Nizwa University (Oman); Abdulrazeg, A A; Jaafar, M S; Kohnehpooshi, O [Department of Civil Engineering, University Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Noorzaei, J, E-mail: jamal@eng.upm.edu.my [Institute of Advance Technology, University Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2011-02-15

    The reaction of the backfill behind the abutments and adjacent to the piles plays a significant role in the behavior of the Integral bridge. The handling of soil-structure interaction in the analysis and design of integral abutment bridges has always been problematic due to its complexity. This study describes the implementation of a 2-D finite element model of IAB system which explicitly incorporates the soil response. The superstructure members and the pile have been represented by means of three-node isoperimetric beam elements with three degree of freedom per node. The Eight node isoperimetric quadrilateral element has been used to model the abutment. The backfill was idealized by uncoupled 'Winkler' spring. The applic1ability of this model is demonstrated by analyzing a single span IA bridge. The results have shown that the shear forces at the tops of the supported piles were only 12% to 16% of the load which at the top of abutment.

  3. Soil-Structure Interaction for Non-Slender, Large-Diameter Offshore Monopiles

    DEFF Research Database (Denmark)

    Sørensen, Søren Peder Hyldal

    . The monopile foundation concept has been employed as the foundation for the majority of the currently installed offshore wind turbines. Therefore, this PhD thesis concerns the soil-pile interaction for non-slender, large-diameter offshore piles. A combination of numerical and physical modelling has...... University. Hence, the application of an overburden pressure is possible. The timescale of the backfill process and the compaction of soil material backfilled around piles in storm conditions have been investigated by means of large-scale physical modelling....... been conducted. The initial part of p-y curves for non-slender piles has been investigated by means of numerical modelling. The general behaviour of eccentrically loaded non-slender piles has been investigated by physical modelling. These tests have been conducted in the pressure tank at Aalborg...

  4. Application of the biological forced air soil treatment (BIOFAST trademark) technology to diesel contaminated soil

    International Nuclear Information System (INIS)

    A subsurface Biological Forced Air Soil Treatment (BIOFAST trademark) system was constructed at the Yellow Freight System, Inc. (Yellow Freight) New Haven facility in Connecticut as a means of expediting the remediation of soils impacted by a diesel fuel release. Prior to beginning construction activities the soils were evaluated for the feasibility of bioremediation based on soil characteristics including contaminant degrading bacteria, moisture content, and pH. Based on results of stimulant tests with oxygen and nutrients, the addition of fertilizer during the construction of the cell was recommended. Following the removal of underground storage tanks, the bioremediation cell was constructed by lining the enlarged excavation with high density polyethylene (HDPE) and backfilling alternating layers of nutrient-laden soil and pea gravel. Passive and active soil vapor extraction (SVE) piping was included in the gravel layers and connected to a blower and vapor treatment unit, operated intermittently to supply oxygen to the subsurface cell. Operating data have indicated that the bacteria are generating elevated levels of CO2, and the SVE unit is evacuating the accumulated CO2 from the soils and replacing it with fresh air. These data suggest that the bioremediation process is active in the soils. Soil samples collected from within the soil pit subsequent to installation and again after 10 months of operation indicate that TPH concentrations have decreased by as much as 50%

  5. Large-scale Experiment for Water and Gas Transport in Cementitious Backfill Materials (Phase 1 ): COLEX I

    International Nuclear Information System (INIS)

    In the planned Swiss repository for low- and intermediate-level radioactive waste, the voids between the waste containers will be backfilled with a highly permeable mortar (NAGRA designation: mortar M1 ). As well as providing mechanical stability through filling of voids and sorbing radionuclides, the mortar must divert gases formed in the repository as a result of corrosion into the neighbouring host rock. This will prevent damage which could be caused by excess pressure on the repository structures. Water transport, which is coupled to gas transport, is also of interest. The former is responsible for the migration of radionuclides. Up till now, numerical simulations for a repository situation were carried out using transport parameters determined for small samples in the laboratory. However, the numerical simulations still had to be validated by a large-scale experiment. The investigations presented here should close this gap. Investigations into gas and water transport were carried out using a column (up to 5.4 m high) filled with backfill mortar. The column has a modular construction and can be sealed at the top end with a material of defined permeability (plug or top plug). The possibility to vary the material of the plug allows the influence of the more impermeable cavern lining or possible gas escape vents in the cavern roof to be investigated. A gas supply is connected to the bottom end and is used to simulate different gas generation rates from the waste. A total of 5 experiments were carried out in which the gas generation rate, the column height and the permeability of the plug were varied. Before the start of the experiments, the mortar in the column and the plug were saturated with water to approx. 95 %. In all the experiments, an increase in pressure with time could be observed. The higher the gas generation rate and the lower the permeability of the plug, the more quickly this occurred. At the beginning, only water flow out of the top of the column

  6. Sandstone uranium deposits of Meghalaya: natural analogues for radionuclide migration and backfill material in geological repository for high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Sandstone uranium deposits serve as potential natural analogue to demonstrate safety offered by geological media against possible release of nuclear waste from their confinement and migration towards biosphere. In this study, available database on geochemical aspects of Domisiat uranium deposit of Meghalaya has been evaluated to highlight the behavior of radionuclides of concern over long term in a geological repository. Constituents like actinides (U and Th), fission products and RE elements are adequately retained in clays and organic matters associated with these sandstone deposits. The study also highlights the possibility of utilization of lean ore discarded during mining and milling as backfill material in far field areas and optimizing near field buffers/backfills in a geological repository located in granitic rocks in depth range of 400-500m. (author)

  7. Backfilling-Free Strategy for Biopatterning on Intrinsically Dual-Functionalized Poly[2-Aminoethyl Methacrylate-co-Oligo(Ethylene Glycol) Methacrylate] Films.

    Science.gov (United States)

    Lee, Bong Soo; Lee, Juno; Han, Gyeongyeop; Ha, EunRae; Choi, Insung S; Lee, Jungkyu K

    2016-07-20

    We demonstrated protein and cellular patterning with a soft lithography technique using poly[2-aminoethyl methacrylate-co-oligo(ethylene glycol) methacrylate] films on gold surfaces without employing a backfilling process. The backfilling process plays an important role in successfully generating biopatterns; however, it has potential disadvantages in several interesting research and technical applications. To overcome the issue, a copolymer system having highly reactive functional groups and bioinert properties was introduced through a surface-initiated controlled radical polymerization with 2-aminoethyl methacrylate hydrochloride (AMA) and oligo(ethylene glycol) methacrylate (OEGMA). The prepared poly(AMA-co-OEGMA) film was fully characterized, and among the films having different thicknesses, the 35 nm-thick biotinylated, poly(AMA-co-OEGMA) film exhibited an optimum performance, such as the lowest nonspecific adsorption and the highest specific binding capability toward proteins. PMID:27252120

  8. Review of the sorption of radionuclides on the bedrock of Haestholmen and on construction and backfill materials of a final repository for reactor wastes

    International Nuclear Information System (INIS)

    Imatran Voima Oy (IVO) has plans to build a final repository for reactor wastes in the bedrock of the nuclear power plant site at Haestholmen, Loviisa. This report summarizes the sorption studies of radionuclides in Finnish bedrock performed at the Department of Radiochemistry, University of Helsinki. The values of mass distribution ratios, Kd, and surface distribution ratios, Ka; of carbon, calsium, Zirconium, niobium, cobalt, nickel, strontium, cesium, uranium, plutonium, americium, thorium, chlorine, iodine and technetium are surveyed. Special attention is paid to the sorption data for construction and backfill materials of rector waste repository and the bedrock of Haestholmen. Safety assessment of a repository includes calculations of migration of the waste element in construction materials and backfill in the nearfield and in bedrock. Retardation by sorption of waste nuclides compared to groundwater flow is described by using distribution ratios between solid materials and water. (orig.)

  9. Simulations of the near-field transport of radionuclides by liquid diffusion at Yucca Mountain: Comparisons with and without emplacement backfill

    International Nuclear Information System (INIS)

    The possible set of hydrologic conditions at the Yucca Mountain repository site includes the case where groundwater recharge fluxes are sufficiently low relative to molecular diffusion in the rock so that, in the region around the waste package, the dominant mode of aqueous transport of radionuclides is by diffusion. Although the rock at the repository level is unsaturated, a sufficient amount of pore water could form a contiguous diffusion path from the waste form to the near-field rock if the waste is postulated to be in contact with the rock or emplacement backfill due to failure of the container. Future simulations will have to include conditions where the effects of convective transport in the rock are important in aqueous transport. We consider in this report simplified simulations of one-dimensional transport of radionuclides in the rock due to liquid molecular diffusion in order to determine the effects of an emplacement backfill. Comparison of estimated release rates with and without an emplacement backfill were given in an article by Chambre and Pigford [1984], and these values were referenced in our previous report. Here, we have extended their calculations to include estimates using the physical parameters expected at the Yucca Mountain repository site. Our model is a simple one-dimensional treatment of diffusion in a spherically symmetric geometry that takes into account the sorptive effects of the tuff and backfill through the use of K/sub d/ values. This geometry rather than a cylindrical one was chosen because it is conservative in predicting higher release rates. Radioactive decay is included, and only one species at a time is treated. The dissolution of the radionuclides is assumed to be solubility-limited. 12 refs., 13 figs., 1 tab

  10. Implementation of the Barcelona Basic Model into TOUGH-FLAC for simulations of the geomechanical behavior of unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, J.; Ijiri, Y.; Yamamoto, H.

    2010-06-01

    This paper presents the implementation of the Barcelona Basic Model (BBM) into the TOUGH-FLAC simulator analyzing the geomechanical behavior of unsaturated soils. We implemented the BBM into TOUGH-FLAC by (1) extending an existing FLAC{sup 3D} module for the Modified Cam-Clay (MCC) model in FLAC{sup 3D} and (2) adding computational routines for suction-dependent strain and net stress (i.e., total stress minus gas pressure) for unsaturated soils. We implemented a thermo-elasto-plastic version of the BBM, wherein the soil strength depends on both suction and temperature. The implementation of the BBM into TOUGH-FLAC was verified and tested against several published numerical model simulations and laboratory experiments involving the coupled thermal-hydrological-mechanical (THM) behavior of unsaturated soils. The simulation tests included modeling the mechanical behavior of bentonite-sand mixtures, which are being considered as back-fill and buffer materials for geological disposal of spent nuclear fuel. We also tested and demonstrated the use of the BBM and TOUGH-FLAC for a problem involving the coupled THM processes within a bentonite-backfilled nuclear waste emplacement tunnel. The simulation results indicated complex geomechanical behavior of the bentonite backfill, including a nonuniform distribution of buffer porosity and density that could not be captured in an alternative, simplified, linear-elastic swelling model. As a result of the work presented in this paper, TOUGH-FLAC with BBM is now fully operational and ready to be applied to problems associated with nuclear waste disposal in bentonite-backfilled tunnels, as well as other scientific and engineering problems related to the mechanical behavior of unsaturated soils.

  11. Feasibility studies of air placed techniques as emplacement means of different backfilling materials in underground radioactive waste disposal

    International Nuclear Information System (INIS)

    Air placed techniques are likely to be used as emplacement means of different backfilling materials in underground waste repositories. A literature survey of the air placed techniques and equipments leads to the choice of the dry process taking into account the emplacement constraints (distance: 300 m, flow: 10 m3/h) and the large variety of materials to be placed. Tests performed in the case of cement-based materials (with and without addition of silica fumes), for different types of cement and as a function of the incidence of the jet, show that it is possible to put in place mortars of good quality. However heterogeneity in the material composition is found when the jet is stopped. This problem may be partly solved by a better automation of the process. Complementary tests, carried out with the preselected clay of Fourges Cahaignes, clearly demonstrate the ability of the air placed technique to put in place pure clay: a dry density of 1.50kg/m3 is reached in the case of coarse material and for a final water content of 30% (in weight). Feasibility tests performed on clay-sand mixtures are not conclusive due to an unappropriate granulometry distribution of the sand. 11 figs., 9 tabs

  12. Experimental study of swell-shrink characteristics on compacted Gaomiaozi bentonite as the buffer/backfilling materials for HLW disposal

    International Nuclear Information System (INIS)

    In the deep geological disposal of high-level radioactive waste, buffer/backfill materials act as engineering barrier, hydraulic barrier, and chemical barrier, which can transmit and propagate the heat generated by radioactive waste in the deep geological repository. Gaomiaozi (GMZ) bentonite has been chosen as the first choice for using as buffer/back- fill materials in deep disposal of high-level radioactive waste in China. The swelling pressure, swelling and shrinking de formation property of compacted GMZ bentonite are studied in this paper. The results show that GMZ bentonite has high swelling property and low shrink characteristic. Swelling pressure changes with time nonlinearly. Moreover, there is a linear relationship with water content and an exponential relationship with dry density. The swelling property is influenced mainly by initial dry density, and the shrinking property is influenced mainly by initial water content. On the condition of the high water content and dry density, swelling pressure is about 0.85∼4.64 MPa, unloaded swelling ratio and shrinkage coefficient are around 24.4%∼40.8% and 0.19∼0.50 respectively. (authors)

  13. Performance of concrete backfilling materials for shafts and tunnels in rock formations. Volume 1: concrete selection and properties

    International Nuclear Information System (INIS)

    Preplaced Aggregate Concrete (PAC) consists of graded coarse aggregate, immobilised by cementitious grout injected into the voids. PAC can be considered as a suitable backfill material for mined radioactive waste repositories. PAC is also reported to be amenable to mechanical/remote placement and have usefully improved properties when compared with conventionally placed concretes. In particular reduced shrinkage and heat cycle during cement hydration, higher densities and improved plant economics are claimed. This study attempts to establish the validity of these claims both from reported experience and by practical demonstration through experimentation. A literature study supported the claims made for the PAC system but all reported experiences recorded the use of organic admixtures (workability aids, retarders etc). Because of the lack of long term durability data on such admixtures, especially in a radiation environnement, it was decided to prepare a sample of PAC without organic admixtures. Considerable experimental difficulties were encountered in obtaining a satisfactory quality for test specimens. The necessary grout fluidity was only achieved by the inclusion of bentonite. The test data collected indicates that the PAC system employed did not improve mechanical properties compared with conventional concretes. This is attributed to the non-usage of organic admixtures to achieve the expected performance. Further research on low permeability concretes would require the use of organic admixtures. The effect of radiation on these materials, and their leaching rate needs to be quantified

  14. Deformation Behaviors of Geosynthetic Reinforced Soil Walls on Shallow Weak Ground

    Science.gov (United States)

    Kim, You-Seong; Won, Myoung-Soo

    In this study, the fifteen-month behavior of two geosynthetic reinforced soil walls, which was constructed on the shallow weak ground, was measured and analyzed. The walls were backfilled with clayey soil obtained from the construction site nearby, and the safety factors obtained from general limit equilibrium analysis were less than 1.3 in both wall. To compare with the measured data from the real GRS walls and unreinforced soil mass, a series of finite element method (FEM) analyses on two field GRS walls and unreinforced soil mass were conducted. The FEM analysis results showed that failure plane of unreinforced soil mass was consistent with the Rankine active state, but failure plane did not occur in GRS walls. In addition, maximum horizontal displacements and shear strains in GRS walls were 50% smaller than those found in unreinforced soil mass. Modeling results such as the maximum horizontal displacements, horizontal pressure, and geosynthetic tensile strengths in GRS wall have a god agreement with the measured data. Based on this study, it could be concluded that geosynthetic reinforcement are effective to reduce the displacement of the wall face and/or the deformation of the backfill soil even if the mobilized tensile stress after construction is very small.

  15. The effect of pore fluid chemistry on strength and stress-strain behaviour of light and dense backfill materials

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Canada's Nuclear Waste Management Organization (NWMO) is investigating various concepts for isolation of Canada's used reactor fuel. These concepts include the In-floor Borehole (IFB), In-room and Horizontal Borehole geometries and geological environments being considered include crystalline bedrock of the Canadian Shield and low permeability sedimentary rocks such as limestone and shale. Regardless of geometry or geological environment, all options being considered will employ multiple clay-based barriers that include Highly Compacted Bentonite (HCB), Dense Backfill (DBF), Light Backfill (LBF), and Gap fill (GF). These materials will be initially placed in a repository in an unsaturated state, and will eventually become saturated with groundwater from the local geological environment. In both geological environments, the potential exists for the sealing materials to become saturated with high salinity groundwater. Quantitatively, the impact of high salinity on the strength and deformation performance of clay-based barriers is poorly understood although salinity is known to significantly affect the strength, compressibility, and hydraulic conductivity of clay-based barriers due to the suppression of the diffuse double layer. Understanding these potential changes in material properties is important in order to predict the overall performance of the clay barriers throughout the evolution of the system. This paper presents the results of a series of triaxial and one-dimensional oedometer tests conducted on LBF and DBF under various pore fluid conditions. Triaxial tests included isotropically consolidated drained (CID) and undrained (CIU-bar) tests. Testing was conducted collaboratively at the geotechnical laboratories of Atomic Energy of Canada Limited (AECL), the University of Manitoba (U of M) and the Royal Military College of Canada (RMC). The LBF and DBF materials used in this testing programme were

  16. Effects of water inflow and early water uptake on buffer and backfill materials in a KBS-3V repository

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Bentonite is an excellent sealing material when it has reached full water saturation and swelling pressure. However, bentonite is not good for sealing inflowing water from fractures with potential to build high water pressure. It cannot stop inflow of water at the depth of a repository. The water inflow into the pellets filled slots in the deposition holes and the tunnels in a KBS-3V repository is expected to continue until these slots are water filled and the water flow stopped by an end plug. Then the water pressure gradient is transferred from the fracture/bentonite interface to the plug and the bentonite will have time to homogenize and seal. This scenario leads to a number of processes that can either be harmful to the bentonite or affect the water saturation and homogenization evolution. Last year a project (EVA) started in order to investigate the processes involved by this early water inflow. The project aims at developing a model for the processes piping, erosion, water filling of pellets filled slots, early water absorption and resulting water pressure increase against the plug. The project studies the effects of water inflow in deposition holes and deposition tunnels and the emergence of piping and erosion during installation and wetting of the buffer and backfill until all slots and the pellet fillings have been water filled and piping and erosion have ceased. The project includes laboratory tests of nine different processes and modeling. The laboratory program includes tests of the following processes: 1. Erosion; 2. Piping; 3. Water flow in pellet filled slots; 4. Sealing ability of bentonite; 5. Water absorption of the bentonite blocks; 6. Formation of water or gel pockets in a pellet filled slot; 7. Formation and outflow of bentonite gel; 8. Self-sealing of cracks by eroding water; 9. Buffer swelling before placement of backfill. The laboratory tests are ongoing and preliminary results and

  17. Aespoe Hard Rock Laboratory. Backfill and Plug test. Hydraulic testing of core drilled boreholes in the ZEDEX drift

    International Nuclear Information System (INIS)

    The present report documents the performance and results of hydraulic testing in selected core boreholes in the Zedex drift. The holes will be used as rock instrumentation boreholes during the Backfill and Plug Test at Aespoe HRL. The testing involves both 1 m long boreholes with 56 mm diameter as well as longer boreholes c. 5 m, 8 m and 25 m long with 56 mm or 76 mm diameter. Only single-hole tests were performed. The tests were carried out as short-time constant head injection tests since all boreholes tested (except one) were non-flowing before tests. The injection phase was followed by a pressure recovery phase. Furthermore, the tests were carried out as single-packer tests. A specially designed test system was used for the tests. The main evaluation of the tests was performed on data from the recovery phase by a new approach based on a non-linear regression technique combined with a flow simulation model (SUTRA). The tests in the 1 m-holes (testing the interval c. 0.3-0.7 m in the rock perpendicular to the tunnel face) show that the hydraulic conductivity of the superficial rock around the Zedex drift in general is low. However, during testing in some boreholes, visible leakage in the rock occurred through superficial fractures into the tunnel. These fractures were mainly located in the floor of the Zedex drift and are probably blast-induced. These fractures have a high hydraulic conductivity. The tests in the longer boreholes show that the hydraulic conductivity further into the rock in general is below c. 1x10-10 m/s. Increased hydraulic conductivity (c.1.5x10-8 m/s) was only observed in the flowing borehole KXZSD8HL

  18. Natural analogue study on backfill materials from ancient Chinese constructions for LILW disposal. Appendix 5: China (b)

    International Nuclear Information System (INIS)

    Full text: The objective of this work was to contribute to the demonstration of the long term safety of low-and-intermediate level radioactive waste (LILW) disposal using information from a natural analogue study on ancient Chinese constructions. The work firstly compared LILW near surface disposal facilities with Chinese ancient tombs in respects of siting, engineering structures, design and construction procedures and indicates that they are both based upon multi-barrier principle. After extensive literature and field survey, three materials were collected from two Chinese ancient tombs and one ancient architectures for further laboratory study. The three materials were studied in laboratories from the point of view of radioactive waste disposal in near surface facilities to obtain information concerning their basic physical and chemical properties, engineering properties and radionuclide adsorption abilities. The results show that the two materials from the ancient tombs have low permeability and strong adsorption for 60Co and 134Cs. The saturated permeabilities of the two ancient materials are in the order of 10-10 m/s and the distribution coefficients for the two radionuclides are all in the order of 101 m3/kg. The conclusion was that the then current LILW disposal option in near-surface would be effective for a long term period of time, and clay materials, as backfill materials for LILW near-surface disposal facilities would very effective in preventing water intrusion and retarding radionuclide release even over a long term of period. Overall the LILW disposal option was considered to be safe in long term. (author)

  19. The potential use of swelling clays for backfilling and sealing of underground repositories: The case of the Boom clay

    International Nuclear Information System (INIS)

    In Belgium the SCK/CEN is studying the geological disposal of high level radioactive waste in the Boom clay formation. In such an argillaceous repository, the backfilling and sealing features will be multiple: boreholes, shafts, access drifts, disposal galleries or holes and dams. A preliminary selection study screening industrial materials has been performed based on the following criteria: at least as good thermal and hydraulic properties as the in situ Boom clay, sufficient volumetric swelling and swelling pressure, proven geochemical compatibility and stability. This study has shown that swelling clays are the most promising materials. Because of its evident geochemical compatibility and its easy availability, it is a logic choice to study the re-use of the excavated clay. The hydraulic, thermal and geochemical retention and swelling properties of the Boom clay were studied and the results are compared to those of bentonites. The main results of this study are: a hydraulic conductivity as low as 10-13 m/s can be reached which is one order of magnitude lower than that of the in situ Boom clay but is one order of magnitude higher than those of bentonite; the volumetric swelling of the Boom clay is rather limited but a swelling pressure of about 4 MPa can be obtained which is about a factor five lower than for bentonites but also corresponds to the in situ lithostatic pressure; the radionuclide retention properties of the in situ Boom clay are at least as good as those of dense bentonites and are for some nuclides even better; steam drastically reduces the volumetric swelling of bentonites which also leads to a higher hydraulic conductivity. The swelling properties of the Boom clay are also to be affected by steam, but the effect is less dramatic. In particular, its low hydraulic conductivity seems to be conserved. (author). 14 refs, 4 figs, 6 tabs

  20. Effect of water salinity on the hydro-mechanical behaviour of granular bentonite as light backfill material

    Energy Technology Data Exchange (ETDEWEB)

    Batenipour, H. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Civil Engineering; Kjartanson, B.H. [Lakehead Univ., Thunder Bay, ON (Canada). Dept. of Civil Engineering

    2008-07-01

    Crystalline rocks in the Canadian Shield and sedimentary rocks in Ontario are now being considered as deep geologic repositories (DGR) for spent nuclear fuels. Both areas contain relatively high salinity, calcium (Ca) rich groundwaters. Design plans have included a high compacted bentonite (HCB) layer adjacent to the container with an effective montmorillonite dry density (EMDD) of 1.5 Mg/m{sup 3}. This paper investigated the 1-D compression, swelling, and hydraulic behaviour and stiffness of granular bentonite light backfill (LBF) material in the presence of distilled water and 100 g/l calcium chloride (CaCI{sub 2}) and 250 g/l CaCI{sub 2} solutions were described and compared. The aim of the study was to examine the potential effects that the groundwaters may have on the long-term performance of the LBF. Tests were conducted to examine the dependence of the 1-D compression and swelling behaviour of LBF on the wetting and loading path. Results showed that the swelling, and self-sealing ability of the bentonite LBF was adversely affected by the presence of the 250 g/l CaCI{sub 2} solution. Samples of the 250 g/l solution achieved only 7 per cent to 10 per cent swelling strain under unloaded conditions. Stiffness increased exponentially with EMDD. It was concluded that the hydraulic conductivity values calculated from the loading increments of the tests increased with increasing CaCI{sub 2} concentrations and decreased with increasing EMDD. 11 refs., 2 tabs., 10 figs.

  1. Direct methods of soil-structure interaction analysis for earthquake loadings (III)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J. B.; Lee, S. R.; Kim, J. M.; Park, K. R.; Choi, J. S.; Oh, S. B. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-06-15

    In this study, direct methods for seismic analysis of soil-structure interaction system have been studied. A computer program 'KIESSI-QK' has been developed based on the finite element technique coupled with infinite element formulation. A substructuring method isolating the displacement solution of near field soil region was adopted. The computer program developed was verified using a free-field site response problem. The post-correlation analysis for the forced vibration tests after backfill of the Hualien LSST project has been carried out. The seismic analyses for the Hualien and Lotung LSST structures have been also performed utilizing the developed computer program 'KIESSI-QK'.

