WorldWideScience

Sample records for backbone structure based

  1. Backbone cup – a structure design competition based on topology optimization and 3D printing

    Directory of Open Access Journals (Sweden)

    Zhu Ji-Hong

    2016-01-01

    Full Text Available This paper addresses a structure design competition based on topology optimization and 3D Printing, and proposes an experimental approach to efficiently and quickly measure the mechanical performance of the structures designed using topology optimization. Since the topology optimized structure designs are prone to be geometrically complex, it is extremely inconvenient to fabricate these designs with traditional machining. In this study, we not only fabricated the topology optimized structure designs using one kind of 3D Printing technology known as stereolithography (SLA, but also tested the mechanical performance of the produced prototype parts. The finite element method is used to analyze the structure responses, and the consistent results of the numerical simulations and structure experiments prove the validity of this new structure testing approach. This new approach will not only provide a rapid access to topology optimized structure designs verifying, but also cut the turnaround time of structure design significantly.

  2. Optical burst switching based satellite backbone network

    Science.gov (United States)

    Li, Tingting; Guo, Hongxiang; Wang, Cen; Wu, Jian

    2018-02-01

    We propose a novel time slot based optical burst switching (OBS) architecture for GEO/LEO based satellite backbone network. This architecture can provide high speed data transmission rate and high switching capacity . Furthermore, we design the control plane of this optical satellite backbone network. The software defined network (SDN) and network slice (NS) technologies are introduced. Under the properly designed control mechanism, this backbone network is flexible to support various services with diverse transmission requirements. Additionally, the LEO access and handoff management in this network is also discussed.

  3. Nuclear Magnetic Resonance-Based Structural Characterization and Backbone Dynamics of Recombinant Bee Venom Melittin.

    Science.gov (United States)

    Ramirez, Lisa; Shekhtman, Alexander; Pande, Jayanti

    2018-04-30

    In recent years, there has been a resurgence of interest in melittin and its variants as their therapeutic potential has become increasingly evident. Melittin is a 26-residue peptide and a toxic component of honey bee venom. The versatility of melittin in interacting with various biological substrates, such as membranes, glycosaminoglycans, and a variety of proteins, has inspired a slew of studies that aim to improve our understanding of the structural basis of such interactions. However, these studies have largely focused on melittin solutions at high concentrations (>1 mM), even though melittin is generally effective at lower (micromolar) concentrations. Here we present high-resolution nuclear magnetic resonance studies in the lower-concentration regime using a novel method to produce isotope-labeled ( 15 N and 13 C) recombinant melittin. We provide residue-specific structural characterization of melittin in dilute aqueous solution and in 2,2,2-trifluoroethanol/water mixtures, which mimic melittin structure-function and interactions in aqueous and membrane-like environments, respectively. We find that the cis-trans isomerization of Pro14 is key to changes in the secondary structure of melittin. Thus, this study provides residue-specific structural information about melittin in the free state and in a model of the substrate-bound state. These results, taken together with published work from other laboratories, reveal the peptide's structural versatility that resembles that of intrinsically disordered proteins and peptides.

  4. Combining automated peak tracking in SAR by NMR with structure-based backbone assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard; Gao, Xin; Li, Ming

    2012-01-01

    Background: Chemical shift mapping is an important technique in NMR-based drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule's introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically, which is not efficient for high-throughput drug screening.Results: We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C-labeling, to resolve the ambiguities for a one-to-one mapping. On the three proteins, it achieves an average accuracy of 94% or better.Conclusions: Our mathematical programming approach for modeling chemical shift mapping as a graph problem, while modeling the errors directly, is potentially a time- and cost-effective first step for high-throughput drug screening based on limited NMR data and homologous 3D structures. 2012 Jang et al.; licensee BioMed Central Ltd.

  5. Combining automated peak tracking in SAR by NMR with structure-based backbone assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard

    2012-03-21

    Background: Chemical shift mapping is an important technique in NMR-based drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule\\'s introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically, which is not efficient for high-throughput drug screening.Results: We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C-labeling, to resolve the ambiguities for a one-to-one mapping. On the three proteins, it achieves an average accuracy of 94% or better.Conclusions: Our mathematical programming approach for modeling chemical shift mapping as a graph problem, while modeling the errors directly, is potentially a time- and cost-effective first step for high-throughput drug screening based on limited NMR data and homologous 3D structures. 2012 Jang et al.; licensee BioMed Central Ltd.

  6. Combining ambiguous chemical shift mapping with structure-based backbone and NOE assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard

    2011-01-01

    Chemical shift mapping is an important technique in NMRbased drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule\\'s introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically. However, automated methods are necessary for high-throughput drug screening. We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C- labeling, to resolve the ambiguities for a one-toone mapping. On the three proteins, it achieves an average accuracy of 94% or better. Copyright © 2011 ACM.

  7. A rapid NMR-based method for discrimination of strain-specific cell wall teichoic acid structures reveals a third backbone type in Lactobacillus plantarum.

    Science.gov (United States)

    Tomita, Satoru; Tanaka, Naoto; Okada, Sanae

    2017-03-01

    The lactic acid bacterium Lactobacillus plantarum is capable of producing strain-specific structures of cell wall teichoic acid (WTA), an anionic polysaccharide found in the Gram-positive bacterial cell wall. In this study, we established a rapid, NMR-based procedure to discriminate WTA structures in this species, and applied it to 94 strains of L. plantarum. Six previously reported glycerol- and ribitol-containing WTA subtypes were successfully identified from 78 strains, suggesting that these were the dominant structures. However, the level of structural variety differed markedly among bacterial sources, possibly reflecting differences in strain-level microbial diversity. WTAs from eight strains were not identified based on NMR spectra and were classified into three groups. Structural analysis of a partial degradation product of an unidentified WTA produced by strain TUA 1496L revealed that the WTA was 1-O-β-d-glucosylglycerol. Two-dimensional NMR analysis of the polymer structure showed phosphodiester bonds between C-3 and C-6 of the glycerol and glucose residues, suggesting a polymer structure of 3,6΄-linked poly(1-O-β-d-glucosyl-sn-glycerol phosphate). This is the third WTA backbone structure in L. plantarum, following 3,6΄-linked poly(1-O-α-d-glucosyl-sn-glycerol phosphate) and 1,5-linked poly(ribitol phosphate). © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Versatile phosphite ligands based on silsesquioxane backbones

    NARCIS (Netherlands)

    van der Vlugt, JI; Ackerstaff, J; Dijkstra, TW; Mills, AM; Kooijman, H; Spek, AL; Meetsma, A; Abbenhuis, HCL; Vogt, D

    Silsesquioxanes are employed as ligand backbones for the synthesis of novel phosphite compounds with 3,3'-5,5'-tetrakis(tert-butyl)-2,2'-di-oxa-1,1'-biphenyl substituents. Both mono- and bidentate phosphites are prepared in good yields. Two types of silsesquioxanes are employed as starting

  9. APPECT: An Approximate Backbone-Based Clustering Algorithm for Tags

    DEFF Research Database (Denmark)

    Zong, Yu; Xu, Guandong; Jin, Pin

    2011-01-01

    algorithm for Tags (APPECT). The main steps of APPECT are: (1) we execute the K-means algorithm on a tag similarity matrix for M times and collect a set of tag clustering results Z={C1,C2,…,Cm}; (2) we form the approximate backbone of Z by executing a greedy search; (3) we fix the approximate backbone...... as the initial tag clustering result and then assign the rest tags into the corresponding clusters based on the similarity. Experimental results on three real world datasets namely MedWorm, MovieLens and Dmoz demonstrate the effectiveness and the superiority of the proposed method against the traditional...... Agglomerative Clustering on tagging data, which possess the inherent drawbacks, such as the sensitivity of initialization. In this paper, we instead make use of the approximate backbone of tag clustering results to find out better tag clusters. In particular, we propose an APProximate backbonE-based Clustering...

  10. MCBT: Multi-Hop Cluster Based Stable Backbone Trees for Data Collection and Dissemination in WSNs

    Directory of Open Access Journals (Sweden)

    Tae-Jin Lee

    2009-07-01

    Full Text Available We propose a stable backbone tree construction algorithm using multi-hop clusters for wireless sensor networks (WSNs. The hierarchical cluster structure has advantages in data fusion and aggregation. Energy consumption can be decreased by managing nodes with cluster heads. Backbone nodes, which are responsible for performing and managing multi-hop communication, can reduce the communication overhead such as control traffic and minimize the number of active nodes. Previous backbone construction algorithms, such as Hierarchical Cluster-based Data Dissemination (HCDD and Multicluster, Mobile, Multimedia radio network (MMM, consume energy quickly. They are designed without regard to appropriate factors such as residual energy and degree (the number of connections or edges to other nodes of a node for WSNs. Thus, the network is quickly disconnected or has to reconstruct a backbone. We propose a distributed algorithm to create a stable backbone by selecting the nodes with higher energy or degree as the cluster heads. This increases the overall network lifetime. Moreover, the proposed method balances energy consumption by distributing the traffic load among nodes around the cluster head. In the simulation, the proposed scheme outperforms previous clustering schemes in terms of the average and the standard deviation of residual energy or degree of backbone nodes, the average residual energy of backbone nodes after disseminating the sensed data, and the network lifetime.

  11. On Backbone Structure for a Future Multipurpose Network

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Cuevas, Ruben; Riaz, M. Tahir

    2008-01-01

    Telecommunications are evolving towards the unification of services and infrastructures. This unification must be achieved at the highest hierarchical level for a complete synergy of services. Therefore, one of the requirements is a multipurpose backbone network capable of supporting all the curr......Telecommunications are evolving towards the unification of services and infrastructures. This unification must be achieved at the highest hierarchical level for a complete synergy of services. Therefore, one of the requirements is a multipurpose backbone network capable of supporting all...

  12. Systematic determination of the mosaic structure of bacterial genomes: species backbone versus strain-specific loops

    Directory of Open Access Journals (Sweden)

    Gendrault-Jacquemard A

    2005-07-01

    Full Text Available Abstract Background Public databases now contain multitude of complete bacterial genomes, including several genomes of the same species. The available data offers new opportunities to address questions about bacterial genome evolution, a task that requires reliable fine comparison data of closely related genomes. Recent analyses have shown, using pairwise whole genome alignments, that it is possible to segment bacterial genomes into a common conserved backbone and strain-specific sequences called loops. Results Here, we generalize this approach and propose a strategy that allows systematic and non-biased genome segmentation based on multiple genome alignments. Segmentation analyses, as applied to 13 different bacterial species, confirmed the feasibility of our approach to discern the 'mosaic' organization of bacterial genomes. Segmentation results are available through a Web interface permitting functional analysis, extraction and visualization of the backbone/loops structure of documented genomes. To illustrate the potential of this approach, we performed a precise analysis of the mosaic organization of three E. coli strains and functional characterization of the loops. Conclusion The segmentation results including the backbone/loops structure of 13 bacterial species genomes are new and available for use by the scientific community at the URL: http://genome.jouy.inra.fr/mosaic.

  13. Solution, solid phase and computational structures of apicidin and its backbone-reduced analogs.

    Science.gov (United States)

    Kranz, Michael; Murray, Peter John; Taylor, Stephen; Upton, Richard J; Clegg, William; Elsegood, Mark R J

    2006-06-01

    The recently isolated broad-spectrum antiparasitic apicidin (1) is one of the few naturally occurring cyclic tetrapeptides (CTP). Depending on the solvent, the backbone of 1 exhibits two gamma-turns (in CH(2)Cl(2)) or a beta-turn (in DMSO), differing solely in the rotation of the plane of one of the amide bonds. In the X-ray crystal structure, the peptidic C==Os and NHs are on opposite sides of the backbone plane, giving rise to infinite stacks of cyclotetrapeptides connected by three intermolecular hydrogen bonds between the backbones. Conformational searches (Amber force field) on a truncated model system of 1 confirm all three backbone conformations to be low-energy states. The previously synthesized analogs of 1 containing a reduced amide bond exhibit the same backbone conformation as 1 in DMSO, which is confirmed further by the X-ray crystal structure of a model system of the desoxy analogs of 1. This similarity helps in explaining why the desoxy analogs retain some of the antiprotozoal activities of apicidin. The backbone-reduction approach designed to facilitate the cyclization step of the acyclic precursors of the CTPs seems to retain the conformational preferences of the parent peptide backbone.

  14. Structural insights into the backbone-circularized granulocyte colony-stimulating factor containing a short connector.

    Science.gov (United States)

    Miyafusa, Takamitsu; Shibuya, Risa; Honda, Shinya

    2018-06-02

    Backbone circularization is a powerful approach for enhancing the structural stability of polypeptides. Herein, we present the crystal structure of the circularized variant of the granulocyte colony-stimulating factor (G-CSF) in which the terminal helical region was circularized using a short, two-amino acid connector. The structure revealed that the N- and C-termini were indeed connected by a peptide bond. The local structure of the C-terminal region transited from an α helix to 3 10 helix with a bend close to the N-terminal region, indicating that the structural change offset the insufficient length of the connector. This is the first-ever report of a crystal structure of the backbone of a circularized protein. It will facilitate the development of backbone circularization methodology. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. A density functional study of backbone structures of polydiacetylene: destabilization of butatriene structure

    International Nuclear Information System (INIS)

    Katagiri, Hideki; Shimoi, Yukihiro; Abe, Shuji

    2004-01-01

    Backbone structures of polydiacetylene are studied with first-principles electronic structure method using plane-waves within generalized gradient approximation (GGA) of density functional theory. In spin-restricted calculations a coarse k-point sampling gives a potential energy curve with two local minima corresponding to acetylene and butatriene structures. However, the potential barrier between the two structures rapidly decreases with increasing number of k-points, which results in destabilization of the butatriene structure. Spin polarization effects also destabilize the butatriene structure, inducing atom-centered spin-density-wave state. These potential energies were compared with those obtained by Hartree-Fock, density functional within local density approximation (LDA) and GGA, and hybrid density functional methods using a gaussian basis set. The comparison shows that the density functional methods within LDA and GGA favor the destabilization of the butatriene structure in contrast to the Hartree-Fock method

  16. Influence of structures of polymer backbones on cooperative photoreorientation behavior of p-cyanoazobenzene side chains

    DEFF Research Database (Denmark)

    Han, Mina; Kidowaki, Masatoshi; Ichimura, Kunihiro

    2001-01-01

    Photoinduced orientational behavior of a polymethacrylate (CN6) and a polyester (p6a12) with p-cyanoazobenzene side chains was studied to reveal the structural effect of the liquid crystalline polymer backbones. Irradiation with linearly polarized W light resulted in the reorientation of the azob...

  17. Trappist: european project dedicated to an open backbone structure for NDT expertise

    International Nuclear Information System (INIS)

    Nouailhas, B.; Vailhen, O.

    1993-01-01

    Non Destructive Testing (NDT) on critical components such as the reactor vessel, primary coolant pipes and steam generators have already been, and are still the subject of many development concerning the improvement of measuring techniques, data processing and on site operation. The tools developed for these tests are generally closed, difficult to extend and of proprietary type. Productivity could be increased if an open backbone structure common to several types of test were available. Moreover, these components are generally submitted to a test involving a single method. In certain cases, the produced information is an insufficient basis for drawing up a satisfactory diagnosis: the test operator or expert often faces problems in extracting more information from signals that are generally noisy. It may prove necessary to complete the inspection with another NDT method based on different principles in order to obtain better performances. It is then by combining the information obtained by two complementary methods that it will be possible to draw up a more reliable diagnosis. These components have also a complex shape. In the case of ultrasonic testing, the accurate following of probe paths requires 3D representation of the geometry, as it is built, to position and display the data obtained from the inspection. To take these geometric constraints into account, it is imperative to use computer tools allowing the three-dimensional representation of the reconstructed information on the components' actual geometry. This specific difficulty, which has long been appreciated, is the subject of developments resulting to industrial products that are more or less satisfactory. The aim of the European Project TRAPPIST (Race Program) is to study an open backbone structure. A mock-up of an analysis station dedicated to NDT expertise will be built and evaluated with specific examples. (authors). 6 figs., 1 ref

  18. Structural test of the parameterized-backbone method for protein design.

    Science.gov (United States)

    Plecs, Joseph J; Harbury, Pehr B; Kim, Peter S; Alber, Tom

    2004-09-03

    Designing new protein folds requires a method for simultaneously optimizing the conformation of the backbone and the side-chains. One approach to this problem is the use of a parameterized backbone, which allows the systematic exploration of families of structures. We report the crystal structure of RH3, a right-handed, three-helix coiled coil that was designed using a parameterized backbone and detailed modeling of core packing. This crystal structure was determined using another rationally designed feature, a metal-binding site that permitted experimental phasing of the X-ray data. RH3 adopted the intended fold, which has not been observed previously in biological proteins. Unanticipated structural asymmetry in the trimer was a principal source of variation within the RH3 structure. The sequence of RH3 differs from that of a previously characterized right-handed tetramer, RH4, at only one position in each 11 amino acid sequence repeat. This close similarity indicates that the design method is sensitive to the core packing interactions that specify the protein structure. Comparison of the structures of RH3 and RH4 indicates that both steric overlap and cavity formation provide strong driving forces for oligomer specificity.

  19. Prediction of backbone dihedral angles and protein secondary structure using support vector machines

    Directory of Open Access Journals (Sweden)

    Hirst Jonathan D

    2009-12-01

    Full Text Available Abstract Background The prediction of the secondary structure of a protein is a critical step in the prediction of its tertiary structure and, potentially, its function. Moreover, the backbone dihedral angles, highly correlated with secondary structures, provide crucial information about the local three-dimensional structure. Results We predict independently both the secondary structure and the backbone dihedral angles and combine the results in a loop to enhance each prediction reciprocally. Support vector machines, a state-of-the-art supervised classification technique, achieve secondary structure predictive accuracy of 80% on a non-redundant set of 513 proteins, significantly higher than other methods on the same dataset. The dihedral angle space is divided into a number of regions using two unsupervised clustering techniques in order to predict the region in which a new residue belongs. The performance of our method is comparable to, and in some cases more accurate than, other multi-class dihedral prediction methods. Conclusions We have created an accurate predictor of backbone dihedral angles and secondary structure. Our method, called DISSPred, is available online at http://comp.chem.nottingham.ac.uk/disspred/.

  20. Annotating the protein-RNA interaction sites in proteins using evolutionary information and protein backbone structure.

    Science.gov (United States)

    Li, Tao; Li, Qian-Zhong

    2012-11-07

    RNA-protein interactions play important roles in various biological processes. The precise detection of RNA-protein interaction sites is very important for understanding essential biological processes and annotating the function of the proteins. In this study, based on various features from amino acid sequence and structure, including evolutionary information, solvent accessible surface area and torsion angles (φ, ψ) in the backbone structure of the polypeptide chain, a computational method for predicting RNA-binding sites in proteins is proposed. When the method is applied to predict RNA-binding sites in three datasets: RBP86 containing 86 protein chains, RBP107 containing 107 proteins chains and RBP109 containing 109 proteins chains, better sensitivities and specificities are obtained compared to previously published methods in five-fold cross-validation tests. In order to make further examination for the efficiency of our method, the RBP107 dataset is used as training set, RBP86 and RBP109 datasets are used as the independent test sets. In addition, as examples of our prediction, RNA-binding sites in a few proteins are presented. The annotated results are consistent with the PDB annotation. These results show that our method is useful for annotating RNA binding sites of novel proteins.

  1. Optical alignment control of polyimide molecules containing azobenzene in the backbone structure

    International Nuclear Information System (INIS)

    Sakamoto, Kenji; Usami, Kiyoaki; Sasaki, Toru; Kanayama, Takashi; Ushioda, Sukekatsu

    2004-01-01

    Using polarized infrared absorption spectroscopy, we have determined the orientation of the polyimide backbone structure in photo-alignment films for liquid crystals (LC). The polyimide used in this study contains azobenzene in the backbone structure. Photo-alignment treatment was performed on the corresponding polyamic acid film, using a light source of wavelength 340-500 nm. The polyamic acid film (∼16 nm thick) was first irradiated at normal incidence with linearly polarized light (LP-light) of 156 J/cm 2 , and then oblique angle irradiation of unpolarized light (UP-light) was performed in the plane of incidence perpendicular to the polarization direction of the LP-light. The UP-light exposure was varied up to 882 J/cm 2 . We found that the average inclination angle of the polyimide backbone structure, measured from the surface plane, increases almost linearly with UP-light exposure. On the other hand, the in-plane anisotropy induced by the first irradiation with LP-light decreases with the increase of UP-light exposure

  2. Ultra-sensitive EUV resists based on acid-catalyzed polymer backbone breaking

    Science.gov (United States)

    Manouras, Theodoros; Kazazis, Dimitrios; Koufakis, Eleftherios; Ekinci, Yasin; Vamvakaki, Maria; Argitis, Panagiotis

    2018-03-01

    The main target of the current work was to develop new sensitive polymeric materials for lithographic applications, focusing in particular to EUV lithography, the main chain of which is cleaved under the influence of photogenerated acid. Resist materials based on the cleavage of polymer main chain are in principle capable to create very small structures, to the dimensions of the monomers that they consist of. Nevertheless, in the case of the commonly used nonchemically amplified materials of this type issues like sensitivity and poor etch resistance limit their areas of application, whereas inadequate etch resistance and non- satisfactory process reliability are the usual problems encountered in acid catalysed materials based on main chain scission. In our material design the acid catalyzed chain cleavable polymers contain very sensitive moieties in their backbone while they remain intact in alkaline ambient. These newly synthesized polymers bear in addition suitable functional groups for the achievement of desirable lithographic characteristics (thermal stability, acceptable glass transition temperature, etch resistance, proper dissolution behavior, adhesion to the substrate). Our approach for achieving acceptable etch resistance, a main drawback in other main chain cleavable resists, is based on the introduction of polyaromatic hydrocarbons in the polymeric backbone, whereas the incorporation of an inorganic component further enhances the etch resistance. Single component systems can also be designed following the proposed approach by the incorporation of suitable PAGs and base quencher molecules in the main chain. Resist formulations based on a random copolymer designed according to the described rules evaluated in EUV exhibit ultrahigh sensitivity, capability for high resolution patterning and overall processing characteristics that make them strong candidates for industrial use upon further optimization.

  3. Sequential backbone assignment based on dipolar amide-to-amide correlation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, ShengQi; Grohe, Kristof; Rovó, Petra; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus, E-mail: rali@nmr.mpibpc.mpg.de [Max Planck Institute for Biophysical Chemistry, Department for NMR-Based Structural Biology (Germany)

    2015-07-15

    Proton detection in solid-state NMR has seen a tremendous increase in popularity in the last years. New experimental techniques allow to exploit protons as an additional source of information on structure, dynamics, and protein interactions with their surroundings. In addition, sensitivity is mostly improved and ambiguity in assignment experiments reduced. We show here that, in the solid state, sequential amide-to-amide correlations turn out to be an excellent, complementary way to exploit amide shifts for unambiguous backbone assignment. For a general assessment, we compare amide-to-amide experiments with the more common {sup 13}C-shift-based methods. Exploiting efficient CP magnetization transfers rather than less efficient INEPT periods, our results suggest that the approach is very feasible for solid-state NMR.

  4. Sequential backbone assignment based on dipolar amide-to-amide correlation experiments

    International Nuclear Information System (INIS)

    Xiang, ShengQi; Grohe, Kristof; Rovó, Petra; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus

    2015-01-01

    Proton detection in solid-state NMR has seen a tremendous increase in popularity in the last years. New experimental techniques allow to exploit protons as an additional source of information on structure, dynamics, and protein interactions with their surroundings. In addition, sensitivity is mostly improved and ambiguity in assignment experiments reduced. We show here that, in the solid state, sequential amide-to-amide correlations turn out to be an excellent, complementary way to exploit amide shifts for unambiguous backbone assignment. For a general assessment, we compare amide-to-amide experiments with the more common 13 C-shift-based methods. Exploiting efficient CP magnetization transfers rather than less efficient INEPT periods, our results suggest that the approach is very feasible for solid-state NMR

  5. Effect of backbone structure on charge transport along isolated conjugated polymer chains

    International Nuclear Information System (INIS)

    Siebbeles, Laurens D.A.; Grozema, Ferdinand C.; Haas, Matthijs P. de; Warman, John M.

    2005-01-01

    Fast charge transport in conjugated polymers is essential for their application in opto-electronic devices. In the present paper, measurements and theoretical modeling of the mobility of excess charges along isolated chains of conjugated polymers in dilute solution are presented. Charge carriers were produced by irradiation of the polymer solution with 3-MeV electrons from a Van de Graaff accelerator. The mobilities of the charges along the polymer chains were obtained from time-resolved microwave conductivity measurements. The mobilities are strongly dependent on the chemical nature of the polymer backbone. Comparison of the experimental data with results from ab initio quantum mechanical calculations shows that the measured mobilities are strongly limited by torsional disorder, chemical defects and chain ends. Improvement of the structure of polymer backbones is therefore expected to significantly enhance the performance of these materials in 'plastic electronics'

  6. Correlation between protein secondary structure, backbone bond angles, and side-chain orientations

    Science.gov (United States)

    Lundgren, Martin; Niemi, Antti J.