  2. 高放废物地质处置库中缓冲回填材料的收缩特征%Shrinkage characteristics of buffer-backfilling materials in high-level radioactive waste geological disposal

    Institute of Scientific and Technical Information of China (English)

    唐朝生; 施斌; 崔玉军

    2012-01-01

    The shrinkage characteristics of buffer-backfilling materials play an important role in the security and stability of the high-level radioactive waste geological disposal system. COx argillite is considered as a kind of potential buffer-backfilling materials in France. In this investigation, both the initially saturated compacted COx specimens and the paste-like COx specimens are prepared and subjected to different test methods to study their volumetric shrinkage behaviours. For the compacted specimens, it is found that the volumetric shrinkage deformation is significantly influenced by the initial dry density; the shrinkage limit, shrinkage efficiency and shrinkage strain decrease with the increasing dry density; in addition, it is observed that the shrinkage direction of specimens shows obvious anisotropism. For example, at low degree of compaction, the radial shrinkage strain is higher than axial shrinkage strain, and the shrinkage geometry factor is larger than 3; however, the contrary results are obtained at high degree of compaction. For the paste-like specimens, three shrinkage stages can be distinguished: normal shrinkage, residual shrinkage and zero shrinkage; most of the volume shrinkage deformation occurs before the air-entry point while the soil is still fully saturated. A group of four general shrinkage models are employed to fit the shrinkage curve of the paste-like specimens. The results show that the G & C model can get the highest performance for the present soil.%缓冲回填材料的收缩特征对高放废物处置库的安全性和稳定性有重要影响。以COx泥岩缓冲回填材料为研究对象,采用不同的试验方法分别研究了饱和的压实试样和糊状试样在干燥过程中的体积收缩变形特征。试验结果表明:压实试样的体积收缩变形特征受初始干密度的影响比较明显,缩限、收缩系数和收缩应变均随初始干密度的增加而减小;压实试样的体积收缩

  3. Application of soil arch and soil beam concepts to the construction of shallow land burial trench covers

    International Nuclear Information System (INIS)

    Experience with shallow land burial sites indicates that undesirable surface subsidence and cracking of trench caps often occur a relatively short time after completion of backfilling. In the past, backfilling procedures have been rather arbitrary with the result that caps were often not strong enough to sustain themselves following creation of a void beneath them as the wastes decayed. In most cases, these cap failures may have been prevented by some form of soil stabilization at the time of construction. Three different trench cap designs were developed and prototype trenches were constructed in two different climatic environments to test the adequacy of the designs. The basic concept underlying each of the designs is that trench cap performance could be improved if the cap were stabilized in some way. In one design, controlled compaction alone was used to achieve high levels of in situ density. In another design, the emplacement of a strip of reinforcing geotextile in addition to controlled compaction was used. The third design incorporated a soil beam into the cap in addition to controlled compaction. A soil beam is a structural member constructed of compacted soil surrounded by an overlapping sheet of geotextile. Underlying each of these designs is the concept of a soil arch. Under proper conditions, soil has the ability to arch itself over small voids within the soil mass with little or no deformation at the surface. In order to test this concept and to evaluate the relative merits of the three designs, a system of settlement plates was installed at various levels in the caps. These settlement plates were monitored during and after construction so that absolute and relative displacements could be determined within a given trench. Differences in behavior among the three trenches could also be observed in this way. This paper describes the details of the designs and construction procedures

  4. Experimental research on the strength of cemented backfilling body of waste rocks%废石尾砂胶结充填体强度试验研究

    Institute of Scientific and Technical Information of China (English)

    罗根平; 乔登攀

    2015-01-01

    Experimental study is systematically conducted on cemented backfilling with waste rocks.The paper states the applicability and mechanism of waste rock cemented filling process and focuses on the influencing factors on the strength of cemented filling body of waste rocks,namely the water-cement ratio,cement-sand ratio,cement content, the grading and proportioning of the particle size of waste rocks.The research results show that the lager the water-ce-ment ratio and cement-sand ratio are,the less the strength of cemented backfilling body becomes,contrary to that rela-tion between cement content and the backfilling body's strength.With constant strength,cemented filling with waste rocks consumes less cement per unit volume and cost less than other filling methods.%对废石尾砂胶结充填进行了系统的试验研究。阐述了废石尾砂胶结充填工艺的工业性及原理,着重研究了废石尾砂胶结充填体强度的影响因素:水灰比、灰砂比、水泥含量、废石尾砂的粒径级配及配比。研究结果表明,废石尾砂胶结充填体强度随水灰比、灰砂比的减小而增大,随水泥含量的增加而增加。在强度一定的条件下,废石尾砂胶结充填比其他充填方式,单位体积内水泥耗量少,成本低。

  5. Laboratory determination of migration of Eu(III) in compacted bentonite–sand mixtures as buffer/backfill material for high-level waste disposal

    International Nuclear Information System (INIS)

    For the safety assessment of geological disposal of high-level radioactive waste (HLW), the migration of Eu(III) through compacted bentonite–sand mixtures was measured under expected repository conditions. Under the evaluated conditions, advection and dispersion is the dominant migration mechanism. The role of sorption on the retardation of migration was also evaluated. The hydraulic conductivities of compacted bentonite–sand mixtures were K=2.07×10−10–5.23×10−10 cm/s, The sorption and diffusion of Eu(III) were examined using a flexible wall permeameter for a solute concentration of 2.0×10−5 mol/l. The effective diffusion coefficients and apparent diffusion coefficients of Eu(III) in compacted bentonite–sand mixtures were in the range of 1.62×10–12–4.87×10–12 m2/s, 1.44×10–14–9.41×10–14 m2/s, respectively, which has a very important significance to forecast the relationship between migration length of Eu(III) in buffer/backfill material and time and provide a reference for the design of buffer/backfill material for HLW disposal in China. - Highlights: • The migration progress of Eu(III) in compacted bentonite–sand mixtures was researched. • The hydraulic conductivity of cominpacted bentonite–sand mixtures was measured. • The migration length of Eu(III) in buffer/backfill material after a certain period of time was forecasted

  6. Np sorption onto cement and Mg(OH)2-MgCl2-based backfill material in altered Q-brine

    International Nuclear Information System (INIS)

    Retention of actinides such as Np in the near field is critical for the long-term disposal and storage of radioactive waste in geological salt deposits. Portland cement and potential backfill material may have the capability to retard actinide migration through sorption processes. However, the effectiveness of the backfill material and cement (and their corrosion products, respectively) in concentrated MgCl2-NaCl solutions is not known. No models are available to evaluate sorption processes for such conditions based on thermodynamic data. In the present communication we report on results of site specific sorption experiments for the Asse mine. The Asse mine is situated in a diapir of Zechstein salt deposits. The salt mine operated for production of halite and potash. After termination of potash mining, low- and intermediate-level radioactive waste was emplaced in 13 of the excavated rooms in a depth of about 750, 725 and 511 m below surface ground. The salt mine was used thereafter as an underground research laboratory to develop technologies for disposal of high-level radioactive waste. Since termination of research in 1995, numerous excavated rooms, where no radioactive waste was emplaced, are being backfilled with crushed salt. Leaking of ca. 10 m3 d-1 NaCl- and CaSO4-rich brine into the mine is observed for several years now. The leaking is considered in the closure concept of the mine. In the present closure concept, systematic filling of the Asse mine with crushed rock salt and a MgCl2-rich solution, e.g. Q-brine, is planned. Recently, the use of a Mg(OH)2-MgCl2-based material, so called Mg-depot, was proposed for backfilling of the emplacement rooms of the Asse mine (Schuessler et al., 2001). As described in a forthcoming publication of the authors (Metz et al., 2004), the Mg-depot provides favorable chemical conditions with respect to actinide solubility. Currently there is a strong interest if the Mg-depot or brucite, one of its main constituent, provides

  7. Management and re-use of contaminated soils

    International Nuclear Information System (INIS)

    The volume occupied by petroleum-contaminated soils in landfill facilities could be totally eliminated by treatment of these soils in separate facilities. Once treated, the soils could be recycled. In New Brunswick, one such treatment facility was opened in 1992 adjacent to the Fredericton regional landfill site; a second site was opened near Moncton in 1992. These facilities receive petroleum-contaminated soil from such users as gasoline stations, bulk plants, institutions, and transport companies, as well as from oil spill sites. The types of contaminants present range from gasoline to heavy fuel oils and greases, and the soils can vary from clays to gravels. Incoming soils are layered on treatment pads and treated by bioremediation. A bionutrient mixture containing fertilizers plus an amount of adapted, naturally-occurring petroleum hydrocarbon degrading microorganisms is sprayed onto the pile layer by layer. Aeration tubing is also installed during this layering process. When the piles are complete, they are covered with black plastic and aerated. Bioremediation times vary from 10 to 24 weeks. The facility has successfully decontaminated over 20,000 tonnes of soil to date. The resulting soil can be used for such purposes as soil cover and backfill. The bioremediation process itself is portable and can be initiated at landfill sites themselves to reduce transport and handling costs. 16 refs., 4 figs

  8. Stiffness of Railway Soil-Steel Structures

    Science.gov (United States)

    Machelski, Czesław

    2015-12-01

    The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness) become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces), as in bridges. The analyzed cases show that the shell's span, geometry (static scheme) and the height of earth fill influence the stiffness of the structure. The soil-steel structure's characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  9. Stiffness of Railway Soil-Steel Structures

    Directory of Open Access Journals (Sweden)

    Machelski Czesław

    2015-12-01

    Full Text Available The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces, as in bridges. The analyzed cases show that the shell’s span, geometry (static scheme and the height of earth fill influence the stiffness of the structure. The soil-steel structure’s characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  10. Stability of submerged rock berms exposed to motion of liquefied soil in waves

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Dixen, Figen Hatipoglu; Fredsøe, Jørgen

    2011-01-01

    The paper describes the results of an experimental study on the behaviour of a submerged rock berm in liquefied backfill soil. The soil is liquefied by waves, and the rock berm is subject to the orbital motion of the liquefied soil. The soil used in the experiments was silt with d50=0.075mm....... Various berm materials were used, stones of size 0.74–2.5cm, plastic balls of size 3.6cm, brass of size 2.5cm and steel of size 1.0cm. The experiments show that rock berms that are stable under very large waves can be unstable when they are exposed to the motion of liquefied soil. The limited data...

  11. Soils - Soil Data Viewer

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Soil Data Viewer is a tool built as an extension to ArcMap that allows a user to create soil-based thematic maps. The application can also be run independent of...

  12. 矿山废石全尾砂充填研究现状与发展趋势%The directions of R&D on backfill with waste rock and total tailings in underground mine

    Institute of Scientific and Technical Information of China (English)

    王贤来; 姚维信; 王虎; 乔登攀; 程伟华; 张磊

    2011-01-01

    矿产资源开发过程中产生的废石、尾砂和冶炼渣,等占我国工业固体废料排放量的85%左右.大量矿山固体废料堆放地表,易造成严重污染,诱发泥石流、尾矿溃坝事故.固体废料充填工艺是解决矿山废尾排放的最有效途径.本文介绍了低浓度分级尾砂充填、全尾砂高浓度充填、膏体似膏体充填、块石胶结充填工艺的研究与应用现状,并分析了矿山废石全尾砂充填技术的研究与发展方向.%The waste rock, tailings and smelter slag in the process of the exploitation of mineral resources accounted the industrial solid wastes for about 85% in China based on traditional mining pattern. A large number of the solid waste pilled up on the ground in mine can cause serious pollutions, and may induce mudflows and tailings dam-break accidents. Undoubtedly, the solid waste backfill is the most effective way to solve the discharge of mine waste. In this paper, the present situation of research and application of several filling technology are described with regard to low-density classified tailings backfill, high-density total tailings backfill, paste and like paste backfill, as well as rock cemented backfill. Furthermore, the directions of R&D on backfill with waste rock and total tailings in underground mine were analyzed.

  13. Groundwater recovery experiment in Mizunami Underground Research Laboratory. Numerical simulation of H-M coupled behavior of rock and backfill materials to evaluate the influence on the surrounding rock

    International Nuclear Information System (INIS)

    In the Mizunami Underground Research Laboratory, groundwater recovery experiment is being conducted to develop the method to understand the transition of geological environment due to groundwater recovery at the -500 m access and research gallery-north. As a part of this experiment, backfill test is planned using drilling pits filled with artificial materials (clay and concrete) to evaluate the influence on the surrounding rock mass due to the interaction of rock and artificial materials. In this study, numerical simulation of the backfill test has been carried out to predict the qualitative hydro-mechanical behavior. (author)

  14. Aespoe Hard Rock Laboratory. Prototype Repository. Analyses of microorganisms, gases and water chemistry in buffer and backfill, 2009

    International Nuclear Information System (INIS)

    . The in 2007 improved sampling and analysis protocols worked very well. Also, the molecular methods that were tested for the first time in the Prototype showed promising potential. IPR 08-01 revealed that many of the hydrochemical sampling points differ quite remarkably from each other. The 16 sampling points were therefore divided into seven sampling groups with similar properties. The properties of one sampling group (i.e., KBU10002+8) resembled those of the groundwater, while others (i.e., KBU10004+6, KBU10005, and KFA01-04) differed, for example, in microbial composition, salinity, sulphate content, pH, and the concentrations of calcium, potassium, magnesium, sodium, and many dissolved metals, actinides, and lanthanides. One sampling group contained sampling points that seemed to be in contact with tunnel air (KBU10003+7). Another sampling group contained sampling points near the canisters in the buffer (KB513-614) with very little pore water with high pH and a high salt content. One sampling point in the backfill, which had not been reached by the groundwater as of May 2007 (KBU10001), now consisted of pore water with properties resembling those of groundwater. The gas composition in the sampling groups was uniform in that the proportion of nitrogen in the extracted gas was increasing and the oxygen content decreasing with time. In most sampling groups, the oxygen content in the pore water had decreased from 3-7% as of May 2007 to 0.6-4% in 2009. This can also be compared with the proportion of oxygen in the gas phase in 2005, which was 10-18%. Hydrogen, methane, helium, and carbon dioxide concentrations varied, especially in the sampling groups with extractable pore water. ATP analyses demonstrated that the biomass in the Prototype repository is high compared to the surrounding groundwater. The microbiological results indicated that aerobic microbes, such as MOB and CHAB, thrived in the aerobic Prototype environment

  15. Aespoe Hard Rock Laboratory. Prototype Repository. Analyses of microorganisms, gases and water chemistry in buffer and backfill, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Lydmark, Sara (Microbial Analytics Sweden AB (Sweden))

    2010-09-15

    chemistry. The in 2007 improved sampling and analysis protocols worked very well. Also, the molecular methods that were tested for the first time in the Prototype showed promising potential. IPR 08-01 revealed that many of the hydrochemical sampling points differ quite remarkably from each other. The 16 sampling points were therefore divided into seven sampling groups with similar properties. The properties of one sampling group (i.e., KBU10002+8) resembled those of the groundwater, while others (i.e., KBU10004+6, KBU10005, and KFA01-04) differed, for example, in microbial composition, salinity, sulphate content, pH, and the concentrations of calcium, potassium, magnesium, sodium, and many dissolved metals, actinides, and lanthanides. One sampling group contained sampling points that seemed to be in contact with tunnel air (KBU10003+7). Another sampling group contained sampling points near the canisters in the buffer (KB513-614) with very little pore water with high pH and a high salt content. One sampling point in the backfill, which had not been reached by the groundwater as of May 2007 (KBU10001), now consisted of pore water with properties resembling those of groundwater. The gas composition in the sampling groups was uniform in that the proportion of nitrogen in the extracted gas was increasing and the oxygen content decreasing with time. In most sampling groups, the oxygen content in the pore water had decreased from 3-7% as of May 2007 to 0.6-4% in 2009. This can also be compared with the proportion of oxygen in the gas phase in 2005, which was 10-18%. Hydrogen, methane, helium, and carbon dioxide concentrations varied, especially in the sampling groups with extractable pore water. ATP analyses demonstrated that the biomass in the Prototype repository is high compared to the surrounding groundwater. The microbiological results indicated that aerobic microbes, such as MOB and CHAB, thrived in the aerobic Prototype environment

  16. Combined in-situ and ex-situ bioremediation of petroleum hydrocarbon contaminated soils by closed-loop soil vapor extraction and air injection

    International Nuclear Information System (INIS)

    Treatment and restoration of petroleum hydrocarbon contaminated soils at a bulk petroleum above-ground storage tank (AST) site in Michigan is being conducted through in-situ and ex-situ closed-loop soil vapor extraction (SVE), soil vapor treatment, and treated air injection (AI) processes. The soil vapor extraction process applies a vacuum through the petroleum hydrocarbon affected soils in the ex-situ bio-remediation pile (bio-pile) and along the perimeter of excavated area (in-situ area) to remove the volatile or light petroleum hydrocarbons. This process also draws ambient air into the ex-situ bio-pile and in-situ vadose zone soil along the perimeter of excavated area to enhance biodegradation of light and heavy petroleum hydrocarbons in the soil. The extracted soil vapor is treated using a custom-designed air bio-remediation filter (bio-filter) to degrade the petroleum hydrocarbon compounds in the soil vapor extraction air streams. The treated air is then injected into a flush grade soil bed in the backfill area to perform final polishing of the air stream, and to form a closed-loop air flow with the soil vapor extraction perforated pipes along the perimeter of the excavated area

  17. Applicability of soil-structure interaction analysis methods for earthquake loadings

    Energy Technology Data Exchange (ETDEWEB)

    Jang, S. P.; Ko, H. M.; Yun, J. Y. and others [Korea Electrical Engineering and Science Research Institute, Seoul (Korea, Republic of)

    1993-07-15

    We have investigated the related materials of Lotung large scale seismic test already completed and Hualien large scale seismic test under performing to evaluate the influence of parameters related to the soil-structure interaction effect. Furthermore, for establishing the analysis technique, currently used programs treating soil-structure interaction problem was described in details. Site investigation, large scale seismic model structure and measuring system has been examined. In addition, information of forced vibration test results, earthquake observation and blind prediction for Lotung experiment was summarized. Blind prediction and results of forced vibration test before backfill of Hualien large scale seismic test was also analyzed. The evaluation of the programs related to soil-structure interaction was performed for FLUSH, SASSI, CLASSI and Soil-Spring Method.

  18. Soil compaction in forest soils

    OpenAIRE

    TURGUT, Bülent

    2012-01-01

    Soil compaction is a widespread degradation process in forest sites. Soil degradation occurring on the structural formation of a natural soil system by rainfall or mechanical outer forces generally results in soil particles to be rearranged tighter than its previous status. In this case, soil compaction -defined as the increase in bulk density of soil- develops with negative effects on soil-plant-water relations. With the compaction, the density of soil increases while the porosity rate decre...

  19. Evaluation of the effect of sodium silicate addition to mine backfill, Gelfill e Part 2:Effects of mixing time and curing temperature

    Institute of Scientific and Technical Information of China (English)

    M. Kermani; F.P. Hassani; E. Aflaki; M. Benzaazoua; M. Nokken

    2015-01-01

    The effects of mixing time and curing temperature on the uniaxial compressive strength (UCS) and microstructure of cemented hydraulic fill (CHF) and sodium silicate-fortified backfill (Gelfill) were investigated in the laboratory. A series of CHF and Gelfill samples was mixed for time periods ranging from 5 min to 60 min and cured at temperatures ranging from 5 ?C to 50 ?C for 7 d, 14 d or 28 d. Increasing the mixing time negatively influenced the UCS of Gelfill samples, but did not have a detectable effect on CHF samples. The curing temperature had a strong positive impact on the UCSs of both Gelfill and CHF. An elevated temperature caused rapid UCS development over the first 14 d of curing. Mercury intrusion porosimetry (MIP) indicated that the pore size distribution and total porosity of Gelfill were altered by curing temperature.

  20. Aespoe Hard Rock Laboratory. Prototype repository. Analyses of microorganisms, gases, and water chemistry in buffer and backfill, 2010

    International Nuclear Information System (INIS)

    divided into seven sampling groups, each with similar properties. The properties of one sampling group (i.e. KBU10002 + KBU10008) resembled those of the groundwater, while others (i.e. KBU10004 + KBU10006, KBU10005, and KFA01-KFA04) differed, for example, in microbial composition, salinity, sulphate content, and the concentrations of calcium, potassium, magnesium, sodium, and many dissolved metals, actinides, and lanthanides. One sampling group comprised sampling points that seemed to be in contact with tunnel air (KBU10003 + KBU10007). Another sampling group comprised sampling points, near the canisters in the buffer (KB513-614), with very little pore water with high pH and a high salt content. One sampling point in the backfill, which had not been reached by the groundwater as of May 2007 (KBU10001), now yielded pore water with properties resembling those of groundwater. The gas composition in the sampling groups was uniform in that the proportion of nitrogen in the extracted gas was increasing while the oxygen content was decreasing with time. ATP analyses demonstrated that the biomass in the Prototype was higher than in the surrounding groundwater. The microbiological results indicated that aerobic microbes, such as methane-oxidizing bacteria and culturable heterotrophic bacteria, thrived in the aerobic Prototype environment. The chemical data indicated differences between the sampling groups: concentrations of sodium and potassium were higher in the Prototype pore water than in the groundwater outside it, while calcium was lower than in the groundwater. Obviously, cation exchange occurs in the montmorillonite interlayers. At sampling points containing active microbes, copper, rubidium, vanadium, and uranium were enriched up to 225 times the groundwater levels; microbes are possibly responsible for dissolving these substances by excreting compound-specific ligands. Overall, the observations presented here strongly support our hypothesis that oxygen will be consumed by

  1. Self-sealing experiments and gas injection tests in a backfilled micro-tunnel of the Mont Terri URL

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. The investigation of damage zones around excavations such as seal sections in tunnels or shafts and their impact on gas migration are key issues in the field of underground waste disposal. The experiment ('Gas path through host rock and along seal sections / HG-A') was designed as a long-term gas experiment in a backfilled micro-tunnel, to investigate both leak-off rates and gas release paths from a sealed tunnel section in an ultra-low permeability host rock (Opalinus Clay). The aims of the HG-A experiment are to: - Provide evidence for barrier function of the Opalinus Clay on the tunnel scale (scale effects in rock permeability); - Investigate self-sealing of the EDZ after tunnel closure (mechanical self-sealing in response to packer inflation and pore pressure changes); - Provide evidence for gas transport capacity of Opalinus Clay (intact host rock and EDZ). The HG-A experiment is located in the southern part of the Mont Terri Rock Laboratory off Gallery 04. A 13 m long, 1 m diameter micro-tunnel was excavated in February 2005. Hydraulic and mechanical response to excavation was monitored in an array of boreholes HG-A2 to HG-A7. This was subsequently extended with additional piezometers and remote sensing boreholes (HG-A8-14, HGA24, A25). In summer 2006 a Mega-packer was emplaced to create a tunnel seal isolating the test section (see Figure 1). The test and seal sections were instrumented with piezometers, strain gauges, total pressure cells and Time Domain Reflectometers (TDRs). The response to excavation of the micro-tunnel and the associated creation and development of the Excavation Damage Zone (EDZ) is discussed in Marschall et al. (2006, 2008). The test section saturation and hydraulic testing prior to gas injection is presented in Lanyon et al. (2009). This paper presents the results of gas leak-off testing, subsequent post-gas hydraulic testing together with an overview of the rock's response to

  2. Aespoe Hard Rock Laboratory. Prototype repository. Analyses of microorganisms, gases, and water chemistry in buffer and backfill, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Lydmark, Sara [Microbial Analytics Sweden AB, Moelnlycke (Sweden)

    2011-06-15

    therefore divided into seven sampling groups, each with similar properties. The properties of one sampling group (i.e. KBU10002 + KBU10008) resembled those of the groundwater, while others (i.e. KBU10004 + KBU10006, KBU10005, and KFA01-KFA04) differed, for example, in microbial composition, salinity, sulphate content, and the concentrations of calcium, potassium, magnesium, sodium, and many dissolved metals, actinides, and lanthanides. One sampling group comprised sampling points that seemed to be in contact with tunnel air (KBU10003 + KBU10007). Another sampling group comprised sampling points, near the canisters in the buffer (KB513-614), with very little pore water with high pH and a high salt content. One sampling point in the backfill, which had not been reached by the groundwater as of May 2007 (KBU10001), now yielded pore water with properties resembling those of groundwater. The gas composition in the sampling groups was uniform in that the proportion of nitrogen in the extracted gas was increasing while the oxygen content was decreasing with time. ATP analyses demonstrated that the biomass in the Prototype was higher than in the surrounding groundwater. The microbiological results indicated that aerobic microbes, such as methane-oxidizing bacteria and culturable heterotrophic bacteria, thrived in the aerobic Prototype environment. The chemical data indicated differences between the sampling groups: concentrations of sodium and potassium were higher in the Prototype pore water than in the groundwater outside it, while calcium was lower than in the groundwater. Obviously, cation exchange occurs in the montmorillonite interlayers. At sampling points containing active microbes, copper, rubidium, vanadium, and uranium were enriched up to 225 times the groundwater levels; microbes are possibly responsible for dissolving these substances by excreting compound-specific ligands. Overall, the observations presented here strongly support our hypothesis that oxygen will be

  3. Numerical Simulation of Hysteretic Live Load Effect in a Soil-Steel Bridge

    Science.gov (United States)

    Sobótka, Maciej

    2014-03-01

    The paper presents numerical simulation of hysteretic live load effect in a soil-steel bridge. The effect was originally identified experimentally by Machelski [1], [2]. The truck was crossing the bridge one way and the other in the full-scale test performed. At the same time, displacements and stress in the shell were measured. The major conclusion from the research was that the measured quantities formed hysteretic loops. A numerical simulation of that effect is addressed in the present work. The analysis was performed using Flac finite difference code. The methodology of solving the mechanical problems implemented in Flac enables us to solve the problem concerning a sequence of load and non-linear mechanical behaviour of the structure. The numerical model incorporates linear elastic constitutive relations for the soil backfill, for the steel shell and the sheet piles, being a flexible substructure for the shell. Contact zone between the shell and the soil backfill is assumed to reflect elastic-plastic constitutive model. Maximum shear stress in contact zone is limited by the Coulomb condition. The plastic flow rule is described by dilation angle ψ = 0. The obtained results of numerical analysis are in fair agreement with the experimental evidence. The primary finding from the performed simulation is that the slip in the interface can be considered an explanation of the hysteresis occurrence in the charts of displacement and stress in the shell.

  4. Numerical Simulation of Hysteretic Live Load Effect in a Soil-Steel Bridge

    Directory of Open Access Journals (Sweden)

    Sobótka Maciej

    2014-03-01

    Full Text Available The paper presents numerical simulation of hysteretic live load effect in a soil-steel bridge. The effect was originally identified experimentally by Machelski [1], [2]. The truck was crossing the bridge one way and the other in the full-scale test performed. At the same time, displacements and stress in the shell were measured. The major conclusion from the research was that the measured quantities formed hysteretic loops. A numerical simulation of that effect is addressed in the present work. The analysis was performed using Flac finite difference code. The methodology of solving the mechanical problems implemented in Flac enables us to solve the problem concerning a sequence of load and non-linear mechanical behaviour of the structure. The numerical model incorporates linear elastic constitutive relations for the soil backfill, for the steel shell and the sheet piles, being a flexible substructure for the shell. Contact zone between the shell and the soil backfill is assumed to reflect elastic-plastic constitutive model. Maximum shear stress in contact zone is limited by the Coulomb condition. The plastic flow rule is described by dilation angle ψ = 0. The obtained results of numerical analysis are in fair agreement with the experimental evidence. The primary finding from the performed simulation is that the slip in the interface can be considered an explanation of the hysteresis occurrence in the charts of displacement and stress in the shell.

  5. Development of drive in soil improvement machine (Galapagos/Ritela BZ 40); Jisoshiki doshitsu kairyoki (Garapagosu/Ritera, BZ 40) no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Komoriya, Y. [Komatsu Ltd., Tokyo (Japan)

    1997-01-25

    The soil produced during various types of pipe construction was used in reality for reclamation or treated in the soil improvement plant, however, there is problem of high disposal cost and transportation cost due to the lack of place for disposal and far distance. Further, high cost due to lack of pit sand collecting place for backfilling, and further, nature destruction due to collect pit sand and so forth are the problems. As for the field treatment system using developed drive in soil improvement machine, BZ 40, the soil excavated by oil pressure shovel is loaded as it is in BZ 40, solidifying agent is added, mixed, crushed and stability treatment is carried out. The improved soil particle size is adjusted by vibrating screaming machine connected to vehicle body and is loaded in the dump car for temporary storage and is reused as backfilling after the setting of the pipe. Residual soil disposal cost, transportation cost and cost for buying pit sand was reduced widely by the construction method using this machine, and further, improvement of natural environment was possible by reducing the use of pit sand. 4 refs., 1 tab.

  6. 全尾砂新型充填胶凝材料开发及其水化机理探讨%Discussion on exploitation of new backfilling cementing materials with unclassified tailings and associated hydration mechanisms

    Institute of Scientific and Technical Information of China (English)

    李茂辉; 杨志强; 高谦; 王有团

    2015-01-01

    Based on the characteristics of unclassified tailings in the Sijiaying iron mine, experimental research on exploitation of new backfilling cementing materials that can replace the cement was carried out using lime, desulfurization gypsum, slag, and other solid wastes. Using scanning electron microscopy ( SEM) and X⁃ray diffraction ( XRD) analysis, the hydration mechanisms of the new backfilling cementing materials were analyzed, and the optimum ratio of activators was determined. The results show that the strength of the new backfilling cementing materials can meet the filling body strength requirements for safe mining in the Sijiaying iron mine when the mass fractions of slurry, lime, and desulfurization gypsum are 68%, 3. 5%, and 16. 0%, respectively, and the cement⁃sand ratio is 1∶8. The results also show that the new backfilling cementing materials have a more compact structure and coarser occurrence when compared with the cement. The hydration products of the new backfilling cementing materials are mainly AFt crystals and C⁃S⁃H gel, which greatly increases the age strength of the new backfilling cementing materials.%针对司家营铁矿全尾砂,利用石灰、脱硫石膏、矿渣等固体废弃物开展替代水泥的新型充填胶凝材料试验研究,并通过电镜扫描( SEM)和X射线衍射( XRD)分析,研究新型充填胶凝材料激发剂的水化机理,确定激发剂优化配比。研究表明,当料浆质量分数为68%、胶砂比为1∶8、石灰质量分数为3.5%、脱硫石膏质量分数为16.0%时能够满足司家营铁矿南区嗣后充填法采矿对充填体强度的要求。结果显示,新型充填胶凝材料胶砂体与水泥胶砂体相比,结构更致密、产状更粗大,水化产物主要为AFt晶体和无定型C⁃S⁃H凝胶,从而大幅度提高了新型充填胶凝材料胶砂体的龄期强度。

  7. Soils - NRCS Web Soil Survey

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Web Soil Survey (WSS) provides soil data and information produced by the National Cooperative Soil Survey. It is operated by the USDA Natural Resources Conservation...

  8. Supercritical fluid extraction of plutonium and americium from soil using thenoyltrifluoroacetone and tributylphosphate complexation

    International Nuclear Information System (INIS)

    Samples of clean soil from the source used to backfill pits at the Idaho National Engineering and Environmental Laboratory's Radioactive Waste Management Complex were spiked with 239Pu and 241Am to evaluate ligand-assisted supercritical fluid extraction as a decontamination method. The actual soil in the pits has been subject to approximately three decades of weathering since it was originally contaminated. No surrogate soil can perfectly simulate the real event, but actual contaminated soil was not available for research purposes. However, fractionation of Am and Pu in the surrogate soil was found to be similar to that previously measured in the real soil using a sequential aqueous extraction procedure. This suggests that Pu and Am behavior are similar in the two soils. The surrogate was subjected to supercritical carbon dioxide extraction, in the presence of the fluorinated beta diketone thenoyltrifluoroacetone (TTA), and tributylphosphate (TBP). As much as 69% of the Pu and 88% of the Am were removed from the soil using 3.2 mol % TTA and 2.7 mol % TBP, in a single 45 minute extraction. Extraction conditions employing a 5 mol % ethanol modifier with 0.33 mol % TTA and 0.27 mol % TBP resulted in 66% Pu and 68% Am extracted. To our knowledge, this is the first report of the use of supercritical fluid extraction (SFE) for the removal of actinides from soil. (orig.)

  9. Determination of internal pressure and the backfill gas composition of nuclear fuel rods; Determinacion de la presion interna y la composicion del gas de llenado de barras de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, M.A.; Cota S, G.; Merlo S, L.; Fernandez T, F. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    An important consideration in the nuclear fuel manufacturing is the measurement of the helium atmosphere pressure and its composition analysis inside the nuclear fuel rod. In this work it is presented a system used to measure the internal pressure and to determine the backfill gas composition of fuel rods. The system is composed of an expansion chamber provided of a seals system to assure that when rod is drilled, the gas stays contained inside the expansion chamber. The system is connected to a pressure measurement digital system: Baratron MKS 310-AHS-1000. Range 1000 mm Hg from which the pressure readings are taken when this is stabilized in all the system. After a gas sample is sent toward a Perkin Elmer gas chromatograph, model 8410 with thermal conductivity detector to get the corresponding chromatogram and doing the necessary calculations for obtaining the backfill gas composition of the rod in matter. (Author)

  10. Analysis of Impacts on Earthquake Response of Intake Tower by Backfill Concrete on Tower Back%塔背回填混凝土对进水塔地震响应的影响分析

    Institute of Scientific and Technical Information of China (English)

    李锋

    2015-01-01

    塔背回填混凝土将岸塔式进水塔和山岩连成一体,提高了进水塔整体刚度,有效改善了塔体在地震情况下的拉应力幅值,对进水塔结构的抗震设计非常关键。以某水电站的岸塔式进水塔为例,针对不同高度塔背回填混凝土的塔体模型进行三维有限元静动力计算,以分析回填混凝土对进水塔地震响应的影响。%The backfill concrete on the tower back integrates the intake tower and the mountain rockmass, increasing the overall rigidity of the intake tower and effectively improving the tensile stress range value of the tower body in earthquake condition.This is very important for the aseismic design of the intake tower structure.With the case of the intake tower of one hydropower station, the static and dynamic calculations in 3D finite element method are performed to the tower models with the backfill concrete on the tower back at different heights so as to analyze the impacts on the earthquake response of the intake tower by the backfill concrete on the tower back.

  11. National waste terminal storage repository in a bedded salt formation for spent unreprocessed fuel. Special study No. 3. Waste retrieval from backfilled regions

    International Nuclear Information System (INIS)

    Methods and costs were studied for delayed canister retrieval from rooms that had been backfilled immediately after canister storage. The effects of this method of storage on mine geometry, thermal and rock mechanics environments, mine development and operations, mine ventilation, time schedule, retrieval machinery and safety were investigated. Salt and air temperatures were determined. Pillar width, number of rooms, extraction ratio, tonnages of mined salt, and salt handling and hoisting requirements were calculated. The required changes in mining equipment were established. Salt handling and elapsed time schedules were developed. Ventilation requirements - size and number of shafts, size the arrangement of airways, number of stacks, and size and number of fans were then calculated. The development sequence of these facilities was established. Canister retrieval problems were analyzed for canisters stuck in the hole as well as free. Retrieval methods and machinery were studied and are described. Safety with respect to both radiation and room collapse was studied and compared with CDR safety conditions. The effects of a reduced themal loading of 30 KW/acre on temperatures, room closure, mine layout, ventilation and ground control were studied and reported. A cost estimate was prepared, giving cost differentials between the base CDR costs and Special Study No. 3. Two appendices are included. The first contains nine Heat Transfer memoranda that state the thermal basis of this study. The second appendix provides a detailed operating time analysis of the retrieval machinery

  12. Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Henghu Sun; Yuan Yao

    2012-06-29

    Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

  13. Size effect of compressive strength of cemented backfill%胶结充填体力学强度尺寸效应

    Institute of Scientific and Technical Information of China (English)

    彭志华

    2009-01-01

    本文通过尾砂胶结充填体配比试验,研究了尾砂胶结充填体强度与试样尺寸和几何形状之间的关系.试验研究结果表明:在相同条件下,胶结充填体强度在试验范围内,随试样尺寸的增加而减小,其呈非线性变化;不同尺寸与几何形状的胶结充填体试样强度之间的换算比例关系为:152mm充填体试样强度大致为72mm和85mm试样强度的3/4,为70.7mm立方体试样强度的3/5.%This paper researches relation of compressive strength of cemented tailings fill and size、geometries of cemented backfill. The test results show under same condition compressive strength of cemented tailings fill will minish with size increasing, it show itself non-linear variety. 150mm diameter cylinder specimen fill strength averaged approximately three-quarter of 72mm and 85mm diameter cylinders specimen, about three fifths of 70.7mm cubes specimen.

  14. Experimental and analytical studies of a deeply embedded reactor building model considering soil-building interaction. Pt. 1

    International Nuclear Information System (INIS)

    The purpose of this paper is to describe the dynamic characteristics of a deeply embedded reactor building model derived from experimental and analytical studies which considers soil-building interaction behaviour. The model building is made of reinforced concrete. It has two stories above ground level and a basement, resting on sandy gravel layer at a depth of 3 meters. The backfill around the building was made to ground level. The model building is simplified and reduced to about one-fifteenth (1/15) of the prototype. It has bearing wall system for the basement and the first story, and frame system for the second. (orig.)

  15. Earthquake Resistant Design of Reinforced Soil Structures Using Pseudo Static Method

    Directory of Open Access Journals (Sweden)

    B. M. Basha

    2009-01-01

    Full Text Available Problem statement: This study presented a method to evaluate the internal stability of reinforced soil structures against tension and pullout modes of failure using pseudo-static method for earthquake conditions. Approach: Using limit equilibrium method and assuming the failure surface to be logarithmic spiral, analysis was conducted to maintain internal stability against both tensile and pullout failure of the reinforcements. For the seismic conditions, factors of safety of all the geosynthetic layers in relation to tension and pullout failure modes were determined for different magnitudes of friction angle of backfill, horizontal seismic accelerations and surcharge load acting on the wall. Results: The efforts had been made to obtain the number of layers, pullout length and total length of the reinforcement at each layer level for the desired safety level against tension and pullout modes of failure. The influence of friction angle of the backfill, horizontal earthquake acceleration and surcharge load on number of layers, pullout length and total length of the reinforcement needed for the stability at each level was discussed. Conclusion/Recommendations: The developed method provided a closed form solution for the active earth pressure acting on the reinforced soil structures using rotational log-spiral failure mechanism under earthquake loading ensuring safety against tension and pullout modes of failure.

  16. Soil Segregation Methods for Reducing Transportation and Disposal Costs - 13544

    International Nuclear Information System (INIS)

    At Formerly Utilized Sites Remedial Action Program (FUSRAP) sites where the selected alternative for contaminated soil is excavation and off-site disposal, the most significant budget items of the remedial action are the costs for transportation and disposal of soil at an off-site facility. At these sites, the objective is to excavate and dispose of only those soils that exceed derived concentration guideline levels. In situ soil segregation using gross gamma detectors to guide the excavation is often challenging at sites where the soil contamination is overlain by clean soil or where the contaminated soil is located in isolated, subsurface pockets. In addition, data gaps are often identified during the alternative evaluation and selection process, resulting in increased uncertainty in the extent of subsurface contamination. In response, the U.S. Army Corps of Engineers, Buffalo District is implementing ex situ soil segregation methods. At the remediated Painesville Site, soils were excavated and fed through a conveyor-belt system, which automatically segregated them into above- and below-cleanup criteria discharge piles utilizing gamma spectroscopy. At the Linde Site and the Shallow Land Disposal Area (SLDA) Site, which are both in the remediation phase, soils are initially segregated during the excavation process using gross gamma detectors and then transported to a pad for confirmatory manual surveying and sampling. At the Linde Site, the ex situ soils are analyzed on the basis of a site-specific method, to establish compliance with beneficial reuse criteria that were developed for the Linde remediation. At the SLDA Site, the ex situ soils are surveyed and sampled based on Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) final status survey guidance to demonstrate compliance with the derived concentration guideline levels. At all three sites, the ex situ soils that meet the site- specific DCGLs are retained on-site and used as backfill

  17. Soil Segregation Methods for Reducing Transportation and Disposal Costs - 13544

    Energy Technology Data Exchange (ETDEWEB)

    Frothingham, David; Andrews, Shawn; Barker, Michelle; Boyle, James; Buechi, Stephen; Graham, Marc; Houston, Linda; Polek, Michael; Simmington, Robert; Spector, Harold [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Elliott, Robert ' Dan' [U.S. Army Reserve, 812A Franklin St.,Worcester, MA 01604 (United States); Durham, Lisa [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2013-07-01

    At Formerly Utilized Sites Remedial Action Program (FUSRAP) sites where the selected alternative for contaminated soil is excavation and off-site disposal, the most significant budget items of the remedial action are the costs for transportation and disposal of soil at an off-site facility. At these sites, the objective is to excavate and dispose of only those soils that exceed derived concentration guideline levels. In situ soil segregation using gross gamma detectors to guide the excavation is often challenging at sites where the soil contamination is overlain by clean soil or where the contaminated soil is located in isolated, subsurface pockets. In addition, data gaps are often identified during the alternative evaluation and selection process, resulting in increased uncertainty in the extent of subsurface contamination. In response, the U.S. Army Corps of Engineers, Buffalo District is implementing ex situ soil segregation methods. At the remediated Painesville Site, soils were excavated and fed through a conveyor-belt system, which automatically segregated them into above- and below-cleanup criteria discharge piles utilizing gamma spectroscopy. At the Linde Site and the Shallow Land Disposal Area (SLDA) Site, which are both in the remediation phase, soils are initially segregated during the excavation process using gross gamma detectors and then transported to a pad for confirmatory manual surveying and sampling. At the Linde Site, the ex situ soils are analyzed on the basis of a site-specific method, to establish compliance with beneficial reuse criteria that were developed for the Linde remediation. At the SLDA Site, the ex situ soils are surveyed and sampled based on Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) final status survey guidance to demonstrate compliance with the derived concentration guideline levels. At all three sites, the ex situ soils that meet the site- specific DCGLs are retained on-site and used as backfill

  18. Reduced clay bearing gray sandstone deposits of Meghalaya, NE India: a possible upper backfill material in geological repository for high level radioactive waste Disposal

    International Nuclear Information System (INIS)

    Geology and geochemical aspects of reduced clay rich gray sandstones of Cretaceous age hosting anomalous uranium occurrences in Meghalaya plateau have been evaluated to assess their suitability as lower backfills in far field region of the geological repository. These sandstones are chiefly made up of quartz (70-90%) and contain appreciable amount of clays and organic matters. Geochemical data on these sandstones indicates that actinides (U and Th), elements analogues to fission products (Rb, Sr, Zr, Mo, Nb, Cd, Ag, Cs, Ba and rare earth elements are adequately retained in clays and organic matters associated with these deposits. Albeit these clay rich (Illite-Smectite-Kaolinite) sandstones contain almost 30 % water-soluble uranium and lies in one of the highest rainfall area of the world, not much uranium and other trace elements have been reported to escape from the geological set up and hydrogeological system. Due to the presence of strong reducing environment prevailing in these rocks caused by the presence of pyrite and organic matter, most of the uranium being dissolved by circulatory oxygenated groundwater gets reduced and also is trapped in the organic matter as organo uranyl complexes. The organic matters in these sandstones have total adsorption capacity of 0,5% for actinides and at time contains as high as 40% uranium adsorbed form groundwater. Similarly it also contains as high as 193-ppm molybdenum, 458-ppm cadmium and 35-ppm silver. Data also reveals that most of the organic matter has been subjected to temperature more than 100 C in the geological past during its burial and diagenesis, hence possibility of carbon dioxide production consequent to waste emplacement also does not exists. The clays in these sandstones reveal good retention capacity for uranium, radium, rubidium, strontium, cesium and rare earth elements, whereas most of the barium appears to have been accommodated in secondary calcite frequently available in these sandstones

  19. Assessing bioturbation using micromorphology and biosilicate evidence: A case study of the early-Holocene Brady Soil, central Great Plains, USA

    Science.gov (United States)

    Woodburn, T. L.; Hasiotis, S. T.; Johnson, W. C.

    2012-12-01

    The Old Wauneta Roadcut site in southwestern Nebraska exhibits a 1.2 meter-thick exposure of the Brady Soil, a buried paleosol which formed within loess during the Pleistocene-Holocene transition. Excavation of the loess-paleosol sequence has revealed considerable bioturbation by plant roots, invertebrates, and small vertebrates. Bioturbation was not restricted to a single time period, but occurred continually throughout soil development, as evidenced by differing sediment fills and crosscutting relationships. The Brady Soil is an accretionary soil within the uppermost part of the Last Glacial Maximum Peoria Loess. At the base of the solum, the Bkb horizon exhibits an increased illuvial clay and carbonate content, and contains extensive, small (~2cm width), backfilled burrows typically produced by cicada nymphs (Cicadidae) or beetle larvae. The most stable period of the Brady Soil is expressed by the dark (9.8 YR 4/1), thick Ab horizon. This is overlain by an ACb horizon, where soil formation was being extinguished by the onset of Holocene-age Bignell Loess deposition. Within the upper solum and Bignell Loess, a shift in biota activity occurs as indicated by the large burrow (6-12 cm width) and chamber (30-40 cm width) systems observed. Trace sizes suggest that a burrowing rodent, such as the prairie dog (Cynomys sp.) or ground squirrel (Spermophilus sp.), was responsible for their creation. Soil micromorphology was used to distinguish sediment-size classes, mineralogy, and clay morphology of specific loess deposits and soil horizons in order to track displacement of sediment through the profile due to bioturbation. Five block samples were taken in undisturbed sediment and soil horizons for thin-section analysis. Twelve additional samples of burrow cross-sections or bioturbated sediment were analyzed for comparison. Soil features produced by faunal and floral activity were differentiated from features produced by pedologic processes through the identification and

  20. Mechanical properties and consolidation of potential DHLW [Defense High-Level Wastes] backfill materials: Crushed salt and 70/30 bentonite/sand

    International Nuclear Information System (INIS)

    Thermomechanical properties of intact rock salt and the waste package materials have appeared in the literature. Only limited data is available, however, for the two backfill materials of interest in the analyses, crushed salt and 70/30 (by weight) bentonite/sand. A unique property of bentonite-based materials is the propensity for clay particles to swell as a result of water sorption. If volume expansion is prevented or partially restricted, pressures are built up within the bentonite materials. Therefore, the primary objective of this study is to supply appropriate data (not available in the literature) in support of the aforementioned detailed thermomechanical stress analyses. The study consists of laboratory tests performed on samples of crushed salt and 70/30 bentonite/sand. The remainder of this report is organized into five chapters and four appendixes. Chapter 2 describes the specimens tested in this study. Chapter 3 describes the testing machines and test procedures used. Chapter 4 gives the results of the tests on crushed salt and 70/30 bentonite/sand. Chapter 5 gives conclusions of the test program and is followed by a list of cited references. Four appendixes conclude the report. The first and second give stress-strain curves for the unconfined compression tests on crushed salt and 70/30 bentonite/sand, respectively; the third gives details of the algorithm used to compute volumetric strains during hydrostatic compression tests which accounts for vessel volume change; while the final appendix gives mean stress-volumetric strain curves for the hydrostatic compression tests. 16 refs., 18 figs., 10 tabs

  1. Site-specific analysis of radiological and physical parameters for cobbly soils at the Gunnison, Colorado, processing site

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    The remedial action at the Gunnison, Colorado, processing site is being performed under the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 [Public Law (PL) 95-6041]. Under UMTRCA, the US Environmental Protection Agency (EPA) is charged with the responsibility of developing appropriate and applicable standards for the cleanup of radiologically contaminated land and buildings at 24 designated sites, including the Gunnison, Colorado, inactive processing site. The remedial action at the processing site will be conducted to remove the tailings and contaminated materials to meet the EPA bulk soil cleanup standards for surface and subsurface soils. The site areas disturbed by remedial action excavation will be either contoured or backfilled with radiologically uncontaminated soil and contoured to restore the site. The final contours will produce a final surface grade that will create positive drainage from the site.

  2. Site-specific analysis of radiological and physical parameters for cobbly soils at the Gunnison, Colorado, processing site

    International Nuclear Information System (INIS)

    The remedial action at the Gunnison, Colorado, processing site is being performed under the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 [Public Law (PL) 95-6041]. Under UMTRCA, the US Environmental Protection Agency (EPA) is charged with the responsibility of developing appropriate and applicable standards for the cleanup of radiologically contaminated land and buildings at 24 designated sites, including the Gunnison, Colorado, inactive processing site. The remedial action at the processing site will be conducted to remove the tailings and contaminated materials to meet the EPA bulk soil cleanup standards for surface and subsurface soils. The site areas disturbed by remedial action excavation will be either contoured or backfilled with radiologically uncontaminated soil and contoured to restore the site. The final contours will produce a final surface grade that will create positive drainage from the site

  3. Soil metagenomics and tropical soil productivity

    OpenAIRE

    Garrett, Karen A.

    2009-01-01

    This presentation summarizes research in the soil metagenomics cross cutting research activity. Soil metagenomics studies soil microbial communities as contributors to soil health.C CCRA-4 (Soil Metagenomics)

  4. 堤坝下矸石不升井充填采煤技术实践%Application of solid backfill mining under dams avoiding raising waste rock

    Institute of Scientific and Technical Information of China (English)

    李剑; 王东升; 王志平; 康涛; 耿佃凯

    2013-01-01

      Aimed at exploiting coal resources under dams safely and efficiently and disposing of gangue excavated underground on a large scale of Jisan coal mine ,Yankuang Group ,this paper presented a solution of solid backfilling mining avoiding raising waste rock .According to mining geological conditions in pilot area of Jisan coal mine and structural characteristics of Nanyang Lake Dam ,proposed a method of gangue preprocessing and transport from advancing face to backfilling working face .Based on technical characteristics of backfilling mining ,developed four key equipments in backfilling working face :four‐link backfill supports with six props ,backfilling conveyor with a bunch of unloading holes at the bottom ,a full coal seam compactor and a self‐shift transshipping conveyor .According to the protection requirement of Nanyang Lake Dam ,determined the security technical measures of filling ratio .When mining was completed at 63下 04‐1 working face ,the maximum sinking value of the Nanyang Lake Dam was 32mm and the maximum horizontal deformation value was 0 .14mm/m ,which were both far lower than the predicted value and the dam's deformation extremum ,both Nanyang Lake Dam and the buildings around had not occurred crazing damage .%  为达到兖矿集团济三煤矿堤坝下压煤资源的安全高效开采及井下掘进矸石规模化处理的目的,提出采用矸石不升井充填采煤技术开采堤坝下压煤。根据济三煤矿试验区域采矿地质条件及南阳湖堤结构特点,设计了矸石由掘进工作面至充填采煤工作面的预处理和运输方案;基于充填采煤的工艺要求,研发了充填采煤工作面4种关键设备:正四连杆六柱式固体充填采煤液压支架、多孔底卸式输送机、全采高夯实机和自移式充填物料转载输送机;依照南阳湖堤保护要求,确定了充填采煤充实率保障技术措施。63下04‐1工作面按照设计方案开采完毕后,实测

  5. Successful Implementation of Soil Segregation Technology at the Painesville FUSRAP Site - 12281

    International Nuclear Information System (INIS)

    Typically the highest cost component of the radiological soils remediation of Formerly Utilized Sites Remedial Action Program (FUSRAP) sites is the cost to transport and dispose of the excavated soils, typically contaminated with naturally occurring isotopes of uranium, thorium and radium, at an appropriately permitted off-site disposal facility. The heterogeneous nature of the contamination encountered at these sites makes it difficult to accurately delineate the extent of contaminated soil using the limited, discrete sampling data collected during the investigation phases; and difficult to precisely excavate only the contaminated soil that is above the established cleanup limits using standard in-field scanning and guiding methodologies. This usually results in a conservative guided excavation to ensure cleanup criteria are met, with the attendant transportation and disposal costs for the larger volumes of soil excavated. To address this issue during the remediation of the Painesville FUSRAP Site, located in Painesville, Ohio, the Buffalo District of the U.S. Army Corps of Engineers, and its contractor, Safety and Ecology Corporation (SEC), employed automatic soil segregation technology provided by MACTEC (now AMEC) to reduce the potential for transportation and disposal of soils that met the cleanup limits. This waste minimization technology utilized gamma spectroscopy of conveyor-fed soils to automatically segregate the material into above and below criteria discharge piles. Use of the soil segregation system resulted in cost savings through the significant reduction of the volume of excavated soil that required off-site transportation and disposal, and the reduction of the amount of imported clean backfill required via reuse of 'below criteria' segregated soil as place back material in restoring the excavations. Measurements taken by the soil segregation system, as well as results of quality control sampling of segregated soils, confirmed that soils segregated

  6. Soil friability

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl

    2011-01-01

    This review gathers and synthesizes literature on soil friability produced during the last three decades. Soil friability is of vital importance for crop production and the impact of crop production on the environment. A friable soil is characterized by an ease of fragmentation of undesirably large...... aggregates/clods and a difficulty in fragmentation of minor aggregates into undesirable small elements. Soil friability has been assessed using qualitative field methods as well as quantitative field and laboratory methods at different scales of observation. The qualitative field methods are broadly used by...... scientists, advisors and farmers, whereas the quantitative laboratory methods demand specialized skills and more or less sophisticated equipment. Most methods address only one aspect of soil friability, i.e. either the strength of unconfined soil or the fragment size distribution after applying a stress. All...

  7. Compaction comparison testing using a modified impact soil tester and nuclear density gauge

    International Nuclear Information System (INIS)

    The purpose of this paper is to compare test results of a modified Impact Soil Tester (IST) on compacted soil with data obtained from the same soil using a nuclear density gauge at the US Army Corp of Engineer's Buena Vista Flood Wall project in Buena Vista, Virginia. The tests were run during construction of the earth flood wall during the summer of 1996. This comparison testing demonstrated the credibility of the procedure developed for the IST as a compacting testing device. The comparison data was obtained on a variety of soils ranging from silty sands to clays. The Flood Wall comparison compaction data for 90% Standard Proctor shows that the results of the IST as modified are consistent with the nuclear density gauge 89% of the time for all types of soil tested. However, if the soils are more cohesive than the results are consistent with the nuclear density gauge 97% of the time. In addition these comparison tests are in general agreement with comparison compaction testing using the same testing techniques and methods of compacted backfill in utility trenches conducted earlier for the Public Works Department, Chesterfield County, Virginia

  8. Impacts of soil erosion

    OpenAIRE

    Dorren, Luuk; De la Rosa, Diego; Theocharopoulos, Sid. P.

    2004-01-01

    3.1 Definition of soil functions, soil quality and quality targets The identification of soil functions, properties and processes which are affected by soil erosion is needed to evaluate the impacts of erosion on the soil system. Definition of soil loss tolerance according to soil types and environmental characteristics. 3.2 Development of criteria and indicators to assess soil sustainable use and soil protection measures What are the impacts of soil erosion on soil...

  9. Research on Protecting the Safety of Buildings by Using Backfill Mining with Solid%利用固体充填开采方法保护建筑群安全的研究

    Institute of Scientific and Technical Information of China (English)

    徐惠

    2012-01-01

    我国煤矿建筑物下压煤量占总压煤量的69%,同时每年要向地面排放4.5亿t以上的固体废弃物,因此,研究利用固体废弃物充填开采方法,在保证地表建筑物安全性的基础上,高效开采出下压煤炭资源意义重大.文章应用数值模拟方法,对建筑物下压煤开采所引起的岩层移动过程进行模拟,系统分析了采场围岩塑性区分布及地表沉陷量变化规律,由计算结果分析得知,应用固体充填开采法与无充填直接开采相比,采场围岩破坏单元数较少,围岩稳定性受影响较小,减少地表沉陷量效果明显.以数值模拟结果作为参考,研制了长臂综采矸石充填开采工艺的配套设备,并在某矿建筑物下压煤炭开采的实际应用中取得良好效果,有效控制了地表变形,保证了建筑物的安全性和资源的高效开采.%The coal under buildings accounts for 69% of the total in China,while more than 4.5 billion tons of solid waste is discharged to the ground over years.This paper studied the backfill with solid mining method.It is meaningful for the efficient exploitation of coal mining under buildings as well as reducing environmental pollution around the mining area.In this paper,we analyzed the plastic zone distribution of the face surrounding rock and the variation of surface subsidence systematically.According to the simulation results,backfill mining with solid reduce the damage to the surrounding rock of the goaf and diminish the effect on the stability of surrounding rock.It also can reduce the surface subsidence obviously.Taking the above study results as one of the important references,we research and design the matching equipments with fully-mechanized filling mining.The filling equipments mainly are the self-tamping backfilling hydraulic support and backfilling conveyor.These have been applied to an actual exploitation of coal mining under buildings,and achieved good results.It can control the surface

  10. Soils electroremediation

    International Nuclear Information System (INIS)

    This paper presents data on decontamination experiments performed with soils contaminated by long-lived radioactive caesium isotopes. The contamination was formed about 30 years ago during an accident in the first nuclear power station in the former Czechoslovakia. Because of the large soil quantities that make excavation and storage of these soils in nuclear waste repositories inconvenient from economical and spatial point of view, various methods for in situ or ex situ remediation were sought and tested. For soil contamination by caesium, the time of contact of caesium with the soil is crucial because the caesium ions diffuse inside the crystalline structures of clay minerals where they are virtually irreversibly bound. For such materials, the efficiency of the classic 'soft' decontamination methods, such as leaching, phytoremediation etc., is rather low. Electrochemical decontamination was proposed as the decontamination technique for ex situ application. The method is based on electrolysis at a relatively high current density in a suitable electrolyte. The soil is kept in suspension close to the anode, and owing to the high acidity together with both the high temperature and ion flux, the soil structures are opened or partially disrupted and caesium ions are released. The ions can be separated from the solution, e.g., by using selective ion exchangers. The experimental electrolytic cell was designed for the treatment of thin soil layers containing about 3 g of the soil and about 100 mL of electrolyte. The influence of various system parameters, such as electrolyte composition, current-voltage, temperature, and time, on the decontamination efficiency was examined. In the most efficient configuration, a 99+% decontamination level was achieved. For the next step, a bench-scale apparatus was designed that should allow treatment of batches of up to 0.5 kg of soil in one step. (author)

  11. SOIL BIOLOGY AND ECOLOGY

    Science.gov (United States)

    The term "Soil Biology", the study of organism groups living in soil, (plants, lichens, algae, moss, bacteria, fungi, protozoa, nematodes, and arthropods), predates "Soil Ecology", the study of interactions between soil organisms as mediated by the soil physical environment. oil ...

  12. Assessment of soil-structure interaction practice based on synthesized results from Lotung experiment - earthquake response

    International Nuclear Information System (INIS)

    On the assumption that the foundation can be appropriately modeled, it would be difficult to distinguish between the computational capabilities of the SASSI, CLASSI and SUPERALUSH/CLASSI methods of SSI analysis. Given the appropriate model, all three methodologies would produce very similar valid results. However, both CLASSI (Bechtel) and Soil-Spring methods should be used cautiously within their known limitations. The use of FLUSH should be limited to essentially 2D problems. More than the computational methods, the differences in the seismic response results obtained are due to the modeling of the soil-structure system and the characterization of the input motions. A number of insights have been obtained with respect to the validity of SSI analysis methodologies for earthquake response. Among these are the following: vertical wave propagation assumption in performing SSI is adequate to describe the wave field; equivalent linear analysis of soil response for SSI analysis, such as performed by the SHAKE code, provides acceptable results; a significant but non-permanent degradation of soil modulus occurs during earthquakes; the development of soil stiffness degradation and damping curves as a function of strain, based on geophysical and laboratory tests, requires improvement to reduce variability and uncertainty; backfill stiffness plays an important role in determining impedance functions and possibly input motions; scattering of ground motion due to embedment is an important element in performing SSI analysis. (author)

  13. Soil mechanics

    Science.gov (United States)

    Mitchell, J. K.; Carrier, W. D., III; Houston, W. N.; Scott, R. F.; Bromwell, L. G.; Durgunoglu, H. T.; Hovland, H. J.; Treadwell, D. D.; Costes, N. C.