    2012-08-01

    We investigate the fine structure of the sp3 hybridized covalent bond geometry that governs the tetrahedral architecture around the central Cα carbon of a protein backbone, and for this we develop new visualization techniques to analyze high-resolution x-ray structures in the Protein Data Bank. We observe that there is a correlation between the deformations of the ideal tetrahedral symmetry and the local secondary structure of the protein. We propose a universal coarse-grained energy function to describe the ensuing side-chain geometry in terms of the Cβ carbon orientations. The energy function can model the side-chain geometry with a subatomic precision. As an example we construct the Cα-Cβ structure of HP35 chicken villin headpiece. We obtain a configuration that deviates less than 0.4 Å in root-mean-square distance from the experimental x-ray structure.

  7. Directional virtual backbone based data aggregation scheme for Wireless Visual Sensor Networks.

    Science.gov (United States)

    Zhang, Jing; Liu, Shi-Jian; Tsai, Pei-Wei; Zou, Fu-Min; Ji, Xiao-Rong

    2018-01-01

    Data gathering is a fundamental task in Wireless Visual Sensor Networks (WVSNs). Features of directional antennas and the visual data make WVSNs more complex than the conventional Wireless Sensor Network (WSN). The virtual backbone is a technique, which is capable of constructing clusters. The version associating with the aggregation operation is also referred to as the virtual backbone tree. In most of the existing literature, the main focus is on the efficiency brought by the construction of clusters that the existing methods neglect local-balance problems in general. To fill up this gap, Directional Virtual Backbone based Data Aggregation Scheme (DVBDAS) for the WVSNs is proposed in this paper. In addition, a measurement called the energy consumption density is proposed for evaluating the adequacy of results in the cluster-based construction problems. Moreover, the directional virtual backbone construction scheme is proposed by considering the local-balanced factor. Furthermore, the associated network coding mechanism is utilized to construct DVBDAS. Finally, both the theoretical analysis of the proposed DVBDAS and the simulations are given for evaluating the performance. The experimental results prove that the proposed DVBDAS achieves higher performance in terms of both the energy preservation and the network lifetime extension than the existing methods.

  8. A Bayesian-probability-based method for assigning protein backbone dihedral angles based on chemical shifts and local sequences

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jun; Liu Haiyan [University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at the Microscale, and Key Laboratory of Structural Biology, School of Life Sciences (China)], E-mail: hyliu@ustc.edu.cn

    2007-01-15

    Chemical shifts contain substantial information about protein local conformations. We present a method to assign individual protein backbone dihedral angles into specific regions on the Ramachandran map based on the amino acid sequences and the chemical shifts of backbone atoms of tripeptide segments. The method uses a scoring function derived from the Bayesian probability for the central residue of a query tripeptide segment to have a particular conformation. The Ramachandran map is partitioned into representative regions at two levels of resolution. The lower resolution partitioning is equivalent to the conventional definitions of different secondary structure regions on the map. At the higher resolution level, the {alpha} and {beta} regions are further divided into subregions. Predictions are attempted at both levels of resolution. We compared our method with TALOS using the original TALOS database, and obtained comparable results. Although TALOS may produce the best results with currently available databases which are much enlarged, the Bayesian-probability-based approach can provide a quantitative measure for the reliability of predictions.

  9. An efficient randomized algorithm for contact-based NMR backbone resonance assignment.

    Science.gov (United States)

    Kamisetty, Hetunandan; Bailey-Kellogg, Chris; Pandurangan, Gopal

    2006-01-15

    Backbone resonance assignment is a critical bottleneck in studies of protein structure, dynamics and interactions by nuclear magnetic resonance (NMR) spectroscopy. A minimalist approach to assignment, which we call 'contact-based', seeks to dramatically reduce experimental time and expense by replacing the standard suite of through-bond experiments with the through-space (nuclear Overhauser enhancement spectroscopy, NOESY) experiment. In the contact-based approach, spectral data are represented in a graph with vertices for putative residues (of unknown relation to the primary sequence) and edges for hypothesized NOESY interactions, such that observed spectral peaks could be explained if the residues were 'close enough'. Due to experimental ambiguity, several incorrect edges can be hypothesized for each spectral peak. An assignment is derived by identifying consistent patterns of edges (e.g. for alpha-helices and beta-sheets) within a graph and by mapping the vertices to the primary sequence. The key algorithmic challenge is to be able to uncover these patterns even when they are obscured by significant noise. This paper develops, analyzes and applies a novel algorithm for the identification of polytopes representing consistent patterns of edges in a corrupted NOESY graph. Our randomized algorithm aggregates simplices into polytopes and fixes inconsistencies with simple local modifications, called rotations, that maintain most of the structure already uncovered. In characterizing the effects of experimental noise, we employ an NMR-specific random graph model in proving that our algorithm gives optimal performance in expected polynomial time, even when the input graph is significantly corrupted. We confirm this analysis in simulation studies with graphs corrupted by up to 500% noise. Finally, we demonstrate the practical application of the algorithm on several experimental beta-sheet datasets. Our approach is able to eliminate a large majority of noise edges and to

  10. APSY-NMR for protein backbone assignment in high-throughput structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Samit Kumar; Serrano, Pedro; Proudfoot, Andrew; Geralt, Michael [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States); Pedrini, Bill [Paul Scherrer Institute (PSI), SwissFEL Project (Switzerland); Herrmann, Torsten [Université de Lyon, Institut des Sciences Analytiques, Centre de RMN à Très Hauts Champs, UMR 5280 CNRS, ENS Lyon, UCB Lyon 1 (France); Wüthrich, Kurt, E-mail: wuthrich@scripps.edu [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States)

    2015-01-15

    A standard set of three APSY-NMR experiments has been used in daily practice to obtain polypeptide backbone NMR assignments in globular proteins with sizes up to about 150 residues, which had been identified as targets for structure determination by the Joint Center for Structural Genomics (JCSG) under the auspices of the Protein Structure Initiative (PSI). In a representative sample of 30 proteins, initial fully automated data analysis with the software UNIO-MATCH-2014 yielded complete or partial assignments for over 90 % of the residues. For most proteins the APSY data acquisition was completed in less than 30 h. The results of the automated procedure provided a basis for efficient interactive validation and extension to near-completion of the assignments by reference to the same 3D heteronuclear-resolved [{sup 1}H,{sup 1}H]-NOESY spectra that were subsequently used for the collection of conformational constraints. High-quality structures were obtained for all 30 proteins, using the J-UNIO protocol, which includes extensive automation of NMR structure determination.

  11. Coupling between myosin head conformation and the thick filament backbone structure.

    Science.gov (United States)

    Hu, Zhongjun; Taylor, Dianne W; Edwards, Robert J; Taylor, Kenneth A

    2017-12-01

    The recent high-resolution structure of the thick filament from Lethocerus asynchronous flight muscle shows aspects of thick filament structure never before revealed that may shed some light on how striated muscles function. The phenomenon of stretch activation underlies the function of asynchronous flight muscle. It is most highly developed in flight muscle, but is also observed in other striated muscles such as cardiac muscle. Although stretch activation is likely to be complex, involving more than a single structural aspect of striated muscle, the thick filament itself, would be a prime site for regulatory function because it must bear all of the tension produced by both its associated myosin motors and any externally applied force. Here we show the first structural evidence that the arrangement of myosin heads within the interacting heads motif is coupled to the structure of the thick filament backbone. We find that a change in helical angle of 0.16° disorders the blocked head preferentially within the Lethocerus interacting heads motif. This observation suggests a mechanism for how tension affects the dynamics of the myosin heads leading to a detailed hypothesis for stretch activation and shortening deactivation, in which the blocked head preferentially binds the thin filament followed by the free head when force production occurs. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. TRX-LOGOS - a graphical tool to demonstrate DNA information content dependent upon backbone dynamics in addition to base sequence.

    Science.gov (United States)

    Fortin, Connor H; Schulze, Katharina V; Babbitt, Gregory A

    2015-01-01

    It is now widely-accepted that DNA sequences defining DNA-protein interactions functionally depend upon local biophysical features of DNA backbone that are important in defining sites of binding interaction in the genome (e.g. DNA shape, charge and intrinsic dynamics). However, these physical features of DNA polymer are not directly apparent when analyzing and viewing Shannon information content calculated at single nucleobases in a traditional sequence logo plot. Thus, sequence logos plots are severely limited in that they convey no explicit information regarding the structural dynamics of DNA backbone, a feature often critical to binding specificity. We present TRX-LOGOS, an R software package and Perl wrapper code that interfaces the JASPAR database for computational regulatory genomics. TRX-LOGOS extends the traditional sequence logo plot to include Shannon information content calculated with regard to the dinucleotide-based BI-BII conformation shifts in phosphate linkages on the DNA backbone, thereby adding a visual measure of intrinsic DNA flexibility that can be critical for many DNA-protein interactions. TRX-LOGOS is available as an R graphics module offered at both SourceForge and as a download supplement at this journal. To demonstrate the general utility of TRX logo plots, we first calculated the information content for 416 Saccharomyces cerevisiae transcription factor binding sites functionally confirmed in the Yeastract database and matched to previously published yeast genomic alignments. We discovered that flanking regions contain significantly elevated information content at phosphate linkages than can be observed at nucleobases. We also examined broader transcription factor classifications defined by the JASPAR database, and discovered that many general signatures of transcription factor binding are locally more information rich at the level of DNA backbone dynamics than nucleobase sequence. We used TRX-logos in combination with MEGA 6.0 software

  13. CORBA and MPI-based 'backbone' for coupling advanced simulation tools

    International Nuclear Information System (INIS)

    Seydaliev, M.; Caswell, D.

    2014-01-01

    There is a growing international interest in using coupled, multidisciplinary computer simulations for a variety of purposes, including nuclear reactor safety analysis. Reactor behaviour can be modeled using a suite of computer programs simulating phenomena or predicting parameters that can be categorized into disciplines such as Thermalhydraulics, Neutronics, Fuel, Fuel Channels, Fission Product Release and Transport, Containment and Atmospheric Dispersion, and Severe Accident Analysis. Traditionally, simulations used for safety analysis individually addressed only the behaviour within a single discipline, based upon static input data from other simulation programs. The limitation of using a suite of stand-alone simulations is that phenomenological interdependencies or temporal feedback between the parameters calculated within individual simulations cannot be adequately captured. To remove this shortcoming, multiple computer simulations for different disciplines must exchange data during runtime to address these interdependencies. This article describes the concept of a new framework, which we refer to as the 'Backbone', to provide the necessary runtime exchange of data. The Backbone, currently under development at AECL for a preliminary feasibility study, is a hybrid design using features taken from the Common Object Request Broker Architecture (CORBA), a standard defined by the Object Management Group, and the Message Passing Interface (MPI), a standard developed by a group of researchers from academia and industry. Both have well-tested and efficient implementations, including some that are freely available under the GNU public licenses. The CORBA component enables individual programs written in different languages and running on different platforms within a network to exchange data with each other, thus behaving like a single application. MPI provides the process-to-process intercommunication between these programs. This paper outlines the different CORBA and

  14. The extension of a DNA double helix by an additional Watson-Crick base pair on the same backbone

    DEFF Research Database (Denmark)

    Kumar, P.; Sharma, P. K.; Madsen, Charlotte S.

    2013-01-01

    Additional base pair: The DNA duplex can be extended with an additional Watson-Crick base pair on the same backbone by the use of double-headed nucleotides. These also work as compressed dinucleotides and form two base pairs with cognate nucleobases on the opposite strand.......Additional base pair: The DNA duplex can be extended with an additional Watson-Crick base pair on the same backbone by the use of double-headed nucleotides. These also work as compressed dinucleotides and form two base pairs with cognate nucleobases on the opposite strand....

  15. 40-Gbps optical backbone network deep packet inspection based on FPGA

    Science.gov (United States)

    Zuo, Yuan; Huang, Zhiping; Su, Shaojing

    2014-11-01

    In the era of information, the big data, which contains huge information, brings about some problems, such as high speed transmission, storage and real-time analysis and process. As the important media for data transmission, the Internet is the significant part for big data processing research. With the large-scale usage of the Internet, the data streaming of network is increasing rapidly. The speed level in the main fiber optic communication of the present has reached 40Gbps, even 100Gbps, therefore data on the optical backbone network shows some features of massive data. Generally, data services are provided via IP packets on the optical backbone network, which is constituted with SDH (Synchronous Digital Hierarchy). Hence this method that IP packets are directly mapped into SDH payload is named POS (Packet over SDH) technology. Aiming at the problems of real time process of high speed massive data, this paper designs a process system platform based on ATCA for 40Gbps POS signal data stream recognition and packet content capture, which employs the FPGA as the CPU. This platform offers pre-processing of clustering algorithms, service traffic identification and data mining for the following big data storage and analysis with high efficiency. Also, the operational procedure is proposed in this paper. Four channels of 10Gbps POS signal decomposed by the analysis module, which chooses FPGA as the kernel, are inputted to the flow classification module and the pattern matching component based on TCAM. Based on the properties of the length of payload and net flows, buffer management is added to the platform to keep the key flow information. According to data stream analysis, DPI (deep packet inspection) and flow balance distribute, the signal is transmitted to the backend machine through the giga Ethernet ports on back board. Practice shows that the proposed platform is superior to the traditional applications based on ASIC and NP.

  16. Experimental Tracking of Limit-Point Bifurcations and Backbone Curves Using Control-Based Continuation

    Science.gov (United States)

    Renson, Ludovic; Barton, David A. W.; Neild, Simon A.

    Control-based continuation (CBC) is a means of applying numerical continuation directly to a physical experiment for bifurcation analysis without the use of a mathematical model. CBC enables the detection and tracking of bifurcations directly, without the need for a post-processing stage as is often the case for more traditional experimental approaches. In this paper, we use CBC to directly locate limit-point bifurcations of a periodically forced oscillator and track them as forcing parameters are varied. Backbone curves, which capture the overall frequency-amplitude dependence of the system’s forced response, are also traced out directly. The proposed method is demonstrated on a single-degree-of-freedom mechanical system with a nonlinear stiffness characteristic. Results are presented for two configurations of the nonlinearity — one where it exhibits a hardening stiffness characteristic and one where it exhibits softening-hardening.

  17. The extension of a DNA double helix by an additional Watson-Crick base pair on the same backbone.

    Science.gov (United States)

    Kumar, Pawan; Sharma, Pawan K; Madsen, Charlotte S; Petersen, Michael; Nielsen, Poul

    2013-06-17

    Additional base pair: The DNA duplex can be extended with an additional Watson-Crick base pair on the same backbone by the use of double-headed nucleotides. These also work as compressed dinucleotides and form two base pairs with cognate nucleobases on the opposite strand. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Structural conservation, variability, and immunogenicity of the T6 backbone pilin of serotype M6 Streptococcus pyogenes.

    Science.gov (United States)

    Young, Paul G; Moreland, Nicole J; Loh, Jacelyn M; Bell, Anita; Atatoa Carr, Polly; Proft, Thomas; Baker, Edward N

    2014-07-01

    Group A streptococcus (GAS; Streptococcus pyogenes) is a Gram-positive human pathogen that causes a broad range of diseases ranging from acute pharyngitis to the poststreptococcal sequelae of acute rheumatic fever. GAS pili are highly diverse, long protein polymers that extend from the cell surface. They have multiple roles in infection and are promising candidates for vaccine development. This study describes the structure of the T6 backbone pilin (BP; Lancefield T-antigen) from the important M6 serotype. The structure reveals a modular arrangement of three tandem immunoglobulin-like domains, two with internal isopeptide bonds. The T6 pilin lysine, essential for polymerization, is located in a novel VAKS motif that is structurally homologous to the canonical YPKN pilin lysine in other three- and four-domain Gram-positive pilins. The T6 structure also highlights a conserved pilin core whose surface is decorated with highly variable loops and extensions. Comparison to other Gram-positive BPs shows that many of the largest variable extensions are found in conserved locations. Studies with sera from patients diagnosed with GAS-associated acute rheumatic fever showed that each of the three T6 domains, and the largest of the variable extensions (V8), are targeted by IgG during infection in vivo. Although the GAS BP show large variations in size and sequence, the modular nature of the pilus proteins revealed by the T6 structure may aid the future design of a pilus-based vaccine. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Solution NMR Structures of Oxidized and Reduced Ehrlichia chaffeensis thioredoxin: NMR-Invisible Structure Owing to Backbone Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, Garry W.; Hewitt, Stephen N.; Van Voorhis, Wesley C.; Myler, Peter J.

    2018-01-02

    Thioredoxins (Trxs) are small ubiquitous proteins that participate in a diverse variety of redox reactions via the reversible oxidation of two cysteine thiol groups in a structurally conserved active site, CGPC. Here, we describe the NMR solution structures of a Trx from Ehrlichia chaffeensis (Ec-Trx, ECH_0218), the etiological agent responsible for human monocytic ehrlichiosis, in both the oxidized and reduced states. The overall topology of the calculated structures is similar in both redox states and similar to other Trx structures, a five-strand, mixed -sheet (1:3:2:4:5) surrounded by four -helices. Unlike other Trxs studied by NMR in both redox states, the 1H-15N HSQC spectra of reduced Ec-Trx was missing eight amide cross peaks relative to the spectra of oxidized Ec-Trx. These missing amides correspond to residues C32-E39 in the active site containing helix (2) and S72-I75 in a loop near the active site and suggest a substantial change in the backbone dynamics associated with the formation of an intramolecular C32-C35 disulfide bond.

  20. (nBuCp)2ZrCl2-catalyzed Ethylene-4M1P Copolymerization: Copolymer Backbone Structure, Melt Behavior, and Crystallization

    KAUST Repository

    Atiqullah, Muhammad; Adamu, Sagir; Malaibari, Zuhair O.; Al-Harthi, Mamdouh A.; Emwas, Abdul-Hamid M.

    2016-01-01

    The judicious design of methylaluminoxane (MAO) anions expands the scope for developing industrial metallocene catalysts. Therefore, the effects of MAO anion design on the backbone structure, melt behavior, and crystallization of ethylene−4-methyl-1

  1. Suitability assessment of OPC UA as the backbone of ground-based observatory control systems

    International Nuclear Information System (INIS)

    Pessemier, W.; Raskin, G.; Van Winckel, H.; Deconinck, G.; Saey, P.

    2012-01-01

    A common requirement of modern observatory control systems is to allow interaction between various heterogeneous subsystems in a transparent way. However, the integration of off-the-shelf (OTS) industrial products - such as Programmable Logic Controllers (PLCs) and Supervisory Control And Data Acquisition (SCADA) software - has long been hampered by the lack of an adequate interfacing method. With the advent of the Unified Architecture (UA) version of OPC (Object Linking and Embedding for Process Control), the limitations of the original industry accepted interface are now lifted, and also much more functionality has been defined. In this paper the most important features of OPC UA are matched against the requirements of ground-based observatory control systems in general and in particular of the 1.2 m Mercator Telescope. We investigate the opportunities of the 'information modelling' idea behind OPC UA, which could allow an extensive standardization in the field of astronomical instrumentation, similar to the efforts emerging in several industry domains. Because OPC UA is designed for both horizontal and vertical integration of heterogeneous subsystems, we explore its capabilities to serve as the backbone of a dependable and scalable observatory control system, treating industrial components like PLCs no differently than custom software components. Performance measurements and tests with a sample of OTS OPC UA products are presented. (authors)

  2. Backbone structure of Yersinia pestis Ail determined in micelles by NMR-restrained simulated annealing with implicit membrane solvation

    International Nuclear Information System (INIS)

    Marassi, Francesca M.; Ding, Yi; Schwieters, Charles D.; Tian, Ye; Yao, Yong

    2015-01-01

    The outer membrane protein Ail (attachment invasion locus) is a virulence factor of Yersinia pestis that mediates cell invasion, cell attachment and complement resistance. Here we describe its three-dimensional backbone structure determined in decyl-phosphocholine (DePC) micelles by NMR spectroscopy. The NMR structure was calculated using the membrane function of the implicit solvation potential, eefxPot, which we have developed to facilitate NMR structure calculations in a physically realistic environment. We show that the eefxPot force field guides the protein towards its native fold. The resulting structures provide information about the membrane-embedded global position of Ail, and have higher accuracy, higher precision and improved conformational properties, compared to the structures calculated with the standard repulsive potential

  3. Free vibration analysis of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses

    Science.gov (United States)

    Coral, W.; Rossi, C.; Curet, O. M.

    2015-12-01

    This paper presents a Differential Quadrature Element Method for free transverse vibration of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses (fish ribs). The proposed method is based on the theory of a Timoshenko cantilever beam. The effects of the masses (number, magnitude and position) on the value of natural frequencies are investigated. Governing equations, compatibility and boundary conditions are formulated according to the Differential Quadrature rules. The convergence, efficiency and accuracy are compared to other analytical solution proposed in the literature. Moreover, the proposed method has been validate against the physical prototype of a flexible fish backbone. The main advantages of this method, compared to the exact solutions available in the literature are twofold: first, smaller computational cost and second, it allows analysing the free vibration in beams whose section is an arbitrary function, which is normally difficult or even impossible with other analytical methods.

  4. Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state

    Science.gov (United States)

    Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu

    2017-08-01

    Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.

  5. Live Zika virus chimeric vaccine candidate based on a yellow fever 17-D attenuated backbone

    OpenAIRE

    Nougairede, Antoine; Klitting, Raphaelle; Aubry, Fabien; Gilles, Magali; Touret, Franck; De Lamballerie, Xavier

    2018-01-01

    Zika virus (ZIKV) recently dispersed throughout the tropics and sub-tropics causing epidemics associated with congenital disease and neurological complications. There is currently no commercial vaccine for ZIKV. Here we describe the initial development of a chimeric virus containing the prM/E proteins of a ZIKV epidemic strain incorporated into a yellow fever 17-D attenuated backbone. Using the versatile and rapid ISA (Infectious Subgenomic Amplicons) reverse genetics method, we compared diff...

  6. Optimized set of two-dimensional experiments for fast sequential assignment, secondary structure determination, and backbone fold validation of 13C/15N-labelled proteins

    International Nuclear Information System (INIS)

    Bersch, Beate; Rossy, Emmanuel; Coves, Jacques; Brutscher, Bernhard

    2003-01-01

    NMR experiments are presented which allow backbone resonance assignment, secondary structure identification, and in favorable cases also molecular fold topology determination from a series of two-dimensional 1 H- 15 N HSQC-like spectra. The 1 H- 15 N correlation peaks are frequency shifted by an amount ± ω X along the 15 N dimension, where ω X is the C α , C β , or H α frequency of the same or the preceding residue. Because of the low dimensionality (2D) of the experiments, high-resolution spectra are obtained in a short overall experimental time. The whole series of seven experiments can be performed in typically less than one day. This approach significantly reduces experimental time when compared to the standard 3D-based methods. The here presented methodology is thus especially appealing in the context of high-throughput NMR studies of protein structure, dynamics or molecular interfaces

  7. CSSI-PRO: a method for secondary structure type editing, assignment and estimation in proteins using linear combination of backbone chemical shifts

    International Nuclear Information System (INIS)

    Swain, Monalisa; Atreya, Hanudatta S.

    2009-01-01

    Estimation of secondary structure in polypeptides is important for studying their structure, folding and dynamics. In NMR spectroscopy, such information is generally obtained after sequence specific resonance assignments are completed. We present here a new methodology for assignment of secondary structure type to spin systems in proteins directly from NMR spectra, without prior knowledge of resonance assignments. The methodology, named Combination of Shifts for Secondary Structure Identification in Proteins (CSSI-PRO), involves detection of specific linear combination of backbone 1 H α and 13 C' chemical shifts in a two-dimensional (2D) NMR experiment based on G-matrix Fourier transform (GFT) NMR spectroscopy. Such linear combinations of shifts facilitate editing of residues belonging to α-helical/β-strand regions into distinct spectral regions nearly independent of the amino acid type, thereby allowing the estimation of overall secondary structure content of the protein. Comparison of the predicted secondary structure content with those estimated based on their respective 3D structures and/or the method of Chemical Shift Index for 237 proteins gives a correlation of more than 90% and an overall rmsd of 7.0%, which is comparable to other biophysical techniques used for structural characterization of proteins. Taken together, this methodology has a wide range of applications in NMR spectroscopy such as rapid protein structure determination, monitoring conformational changes in protein-folding/ligand-binding studies and automated resonance assignment

  8. Analysis of the HIV-2 protease's adaptation to various ligands: characterization of backbone asymmetry using a structural alphabet.

    Science.gov (United States)

    Triki, Dhoha; Cano Contreras, Mario Enrique; Flatters, Delphine; Visseaux, Benoit; Descamps, Diane; Camproux, Anne-Claude; Regad, Leslie

    2018-01-15

    The HIV-2 protease (PR2) is a homodimer of 99 residues with asymmetric assembly and binding various ligands. We propose an exhaustive study of the local structural asymmetry between the two monomers of all available PR2 structures complexed with various inhibitors using a structural alphabet approach. On average, PR2 exhibits asymmetry in 31% of its positions-i.e., exhibiting different backbone local conformations in the two monomers. This asymmetry was observed all along its structure, particularly in the elbow and flap regions. We first differentiated structural asymmetry conserved in most PR2 structures from the one specific to some PR2. Then, we explored the origin of the detected asymmetry in PR2. We localized asymmetry that could be induced by PR2's flexibility, allowing transition from the semi-open to closed conformations and the asymmetry potentially induced by ligand binding. This latter could be important for the PR2's adaptation to diverse ligands. Our results highlighted some differences between asymmetry of PR2 bound to darunavir and amprenavir that could explain their differences of affinity. This knowledge is critical for a better description of PR2's recognition and adaptation to various ligands and for a better understanding of the resistance of PR2 to most PR2 inhibitors, a major antiretroviral class.