    1972-01-01

    Preliminary results are presented of an investigation of the physical and mechanical properties of lunar soil on the Descartes slopes, and the Cayley Plains in the vicinity of the LM for Apollo 16. The soil mechanics data were derived form (1) crew commentary and debriefings, (2) television, (3) lunar surface photography, (4) performance data and observations of interactions between soil and lunar roving vehicle, (5) drive-tube and deep drill samples, (6) sample characteristics, and (7) measurements using the SRP. The general characteristics, stratigraphy and variability are described along with the core samples, penetrometer test results, density, porosity and strength.

  14. Micromorphology of past urban soils: method and results (France, Iron Age - Middle Age)

    Science.gov (United States)

    Cammas, Cécilia

    2014-05-01

    Urban soils in French protohistoric and Roman towns and present-day towns of roman origin are several meters thick accumulations, with great spatial and vertical variability due to long duration of occupation. In order to improve our knowledge of both sedimentary and pedological characteristics as well as formation processes of urban soils, micromorphological analysis was carried out on buried towns. The studied sites include Iron Age towns (floodplain sites: Lattes or Lattara, Le Cailar; oppidum: Pech-Maho in the south of France), a roman buried town (Famars or Fanum Martis, North of France), and various towns occupied from the Roman period until now (urban and periurban sites in Paris, Strasbourg, Mâcon… North and East of France). Original method and sampling strategy were elaborated in order to try to encompass both spatial and vertical variability as well as the "mitage" of the present-day cities. In Lattes, representative elementary urban areas such as streets, courtyard, and houses were sampled for micromorphology during extensive excavation. These analyses revealed specific microscopic features related to complex anthropogenic processes (craft and domestic activities discarding, trampling, backfill, building), moisture and heat, and biological activity, which defined each kind of area. Comparison between well preserved buried town and current cities of roman origin, where the sequence of past urban soils is preserved in few place ("mitage") help to identify past activities, building rhythms as well as specific building materials. For example, in Paris, compacted sandy backfills alternate with watertight hardfloors during the Roman period (soils similar to Technosols). At the opposite, various kinds of loose bioturbated laminated dark earth resulting from activities such as craft refuses, backfills, compost or trampled layers were discriminated for Early Medieval Period (soils similar to Cumulic Anthroposol). Moreover, biological activity is usually

  15. Fatigue Analysis on Pallet of Chain Type Feeder System for Backfill Mining%充填采煤链式投料系统托盘疲劳分析

    Institute of Scientific and Technical Information of China (English)

    张国伟; 马占国; 耿敏敏; 龚鹏

    2011-01-01

    According to the importance of the pallet in the chain type feeder system for the backfill mining,with the calculation formula of the impact load provided with the energy method,a finite element program was applied to study on the fatigue damage of the pallet after the impact of the backfill material under the different spaces and different dropping velocities and to predict the fatigue life of the pallet.Finally the dangerous part of the pallet was analyzed and the fatigue law of the pallet affected by the impact of the backfill material was obtained.The study results showed that with the space between the pallets increased,the fatigue damage of the pallet would be higher and when the space between pallets was 5 m,the fatigue life would meet the mining service life of the mine.The higher of the pallet dropping velocity,the fatigue damage of the pallets could be reduced.In consideration of the strength,stability and transportation efficiency of the pallet,the dropping velocity of 1.5~2.5 m/s would be suitable.%针对托盘在充填采煤链式投料系统中的重要性,通过能量法得出冲击载荷计算公式,利用有限元程序对托盘在不同间距、不同下降速度下,受充填材料冲击后的疲劳损伤进行研究,预测了托盘的疲劳寿命。最后分析了托盘的危险部位,得到托盘受充填材料冲击的疲劳规律。研究结果表明:随着托盘间距增大,托盘疲劳损伤越大,托盘间距取5 m时其疲劳寿命符合煤矿开采年限;托盘下降的速度越大,其受到的疲劳损伤减少,考虑到托盘的强度、稳定性、运输效率,选取其速度为1.5~2.5 m/s较合适。

  16. An Experimental Study into Behaviour of Circular Footing on Reinforced Soil

    Directory of Open Access Journals (Sweden)

    D.M. Dewaikar

    2011-01-01

    Full Text Available The experimental investigations are reported on the study of load-deformation behavior of a model circular footing on reinforced soil in respect of two-layered system comprising clay as sub-grade and mine waste as backfill material. The footing was subjected to axial load. Two different types of reinforcing materials such as Kolon Geo-grid (KGR-40 and rubber grids derived out of waste tyres were used in the study. The study revealed appreciable increase in ultimate bearing pressure and decrease in settlement with the provision of a single layer reinforcement. Further, rubber grid performed better than the Geo-grid in respect to BCR and SRF. The study indicates significance of solid waste materials such as mine wastes and discarded tyres as effective civil engineering construction materials.

  17. Environmental assessment of the reuse of municipal solid waste incineration bottom ash in quarry backfilling; Evaluation environnementale de la valorisation de machefers d'incineration d'ordures menageres en remplissage de carriere

    Energy Technology Data Exchange (ETDEWEB)

    Brons-Laot, G.

    2002-10-15

    The leaching behaviour of three different MSWI bottom ashes-based materials containing hydraulic binders is assessed in the conditions specified by the quarry backfilling application. An adapted approach methodology is applied: - physical, mineralogical and chemical characterizations of materials, - use of parametric tests to determine the effect of main scenarios factors on the release, - chemical modelling based on mineralogical and experimental leaching data with geochemical calculation codes, - chemical reaction / transport coupled modelling. The main results demonstrate that: - the batch and dynamic tests allow to obtain enough data to model and to predict the long term behaviour, - the chemical modelling of the solid / liquid equilibrium permits the determination of the chemical reactions involved and the prediction of pollutants solubilization in different chemical contexts, - the new materials (source term) present a low environmental impact in the conditions specified by the considered scenarios. (author)

  18. Life cycle performances of log wood applied for soil bioengineering constructions

    Science.gov (United States)

    Kalny, Gerda; Strauss-Sieberth, Alexandra; Strauss, Alfred; Rauch, Hans Peter

    2016-04-01

    Nowadays there is a high demand on engineering solutions considering not only technical aspects but also ecological and aesthetic values. Soil bioengineering is a construction technique that uses biological components for hydraulic and civil engineering solutions. Soil bioengineering solutions are based on the application of living plants and other auxiliary materials including among others log wood. This kind of construction material supports the soil bioengineering system as long as the plants as living construction material overtake the stability function. Therefore it is important to know about the durability and the degradation process of the wooden logs to retain the integral performance of a soil bio engineering system. These aspects will be considered within the framework of the interdisciplinary research project „ELWIRA Plants, wood, steel and concrete - life cycle performances as construction materials". Therefore field investigations on soil bioengineering construction material, specifically European Larch wood logs, of different soil bioengineering structures at the river Wien have been conducted. The drilling resistance as a parameter for particular material characteristics of selected logs was measured and analysed. The drilling resistance was measured with a Rinntech Resistograph instrument at different positions of the wooden logs, all surrounded with three different backfills: Fully surrounded with air, with earth contact on one side and near the water surface in wet-dry conditions. The age of the used logs ranges from one year old up to 20 year old. Results show progress of the drilling resistance throughout the whole cross section as an indicator to assess soil bioengineering construction material. Logs surrounded by air showed a higher drilling resistance than logs with earth contact and the ones exposed to wet-dry conditions. Hence the functional capability of wooden logs were analysed and discussed in terms of different levels of degradation

  19. Soil Survey Geographic (SSURGO) - Magnesic Soils

    Data.gov (United States)

    California Department of Resources — Magnesic soils is a subset of the SSURGO dataset containing soil family selected based on the magnesic content and serpentinite parent material. The following soil...

  20. Soil shrinkage characteristics in swelling soils

    International Nuclear Information System (INIS)

    The objectives of this presentation are to understand soil swelling and shrinkage mechanisms, and the development of desiccation cracks, to distinguish between soils having different magnitude of swelling, as well as the consequences on soil structural behaviour, to know methods to characterize soil swell/shrink potential and to construct soil shrinkage curves, and derive shrinkage indices, as well to apply them to assess soil management effects

  1. Influence of soil moisture on soil respiration

    Science.gov (United States)

    Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara

    2015-04-01

    The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes

  2. The stabilization of the rock mass of the wieliczka salt mine through the backfilling of the witos chamber with the use of injection methods / Stabilizacji górotworu kopalni soli "wieliczka" poprzez likwidację komór "witos" z zastosowaniem metod iniekcji

    Science.gov (United States)

    D'Obyrn, Kajetan

    2012-10-01

    The Wieliczka Salt Mine is the most famous and the most visited mining industry monument in the world and it requires modern methods to ensure rock mass stability and tourists' security. Both for conservation and tourism organization reasons, the group of Warszawa-Wisla-Budryk-Lebzeltern-Upper Witos Chambers (Photo. 1, 2. 3) located the Kazanów mid-level at a depth of 117 m underground is extremely important. Discontinuous deformation occurring in this Chamber complex was eliminated by comprehensive securing work with anchor housing, but their final securing and stability is conditioned by further backfilling and sealing the Witos Chambers situated directly beneath. In the 1940s and 1950s, the Witos Chamber was backfilled with slag from the mine boilerhouse. However, slags with 80% compressibility are not backfilling material which would ensure the stability of the rock mass. The chambers were exploited in the early nineteenth century in the Spizit salts of the central part of the layered deposit. The condition of the Upper Witos, Wisla, Warszawa, Budryk, and Lebzeltern Chambers is generally good. The western part if the Lebzeltern Chamber (Fig. 1), which was threatened with collapse, was backfilled with sand. In all the chambers of the Witos complex, local deformation of ceiling rock of varying intensity is observed as well as significant destruction of the side walls of pillars between chambers. No hydrogeological phenomena are observed in the chambers. It has been attempted to solve the problem of stability of the rock mass in this region of the mine by extracting the slag and backfilling with sand, erecting concrete supporting pillars, backfilling the voids with sand, anchoring the ceiling and the side walls, the use of the pillar housing. The methods have either not been applied or have been proved insufficient to properly protect the excavation situated above. In order to select the optimal securing method, a geomechanical analysis was conducted in order to

  3. Gardening in Clay Soils

    OpenAIRE

    Wagner, Katie; Kuhns, Michael; Cardon, Grant

    2015-01-01

    This fact sheet covers the basics of clay, silt and sand soils with an emphasis on gardening in soils with a high clay content. It includes information on the composition of clay soils, gardening tips for managing clay soils, and the types of plants that grow best in clay soils.

  4. Gardening in Sandy Soils

    OpenAIRE

    Wagner, Katie; Kuhns, Michael; Cardon, Grant

    2015-01-01

    This fact sheet covers the basics of clay, silt and sand soils with an emphasis on gardening in soils with a high sand content. It includes information on the composition of sandy soils, gardening tips for managing sandy soils, and the types of plants that grow best in sandy soils.

  5. Soil compaction and soil tillage - studies in agricultural soil mechanics

    OpenAIRE

    Keller, Thomas

    2004-01-01

    This thesis deals with various aspects of soil compaction due to agricultural field traffic, the draught force requirement of tillage implements and soil structures produced by tillage. Several field experiments were carried out to study the mechanical impact of agricultural machines. It was shown that the stress interaction from the different wheels in dual and tandem wheel configurations is small and these wheels can be considered separate wheels with regard to soil stress. Hence, soil stre...

  6. 用充填技术促进矿山资源开发与环境保护协调发展%Coordinated Development between Mineral Resource Exploitation and Environmental Protection with Backfill Technology

    Institute of Scientific and Technical Information of China (English)

    苏亮; 张小华

    2013-01-01

    阐述了资源开发与环境保护的矛盾,提出了矿山资源开发与环境保护协调发展的主要目标及途径.将充填技术应用于资源-经济-环境体系中,根据矿山固体废弃物料的特点,对不同的固体废弃物料采用废石充填、尾砂充填和矿碴灰充填等不同的充填工艺技术,不仅提高了矿产资源的利用率,而且降低了矿山废弃固体物料对环境的污染.%In view of the contradiction occurred between mineral resources exploitation and environmental protection,technology of backfilling with waste rocks,tailing sand and slags according to different types of solid mine wastes is proposed to be adopted for achieving coordinated development of mineral resources exploitation and environmental protection.Practice shows such technology can not only improve the utilization of mineral resources,but also reduce the adverse effect of mining waste on environment.

  7. Soil Organic Carbon Stock

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Soil organic carbon (SOC) is the carbon held within soil organic constituents (i.e., products produced as dead plants and animals decompose and the soil microbial...

  8. Detailed Soils 24K

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set is a digital soil survey and is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was...

  9. Dutch soil management and soil fertility

    OpenAIRE

    Sukkel, Wijnand

    2011-01-01

    The organic sector depends heavily on its soils. In the Netherlands, relatively little acreage is available per farm compared to other countries. This means that the soil has to be kept in optimal shape for production, be it vegetables, cereals, potatoes or animal feed and grassland. To facilitate organic farmers, Wageningen UR and Louis Bolk Institute carry out a variety of research aimed specifically at soil management and soil fertility. The report contains sector facts, sector aspirati...

  10. Soil moisture: Some fundamentals. [agriculture - soil mechanics

    Science.gov (United States)

    Milstead, B. W.

    1975-01-01

    A brief tutorial on soil moisture, as it applies to agriculture, is presented. Information was taken from books and papers considered freshman college level material, and is an attempt to briefly present the basic concept of soil moisture and a minimal understanding of how water interacts with soil.

  11. Soil-structure interaction including nonlinear soil

    OpenAIRE

    Gicev, Vlado

    2008-01-01

    There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.

  12. NOrth AMerica Soil (NOAM-SOIL) Database

    Science.gov (United States)

    Miller, D. A.; Waltman, S. W.; Geng, X.; James, D.; Hernandez, L.

    2009-05-01

    NOAM-SOIL is being created by combining the CONUS-SOIL database with pedon data and soil geographic data coverages from Canada and Mexico. Completion of the in-progress NOrth AMerica Soil (NOAM-SOIL) database will provide complete North America coverage comparable to CONUS. Canadian pedons, which number more than 500, have been painstakingly transcribed to a common format, from hardcopy, and key- entered. These data, along with map unit polygons from the 1:1,000,000 Soil Landscapes of Canada, will be used to create the required spatial data coverages. The Mexico data utilizes the INEGI 1:1,000,000 scale soil map that was digitized by U. S. Geological Survey EROS Data Center in the mid 1990's plus about 20,000 pedons. The pedon data were published on the reverse side of the paper 1:250,000 scale Soil Map of Mexico and key entered by USDA and georeferenced by Penn State to develop an attribute database that can be linked to the 1:1,000,000 scale Soil Map of Mexico based on taxonomic information and geographic proximity. The essential properties that will be included in the NOAM-SOIL data base are: layer thickness (depth to bedrock or reported soil depth); available water capacity; sand, silt, clay; rock fragment volume; and bulk density. For quality assurance purposes, Canadian and Mexican soil scientists will provide peer review of the work. The NOAM-SOIL project will provide a standard reference dataset of soil properties for use at 1km resolution by NACP modelers for all of North America. All data resources, including metadata and selected raw data, will be provided through the Penn State web site: Soil Information for Environmental Modeling and Ecosystem Management (www.soilinfo.psu.edu). Progress on database completion is reported.

  13. Soil structural behaviour of flooded soils

    International Nuclear Information System (INIS)

    The objectives of this presentation are to: identify factors determining of the structural behaviour of flooded soils, as compared to those acting in upland soils; analyse the influence of reductive processes on aggregate stabilising agents; discuss mechanisms of structural deterioration and recovery during the flooding-drying cycle, on the basis of a case study: cattle trampling effects in the flooding Pampa of Argentina. Flooded soils, now known as Hydric soils, are characteristic of wetlands and irrigated fields cropped to rice (paddy soils). In them, water covers the soil, or is present either at or near the surface of the soil all year or for varying periods of time during the year. Hydric soils belong to different taxa of the FAO-UNESCO Soil Map (2000). Fluvisols, Planosols and Gleysols are widespread distributed in the globe. The generation of redoximorphic features is due to different causes in each of them. Fluvisols are covered part of the year by surface water from river overflows; Planosols are soils having an impervious Bt horizon, supporting perched water during short periods; and Gleysols are soils affected by stagnant water tables during long periods

  14. MILESTONES IN SOIL PHYSICS

    Science.gov (United States)

    This special issue of “Soil Science“ celebrates the enormous accomplishments made during the past century or more in the field of soil science, including some of the key articles published in Soil Science during its 90 years of existence. In this article, we focus on the contributions in soil physic...

  15. Visual soil evaluation

    DEFF Research Database (Denmark)

    Visual Soil Evaluation (VSE) provides land users and environmental authorities with the tools to assess soil quality for crop performance. This book describes the assessment of the various structural conditions of soil, especially after quality degradation such as compaction, erosion or organic...... nutrient leaching, and for diagnosing and rectifying erosion and compaction in soils....

  16. Triazine Soil Interactions

    Science.gov (United States)

    The fate of triazine herbicides in soils is controlled by three basic processes: transformation, retention, and transport. Sorption of triazines on surfaces of soil particles is the primary means by which triazines are retained in soils. Soils are very complex mixtures of living organisms, various t...

  17. Fundamentals of soil science

    Science.gov (United States)

    This study guide provides comments and references for professional soil scientists who are studying for the soil science fundamentals exam needed as the first step for certification. The performance objectives were determined by the Soil Science Society of America's Council of Soil Science Examiners...

  18. Lunar Soil Particle Separator

    Science.gov (United States)

    Berggren, Mark

    2010-01-01

    The Lunar Soil Particle Separator (LSPS) beneficiates soil prior to in situ resource utilization (ISRU). It can improve ISRU oxygen yield by boosting the concentration of ilmenite, or other iron-oxide-bearing materials found in lunar soils, which can substantially reduce hydrogen reduction reactor size, as well as drastically decreasing the power input required for soil heating

  19. Soil organic matter studies

    International Nuclear Information System (INIS)

    The use of isotopes in soil organic matter studies is reviewed. Such studies include measuring the input of organic carbon into soils, the decomposition of isotope-labelled materials such as organic compounds and microbial and plant material in soils, the characterization of soil organic matter and the availability of nutrients released from organic residues. (U.K.)

  20. Restoring Soil Quality to Mitigate Soil Degradation

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2015-05-01

    Full Text Available Feeding the world population, 7.3 billion in 2015 and projected to increase to 9.5 billion by 2050, necessitates an increase in agricultural production of ~70% between 2005 and 2050. Soil degradation, characterized by decline in quality and decrease in ecosystem goods and services, is a major constraint to achieving the required increase in agricultural production. Soil is a non-renewable resource on human time scales with its vulnerability to degradation depending on complex interactions between processes, factors and causes occurring at a range of spatial and temporal scales. Among the major soil degradation processes are accelerated erosion, depletion of the soil organic carbon (SOC pool and loss in biodiversity, loss of soil fertility and elemental imbalance, acidification and salinization. Soil degradation trends can be reversed by conversion to a restorative land use and adoption of recommended management practices. The strategy is to minimize soil erosion, create positive SOC and N budgets, enhance activity and species diversity of soil biota (micro, meso, and macro, and improve structural stability and pore geometry. Improving soil quality (i.e., increasing SOC pool, improving soil structure, enhancing soil fertility can reduce risks of soil degradation (physical, chemical, biological and ecological while improving the environment. Increasing the SOC pool to above the critical level (10 to 15 g/kg is essential to set-in-motion the restorative trends. Site-specific techniques of restoring soil quality include conservation agriculture, integrated nutrient management, continuous vegetative cover such as residue mulch and cover cropping, and controlled grazing at appropriate stocking rates. The strategy is to produce “more from less” by reducing losses and increasing soil, water, and nutrient use efficiency.

  1. Soil organic matter studies

    International Nuclear Information System (INIS)

    A total of 77 papers were presented and discussed during this symposium, 37 are included in this Volume II. The topics covered in this volume include: biochemical transformation of organic matter in soils; bitumens in soil organic matter; characterization of humic acids; carbon dating of organic matter in soils; use of modern techniques in soil organic matter research; use of municipal sludge with special reference to heavy metals constituents, soil nitrogen, and physical and chemical properties of soils; relationship of soil organic matter and plant metabolism; interaction between agrochemicals and organic matter; and peat. Separate entries have been prepared for those 20 papers which discuss the use of nuclear techniques in these studies

  2. Soil water management

    International Nuclear Information System (INIS)

    The use of radiation and tracer techniques in investigations into soil water management in agriculture, hydrology etc. is described. These techniques include 1) neutron moisture gauges to monitor soil water content and soil water properties, 2) gamma radiation attenuation for measuring the total density of soil and soil water content, 3) beta radiation attenuation for measuring changes in the water status of crop plants and 4) radioactive and stable tracers for identifying pathways, reactions and retention times of the constituents in soils and groundwater aquifers. The number and spacing of soil observations that should be taken to represent the management unit are also considered. (U.K.)

  3. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    The total vegetated land area of the earth is about 11,500 hectare. Of this, about 12% is in South America. Of this, about 14% is degraded area. Water erosion, chemical degradation, wind erosion, and physical degradation have been reported as main types of degradation. In South America water erosion is a major process for soil degradation. Nevertheless, water erosion can be a consequence of degradation of the soil structure, especially the functional attributes of soil pores to transmit and retain water, and to facilitate root growth. Climate, soil and topographic characteristics determine runoff and erosion potential from agricultural lands. The main factors causing soil erosion can be divided into three groups: Energy factors: rainfall erosivity, runoff volume, wind strength, relief, slope angle, slope length; Protection factors: population density, plant cover, amenity value (pressure for use) and land management; and resistance factors: soil erodibility, infiltration capacity and soil management. The degree of soil erosion in a particular climatic zone, with particular soils, land use and socioeconomic conditions, will always result from a combination of the above mentioned factors. It is not easy to isolate a single factor. However, the soil physical properties that determine the soil erosion process, because the deterioration of soil physical properties is manifested through interrelated problems of surface sealing, crusting, soil compaction, poor drainage, impeded root growth, excessive runoff and accelerated erosion. When an unprotected soil surface is exposed to the direct impact of raindrops it can produce different responses: Production of smaller aggregates, dispersed particles, particles in suspension and translocation and deposition of particles. When this has occurred, the material is reorganized at the location into a surface seal. Aggregate breakdown under rainfall depends on soil strength and a certain threshold kinetic energy is needed to start

  4. Classification of Ferrallitic Soils in Chinese Soil Taxonomy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The development of the classification of ferrallitic soils in China is reviewed and the classification of Ferralisols and Ferrisols in Chinese Soil Taxonomy is introduced in order to discuss the correlation between the ferrallitic soil classification in the Chinese Soil Taxonomy and those of the other soil classification systems. In the former soil classification systems of China, the ferrallitic soils were classified into the soil groups of Latosols, Latosolic red soils, Red soils, Yellow soils and Dry red soils, according to the combination of soil forming conditions, soil-forming processes, soil features and soil properties. In the Chinese Soil Taxonomy, most of ferrallitic soils are classified into the soil orders of Ferralisols and Ferrisols based on the diagnostic horizons and/or diagnostic characteristics with quantitatively defined properties. Ferralisols are the soils that have ferralic horizon, and they are merely subdivided into one suborder and two soil groups. Ferrisols are the soils that have LAC-ferric horizon but do not have ferralic horizon, and they are subdivided into three suborders and eleven soil groups. Ferralisols may correspond to part of Latosols and Latosolic red soils. Ferrisols may either correspond to part of Red soils, Yellow soils and Dry red soils, or correspond to part of Latosols and Latosolic red soils.

  5. Cross-cutting activities: Soil quality and soil metagenomics

    OpenAIRE

    Motavalli, Peter P.; Garrett, Karen A.

    2008-01-01

    This presentation reports on the work of the SANREM CRSP cross-cutting activities "Assessing and Managing Soil Quality for Sustainable Agricultural Systems" and "Soil Metagenomics to Construct Indicators of Soil Degradation." The introduction gives an overview of the extensiveness of soil degradation globally and defines soil quality. The objectives of the soil quality cross cutting activity are: CCRA-4 (Soil Metagenomics)

  6. Fundamentals of soil behaviour

    OpenAIRE

    Gens Solé, Antonio

    2009-01-01

    The paper reviews in summary form the generalised behaviour of soils under nonisothermal and chemically varying conditions. This generalised soil behaviour underlies the performance of a number of ground improvement techniques. The behaviour of frozen soil is examined first showing that some concepts of unsaturated soil mechanics appear to be readily applicable. Afterwards, the observation that volumetric behaviour of saturated and unsaturated soils at high temperature is similar, leads to th...

  7. The soils of Bhutan

    OpenAIRE

    Caspari, Thomas

    2006-01-01

    This dissertation is based on a Bhutanese-German collaboration. The main objective is to extend the present knowledge about the soils of temperate Bhutan. Its main parts comprise • the first systematic pedogeochemical characterisation of Bhutanese soils. Results show that even high altitude soils are highly weathered. The examined soils largely reflect the underlying geology, and there is no evidence for allochthonous aeolian materials. • the analysis of two particular soil forming processes....

  8. Chinese Soil Taxonomy

    Institute of Scientific and Technical Information of China (English)

    GONG Zitong; LEI Wenjin; CHEN Zhicheng; GAO Yixin; ZENG Shenggeng; ZHANG Ganlin; XIAO Duning; LI Shugang

    2007-01-01

    @@ Soil is a kind of natural resources on which human survival relies. Because the soil is always in a state of uneven continuum, it is difficult to have a complete set of unified standards for its classification. China is a country unparallelly rich in types of soil resources in the world, so the formulation of a soil classification is not only conducive to the sustainable agricultural development and eco-environment reconstruction in China, but also a contribution to the world soil research.

  9. Thermal Response Test by Improved Test Rig with Heating or Cooling Soil

    Institute of Scientific and Technical Information of China (English)

    付文成; 朱家玲; 张伟

    2014-01-01

    An improved test rig providing both the heat and cold source was used to perform thermal response test (TRT), and the line source model was used for data analysis. The principle of determining the temperature difference between the inlet and outlet of test well can keep the heating or cooling rate constant, along with a reduced size of test rig. Among the influencial factors of the line source model, the temperature difference was determined as the most important, which agreed with the test results. When the gravel was taken as the backfill material, the soil thermal conductivities of heating and cooling at the test place were 1.883 W/(m·K) and 1.754 W/(m·K), respectively, and the deviation of TRT between heating and cooling soil was 6.8%. In the case of fine sand, the thermal conductivities of heating and cooling were 1.541 W/(m·K) and 1.486 W/(m·K), respectively, and the corresponding deviation was 6%. It was also concluded that different velocities of water had less influence on TRT than the temperature difference.

  10. Surfactant adsorption to soil components and soils.

    Science.gov (United States)

    Ishiguro, Munehide; Koopal, Luuk K

    2016-05-01

    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on water/air interfaces, the latter gives an impression of surfactant adsorption to a hydrophobic surface and illustrates the importance of the CMC for the adsorption process. Then attention is paid to the most important types of soil particles: humic and fulvic acids, silica, metal oxides and layered aluminosilicates. Information is provided on their structure, surface properties and primary (proton) charge characteristics, which are all important for surfactant binding. Subsequently, the adsorption of different types of surfactants on these individual soil components is discussed in detail, based on mainly experimental results and considering the specific (chemical) and electrostatic interactions, with hydrophobic attraction as an important component of the specific interactions. Adsorption models that can describe the features semi-quantitatively are briefly discussed. In the last part of the paper some trends of surfactant adsorption on soils are briefly discussed together with some complications that may occur and finally the consequences of surfactant adsorption for soil colloidal stability and permeability are considered. When we seek to understand the fate of surfactants in soil and aqueous environments, the hydrophobicity and charge density of the soil or soil particles, must be considered together with the structure, hydrophobicity and charge of the surfactants, because these factors affect the adsorption. The pH and ionic strength are important parameters with respect to the charge density of the particles. As surfactant adsorption influences soil structure and permeability, insight in surfactant adsorption to soil particles is useful for good soil management. PMID

  11. Design and construction of a soil bentonite cut-off wall for Suncor's South Tailings Pond

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, B. [Klohn Crippen Berger Ltd., Calgary, AB (Canada); Bowron, M. [Suncor Energy Inc., Fort McMurray, AB (Canada)

    2010-07-01

    Commissioned in July 2006, Suncor's South Tailings Pond (STP) is an external oil sands tailings storage facility with a footprint of 2300 hectares including infrastructure. The Southwest cut-off wall was completed in 2008, forming one of four principal seepage management systems for the STP. The cut-off wall consists of soil bentonite backfill from native materials from the wall excavation. Construction of the wall utilized both a long-stick back-hoe and crane mounted clamshell to excavate the wall under bentonite slurry. This paper discussed the construction of the cut-off wall as well as the the field and laboratory testing programs that determined the soil-bentonite mix. It also described the quality assurance and quality control programs conducted during construction. Last, the paper provided a brief discussion of the design and construction issues specific to seepage cut-off walls in the oil sands region. It was concluded that while construction of a soil-bentonite wall is a simple process, a professional experienced in the construction of deep walls is essential to achieve a quality product. Technical site support is also needed by the construction team in order to confirm geology, material properties and design assumptions. 1 tab., 5 figs.