  9. A fusion networking model for smart grid power distribution backbone communication network based on PTN

    Directory of Open Access Journals (Sweden)

    Wang Hao

    2016-01-01

    Full Text Available In current communication network for distribution in Chinese power grid systems, the fiber communication backbone network for distribution and TD-LTE power private wireless backhaul network of power grid are both bearing by the SDH optical transmission network, which also carries the communication network of transformer substation and main electric. As the data traffic of the distribution communication and TD-LTE power private wireless network grow rapidly in recent years, it will have a big impact with the SDH network’s bearing capacity which is mainly used for main electric communication in high security level. This paper presents a fusion networking model which use a multiple-layer PTN network as the unified bearing of the TD-LTE power private wireless backhaul network and fiber communication backbone network for distribution. Network dataflow analysis shows that this model can greatly reduce the capacity pressure of the traditional SDH network as well as ensure the reliability of the transmission of the communication network for distribution and TD-LTE power private wireless network.

  10. Structural changes at the myrtenol backbone reverse its positive allosteric potential into inhibitory GABAA receptor modulation

    DEFF Research Database (Denmark)

    Milanos, Sinem; Kuenzel, Katharina; Gilbert, Daniel F

    2017-01-01

    monoterpenes, e.g. myrtenol as positive allosteric modulator at α1β2 GABAA receptors. Here, along with pharmacophore-based virtual screening studies, we demonstrate that scaffold modifications of myrtenol resulted in loss of modulatory activity. Two independent approaches, fluorescence-based compound analysis...

  11. Predicting beta-turns and their types using predicted backbone dihedral angles and secondary structures.

    Science.gov (United States)

    Kountouris, Petros; Hirst, Jonathan D

    2010-07-31

    Beta-turns are secondary structure elements usually classified as coil. Their prediction is important, because of their role in protein folding and their frequent occurrence in protein chains. We have developed a novel method that predicts beta-turns and their types using information from multiple sequence alignments, predicted secondary structures and, for the first time, predicted dihedral angles. Our method uses support vector machines, a supervised classification technique, and is trained and tested on three established datasets of 426, 547 and 823 protein chains. We achieve a Matthews correlation coefficient of up to 0.49, when predicting the location of beta-turns, the highest reported value to date. Moreover, the additional dihedral information improves the prediction of beta-turn types I, II, IV, VIII and "non-specific", achieving correlation coefficients up to 0.39, 0.33, 0.27, 0.14 and 0.38, respectively. Our results are more accurate than other methods. We have created an accurate predictor of beta-turns and their types. Our method, called DEBT, is available online at http://comp.chem.nottingham.ac.uk/debt/.

  12. Solution structure and backbone dynamics of recombinant Cucurbita maxima trypsin inhibitor-V determined by NMR spectroscopy.

    Science.gov (United States)

    Liu, J; Prakash, O; Cai, M; Gong, Y; Huang, Y; Wen, L; Wen, J J; Huang, J K; Krishnamoorthi, R

    1996-02-06

    The solution structure of recombinant Cucurbita maxima trypsin inhibitor-V (rCMTI-V), whose N-terminal is unacetylated and carries an extra glycine residue, was determined by means of two-dimensional (2D) homo and 3D hetero NMR experiments in combination with a distance geometry and simulated annealing algorithm. A total of 927 interproton distances and 123 torsion angle constraints were utilized to generate 18 structures. The root mean squared deviation (RMSD) of the mean structure is 0.53 A for main-chain atoms and 0.95 A for all the non-hydrogen atoms of residues 3-40 and 49-67. The average structure of rCMTI-V is found to be almost the same as that of the native protein [Cai, M., Gong, Y., Kao, J.-L., & Krishnamoorthi, R. (1995) Biochemistry 34, 5201-5211]. The backbone dynamics of uniformly 15N-labeled rCMTI-V were characterized by 2D 1H-15N NMR methods. 15N spin-lattice and spin-spin relaxation rate constants (R1 and R2, respectively) and [1H]-15N steady-state heteronuclear Overhauser effect enhancements were measured for the peptide NH units and, using the model-free formalism [Lipari, G., & Szabo, A. (1982) J. Am. Chem. Soc. 104, 4546-4559, 4559-4570], the following parameters were determined: overall tumbling correlation time for the protein molecule (tau m), generalized order parameters for the individual N-H vectors (S2), effective correlation times for their internal motions (tau e), and terms to account for motions on a slower time scale (second) due to chemical exchange and/or conformational averaging (R(ex)). Most of the backbone NH groups of rCMTI-V are found to be highly constrained ((S2) = 0.83) with the exception of those in the binding loop (residues 41-48, (S2) = 0.71) and the N-terminal region ((S2) = 0.73). Main-chain atoms in these regions show large RMSD values in the average NMR structure. Residues involved in turns also appear to have more mobility ((S2) = 0.80). Dynamical properties of rCMTI-V were compared with those of two other

  13. Assessing protein conformational sampling methods based on bivariate lag-distributions of backbone angles

    KAUST Repository

    Maadooliat, Mehdi; Gao, Xin; Huang, Jianhua Z.

    2012-01-01

    Despite considerable progress in the past decades, protein structure prediction remains one of the major unsolved problems in computational biology. Angular-sampling-based methods have been extensively studied recently due to their ability to capture the continuous conformational space of protein structures. The literature has focused on using a variety of parametric models of the sequential dependencies between angle pairs along the protein chains. In this article, we present a thorough review of angular-sampling-based methods by assessing three main questions: What is the best distribution type to model the protein angles? What is a reasonable number of components in a mixture model that should be considered to accurately parameterize the joint distribution of the angles? and What is the order of the local sequence-structure dependency that should be considered by a prediction method? We assess the model fits for different methods using bivariate lag-distributions of the dihedral/planar angles. Moreover, the main information across the lags can be extracted using a technique called Lag singular value decomposition (LagSVD), which considers the joint distribution of the dihedral/planar angles over different lags using a nonparametric approach and monitors the behavior of the lag-distribution of the angles using singular value decomposition. As a result, we developed graphical tools and numerical measurements to compare and evaluate the performance of different model fits. Furthermore, we developed a web-tool (http://www.stat.tamu. edu/~madoliat/LagSVD) that can be used to produce informative animations. © The Author 2012. Published by Oxford University Press.

  14. Assessing protein conformational sampling methods based on bivariate lag-distributions of backbone angles

    KAUST Repository

    Maadooliat, Mehdi

    2012-08-27

    Despite considerable progress in the past decades, protein structure prediction remains one of the major unsolved problems in computational biology. Angular-sampling-based methods have been extensively studied recently due to their ability to capture the continuous conformational space of protein structures. The literature has focused on using a variety of parametric models of the sequential dependencies between angle pairs along the protein chains. In this article, we present a thorough review of angular-sampling-based methods by assessing three main questions: What is the best distribution type to model the protein angles? What is a reasonable number of components in a mixture model that should be considered to accurately parameterize the joint distribution of the angles? and What is the order of the local sequence-structure dependency that should be considered by a prediction method? We assess the model fits for different methods using bivariate lag-distributions of the dihedral/planar angles. Moreover, the main information across the lags can be extracted using a technique called Lag singular value decomposition (LagSVD), which considers the joint distribution of the dihedral/planar angles over different lags using a nonparametric approach and monitors the behavior of the lag-distribution of the angles using singular value decomposition. As a result, we developed graphical tools and numerical measurements to compare and evaluate the performance of different model fits. Furthermore, we developed a web-tool (http://www.stat.tamu. edu/~madoliat/LagSVD) that can be used to produce informative animations. © The Author 2012. Published by Oxford University Press.

  15. TACN-based cationic lipids with amino acid backbone and double tails: materials for non-viral gene delivery.

    Science.gov (United States)

    Wang, Bing; Yi, Wen-Jing; Zhang, Ji; Zhang, Qin-Fang; Xun, Miao-Miao; Yu, Xiao-Qi

    2014-04-01

    Cationic lipids have become an efficient type of non-viral vectors for gene delivery. In this Letter, four cationic lipids containing 1,4,7-triazacyclononane (TACN) headgroup, glutamic/aspartic acid backbone and dioleyl tails were designed and synthesized. The TACN headgroup gives these lipids excellent pH buffering capacities, which were higher than branched 25 kDa PEI. Cationic liposomes prepared from these lipids and DOPE showed good DNA affinity, and full DNA condensation was found at N/P ratio of 3 via agarose gel electrophoresis. The lipoplexes were characterized by dynamic light scattering (DLS) assay, which gave proper particle sizes and zeta-potentials for transfection. In vitro gene transfection results in two cell lines reveal that TAN (with aspartic acid and amide bond in the structure) shows the best transfection efficiency, which is close to commercially available transfection agent Lipofectamine 2000. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Exact Solutions for Internuclear Vectors and Backbone Dihedral Angles from NH Residual Dipolar Couplings in Two Media, and their Application in a Systematic Search Algorithm for Determining Protein Backbone Structure

    International Nuclear Information System (INIS)

    Wang Lincong; Donald, Bruce Randall

    2004-01-01

    We have derived a quartic equation for computing the direction of an internuclear vector from residual dipolar couplings (RDCs) measured in two aligning media, and two simple trigonometric equations for computing the backbone (φ,ψ) angles from two backbone vectors in consecutive peptide planes. These equations make it possible to compute, exactly and in constant time, the backbone (φ,ψ) angles for a residue from RDCs in two media on any single backbone vector type. Building upon these exact solutions we have designed a novel algorithm for determining a protein backbone substructure consisting of α-helices and β-sheets. Our algorithm employs a systematic search technique to refine the conformation of both α-helices and β-sheets and to determine their orientations using exclusively the angular restraints from RDCs. The algorithm computes the backbone substructure employing very sparse distance restraints between pairs of α-helices and β-sheets refined by the systematic search. The algorithm has been demonstrated on the protein human ubiquitin using only backbone NH RDCs, plus twelve hydrogen bonds and four NOE distance restraints. Further, our results show that both the global orientations and the conformations of α-helices and β-strands can be determined with high accuracy using only two RDCs per residue. The algorithm requires, as its input, backbone resonance assignments, the identification of α-helices and β-sheets as well as sparse NOE distance and hydrogen bond restraints.Abbreviations: NMR - nuclear magnetic resonance; RDC - residual dipolar coupling; NOE - nuclear Overhauser effect; SVD - singular value decomposition; DFS - depth-first search; RMSD - root mean square deviation; POF - principal order frame; PDB - protein data bank; SA - simulated annealing; MD - molecular dynamics

  17. Network Traffic Prediction Based on Deep Belief Network and Spatiotemporal Compressive Sensing in Wireless Mesh Backbone Networks

    Directory of Open Access Journals (Sweden)

    Laisen Nie

    2018-01-01

    Full Text Available Wireless mesh network is prevalent for providing a decentralized access for users and other intelligent devices. Meanwhile, it can be employed as the infrastructure of the last few miles connectivity for various network applications, for example, Internet of Things (IoT and mobile networks. For a wireless mesh backbone network, it has obtained extensive attention because of its large capacity and low cost. Network traffic prediction is important for network planning and routing configurations that are implemented to improve the quality of service for users. This paper proposes a network traffic prediction method based on a deep learning architecture and the Spatiotemporal Compressive Sensing method. The proposed method first adopts discrete wavelet transform to extract the low-pass component of network traffic that describes the long-range dependence of itself. Then, a prediction model is built by learning a deep architecture based on the deep belief network from the extracted low-pass component. Otherwise, for the remaining high-pass component that expresses the gusty and irregular fluctuations of network traffic, the Spatiotemporal Compressive Sensing method is adopted to predict it. Based on the predictors of two components, we can obtain a predictor of network traffic. From the simulation, the proposed prediction method outperforms three existing methods.

  18. Charge transport properties of poly(dA)-poly(dT) DNA in variation of backbone disorder and amplitude of base-pair twisting motion

    Energy Technology Data Exchange (ETDEWEB)

    Rahmi, Kinanti Aldilla, E-mail: kinanti.aldilla@ui.ac.id; Yudiarsah, Efta [Physics Department, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia)

    2016-04-19

    By using tight binding Hamiltonian model, charge transport properties of poly(dA)-poly(dT) DNA in variation of backbone disorder and amplitude of base-pair twisting motion is studied. The DNA chain used is 32 base pairs long poly(dA)-poly(dT) molecule. The molecule is contacted to electrode at both ends. The influence of environment on charge transport in DNA is modeled as variation of backbone disorder. The twisting motion amplitude is taking into account by assuming that the twisting angle distributes following Gaussian distribution function with zero average and standard deviation proportional to square root of temperature and inversely proportional to the twisting motion frequency. The base-pair twisting motion influences both the onsite energy of the bases and electron hopping constant between bases. The charge transport properties are studied by calculating current using Landauer-Buttiker formula from transmission probabilities which is calculated by transfer matrix methods. The result shows that as the backbone disorder increases, the maximum current decreases. By decreasing the twisting motion frequency, the current increases rapidly at low voltage, but the current increases slower at higher voltage. The threshold voltage can increase or decrease with increasing backbone disorder and increasing twisting frequency.

  19. Testing Backbone.js

    CERN Document Server

    Roemer, Ryan

    2013-01-01

    This book is packed with the step by step tutorial and instructions in recipe format helping you setup test infrastructure and gradually advance your skills to plan, develop, and test your backbone applications.If you are a JavaScript developer looking for recipes to create and implement test support for your backbone application, then this book is ideal for you.

  20. Backbone amide linker strategy

    DEFF Research Database (Denmark)

    Shelton, Anne Pernille Tofteng; Jensen, Knud Jørgen

    2013-01-01

    In the backbone amide linker (BAL) strategy, the peptide is anchored not at the C-terminus but through a backbone amide, which leaves the C-terminal available for various modifications. This is thus a very general strategy for the introduction of C-terminal modifications. The BAL strategy...

  1. de Vries liquid crystals based on a chiral 5-phenylpyrimidine benzoate core with a tri- and tetra-carbosilane backbone

    Science.gov (United States)

    Sreenilayam, S. P.; Rodriguez-Lojo, D.; Agra-Kooijman, D. M.; Vij, J. K.; Panov, V. P.; Panov, A.; Fisch, M. R.; Kumar, Satyendra; Stevenson, P. J.

    2018-02-01

    New chiral de Vries smectic liquid-crystalline compounds are designed, synthesized, and investigated for perspective applications in defect-free bistable surface-stabilized ferroelectric liquid-crystal displays. In these compounds, a 5-phenyl-pyrimidine benzoate core is terminated on one side by a tri- or tetra-carbosilane group linked through an alkoxy group and an alkyl spacer and on the opposite side terminated by a chiral 2-octanol group. The stereogenic center contains either a methyl or perfluoromethyl functional group. These compounds exhibit Iso-Sm A*-Sm C*-Sm X -Cr phases under cooling from the isotropic state. Measurements of the temperature-dependent smectic layer spacing by x-ray diffraction experiments combined with the measured apparent optical tilt angle and the birefringence reveal that Sm A* phase in these compounds is of the de Vries type. In addition, the chiral compound with a tetra-carbosilane backbone, DR277, exhibits good de Vries properties with the Sm C* phase exhibited over a wide temperature range. By varying the carbosilane end group, the de Vries properties are enhanced, that is, the layer shrinkage of ˜1.9 % for the tri-carbosilane DR276 is reduced to ˜0.9 % for tetra-carbosilane DR277 at 10°C below Sm A* to Sm C* transition temperature, TAC. For DR277, the reduction factor R ≈0.22 for T =(TAC-10 )°C is reasonably low and the apparent optical tilt angle θapp=35.1°, hence this compound is a "good de Vries smectic" LC. Therefore, synthesis of the chiral mesogen with an even higher number of carbosilane groups may lead to a further reduction or even zero-layer shrinkage exhibited at TAC with Sm C* phase extending over a wide temperature range close to the room temperature for perspective suitability in device applications. Our results for 5-phenyl-pyrimidine benzoate core-based compounds support a recently drawn conclusion by Schubert et al. [J. Mater. Chem. C 4, 8483 (2016), 10.1039/C6TC03120J] from a different compound, namely

  2. Stability of maximum-likelihood-based clustering methods: exploring the backbone of classifications

    International Nuclear Information System (INIS)

    Mungan, Muhittin; Ramasco, José J

    2010-01-01

    Components of complex systems are often classified according to the way they interact with each other. In graph theory such groups are known as clusters or communities. Many different techniques have been recently proposed to detect them, some of which involve inference methods using either Bayesian or maximum likelihood approaches. In this paper, we study a statistical model designed for detecting clusters based on connection similarity. The basic assumption of the model is that the graph was generated by a certain grouping of the nodes and an expectation maximization algorithm is employed to infer that grouping. We show that the method admits further development to yield a stability analysis of the groupings that quantifies the extent to which each node influences its neighbors' group membership. Our approach naturally allows for the identification of the key elements responsible for the grouping and their resilience to changes in the network. Given the generality of the assumptions underlying the statistical model, such nodes are likely to play special roles in the original system. We illustrate this point by analyzing several empirical networks for which further information about the properties of the nodes is available. The search and identification of stabilizing nodes constitutes thus a novel technique to characterize the relevance of nodes in complex networks

  3. Structural insights into the evolution of a sexy protein: novel topology and restricted backbone flexibility in a hypervariable pheromone from the red-legged salamander, Plethodon shermani.

    Science.gov (United States)

    Wilburn, Damien B; Bowen, Kathleen E; Doty, Kari A; Arumugam, Sengodagounder; Lane, Andrew N; Feldhoff, Pamela W; Feldhoff, Richard C

    2014-01-01

    In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) superfamily: a diverse class of vertebrate proteins co-opted for many biological functions - such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake "three-finger" topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s) without the immediate need for complementary mutations. Consequently, this unique

  4. Structural insights into the evolution of a sexy protein: novel topology and restricted backbone flexibility in a hypervariable pheromone from the red-legged salamander, Plethodon shermani.

    Directory of Open Access Journals (Sweden)

    Damien B Wilburn

    Full Text Available In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP superfamily: a diverse class of vertebrate proteins co-opted for many biological functions - such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake "three-finger" topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s without the immediate need for complementary mutations. Consequently

  5. 1990s: High Capacity Backbones

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. 1990s: High Capacity Backbones. Backbone capacities increased from 2.5 Gb/s to 100s of Gb/s during the 1990's. Wavelength division multiplexing with 160 waves of 10 Gb/s was commercially available. Several high-capacity backbones built in the US and Europe.

  6. Molecular Data for a Biochemical Model of DNA Radiation Damage: Electron Impact Ionization and Dissociative Ionization of DNA Bases and Sugar-Phosphate Backbone

    Science.gov (United States)

    Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    As part of the database for building up a biochemical model of DNA radiation damage, electron impact ionization cross sections of sugar-phosphate backbone and DNA bases have been calculated using the improved binary-encounter dipole (iBED) model. It is found that the total ionization cross sections of C3'- and C5'-deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 10%. Of the four DNA bases, the ionization cross section of guanine is the largest, then in decreasing order, adenine, thymine, and cytosine. The order is in accordance with the known propensity of oxidation of the bases by ionizing radiation. Dissociative ionization (DI), a process that both ionizes and dissociates a molecule, is investigated for cytosine. The DI cross section for the formation of H and (cytosine-Hl)(+), with the cytosine ion losing H at the 1 position, is also reported. The threshold of this process is calculated to be 17.1 eV. Detailed analysis of ionization products such as in DI is important to trace the sequential steps in the biochemical process of DNA damage.

  7. Molecular data for a biochemical model of DNA damage: Electron impact ionization and dissociative ionization cross sections of DNA bases and sugar-phosphate backbone

    International Nuclear Information System (INIS)

    Huo, Winifred M.; Dateo, Christopher E.; Fletcher, Graham D.

    2006-01-01

    As part of the database for building up a biochemical model of DNA radiation damage, electron impact ionization cross sections of sugar-phosphate backbone and DNA bases have been calculated using the improved binary-encounter dipole (iBED) model. It is found that the total ionization cross sections of C 3 ' - and C 5 ' -deoxyribose-phosphate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C 3 ' - and C 5 ' -deoxyribose-phosphate cross sections, differing by less than 10%, an indication that a building-up principle may be applicable. Of the four DNA bases, the ionization cross section of guanine is the largest, then in decreasing order, adenine, thymine, and cytosine. The order is in accordance with the known propensity of oxidation of the bases by ionizing radiation. Dissociative ionization (DI), a process that both ionizes and dissociates a molecule, is investigated for cytosine. The DI cross section for the formation of H and (cytosine-H1) + , with the cytosine ion losing H at the 1 position, is also reported. The threshold of this process is calculated to be 16.9eV. Detailed analysis of ionization products such as in DI is important to trace the sequential steps in the biochemical process of DNA damage

  8. Probing adenine rings and backbone linkages using base specific isotope-edited Raman spectroscopy: application to group II intron ribozyme domain V.

    Science.gov (United States)

    Chen, Yuanyuan; Eldho, Nadukkudy V; Dayie, T Kwaku; Carey, Paul R

    2010-04-27

    Raman difference spectroscopy is used to probe the properties of a 36-nt RNA molecule, "D5", which lies at the heart of the catalytic apparatus in group II introns. For D5 that has all of its adenine residues labeled with (13)C and (15)N and utilizing Raman difference spectroscopy, we identify the conformationally sensitive -C-O-P-O-C- stretching modes of the unlabeled bonds adjacent to adenine bases, as well as the adenine ring modes themselves. The phosphodiester modes can be assigned to individual adenine residues based on earlier NMR data. The effect of Mg(2+) binding was explored by analyzing the Raman difference spectra for [D5 + Mg(2+)] minus [D5 no Mg(2+)], for D5 unlabeled, or D5 labeled with (13)C/(15)N-enriched adenine. In both sets of data we assign differential features to G ring modes perturbed by Mg(2+) binding at the N7 position. In the A-labeled spectra we attribute a Raman differential near 1450 cm(-1) and changes of intensity at 1296 cm(-1) to Mg binding at the N7 position of adenine bases. The A and G bases involved in Mg(2+) binding again can be identified using earlier NMR results. For the unlabeled D5, a change in the C-O-P-O-C stretch profile at 811 cm(-1) upon magnesium binding is due to a "tightening up" (in the sense of a more rigid molecule with less dynamic interchange among competing ribose conformers) of the D5 structure. For adenine-labeled D5, small changes in the adenine backbone bond signatures in the 810-830 cm(-1) region suggest that small conformational changes occur in the tetraloop and bulge regions upon binding of Mg(2+). The PO(2)(-) stretching vibration, near 1100 cm(-1), from the nonbridging phosphate groups, probes the effect of Mg(2+)-hydrate inner-sphere interactions that cause an upshift. In turn, the upshift is modulated by the presence of monovalent cations since in the presence of Na(+) and Li(+) the upshift is 23 +/- 2 cm(-1) while in the presence of K(+) and Cs(+) it is 13 +/- 3 cm(-1), a finding that correlates

  9. Orientation-dependent backbone-only residue pair scoring functions for fixed backbone protein design

    Directory of Open Access Journals (Sweden)

    Bordner Andrew J

    2010-04-01

    Full Text Available Abstract Background Empirical scoring functions have proven useful in protein structure modeling. Most such scoring functions depend on protein side chain conformations. However, backbone-only scoring functions do not require computationally intensive structure optimization and so are well suited to protein design, which requires fast score evaluation. Furthermore, scoring functions that account for the distinctive relative position and orientation preferences of residue pairs are expected to be more accurate than those that depend only on the separation distance. Results Residue pair scoring functions for fixed backbone protein design were derived using only backbone geometry. Unlike previous studies that used spherical harmonics to fit 2D angular distributions, Gaussian Mixture Models were used to fit the full 3D (position only and 6D (position and orientation distributions of residue pairs. The performance of the 1D (residue separation only, 3D, and 6D scoring functions were compared by their ability to identify correct threading solutions for a non-redundant benchmark set of protein backbone structures. The threading accuracy was found to steadily increase with increasing dimension, with the 6D scoring function achieving the highest accuracy. Furthermore, the 3D and 6D scoring functions were shown to outperform side chain-dependent empirical potentials from three other studies. Next, two computational methods that take advantage of the speed and pairwise form of these new backbone-only scoring functions were investigated. The first is a procedure that exploits available sequence data by averaging scores over threading solutions for homologs. This was evaluated by applying it to the challenging problem of identifying interacting transmembrane alpha-helices and found to further improve prediction accuracy. The second is a protein design method for determining the optimal sequence for a backbone structure by applying Belief Propagation

  10. Solution structure, copper binding and backbone dynamics of recombinant Ber e 1-the major allergen from Brazil nut.

    Directory of Open Access Journals (Sweden)

    Louise Rundqvist

    Full Text Available BACKGROUND: The 2S albumin Ber e 1 is the major allergen in Brazil nuts. Previous findings indicated that the protein alone does not cause an allergenic response in mice, but the addition of components from a Brazil nut lipid fraction were required. Structural details of Ber e 1 may contribute to the understanding of the allergenic properties of the protein and its potential interaction partners. METHODOLOGY/PRINCIPAL FINDINGS: The solution structure of recombinant Ber e 1 was solved using NMR spectroscopy and measurements of the protein back bone dynamics at a residue-specific level were extracted using (15N-spin relaxation. A hydrophobic cavity was identified in the structure of Ber e 1. Using the paramagnetic relaxation enhancement property of Cu(2+ in conjunction with NMR, it was shown that Ber e 1 is able to specifically interact with the divalent copper ion and the binding site was modeled into the structure. The IgE binding region as well as the copper binding site show increased dynamics on both fast ps-ns timescale as well as slower µs-ms timescale. CONCLUSIONS/SIGNIFICANCE: The overall fold of Ber e 1 is similar to other 2S albumins, but the hydrophobic cavity resembles that of a homologous non-specific lipid transfer protein. Ber e 1 is the first 2S albumin shown to interact with Cu(2+ ions. This Cu(2+ binding has minimal effect on the electrostatic potential on the surface of the protein, but the charge distribution within the hydrophobic cavity is significantly altered. As the hydrophobic cavity is likely to be involved in a putative lipid interaction the Cu(2+ can in turn affect the interaction that is essential to provoke an allergenic response.