  12. Effect of soil mulching on soil temperature

    International Nuclear Information System (INIS)

    Nine different plastic films for ground covering were used. The soil temperature was measured into soil at deep 10 cm. Minimal average daily soil temperature at deep 10 cm was measured for uncovered soil (control treatment B1) and was 28.33 deg C. Increasing of average soil daily temperature under plastic film, compared with uncovered soil varied in interval 2.51 deg C (B3), up to 4.49 deg C (B10). Temperature regime in conditions of ground covering in early morning hours (6 h -6,30 h) and in the midday hours (13,30 h -14 h) were analyzed. Measuring were carried out in two cycles

  13. Soil micromorphology, soil structure stability and soil hydraulic properties

    Czech Academy of Sciences Publication Activity Database

    Kodešová, R.; Rohošková, M.; Žigová, Anna; Kodeš, V.; Kutílek, M.

    Bratislava : Ústav hydrológie SAV, 2006 - (Ivančo, J.; Pavelková, D.; Gomboš, M.; Tall, A.), s. 0-0 ISBN 80-89139-09-4. [Vedecká konferencia s medzinárodnou účasťou Vplyv Antropogénnej činnosti na vodný režim nížinného územia /6./ ; Slovensko-česko-poľský seminár Fyzika vody v pode /16./. Bratislava -Michalovce-Vinianske jazero (SK), 06.06.2006-08.06.2006] R&D Projects: GA AV ČR IAA300130504 Institutional research plan: CEZ:AV0Z30130516 Keywords : soil micromorphological properties * soil structure stability * soil porous system * soil hydraulic properties Subject RIV: DF - Soil Science

  14. Mass Transport within Soils

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated

  15. Study on Soil Magnetic Effect

    Institute of Scientific and Technical Information of China (English)

    YIYAN-LI; LIUXIAO-YI

    1995-01-01

    A study on the effect of applied magnetic field was performed with six types of soils collected from northeastern China.Magnetic field was found to cause changes of soil physico-chemical properties and soil enzyme activities.An appropriate applied magnetic field could cut down soil zeta-potential,soil specific surface,soil water potential and soil swelling capacity;raise the charge density on soil colloids and the activities of invertase,hydrogen peroxidase and amylase in the soils;enhance soil aggregation and improve soil structural status and soil water-releasing capability.

  16. Soil Structure Interaction in Nonlinear Soil

    OpenAIRE

    Gicev, Vlado

    2008-01-01

    A two-dimensional (2-D) model of a building supported by a semi-circular flexible foundation embedded in nonlinear soil is analyzed. The building, the foundation, and the soil have different physical properties. The model is excited by a half-sine SH wave pulse, which travels toward the foundation. The results show that the spatial distribution of permanent, nonlinear strain in the soil depends upon the incident angle, the amplitude, and the duration of the pulse. If the wave h...

  17. Soil washing technology evaluation

    International Nuclear Information System (INIS)

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis

  18. CONSIDERATIONS ON URBAN SOILS

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2005-10-01

    Full Text Available Urban soil is an material that has been manipulated, disturbed or transported by man’s activities in the urban environment and is used as a medium for plant growth and for constructions. The physical, chemical, and biological properties are generally less favorable as a rooting medium than soil found on the natural landscape. The main characteristics of urban soils are: great vertical and spatial variability; modified soil structure leading to compaction; presence of a surface crust; modified soil reaction, usually elevated; restricted aeration and water drainage; modified abundance of chemical elements, interrupted nutrient cycling and soil organism activity; presence of anthropic materials contaminants and pollutants; modified soil temperature regime. The urbic horizon is designated as U (always capital letter and for indication of processes are used different small letters. It is necessary elaboration a new classification of urban soils for our country.

  19. Soil and Litter Animals.

    Science.gov (United States)

    Lippert, George

    1991-01-01

    A lesson plan for soil study utilizes the Tullgren extraction method to illustrate biological concepts. It includes background information, equipment, collection techniques, activities, and references for identification guides about soil fauna. (MCO)

  20. Soil properties controlling infiltration in volcanic soils

    Science.gov (United States)

    Neris, Jonay; Tejedor, Marisa; Jiménez, Concepción

    2013-04-01

    Soil water infiltration is an important process whose behaviour depends on external factors and soil properties that vary depending on the type of soil. The soil parameters affecting the infiltration capacity of six soil orders all formed on volcanic materials (andisols, vertisols, alfisols, aridisols, inceptisols, and entisols) and contribute to the differences between them were studied in this paper. A total of 108 sites were selected on the island of Tenerife (Spain). The main soil properties were analysed and the steady-state infiltration rate measured using a double-ring infiltrometer. The relationship between the soil properties and infiltration was modelled using statistical Principal Components Analysis and regressions. The research concludes that the relation between structural development and texture play a decisive role. The high structural development of non-vitric andisols, due to the high organic matter and short-range-order mineral content, leads to an extremely fast infiltration rate. The structural instability and fine texture of aridisols produce low infiltration. In less developed soils (entisols and vitric andisols) where aggregate formation is minimal or non-existent, the coarse grain size is the relevant factor determining their very fast and extremely fast infiltration. In vertisols and alfisols, which have strong aggregation but low stability, clay type and content play an important role and lead to a moderate and moderately fast steady-state infiltration rate, respectively. In the most typic inceptisols, with moderate structural development and stability, the balance of the properties is largely responsible for the intermediate infiltration rate observed.

  1. Soil organic matter mineralization in frozen soils

    Science.gov (United States)

    Harrysson Drotz, S.; Sparrman, T.; Schleucher, J.; Nilsson, M.; Öquist, M. G.

    2009-12-01

    Boreal forest soils are frozen for a large part of the year and soil organic matter mineralization during this period has been shown to significantly influence the C balance of boreal forest ecosystems. Mineralization proceeds through heterotrophic microbial activity, but the understanding of the environmental controls regulating soil organic matter mineralization under frozen conditions is poor. Through a series of investigations we have addressed this issue in order to elucidate to what extent a range of environmental factors control mineralization processes in frozen soils and also the microbial communities potential to oxidize organic substrates and grow under such conditions. The unfrozen water content in the frozen soils was shown to be an integral control on the temperature response of biogenic CO2 production across the freezing point of bulk soil water. We found that osmotic potential was an important contributor to the total water potential and, hence, the unfrozen water content of frozen soil. From being low and negligible in an unfrozen soil, the osmotic potential was found to contribute up to 70% of the total water potential in frozen soil, greatly influencing the volume of liquid water. The specific factors of how soil organic matter composition affected the unfrozen water content and CO2 production of frozen soil were studied by CP-MAS NMR. We concluded that abundance of aromatics and recalcitrant compounds showed a significant positive correlation with unfrozen water content and these were also the major soil organic fractions that similarly correlated with the microbial CO2 production of the frozen soils. Thus, the hierarchy of environmental factors controlling SOM mineralization changes as soils freeze and environmental controls elucidated from studies of unfrozen systems can not be added on frozen conditions. We have also investigated the potential activity of soil microbial communities under frozen conditions in order to elucidate temperature

  2. CONSIDERATIONS ON URBAN SOILS

    OpenAIRE

    Radu Lacatusu

    2005-01-01

    Urban soil is an material that has been manipulated, disturbed or transported by man’s activities in the urban environment and is used as a medium for plant growth and for constructions. The physical, chemical, and biological properties are generally less favorable as a rooting medium than soil found on the natural landscape. The main characteristics of urban soils are: great vertical and spatial variability; modified soil structure leading to compaction; presence of a surface crust; modified...

  3. Iodine dynamics in soil

    OpenAIRE

    Hassan Shetaya, Waleed Hares Abdou

    2011-01-01

    The principal aim of this investigation was to understand the transformation and reaction kinetics of iodide and iodate added to soil in relation to soil properties. In addition, to integrate the data into a predictive model of iodide and iodate sorption kinetics parameterised by soil properties. Solid phase fractionation coupled with solution phase speciation (HPLC-ICPMS) was used to follow the assimilation of 129I- and 129IO3- spikes into ‘steady state’ soil microcosms. The extract...

  4. Determinants of Soil Capital

    OpenAIRE

    Ekbom, Anders

    2008-01-01

    This paper combines knowledge from soil science and economics to estimate economic determinants of soil capital. Explaining soil capital facilitates a better understanding of constraints and opportunities for increased agricultural production and reduced land degradation. This study builds on an unusually rich data set that combines data on soil capital (represented by chemical and physical properties) and economic data on household characteristics, labor supply, crop allocation, and conserva...

  5. Vanadium in soils

    OpenAIRE

    Larsson, Maja A

    2014-01-01

    Vanadium is a redox-sensitive metal that is released to soils by weathering and anthropogenic emissions. Swedish metallurgical slags are naturally high in vanadium and used as soil amendments and in road materials. However, understanding of vanadium chemistry and bioavailability in soils is limited. The aim of this thesis was to provide knowledge of vanadium in soils in terms of sorption, toxicity and speciation, in order to enable improved environmental risk assessments. Vanadium sorption to...

  6. Experimental unsaturated soil mechanics

    OpenAIRE

    Delage, Pierre

    2002-01-01

    In this general report, experimental systems and procedures of investigating the hydro-mechanical behaviour of unsaturated soils are presented. The water retention properties of unsaturated soils are commented and linked to various physical parameters and properties of the soils. Techniques of controlling suction are described together with their adaptation in various laboratory testing devices. Some typical features of the mechanical behaviour of unsaturated soils are presented within an ela...

  7. Research on Backfilling Friction Stir Spot Welding of LY12 Al Alloy%LY12铝合金回填式搅拌摩擦点焊工艺研究

    Institute of Scientific and Technical Information of China (English)

    王朗; 王敏; 郭立杰

    2013-01-01

    采用回填式搅拌摩擦点焊对1mm厚的LY12铝合金薄板进行焊接,研究单参数对接头拉剪力的影响.结果表明,在其他条件不变时,套下压时间影响接头U型区域的宽度,套下压时间为3.2s时,接头的拉剪力达到最大值;其他参数对U型区域深度产生影响;回填时间为0.4s、旋转速度为1500r/min、下压深度为1.1mm、焊接压力为23 MPa时接头的拉剪力均达到最大值.正交试验工艺优化结果表明,最佳的工艺参数组合为:套下压时间为3.6s、回填时间为0.9s、旋转速度为2400r/min、下压深度为1.1mm、压力为24 MPa.对最佳参数组合下的接头进行金相分析,发现接头区域分为三个部分:混合区、热影响区和母材.%The backfilling friction stir spot welding to weld 1 mm-thick LY12 aluminum alloy plate was adopted, and the single parameter on the effect of joint's shear load was investigated. The results show that when other conditions remain unchange, pressure time affect the width of the joint area. When pressure time is 3.2 s, joint's shear load reach maximum; other parameters affect the depth of the joint area; when refilling time is 0.4 s, rotating speed is 1500 r/min, depth is 1.1 mm, pressure is 23MPa, joint's shear load reaches maximum. After the optimization of process parameters, the orthogonal test results show that the best process parameter combination is pressure time 3.6s, refilling time 0.9s, rotating speed 2400 r/m, depth 1.1 mm, pressure 24 MPa. The metallographic analysis of the welded joint at the best parameters found that the joint area is divided into three parts: mixed zone, heat affected zone and mother material.

  8. Restoration of contaminated soils

    International Nuclear Information System (INIS)

    A great variety of techniques are used for the restoration of contaminated soils. The contamination is present by both organic and inorganic pollutants. Environmental conditions and soil characteristics should take into account in order to implement a remedial technique. The bioremediation technologies are showed as help to remove a variety of soil contaminants. (author)

  9. Numerical calculation of backfilling of scour holes

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Baykal, Cüneyt; Fuhrman, David R.;

    2014-01-01

    updating in time, both the hydrodynamic and morphologic solutions being advanced with the same time increment. In this way, the simulations illustrate the ability to simulate fully-coupled hydrodynamic and morphologic developments based on continuous feedback. The model has been implemented for two kinds...

  10. Bioindication with soil microfauna

    International Nuclear Information System (INIS)

    The state of a soil can be characterised through its inhabitant micro-, meso-, and macrofauna. For an appropriate assessment of soil quality at least one representative of each of these size categories should be studied (e.g. testacea, mites, earthworms). This contribution summarizes the insights gained from microscopic soil fauna in this context. The following practical examples are discussed: pesticides, organic and artificial fertilisers, soil compaction, ecological and conventional farming, recolonisation. The 'weighted cenosis index' represents a quantitative measure for the influence of anthropogenic activity on a soil. (orig.)

  11. Soil organic matter studies

    International Nuclear Information System (INIS)

    The dependence of plant production and humus formation, the interaction of soil organic matter with the mineral part of soil for plant nutrition and some physical and chemical properties of soil were discussed, as were the significance of climatic and hydrological data in that context. Isotope techniques (14C and 15N) were utilized in various studies. Papers were presented on the turnover of plant residues, mineralization of organic compounds, nitrogen economy, biodegradation and biochemical transformations of soil organic matter, contributions to the formation of humic substances, soil organic matter and plant metabolism, and the interaction between agrochemicals and organic matter. The use of municipal sludge on agricultural land was also considered

  12. Tropical Soil Chemistry

    DEFF Research Database (Denmark)

    Borggaard, Ole K.

    A new book that is particularly relevant as tropical countries experience increased pressure on land resources to improve agricultural production. To ensure sustainable land use, the potentials and limitations of different kinds of tropical soils must be known in relation to crop production...... soil chemical issues are also presented to assess when, why, and how tropical soils differ from soils in other regions. This knowledge can help agricultural specialists in the tropics establish sustainable crop production. Readers are assumed to be familiar with basic chemistry, physics...... and environmental protection. Tropical Soil Chemistry by Ole K. Borggaard provides an overview of the composition, occurrence, properties, processes, formation, and environmental vulnerability of various tropical soil types (using American Soil Taxonomy for classification). The processes and the external factors...

  13. Effect of passages on the soil onto soil tillage quality

    OpenAIRE

    Kos, Jaroslav

    2011-01-01

    Effect of passages on the soil onto soil tillage quality in this study was assessed by selected parameters of soil tillage quality, which were soil aggregates diameter, cross surface soil, soil surface roughness, level of incorporation of crop residues, cover the surface of plant residues and soil penetration resistance. Variants were evaluated with controlled traffic on land, option without traffic and the option with random traffic. The results revealed that traffic should primarily affect ...

  14. Soil Organic Carbon in the Soil Scapes of Southeastern Tanzania

    OpenAIRE

    Rossi, Joni

    2009-01-01

    Soil organic carbon (SOC) is well known to maintain several functions. On the one hand, being the major component of soil organic matter (SOM),it is a determinant of soil physical and chemical properties, an important proxy for soil biological activity and a measure of soil productivity. Land use management that will enhance soil carbon (C) levels is therefore important for farmers and land use planners, particularly in semiarid and sub-humid Africa where severe soil degradation and desertifi...

  15. Restoring Soil Quality to Mitigate Soil Degradation

    OpenAIRE

    Rattan Lal

    2015-01-01

    Feeding the world population, 7.3 billion in 2015 and projected to increase to 9.5 billion by 2050, necessitates an increase in agricultural production of ~70% between 2005 and 2050. Soil degradation, characterized by decline in quality and decrease in ecosystem goods and services, is a major constraint to achieving the required increase in agricultural production. Soil is a non-renewable resource on human time scales with its vulnerability to degradation depending on complex interactions bet...

  16. Radiogeochemistry of Kamchatka soils

    Science.gov (United States)

    Zakharikhina, L. V.; Litvinenko, Yu. S.

    2016-01-01

    Background concentrations of Th and U in volcanic soils (Andosols) of Kamchatka are much lower than their clarkes in continental soils. The dose rate of gamma radiation above the soil surface (10-11.5 µR/h in the south and 8-9.5 [m]R/h in the north of Kamchatka Peninsula) is lower than the natural level of this index for the mountainous areas in the boreal zone of Russia. The natural radiogeochemical background of Kamchatka soils is controlled by the petrochemical composition of volcanic ash composing the mineral basis of Kamchatka soils. It is higher in the southern soil province, where soils develop from acidic ashes, in comparison with the northern province, with a predominance of soils developing from ashes of basic and intermediate composition. This agrees with Th and U clarkes for the corresponding types of volcanic rocks and explains the natural origin of the elevated radiogeochemical background in the southern part of Kamchatka as compared with its northern part. The soils of the northern province developing from relatively fresh volcanic ashes show a lower Th/U ratio as compared to the soils of southern Kamchatka because of higher uranium content in the newly deposited ashes.

  17. Soil Heat Flow Model

    Science.gov (United States)

    Varas, E.; Nunez, C.; Meza, F. J.

    2008-12-01

    The Penman-Monteith method for estimating evapotranspiration (ET) has been recommended by FAO. This method requires measures of temperature, wind speed, relative humidity and heat flow in the soil. This last variable is rarely available. Soil heat flow is generally small compared to the net radiation, and many times is ignored in the energy balance. Nevertheless, the addition or subtraction of this amount in the energy balance equation should be considered for evapo-transpiration calculation. Penman-Monteith method suggests approximate estimates of soil heat flows as the difference between the maxima and minimum daily temperatures multiplied by a convenient coefficient. However, such approach ignores important variations in this parameter occurring during the day, and could influence the accuracy of the result. This work proposes to estimate soil heat flows by means of a mathematical model that includes the estimate of soil temperatures profiles and heat flows as a function of thermal properties of the soil, such as difussivity and conductivity coefficients. The model calculates soil heat flows in three stages. The first estimates hourly air temperature based on the average daily temperature and Fourier series coefficients. The obtained hourly air temperature constitutes an input variable for the second stage of the model. Surface soil temperature is assumed to be equal to air temperature. The second stage, applies heat transfer principles, using the thermal properties of the soil in order to obtain the soil temperature profile in a one meter depth soil stratum. Finally, the results of the second stage are used to calculate the hourly heat flow in the soil and compare this estimate with other methods and with measured values. Calculated hourly temperatures reproduced observed values closely. Correlation coefficients between observed and calculated values for the three summer months are 0.98, 0.96 and 0.97. Hourly soil heat fluxes are also closely estimated, showing

  18. How Can Soil Electrical Conductivity Measurements Control Soil Pollution?

    Directory of Open Access Journals (Sweden)

    Mohammad Reza

    2010-10-01

    Full Text Available Soil pollution results from the build up of contaminants, toxic compounds, radioactive materials, salts, chemicals and cancer-causing agents. The most common soil pollutants are hydrocarbons, heavy metals (cadmium, lead, chromium, copper, zinc, mercury and arsenic, herbicides, pesticides, oils, tars, PCBs and dioxins. Soil Electrical Conductivity (EC is one of the soil physical properties w hich have a good relationship with the other soil characteristics. As measuring soil electrical conductivity is easier, less expensive and faster than other soil properties measurements, using a detector that can do on the go soil EC measurements is a good tool for obtaining useful information about soil pollution condition.

  19. Percutaneous absorption from soil.

    Science.gov (United States)

    Andersen, Rosa Marie; Coman, Garrett; Blickenstaff, Nicholas R; Maibach, Howard I

    2014-01-01

    Abstract Some natural sites, as a result of contaminants emitted into the air and subsequently deposited in soil or accidental industrial release, have high levels of organic and non-organic chemicals in soil. In occupational and recreation settings, these could be potential sources of percutaneous exposure to humans. When investigating percutaneous absorption from soil - in vitro or vivo - soil load, particle size, layering, soil "age" time, along with the methods of performing the experiment and analyzing the results must be taken into consideration. Skin absorption from soil is generally reduced compared with uptake from water/acetone. However, the absorption of some compounds, e.g., pentachlorophenol, chlorodane and PCB 1254, are similar. Lipophilic compounds like dichlorodiphenyltrichloroethane, benzo[A]pyrene, and metals have the tendency to form reservoirs in skin. Thus, one should take caution in interpreting results directly from in vitro studies for risk assessment; in vivo validations are often required for the most relevant risk assessment. PMID:25205703

  20. Advances in soil dynamics

    DEFF Research Database (Denmark)

    Advances in Soil Dynamics, Volume 3, represents the culmination of the work undertaken by the Advances in Soil Dynamics Monograph Committee, PM-45-01, about 15 years ago to summarize important developments in this field over the last 35 years. When this project was initiated, the main goal was to...... abridge major strides made in the general area of soil dynamics during the sixties, seventies, and eighties. However, by about the mid-nineties soil dynamics research in the US and much of the developed world had come to a virtual standstill. Although significant progress was made prior to the mid......-nineties, we still do not have a sound fundamental knowledge of soil-machine and soil-plant interactions. It is the hope of the editors that these three volumes will provide a ready reference for much needed future research in this area....

  1. Soil in the Anthropocene

    Science.gov (United States)

    Richter, Daniel deB; Bacon, Allan R.; Brecheisen, Zachary; Mobley, Megan L.

    2015-07-01

    With scholars deliberating a new name for our geologic epoch, i.e., the Anthropocene, soil scientists whether biologists, chemists, or physicists are documenting significant changes accruing in a majority of Earth's soils. Such global soil changes interact with the atmosphere, biosphere, hydrosphere, and lithosphere (i.e., Earth's Critical Zone), and these developments are significantly impacting the Earth's stratigraphic record as well. In effect, soil scientists study such global soil changes in a science of anthropedology, which leads directly to the need to transform pedostratigraphyinto an anthro-pedostratigraphy, a science that explores how global soil change alters Earth's litho-, bio-, and chemostratigraphy. These developments reinforce perspectives that the planet is indeed crossing into the Anthropocene.

  2. Soil function and "malfunction"

    Directory of Open Access Journals (Sweden)

    Elio Coppola

    2008-04-01

    Full Text Available Most of the scientists define soil from an “agronomic” point of view as the natural system delegated to sustain plantgrowth and agricultural productions on the whole. In this paper soil importance, even in “environmental and social”terms, is pointed out, considering soil as a natural body with its own functional characteristics, regardless ofits agronomic role and productive ability. Some studies show that soil acts as a thermal buffer and detoxifies thecirculating liquid phase. Actually soil is also the depository of the cultural heritage of the society who used it, bothas keeper of relics and manufactured products and as an expression of transformation processes and evolution trendcaused by man’s action itself.The need to protect and preserve soil has to be emphasized by stating its main importance not only as a maintenancesource for all the living beings but also as a factor of environmental control.

  3. Multi-objective Modeling and Simulation of Mining Backfill Scene%多目标建模技术及煤矿充填开采场景仿真

    Institute of Scientific and Technical Information of China (English)

    张国英; 梁旭; 张智跃

    2015-01-01

    矿山信息化建设是煤矿企业实现现代化发展的必然趋势.煤矿充填开采是一个复杂的过程,为了解决实现采煤充填过程最优化的问题,对开采场景进行仿真是一个直观而有效的解决方法.煤矿充填开采场景仿真不仅让人们更加深刻地了解开采实际生产环境,而且方便指导现场生产以及矿工安全培训,实现煤矿信息化、数字化.由于煤矿充填系统场景复杂、设备繁多、数据量大,实时仿真的技术难度较大.设计了场景树组织模型,有效组织充填开采场景要素.提出了基于设备组件分析及分层的复杂设备建模方法,以液压支架为例阐述了设备建模过程.提出了基于场景树的场景装配方法,包括场景环境生成、设备资源组织,用相对坐标方法进行资源装配,实现了充填开采的场景仿真.%Mine informationization is an inevitable trend to realize the modernization of coal mine enterprises. Mine filling mining is a complex process,in order to solve the problem to realize the optimization of the filling process of coal mining,the mining scene simula-tion is an effective method. Simulation of mining backfill scene not only makes people more understanding the actual mining environment of exploiting,but also easily guides on-site production and miners training,to realize informationization and digitization of coal mine. Be-cause of complex scenes,large volumes of equipment and data in mine filling system,the work of scene simulation is heavy,especially for real-time simulation technology. Design scene tree of filling mining, effectively organizing scene elements of filling. Complex device modeling method was presented in this paper,which includes the equipment' s components analysis and layer,with hydraulic support as an example to discuss the equipment modeling processing. Scene' s assembly method was proposed based on scene tree,including scene' s environment generation and equipment resources

  4. Acidification of Forest Soils

    OpenAIRE

    Kauppi, P.; Kaemaeri, J.; Posch, M; Kauppi, L.; Matzner, E.

    1986-01-01

    Acidification is considered to be an unfavourable process in forest soil. Timber logging, natural accumulation of biomass in the ecosystem, and acidic deposition are known sources of acidification. Acidification causes a risk of damage to plant roots and subsequent risk of a decline in ecosystem productivity. A dynamic model is introduced for describing the acidification of forest soils. In 1-year time steps the model calculates the soil pH as a function of the acid stress and the buff...

  5. Soil contamination by radionuclides

    International Nuclear Information System (INIS)

    The soil is the first link in the food chain. Soil contamination by individual radionuclides significantly affects the level of terrestrial radiation in the locality. The authors mapped situation of post-Chernobyl 137Cs soil contamination in Slovakia and European countries. Samples were collected in three layers of agriculturally cultivated area. Even a few years after the Chernobyl accident authors can say that elevated 137Cs values were recorded in the samples from Austria and Germany, in all layers of collection. (authors)

  6. Diffusion in aggregated soil.

    OpenAIRE

    Rappoldt, C.

    1992-01-01

    The structure of an aggregated soil is characterized by the distribution of the distance from an arbitrary point in the soil to the nearest macropore or crack. From this distribution an equivalent model system is derived to which a diffusion model can be more easily applied. The model system consists of spherical, or cylindrical or plane aggregates, which do not represent the individual aggregates of the soil, however. The radii of the spheres, cylinders or plane sheets represent different le...

  7. Electrodialytic Soil Remediation

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Lene; Hansen, Henrik K.;

    1997-01-01

    It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective......It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective...

  8. soil organic matter fractionation

    Science.gov (United States)

    Osat, Maryam; Heidari, Ahmad

    2010-05-01

    Carbon is essential for plant growth, due to its effects on other soil properties like aggregation. Knowledge of dynamics of organic matter in different locations in the soil matrix can provide valuable information which affects carbon sequestration and soil the other soil properties. Extraction of soil organic matter (SOM) fractions has been a long standing approach to elucidating the roles of soil organic matter in soil processes. Several kind fractionation methods are used and all provide information on soil organic matter function. Physical fractionation capture the effects on SOM dynamics of the spatial arrangement of primary and secondary organomineral particles in soil while chemical fractionation can not consider the spatial arrangement but their organic fractions are suitable for advanced chemical characterization. Three method of physical separation of soil have been used, sieving, sedimentation and densitometry. The distribution of organic matter within physical fractions of the soil can be assessed by sieving. Sieving separates soil particles based strictly on size. The study area is located on north central Iran, between 35° 41'- 36° 01' N and 50° 42'- 51° 14' E. Mean annual precipitation about 243.8 mm and mean annual air temperature is about 14.95 °C. The soil moisture and temperature regime vary between aridic-thermic in lower altitudes to xeric-mesic in upper altitudes. More than 36 surface soil samples (0-20 cm) were collected according to land-use map units. After preliminary analyzing of samples 10 samples were selected for further analyses in five size fractions and three different time intervals in September, January and April 2008. Fractionation carried out by dry sieving in five classes, 1-2 mm, 0.5-1 mm, 270 μm-0.5mm, 53-270 μm and soil organic matter to humic acid and fulvic acid shows that there is a better correlation between humic acid contents and soil organic matter (R2 = 0.86) than fulvic acid and organic matter (R2=0.5). The

  9. Soil physics and agriculture

    International Nuclear Information System (INIS)

    The approach that integrates knowledge is very important in Agriculture, including farmers, extensionists, researchers and professors. The specialists, including the soil physicists, must have a global view of the crop production system. Therefore, their expertise can be useful for the society. The Essence of scientific knowledge is its practical application. The soil physics is a sub area of Agronomy. There are many examples of this specific subject related to Agriculture. This paper will focus, in general, the following cases: (i) erosion, environmental pollution and human health, (ii) plant population and distribution, soil fertility, evapo-transpiration and soil water flux density, and (iii) productivity, effective root depth, water deficit and yield

  10. Soil Survey Geographic (SSURGO) - Kinds and Distribution of Soils

    Data.gov (United States)

    California Department of Resources — This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The...