  11. (nBuCp)2ZrCl2-catalyzed Ethylene-4M1P Copolymerization: Copolymer Backbone Structure, Melt Behavior, and Crystallization

    KAUST Repository

    Atiqullah, Muhammad

    2016-01-08

    The judicious design of methylaluminoxane (MAO) anions expands the scope for developing industrial metallocene catalysts. Therefore, the effects of MAO anion design on the backbone structure, melt behavior, and crystallization of ethylene−4-methyl-1-pentene (E−4M1P) copolymer were investigated. Ethylene was homopolymerized, as well as copolymerized with 4M1P, using (i) MAO anion A (unsupported [MAOCl2]−) premixed with dehydroxylated silica, (nBuCp)2ZrCl2, and Me2SiCl2; and (ii) MAO anion B (Si−O−Me2Si−[MAOCl2]−) supported with (nBuCp)2ZrCl2 on Me2SiCl2-functionalized silica. Unsupported Me2SiCl2, opposite to the supported analogue, acted as a co-chain transfer agent with 4M1P. The modeling of polyethylene melting and crystallization kinetics, including critical crystallite stability, produced insightful results. This study especially illustrates how branched polyethylene can be prepared from ethylene alone using particularly one metallocene-MAO ion pair, and how a compound, that functionalizes silica as well as terminates the chain, can synthesize ethylene−α-olefin copolymers with novel structures. Hence, it unfolds prospective future research niches in polyethyne systhesis. This article is protected by copyright. All rights reserved.

  12. A 3D-structural model of unsulfated chondroitin from high-field NMR: 4-sulfation has little effect on backbone conformation

    Science.gov (United States)

    Sattelle, Benedict M.; Shakeri, Javad; Roberts, Ian S.; Almond, Andrew

    2010-01-01

    The glycosaminoglycan chondroitin sulfate is essential in human health and disease but exactly how sulfation dictates its 3D-strucutre at the atomic level is unclear. To address this, we have purified homogenous oligosaccharides of unsulfated chondroitin (with and without 15N-enrichment) and analysed them by high-field NMR to make a comparison published chondroitin sulfate and hyaluronan 3D-structures. The result is the first full assignment of the tetrasaccharide and an experimental 3D-model of the hexasaccharide (PDB code 2KQO). In common with hyaluronan, we confirm that the amide proton is not involved in strong, persistent inter-residue hydrogen bonds. However, in contrast to hyaluronan, a hydrogen bond is not inferred between the hexosamine OH-4 and the glucuronic acid O5 atoms across the β(1→3) glycosidic linkage. The unsulfated chondroitin bond geometry differs slightly from hyaluronan by rotation about the β(1→3) ψ dihedral (as previously predicted by simulation), while the β(1→4) linkage is unaffected. Furthermore, comparison shows that this glycosidic linkage geometry is similar in chondroitin-4-sulfate. We therefore hypothesise that both hexosamine OH-4 and OH-6 atoms are solvent exposed in chondroitin, explaining why it is amenable to sulfation and hyaluronan is not, and also that 4-sulfation has little effect on backbone conformation. Our conclusions exemplify the value of the 3D-model presented here and progress our understanding of glycosaminoglycan molecular properties. PMID:20022001

  13. Analisa Perbandingan Quality Of Service (QoS) pada Jaringan Backbone Non-MPLS dengan Jaringan Backbone MPLS Menggunakan Routing Protocol OSPF di PT. Telekomunikasi Indonesia, Tbk. Witel Ridar Riau

    OpenAIRE

    Silaban, Nestor Hasudungan; Sari, Linna Oktaviana; Anhar, Anhar

    2015-01-01

    The development of telecommunications technology based on Internet Protocol (IP) is now growing with the competitiveness of the telecommunications company to improve the quality of service to consumers. It can be obtained by increasing the quality backbone network using Multi Protocol Label Switching (MPLS). MPLS is a new technology to forward the packet to the backbone network without changing the existing network structure. The main idea is to construct a replacement MPLS paths using label ...

  14. High Performance Infiltrated Backbones for Cathode-Supported SOFC's

    DEFF Research Database (Denmark)

    Gil, Vanesa; Kammer Hansen, Kent

    2014-01-01

    The concept of using highly ionic conducting backbones with subsequent infiltration of electronically conducting particles has widely been used to develop alternative anode-supported SOFC's. In this work, the idea was to develop infiltrated backbones as an alternative design based on cathode......, microstructural characterization and electrochemical testing are discussed. Data on polarization resistance, Rp, are obtained from impedance spectra recorded on quasi-symmetrical cells (YSZ backbones/YSZ/LSM-YSZ (screen printed)). The backbones are infiltrated with LSM and compared to a standard LSM-YSZ screen...

  15. Backbone Diversity Analysis in Catalyst Design

    NARCIS (Netherlands)

    Maldonado, A.G.; Hageman, J.A.; Mastroianni, S.; Rothenberg, G.

    2009-01-01

    We present a computer-based heuristic framework for designing libraries of homogeneous catalysts. In this approach, a set of given bidentate ligand-metal complexes is disassembled into key substructures (building blocks). These include metal atoms, ligating groups, backbone groups, and residue

  16. ExScal Backbone Network Architecture

    Science.gov (United States)

    2005-01-01

    802.11 battery powered nodes was laid over the sensor network. We adopted the Stargate platform for the backbone tier to serve as the basis for...its head. XSS Hardware and Network: XSS stands for eXtreme Scaling Stargate . A stargate is a linux-based single board computer. It has a 400 MHz

  17. Investigation of novel solid oxide fuel cell cathodes based on impregnation of SrTixFe1-xO3-δ into ceria-based backbones

    DEFF Research Database (Denmark)

    Brinch-Larsen, Mathias; Søgaard, Martin; Hjelm, Johan

    2013-01-01

    Solid oxide fuel cell (SOFC) cathodes were prepared by impregnating the nitrates corresponding to SrTixFe1-xO3-δ (STF), x= 0; 0.1; 0.2; 0.3; 0.4 and 0.5, into a porous backbone of Ce 0.9Gd0.1O2-δ (CGO). STF was chosen as very high oxygen surface exchange rate, high ionic conductivity and electroc......Solid oxide fuel cell (SOFC) cathodes were prepared by impregnating the nitrates corresponding to SrTixFe1-xO3-δ (STF), x= 0; 0.1; 0.2; 0.3; 0.4 and 0.5, into a porous backbone of Ce 0.9Gd0.1O2-δ (CGO). STF was chosen as very high oxygen surface exchange rate, high ionic conductivity...... backbone. All prepared electrodes were characterized as symmetric cells using impedance spectroscopy. Within the investigated series the infiltrate with x = 0.1 (STF10) showed the best performance with an area specific resistance (ASR) of ASR ≈ 6.4 Ω cm2 (STF10) at 600°C in air. The relatively poor...

  18. Pairwise NMR experiments for the determination of protein backbone dihedral angle Φ based on cross-correlated spin relaxation

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2007-01-01

    Novel cross-correlated spin relaxation (CCR) experiments are described, which measure pairwise CCR rates for obtaining peptide dihedral angles Φ. The experiments utilize intra-HNCA type coherence transfer to refocus 2-bond J NCα coupling evolution and generate the N (i)-C α (i) or C'(i-1)-C α (i) multiple quantum coherences which are required for measuring the desired CCR rates. The contribution from other coherences is also discussed and an appropriate setting of the evolution delays is presented. These CCR experiments were applied to 15 N- and 13 C-labeled human ubiquitin. The relevant CCR rates showed a high degree of correlation with the Φ angles observed in the X-ray structure. By utilizing these CCR experiments in combination with those previously established for obtaining dihedral angle Ψ, we can determine high resolution structures of peptides that bind weakly to large target molecules

  19. High Performance Infiltrated Backbones for Cathode-Supported SOFC's

    DEFF Research Database (Denmark)

    Gil, Vanesa; Kammer Hansen, Kent

    2014-01-01

    A four-step infiltration method has been developed to infiltrate La0.75Sr0.25MnO3+δ (LSM25) nanoparticles into porous structures (YSZ or LSM-YSZ backbones). The pore size distribution in the backbones is obtained either by using PMMA and/or graphites as pore formers or by leaching treatment of sa...... of samples with Ni remained in the YSZ structure at high temperatures. All impregnated backbones, presented Rs comparable to a standard screen printed cathode, which proves that LSM nanoparticles forms a pathway for electron conduction....

  20. Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility.

    Science.gov (United States)

    Heffernan, Rhys; Yang, Yuedong; Paliwal, Kuldip; Zhou, Yaoqi

    2017-09-15

    The accuracy of predicting protein local and global structural properties such as secondary structure and solvent accessible surface area has been stagnant for many years because of the challenge of accounting for non-local interactions between amino acid residues that are close in three-dimensional structural space but far from each other in their sequence positions. All existing machine-learning techniques relied on a sliding window of 10-20 amino acid residues to capture some 'short to intermediate' non-local interactions. Here, we employed Long Short-Term Memory (LSTM) Bidirectional Recurrent Neural Networks (BRNNs) which are capable of capturing long range interactions without using a window. We showed that the application of LSTM-BRNN to the prediction of protein structural properties makes the most significant improvement for residues with the most long-range contacts (|i-j| >19) over a previous window-based, deep-learning method SPIDER2. Capturing long-range interactions allows the accuracy of three-state secondary structure prediction to reach 84% and the correlation coefficient between predicted and actual solvent accessible surface areas to reach 0.80, plus a reduction of 5%, 10%, 5% and 10% in the mean absolute error for backbone ϕ , ψ , θ and τ angles, respectively, from SPIDER2. More significantly, 27% of 182724 40-residue models directly constructed from predicted C α atom-based θ and τ have similar structures to their corresponding native structures (6Å RMSD or less), which is 3% better than models built by ϕ and ψ angles. We expect the method to be useful for assisting protein structure and function prediction. The method is available as a SPIDER3 server and standalone package at http://sparks-lab.org . yaoqi.zhou@griffith.edu.au or yuedong.yang@griffith.edu.au. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email

  1. High-resolution protein design with backbone freedom.

    Science.gov (United States)

    Harbury, P B; Plecs, J J; Tidor, B; Alber, T; Kim, P S

    1998-11-20

    Recent advances in computational techniques have allowed the design of precise side-chain packing in proteins with predetermined, naturally occurring backbone structures. Because these methods do not model protein main-chain flexibility, they lack the breadth to explore novel backbone conformations. Here the de novo design of a family of alpha-helical bundle proteins with a right-handed superhelical twist is described. In the design, the overall protein fold was specified by hydrophobic-polar residue patterning, whereas the bundle oligomerization state, detailed main-chain conformation, and interior side-chain rotamers were engineered by computational enumerations of packing in alternate backbone structures. Main-chain flexibility was incorporated through an algebraic parameterization of the backbone. The designed peptides form alpha-helical dimers, trimers, and tetramers in accord with the design goals. The crystal structure of the tetramer matches the designed structure in atomic detail.

  2. Mechanical reliability of porous low-k dielectrics for advanced interconnect: Study of the instability mechanisms in porous low-k dielectrics and their mediation through inert plasma induced re-polymerization of the backbone structure

    Science.gov (United States)

    Sa, Yoonki

    siloxane backbone structure under 300˜400°C by reaction with -OH, and simultaneously creating a new Si-O-Si crosslink. As an alternative way of increasing the thermo-mechanical reliability, PLK dielectric film with an intrinsically robust structure by controlling pore morphology is fabricated. Since pore surface is susceptible to be damaged by BEOL integration damage, pore morphology in terms of size, distribution, and connectivity should be controlled in order to increase the robustness of PLK dielectrics. Generally, pores in PLK matrix are created by depositing organic fragment (called 'porogen') into the film and removed later by thermal and electron beam cure to form porous PLK layer (; Subtractive deposition). However, during the curing Si-O-Si backbone crosslink is broken and pores are easily interconnected, leading to vulnerable structure to the extrinsic damage. Constitutive deposition approach is feasible for the introduction of smaller nano-pores with little or no interconnectivity by steric hindrance. Due to the closed pore system, thermally-induced stress and plasma-induced damage is restricted merely to the surface of the dielectric film. This is attributed to the stable siloxane (Si-O-Si) backbone and the terminally bonded methyl group attached to silicon (Si-CH3), inducing steric hindrance that lowers the density of the films. The low dielectric constant and mechanical stability are closely involved with the formation of the Si-O-Si cage-like structure and an appropriate combination of stable Si-O-Si, Si-CH3 groups. Based on the FTIR and XPS spectra, it is concluded that the formation of the Si-O-Si cage-like structure was enhanced by structural method. It is believed that all these changes are beneficial for improving PLK stability as will be detailed in this dissertation. Especially, the originality and particular advantage of this study regarding plasma-induced damage repair will be highlighted.

  3. The DNA and RNA sugar-phosphate backbone emerges as the key player. An overview of quantum-chemical, structural biology and simulation studies

    Czech Academy of Sciences Publication Activity Database

    Šponer, Jiří; Mládek, Arnošt; Šponer, Judit E.; Svozil, Daniel; Zgarbová, M.; Banáš, Pavel; Jurečka, P.; Otyepka, M.

    2012-01-01

    Roč. 14, č. 44 (2012), s. 15257-15277 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GD203/09/H046; GA ČR(CZ) GAP208/10/2302; GA ČR(CZ) GAP208/11/1822; GA ČR(CZ) GAP208/12/1878; GA ČR(CZ) GA203/09/1476; GA ČR(CZ) GBP305/12/G034 Institutional research plan: CEZ:AV0Z50040702 Keywords : DNA * RNA * sugar-phosphate backbone Subject RIV: BO - Biophysics Impact factor: 3.829, year: 2012

  4. Formation of 1D hierarchical structures composed of Ni{sub 3}S{sub 2} nanosheets on CNTs backbone for supercapacitors and photocatalytic H{sub 2} production

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ting; Wu, Hao Bin; Wang, Yabo; Xu, Rong; Lou, Xiong Wen [David] [School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457 (Singapore)

    2012-12-15

    One-dimensional (1D) hierarchical structures composed of Ni{sub 3}S{sub 2} nanosheets grown on carbon nanotube (CNT) backbone (denoted as CNT rate at Ni{sub 3}S{sub 2}) are fabricated by a rational multi-step transformation route. The first step involves coating the CNT backbone with a layer of silica to form CNT rate at SiO{sub 2}, which serves as the substrate for the growth of nickel silicate (NiSilicate) nanosheets in the second step to form CNT rate at SiO{sub 2} rate at NiSilicate core-double shell 1D structures. Finally the as-formed CNT rate at SiO{sub 2} rate at NiSilicate 1D structures are converted into CNT-supported Ni{sub 3}S{sub 2} nanosheets via hydrothermal treatment in the presence of Na{sub 2}S. Simultaneously the intermediate silica layer is eliminated during the hydrothermal treatment, leading to the formation of CNT rate at Ni{sub 3}S{sub 2} nanostructures. Because of the unique hybrid nano-architecture, the as-prepared 1D hierarchical structure is shown to exhibit excellent performance in both supercapacitors and photocatalytic H{sub 2} production. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Detection of closed influenza virus hemagglutinin fusion peptide structures in membranes by backbone {sup 13}CO-{sup 15}N rotational-echo double-resonance solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Ujjayini; Xie Li; Weliky, David P., E-mail: weliky@chemistry.msu.edu [Michigan State University, Department of Chemistry (United States)

    2013-02-15

    The influenza virus fusion peptide is the N-terminal {approx}20 residues of the HA2 subunit of the hemagglutinin protein and this peptide plays a key role in the fusion of the viral and endosomal membranes during initial infection of a cell. The fusion peptide adopts N-helix/turn/C-helix structure in both detergent and membranes with reports of both open and closed interhelical topologies. In the present study, backbone {sup 13}CO-{sup 15}N REDOR solid-state NMR was applied to the membrane-associated fusion peptide to detect the distribution of interhelical distances. The data clearly showed a large fraction of closed and semi-closed topologies and were best-fitted to a mixture of two structures that do not exchange. One of the earlier open structural models may have incorrect G13 dihedral angles derived from TALOS analysis of experimentally correct {sup 13}C shifts.

  6. Live Virus Vaccines Based on a Yellow Fever Vaccine Backbone: Standardized Template with Key Considerations for a Risk/Benefit Assessment*

    Science.gov (United States)

    Monath, Thomas P.; Seligman, Stephen J.; Robertson, James S.; Guy, Bruno; Hayes, Edward B.; Condit, Richard C.; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called “chimeric virus vaccines”). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were replaced by the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  7. Live virus vaccines based on a yellow fever vaccine backbone: standardized template with key considerations for a risk/benefit assessment.

    Science.gov (United States)

    Monath, Thomas P; Seligman, Stephen J; Robertson, James S; Guy, Bruno; Hayes, Edward B; Condit, Richard C; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus, Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were exchanged for the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  8. Peptoid-Peptide hybrid backbone architectures

    DEFF Research Database (Denmark)

    Olsen, Christian Adam

    2010-01-01

    Peptidomimetic oligomers and foldamers have received considerable attention for over a decade, with beta-peptides and the so-called peptoids (N-alkylglycine oligomers) representing prominent examples of such architectures. Lately, hybrid or mixed backbones consisting of both alpha- and beta......-amino acids (alpha/beta-peptides) have been investigated in some detail as well. The present Minireview is a survey of the literature concerning hybrid structures of alpha-amino acids and peptoids, including beta-peptoids (N-alkyl-beta-alanine oligomers), and is intended to give an overview of this area...

  9. Backbone upgrades and DEC equipment replacement

    Science.gov (United States)

    Vancamp, Warren

    1991-01-01

    The NASA Science Internet (NSI) dual protocol backbone is outlined. It includes DECnet link upgrades to match TCP/IP link performance. It also includes the integration of backbone resources and central management. The phase 1 transition process is outlined.

  10. Nonribosomal biosynthesis of backbone-modified peptides

    Science.gov (United States)

    Niquille, David L.; Hansen, Douglas A.; Mori, Takahiro; Fercher, David; Kries, Hajo; Hilvert, Donald

    2018-03-01

    Biosynthetic modification of nonribosomal peptide backbones represents a potentially powerful strategy to modulate the structure and properties of an important class of therapeutics. Using a high-throughput assay for catalytic activity, we show here that an L-Phe-specific module of an archetypal nonribosomal peptide synthetase can be reprogrammed to accept and process the backbone-modified amino acid (S)-β-Phe with near-native specificity and efficiency. A co-crystal structure with a non-hydrolysable aminoacyl-AMP analogue reveals the origins of the 40,000-fold α/β-specificity switch, illuminating subtle but precise remodelling of the active site. When the engineered catalyst was paired with downstream module(s), (S)-β-Phe-containing peptides were produced at preparative scale in vitro (~1 mmol) and high titres in vivo (~100 mg l-1), highlighting the potential of biosynthetic pathway engineering for the construction of novel nonribosomal β-frameworks.

  11. Future High Capacity Backbone Networks

    DEFF Research Database (Denmark)

    Wang, Jiayuan

    are proposed. The work focuses on energy efficient routing algorithms in a dynamic optical core network environment, with Generalized MultiProtocol Label Switching (GMPLS) as the control plane. Energy ef- ficient routing algorithms for energy savings and CO2 savings are proposed, and their performance...... aiming for reducing the dynamic part of the energy consumption of the network may increase the fixed part of the energy consumption meanwhile. In the second half of the thesis, the conflict between energy efficiency and Quality of Service (QoS) is addressed by introducing a novel software defined......This thesis - Future High Capacity Backbone Networks - deals with the energy efficiency problems associated with the development of future optical networks. In the first half of the thesis, novel approaches for using multiple/single alternative energy sources for improving energy efficiency...

  12. Adding diverse noncanonical backbones to rosetta: enabling peptidomimetic design.

    Directory of Open Access Journals (Sweden)

    Kevin Drew

    Full Text Available Peptidomimetics are classes of molecules that mimic structural and functional attributes of polypeptides. Peptidomimetic oligomers can frequently be synthesized using efficient solid phase synthesis procedures similar to peptide synthesis. Conformationally ordered peptidomimetic oligomers are finding broad applications for molecular recognition and for inhibiting protein-protein interactions. One critical limitation is the limited set of design tools for identifying oligomer sequences that can adopt desired conformations. Here, we present expansions to the ROSETTA platform that enable structure prediction and design of five non-peptidic oligomer scaffolds (noncanonical backbones, oligooxopiperazines, oligo-peptoids, [Formula: see text]-peptides, hydrogen bond surrogate helices and oligosaccharides. This work is complementary to prior additions to model noncanonical protein side chains in ROSETTA. The main purpose of our manuscript is to give a detailed description to current and future developers of how each of these noncanonical backbones was implemented. Furthermore, we provide a general outline for implementation of new backbone types not discussed here. To illustrate the utility of this approach, we describe the first tests of the ROSETTA molecular mechanics energy function in the context of oligooxopiperazines, using quantum mechanical calculations as comparison points, scanning through backbone and side chain torsion angles for a model peptidomimetic. Finally, as an example of a novel design application, we describe the automated design of an oligooxopiperazine that inhibits the p53-MDM2 protein-protein interaction. For the general biological and bioengineering community, several noncanonical backbones have been incorporated into web applications that allow users to freely and rapidly test the presented protocols (http://rosie.rosettacommons.org. This work helps address the peptidomimetic community's need for an automated and expandable

  13. Inferential backbone assignment for sparse data

    International Nuclear Information System (INIS)

    Vitek, Olga; Bailey-Kellogg, Chris; Craig, Bruce; Vitek, Jan

    2006-01-01

    This paper develops an approach to protein backbone NMR assignment that effectively assigns large proteins while using limited sets of triple-resonance experiments. Our approach handles proteins with large fractions of missing data and many ambiguous pairs of pseudoresidues, and provides a statistical assessment of confidence in global and position-specific assignments. The approach is tested on an extensive set of experimental and synthetic data of up to 723 residues, with match tolerances of up to 0.5 ppm for C α and C β resonance types. The tests show that the approach is particularly helpful when data contain experimental noise and require large match tolerances. The keys to the approach are an empirical Bayesian probability model that rigorously accounts for uncertainty in the data at all stages in the analysis, and a hybrid stochastic tree-based search algorithm that effectively explores the large space of possible assignments

  14. Some fractal properties of the percolating backbone in two dimensions

    International Nuclear Information System (INIS)

    Laidlaw, D.; MacKay, G.; Jan, N.

    1987-01-01

    A new algorithm is presented, based on elements of artificial intelligence theory, to determine the fractal properties of the backbone of the incipient infinite cluster. It is found that fractal dimensionality of the backbone is d/sub f//sup BB/ = 1.61 +/- 0.01, the chemical dimensionality is d/sub t/ = 1.40 +/- 0.01, and the fractal dimension of the minimum path d/sub min/ = 1.15 +/- 0.02 for the two-dimensional triangular lattice

  15. Data Acquisition Backbone Core DABC

    International Nuclear Information System (INIS)

    Adamczewski, J; Essel, H G; Kurz, N; Linev, S

    2008-01-01

    For the new experiments at FAIR new concepts of data acquisition systems have to be developed like the distribution of self-triggered, time stamped data streams over high performance networks for event building. The Data Acquisition Backbone Core (DABC) is a software package currently under development for FAIR detector tests, readout components test, and data flow investigations. All kinds of data channels (front-end systems) are connected by program plug-ins into functional components of DABC like data input, combiner, scheduler, event builder, analysis and storage components. After detailed simulations real tests of event building over a switched network (InfiniBand clusters with up to 110 nodes) have been performed. With the DABC software more than 900 MByte/s input and output per node can be achieved meeting the most demanding requirements. The software is ready for the implementation of various test beds needed for the final design of data acquisition systems at FAIR. The development of key components is supported by the FutureDAQ project of the European Union (FP6 I3HP JRA1)

  16. Mapping the backbone of science.

    Energy Technology Data Exchange (ETDEWEB)

    Klavans, Richard (Indiana University, Bloomington, IN); BÞorner, Katy (Strategies for Science & Technology, Incorporation, Berwyn, PA); Boyack, Kevin W.

    2004-11-01

    This paper presents a new map representing the structure of all of science, based on journal articles, including both the natural and social sciences. Similar to cartographic maps of our world, the map of science provides a bird's eye view of today's scientific landscape. It can be used to visually identify major areas of science, their size, similarity, and interconnectedness. In order to be useful, the map needs to be accurate on a local and on a global scale. While our recent work has focused on the former aspect, this paper summarizes results on how to achieve structural accuracy. Eight alternative measures of journal similarity were applied to a data set of 7,121 journals covering over 1 million documents in the combined Science Citation and Social Science Citation Indexes. For each journal similarity measure we generated two-dimensional spatial layouts using the force-directed graph layout tool, VxOrd. Next, mutual information values were calculated for each graph at different clustering levels to give a measure of structural accuracy for each map. The best co-citation and inter-citation maps according to local and structural accuracy were selected and are presented and characterized. These two maps are compared to establish robustness. The inter-citation map is then used to examine linkages between disciplines. Biochemistry appears as the most interdisciplinary discipline in science.

  17. Solution Structure and Backbone Dynamics of the Pleckstrin Homology Domain of the Human Protein Kinase B (PKB/Akt). Interaction with Inositol Phosphates

    International Nuclear Information System (INIS)

    Auguin, Daniel; Barthe, Philippe; Auge-Senegas, Marie-Therese; Stern, Marc-Henri; Noguchi, Masayuki; Roumestand, Christian

    2004-01-01

    The programmed cell death occurs as part of normal mammalian development. The induction of developmental cell death is a highly regulated process and can be suppressed by a variety of extracellular stimuli. Recently, the ability of trophic factors to promote survival have been attributed, at least in part, to the phosphatidylinositide 3'-OH kinase (PI3K)/Protein Kinase B (PKB, also named Akt) cascade. Several targets of the PI3K/PKB signaling pathway have been identified that may underlie the ability of this regulatory cascade to promote cell survival. PKB possesses a N-terminal Pleckstrin Homology (PH) domain that binds specifically and with high affinity to PtIns(3,4,5)P 3 and PtIns(3,4)P 2 , the PI3K second messengers. PKB is then recruited to the plasma membrane by virtue of its interaction with 3'-OH phosphatidylinositides and activated. Recent evidence indicates that PKB is active in various types of human cancer; constitutive PKB signaling activation is believed to promote proliferation and increased cell survival, thereby contributing to cancer progression. Thus, it has been shown that induction of PKB activity is augmented by the TCL1/MTCP1 oncoproteins through a physical association requiring the PKB PH domain. Here we present the three-dimensional solution structure of the PH domain of the human protein PKB (isoform β). PKBβ-PH is an electrostatically polarized molecule that adopts the same fold and topology as other PH-domains, consisting of a β-sandwich of seven strands capped on one top by an α-helix. The opposite face presents three variable loops that appear poorly defined in the NMR structure. Measurements of 15 N spin relaxation times and heteronuclear 15 N{ 1 H}NOEs showed that this poor definition is due to intrinsic flexibility, involving complex motions on different time scales. Chemical shift mapping studies correctly defined the binding site of Ins(1,3,4,5)P 4 (the head group of PtIns(3,4,5)P 3 ), as was previously proposed from a

  18. Automated backbone assignment of labeled proteins using the threshold accepting algorithm

    International Nuclear Information System (INIS)

    Leutner, Michael; Gschwind, Ruth M.; Liermann, Jens; Schwarz, Christian; Gemmecker, Gerd; Kessler, Horst

    1998-01-01

    The sequential assignment of backbone resonances is the first step in the structure determination of proteins by heteronuclear NMR. For larger proteins, an assignment strategy based on proton side-chain information is no longer suitable for the use in an automated procedure. Our program PASTA (Protein ASsignment by Threshold Accepting) is therefore designed to partially or fully automate the sequential assignment of proteins, based on the analysis of NMR backbone resonances plus C β information. In order to overcome the problems caused by peak overlap and missing signals in an automated assignment process, PASTA uses threshold accepting, a combinatorial optimization strategy, which is superior to simulated annealing due to generally faster convergence and better solutions. The reliability of this algorithm is shown by reproducing the complete sequential backbone assignment of several proteins from published NMR data. The robustness of the algorithm against misassigned signals, noise, spectral overlap and missing peaks is shown by repeating the assignment with reduced sequential information and increased chemical shift tolerances. The performance of the program on real data is finally demonstrated with automatically picked peak lists of human nonpancreatic synovial phospholipase A 2 , a protein with 124 residues

  19. Determination of protein global folds using backbone residual dipolar coupling and long-range NOE restraints

    International Nuclear Information System (INIS)

    Giesen, Alexander W.; Homans, Steve W.; Brown, Jonathan Miles

    2003-01-01

    We report the determination of the global fold of human ubiquitin using protein backbone NMR residual dipolar coupling and long-range nuclear Overhauser effect (NOE) data as conformational restraints. Specifically, by use of a maximum of three backbone residual dipolar couplings per residue (N i -H N i , N i -C' i-1 , H N i - C' i-1 ) in two tensor frames and only backbone H N -H N NOEs, a global fold of ubiquitin can be derived with a backbone root-mean-square deviation of 1.4 A with respect to the crystal structure. This degree of accuracy is more than adequate for use in databases of structural motifs, and suggests a general approach for the determination of protein global folds using conformational restraints derived only from backbone atoms

  20. Combining ambiguous chemical shift mapping with structure-based backbone and NOE assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard; Gao, Xin; Li, Ming

    2011-01-01

    to these difficulties, the mapping is typically done manually or semi-automatically. However, automated methods are necessary for high-throughput drug screening. We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors

  1. Induced helical backbone conformations of self-organizable dendronized polymers.

    Science.gov (United States)

    Rudick, Jonathan G; Percec, Virgil

    2008-12-01

    Control of function through the primary structure of a molecule presents a significant challenge with valuable rewards for nanoscience. Dendritic building blocks encoded with information that defines their three-dimensional shape (e.g., flat-tapered or conical) and how they associate with each other are referred to as self-assembling dendrons. Self-organizable dendronized polymers possess a flat-tapered or conical self-assembling dendritic side chain on each repeat unit of a linear polymer backbone. When appended to a covalent polymer, the self-assembling dendrons direct a folding process (i.e., intramolecular self-assembly). Alternatively, intermolecular self-assembly of dendrons mediated by noncovalent interactions between apex groups can generate a supramolecular polymer backbone. Self-organization, as we refer to it, is the spontaneous formation of periodic and quasiperiodic arrays from supramolecular elements. Covalent and supramolecular polymers jacketed with self-assembling dendrons self-organize. The arrays are most often comprised of cylindrical or spherical objects. The shape of the object is determined by the primary structure of the dendronized polymer: the structure of the self-assembling dendron and the length of the polymer backbone. It is therefore possible to predictably generate building blocks for single-molecule nanotechnologies or arrays of supramolecules for bottom-up self-assembly. We exploit the self-organization of polymers jacketed with self-assembling dendrons to elucidate how primary structure determines the adopted conformation and fold (i.e., secondary and tertiary structure), how the supramolecules associate (i.e., quaternary structure), and their resulting functions. A combination of experimental techniques is employed to interrogate the primary, secondary, tertiary, and quaternary structure of the self-organizable dendronized polymers. We refer to the process by which we interpolate between the various levels of structural

  2. Backbone dynamics of the EIAV-Tat protein from 15N relaxation studies

    International Nuclear Information System (INIS)

    Ejchart, A.; Herrmann, F.; Roesch, P.; Sticht, H.; Willbold, D.

    1994-01-01

    The work investigates the mobility of EIAV-Tat protein backbone by measuring the relaxation parameters of the 15 N nitrogens. High degree of the flexibility, non-typical of rigid, well structured proteins was shown

  3. Design bases - Concrete structures

    International Nuclear Information System (INIS)

    Diaz-Llanos Ros, M.

    1993-01-01

    The most suitable title for Section 2 is 'Design Bases', which covers not only calculation but also the following areas: - Structural design concepts. - Project criteria. - Material specifications. These concepts are developed in more detail in the following sections. The numbering in this document is neither complete nor hierarchical since, for easier cross referencing, it corresponds to the paragraphs of Eurocode 2 Part 1 (hereinafter 'EUR-2') which are commented on. (author)

  4. Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives

    KAUST Repository

    Ko, Sangwon

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone-due to an increase in the polymer ionization potential-while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2′:5′,2′′- terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C 71-butyric acid methyl ester (PC 71BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current. © 2012 American

  5. Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives.

    Science.gov (United States)

    Ko, Sangwon; Hoke, Eric T; Pandey, Laxman; Hong, Sanghyun; Mondal, Rajib; Risko, Chad; Yi, Yuanping; Noriega, Rodrigo; McGehee, Michael D; Brédas, Jean-Luc; Salleo, Alberto; Bao, Zhenan

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone--due to an increase in the polymer ionization potential--while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2':5',2''-terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current.

  6. Green Network Planning Model for Optical Backbones

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Jensen, Michael

    2010-01-01

    on the environment in general. In network planning there are existing planning models focused on QoS provisioning, investment minimization or combinations of both and other parameters. But there is a lack of a model for designing green optical backbones. This paper presents novel ideas to be able to define......Communication networks are becoming more essential for our daily lives and critically important for industry and governments. The intense growth in the backbone traffic implies an increment of the power demands of the transmission systems. This power usage might have a significant negative effect...

  7. Backbone of complex networks of corporations: The flow of control

    Science.gov (United States)

    Glattfelder, J. B.; Battiston, S.

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  8. Bulk Heterojunction Solar Cells: Impact of Minor Structural Modifications to the Polymer Backbone on the Polymer-Fullerene Mixing and Packing and on the Fullerene-Fullerene Connecting Network

    KAUST Repository

    Wang, Tonghui

    2018-01-25

    The morphology of the active layer of a bulk heterojunction solar cell, made of a blend of an electron-donating polymer and an electron-accepting fullerene derivative, is known to play a determining role in device performance. Here, a combination of molecular dynamics simulations and long-range corrected density functional theory calculations is used to elucidate the molecular-scale effects that even minor structural changes to the polymer backbone can have on the “local” morphology; this study focuses on the extent of polymer–fullerene mixing, on their packing, and on the characteristics of the fullerene–fullerene connecting network in the mixed regions, aspects that are difficult to access experimentally. Three representative polymer donors are investigated: (i) poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PffBT4T-2OD); (ii) poly[(2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PBT4T-2OD), where the fluorine atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with hydrogen atoms; and (iii) poly[(2,2′-bithiophene)-alt-(4,7-bis((2-decyltetradecyl)thiophen-2-yl)-5,6-difluoro-2-propyl-2H-benzo[d][1,2,3]triazole)] (PT2-FTAZ), where the sulfur atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with nitrogen atoms carrying a linear C3H7 side-chain; these polymers are mixed with the phenyl-C71-butyric acid methyl ester (PC71BM) acceptor. This study also discusses the nature of the charge-transfer electronic states appearing at the donor–acceptor interfaces, the electronic couplings relevant for the charge-recombination process, and the electron-transfer features between neighboring PC71BM molecules.

  9. Localization of binding sites of Ulex europaeus I, Helix pomatia and Griffonia simplicifolia I-B4 lectins and analysis of their backbone structures by several glycosidases and poly-N-acetyllactosamine-specific lectins in human breast carcinomas.

    Science.gov (United States)

    Ito, N; Imai, S; Haga, S; Nagaike, C; Morimura, Y; Hatake, K

    1996-09-01

    Several studies have shown the deletion of blood group A or B antigens and the accumulation of H antigens in human breast carcinomas. Other studies have independently demonstrated that the binding sites of lectins such as Helix pomatia agglutinin (HPA) and Griffonia simplicifolia agglutinin I-B4 (GSAI-B4) are highly expressed in these cells. In order to clarify the molecular mechanisms of malignant transformation and metastasis of carcinoma cells, it is important to understand the relationship between such phenotypically distinct events. For this purpose, we examined whether the binding sites of these lectins and Ulex europaeus agglutinin I (UEA-I) are expressed concomitantly in the same carcinoma cells and analyzed their backbone structures. The expression of the binding sites of these lectins was observed independently of the blood group (ABO) of the patients and was not affected by the histological type of the carcinomas. Observation of serial sections stained with these lectins revealed that the distribution of HPA binding sites was almost identical to that of GSAI-B4 in most cases. Furthermore, in some cases, UEA-I binding patterns were similar to those of HPA and GSAI-B4 but in other cases, mosaic staining patterns with these lectins were also observed, i.e., some cell clusters were stained with both HPA and GSAI-B4 but not with UEA-I and adjacent cell clusters were stained only with UEA-I. Digestion with endo-beta-galactosidase or N-glycosidase F markedly reduced the staining intensity of these lectins. Together with the reduction of staining by these lectins, reactivity with Griffonia simplicifolia agglutinin II appeared in carcinoma cells following endo-beta-galactosidase digestion. Among the lectins specific to poly-N-acetyllactosamine, Lycopersicon esculentum agglutinin (LEA) most vividly and consistently stained the cancer cells. Next to LEA, pokeweed mitogen agglutinin was also effective in staining these cells. Carcinoma cells reactive with these

  10. Bulk Heterojunction Solar Cells: Impact of Minor Structural Modifications to the Polymer Backbone on the Polymer-Fullerene Mixing and Packing and on the Fullerene-Fullerene Connecting Network

    KAUST Repository

    Wang, Tonghui; Chen, Xiankai; Ashokan, Ajith; Zheng, Zilong; Ravva, Mahesh Kumar; Bré das, Jean-Luc

    2018-01-01

    The morphology of the active layer of a bulk heterojunction solar cell, made of a blend of an electron-donating polymer and an electron-accepting fullerene derivative, is known to play a determining role in device performance. Here, a combination of molecular dynamics simulations and long-range corrected density functional theory calculations is used to elucidate the molecular-scale effects that even minor structural changes to the polymer backbone can have on the “local” morphology; this study focuses on the extent of polymer–fullerene mixing, on their packing, and on the characteristics of the fullerene–fullerene connecting network in the mixed regions, aspects that are difficult to access experimentally. Three representative polymer donors are investigated: (i) poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PffBT4T-2OD); (ii) poly[(2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PBT4T-2OD), where the fluorine atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with hydrogen atoms; and (iii) poly[(2,2′-bithiophene)-alt-(4,7-bis((2-decyltetradecyl)thiophen-2-yl)-5,6-difluoro-2-propyl-2H-benzo[d][1,2,3]triazole)] (PT2-FTAZ), where the sulfur atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with nitrogen atoms carrying a linear C3H7 side-chain; these polymers are mixed with the phenyl-C71-butyric acid methyl ester (PC71BM) acceptor. This study also discusses the nature of the charge-transfer electronic states appearing at the donor–acceptor interfaces, the electronic couplings relevant for the charge-recombination process, and the electron-transfer features between neighboring PC71BM molecules.

  11. Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network.

    Science.gov (United States)

    Lyons, James; Dehzangi, Abdollah; Heffernan, Rhys; Sharma, Alok; Paliwal, Kuldip; Sattar, Abdul; Zhou, Yaoqi; Yang, Yuedong

    2014-10-30

    Because a nearly constant distance between two neighbouring Cα atoms, local backbone structure of proteins can be represented accurately by the angle between C(αi-1)-C(αi)-C(αi+1) (θ) and a dihedral angle rotated about the C(αi)-C(αi+1) bond (τ). θ and τ angles, as the representative of structural properties of three to four amino-acid residues, offer a description of backbone conformations that is complementary to φ and ψ angles (single residue) and secondary structures (>3 residues). Here, we report the first machine-learning technique for sequence-based prediction of θ and τ angles. Predicted angles based on an independent test have a mean absolute error of 9° for θ and 34° for τ with a distribution on the θ-τ plane close to that of native values. The average root-mean-square distance of 10-residue fragment structures constructed from predicted θ and τ angles is only 1.9Å from their corresponding native structures. Predicted θ and τ angles are expected to be complementary to predicted ϕ and ψ angles and secondary structures for using in model validation and template-based as well as template-free structure prediction. The deep neural network learning technique is available as an on-line server called Structural Property prediction with Integrated DEep neuRal network (SPIDER) at http://sparks-lab.org. Copyright © 2014 Wiley Periodicals, Inc.

  12. Leaky feeder: the communication backbone

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    The need to communicate with all areas of the underground operation in monitoring the movement of men, materials and vehicles, as well as the optimum performance of conveyor systems, has been effectively met with the installation of a Flexcom leaky feeder cable network at a coliery in Mpumalanga. Installed by the South African subsidiary of Mine Radio Systems (MRS), based in Canada, Flexcom is an RF communications highway for underground mines. The system can provide up to 32 voice/data control channels and up to 16 video channels, all operating simultaneously. The system uses a series of bi-directional amplifiers (or signal boosters) spaced at 350 m intervals along the leaky feeder cable, with branching units and termination units added as required. Communication is possible within 50 m of the leaky feeder cable. MRS has 11 conveyors monitored via the SCADA program at the mine and the system produces reports as required which are accessible via cellphone from anywhere in the world. The wireless monitoring of miners and equipment contributes to mine safety. 3 figs.

  13. Protein structure refinement using a quantum mechanics-based chemical shielding predictor

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen; Jensen, Jan Halborg

    2017-01-01

    The accurate prediction of protein chemical shifts using a quantum mechanics (QM)-based method has been the subject of intense research for more than 20 years but so far empirical methods for chemical shift prediction have proven more accurate. In this paper we show that a QM-based predictor...... of a protein backbone and CB chemical shifts (ProCS15, PeerJ, 2016, 3, e1344) is of comparable accuracy to empirical chemical shift predictors after chemical shift-based structural refinement that removes small structural errors. We present a method by which quantum chemistry based predictions of isotropic...

  14. Polystyrene Backbone Polymers Consisting of Alkyl-Substituted Triazine Side Groups for Phosphorescent OLEDs

    Directory of Open Access Journals (Sweden)

    Beatrice Ch. D. Salert

    2012-01-01

    Full Text Available This paper describes the synthesis of new electron-transporting styrene monomers and their corresponding polystyrenes all with a 2,4,6-triphenyl-1,3,5-triazine basic structure in the side group. The monomers differ in the alkyl substitution and in the meta-/paralinkage of the triazine to the polymer backbone. The thermal and spectroscopic properties of the new electron-transporting polymers are discussed in regard to their chemical structures. Phosphorescent OLEDs were prepared using the obtained electron-transporting polymers as the emissive layer material in blend systems together with a green iridium-based emitter 13 and a small molecule as an additional cohost with wideband gap characteristics (CoH-001. The performance of the OLEDs was characterized and discussed in regard to the chemical structure of the new electron-transporting polymers.

  15. Green IGP Link Weights for Energy-efficiency and Load-balancing in IP Backbone Networks

    OpenAIRE

    Francois, Frederic; Wang, Ning; Moessner, Klaus; Georgoulas, Stylianos; Xu, Ke

    2013-01-01

    The energy consumption of backbone networks has become a primary concern for network operators and regulators due to the pervasive deployment of wired backbone networks to meet the requirements of bandwidth-hungry applications. While traditional optimization of IGP link weights has been used in IP based load-balancing operations, in this paper we introduce a novel link weight setting algorithm, the Green Load-balancing Algorithm (GLA), which is able to jointly optimize both energy efficiency ...

  16. Underestimated Halogen Bonds Forming with Protein Backbone in Protein Data Bank.

    Science.gov (United States)

    Zhang, Qian; Xu, Zhijian; Shi, Jiye; Zhu, Weiliang

    2017-07-24

    Halogen bonds (XBs) are attracting increasing attention in biological systems. Protein Data Bank (PDB) archives experimentally determined XBs in biological macromolecules. However, no software for structure refinement in X-ray crystallography takes into account XBs, which might result in the weakening or even vanishing of experimentally determined XBs in PDB. In our previous study, we showed that side-chain XBs forming with protein side chains are underestimated in PDB on the basis of the phenomenon that the proportion of side-chain XBs to overall XBs decreases as structural resolution becomes lower and lower. However, whether the dominant backbone XBs forming with protein backbone are overlooked is still a mystery. Here, with the help of the ratio (R F ) of the observed XBs' frequency of occurrence to their frequency expected at random, we demonstrated that backbone XBs are largely overlooked in PDB, too. Furthermore, three cases were discovered possessing backbone XBs in high resolution structures while losing the XBs in low resolution structures. In the last two cases, even at 1.80 Å resolution, the backbone XBs were lost, manifesting the urgent need to consider XBs in the refinement process during X-ray crystallography study.

  17. Control of polymer-packing orientation in thin films through synthetic tailoring of backbone coplanarity

    KAUST Repository

    Chen, Mark S.

    2013-10-22

    Controlling solid-state order of π-conjugated polymers through macromolecular design is essential for achieving high electronic device performance; yet, it remains a challenge, especially with respect to polymer-packing orientation. Our work investigates the influence of backbone coplanarity on a polymer\\'s preference to pack face-on or edge-on relative to the substrate. Isoindigo-based polymers were synthesized with increasing planarity by systematically substituting thiophenes for phenyl rings in the acceptor comonomer. This increasing backbone coplanarity, supported by density functional theory (DFT) calculations of representative trimers, leads to the narrowing of polymer band gaps as characterized by ultraviolet-visible-near infrared (UV-vis-NIR) spectroscopy and cyclic voltammetry. Among the polymers studied, regiosymmetric II and TII polymers exhibited the highest hole mobilities in organic field-effect transistors (OFETs), while in organic photovoltaics (OPVs), TBII polymers that display intermediate levels of planarity provided the highest power conversion efficiencies. Upon thin-film analysis by atomic force microscropy (AFM) and grazing-incidence X-ray diffraction (GIXD), we discovered that polymer-packing orientation could be controlled by tuning polymer planarity and solubility. Highly soluble, planar polymers favor face-on orientation in thin films while the less soluble, nonplanar polymers favor an edge-on orientation. This study advances our fundamental understanding of how polymer structure influences nanostructural order and reveals a new synthetic strategy for the design of semiconducting materials with rationally engineered solid-state properties. © 2013 American Chemical Society.

  18. Protonation–deprotonation of the glycine backbone as followed by Raman scattering and multiconformational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Belén; Pflüger, Fernando [Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny cedex (France); Kruglik, Sergei G. [Laboratoire Jean Perrin, FRE 3231, Université Pierre et Marie Curie (Paris 6), Case courrier 138, 75252 Paris Cedex 05 (France); Ghomi, Mahmoud, E-mail: mahmoud.ghomi@univ-paris13.fr [Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny cedex (France)

    2013-11-08

    Highlights: • New pH-dependent Raman spectra in the middle wavenumber region (1800-300 cm{sup −1}). • New quantum mechanical calculations for exploring the Gly conformational landscape. • Construction of muticonformation based theoretical Raman spectra. - Abstract: Because of the absence of the side chain in its chemical structure and its well defined Raman spectra, glycine was selected here to follow its backbone protonation–deprotonation. The scan of the recorded spectra in the 1800–300 cm{sup −1} region led us to assign those obtained at pH 1, 6 and 12 to the cationic, zwitterionic and anionic species, respectively. These data complete well those previously published by Bykov et al. (2008) [16] devoted to the high wavenumber Raman spectra (>2500 cm{sup −1}). To reinforce our discussion, DFT calculations were carried out on the clusters of glycine + 5H{sub 2}O, mimicking reasonably the first hydration shell of the amino acid. Geometry optimization of 141 initial clusters, reflecting plausible combinations of the backbone torsion angles, allowed exploration of the conformational features, as well as construction of the theoretical Raman spectra by considering the most stable clusters containing each glycine species.

  19. Porous solid backbone impregnation for electrochemical energy conversion systems

    KAUST Repository

    Boulfrad, Samir

    2013-09-19

    An apparatus and method for impregnating a porous solid backbone. The apparatus may include a platform for holding a porous solid backbone, an ink jet nozzle configured to dispense a liquid solution onto the porous solid backbone, a positioning mechanism configured to position the ink jet nozzle proximate to a plurality of locations of the porous solid backbone, and a control unit configured to control the positioning mechanism to position the ink jet nozzle proximate to the plurality of locations and cause the ink jet nozzle to dispense the liquid solution onto the porous solid backbone.

  20. Porous solid backbone impregnation for electrochemical energy conversion systems

    KAUST Repository

    Boulfrad, Samir; Jabbour, Ghassan

    2013-01-01

    An apparatus and method for impregnating a porous solid backbone. The apparatus may include a platform for holding a porous solid backbone, an ink jet nozzle configured to dispense a liquid solution onto the porous solid backbone, a positioning mechanism configured to position the ink jet nozzle proximate to a plurality of locations of the porous solid backbone, and a control unit configured to control the positioning mechanism to position the ink jet nozzle proximate to the plurality of locations and cause the ink jet nozzle to dispense the liquid solution onto the porous solid backbone.