  11. TRANSLATING AVAILABLE BASIC SOIL DATA INTO MISSING SOIL HYDRAULIC CHARACTERISTICS

    Science.gov (United States)

    Soil hydraulic pedotransfer functions transfer simple-to-measure soil survey information into soil hydraulic characteristics, that are otherwise costly to measure. Examples are presented of different equations describing hydraulic characteristics and of pedotransfer functions used to predict paramet...

  12. Soils - Soil Survey Geographic (SSURGO) Data for Montana

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — These data sets are digital soil surveys and generally are the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The...

  13. Corrosion of low-carbon steel under environmental conditions at Hanford: Two-year soil corrosion test results

    International Nuclear Information System (INIS)

    At the Hanford Site, located in southeastern Washington state, nuclear production reactors were operated from 1944 to 1970. The handling and processing of radioactive nuclear fuels produced a large volume of low-level nuclear wastes, chemical wastes, and a combination of the two (mixed wastes). These materials have historically been packaged in US Department of Transportation (DOT) approved drums made from low-carbon steel, then handled in one of three ways: (A) Before 1970, the drums were buried in the dry desert soil. It was assumed that chemical and radionuclide mobility would be low and that the isolated, government-owned site would provide sufficient protection for employees and the public. (B) After 1970, the drums containing long-lived transuranic radionuclides were protected from premature failure by stacking them in an ordered array on an asphalt concrete pad in the bottom of a burial trench. The array was then covered with a large, 0.28-mm- (011-in.-) thick polyethylene tarp and the trench was backfilled with 1.3 m (4 ft) of soil cover. This burial method is referred to as soil-shielded burial . Other configurations were also employed but the soil-shielded burial method contains most of the transuranic drums. (C) Since 1987, US Department of Energy sites have complied with the Resource Conservation and Recovery Act of 1976 (RCRA) regulations. These regulations require mixed waste drums to be stored in RCRA compliant large metal sheds with provisions for monitoring. These sheds are provided with forced ventilation but are not heated or cooled

  14. The effect of intrinsic soil properties on soil quality assessments

    OpenAIRE

    2013-01-01

    The assessment of soil quality is based on indicators and indices derived from soil properties. However, intrinsic soil properties may interfere with other soil properties that vary under different land uses and are used to calculate the indices. The aim of this study was to assess the extent to which intrinsic soil properties (clay and iron oxide contents) explain variable soil properties (sum of bases, potential acidity, organic carbon, total porosity, and bulk density) under different land...

  15. Investigation of Wetland Soil Properties affecting Optimum Soil Cultivation

    OpenAIRE

    Babatunde, O. O.; K.A. Adeniran

    2010-01-01

    An investigation was carried out on wetland (fadama) soil properties affecting optimum soil cultivation. A cone penetrometerand a shear vane apparatus (19 mm) were used to determine the cone index and the torque that cause the soil to shearat different moisture contents. The study shows that the cone index and shear vane of fadama soils increased with depth anddecreased with increase in moisture content. High moisture content reduced the soil cohesion. The internal frictional angleof the soil...

  16. How Can Soil Electrical Conductivity Measurements Control Soil Pollution?

    OpenAIRE

    Mohammad Reza; R. Alimardani and A. Sharifi

    2010-01-01

    Soil pollution results from the build up of contaminants, toxic compounds, radioactive materials, salts, chemicals and cancer-causing agents. The most common soil pollutants are hydrocarbons, heavy metals (cadmium, lead, chromium, copper, zinc, mercury and arsenic), herbicides, pesticides, oils, tars, PCBs and dioxins. Soil Electrical Conductivity (EC) is one of the soil physical properties w hich have a good relationship with the other soil characteristics. As measuring soil electrical condu...

  17. Classiology and soil classification

    Science.gov (United States)

    Rozhkov, V. A.

    2012-03-01

    Classiology can be defined as a science studying the principles and rules of classification of objects of any nature. The development of the theory of classification and the particular methods for classifying objects are the main challenges of classiology; to a certain extent, they are close to the challenges of pattern recognition. The methodology of classiology integrates a wide range of methods and approaches: from expert judgment to formal logic, multivariate statistics, and informatics. Soil classification assumes generalization of available data and practical experience, formalization of our notions about soils, and their representation in the form of an information system. As an information system, soil classification is designed to predict the maximum number of a soil's properties from the position of this soil in the classification space. The existing soil classification systems do not completely satisfy the principles of classiology. The violation of logical basis, poor structuring, low integrity, and inadequate level of formalization make these systems verbal schemes rather than classification systems sensu stricto. The concept of classification as listing (enumeration) of objects makes it possible to introduce the notion of the information base of classification. For soil objects, this is the database of soil indices (properties) that might be applied for generating target-oriented soil classification system. Mathematical methods enlarge the prognostic capacity of classification systems; they can be applied to assess the quality of these systems and to recognize new soil objects to be included in the existing systems. The application of particular principles and rules of classiology for soil classification purposes is discussed in this paper.

  18. Correlation Between Soil Water Retention Capability and Soil Salt Content

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The soil moisture retention capability of Chao soil and coastal saline Chao soil in Shandong and Zhejiang provinces were measured by pressure membrane method. The main factors influencing soil moisture retention capability were studied by the methods of correlation and path analyses. The results indicated that < 0.02mm physical clay and soil salt content were the main factors influencing soil moisture retention capability. At soil suction of 30~50 kPa, the soil salt content would be the dominant factor.

  19. KBRA OPWP Soil Rooting Depth

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The...

  20. Tolerable soil erosion in Europe

    Science.gov (United States)

    Verheijen, Frank; Jones, Bob; Rickson, Jane; Smith, Celina

    2010-05-01

    Soil loss by erosion has been identified as an important threat to soils in Europe* and is recognised as a contributing process to soil degradation and associated deterioration, or loss, of soil functioning. From a policy perspective, it is imperative to establish well-defined baseline values to evaluate soil erosion monitoring data against. For this purpose, accurate baseline values - i.e. tolerable soil loss - need to be differentiated at appropriate scales for monitoring and, ideally, should take soil functions and even changing environmental conditions into account. The concept of tolerable soil erosion has been interpreted in the scientific literature in two ways: i) maintaining the dynamic equilibrium of soil quantity, and ii) maintaining biomass production, at a location. The first interpretation ignores soil quality by focusing only on soil quantity. The second approach ignores many soil functions by focusing only on the biomass (particularly crop) production function of soil. Considering recognised soil functions, tolerable soil erosion may be defined as 'any mean annual cumulative (all erosion types combined) soil erosion rate at which a deterioration or loss of one or more soil functions does not occur'. Assumptions and problems of this definition will be discussed. Soil functions can generally be judged not to deteriorate as long as soil erosion does not exceed soil formation. At present, this assumption remains largely untested, but applying the precautionary principle appears to be a reasonable starting point. Considering soil formation rates by both weathering and dust deposition, it is estimated that for the majority of soil forming factors in most European situations, soil formation rates probably range from ca. 0.3 - 1.4 t ha-1 yr-1. Although the current agreement on these values seems relatively strong, how the variation within the range is spatially distributed across Europe and how this may be affected by climate, land use and land management

  1. Creative Soil Conservation

    Science.gov (United States)

    Smith, Martha

    2010-01-01

    Take plant lessons outdoors with this engaging and inquiry-based activity in which third-grade students learn how to apply soil conservation methods to growing plants. They also collect data and draw conclusions about the effectiveness of their method of soil conservation. An added benefit to this activity is that the third-grade students played…

  2. Soil Health Educational Resources

    Science.gov (United States)

    Hoorman, James J.

    2015-01-01

    Soil health and cover crops are topics of interest to farmers, gardeners, and students. Three soil health and cover crop demonstrations provide educational resources. Demonstrations one outlines two educational cover crop seed displays, including the advantages and disadvantages. Demonstration two shows how to construct and grow a cover crop root…

  3. The Global Soil Partnership

    Science.gov (United States)

    Montanarella, Luca

    2015-07-01

    The Global Soil Partnership (GSP) has been established, following an intensive preparatory work of the Food and Agriculture Organization of the United Nations (FAO) in collaboration with the European Commission (EC), as a voluntary partnership coordinated by the FAO in September 2011 [1]. The GSP is open to all interested stakeholders: Governments (FAO Member States), Universities, Research Organizations, Civil Society Organizations, Industry and private companies. It is a voluntary partnership aiming towards providing a platform for active engagement in sustainable soil management and soil protection at all scales: local, national, regional and global. As a “coalition of the willing” towards soil protection, it attempts to make progress in reversing soil degradation with those partners that have a genuine will of protecting soils for our future generations. It openly aims towards creating an enabling environment, despite the resistance of a minority of national governments, for effective soil protection in the large majority of the countries that are genuinely concerned about the rapid depletion of their limited soil resources.

  4. Enzymes in Forest Soils

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Štursová, Martina

    Heidelberg, Dordrecht, NY: Springer, 2011 - (Shukla, G.; Varma, A.), s. 61-73 ISBN 978-3-642-14225-3 R&D Projects: GA ČR GA526/08/0751; GA MŠk OC08050 Institutional research plan: CEZ:AV0Z50200510 Keywords : forest soils * soil ecology * enzymes Subject RIV: EE - Microbiology, Virology

  5. Contaminated soil concrete blocks

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.; Limbachiya, Mukesh C.; Kew, Hsein Y.

    2009-01-01

    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In ord

  6. Diffusion in aggregated soil.

    NARCIS (Netherlands)

    Rappoldt, C.

    1992-01-01

    The structure of an aggregated soil is characterized by the distribution of the distance from an arbitrary point in the soil to the nearest macropore or crack. From this distribution an equivalent model system is derived to which a diffusion model can be more easily applied. The model system consist

  7. Soil and vegetation surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.

    1995-06-01

    Soil sampling and analysis evaluates long-term contamination trends and monitors environmental radionuclide inventories. This section of the 1994 Hanford Site Environmental Report summarizes the soil and vegetation surveillance programs which were conducted during 1994. Vegetation surveillance is conducted offsite to monitor atmospheric deposition of radioactive materials in areas not under cultivation and onsite at locations adjacent to potential sources of radioactivity.

  8. Electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Karlsmose, Bodil; Ottosen, Lisbeth M.; Hansen, Lene; Hansen, Henrik K.; Pedersen, Anne Juul; Kristensen, Iben Vernegren; Ribeiro, Alexandra J. B.; Bech-Nielsen, Gregers; Villumsen, Arne

    The paper gives an overview of how heavy metals can be found in the soil and the theory of electrodialytic remediation. Basically electrodialytic remediation works by passing electric current through the soil, and the heavy metals in ionic form will carry some of the current. Ion-exchange membranes...... prevents the protons and the hydroxides ions from the electrode processes to enter the soil. The heavy metals are collected in a concentration compartment, which is separated from the soil by ion-exchange membranes. Examples from remediation experiments are shown, and it is demonstrated that it is possible...... to remediate soil polluted with heavy metals be this method. When adding desorbing agents or complexing agents, chosing the right current density, electrolyte and membranes, the proces can be optimised for a given remediation situation. Also electroosmosis is influencing the system, and if extra...

  9. Climate-smart soils

    Science.gov (United States)

    Paustian, Keith; Lehmann, Johannes; Ogle, Stephen; Reay, David; Robertson, G. Philip; Smith, Pete

    2016-04-01

    Soils are integral to the function of all terrestrial ecosystems and to food and fibre production. An overlooked aspect of soils is their potential to mitigate greenhouse gas emissions. Although proven practices exist, the implementation of soil-based greenhouse gas mitigation activities are at an early stage and accurately quantifying emissions and reductions remains a substantial challenge. Emerging research and information technology developments provide the potential for a broader inclusion of soils in greenhouse gas policies. Here we highlight ‘state of the art’ soil greenhouse gas research, summarize mitigation practices and potentials, identify gaps in data and understanding and suggest ways to close such gaps through new research, technology and collaboration.

  10. Electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Karlsmose, Bodil; Ottosen, Lisbeth M.; Hansen, Lene;

    1999-01-01

    The paper gives an overview of how heavy metals can be found in the soil and the theory of electrodialytic remediation. Basically electrodialytic remediation works by passing electric current through the soil, and the heavy metals in ionic form will carry some of the current. Ion-exchange membranes...... prevents the protons and the hydroxides ions from the electrode processes to enter the soil. The heavy metals are collected in a concentration compartment, which is separated from the soil by ion-exchange membranes. Examples from remediation experiments are shown, and it is demonstrated that it is possible...... to remediate soil polluted with heavy metals be this method. When adding desorbing agents or complexing agents, chosing the right current density, electrolyte and membranes, the proces can be optimised for a given remediation situation. Also electroosmosis is influencing the system, and if extra...

  11. Grouting of soils

    Energy Technology Data Exchange (ETDEWEB)

    Lees, W.A.

    1971-12-14

    A process is described for the stabilization of soil by treating it, particularly by injection, with an inorganic substance capable of forming a gel which, in conjunction with the soil, hardens to form a substantially coherent and impervious mass. A method is provided for the stabilization of soil, which consists of impregnating the soil with an aqueous silica sol, optionally containing a gelation accelerator, and causing the sol to gel. The term soil is used to mean any geological matter having sufficient porosity to permit of impregnation by this method. However, the treatment of subterranean strata of finely porous structure, such as sandstone, by injection under pressure is very useful. The silica sols employed are silicic acid hydrosols, which are articles of commerce and may be prepared in any of the known ways. (1 claim)

  12. Soil Classification Using GATree

    CERN Document Server

    Bhargavi, P

    2010-01-01

    This paper details the application of a genetic programming framework for classification of decision tree of Soil data to classify soil texture. The database contains measurements of soil profile data. We have applied GATree for generating classification decision tree. GATree is a decision tree builder that is based on Genetic Algorithms (GAs). The idea behind it is rather simple but powerful. Instead of using statistic metrics that are biased towards specific trees we use a more flexible, global metric of tree quality that try to optimize accuracy and size. GATree offers some unique features not to be found in any other tree inducers while at the same time it can produce better results for many difficult problems. Experimental results are presented which illustrate the performance of generating best decision tree for classifying soil texture for soil data set.

  13. Relaxometry in soil science

    Science.gov (United States)

    Schaumann, G. E.; Jaeger, F.; Bayer, J. V.

    2009-04-01

    NMR relaxometry is a sensitive, informative and promising method to study pore size distribution in soils as well as many kinds of soil physicochemical processes, among which are wetting, swelling or changes in the macromolecular status. Further, it is a very helpful method to study interactions between molecules in soil organic matter and it can serve to study the state of binding of water or organic chemicals to soil organic matter. The method of Relaxometry excite the nuclei of interest and their relaxation kinetics are observed. The relaxation time is the time constant of this first order relaxation process. Most applications of relaxometry concentrate on protons, addressing water molecules or H-containing organic molecules. In this context, 1H-NMR relaxometry may be used as an analysis method to determine water uptake characteristics of soils, thus gaining information about water distribution and mobility as well as pore size distribution in wet and moist samples. Additionally, it can also serve as a tool to study mobility of molecular segments in biopolymers. Principally, relaxometry is not restricted to protons. In soil science, relaxometry is also applied using deuterium, xenon and other nuclei to study pore size distribution and interactions. The relaxation time depends on numerous parameters like surface relaxivity, diffusion and interactions between nuclei as well as between nuclei and the environment. One- and two-dimensional methods address the relation between relaxation time and diffusion coefficients and can give information about the interconnectivity of pores. More specific information can be gained using field cycling techniques. Although proton NMR relaxometry is a very promising method in soil science, it has been applied scarcely up to now. It was used to assess changes in molecular rigidity of humic substances. A very recent study shows the potential of NMR relaxometry to assess the pore size distribution of soils in a fast and non

  14. Soil invertebrates as bioindicators of urban soil quality

    International Nuclear Information System (INIS)

    This study aimed at relating the abundance and diversity of invertebrate communities of urban soils to chemical and physical soil characteristics and to identify the taxa most sensitive or tolerant to soil stressors. The invertebrate community of five urban soils in Naples, Italy, was sampled. To assess soil quality invertebrate community indices (Shannon, Simpson, Menhinick and Pielou indices), Acarina/Collembola ratios, and the soil biological quality index (QBS) were calculated. The chemical and physical characteristics of the soils strongly differed. Abundance rather than taxa richness of invertebrates were more affected by soil characteristics. The community was more abundant and diverse in the soils with high organic matter and water content and low metal (Cu, Pb, Zn) concentrations. The taxa more resistant to the urban environment included Acarina, Enchytraeids, Collembola and Nematoda. Collembolans appeared particularly sensitive to changing soil properties. Among the investigated indices, QBS seems most appropriate for soil quality assessment. - Highlights: ► The abundance and diversity of invertebrate communities was related to properties and metal contents of urban soils. ► Several (biodiversity) indices were calculated and compared to evaluate soil quality. ► Metal contamination affected invertebrate density and diversity. ► The taxa more tolerant to metal contamination were Acarina, Enchytraeids, Collembola and Nematoda. ► The soil biological quality index QBS index was most appropriate for soil quality assessment. - Soil metal contamination negatively affected soil invertebrate abundance and diversity.

  15. Why is the influence of soil macrofauna on soil structure only considered by soil ecologists ?

    OpenAIRE

    Bottinelli, N.; Jouquet, Pascal; Capowiez, Y.; Podwojewski, Pascal; Grimaldi, Michel; Peng, X

    2015-01-01

    These last twenty years have seen the development of an abundant literature on the influence of soil macrofauna on soil structure. Amongst these organisms, earthworms, termites and ants are considered to play a key role in regulating the physical, chemical and microbiological properties of soils. Due to these influential impacts, soil ecologists consider these soil macro-invertebrates as ‘soil engineers’ and their diversity and abundance are nowadays considered as relevant bioindi...

  16. Influence of Soil Type and Placement Conditions on Soil Suction in Compacted Expansive Soils

    OpenAIRE

    Zein, Abdul Karim Mohammad

    2009-01-01

    This study investigates the influence of the type of soil, compaction moisture content and dry density on soil suction in impact compacted expansive soils. Many samples which were obtained from five highly expansive soil types were tested. The soil types considered in this study included two natural from Sudan and three natural/artificial soil mixtures. An apparatus based on the axis-translation technique of suction measurement was developed and successfully used for laboratory...

  17. Soil bacteria for remediation of polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Springael, D.; Bastiaens, L.; Carpels, M.; Mergaey, M.; Diels, L.

    1996-09-18

    Soil bacteria, specifically adapted to contaminated soils, may be used for the remediation of polluted soils. The Flemish research institute VITO has established a collection of bacteria, which were isolated from contaminated areas. This collection includes microbacteria degrading mineral oils (Pseudomonas sp., Acinetobacter sp. and others), microbacteria degrading polycyclic aromatic hydrocarbons (genera Sphingomonas and Mycobacterium), microbacteria degrading polychlorobiphenyls (genus Ralstonia and strains related to beta-Proteobacteria), and metal resistant bacteria with plasmid borne resistances to Cd, Zn, Ni, Co, Cu, Hg, and Cr. Bench-scale reactors were developed to investigate the industrial feasibility of bioremediation. Batch Stirred Tank Reactors were used to evaluate the efficiency of oil degraders. Soils, contaminated with non-ferrous metals, were treated using a Bacterial Metal Slurry Reactor. It was found that the reduction of the Cd concentration may vary strongly from sample to sample: reduction factors vary from 95 to 50%. Is was shown that Cd contained in metallic sinter and biologically unavailable Cd could not be removed.

  18. Fixation Status of Acid Soils

    International Nuclear Information System (INIS)

    Six acid soil series from different benchmark sites; Rangsit soil (Sulfic Tropaquepts) (two acid sulfate soils), Pakchong soil (Oxic Paleustults) Korat soil (Oxic Paleustults), Warin soil (Oxic Paleustults), Mae Taeng soil (Typic paleustults) and Boundary grey soil and two Thai phosphate rocks (P R) (Lampun P R and Ratchabuie P R) had been characterized in the laboratory by isotope techniques (E, value Part 1). Triple superphosphate (TSP) was used as a standard fertilizer. R P and TSP with 50 mg P Kg-1 soil were incubated for 30 days to examine the fixing capacity of the acid soils. The results showed that Rangsit Soil which is acid sulfate had high fixing capacity. Pakchong soil retained higher P fixation ability than Korat and Warin soil series. The highest fixation capacity among 7 acid soils were Grey Soil and Mae Taeng soil series. The solubility of TSP was decreased when incorporated with soil after incubation for 30 days. P R from Ratchaburi showed higher effectiveness than Lamphun P R

  19. A case study: Underpinning of structures as an alternative to demolition/reconstruction for removal of underlying contaminated soils at the St. Louis downtown site (SLDS)

    International Nuclear Information System (INIS)

    From 1942 to 1958, a chemical works plant in downtown St. Louis, Missouri chemically treated natural uranium feed materials to produce pure uranium trioxide and other uranium and thorium compounds for the Manhattan Engineer District/Atomic Energy Commission. Characterization activities to determine the vertical and areal extent of radioactive contamination of the soil have been conducted under the jurisdiction of the Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). This paper is concerned with locations where radioactivity exceeds DOE guidelines for soil, under or around existing buildings. As an alternative to demolition and reconstruction of buildings where depth of soil contamination extends below foundation levels, a preliminary study has been made to evaluate the feasibility and advisability of underpinning, which transfers the loads to strata below the depth of contamination. The affected soil can then be excavated and replaced with satisfactory clean backfill avoiding demolition. The study involved 22 buildings where soil contamination extends under their footprint or is present in their immediate vicinity. The preliminary study concludes that only Buildings 101 and K-1 are candidates for successful underpinning. The process of analysis leading to a preliminary underpinning recommendation is described using these two buildings as examples. Building 101 will require strengthening of the roof structure (periphery) prior to demolition of the closure wall and underpinning. Transfer of column loads to driven underpinning piles will use open-quotes needle beams,close quotes adapted with a unique open-quotes clawclose quotes to reduce deflections and bending moments. At Building K-1, a similar arrangement will be used for underpinning of column B-8, and jacked piles will be used to support a lateral bearing wall

  20. Introductory Soil Science Exercises Using USDA Web Soil Survey

    Science.gov (United States)

    Post, Christopher J.; Mikhailova, Elena; McWhorter, Christopher M.

    2007-01-01

    The USDA, Natural Resource Conservation Service (NRCS) Web Soil Survey is a valuable teaching tool for soil science education. By incorporating the Web Soil Survey into an undergraduate-level course, students are able to use the most detailed digital soil survey information without the steep learning curve associated with geographic information…

  1. Vietnam workshop on soil quality: Soil biology and chemistry

    OpenAIRE

    G. B. Reddy

    2007-01-01

    This presentation was presented during the Soil Quality workshop held at Nong Lam University, June 2007. It shows the importance of biological diversity as a gauge of good soil quality. Furthermore, criteria of healthy chemical balances in soil is also explained. Simple measures of biological and chemical indices of soil health are summarized.

  2. Soil washing treatability study

    Energy Technology Data Exchange (ETDEWEB)

    Krstich, M.

    1995-12-01

    Soil washing was identified as a viable treatment process option for remediating soil at the FEMP Environmental Management Project (FEMP). Little information relative to the specific application and potential effectiveness of the soil washing process exists that applies to the types of soil at the FEMP. To properly evaluate this process option in conjunction with the ongoing FEMP Remedial Investigation/Feasibility Study (RI/FS), a treatability testing program was necessary to provide a foundation for a detailed technical evaluation of the viability of the process. In August 1991, efforts were initiated to develop a work plan and experimental design for investigating the effectiveness of soil washing on FEMP soil. In August 1992, the final Treatability Study Work Plan for Operable Unit 5: Soil Washing (DOE 1992) was issued. This document shall be referenced throughout the remainder of this report as the Treatability Study Work Plan (TSWP). The purpose of this treatability study was to generate data to support initial screening and the detailed analysis of alternatives for the Operable Unit 5 FS.

  3. Climate Strategic Soil Management

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2014-02-01

    Full Text Available The complex and strong link between soil degradation, climate change and food insecurity is a global challenge. Sustainable agricultural systems must be integral to any agenda to address climate change and variability, improve renewable fresh water supply and quality, restore degraded soils and ecosystems and advance food security. These challenges are being exacerbated by increasing population and decreasing per capita arable land area and renewable fresh water supply, the increasing frequency of extreme events, the decreasing resilience of agroecosystems, an increasing income and affluent lifestyle with growing preference towards meat-based diet and a decreasing soil quality and use efficiency of inputs. Reversing these downward spirals implies the implementation of proven technologies, such as conservation agriculture, integrated nutrient management, precision agriculture, agroforestry systems, etc. Restoration of degraded soil and desertified ecosystems and the creation of positive soil and ecosystem C budgets are important. Urban agriculture and green roofs can reduce the energy footprint of production chains for urban and non-urban areas and enhance the recycling of by-products. Researchable priorities include sustainable land use and soil/water management options, judicious soil governance and modus operandi towards payments to land managers for the provisioning of ecosystem services.

  4. Soil washing treatability study

    International Nuclear Information System (INIS)

    Soil washing was identified as a viable treatment process option for remediating soil at the FEMP Environmental Management Project (FEMP). Little information relative to the specific application and potential effectiveness of the soil washing process exists that applies to the types of soil at the FEMP. To properly evaluate this process option in conjunction with the ongoing FEMP Remedial Investigation/Feasibility Study (RI/FS), a treatability testing program was necessary to provide a foundation for a detailed technical evaluation of the viability of the process. In August 1991, efforts were initiated to develop a work plan and experimental design for investigating the effectiveness of soil washing on FEMP soil. In August 1992, the final Treatability Study Work Plan for Operable Unit 5: Soil Washing (DOE 1992) was issued. This document shall be referenced throughout the remainder of this report as the Treatability Study Work Plan (TSWP). The purpose of this treatability study was to generate data to support initial screening and the detailed analysis of alternatives for the Operable Unit 5 FS

  5. Iodine in soil

    International Nuclear Information System (INIS)

    A literature study of the migration and the appearance of iodine isotopes in the bio-sphere particularly in soil is presented. Some important papers in the field of iodine appearance in soil and the appearance of 129I in the surroundings of reprocessing plants are discussed. The most important conclusions are: 1. Iodine binds to organic matter in the soil and also to some oxides of aluminium and iron. 2. If the iodine is not bound to the soil a large fraction of added 129I is volatilized after a rather short period. 3. The binding and also the volatilisation seems to be due to biological activity in the soil. It may take place within living microorganisms or by external enzymes excreted from microorganisms. 4. Due to variations in the composition of soil there may be a large variation in the distribution of 129I in the vertical profile of soil - usually most of the 129I in the upper layer - which also results in large variations in the 129I uptake to plants

  6. Iodine in soil

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, Karl Johan [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    2000-12-01

    A literature study of the migration and the appearance of iodine isotopes in the bio-sphere particularly in soil is presented. Some important papers in the field of iodine appearance in soil and the appearance of {sup 129}I in the surroundings of reprocessing plants are discussed. The most important conclusions are: 1. Iodine binds to organic matter in the soil and also to some oxides of aluminium and iron. 2. If the iodine is not bound to the soil a large fraction of added {sup 129}I is volatilized after a rather short period. 3. The binding and also the volatilisation seems to be due to biological activity in the soil. It may take place within living microorganisms or by external enzymes excreted from microorganisms. 4. Due to variations in the composition of soil there may be a large variation in the distribution of {sup 129}I in the vertical profile of soil - usually most of the {sup 129}I in the upper layer - which also results in large variations in the {sup 129}I uptake to plants.

  7. The Influence of Soil Particle on Soil Condensation Water

    Directory of Open Access Journals (Sweden)

    Hou Xinwei

    2013-06-01

    Full Text Available The experiment results showed that the indoor experiment formed from the volume of soil hygroscopic water increased gradually with decreasing size of soil particles. In the outdoor experiments, the results showed that the formed condensation water in medium sand was greater than it was in fine sand; the soil hot condensation water was mainly formed in the top layer of soil between 0-5 cm. We also found that covering the soil surface with stones can increase the volume of formed soil condensate water, reduce the evaporation and maintain relatively high moisture content in the top layer of soil.