  1. Instant Backbone.js application development

    CERN Document Server

    Hunter, Thomas

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This book is a practical, step-by-step tutorial that will teach you to build Backbone.js applications quickly and efficiently.This book is targeted towards developers. It is assumed that you have at least a basic understanding of JavaScript and jQuery selectors. If you are interested in building dynamic Single Page Applications that interact heavily with a backend server, then this is the book for you.

  2. Reliability based structural design

    NARCIS (Netherlands)

    Vrouwenvelder, A.C.W.M.

    2014-01-01

    According to ISO 2394, structures shall be designed, constructed and maintained in such a way that they are suited for their use during the design working life in an economic way. To fulfil this requirement one needs insight into the risk and reliability under expected and non-expected actions. A

  3. Constructing Battery-Aware Virtual Backbones in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yang Yuanyuan

    2007-01-01

    Full Text Available A critical issue in battery-powered sensor networks is to construct energy efficient virtual backbones for network routing. Recent study in battery technology reveals that batteries tend to discharge more power than needed and reimburse the over-discharged power if they are recovered. In this paper we first provide a mathematical battery model suitable for implementation in sensor networks. We then introduce the concept of battery-aware connected dominating set (BACDS and show that in general the minimum BACDS (MBACDS can achieve longer lifetime than the previous backbone structures. Then we show that finding a MBACDS is NP-hard and give a distributed approximation algorithm to construct the BACDS. The resulting BACDS constructed by our algorithm is at most opt size, where is the maximum node degree and opt is the size of an optimal BACDS. Simulation results show that the BACDS can save a significant amount of energy and achieve up to longer network lifetime than previous schemes.

  4. Constructing Battery-Aware Virtual Backbones in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chi Ma

    2007-05-01

    Full Text Available A critical issue in battery-powered sensor networks is to construct energy efficient virtual backbones for network routing. Recent study in battery technology reveals that batteries tend to discharge more power than needed and reimburse the over-discharged power if they are recovered. In this paper we first provide a mathematical battery model suitable for implementation in sensor networks. We then introduce the concept of battery-aware connected dominating set (BACDS and show that in general the minimum BACDS (MBACDS can achieve longer lifetime than the previous backbone structures. Then we show that finding a MBACDS is NP-hard and give a distributed approximation algorithm to construct the BACDS. The resulting BACDS constructed by our algorithm is at most (8+Δopt size, where Δ is the maximum node degree and opt is the size of an optimal BACDS. Simulation results show that the BACDS can save a significant amount of energy and achieve up to 30% longer network lifetime than previous schemes.

  5. Study of muscular skeletal apparatus’s functional state of junior sportsmen-power lifters, who have backbone verterbral abnormalities

    Directory of Open Access Journals (Sweden)

    V.R. Ilmatov

    2015-10-01

    Full Text Available Purpose: determination of abnormalities and disorders of muscular skeletal apparatuses’ status of power lifters, who have vertebral abnormalities of backbone. Material: 58 junior sportsmen participated in the research. 36 sportsmen were the main group of the research and had vertebral disorders in backbone. For posture testing visual examination was used. Backbone mobility was tested with goniometry method. Flat feet were registered with plantography method. Results: we determined posture abnormalities in sagittal and frontal planes; feet flat, limited maximal movements in thoracic and lumbar spines. It was determined that the most limited were rotational movements and backbone unbending. The next were side bents. These limitations were accompanied by pain syndrome. These observations indirectly confirmed theory of direct interaction of backbone structures with nervous structures. It is also a confirmation of vertebral abnormalities’ presence in junior sportsmen. Conclusions: it was found that in junior sportsmen - power lifters with backbone pathologies in 100% of cases symptoms are determined by local limitations of backbone mobility with pain syndrome. In 35% of cases they are accompanied by posture’s disorders and feet flat. Orientation and methodic of rehabilitation of such sportsmen have been determined.

  6. Extracting the information backbone in online system.

    Science.gov (United States)

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such "less can be more" feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency.

  7. Mars - robust automatic backbone assignment of proteins

    International Nuclear Information System (INIS)

    Jung, Young-Sang; Zweckstetter, Markus

    2004-01-01

    MARS a program for robust automatic backbone assignment of 13 C/ 15 N labeled proteins is presented. MARS does not require tight thresholds for establishing sequential connectivity or detailed adjustment of these thresholds and it can work with a wide variety of NMR experiments. Using only 13 C α / 13 C β connectivity information, MARS allows automatic, error-free assignment of 96% of the 370-residue maltose-binding protein. MARS can successfully be used when data are missing for a substantial portion of residues or for proteins with very high chemical shift degeneracy such as partially or fully unfolded proteins. Other sources of information, such as residue specific information or known assignments from a homologues protein, can be included into the assignment process. MARS exports its result in SPARKY format. This allows visual validation and integration of automated and manual assignment

  8. Protein backbone motions viewed by intraresidue and sequential H{sup N}-H{sup {alpha}} residual dipolar couplings

    Energy Technology Data Exchange (ETDEWEB)

    Voegeli, Beat; Yao Lishan; Bax, Ad [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)], E-mail: bax@nih.gov

    2008-05-15

    Triple resonance E.COSY-based techniques were used to measure intra-residue and sequential H{sup N}-H{sup {alpha}} residual dipolar couplings (RDCs) for the third IgG-binding domain of protein G (GB3), aligned in Pf1 medium. Measurements closely correlate with values predicted on the basis of an NMR structure, previously determined on the basis of a large number of one-bond backbone RDCs measured in five alignment media. However, in particular the sequential H{sup N}-H{sup {alpha}} RDCs are smaller than predicted for a static structure, suggesting a degree of motion for these internuclear vectors that exceeds that of the backbone amide N-H vectors. Of all experimentally determined GB3 structures available, the best correlation between experimental {sup 1}H-{sup 1}H couplings is observed for a GB3 ensemble, previously derived to generate a realistic picture of the conformational space sampled by GB3 (Clore and Schwieters, J Mol Biol 355:879-886, 2006). However, for both NMR and X-ray-derived structures the {sup 1}H-{sup 1}H couplings are found to be systematically smaller than expected on the basis of alignment tensors derived from {sup 15}N-{sup 1}H amide RDCs, assuming librationally corrected N-H bond lengths of 1.041 A.

  9. Impact of Backbone Fluorination on π-Conjugated Polymers in Organic Photovoltaic Devices: A Review

    Directory of Open Access Journals (Sweden)

    Nicolas Leclerc

    2016-01-01

    Full Text Available Solution-processed bulk heterojunction solar cells have experienced a remarkable acceleration in performances in the last two decades, reaching power conversion efficiencies above 10%. This impressive progress is the outcome of a simultaneous development of more advanced device architectures and of optimized semiconducting polymers. Several chemical approaches have been developed to fine-tune the optoelectronics and structural polymer parameters required to reach high efficiencies. Fluorination of the conjugated polymer backbone has appeared recently to be an especially promising approach for the development of efficient semiconducting polymers. As a matter of fact, most currently best-performing semiconducting polymers are using fluorine atoms in their conjugated backbone. In this review, we attempt to give an up-to-date overview of the latest results achieved on fluorinated polymers for solar cells and to highlight general polymer properties’ evolution trends related to the fluorination of their conjugated backbone.

  10. Structure-Based Turbulence Model

    National Research Council Canada - National Science Library

    Reynolds, W

    2000-01-01

    .... Maire carried out this work as part of his Phi) research. During the award period we began to explore ways to simplify the structure-based modeling so that it could be used in repetitive engineering calculations...

  11. Electric field induced localization phenomena in a ladder network with superlattice configuration: Effect of backbone environment

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Paramita; Karmakar, S. N. [Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhannagar, Kolkata-700 064 (India); Maiti, Santanu K., E-mail: santanu.maiti@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata-700 108 (India)

    2014-09-15

    Electric field induced localization properties of a tight-binding ladder network in presence of backbone sites are investigated. Based on Green's function formalism we numerically calculate two-terminal transport together with density of states for different arrangements of atomic sites in the ladder and its backbone. Our results lead to a possibility of getting multiple mobility edges which essentially plays a switching action between a completely opaque to fully or partly conducting region upon the variation of system Fermi energy, and thus, support in fabricating mesoscopic or DNA-based switching devices.

  12. Five Principles of Industrialized Transformation for Successfully Building an Operational Backbone

    DEFF Research Database (Denmark)

    Winkler, Till J.; Kettunen, Petteri

    2018-01-01

    approach that is underpinned by five principles—template-based, business-driven, matrix-organized, tight supplier steering and cascaded planning. The UPM case provides important lessons for transformation leaders seeking to build, expand or develop a value-adding operational backbone.......To move into the digital age, a globally operating company needs to have in place an operational backbone, but many struggle with achieving this and the associated transformation program. Based on the experience of UPM, a Finnish forest industry company, we describe an industrialized transformation...

  13. Gas separation performance of 6FDA-based polyimides with different chemical structures

    KAUST Repository

    Qiu, Wulin; Xu, Liren; Chen, Chien-Chiang; Paul, Donald R.; Koros, William J.

    2013-01-01

    stability of the polyimides membranes relevant to natural gas purification. The consideration of the other gases (He, O2 and N2) provided additional insights regarding effects of backbone structure on detailed penetrant properties. The polyimides studied

  14. Quantitative assessments of the distinct contributions of polypeptide backbone amides versus sidechain groups to chain expansion via chemical denaturation

    Science.gov (United States)

    Holehouse, Alex S.; Garai, Kanchan; Lyle, Nicholas; Vitalis, Andreas; Pappu, Rohit V.

    2015-01-01

    In aqueous solutions with high concentrations of chemical denaturants such as urea and guanidinium chloride (GdmCl) proteins expand to populate heterogeneous conformational ensembles. These denaturing environments are thought to be good solvents for generic protein sequences because properties of conformational distributions align with those of canonical random coils. Previous studies showed that water is a poor solvent for polypeptide backbones and therefore backbones form collapsed globular structures in aqueous solvents. Here, we ask if polypeptide backbones can intrinsically undergo the requisite chain expansion in aqueous solutions with high concentrations of urea and GdmCl. We answer this question using a combination of molecular dynamics simulations and fluorescence correlation spectroscopy. We find that the degree of backbone expansion is minimal in aqueous solutions with high concentrations denaturants. Instead, polypeptide backbones sample conformations that are denaturant-specific mixtures of coils and globules, with a persistent preference for globules. Therefore, typical denaturing environments cannot be classified as good solvents for polypeptide backbones. How then do generic protein sequences expand in denaturing environments? To answer this question, we investigated the effects of sidechains using simulations of two archetypal sequences with amino acid compositions that are mixtures of charged, hydrophobic, and polar groups. We find that sidechains lower the effective concentration of backbone amides in water leading to an intrinsic expansion of polypeptide backbones in the absence of denaturants. Additional dilution of the effective concentration of backbone amides is achieved through preferential interactions with denaturants. These effects lead to conformational statistics in denaturing environments that are congruent with those of canonical random coils. Our results highlight the role of sidechain-mediated interactions as determinants of the

  15. Plasma-based accelerator structures

    International Nuclear Information System (INIS)

    Schroeder, Carl B.

    1999-01-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas

  16. Synonymous codon bias and functional constraint on GC3-related DNA backbone dynamics in the prokaryotic nucleoid.

    Science.gov (United States)

    Babbitt, Gregory A; Alawad, Mohammed A; Schulze, Katharina V; Hudson, André O

    2014-01-01

    While mRNA stability has been demonstrated to control rates of translation, generating both global and local synonymous codon biases in many unicellular organisms, this explanation cannot adequately explain why codon bias strongly tracks neighboring intergene GC content; suggesting that structural dynamics of DNA might also influence codon choice. Because minor groove width is highly governed by 3-base periodicity in GC, the existence of triplet-based codons might imply a functional role for the optimization of local DNA molecular dynamics via GC content at synonymous sites (≈GC3). We confirm a strong association between GC3-related intrinsic DNA flexibility and codon bias across 24 different prokaryotic multiple whole-genome alignments. We develop a novel test of natural selection targeting synonymous sites and demonstrate that GC3-related DNA backbone dynamics have been subject to moderate selective pressure, perhaps contributing to our observation that many genes possess extreme DNA backbone dynamics for their given protein space. This dual function of codons may impose universal functional constraints affecting the evolution of synonymous and non-synonymous sites. We propose that synonymous sites may have evolved as an 'accessory' during an early expansion of a primordial genetic code, allowing for multiplexed protein coding and structural dynamic information within the same molecular context. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Analysis of stationary availability factor of two-level backbone computer networks with arbitrary topology

    Science.gov (United States)

    Rahman, P. A.

    2018-05-01

    This scientific paper deals with the two-level backbone computer networks with arbitrary topology. A specialized method, offered by the author for calculation of the stationary availability factor of the two-level backbone computer networks, based on the Markov reliability models for the set of the independent repairable elements with the given failure and repair rates and the methods of the discrete mathematics, is also discussed. A specialized algorithm, offered by the author for analysis of the network connectivity, taking into account different kinds of the network equipment failures, is also observed. Finally, this paper presents an example of calculation of the stationary availability factor for the backbone computer network with the given topology.

  18. Receptor structure-based discovery of non-metabolite agonists for the succinate receptor GPR91

    DEFF Research Database (Denmark)

    Trauelsen, Mette; Rexen Ulven, Elisabeth; Hjorth, Siv A

    2017-01-01

    therefore binds in a very different mode than generally believed. Importantly, an empty side-pocket is identified next to the succinate binding site. All this information formed the basis for a substructure-based search query, which, combined with molecular docking, was used in virtual screening of the ZINC...... database to pick two serial mini-libraries of a total of only 245 compounds from which sub-micromolar, selective GPR91 agonists of unique structures were identified. The best compounds were backbone-modified succinate analogs in which an amide-linked hydrophobic moiety docked into the side-pocket next...

  19. Transforming plastic surfaces with electrophilic backbones from hydrophobic to hydrophilic.

    Science.gov (United States)

    Kim, Samuel; Bowen, Raffick A R; Zare, Richard N

    2015-01-28

    We demonstrate a simple nonaqueous reaction scheme for transforming the surface of plastics from hydrophobic to hydrophilic. The chemical modification is achieved by base-catalyzed trans-esterification with polyols. It is permanent, does not release contaminants, and causes no optical or mechanical distortion of the plastic. We present contact angle measurements to show successful modification of several types of plastics including poly(ethylene terephthalate) (PET) and polycarbonate (PC). Its applicability to blood analysis is explored using chemically modified PET blood collection tubes and found to be quite satisfactory. We expect this approach will reduce the cost of manufacturing plastic devices with optimized wettability and can be generalized to other types of plastic materials having an electrophilic linkage as its backbone.

  20. Extracting the information backbone in online system.

    Directory of Open Access Journals (Sweden)

    Qian-Ming Zhang

    Full Text Available Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such "less can be more" feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency.

  1. Extracting the Information Backbone in Online System

    Science.gov (United States)

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such “less can be more” feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency. PMID:23690946

  2. AbDesign: An algorithm for combinatorial backbone design guided by natural conformations and sequences.

    Science.gov (United States)

    Lapidoth, Gideon D; Baran, Dror; Pszolla, Gabriele M; Norn, Christoffer; Alon, Assaf; Tyka, Michael D; Fleishman, Sarel J

    2015-08-01

    Computational design of protein function has made substantial progress, generating new enzymes, binders, inhibitors, and nanomaterials not previously seen in nature. However, the ability to design new protein backbones for function--essential to exert control over all polypeptide degrees of freedom--remains a critical challenge. Most previous attempts to design new backbones computed the mainchain from scratch. Here, instead, we describe a combinatorial backbone and sequence optimization algorithm called AbDesign, which leverages the large number of sequences and experimentally determined molecular structures of antibodies to construct new antibody models, dock them against target surfaces and optimize their sequence and backbone conformation for high stability and binding affinity. We used the algorithm to produce antibody designs that target the same molecular surfaces as nine natural, high-affinity antibodies; in five cases interface sequence identity is above 30%, and in four of those the backbone conformation at the core of the antibody binding surface is within 1 Å root-mean square deviation from the natural antibodies. Designs recapitulate polar interaction networks observed in natural complexes, and amino acid sidechain rigidity at the designed binding surface, which is likely important for affinity and specificity, is high compared to previous design studies. In designed anti-lysozyme antibodies, complementarity-determining regions (CDRs) at the periphery of the interface, such as L1 and H2, show greater backbone conformation diversity than the CDRs at the core of the interface, and increase the binding surface area compared to the natural antibody, potentially enhancing affinity and specificity. © 2015 Wiley Periodicals, Inc.

  3. Reliability Based Ship Structural Design

    DEFF Research Database (Denmark)

    Dogliani, M.; Østergaard, C.; Parmentier, G.

    1996-01-01

    This paper deals with the development of different methods that allow the reliability-based design of ship structures to be transferred from the area of research to the systematic application in current design. It summarises the achievements of a three-year collaborative research project dealing...... with developments of models of load effects and of structural collapse adopted in reliability formulations which aim at calibrating partial safety factors for ship structural design. New probabilistic models of still-water load effects are developed both for tankers and for containerships. New results are presented...... structure of several tankers and containerships. The results of the reliability analysis were the basis for the definition of a target safety level which was used to asses the partial safety factors suitable for in a new design rules format to be adopted in modern ship structural design. Finally...

  4. A framework to find the logic backbone of a biological network.

    Science.gov (United States)

    Maheshwari, Parul; Albert, Réka

    2017-12-06

    Cellular behaviors are governed by interaction networks among biomolecules, for example gene regulatory and signal transduction networks. An often used dynamic modeling framework for these networks, Boolean modeling, can obtain their attractors (which correspond to cell types and behaviors) and their trajectories from an initial state (e.g. a resting state) to the attractors, for example in response to an external signal. The existing methods however do not elucidate the causal relationships between distant nodes in the network. In this work, we propose a simple logic framework, based on categorizing causal relationships as sufficient or necessary, as a complement to Boolean networks. We identify and explore the properties of complex subnetworks that are distillable into a single logic relationship. We also identify cyclic subnetworks that ensure the stabilization of the state of participating nodes regardless of the rest of the network. We identify the logic backbone of biomolecular networks, consisting of external signals, self-sustaining cyclic subnetworks (stable motifs), and output nodes. Furthermore, we use the logic framework to identify crucial nodes whose override can drive the system from one steady state to another. We apply these techniques to two biological networks: the epithelial-to-mesenchymal transition network corresponding to a developmental process exploited in tumor invasion, and the network of abscisic acid induced stomatal closure in plants. We find interesting subnetworks with logical implications in these networks. Using these subgraphs and motifs, we efficiently reduce both networks to succinct backbone structures. The logic representation identifies the causal relationships between distant nodes and subnetworks. This knowledge can form the basis of network control or used in the reverse engineering of networks.

  5. Backbone conformation affects duplex initiation and duplex propagation in hybridisation of synthetic H-bonding oligomers.

    Science.gov (United States)

    Iadevaia, Giulia; Núñez-Villanueva, Diego; Stross, Alexander E; Hunter, Christopher A

    2018-06-06

    Synthetic oligomers equipped with complementary H-bond donor and acceptor side chains form multiply H-bonded duplexes in organic solvents. Comparison of the duplex forming properties of four families of oligomers with different backbones shows that formation of an extended duplex with three or four inter-strand H-bonds is more challenging than formation of complexes that make only two H-bonds. The stabilities of 1 : 1 complexes formed between length complementary homo-oligomers equipped with either phosphine oxide or phenol recognition modules were measured in toluene. When the backbone is very flexible (pentane-1,5-diyl thioether), the stability increases uniformly by an order of magnitude for each additional base-pair added to the duplex: the effective molarities for formation of the first intramolecular H-bond (duplex initiation) and subsequent intramolecular H-bonds (duplex propagation) are similar. This flexible system is compared with three more rigid backbones that are isomeric combinations of an aromatic ring and methylene groups. One of the rigid systems behaves in exactly the same way as the flexible backbone, but the other two do not. For these systems, the effective molarity for formation of the first intramolecular H-bond is the same as that found for the other two backbones, but additional H-bonds are not formed between the longer oligomers. The effective molarities are too low for duplex propagation in these systems, because the oligomer backbones cannot adopt conformations compatible with formation of an extended duplex.

  6. Radiation safety system (RSS) backbones: Design, engineering, fabrication and installation

    International Nuclear Information System (INIS)

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-01-01

    The Radiation Safety System (RSS) Backbones are part of an electrical/electronic/mechanical system insuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS Backbones control the safety fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low energy beam transport. The Backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the Backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two Linac Backbone segments and experimental area segments form a continuous cable plant over 3,500 feet from beam plugs to the tip on the longest tail. The Backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely

  7. Polystyrene Backbone Polymers Consisting of Alkyl-Substituted Triazine Side Groups for Phosphorescent OLEDs

    OpenAIRE

    Salert, Beatrice Ch. D.; Wedel, Armin; Grubert, Lutz; Eberle, Thomas; Anémian, Rémi; Krueger, Hartmut

    2012-01-01

    This paper describes the synthesis of new electron-transporting styrene monomers and their corresponding polystyrenes all with a 2,4,6-triphenyl-1,3,5-triazine basic structure in the side group. The monomers differ in the alkyl substitution and in the meta-/paralinkage of the triazine to the polymer backbone. The thermal and spectroscopic properties of the new electron-transporting polymers are discussed in regard to their chemical structures. Phosphorescent OLEDs were prepared using the obta...

  8. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

    Science.gov (United States)

    Sharp, Kim A; O'Brien, Evan; Kasinath, Vignesh; Wand, A Joshua

    2015-05-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O(2) NH ) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O(2) NH  entropy than that reported by the side chain methyl axis order parameters, O(2) axis . A calibration curve for backbone entropy vs. O(2) NH is developed, which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O(2) NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, for example, upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O(2) axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. © 2015 Wiley Periodicals, Inc.

  9. Dynamic power control for wireless backbone mesh networks: a survey

    CSIR Research Space (South Africa)

    Olwal, TO

    2010-01-01

    Full Text Available points of failures, and robust against RF interference, obstacles or power outage. This is because WMRs forming wireless backbone mesh networks (WBMNs) are built on advanced physical technologies. Such nodes perform both accessing and forwarding...

  10. Towards a natural classification and backbone tree for Sordariomycete

    Digital Repository Service at National Institute of Oceanography (India)

    Maharachchikumbura, S.S.N.; Hyde, K.D.; Jones, E.B.G.; McKenzie, E.H.C.; Huang, S.-K.; Abdel-Wahab, M.A.; Daranagama, D.A.; Dayarathne, M.; D'souza, M.J.; Goonasekara, I.D.; Hongsanan, S.; Jayawardena, R.S.; Kirk, P.M.; Konta, S.; Liu, J.-K.; Liu, Z.-Y.; Norphanphoun, C.; Pang, K.-L.; Perera, R.H.; Senanayake, I.C.; Shang, Q.; Shenoy, B.D.; Xiao, Y.; Bahkali, A.H.; Kang, J.; Somrothipol, S.; Suetrong, S.; Wen, T.; Xu, J.

    , lichenized or lichenicolous taxa The class includes freshwater, marine and terrestrial taxa and has a worldwide distribution This paper provides an updated outline of the Sordariomycetes and a backbone tree incorporating asexual and sexual genera in the class...

  11. Backbone Brackets and Arginine Tweezers delineate Class I and Class II aminoacyl tRNA synthetases

    Science.gov (United States)

    Haupt, V. Joachim; Schroeder, Michael; Labudde, Dirk

    2018-01-01

    The origin of the machinery that realizes protein biosynthesis in all organisms is still unclear. One key component of this machinery are aminoacyl tRNA synthetases (aaRS), which ligate tRNAs to amino acids while consuming ATP. Sequence analyses revealed that these enzymes can be divided into two complementary classes. Both classes differ significantly on a sequence and structural level, feature different reaction mechanisms, and occur in diverse oligomerization states. The one unifying aspect of both classes is their function of binding ATP. We identified Backbone Brackets and Arginine Tweezers as most compact ATP binding motifs characteristic for each Class. Geometric analysis shows a structural rearrangement of the Backbone Brackets upon ATP binding, indicating a general mechanism of all Class I structures. Regarding the origin of aaRS, the Rodin-Ohno hypothesis states that the peculiar nature of the two aaRS classes is the result of their primordial forms, called Protozymes, being encoded on opposite strands of the same gene. Backbone Brackets and Arginine Tweezers were traced back to the proposed Protozymes and their more efficient successors, the Urzymes. Both structural motifs can be observed as pairs of residues in contemporary structures and it seems that the time of their addition, indicated by their placement in the ancient aaRS, coincides with the evolutionary trace of Proto- and Urzymes. PMID:29659563

  12. Lactobacillus plantarum possesses the capability for wall teichoic acid backbone alditol switching

    Directory of Open Access Journals (Sweden)

    Bron Peter A

    2012-09-01

    Full Text Available Abstract Background Specific strains of Lactobacillus plantarum are marketed as health-promoting probiotics. The role and interplay of cell-wall compounds like wall- and lipo-teichoic acids (WTA and LTA in bacterial physiology and probiotic-host interactions remain obscure. L. plantarum WCFS1 harbors the genetic potential to switch WTA backbone alditol, providing an opportunity to study the impact of WTA backbone modifications in an isogenic background. Results Through genome mining and mutagenesis we constructed derivatives that synthesize alternative WTA variants. The mutants were shown to completely lack WTA, or produce WTA and LTA that lack D-Ala substitution, or ribitol-backbone WTA instead of the wild-type glycerol-containing backbone. DNA micro-array experiments established that the tarIJKL gene cluster is required for the biosynthesis of this alternative WTA backbone, and suggest ribose and arabinose are precursors thereof. Increased tarIJKL expression was not observed in any of our previously performed DNA microarray experiments, nor in qRT-PCR analyses of L. plantarum grown on various carbon sources, leaving the natural conditions leading to WTA backbone alditol switching, if any, to be identified. Human embryonic kidney NF-κB reporter cells expressing Toll like receptor (TLR-2/6 were exposed to purified WTAs and/or the TA mutants, indicating that WTA is not directly involved in TLR-2/6 signaling, but attenuates this signaling in a backbone independent manner, likely by affecting the release and exposure of immunomodulatory compounds such as LTA. Moreover, human dendritic cells did not secrete any cytokines when purified WTAs were applied, whereas they secreted drastically decreased levels of the pro-inflammatory cytokines IL-12p70 and TNF-α after stimulation with the WTA mutants as compared to the wild-type. Conclusions The study presented here correlates structural differences in WTA to their functional characteristics, thereby

  13. ADAR RNA editing below the backbone.

    Science.gov (United States)

    Keegan, Liam; Khan, Anzer; Vukic, Dragana; O'Connell, Mary

    2017-09-01

    ADAR RNA editing enzymes ( a denosine d e a minases acting on R NA) that convert adenosine bases to inosines were first identified biochemically 30 years ago. Since then, studies on ADARs in genetic model organisms, and evolutionary comparisons between them, continue to reveal a surprising range of pleiotropic biological effects of ADARs. This review focuses on Drosophila melanogaster , which has a single Adar gene encoding a homolog of vertebrate ADAR2 that site-specifically edits hundreds of transcripts to change individual codons in ion channel subunits and membrane and cytoskeletal proteins. Drosophila ADAR is involved in the control of neuronal excitability and neurodegeneration and, intriguingly, in the control of neuronal plasticity and sleep. Drosophila ADAR also interacts strongly with RNA interference, a key antiviral defense mechanism in invertebrates. Recent crystal structures of human ADAR2 deaminase domain-RNA complexes help to interpret available information on Drosophila ADAR isoforms and on the evolution of ADARs from tRNA deaminase ADAT proteins. ADAR RNA editing is a paradigm for the now rapidly expanding range of RNA modifications in mRNAs and ncRNAs. Even with recent progress, much remains to be understood about these groundbreaking ADAR RNA modification systems. © 2017 Keegan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  14. High-Throughput Sequencing Based Methods of RNA Structure Investigation

    DEFF Research Database (Denmark)

    Kielpinski, Lukasz Jan

    In this thesis we describe the development of four related methods for RNA structure probing that utilize massive parallel sequencing. Using them, we were able to gather structural data for multiple, long molecules simultaneously. First, we have established an easy to follow experimental...... and computational protocol for detecting the reverse transcription termination sites (RTTS-Seq). This protocol was subsequently applied to hydroxyl radical footprinting of three dimensional RNA structures to give a probing signal that correlates well with the RNA backbone solvent accessibility. Moreover, we applied...

  15. PASA - A Program for Automated Protein NMR Backbone Signal Assignment by Pattern-Filtering Approach

    International Nuclear Information System (INIS)

    Xu Yizhuang; Wang Xiaoxia; Yang Jun; Vaynberg, Julia; Qin Jun

    2006-01-01

    We present a new program, PASA (Program for Automated Sequential Assignment), for assigning protein backbone resonances based on multidimensional heteronuclear NMR data. Distinct from existing programs, PASA emphasizes a per-residue-based pattern-filtering approach during the initial stage of the automated 13 C α and/or 13 C β chemical shift matching. The pattern filter employs one or multiple constraints such as 13 C α /C β chemical shift ranges for different amino acid types and side-chain spin systems, which helps to rule out, in a stepwise fashion, improbable assignments as resulted from resonance degeneracy or missing signals. Such stepwise filtering approach substantially minimizes early false linkage problems that often propagate, amplify, and ultimately cause complication or combinatorial explosion of the automation process. Our program (http://www.lerner.ccf.org/moleccard/qin/) was tested on four representative small-large sized proteins with various degrees of resonance degeneracy and missing signals, and we show that PASA achieved the assignments efficiently and rapidly that are fully consistent with those obtained by laborious manual protocols. The results demonstrate that PASA may be a valuable tool for NMR-based structural analyses, genomics, and proteomics

  16. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2013-07-15

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, {>=}90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed ({phi}, {psi}) torsion angles of ca 12 Masculine-Ordinal-Indicator . TALOS-N also reports sidechain {chi}{sup 1} rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.

  17. Structure-Based Design of Novel HIV-1 Protease Inhibitors to Combat Drug Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh,A.; Sridhar, P.; Leshchenko, S.; Hussain, A.; Li, J.; Kovalevsky, A.; Walters, D.; Wedelind, J.; Grum-Tokars, V.; et al.

    2006-01-01

    Structure-based design and synthesis of novel HIV protease inhibitors are described. The inhibitors are designed specifically to interact with the backbone of HIV protease active site to combat drug resistance. Inhibitor 3 has exhibited exceedingly potent enzyme inhibitory and antiviral potency. Furthermore, this inhibitor maintains impressive potency against a wide spectrum of HIV including a variety of multi-PI-resistant clinical strains. The inhibitors incorporated a stereochemically defined 5-hexahydrocyclopenta[b]furanyl urethane as the P2-ligand into the (R)-(hydroxyethylamino)sulfonamide isostere. Optically active (3aS,5R,6aR)-5-hydroxy-hexahydrocyclopenta[b]furan was prepared by an enzymatic asymmetrization of meso-diacetate with acetyl cholinesterase, radical cyclization, and Lewis acid-catalyzed anomeric reduction as the key steps. A protein-ligand X-ray crystal structure of inhibitor 3-bound HIV-1 protease (1.35 Angstroms resolution) revealed extensive interactions in the HIV protease active site including strong hydrogen bonding interactions with the backbone. This design strategy may lead to novel inhibitors that can combat drug resistance.

  18. Protein backbone angle restraints from searching a database for chemical shift and sequence homology

    Energy Technology Data Exchange (ETDEWEB)

    Cornilescu, Gabriel; Delaglio, Frank; Bax, Ad [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    1999-03-15

    Chemical shifts of backbone atoms in proteins are exquisitely sensitive to local conformation, and homologous proteins show quite similar patterns of secondary chemical shifts. The inverse of this relation is used to search a database for triplets of adjacent residues with secondary chemical shifts and sequence similarity which provide the best match to the query triplet of interest. The database contains 13C{alpha}, 13C{beta}, 13C', 1H{alpha} and 15N chemical shifts for 20 proteins for which a high resolution X-ray structure is available. The computer program TALOS was developed to search this database for strings of residues with chemical shift and residue type homology. The relative importance of the weighting factors attached to the secondary chemical shifts of the five types of resonances relative to that of sequence similarity was optimized empirically. TALOS yields the 10 triplets which have the closest similarity in secondary chemical shift and amino acid sequence to those of the query sequence. If the central residues in these 10 triplets exhibit similar {phi} and {psi} backbone angles, their averages can reliably be used as angular restraints for the protein whose structure is being studied. Tests carried out for proteins of known structure indicate that the root-mean-square difference (rmsd) between the output of TALOS and the X-ray derived backbone angles is about 15 deg. Approximately 3% of the predictions made by TALOS are found to be in error.

  19. Vibration-based structural health monitoring of harbor caisson structure

    Science.gov (United States)

    Lee, So-Young; Lee, So-Ra; Kim, Jeong-Tae

    2011-04-01

    This study presents vibration-based structural health monitoring method in foundation-structure interface of harbor caisson structure. In order to achieve the objective, the following approaches are implemented. Firstly, vibration-based response analysis method is selected and structural health monitoring (SHM) technique is designed for harbor caisson structure. Secondly, the performance of designed SHM technique for harbor structure is examined by FE analysis. Finally, the applicability of designed SHM technique for harbor structure is evaluated by dynamic tests on a lab-scaled caisson structure.

  20. Mechanism of interaction of the antileukemic drug cytosine arabinoside with aromatic peptides: role of sugar conformation and peptide backbone.

    Science.gov (United States)

    Datta, G; Hosur, R V; Verma, N C; Khetrapal, C L; Gurnani, S

    1989-01-01

    Interaction of the antileukemic drugs, cytosine-arabinoside (Ara-C) and adenosine-arabinoside (Ara-A) and a structural analogue, cytidine, with aromatic dipeptides has been studied by fluorescence and NMR spectroscopy. Ara-C and cytidine bind tryptophanyl and histidyl dipeptides but not tyrosyl dipeptides, while Ara-A does not bind to any of them. Both studies indicate association involving stacking of aromatic moieties. NMR spectra also indicate a protonation of the histidine moiety by Ara-C. In case of cytidine, the chemical shifts observed on binding to His-Phe imply that the backbone protons of the dipeptide participate in the binding. The conformation of the sugar and the base seem to play a very important role in the binding phenomenon as three similar molecules, Ara-C, Ara-A and cytidine bind in totally different ways.

  1. 4D experiments measured with APSY for automated backbone resonance assignments of large proteins

    International Nuclear Information System (INIS)

    Krähenbühl, Barbara; Boudet, Julien; Wider, Gerhard

    2013-01-01

    Detailed structural and functional characterization of proteins by solution NMR requires sequence-specific resonance assignment. We present a set of transverse relaxation optimization (TROSY) based four-dimensional automated projection spectroscopy (APSY) experiments which are designed for resonance assignments of proteins with a size up to 40 kDa, namely HNCACO, HNCOCA, HNCACB and HN(CO)CACB. These higher-dimensional experiments include several sensitivity-optimizing features such as multiple quantum parallel evolution in a ‘just-in-time’ manner, aliased off-resonance evolution, evolution-time optimized APSY acquisition, selective water-handling and TROSY. The experiments were acquired within the concept of APSY, but they can also be used within the framework of sparsely sampled experiments. The multidimensional peak lists derived with APSY provided chemical shifts with an approximately 20 times higher precision than conventional methods usually do, and allowed the assignment of 90 % of the backbone resonances of the perdeuterated primase-polymerase ORF904, which contains 331 amino acid residues and has a molecular weight of 38.4 kDa.

  2. AUTOBA: automation of backbone assignment from HN(C)N suite of experiments.

    Science.gov (United States)

    Borkar, Aditi; Kumar, Dinesh; Hosur, Ramakrishna V

    2011-07-01

    Development of efficient strategies and automation represent important milestones of progress in rapid structure determination efforts in proteomics research. In this context, we present here an efficient algorithm named as AUTOBA (Automatic Backbone Assignment) designed to automate the assignment protocol based on HN(C)N suite of experiments. Depending upon the spectral dispersion, the user can record 2D or 3D versions of the experiments for assignment. The algorithm uses as inputs: (i) protein primary sequence and (ii) peak-lists from user defined HN(C)N suite of experiments. In the end, one gets H(N), (15)N, C(α) and C' assignments (in common BMRB format) for the individual residues along the polypeptide chain. The success of the algorithm has been demonstrated, not only with experimental spectra recorded on two small globular proteins: ubiquitin (76 aa) and M-crystallin (85 aa), but also with simulated spectra of 27 other proteins using assignment data from the BMRB.

  3. Reliability-Based Optimization in Structural Engineering

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1994-01-01

    In this paper reliability-based optimization problems in structural engineering are formulated on the basis of the classical decision theory. Several formulations are presented: Reliability-based optimal design of structural systems with component or systems reliability constraints, reliability...

  4. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    Science.gov (United States)

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  5. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.

    Science.gov (United States)

    Dinesh, Bhimareddy; Squillaci, Marco A; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto

    2015-10-14

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing.

  6. Direct observation of backbone planarization via side-chain alignment in single bulky-substituted polythiophenes

    Science.gov (United States)

    Raithel, Dominic; Simine, Lena; Pickel, Sebastian; Schötz, Konstantin; Panzer, Fabian; Baderschneider, Sebastian; Schiefer, Daniel; Lohwasser, Ruth; Köhler, Jürgen; Thelakkat, Mukundan; Sommer, Michael; Köhler, Anna; Rossky, Peter J.; Hildner, Richard

    2018-03-01

    The backbone conformation of conjugated polymers affects, to a large extent, their optical and electronic properties. The usually flexible substituents provide solubility and influence the packing behavior of conjugated polymers in films or in bad solvents. However, the role of the side chains in determining and potentially controlling the backbone conformation, and thus the optical and electronic properties on the single polymer level, is currently under debate. Here, we investigate directly the impact of the side chains by studying the bulky-substituted poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT) and the common poly(3-hexylthiophene) (P3HT), both with a defined molecular weight and high regioregularity, using low-temperature single-chain photoluminescence (PL) spectroscopy and quantum-classical simulations. Surprisingly, the optical transition energy of PDOPT is significantly (˜2,000 cm‑1 or 0.25 eV) red-shifted relative to P3HT despite a higher static and dynamic disorder in the former. We ascribe this red shift to a side-chain induced backbone planarization in PDOPT, supported by temperature-dependent ensemble PL spectroscopy. Our atomistic simulations reveal that the bulkier 2,5-dioctylphenyl side chains of PDOPT adopt a clear secondary helical structural motif and thus protect conjugation, i.e., enforce backbone planarity, whereas, for P3HT, this is not the case. These different degrees of planarity in both thiophenes do not result in different conjugation lengths, which we found to be similar. It is rather the stronger electronic coupling between the repeating units in the more planar PDOPT which gives rise to the observed spectral red shift as well as to a reduced calculated electron‑hole polarization.

  7. Effect of backbone chemistry on hybridization thermodynamics of oligonucleic acids: a coarse-grained molecular dynamics simulation study.

    Science.gov (United States)

    Ghobadi, Ahmadreza F; Jayaraman, Arthi

    2016-02-28

    In this paper we study how varying oligonucleic acid backbone chemistry affects the hybridization/melting thermodynamics of oligonucleic acids. We first describe the coarse-grained (CG) model with tunable parameters that we developed to enable the study of both naturally occurring oligonucleic acids, such as DNA, and their chemically-modified analogues, such as peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). The DNA melting curves obtained using such a CG model and molecular dynamics simulations in an implicit solvent and with explicit ions match with the melting curves obtained using the empirical nearest-neighbor models. We use these CG simulations to then elucidate the effect of backbone flexibility, charge, and nucleobase spacing along the backbone on the melting curves, potential energy and conformational entropy change upon hybridization and base-pair hydrogen bond residence time. We find that increasing backbone flexibility decreases duplex thermal stability and melting temperature mainly due to increased conformational entropy loss upon hybridization. Removing charges from the backbone enhances duplex thermal stability due to the elimination of electrostatic repulsion and as a result a larger energetic gain upon hybridization. Lastly, increasing nucleobase spacing decreases duplex thermal stability due to decreasing stacking interactions that are important for duplex stability.

  8. Performance of Flow-Aware Networking in LTE backbone

    DEFF Research Database (Denmark)

    Sniady, Aleksander; Soler, José

    2012-01-01

    technologies, such as Long Term Evolution (LTE). This paper proposes usage of a modified Flow Aware Networking (FAN) technique for enhancing Quality of Service (QoS) in the all-IP transport networks underlying LTE backbone. The results obtained with OPNET Modeler show that FAN, in spite of being relatively...

  9. The Graphical Representation of the Digital Astronaut Physiology Backbone

    Science.gov (United States)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  10. Determination of backbone chain direction of PDA using FFM

    Science.gov (United States)

    Jo, Sadaharu; Okamoto, Kentaro; Takenaga, Mitsuru

    2010-01-01

    The effect of backbone chains on friction force was investigated on both Langmuir-Blodgett (LB) films of 10,12-heptacosadiynoic acid and the (0 1 0) surfaces of single crystals of 2,4-hexadiene-1,6-diol using friction force microscopy (FFM). It was observed that friction force decreased when the scanning direction was parallel to the [0 0 1] direction in both samples. Moreover, friction force decreased when the scanning direction was parallel to the crystallographic [1 0 2], [1 0 1], [1 0 0] and [1 0 1¯] directions in only the single crystals. For the LB films, the [0 0 1] direction corresponds to the backbone chain direction of 10,12-heptacosadiynoic acid. For the single crystals, both the [0 0 1] and [1 0 1] directions correspond to the backbone chain direction, and the [1 0 2], [1 0 0] and [1 0 1¯] directions correspond to the low-index crystallographic direction. In both the LB films and single crystals, the friction force was minimized when the directions of scanning and the backbone chain were parallel.

  11. Internet Backbone in the Democratic Republic of Congo : Feasibility ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Internet Backbone in the Democratic Republic of Congo : Feasibility Study and Advocacy. During 7-10 February 2005, representatives of five francophone African countries (Cameroon, Morocco, Niger, Sénégal, and the Democratic Republic of Congo - DRC) met to consider ways and means of galvanizing the appropriation ...

  12. The Legal Ethical Backbone of Conscientious Refusal

    DEFF Research Database (Denmark)

    Munthe, Christian; Nielsen, Morten Ebbe Juul

    2017-01-01

    This article analyzes the idea of a legal right to conscientious refusal for healthcare professionals from a basic legal ethical standpoint, using refusal to perform tasks related to legal abortion (in cases of voluntary employment) as a case in point. The idea of a legal right to conscientious...... refusal is distinguished from ideas regarding moral rights or reasons related to conscientious refusal, and none of the latter are found to support the notion of a legal right. Reasons for allowing some sort of room for conscientious refusal for healthcare professionals based on the importance of cultural...... identity and the fostering of a critical atmosphere might provide some support, if no countervailing factors apply. One such factor is that a legal right to healthcare professionals’ conscientious refusal must comply with basic legal ethical tenets regarding the rule of law and equal treatment...

  13. Polyphosphazenes - New polymers with inorganic backbone atoms

    Science.gov (United States)

    Allcock, H. R.

    1976-01-01

    Unique and useful properties of the class of nonhydrocarbon, nonhalocarbon, nonsilicone polymers known as polyphosphazenes are discussed at length. These polymers, with molecular weights to 4 million (degree of polymerization 15,000), can be fabricated as tubes, fibers, woven fabrics, flexible films, or plates, and many variants are stable to attack by water, bases, aqueous acids, jet fuels, oils, hydraulic fluids, gasoline, or other hydrocarbons. Rubbery polymers with these properties can be fashioned into flexible hose, fuel hose, gaskets, or O-rings. Since they do not provoke clotting reactions in blood, and reveal no carcinogenic effects to date, they are considered for internal prosthetic applications (replacement bone, temporary skin, heart valves), as biodegradable suturing material, as carriers for slow release of drugs, and as carriers for chemotherapeutic agents against cancers.

  14. Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design.

    Directory of Open Access Journals (Sweden)

    Colin A Smith

    Full Text Available Predicting the set of sequences that are tolerated by a protein or protein interface, while maintaining a desired function, is useful for characterizing protein interaction specificity and for computationally designing sequence libraries to engineer proteins with new functions. Here we provide a general method, a detailed set of protocols, and several benchmarks and analyses for estimating tolerated sequences using flexible backbone protein design implemented in the Rosetta molecular modeling software suite. The input to the method is at least one experimentally determined three-dimensional protein structure or high-quality model. The starting structure(s are expanded or refined into a conformational ensemble using Monte Carlo simulations consisting of backrub backbone and side chain moves in Rosetta. The method then uses a combination of simulated annealing and genetic algorithm optimization methods to enrich for low-energy sequences for the individual members of the ensemble. To emphasize certain functional requirements (e.g. forming a binding interface, interactions between and within parts of the structure (e.g. domains can be reweighted in the scoring function. Results from each backbone structure are merged together to create a single estimate for the tolerated sequence space. We provide an extensive description of the protocol and its parameters, all source code, example analysis scripts and three tests applying this method to finding sequences predicted to stabilize proteins or protein interfaces. The generality of this method makes many other applications possible, for example stabilizing interactions with small molecules, DNA, or RNA. Through the use of within-domain reweighting and/or multistate design, it may also be possible to use this method to find sequences that stabilize particular protein conformations or binding interactions over others.

  15. A Consistent Phylogenetic Backbone for the Fungi

    Science.gov (United States)

    Ebersberger, Ingo; de Matos Simoes, Ricardo; Kupczok, Anne; Gube, Matthias; Kothe, Erika; Voigt, Kerstin; von Haeseler, Arndt

    2012-01-01

    The kingdom of fungi provides model organisms for biotechnology, cell biology, genetics, and life sciences in general. Only when their phylogenetic relationships are stably resolved, can individual results from fungal research be integrated into a holistic picture of biology. However, and despite recent progress, many deep relationships within the fungi remain unclear. Here, we present the first phylogenomic study of an entire eukaryotic kingdom that uses a consistency criterion to strengthen phylogenetic conclusions. We reason that branches (splits) recovered with independent data and different tree reconstruction methods are likely to reflect true evolutionary relationships. Two complementary phylogenomic data sets based on 99 fungal genomes and 109 fungal expressed sequence tag (EST) sets analyzed with four different tree reconstruction methods shed light from different angles on the fungal tree of life. Eleven additional data sets address specifically the phylogenetic position of Blastocladiomycota, Ustilaginomycotina, and Dothideomycetes, respectively. The combined evidence from the resulting trees supports the deep-level stability of the fungal groups toward a comprehensive natural system of the fungi. In addition, our analysis reveals methodologically interesting aspects. Enrichment for EST encoded data—a common practice in phylogenomic analyses—introduces a strong bias toward slowly evolving and functionally correlated genes. Consequently, the generalization of phylogenomic data sets as collections of randomly selected genes cannot be taken for granted. A thorough characterization of the data to assess possible influences on the tree reconstruction should therefore become a standard in phylogenomic analyses. PMID:22114356

  16. The Legal Ethical Backbone of Conscientious Refusal.

    Science.gov (United States)

    Munthe, Christian; Nielsen, Morten Ebbe Juul

    2017-01-01

    This article analyzes the idea of a legal right to conscientious refusal for healthcare professionals from a basic legal ethical standpoint, using refusal to perform tasks related to legal abortion (in cases of voluntary employment) as a case in point. The idea of a legal right to conscientious refusal is distinguished from ideas regarding moral rights or reasons related to conscientious refusal, and none of the latter are found to support the notion of a legal right. Reasons for allowing some sort of room for conscientious refusal for healthcare professionals based on the importance of cultural identity and the fostering of a critical atmosphere might provide some support, if no countervailing factors apply. One such factor is that a legal right to healthcare professionals' conscientious refusal must comply with basic legal ethical tenets regarding the rule of law and equal treatment, and this requirement is found to create serious problems for those wishing to defend the idea under consideration. We conclude that the notion of a legal right to conscientious refusal for any profession is either fundamentally incompatible with elementary legal ethical requirements, or implausible because it undermines the functioning of a related professional sector (healthcare) or even of society as a whole.