  8. SOIL Geo-Wiki: A tool for improving soil information

    Science.gov (United States)

    Skalský, Rastislav; Balkovic, Juraj; Fritz, Steffen; See, Linda; van der Velde, Marijn; Obersteiner, Michael

    2014-05-01

    Crowdsourcing is increasingly being used as a way of collecting data for scientific research, e.g. species identification, classification of galaxies and unravelling of protein structures. The WorldSoilProfiles.org database at ISRIC is a global collection of soil profiles, which have been 'crowdsourced' from experts. This system, however, requires contributors to have a priori knowledge about soils. Yet many soil parameters can be observed in the field without specific knowledge or equipment such as stone content, soil depth or color. By crowdsourcing this information over thousands of locations, the uncertainty in current soil datasets could be radically reduced, particularly in areas currently without information or where multiple interpretations are possible from different existing soil maps. Improved information on soils could benefit many research fields and applications. Better soil data could enhance assessments of soil ecosystem services (e.g. soil carbon storage) and facilitate improved process-based ecosystem modeling from local to global scales. Geo-Wiki is a crowdsourcing tool that was developed at IIASA for land cover validation using satellite imagery. Several branches are now available focused on specific aspects of land cover validation, e.g. validating cropland extent or urbanized areas. Geo-Wiki Pictures is a smart phone application for collecting land cover related information on the ground. The extension of Geo-Wiki to a mobile environment provides a tool for experts in land cover validation but is also a way of reaching the general public in the validation of land cover. Here we propose a Soil Geo-Wiki tool that builds on the existing functionality of the Geo-Wiki application, which will be largely designed for the collection and sharing of soil information. Two distinct applications are envisaged: an expert-oriented application mainly for scientific purposes, which will use soil science related language (e.g. WRB or any other global reference

  9. Non-volcanic andic soils - a new soil type?

    Science.gov (United States)

    Bäumler, Rupert

    2014-05-01

    Numerous sites are described all over the world with soils fulfilling all requirements of andic soil properties developed in non-volcanic and non-allophanic parent materials, and in different bioclimatic zones. Up to now these soils are mainly assigned to Andisols/Andosols or andic Inceptisols in WRB and US Soil Taxonomy. Common factors and properties of this group of soils are in general acid parent materials, advanced soil development, comparably high amounts of oxidic Fe and Al compounds, leaching environment, and a probably underestimated role of iron with respect to the specific soil properties, e.g. extremely stabile, pseudo-sand like micro-aggregates. Considering the worldwide occurrence of these soils and the specificity of their physicochemical properties, I suggest soil forming processes and a new soil type clearly different from Andosols/Andisols in a narrow sense.

  10. Improvement of Soil Physical Properties with Soil Conditioners

    Institute of Scientific and Technical Information of China (English)

    ZHAOBING-ZI; XUFU-AN

    1995-01-01

    Effects of non-ionic polyacrylamide(PAM),anionic polyacrylamide(PHP),cationic polyacrylamide(PCAM),non-ionic polyvinylalcohol(PVA),anionic hydrolyzed polyacrylonitrile(HPAN)and polyethleneoxide(PEO)on the physical properties of three different soil stpes were studied.content of water-stable aggregates larger than 0.25mm increased to varying extents for different soils and soil conditioners,Among the six kinds of condiftioners,non-ionic polyacrylamide(PAM) was the most effective for red soil while polyethyleneoxide(PEO)the least effective for Chao soil,red soil and yellow-brown soil.Water-stable aggregates with the molecular weight of PEO within a certain range.Only evaporation rate of Chao soil decreased after aplication of PAM and HPAN to Chao soil and red soil.

  11. Development of soil taxation and soil classification as furthered by the Austrian Soil Science Society

    Science.gov (United States)

    Baumgarten, Andreas

    2013-04-01

    Soil taxation and soil classification are important drivers of soil science in Austria. However, the tasks are quite different: whereas soil taxation aims at the evaluation of the productivity potential of the soil, soil classification focusses on the natural development and - especially nowadays - on functionality of the soil. Since the foundation of the Austrian Soil Science Society (ASSS), representatives both directions of the description of the soil have been involved in the common actions of the society. In the first years it was a main target to improve and standardize field descriptions of the soil. Although both systems differ in the general layout, the experts should comply with identical approaches. According to this work, a lot of effort has been put into the standardization of the soil classification system, thus ensuring a common basis. The development, state of the art and further development of both classification and taxation systems initiated and carried out by the ASSS will be shown.

  12. Effects of sustanaible soil management on soil quality

    OpenAIRE

    Scotti, Riccardo

    2010-01-01

    The declining of soil fertility due to intensive agriculture represents the main constraint to agricultural productivity. Sustainability of agriculture may be threatened by the progressive reduction of soil organic matter without adequate restoration. Appropriate soil management practices can improve soil quality by utilizing organic amendments as an alternative to mineral fertilizers for increasing soil productivity and plant growth and improve biological fertility. The use of indicators, li...

  13. Termites : the neglected soil engineers of tropical soils

    OpenAIRE

    Jouquet, Pascal; Bottinelli, Nicolas; Shanbhag, R. R.; Bourguignon, T.; Traoré, S.; S.A. Abbasi

    2016-01-01

    Termites are undoubtedly key soil organisms in tropical and subtropical soils. They are soil engineers in influencing the physical, chemical, and biological properties of soils and, consequently, water dynamics in tropical and subtropical ecosystems. To appreciate the effect of termites on soil, there is a need for a thorough understanding of the ecological needs and building strategies of termites and the mechanisms regulating termite diversity at local and regional scales. Termite impacts o...

  14. SoilEffects - start characterization of the experimental soil

    OpenAIRE

    Løes, Anne-Kristin; Johansen, Anders; Pommeresche, Reidun; Riley, Hugh

    2013-01-01

    This report describes the establishment, experimental plan and initial soil characteristics of the field experiment linked to the project “Effects of anaerobically digested manure on soil fertility - establishment of a long-term study under Norwegian conditions” (SoilEffects, 2010-14). The aim of the SoilEffects project is to identify potential risks and benefits for soil fertility when animal manure is anaerobically digested for biogas production. The field experiment was established on T...

  15. Soil Microbes and soil microbial proteins: interactions with clay minerals

    International Nuclear Information System (INIS)

    Bacterial enumeration in soil environments estimates that the population may reach approximately 1010 g-1 of soil and comprise up to 90% of the total soil microbial biomass. Bacteria are present in soils as single cells or multicell colonies and often strongly adsorb onto mineral surfaces such as sand and clay. The interactions of microbes and microbial biomolecules with these minerals have profound impacts on the physical, chemical and biological properties of soils. (Author)

  16. Mycotoxins in the soil environment

    OpenAIRE

    Elmholt, S.

    2008-01-01

    The paper outlines the current knowledge concerning fate of mycotoxins in the soil environment, including - outline of mycotoxins addressed (trichothecenes, zearalenone, fumonisins, aflatoxins, ochratoxins and patulin) - routes by which the mycotoxins enter the soil environment - routes by which they are immobilised or removed from the soil environment - mycotoxigenic fungi and mycotoxins in the soil environment

  17. SCALING METHODS IN SOIL PHYSICS

    Science.gov (United States)

    Soil physical properties are needed to understand and manage natural systems spanning an extremely wide range of scales. Much of soil data are obtained from small soil samples and cores, monoliths, or small field plots, yet the goal is to reconstruct soil physical properties across fields, watershed...

  18. The Soil Mobilome

    DEFF Research Database (Denmark)

    Luo, Wenting

    Soil is considered a reservoir of diverse bacterial cellular functions, of which resistance mechanisms towards biological antimicrobial agents are of substantial interest to us. Previous findings report that the long-term accumulation of copper in an agricultural soil significantly affects the......-selected for among natural bacterial populations. One possible explanation is the horizontal transfer of resistance genes among soil bacteria mediated by mobile genetic elements, such as plasmids, integrons, transposons and bacteriophages, of which copper and antibiotic resistance genes can be linked on the...... same mobile elements. To test this hypothesis, we collected non-polluted and CuSO4- contaminated soil samples and attempted to describe the co-selection of plasmid-encoded copper and antimicrobial resistance via both an endogenous plasmid isolation approach as well as a plasmid metagenomic approach...

  19. Soil Organic Chemistry.

    Science.gov (United States)

    Anderson, G.

    1979-01-01

    A brief review is presented of some of the organic compounds and reactions that occur in soil. Included are nitrogenous compounds, compounds of phosphorus and sulfur, carbohydrates, phenolic compounds, and aliphatic acids. (BB)

  20. Climate Strategic Soil Management

    OpenAIRE

    Rattan Lal

    2014-01-01

    The complex and strong link between soil degradation, climate change and food insecurity is a global challenge. Sustainable agricultural systems must be integral to any agenda to address climate change and variability, improve renewable fresh water supply and quality, restore degraded soils and ecosystems and advance food security. These challenges are being exacerbated by increasing population and decreasing per capita arable land area and renewable fresh water supply, the increasing freque...

  1. Degradation and resilience of soils

    OpenAIRE

    Lal, R.

    1997-01-01

    Debate on global soil degradation, its extent and agronomic impact, can only be resolved through understanding of the processes and factors leading to establishment of the cause-effect relationships for major soils, ecoregions, and land uses. Systematic evaluation through long-term experimentation is needed for establishing quantitative criteria of (i) soil quality in relation to specific functions; (ii) soil degradation in relation to critical limits of key soil properties and processes; and...

  2. Towards indicators of soil health

    OpenAIRE

    Janvier, C; Villeneuve, F.; Edel Hermann, V.; Mateille, Thierry; Alabouvette, C.; Steinberg, C

    2009-01-01

    Soil is a finite and dynamic living resource. Soil health arises from multiple interactions between physicochemical and biological components, including microbial communities, of primary importance for soil functioning. Facing the threat of soilborne pathogens, cultural practices, as "ecological" crop protection methods, are more and more used. Their aim is to modify the soil microbial equilibrium. In order to measure soil health and to propose cultural practices to improve it, it is necessar...

  3. Towards indicators of soil health

    OpenAIRE

    Janvier, Celine; Villeneuve, François; Edel-Hermann, Veronique; Mateille, Thierry; ALABOUVETTE, Claude; Steinberg, Christian

    2009-01-01

    Soil is a finite and dynamic living resource. Soil health arises from multiple interactions between physicochemical and biological components, including microbial communities, of primary importance for soil functioning. Facing the threat of soilborne pathogens, cultural practices, as "ecological" crop protection methods, are more and more used. Their aim is to modify the soil microbial equilibrium. In order to measure soil health and to propose cultural practices to improve it, it is ne...

  4. Soil function and "malfunction"

    Directory of Open Access Journals (Sweden)

    Elio Coppola

    2011-02-01

    Full Text Available Most of the scientists define soil from an “agronomic” point of view as the natural system delegated to sustain plant
    growth and agricultural productions on the whole. In this paper soil importance, even in “environmental and social”
    terms, is pointed out, considering soil as a natural body with its own functional characteristics, regardless of
    its agronomic role and productive ability. Some studies show that soil acts as a thermal buffer and detoxifies the
    circulating liquid phase. Actually soil is also the depository of the cultural heritage of the society who used it, both
    as keeper of relics and manufactured products and as an expression of transformation processes and evolution trend
    caused by man’s action itself.
    The need to protect and preserve soil has to be emphasized by stating its main importance not only as a maintenance
    source for all the living beings but also as a factor of environmental control.

  5. Soil classifcation and user-friendly soilmaps

    OpenAIRE

    Nyborg, Åge Arild; Olsen, Hilde

    2016-01-01

    Soil names from the soil classi cation systems are too complicated to decipher for most of our soil map users. To reach out to potential users of soil information, apart from people working with soil erosion related issues, we translated WRB unit names into user friendly map information, that shows soil quality and limiting soil properties on farmland.

  6. Soil physics and the water management of spatially variable soils

    International Nuclear Information System (INIS)

    The physics of macroscopic soil-water behaviour in inert porous materials has been developed by considering water flow to take place in a continuum. This requires the flow region to consist of an assembly of representative elementary volumes, repeated throughout space and small compared with the scale of observations. Soil-water behaviour in swelling soils may also be considered as a continuum phenomenon so long as the soil is saturated and swells and shrinks in the normal range. Macroscale heterogeneity superimposed on the inherent microscale heterogeneity can take many forms and may pose difficulties in the definition and measurement of soil physical properties and also in the development and use of predictive theories of soil-water behaviour. Thus, measurement techniques appropriate for uniform soils are often inappropriate, and criteria for soil-water management, obtained from theoretical considerations of behaviour in equivalent uniform soils, are not applicable without modification when there is soil heterogeneity. The spatial variability of soil-water properties is shown in results from field experiments concerned with water flow measurements; these illustrate both stochastic and deterministic heterogeneity in soil-water properties. Problems of water management of spatially variable soils when there is stochastic heterogeneity appear to present an insuperable problem in the application of theory. However, for soils showing deterministic heterogeneity, soil-water theory has been used in the solution of soil-water management problems. Thus, scaling using similar media theory has been applied to the infiltration of water into soils that vary over a catchment area. Also, the drain spacing to control the water-table height in soils in which the hydraulic conductivity varies with depth has been calculated using groundwater seepage theory. (author)

  7. Soil Fragmentation and Friability. Effects of Soil Water and Soil Management

    OpenAIRE

    Munkholm, Lars J

    2002-01-01

    Soil fragmentation is a primary aim in most tillage operations in order to create a soil environment favourable for crop establishment and growth. Soils vary around the world from those exhibiting a self-mulching nature to those of a hardsetting nature. These extremes have been reported for Australian and other tropical and subtropical soils. In humid temperate climates, soil tillage is generally needed in order to produce a favourable environment for crop establishment and growth. The ease o...

  8. The effects on soil physical properties of long term soil tillage and soil compaction

    OpenAIRE

    Fahnbulleh, Cassius G. V.

    2014-01-01

    Soil degradation in crop production is becoming increasingly important because of the growing concern it poses on soil functions. Prominent among the degradation factors is soil compaction. It impairs soil productivity by impeding the soil conductivity potential and moisture retention ability, thereby preventing root penetrability and nutrients uptake among other things. This paper is concerned with identifying and characterizing the degree of compaction that may result in dele...

  9. Geostatistical characterization of soil pollution at industrial sites Case of polycyclic aromatic hydrocarbons at former coking plants; Caracterisation geostatistique de pollutions industrielles de sols cas des hydrocarbures aromatiques polycycliques sur d'anciens sites de cokeries

    Energy Technology Data Exchange (ETDEWEB)

    Jeannee, N.

    2001-05-15

    Estimating polycyclic aromatic hydrocarbons concentrations in soil at former industrial sites poses several practical problems on account of the properties of the contaminants and the history of site: 1)collection and preparation of samples from highly heterogeneous material, 2) high short scale variability, particularly in presence of backfill, 3) highly contrasted grades making the vario-gram inference complicated. The sampling strategy generally adopted for contaminated sites is based on the historical information. Systematic sampling recommended for geostatistical estimation is often considered to be excessive and unnecessary. Two former coking plants are used as test cases for comparing several geostatistical methods for estimating (i) in situ concentrations and (ii) the probability that they are above a pollution threshold. Several practical and methodological questions are considered: 1) the properties of various estimators of the experimental vario-gram and the validity of the results; 2) the use of soft data, such as historical information, organoleptic observations and semi-quantitative methods, with a view to improve the precision of the estimates; 3) the comparison of standard sampling strategies, taking into account vertical repartition of grades and the history of the site. Multiple analyses of the same sample give an approximation of the sampling error. Short scale sampling shows the difficulty of selecting soils in the absence of a spatial structure. Sensitivity studies are carried out to assess how densely sampled soft data can improve estimates. By using mainly existing models, this work aims at giving practical recommendations for the characterization of soil pollution. (author)

  10. Pesticide-soil microflora interactions in flooded rice soils

    International Nuclear Information System (INIS)

    Isotope studies revealed that gamma and beta isomers of HCH (hexachlorocyclohexane) decomposed rapidly in nonsterile soils capable of attaining redox potentials of -40 to -100mV within 20 days after flooding. Degradation was slow, however, in soils low in organic matter and in soils with extremely low pH and positive potentials, even after several weeks of flooding. Under flooded conditions, endrin decomposed to six metabolites in most soils. There is evidence that biological hydrolysis of parathion is more widespread than hitherto believed, particularly under flooded soil conditions. Applications of benomyl (fungicide) to a simulated-oxidized zone of flooded soils favoured heterotrophic nitrification. (author)

  11. The Influence of Soil Particle on Soil Condensation Water

    OpenAIRE

    Hou Xinwei; Chen Hao; Li Xiangquan; Cui Xiaomei; Liu Lingxia; Wang Zhenxing

    2013-01-01

    The experiment results showed that the indoor experiment formed from the volume of soil hygroscopic water increased gradually with decreasing size of soil particles. In the outdoor experiments, the results showed that the formed condensation water in medium sand was greater than it was in fine sand; the soil hot condensation water was mainly formed in the top layer of soil between 0-5 cm. We also found that covering the soil surface with stones can increase the volume of formed soil condensat...

  12. Seasonal variability of soil structure and soil hydraulic properties

    Czech Academy of Sciences Publication Activity Database

    Jirků, V.; Kodešová, R.; Mühlhanselová, M.; Žigová, Anna

    Brisbane : International Union of Soil Sciences.; Australian Society of Soil Science, 2010 - (Gilkes, R.; Pragongkep, N.), s. 145-148 ISBN 978-0-646-53783-2. [World Congress of Soil Science /19./. Brisbane (AU), 01.08.2010-06.08.2010] R&D Projects: GA ČR GA526/08/0434 Institutional research plan: CEZ:AV0Z30130516 Keywords : soil structure * aggregate stability * soil hydraulic properties * micromorphological images * temporal variability Subject RIV: DF - Soil Science http://www.iuss.org/19th%20WCSS/symposium/pdf/0483.pdf

  13. Degradation kinetics of ptaquiloside in soil and soil solution

    DEFF Research Database (Denmark)

    Rasmussen, Lars Holm; Ovesen, Rikke Glerup; Hansen, Hans Christian Bruun

    2008-01-01

    Ptaquiloside (PTA) is a carcinogenic norsesquiterpene glycoside produced in bracken (Pteridium aquilinum (L.) Kuhn), a widespread, aggressive weed. Transfer of PTA to soil and soil solution eventually may contaminate groundwater and surface water. Degradation rates of PTA were quantified in soil...... and soil solutions in sandy and clayey soils subjected to high natural PTA loads from bracken stands. Degradation kinetics in moist soil could be fitted with the sum of a fast and a slow first-order reaction; the fast reaction contributed 20 to 50% of the total degradation of PTA. The fast reaction...

  14. Effects of environmental factors and soil properties on topographic variations of soil respiration

    Directory of Open Access Journals (Sweden)

    K. Tamai

    2009-11-01

    Full Text Available Soil respiration rates were measured along different parts of a slope in (a an evergreen forest with mature soil and (b a deciduous forest with immature soil. The effects of soil temperature, soil moisture, and soil properties on soil respiration rates were estimated individually, and the magnitudes of these effects were compared between the deciduous and evergreen forests. In the evergreen forest with mature soil, soil properties had the greatest effect on soil respiration rates, followed by soil moisture and soil temperature. These results may be explained by different properties of soils that matured under different environments. Thus, we argue that the low soil respiration rates in Plot L of the evergreen forest resulted from soil properties and not from wet soil conditions. In the deciduous forest, soil respiration rates were more strongly affected by soil moisture and soil temperature than by soil properties, which were likely due to the immaturity of the forest soil.

  15. Solute diffusivity in undisturbed soil

    DEFF Research Database (Denmark)

    Lægdsmand, Mette; Møldrup, Per; Schjønning, Per

    2012-01-01

    soil samples from two different tillage treatments (soil from below the depth of a harrow treatment and soil from within a moldboard plowed plow layer) was estimated based on concentration profiles using a newly developed method. The method makes use of multiple tracers (two sets of counterdiffusing......Solute diffusivity in soil plays a major role in many important processes with relation to plant growth and environmental issues. Soil solute diffusivity is affected by the volumetric water content as well as the morphological characteristics of water-filled pores. The solute diffusivity in intact...... tracers) for a better determination of the diffusivity. The diffusivity was higher in the below-till soil than the plowed soil at the same soil water matric potential due to higher water content but also due to higher continuity and lower tortuosity of the soil pores. We measured identical solute...

  16. Soil functional types: surveying the biophysical dimensions of soil security

    Science.gov (United States)

    Cécillon, Lauric; Barré, Pierre

    2015-04-01

    Soil is a natural capital that can deliver key ecosystem services (ES) to humans through the realization of a series of soil processes controlling ecosystem functioning. Soil is also a diverse and endangered natural resource. A huge pedodiversity has been described at all scales, which is strongly altered by global change. The multidimensional concept soil security, encompassing biophysical, economic, social, policy and legal frameworks of soils has recently been proposed, recognizing the role of soils in global environmental sustainability challenges. The biophysical dimensions of soil security focus on the functionality of a given soil that can be viewed as the combination of its capability and its condition [1]. Indeed, all soils are not equal in term of functionality. They show different processes, provide different ES to humans and respond specifically to global change. Knowledge of soil functionality in space and time is thus a crucial step towards the achievement soil security. All soil classification systems incorporate some functional information, but soil taxonomy alone cannot fully describe the functioning, limitations, resistance and resilience of soils. Droogers and Bouma [2] introduced functional variants (phenoforms) for each soil type (genoform) so as to fit more closely to soil functionality. However, different genoforms can have the same functionality. As stated by McBratney and colleagues [1], there is a great need of an agreed methodology for defining the reference state of soil functionality. Here, we propose soil functional types (SFT) as a relevant classification system for the biophysical dimensions of soil security. Following the definition of plant functional types widely used in ecology, we define a soil functional type as "a set of soil taxons or phenoforms sharing similar processes (e.g. soil respiration), similar effects on ecosystem functioning (e.g. primary productivity) and similar responses to global change (land-use, management or

  17. Soil Microbial Mineralization of Cellulose in Frozen Soils

    Science.gov (United States)

    Segura, J.; Haei, M.; Sparrman, T.; Nilsson, M. B.; Schleucher, J.; Oquist, M. G.

    2014-12-01

    Soils of high-latitude ecosystems store a large fraction of the global soil carbon pool. In boreal forests, the mineralization of soil organic matter (SOM) during winter by soil heterotrophic activity can affect the ecosystems net carbon balance. Recent research has shown that microorganisms in the organic surface layer of boreal forest soil can mineralize and grow on simple, monomeric substrates under frozen conditions. However, any substantial impacts of microbial activity in frozen soils on long-term soil carbon balances depend on whether soil microorganisms can utilize the more complex, polymeric substrates in SOM. In order to evaluate the potential for soil microorganisms to metabolize carbon polymers at low temperatures, we incubated boreal forest soil samples amended with [13C]-cellulose and studied the microbial catabolic and anabolic utilization of the substrate under frozen and unfrozen conditions (-4 and +4°C). The [13C]-CO2 production rate in the samples at +4°C were 0.524 mg CO2 SOM -1 day-1 while rates in the frozen samples (-4°C) were 0.008 mg CO2 SOM -1 day-1. Thus, freezing of the soil markedly reduced microbial utilization of the cellulose. However, newly synthetized [13C]-enriched cell membrane lipids, PLFAs, were detected in soil samples incubated both above and below freezing, confirming microbial growth also in the frozen soil matrix. The reduced metabolic rates induced by freezing indicate constraints on exoenzymatic activity, as well as substrate diffusion rates that we can attribute to reduced liquid water content of the frozen soil. We conclude that the microbial population in boreal forest soil has the capacity to metabolize, and grow, on polymeric substrates at temperatures below zero. This also involves maintaining exoenzymatic activity in frozen soils. This capacity manifests the importance of SOM mineralization during the winter season and its importance for the net carbon balance of soils of high-latitude ecosystems.

  18. Soil mechanics and analysis of soils overlying cavitose bedrock

    International Nuclear Information System (INIS)

    The stability of the residual soils existing at the West Chestnut Ridge Site, Oak Ridge Reservation, Tennessee, was evaluated. The weathered bedrock below this residual soil contains numerous solution cavities, and several karst features were identified. The West Chestnut Ridge site was evaluated with respect to deformation and collapse of the residual soil into the bedrock cavities. A finite element analysis investigated the effects of bedrock cavity radius, thickness of soil overburden, and surface surcharge upon the deformational and stability characteristics of the residual soil. The results indicate that for small cavity radii, the thickness of the soil cover has little effect on the zone of yielded soil. For large cavity radii, a smaller zone of distressed soil occurs under thick soil cover than under thin soil cover. Dimensionless curves are presented to enable the prediction of the vertical extent of the zone of yielded soil for a range of site geometries. Although the thick soil deposits (100 feet or greater) typically found on the ridges result in high stresses adjacent to the cavity, the area of the distressed or yielded soil is small and unlikely to extend to the surface. In addition, the surface deformation or subsidence is expected to be minimal. Thus, the siting of waste facilities on the ridges where the overburden is maximum would tend to reduce the effects of deformation into the cavities. 29 refs., 37 figs., 7 tabs

  19. Remediation of contaminated soils

    International Nuclear Information System (INIS)

    At least three types of zones of contamination exist whenever there is a chemical release. The impact of Non-Aqueous-Phase Liquids (NAPL) on soils and groundwater, together with the ultimate transport and migration of constituent chemicals in their dissolved or sorbed states, had led environmentalists to develop several techniques for cleaning a contaminated soil. Zone 1 represents the unsaturated zone which could be contaminated to retention capacity by both Dense Non-Aqueous-Phase Liquids (DNAPL) and Light Non-Aqueous-Phase Liquids (LNAPL). Zone 2 represents residual DNAPL or LNAPL contamination found below the groundwater table in the saturated zone. Zone 3 is represented by either the presence of NAPL dissolved in the aqueous phase, volatilized in the unsaturated zone or sorbed to either saturated or unsaturated soils. Cleanup of petroleum contaminated soils is presented in this paper. Among several techniques developed for this purpose, in-situ biological remediation is discussed in detail as a technique that does not involve excavation, thus, the costs and disruption of excavating soil are eliminated

  20. Engineering Properties of Expansive Soil

    Institute of Scientific and Technical Information of China (English)

    DAI Shaobin; SONG Minghai; HUANG Jun

    2005-01-01

    The components of expansive soil were analyzed with EDAX, and it is shown that the main contents of expansive soil in the northern Hubei have some significant effects on engineering properties of expansive soil. Furthermore, the soil modified by lime has an obvious increase of Ca2+ and an improvement of connections between granules so as to reduce the expansibility and contractility of soil. And it also has a better effect on the modified expansive soil than the one modified by pulverized fuel ash.

  1. Soil water repellency of Antarctic soils (Elephant Point). First results

    Science.gov (United States)

    Pereira, Paulo; Oliva, Marc; Ruiz Fernández, Jesus

    2015-04-01

    Hydrophobicity it is a natural properties of many soils around the world. Despite the large body of research about soil water hydrophobicity (SWR) in many environments, little information it is available about Antarctic soils and their hydro-geomorphological consequences. According to our knowledge, no previous work was carried out on this environment. Soil samples were collected in the top-soil (0-5 cm) and SWR was analysed according to the water drop penetration test. The preliminary results showed that all the soils collected were hydrophilic, however further research should be carried out in order to understand if SWR changes with soil depth and if have implications on soil infiltration during the summer season.

  2. Soil compaction: Evaluation of stress transmission and resulting soil structure

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Schjønning, Per; Keller, Thomas;

    Accurate estimation of stress transmission and resultant deformation in soil profiles is a prerequisite for the development of predictive models and decision support tools for preventing soil compaction. Numerous studies have been carried out on the effects of soil compaction, whilst relatively few...... studies have focused on the cause (mode of stress transmission in the soil). We have coupled both cause and effects together in the present study by carrying out partially confined compression tests on (1) wet aggregates, (2) air dry aggregates, and (3) intact soils to quantify stress transmission and...... compaction-resulted soil structure at the same time. Stress transmission was quantified using both X-ray CT and Tactilus sensor mat, and soil-pore structure was quantified using X-ray CT. Our results imply that stress transmission through soil highly depends on the magnitude of applied load and aggregate...

  3. Soil biogeochemistry, plant physiology and phytoremediation of cadmium contaminated soils

    Science.gov (United States)

    Cadmium (Cd) loading in soil and the environment has been accelerated worldwide due to enhanced industrialization and intensified agricultural production, particularly in the developing countries. Soil Cd pollution, resulting from both anthropogenic and geogenic sources, has posed an increasing chal...

  4. Soil cultivation in vineyards alters interactions between soil biota and soil physical and hydrological properties

    Science.gov (United States)

    Zaller, Johann G.; Buchholz, Jacob; Querner, Pascal; Winter, Silvia; Kratschmer, Sophie; Pachinger, Bärbel; Strauss, Peter; Bauer, Thomas; Stiper, Katrin; Potthoff, Martin; Guernion, Muriel; Scimia, Jennifer; Cluzeau, Daniel

    2016-04-01

    Several ecosystem services provided by viticultural landscapes result from interactions between soil organisms and soil parameters. However, to what extent different soil cultivation intensities in vineyards compromise soil organisms and their interactions between soil physical and hydrological properties is not well understood. In this study we examined (i) to what extent different soil management intensities affect the activity and diversity of soil biota (earthworms, Collembola, litter decomposition), and (ii) how soil physical and hydrological properties influence these interactions, or vice versa. Investigating 16 vineyards in Austria, earthworms were assessed by hand sorting, Collembola via pitfall trapping and soil coring, litter decomposition by using the tea bag method. Additionally, soil physical (water infiltration, aggregate stability, porosity, bulk density, soil texture) and chemical (pH, soil carbon content, cation exchange capacity, potassium, phosphorus) parameters were assessed. Results showed complex ecological interactions between soil biota and various soil characteristics altered by management intensity. These investigations are part of the transdisciplinary BiodivERsA project VineDivers and will ultimately lead into management recommendations for various stakeholders.

  5. Predicting Radiocaesium Sorption with Soil Chemical Properties in Japanese Soils

    International Nuclear Information System (INIS)

    The soil-to-plant transfer mechanism of radiocaesium (137Cs) in the Fukushima accident affected area is not fully understood. The sorption of 137Cs in soils holds a key to evaluating the variation of transfer of 137Cs to plant among different soil types. This study aims to investigate how differences in 137Cs adsorption in different soils can be explained by soil chemical and mineralogical properties. The Radiocaesium Interception Potential (RIP), a parameter for quantifying immediate 137Cs adsorption, and the soil texture were determined for 52 surface soils covering a wide range of texture classes collected from the area contaminated by the Fukushima accident. These soils include Andosols, Fluvisols, Gleysols, and Cambisols. In addition, we are currently performing analyses for other soil chemical properties (i.e. exchangeable cation, CEC, pH, organic matter content, etc) and for the properties affecting 137Cs sorption in soils (i.e. Frayed Edge Site capacity, K+ and NH4+ selectivity, effect of wet-dry cycles, etc). The average RIP varied from 80 to 4300 mmol kg-1 between soils. Contrary to what was found for temperate region soils by Absalom et al., the RIP (log(RIP)) and soil clay content were not significantly correlated (R2= 0.066). These initial results seem to indicate that the 137Cs sorption is affected by the clay mineralogy in soils. We postulate that by considering also the differences in clay K content, the relationship will improve since the frayed edges are formed at high K content in the clay. This knowledge could improve the prediction of RIP for different Japanese soil groups. Further analysis of the data will explore the relationship between RIP and other soil chemical properties. In our study, we will take specific note of Andosols (range of average RIP from 80 to 2400 mmol kg-1), typical soils in Japan originated from volcanic ash. It is expected that soil properties ruling the 137Cs sorption for Japanese Andosols will differ compared to other

  6. Predicting Radiocaesium Sorption with Soil Chemical Properties in Japanese Soils

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Shinichiro [SCK.CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven (Belgium); Van Hees, May; Wannijn, Jean; Sweeck, Lieve; Vandenhove, Hildegarde [SCK.CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Smolders, Erik [Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven (Belgium)

    2014-07-01

    The soil-to-plant transfer mechanism of radiocaesium ({sup 137}Cs) in the Fukushima accident affected area is not fully understood. The sorption of {sup 137}Cs in soils holds a key to evaluating the variation of transfer of {sup 137}Cs to plant among different soil types. This study aims to investigate how differences in {sup 137}Cs adsorption in different soils can be explained by soil chemical and mineralogical properties. The Radiocaesium Interception Potential (RIP), a parameter for quantifying immediate {sup 137}Cs adsorption, and the soil texture were determined for 52 surface soils covering a wide range of texture classes collected from the area contaminated by the Fukushima accident. These soils include Andosols, Fluvisols, Gleysols, and Cambisols. In addition, we are currently performing analyses for other soil chemical properties (i.e. exchangeable cation, CEC, pH, organic matter content, etc) and for the properties affecting {sup 137}Cs sorption in soils (i.e. Frayed Edge Site capacity, K{sup +} and NH{sub 4}{sup +} selectivity, effect of wet-dry cycles, etc). The average RIP varied from 80 to 4300 mmol kg{sup -1} between soils. Contrary to what was found for temperate region soils by Absalom et al., the RIP (log(RIP)) and soil clay content were not significantly correlated (R2= 0.066). These initial results seem to indicate that the {sup 137}Cs sorption is affected by the clay mineralogy in soils. We postulate that by considering also the differences in clay K content, the relationship will improve since the frayed edges are formed at high K content in the clay. This knowledge could improve the prediction of RIP for different Japanese soil groups. Further analysis of the data will explore the relationship between RIP and other soil chemical properties. In our study, we will take specific note of Andosols (range of average RIP from 80 to 2400 mmol kg{sup -1}), typical soils in Japan originated from volcanic ash. It is expected that soil properties ruling

  7. Stress transmission in soil

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per

    We urgently need increased quantitative knowledge on stress transmission in real soils loaded with agricultural machinery. 3D measurements of vertical stresses under tracked wheels were performed in situ in a Stagnic Luvisol (clay content 20 %) continuously cropped with small grain cereals. The......). Seven load cells were inserted horizontally from a pit with minimal disturbance of soil in each of three depths (0.3, 0.6 and 0.9 m), covering the width of the wheeled area. The position of the wheel relative to the transducers was recorded using a laser sensor. Finally, the vertical stresses near the...... soil-tyre interface were measured in separate tests by 17 stress transducers across the width of the tyres. The results showed that the inflation pressure controlled the level of maximum stresses at 0.3 m depth, while the wheel load was correlated to the measured stresses at 0.9 m depth. This supports...

  8. Radon mitigation in soils

    International Nuclear Information System (INIS)

    Radon is produced in soil by radium decay, Ra-226 for radon (Rn-222) and Ra-224 for thoron (Rn-220). The radium content is about 40 Bq.kg-1 in crustal rocks and soils, 70 Bq.kg-1 in granite and only about 8 Bq.kg-1 in limestone. Being the heaviest gas in atmosphere, radon presents high concentration at surface and it is accumulating in closed or poorly ventilated places, both in underground cavities (caves or mines) and in dwelling. In comparison with the average radon concentration in atmospheric air of 8 Bq.m-3, the average indoor radon concentration reaches 10-100 Bq.m-3. International statistics indicate that radon contribution on natural irradiation is about 60%. The main sources of indoor radon are: radium content of the soil and of the concretes, water supply and natural gases

  9. Soil macrofauna webmasters of ecosystem

    Science.gov (United States)

    Frouz, Jan

    2015-04-01

    The role of plant roots and microflora in shaping many ecosystem processes is generally appreciated in the contrary rho role of soil mcrofauna in this context is assumed to be negligible and rather anecdotic. But more than half of the litter fall is consumed by soil fauna and soil fauna can also consume and or translocation substantial amount of soil. Here we demonstrate on example of post mining chronosequences how site colonization by soil fauna affect composition of whole soil biota community, plant succession and soil formation. Filed and laboratory experiments show that decomposition of fauna feces may be sped up compare to litter at the very beginning but in long term fauna feces decompose slower than litter. This is also supported by micro morphological observation which shows that fauna feces form substantial part of soil. Fauna feces also induce lover or even negative priming effect when introduced in soil in comparison with litter that triggers positive priming effect. Laboratory experiment show that fauna effect is context sensitive and is more pronounced in systems already affected by soil fauna. Soil mixing by soil fauna consequently affect environmental conditions in soils such as water holding capacity or nutrient availability, it also affect composition of decomposer food web including microbial community (fungal bacterial ratio) which feed back in alternation of plant community composition during succession This fauna activity is not constant everywhere the higher effect of fauna activity on litter layer was observed in temperate soils of deciduous forests and with litter having CN between 20-30. In conclusion soil fauna use directly only small proportion of energy in the litter but can substantially affect soil carbon turnover, soil formation, decomposer food web and plant community.

  10. Fixation of Soil Using PEC and Separation of Fixed Soil

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Suk; Yang, Hee-Man; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Radioactive cesium (Cs-137) is the most apprehensive element due to its long half-lives, high solubility in water, and strong radiation emission in the form of gamma rays. Because the radioactivity is localized within topsoil, soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and form the polyelectrolyte complex (PEC) due to electrostatic interaction of anion and cation in an aqueous solution. polyelectrolyte complex can fix soil particles by flocculation and formation of crust between soil. The method can prevent a spread of radioactive material by floating on a soil surface. The decontamination efficiency of the surface soils reached about 90%, and dust release was effectively suppressed during the removal of surface soils. However it has a problem that the removed soil must separate soil and polymer to treat as the waste. In this study, the fixation of soil by polyelectrolyte complex to suppress the spread of contaminant and the separation method of soil and polymer was investigated. The properties of polyelectrolyte complex solution and the stability of fixed soil by polyelectrolyte complex were investigated. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation.

  11. Dynamic Stresses in Foundation Soils from Soil-Structure Interaction

    OpenAIRE

    Heidarzadeh, Bahareh

    2015-01-01

    Dynamic Stresses in Foundation Soils from Soil-Structure Interaction byBahareh HeidarzadehDepartment of Civil and Environmental EngineeringUniversity of California, Los Angeles, Fall 2015Professor Jonathan P. Stewart, ChairProfessor George Mylonakis, Co-ChairThis research concerns the impacts of Soil-Structure Interaction (SSI) on the seismic stress demands in soil materials beneath the foundation, referred to as ‘foundation soils’. Engineering procedures for evaluation of these stress demand...

  12. Fixation of Soil Using PEC and Separation of Fixed Soil

    International Nuclear Information System (INIS)

    Radioactive cesium (Cs-137) is the most apprehensive element due to its long half-lives, high solubility in water, and strong radiation emission in the form of gamma rays. Because the radioactivity is localized within topsoil, soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and form the polyelectrolyte complex (PEC) due to electrostatic interaction of anion and cation in an aqueous solution. polyelectrolyte complex can fix soil particles by flocculation and formation of crust between soil. The method can prevent a spread of radioactive material by floating on a soil surface. The decontamination efficiency of the surface soils reached about 90%, and dust release was effectively suppressed during the removal of surface soils. However it has a problem that the removed soil must separate soil and polymer to treat as the waste. In this study, the fixation of soil by polyelectrolyte complex to suppress the spread of contaminant and the separation method of soil and polymer was investigated. The properties of polyelectrolyte complex solution and the stability of fixed soil by polyelectrolyte complex were investigated. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation

  13. Wood-soil interactions in soil bioengineering slope stabilization works

    OpenAIRE

    Moscatelli MC; Romagnoli M; Cenfi S; Lagomarsino A; Di Tizio A; Spina S; Grego S

    2009-01-01

    In this work we propose the use of soil quality indicators with the aim of assessing the environmental impact of soil bioengineering works. This study was carried out in central Italy where soil bioengineering slope stabilization works were established using chestnut wood. In particular the goal of this study was to determine the occurrence of a wood-effect, that is changes of soil properties due to the presence of decomposing logs in two sites characterized by different time span since works...

  14. Soil microbial diversity and related soil functioning in urban parks

    OpenAIRE

    Bourgerie, S.; Motelica-Heino, Mikael; Limam, I.; Yengue, Jean-Louis; Morabito, D.

    2014-01-01

    International audience The main thrust of this work was to improve the knowledge conerning soil biodiversity and related ecosystem services in soils from urban parks in several cities of the Région Centre, France. In this work, the pedological, geochemical and microbiological characteritics of surface soil were investigated in order to make an inventory of soil fertility in several urban parks of the major cities of the région Centre, France. The effects of agricultural practices on biomas...

  15. Working with Soil - Soil science in the field

    Science.gov (United States)

    Hannam, Jacqueline; Lacelles, Bruce; Owen, Jason; Thompson, Dick; Jones, Bob; Towers, Willie

    2015-04-01

    Working with Soil is the Professional Competency Scheme developed by the British Society of Soil Science's Professional Practice Committee, formerly the Institute of Professional Soil Scientists. Ten competency documents cover the required qualifications, skills and knowledge for different aspects of applied soil science. The Society is currently engaged in a five year plan to translate the competency documents into a comprehensive set of training courses. Foundation skills in field-based science are covered by three separate training courses - Exposing and describing a soil profile (Course 1), Soil classification (Course 2), and Soil survey techniques (Course 3). Course 1 has run successfully twice a year since 2013. The other two courses are under development and are scheduled to start in 2015. The primary objective of Foundation Skills Course 1 is to develop confidence and familiarity with field soil investigation and description, understanding the soil underfoot and putting soils into a wider landscape context. Delegates excavate a soil profile pit, and describe and sample the exposed soil to standard protocols. Delegates work in teams of 4 or 5 so that an element of shared learning is part of the process. This has been a very positive aspect of the courses we have run to date. The course has attracted professionals from agricultural and environmental consultancies but is also very popular with research students and has formed a part of an Advanced Training Programme in Soil Science for postgraduates. As there is only one soil science degree course remaining in the UK, many students on their admission do not have a background in field-based pedology and lack an understanding of soil in the context of landscape scale soil functions. Feedback to date has been very positive.

  16. Soil moisture distribution over time in a clay loam soil in Kosovo

    OpenAIRE

    Abdullah Nishori; Besnik Gjongecaj; Deme Abazi

    2013-01-01

    Studying the soil moisture distribution over time in a given soil profile is the object of the present study. The way the soil moisture gets distributed over soil profile depends particularly on the soil texture and on the soil suction gradients developed. However, it changes continuously over time for a given soil depth. The method of determining the soil moisture distribution over time is based on the measuring of soil moisture suctions developed and the soil moisture contents in various ti...

  17. Constructive Similarity of Soils

    Czech Academy of Sciences Publication Activity Database

    Koudelka, Petr

    Singapore : Design, CRC a iTEK CMS Web solutions, 2012 - (Phoon, K.; Beer, M.; Quek, S.; Pang, S.), s. 206-211 ISBN 978-981-07-2218-0. [APS on Structural Reliability and Its Application – Sustainable Civil Infrastructures /5./. Singapore (SG), 23.05.2012-25.05.2012] Grant ostatní: GA ČR(CZ) GAP105/11/1160 Institutional support: RVO:68378297 Keywords : model similarity * database of soil properties * soil similarity characteristic * statistical analysis * ultimate limit states Subject RIV: JM - Building Engineering

  18. Soil mechanics experiment

    Science.gov (United States)

    Mitchell, J. K.; Bromwell, L. G.; Carrier, W. D., III; Costes, N. C.; Houston, W. N.; Scott, R. F.

    1972-01-01

    The Apollo 15 soil-mechanics experiment has offered greater opportunity for study of the mechanical properties of the lunar soil than previous missions, not only because of the extended lunar-surface stay time and enhanced mobility provided by the lunar roving vehicle (rover), but also because four new data sources were available for the first time. These sources were: (1) the self-recording penetrometer (SRP), (2) new, larger diameter, thin-walled core tubes, (3) the rover, and (4) the Apollo lunar-surface drill (ALSD). These data sources have provided the best bases for quantitative analyses thus far available in the Apollo Program.

  19. Soil contamination studies

    International Nuclear Information System (INIS)

    The objective of this project was to develop a quick screening method that accurately identifies and quantifies the amount of alpha-emitting radionuclides in infinitely-thick soil samples using a Frisch grid ionization chamber. An additional objective of the work was to provide the US Department of Energy, Nevada Operations Office and its contractors with information on the theoretical and actual measured results of atmospheric testing contamination of soil and water at the Nevada Test Site through a comprehensive search of existing literature

  20. Soil monitoring instrumentation

    International Nuclear Information System (INIS)

    The Los Alamos Scientific Laboratory (LASL) has an extensive program for the development of nondestructive assay instrumentation for the quantitative analysis of transuranic (TRU) materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. Included are wastes generated in decontamination and decommissioning of outdated nuclear facilities as well as wastes from old waste burial ground exhumation programs. The assay instrumentation is designed to have detection limits below 10 nCi/g wherever practicable. Because of the topic of this workshop, only the assay instrumentation applied specifically to soil monitoring will be discussed here. Four types of soil monitors are described

  1. An alternative to soil taxonomy for describing key soil characteristics

    Science.gov (United States)

    Duniway, Michael C.; Miller, Mark E.; Brown, Joel R.; Toevs, Gordon

    2013-01-01

    We are pleased to see the letter by Schimel and Chadwick (Front Ecol Environ 2013; 11[8]: 405–06), highlighting the importance of soil characterization in ecological and biogeochemical research and explaining the value of soil taxonomy, and we agree with the authors that reporting soil

  2. Soil Genesis and Development, Lesson 5 - Soil Geography and Classification

    Science.gov (United States)

    The system of soil classification developed by the United States Department of Agriculture (USDA) is called Soil Taxonomy. Soil Taxonomy consists of a hierarchy of six levels which, from highest to lowest, are: Order, Suborder, Great Group, Subgroup, family, and series. This lesson will focus on bro...

  3. Dependence of sand soil compressibility on soil physical properties

    Institute of Scientific and Technical Information of China (English)

    I.S.Vakhrin; G.P.Kuzmin

    2014-01-01

    A relationship between soil physical properties and its compressibility has been analyzed. The formulae to determine soil density and porosity have been substantiated in compression tests. The regularity of changes in compressibility of thawed sand soils with various degrees of water content has been experimentally identified.

  4. Soils in Schools: Embedding Soil Science in STEM

    Science.gov (United States)

    Bryce, Alisa

    2015-01-01

    Soil science, though relevant to a variety of subjects including science, geography, mathematics, social sciences and history, is typically perceived as a subgenre of agriculture. With a global need for soil scientists, and declining numbers in university soil courses, there's a growing gap between science needs and providers. One way to promote…

  5. A Laboratory Exercise Relating Soil Energy Budgets to Soil Temperature

    Science.gov (United States)

    Koenig, Richard T.; Cerny-Koenig, Teresa; Kotuby-Amacher, Janice; Grossl, Paul R.

    2008-01-01

    Enrollment by students in degree programs other than traditional horticulture, agronomy, and soil science has increased in basic plant and soil science courses. In order to broaden the appeal of these courses to students from majors other than agriculture, we developed a hands-on laboratory exercise relating the basic concepts of a soil energy…

  6. Precision Farming Tools. Soil Electrical Conductivity

    OpenAIRE

    Grisso, Robert D. (Robert Dwight), 1956-; Alley, Mark M.; Holshouser, David Lee, 1963-; Thomason, Wade Everett

    2005-01-01

    Soil electrical conductivity (EC) is one of the simplest, least expensive soil measurements available to precision farmers today. Soil EC measurement can provide more measurements in a shorter amount of time than traditional grid soil sampling.

  7. Lunar Soil Particle Separator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Soil Particle Separator (LSPS) is an innovative method to beneficiate soil prior to in-situ resource utilization (ISRU). The LSPS can improve ISRU oxygen...

  8. Allegheny County Soil Type Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains soil type and soil classification, by area. Additional info at: http://mcdc.cas.psu.edu/datawiz.htm;...

  9. Soil-Transmitted Helminth Infections

    Science.gov (United States)

    ... 2014 Fact sheets Features Commentaries 2014 Multimedia Contacts Soil-transmitted helminth infections Fact sheet Updated March 2016 Key facts Soil-transmitted helminth infections are caused by different species ...

  10. Soil texture; 1 : 500 000

    International Nuclear Information System (INIS)

    The characteristics of soil texture are based on an abundant database of the agricultural and forest soils. The character of the texture of the upper soil horizons is assessed. The colour scale represents the classes of texture, and the raster distinguishes the individual classes of stoniness (in mountain ranges) or graveliness in the river alluvia. Soils with at least 10 % of area representation of rock basement are classified as very rocky. Very rocky soils are mostly rankers to Lithosols in the mountain areas of Slovakia. Medium stony are Cambisols to rankers on the crystalline rocks and volcanic complexes. The relatively heaviest soils are to be found in the Vychodoslovenska nizina Lowland, the lightest soils occur in the Zahorska nizina Lowland with prevalence of soils on aeolian sands. (authors)

  11. World's soils are under threat

    Science.gov (United States)

    Montanarella, Luca; Pennock, Daniel Jon; McKenzie, Neil; Badraoui, Mohamed; Chude, Victor; Baptista, Isaurinda; Mamo, Tekalign; Yemefack, Martin; Singh Aulakh, Mikha; Yagi, Kazuyuki; Hong, Suk Young; Vijarnsorn, Pisoot; Zhang, Gan-Lin; Arrouays, Dominique; Black, Helaina; Krasilnikov, Pavel; Sobocká, Jaroslava; Alegre, Julio; Henriquez, Carlos Roberto; de Lourdes Mendonça-Santos, Maria; Taboada, Miguel; Espinosa-Victoria, David; AlShankiti, Abdullah; Kazem AlaviPanah, Sayed; El Mustafa Elsheikh, Elsiddig Ahmed; Hempel, Jon; Camps Arbestain, Marta; Nachtergaele, Freddy; Vargas, Ronald

    2016-02-01

    The Intergovernmental Technical Panel on Soils has completed the first State of the World's Soil Resources Report. Globally soil erosion was identified as the gravest threat, leading to deteriorating water quality in developed regions and to lowering of crop yields in many developing regions. We need to increase nitrogen and phosphorus fertilizer use in infertile tropical and semi-tropical soils - the regions where the most food insecurity among us are found - while reducing global use of these products overall. Stores of soil organic carbon are critical in the global carbon balance, and national governments must set specific targets to stabilize or ideally increase soil organic carbon stores. Finally the quality of soil information available for policy formulation must be improved - the regional assessments in the State of the World's Soil Resources Report frequently base their evaluations on studies from the 1990s based on observations made in the 1980s or earlier.

  12. Lunar Soil Particle Separator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Soil Particle Separator (LSPS) is an innovative method to beneficiate soil prior to in-situ resource utilization (ISRU). The LSPS improves ISRU oxygen...

  13. Relationships between soil physicochemical, microbiological properties, and nutrient release in buffer soils compared to field soils.

    Science.gov (United States)

    Stutter, Marc I; Richards, Samia

    2012-01-01

    The retention of nutrients in narrow, vegetated riparian buffer strips (VBS) is uncertain and underlying processes are poorly understood. Evidence suggests that buffer soils are poor at retaining dissolved nutrients, especially phosphorus (P), necessitating management actions if P retention is not to be compromised. We sampled 19 buffer strips and adjacent arable field soils. Differences in nutrient retention between buffer and field soils were determined using a combined assay for release of dissolved P, N, and C forms and particulate P. We then explored these differences in relation to changes in soil bulk density (BD), moisture, organic matter by loss on ignition (OM), and altered microbial diversity using molecular fingerprinting (terminal restriction fragment length polymorphism [TRFLP]). Buffer soils had significantly greater soil OM (89% of sites), moisture content (95%), and water-soluble nutrient concentrations for dissolved organic C (80%), dissolved organic N (80%), dissolved organic P (55%), and soluble reactive P (70%). Buffer soils had consistently smaller bulk densities than field soils. Soil fine particle release was generally greater for field than buffer soils. Significantly smaller soil bulk density in buffer soils than in adjacent fields indicated increased porosity and infiltration in buffers. Bacterial, archaeal, and fungal communities showed altered diversity between the buffer and field soils, with significant relationships with soil BD, moisture, OM, and increased solubility of buffer nutrients. Current soil conditions in VBS appear to be leading to potentially enhanced nutrient leaching via increasing solubility of C, N, and P. Manipulating soil microbial conditions (by management of soil moisture, vegetation type, and cover) may provide options for increasing the buffer storage for key nutrients such as P without increasing leaching to adjacent streams. PMID:22370402

  14. Soil! Get the Scoop - The Soil Science Society of America's International Year of Soils Campaign

    Science.gov (United States)

    Lindbo, David L.; Hopmans, Jan; Olson, Carolyn; Fisk, Susan; Chapman, Susan; van Es, Harold

    2015-04-01

    Soils are a finite natural resource and are nonrenewable on a human time scale. Soils are the foundation for food, animal feed, fuel and natural fiber production, the supply of clean water, nutrient cycling and a range of ecosystem functions. The area of fertile soils covering the world's surface is limited and increasingly subject to degradation, poor management and loss to urbanization. Increased awareness of the life-supporting functions of soil is called for if this trend is to be reversed and so enable the levels of food production necessary to meet the demands of population levels predicted for 2050. The Soil Science Society of America is coordinating with the Global Soil Partnership and other organizations around the world to celebrate the 2015 International Year of Soils and raise awareness and promote the sustainability of our limited soil resources. We all have a valuable role in communicating vital information on soils, a life sustaining natural resource. Therefore, we will provide resources to learn about soils and help us tell the story of soils. We will promote IYS on social media by sharing our posts from Facebook and Twitter. Additionally SSSA developed 12 monthly themes that reflect the diverse value of soils to our natural environment and society. Each month has information on the theme, a lesson plan, and other outreach activities. All information is available on a dedicated website www.soil.org/IYS. The site will be updated constantly throughout the year.

  15. Soil, a sponge for pollutants

    OpenAIRE

    Lichtfouse, Eric

    1997-01-01

    This article is written both in English and French International audience This preface of the special issue entitled "Soil Pollutants" (Analusis Magazine 25, M16-M72, 1997) highlights major basic and applied issues about the sources and fate of organic, mineral and radioactive pollutants in soils. Soils have long been considered as a closed and inert medium where wastes can be dumped without impact on living organisms. This is false and we know now that soils play a vital role in ecosys...

  16. Compaction properties of agricultural soils

    OpenAIRE

    TANG, Anh Minh; CUI, Yu Jun; Eslami, Javad; DEFOSSEZ BERTHOUD, Pauline

    2007-01-01

    The compaction of field soils due to repeated rolling of agricultural vehicles is one of the main reasons for the agricultural soil degradation. A good understanding of the compaction properties of these soils is essential for an optimum organisation of agricultural activities, and therefore for environmental protection in terms of nitrate migrations. In the present work, the compaction properties of agricultural soils from four sites in France are studied after experimental data ...

  17. Bioremediation of Creosote - contaminated Soil

    OpenAIRE

    BYSS, Marius

    2008-01-01

    Bioremediation of creosote-contaminated soil was studied employing the methods of soil microbial biology and using new gas chromatography-mass spectrometry-mass spectrometry analytical approach. The changes of the soil microbial community under the polycyclic aromatic hydrocarbons (PAH) pollution impact were analyzed and described, as well as the changes during the bioremediation experiments. Laboratory-scale bioremediation experiments using the soil microbial community (consisted of bacteria...

  18. Sustainable Soil Water Management Systems

    OpenAIRE

    Basch, G.; Kassam, A.; Friedrich, T; Santos, F. L.; Gubiani, P.I.; Calegari, A.; J. M. Reichert; dos Santos, D.R.

    2012-01-01

    Soil quality and its management must be considered as key elements for an effective management of water resources, given that the hydrological cycle and land management are intimately linked (Bossio et al. 2007). Soil degradation has been described by Bossio et al. (2010) as the starting point of a negative cycle of soil-water relationships, creating a positive, self-accelerating feedback loop with important negative impacts on water cycling and water productivity. Therefore, sustainable soil...

  19. Remediation and Reuse of Soils

    Science.gov (United States)

    Zihms, Stephanie; Switzer, Christine; Tarantino, Alessandro

    2013-04-01

    Links between contaminant remediation and impacts on soil properties have not been explored in a systematic way. Most remediation studies focus on the effectiveness of the remediation process. Contamination and remediation can have significant effects on soil properties and function. Considering that in most remediation cases the soil will be re-used in some way, it is important to understand the effects of the remediation process on soil properties and the post-remediation soil behaviour. This understanding can help to determine the best re-use of the soil and therefore improve post-remediation site development. Laboratory experiments on coal tar contaminated soil treated with smouldering remediation show that thermal treatments affect a variety of soil properties ranging from mineralogical composition, particle size distribution, and pH. Dynamic responses like permeability and shear strength are impacted as well and these responses are linked to the changes in soil properties. Soil permeability, capillary rise, and contact angle change dramatically after this remediation process, indicating some degree of hydrophobicity and significant implications for water movement through the post-remediation soil. The observed changes in permeability are linked to physical changes to the soil grain surface combined with small amounts (residue. Decoupling these effects is essential to understanding the extent of impact remediation processes have on long-term soil function. While chemical residue within the pores can be removed through "polishing" remediation steps, physical changes are likely to be permanent. Physical changes and chemical residue also have important implications with respect to the response of the soil under shear. These observed changes indicate that the remediated soil and its behaviour should be considered by remediation research. Monitoring of soil properties and behaviour during aggressive remediation can improve prediction of changes to infiltration

  20. Agronomy / Soil Microbiology - Purdue University

    OpenAIRE

    Jake R. Carlson

    2011-01-01

    The graduate student interviewed for this data curation profile is studying studying the management strategies for bioenergy crops and their effect on soil structure and the sustainability of soil quality. She collects data on the soil structure and quality through a series of experiments and analysis to identify the effects of a particular soil treatment. Data management issues surround the use of a physical, rather than electronic, lab notebook that is hard to connect to the digital files t...