  17. PESI - a taxonomic backbone for Europe

    Science.gov (United States)

    Kouwenberg, Juliana; Boumans, Louis; Hussey, Charles; Hyam, Roger; Nicolson, Nicola; Kirk, Paul; Paton, Alan; Michel, Ellinor; Guiry, Michael D.; Boegh, Phillip S.; Pedersen, Henrik Ærenlund; Enghoff, Henrik; von Raab-Straube, Eckhard; Güntsch, Anton; Geoffroy, Marc; Müller, Andreas; Kohlbecker, Andreas; Berendsohn, Walter; Appeltans, Ward; Arvanitidis, Christos; Vanhoorne, Bart; Declerck, Joram; Vandepitte, Leen; Hernandez, Francisco; Nash, Róisín; Costello, Mark John; Ouvrard, David; Bezard-Falgas, Pascale; Bourgoin, Thierry; Wetzel, Florian Tobias; Glöckler, Falko; Korb, Günther; Ring, Caroline; Hagedorn, Gregor; Häuser, Christoph; Aktaç, Nihat; Asan, Ahmet; Ardelean, Adorian; Borges, Paulo Alexandre Vieira; Dhora, Dhimiter; Khachatryan, Hasmik; Malicky, Michael; Ibrahimov, Shaig; Tuzikov, Alexander; De Wever, Aaike; Moncheva, Snejana; Spassov, Nikolai; Chobot, Karel; Popov, Alexi; Boršić, Igor; Sfenthourakis, Spyros; Kõljalg, Urmas; Uotila, Pertti; Olivier, Gargominy; Dauvin, Jean-Claude; Tarkhnishvili, David; Chaladze, Giorgi; Tuerkay, Michael; Legakis, Anastasios; Peregovits, László; Gudmundsson, Gudmundur; Ólafsson, Erling; Lysaght, Liam; Galil, Bella Sarah; Raimondo, Francesco M.; Domina, Gianniantonio; Stoch, Fabio; Minelli, Alessandro; Spungis, Voldermars; Budrys, Eduardas; Olenin, Sergej; Turpel, Armand; Walisch, Tania; Krpach, Vladimir; Gambin, Marie Therese; Ungureanu, Laurentia; Karaman, Gordan; Kleukers, Roy M.J.C.; Stur, Elisabeth; Aagaard, Kaare; Valland, Nils; Moen, Toril Loennechen; Bogdanowicz, Wieslaw; Tykarski, Piotr; Węsławski, Jan Marcin; Kędra, Monika; M. de Frias Martins, Antonio; Abreu, António Domingos; Silva, Ricardo; Medvedev, Sergei; Ryss, Alexander; Šimić, Smiljka; Marhold, Karol; Stloukal, Eduard; Tome, Davorin; Ramos, Marian A.; Valdés, Benito; Pina, Francisco; Kullander, Sven; Telenius, Anders; Gonseth, Yves; Tschudin, Pascal; Sergeyeva, Oleksandra; Vladymyrov, Volodymyr; Rizun, Volodymyr Bohdanovych; Raper, Chris; Lear, Dan; Stoev, Pavel; Penev, Lyubomir; Rubio, Ana Casino; Backeljau, Thierry; Saarenmaa, Hannu; Ulenberg, Sandrine

    2015-01-01

    Abstract Background Reliable taxonomy underpins communication in all of biology, not least nature conservation and sustainable use of ecosystem resources. The flexibility of taxonomic interpretations, however, presents a serious challenge for end-users of taxonomic concepts. Users need standardised and continuously harmonised taxonomic reference systems, as well as high-quality and complete taxonomic data sets, but these are generally lacking for non-specialists. The solution is in dynamic, expertly curated web-based taxonomic tools. The Pan-European Species-directories Infrastructure (PESI) worked to solve this key issue by providing a taxonomic e-infrastructure for Europe. It strengthened the relevant social (expertise) and information (standards, data and technical) capacities of five major community networks on taxonomic indexing in Europe, which is essential for proper biodiversity assessment and monitoring activities. The key objectives of PESI were: 1) standardisation in taxonomic reference systems, 2) enhancement of the quality and completeness of taxonomic data sets and 3) creation of integrated access to taxonomic information. New information This paper describes the results of PESI and its future prospects, including the involvement in major European biodiversity informatics initiatives and programs. PMID:26491393

  18. Cyclen-based double-tailed lipids for DNA delivery: Synthesis and the effect of linking group structures.

    Science.gov (United States)

    Zhang, Yi-Mei; Chang, De-Chun; Zhang, Ji; Liu, Yan-Hong; Yu, Xiao-Qi

    2015-09-01

    The gene transfection efficiency (TE) of cationic lipids is largely influenced by the lipid structure. Six novel 1, 4, 7, 10-tetraazacyclododecane (cyclen)-based cationic lipids L1-L6, which contain double oleyl as hydrophobic tails, were designed and synthesized. The difference between these lipids is their diverse backbone. Liposomes prepared by the lipids and DOPE showed good DNA affinity, and full DNA condensation could be achieved at N/P of 4 to form lipoplexes with proper size and zeta-potentials for gene transfection. Structure-activity relationship of these lipids as non-viral gene delivery vectors was investigated. It was found that minor backbone structural variations, including linking group and the structural symmetry would affect the TE. The diethylenetriamine derived lipid L4 containing amide linking bonds gave the best TE, which was several times higher than commercially available transfection reagent lipofectamine 2000. Besides, these lipids exhibited low cytotoxicity, suggesting their good biocompatibility. Results reveal that such type of cationic lipids might be promising non-viral gene vectors, and also afford us clues for the design of novel vectors with higher TE and biocompatibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Delaglio, Frank [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Cornilescu, Gabriel [National Magnetic Resonance Facility (United States); Bax, Ad [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)], E-mail: bax@nih.gov

    2009-08-15

    NMR chemical shifts in proteins depend strongly on local structure. The program TALOS establishes an empirical relation between {sup 13}C, {sup 15}N and {sup 1}H chemical shifts and backbone torsion angles {phi} and {psi} (Cornilescu et al. J Biomol NMR 13 289-302, 1999). Extension of the original 20-protein database to 200 proteins increased the fraction of residues for which backbone angles could be predicted from 65 to 74%, while reducing the error rate from 3 to 2.5%. Addition of a two-layer neural network filter to the database fragment selection process forms the basis for a new program, TALOS+, which further enhances the prediction rate to 88.5%, without increasing the error rate. Excluding the 2.5% of residues for which TALOS+ makes predictions that strongly differ from those observed in the crystalline state, the accuracy of predicted {phi} and {psi} angles, equals {+-}13{sup o}. Large discrepancies between predictions and crystal structures are primarily limited to loop regions, and for the few cases where multiple X-ray structures are available such residues are often found in different states in the different structures. The TALOS+ output includes predictions for individual residues with missing chemical shifts, and the neural network component of the program also predicts secondary structure with good accuracy.

  20. PPM-One: a static protein structure based chemical shift predictor

    International Nuclear Information System (INIS)

    Li, Dawei; Brüschweiler, Rafael

    2015-01-01

    We mined the most recent editions of the BioMagResDataBank and the protein data bank to parametrize a new empirical knowledge-based chemical shift predictor of protein backbone atoms using either a linear or an artificial neural network model. The resulting chemical shift predictor PPM-One accepts a single static 3D structure as input and emulates the effect of local protein dynamics via interatomic steric contacts. Furthermore, the chemical shift prediction was extended to most side-chain protons and it is found that the prediction accuracy is at a level allowing an independent assessment of stereospecific assignments. For a previously established set of test proteins some overall improvement was achieved over current top-performing chemical shift prediction programs

  1. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides.

    Science.gov (United States)

    Faller, Christina E; Guvench, Olgun

    2015-05-21

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic "backbone" has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high-resolution, high-precision free energies of CS disaccharides as a function of all possible backbone geometries. All 10 disaccharides (β1-3 vs β1-4 linkage × five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum, whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA -COO(-) moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to -COO(-) can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to -COO(-) results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing information

  2. Reliability-based optimization of engineering structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2008-01-01

    The theoretical basis for reliability-based structural optimization within the framework of Bayesian statistical decision theory is briefly described. Reliability-based cost benefit problems are formulated and exemplitied with structural optimization. The basic reliability-based optimization...... problems are generalized to the following extensions: interactive optimization, inspection and repair costs, systematic reconstruction, re-assessment of existing structures. Illustrative examples are presented including a simple introductory example, a decision problem related to bridge re...

  3. Assignment by Negative-Ion Electrospray Tandem Mass Spectrometry of the Tetrasaccharide Backbones of Monosialylated Glycans Released from Bovine Brain Gangliosides

    Science.gov (United States)

    Chai, Wengang; Zhang, Yibing; Mauri, Laura; Ciampa, Maria G.; Mulloy, Barbara; Sonnino, Sandro; Feizi, Ten

    2018-05-01

    Gangliosides, as plasma membrane-associated sialylated glycolipids, are antigenic structures and they serve as ligands for adhesion proteins of pathogens, for toxins of bacteria, and for endogenous proteins of the host. The detectability by carbohydrate-binding proteins of glycan antigens and ligands on glycolipids can be influenced by the differing lipid moieties. To investigate glycan sequences of gangliosides as recognition structures, we have underway a program of work to develop a "gangliome" microarray consisting of isolated natural gangliosides and neoglycolipids (NGLs) derived from glycans released from them, and each linked to the same lipid molecule for arraying and comparative microarray binding analyses. Here, in the first phase of our studies, we describe a strategy for high-sensitivity assignment of the tetrasaccharide backbones and application to identification of eight of monosialylated glycans released from bovine brain gangliosides. This approach is based on negative-ion electrospray mass spectrometry with collision-induced dissociation (ESI-CID-MS/MS) of the desialylated glycans. Using this strategy, we have the data on backbone regions of four minor components among the monosialo-ganglioside-derived glycans; these are of the ganglio-, lacto-, and neolacto-series.

  4. Selective backbone labelling of ILV methyl labelled proteins

    International Nuclear Information System (INIS)

    Sibille, Nathalie; Hanoulle, Xavier; Bonachera, Fanny; Verdegem, Dries; Landrieu, Isabelle; Wieruszeski, Jean-Michel; Lippens, Guy

    2009-01-01

    Adding the 13 C labelled 2-keto-isovalerate and 2-oxobutanoate precursors to a minimal medium composed of 12 C labelled glucose instead of the commonly used ( 2 D, 13 C) glucose leads not only to the 13 C labelling of (I, L, V) methyls but also to the selective 13 C labelling of the backbone C α and CO carbons of the Ile and Val residues. As a result, the backbone ( 1 H, 15 N) correlations of the Ile and Val residues and their next neighbours in the (i + 1) position can be selectively identified in HN(CA) and HN(CO) planes. The availability of a selective HSQC spectrum corresponding to the sole amide resonances of the Ile and Val residues allows connecting them to their corresponding methyls by the intra-residue NOE effect, and should therefore be applicable to larger systems

  5. Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology

    International Nuclear Information System (INIS)

    Shen Yang; Bax, Ad

    2007-01-01

    Chemical shifts of nuclei in or attached to a protein backbone are exquisitely sensitive to their local environment. A computer program, SPARTA, is described that uses this correlation with local structure to predict protein backbone chemical shifts, given an input three-dimensional structure, by searching a newly generated database for triplets of adjacent residues that provide the best match in φ/ψ/χ 1 torsion angles and sequence similarity to the query triplet of interest. The database contains 15 N, 1 H N , 1 H α , 13 C α , 13 C β and 13 C' chemical shifts for 200 proteins for which a high resolution X-ray (≤2.4 A) structure is available. The relative importance of the weighting factors for the φ/ψ/χ 1 angles and sequence similarity was optimized empirically. The weighted, average secondary shifts of the central residues in the 20 best-matching triplets, after inclusion of nearest neighbor, ring current, and hydrogen bonding effects, are used to predict chemical shifts for the protein of known structure. Validation shows good agreement between the SPARTA-predicted and experimental shifts, with standard deviations of 2.52, 0.51, 0.27, 0.98, 1.07 and 1.08 ppm for 15 N, 1 H N , 1 H α , 13 C α , 13 C β and 13 C', respectively, including outliers

  6. Structural protein descriptors in 1-dimension and their sequence-based predictions.

    Science.gov (United States)

    Kurgan, Lukasz; Disfani, Fatemeh Miri

    2011-09-01

    The last few decades observed an increasing interest in development and application of 1-dimensional (1D) descriptors of protein structure. These descriptors project 3D structural features onto 1D strings of residue-wise structural assignments. They cover a wide-range of structural aspects including conformation of the backbone, burying depth/solvent exposure and flexibility of residues, and inter-chain residue-residue contacts. We perform first-of-its-kind comprehensive comparative review of the existing 1D structural descriptors. We define, review and categorize ten structural descriptors and we also describe, summarize and contrast over eighty computational models that are used to predict these descriptors from the protein sequences. We show that the majority of the recent sequence-based predictors utilize machine learning models, with the most popular being neural networks, support vector machines, hidden Markov models, and support vector and linear regressions. These methods provide high-throughput predictions and most of them are accessible to a non-expert user via web servers and/or stand-alone software packages. We empirically evaluate several recent sequence-based predictors of secondary structure, disorder, and solvent accessibility descriptors using a benchmark set based on CASP8 targets. Our analysis shows that the secondary structure can be predicted with over 80% accuracy and segment overlap (SOV), disorder with over 0.9 AUC, 0.6 Matthews Correlation Coefficient (MCC), and 75% SOV, and relative solvent accessibility with PCC of 0.7 and MCC of 0.6 (0.86 when homology is used). We demonstrate that the secondary structure predicted from sequence without the use of homology modeling is as good as the structure extracted from the 3D folds predicted by top-performing template-based methods.

  7. Protein structure refinement using a quantum mechanics-based chemical shielding predictor.

    Science.gov (United States)

    Bratholm, Lars A; Jensen, Jan H

    2017-03-01

    The accurate prediction of protein chemical shifts using a quantum mechanics (QM)-based method has been the subject of intense research for more than 20 years but so far empirical methods for chemical shift prediction have proven more accurate. In this paper we show that a QM-based predictor of a protein backbone and CB chemical shifts (ProCS15, PeerJ , 2016, 3, e1344) is of comparable accuracy to empirical chemical shift predictors after chemical shift-based structural refinement that removes small structural errors. We present a method by which quantum chemistry based predictions of isotropic chemical shielding values (ProCS15) can be used to refine protein structures using Markov Chain Monte Carlo (MCMC) simulations, relating the chemical shielding values to the experimental chemical shifts probabilistically. Two kinds of MCMC structural refinement simulations were performed using force field geometry optimized X-ray structures as starting points: simulated annealing of the starting structure and constant temperature MCMC simulation followed by simulated annealing of a representative ensemble structure. Annealing of the CHARMM structure changes the CA-RMSD by an average of 0.4 Å but lowers the chemical shift RMSD by 1.0 and 0.7 ppm for CA and N. Conformational averaging has a relatively small effect (0.1-0.2 ppm) on the overall agreement with carbon chemical shifts but lowers the error for nitrogen chemical shifts by 0.4 ppm. If an amino acid specific offset is included the ProCS15 predicted chemical shifts have RMSD values relative to experiments that are comparable to popular empirical chemical shift predictors. The annealed representative ensemble structures differ in CA-RMSD relative to the initial structures by an average of 2.0 Å, with >2.0 Å difference for six proteins. In four of the cases, the largest structural differences arise in structurally flexible regions of the protein as determined by NMR, and in the remaining two cases, the large structural

  8. The determinants of bond angle variability in protein/peptide backbones: A comprehensive statistical/quantum mechanics analysis.

    Science.gov (United States)

    Improta, Roberto; Vitagliano, Luigi; Esposito, Luciana

    2015-11-01

    The elucidation of the mutual influence between peptide bond geometry and local conformation has important implications for protein structure refinement, validation, and prediction. To gain insights into the structural determinants and the energetic contributions associated with protein/peptide backbone plasticity, we here report an extensive analysis of the variability of the peptide bond angles by combining statistical analyses of protein structures and quantum mechanics calculations on small model peptide systems. Our analyses demonstrate that all the backbone bond angles strongly depend on the peptide conformation and unveil the existence of regular trends as function of ψ and/or φ. The excellent agreement of the quantum mechanics calculations with the statistical surveys of protein structures validates the computational scheme here employed and demonstrates that the valence geometry of protein/peptide backbone is primarily dictated by local interactions. Notably, for the first time we show that the position of the H(α) hydrogen atom, which is an important parameter in NMR structural studies, is also dependent on the local conformation. Most of the trends observed may be satisfactorily explained by invoking steric repulsive interactions; in some specific cases the valence bond variability is also influenced by hydrogen-bond like interactions. Moreover, we can provide a reliable estimate of the energies involved in the interplay between geometry and conformations. © 2015 Wiley Periodicals, Inc.

  9. Towards fully automated structure-based NMR resonance assignment of 15N-labeled proteins from automatically picked peaks

    KAUST Repository

    Jang, Richard; Gao, Xin; Li, Ming

    2011-01-01

    In NMR resonance assignment, an indispensable step in NMR protein studies, manually processed peaks from both N-labeled and C-labeled spectra are typically used as inputs. However, the use of homologous structures can allow one to use only N-labeled NMR data and avoid the added expense of using C-labeled data. We propose a novel integer programming framework for structure-based backbone resonance assignment using N-labeled data. The core consists of a pair of integer programming models: one for spin system forming and amino acid typing, and the other for backbone resonance assignment. The goal is to perform the assignment directly from spectra without any manual intervention via automatically picked peaks, which are much noisier than manually picked peaks, so methods must be error-tolerant. In the case of semi-automated/manually processed peak data, we compare our system with the Xiong-Pandurangan-Bailey- Kellogg's contact replacement (CR) method, which is the most error-tolerant method for structure-based resonance assignment. Our system, on average, reduces the error rate of the CR method by five folds on their data set. In addition, by using an iterative algorithm, our system has the added capability of using the NOESY data to correct assignment errors due to errors in predicting the amino acid and secondary structure type of each spin system. On a publicly available data set for human ubiquitin, where the typing accuracy is 83%, we achieve 91% accuracy, compared to the 59% accuracy obtained without correcting for such errors. In the case of automatically picked peaks, using assignment information from yeast ubiquitin, we achieve a fully automatic assignment with 97% accuracy. To our knowledge, this is the first system that can achieve fully automatic structure-based assignment directly from spectra. This has implications in NMR protein mutant studies, where the assignment step is repeated for each mutant. © Copyright 2011, Mary Ann Liebert, Inc.

  10. Towards fully automated structure-based NMR resonance assignment of 15N-labeled proteins from automatically picked peaks

    KAUST Repository

    Jang, Richard

    2011-03-01

    In NMR resonance assignment, an indispensable step in NMR protein studies, manually processed peaks from both N-labeled and C-labeled spectra are typically used as inputs. However, the use of homologous structures can allow one to use only N-labeled NMR data and avoid the added expense of using C-labeled data. We propose a novel integer programming framework for structure-based backbone resonance assignment using N-labeled data. The core consists of a pair of integer programming models: one for spin system forming and amino acid typing, and the other for backbone resonance assignment. The goal is to perform the assignment directly from spectra without any manual intervention via automatically picked peaks, which are much noisier than manually picked peaks, so methods must be error-tolerant. In the case of semi-automated/manually processed peak data, we compare our system with the Xiong-Pandurangan-Bailey- Kellogg\\'s contact replacement (CR) method, which is the most error-tolerant method for structure-based resonance assignment. Our system, on average, reduces the error rate of the CR method by five folds on their data set. In addition, by using an iterative algorithm, our system has the added capability of using the NOESY data to correct assignment errors due to errors in predicting the amino acid and secondary structure type of each spin system. On a publicly available data set for human ubiquitin, where the typing accuracy is 83%, we achieve 91% accuracy, compared to the 59% accuracy obtained without correcting for such errors. In the case of automatically picked peaks, using assignment information from yeast ubiquitin, we achieve a fully automatic assignment with 97% accuracy. To our knowledge, this is the first system that can achieve fully automatic structure-based assignment directly from spectra. This has implications in NMR protein mutant studies, where the assignment step is repeated for each mutant. © Copyright 2011, Mary Ann Liebert, Inc.

  11. Solution Structure of a Novel C2-Symmetrical Bifunctional Bicyclic Inhibitor Based on SFTI-1

    International Nuclear Information System (INIS)

    Jaulent, Agnes M.; Brauer, Arnd B. E.; Matthews, Stephen J.; Leatherbarrow, Robin J.

    2005-01-01

    A novel bifunctional bicyclic inhibitor has been created that combines features both from the Bowman-Birk inhibitor (BBI) proteins, which have two distinct inhibitory sites, and from sunflower trypsin inhibitor-1 (SFTI-1), which has a compact bicyclic structure. The inhibitor was designed by fusing together a pair of reactive loops based on a sequence derived from SFTI-1 to create a backbone-cyclized disulfide-bridged 16-mer peptide. This peptide has two symmetrically spaced trypsin binding sites. Its synthesis and biological activity have been reported in a previous communication [Jaulent and Leatherbarrow, 2004, PEDS 17, 681]. In the present study we have examined the three-dimensional structure of the molecule. We find that the new inhibitor, which has a symmetrical 8-mer half-cystine CTKSIPP'I' motif repeated through a C 2 symmetry axis also shows a complete symmetry in its three-dimensional structure. Each of the two loops adopts the expected canonical conformation common to all BBIs as well as SFTI-1. We also find that the inhibitor displays a strong and unique structural identity, with a notable lack of minor conformational isomers that characterise most reactive site loop mimics examined to date as well as SFTI-1. This suggests that the presence of the additional cyclic loop acts to restrict conformational mobility and that the deliberate introduction of cyclic symmetry may offer a general route to locking the conformation of β-hairpin structures

  12. Neurocardiology: Structure-Based Function.

    Science.gov (United States)

    Ardell, Jeffrey L; Armour, John Andrew

    2016-09-15

    Cardiac control is mediated via a series of reflex control networks involving somata in the (i) intrinsic cardiac ganglia (heart), (ii) intrathoracic extracardiac ganglia (stellate, middle cervical), (iii) superior cervical ganglia, (iv) spinal cord, (v) brainstem, and (vi) higher centers. Each of these processing centers contains afferent, efferent, and local circuit neurons, which interact locally and in an interdependent fashion with the other levels to coordinate regional cardiac electrical and mechanical indices on a beat-to-beat basis. This control system is optimized to respond to normal physiological stressors (standing, exercise, and temperature); however, it can be catastrophically disrupted by pathological events such as myocardial ischemia. In fact, it is now recognized that autonomic dysregulation is central to the evolution of heart failure and arrhythmias. Autonomic regulation therapy is an emerging modality in the management of acute and chronic cardiac pathologies. Neuromodulation-based approaches that target select nexus points of this hierarchy for cardiac control offer unique opportunities to positively affect therapeutic outcomes via improved efficacy of cardiovascular reflex control. As such, understanding the anatomical and physiological basis for such control is necessary to implement effectively novel neuromodulation therapies. © 2016 American Physiological Society. Compr Physiol 6:1635-1653, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  13. First-line HIV treatment: evaluation of backbone choice and its budget impact

    Directory of Open Access Journals (Sweden)

    Orietta Zaniolo

    2013-06-01

    Full Text Available OBJECTIVE: The gradual increase of persons living with HIV, mainly due to the reduced mortality achieved with effective antiretroviral therapies, calls for increased rationality and awareness in health resources consumption also during the early illness phases. Aim of this work is the estimation of the budget impact related to the variation in backbone prescribing trends in naïve patients.METHODS: Target population is the number of patients starting antiretroviral therapy each year, according to the Italian HIV surveillance registry, excluding patients receiving non-authorized or non-recommended regimens. We modeled 3-year mortality and durability rates on a dynamic cohort, basing on international literature. A prevalent patients analysis has also been conducted, for which the model is fed by a closed cohort consisting of all the patients without experience of virologic failure. The aim of this collateral analysis is to estimate the difference in current annual expenditures if the past prescription trends for patients starting therapy would have led to the evaluated hypothetical scenarios. Current Italian market shares of triple regimens containing first-choice or alternative backbones (tenofovir/emtricitabine, abacavir/lamivudine, tenofovir/lamivudine and zidovudine/lamivudine are compared to three hypothetical scenarios (base-case, minimum and maximum in which increasing shares of patients eligible to abacavir/lamivudine start first line treatment with this backbone. Annual cost for each regimen comprises drugs acquisition under hospital pricing rules, monitoring exams and preventive tests, valued basing on regional reimbursement tariffs.RESULTS: According to current prescribing trends, in the next three years about 13,000 patients starting HIV therapy will receive tenofovir/emtricitabine (83% of the target population, and minor portions other regimens (9% abacavir/lamivudine, 8% zidovudine/lamivudine. Patients that would be eligible to

  14. NMR backbone resonance assignments of the prodomain variants of BDNF in the urea denatured state.

    Science.gov (United States)

    Wang, Jing; Bains, Henrietta; Anastasia, Agustin; Bracken, Clay

    2018-04-01

    Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family of proteins which plays a central role in neuronal survival, growth, plasticity and memory. A single Val66Met variant has been identified in the prodomain of human BDNF that is associated with anxiety, depression and memory disorders. The structural differences within the full-length prodomain Val66 and Met66 isoforms could shed light on the mechanism of action of the Met66 and its impact on the development of neuropsychiatric-associated disorders. In the present study, we report the backbone 1 H, 13 C, and 15 N NMR assignments of both full-length Val66 and Met66 prodomains in the presence of 2 M urea. These conditions were utilized to suppress residual structure and aid subsequent native state structural investigations aimed at mapping and identifying variant-dependent conformational differences under native-state conditions.

  15. Organizational structure in process-based organizations

    NARCIS (Netherlands)

    Vanhaverbeke, W.P.M.; Torremans, H.P.M.

    1999-01-01

    This paper investigates the role of the organization structure in process-based organizations. We argue that companies cannot be designed upon organizational processes only or that process management can be simply imposed as an additional structural dimension on top of the existing functional or

  16. Higher order structural effects stabilizing the reverse watson-crick guanine-cytosine base pair in functional RNAs

    KAUST Repository

    Chawla, Mohit

    2013-10-10

    The G:C reverse Watson-Crick (W:W trans) base pair, also known as Levitt base pair in the context of tRNAs, is a structurally and functionally important base pair that contributes to tertiary interactions joining distant domains in functional RNA molecules and also participates in metabolite binding in riboswitches. We previously indicated that the isolated G:C W:W trans base pair is a rather unstable geometry, and that dicationic metal binding to the Guanine base or posttranscriptional modification of the Guanine can increase its stability. Herein, we extend our survey and report on other H-bonding interactions that can increase the stability of this base pair. To this aim, we performed a bioinformatics search of the PDB to locate all the occurencies of G:C trans base pairs. Interestingly, 66% of the G:C trans base pairs in the PDB are engaged in additional H-bonding interactions with other bases, the RNA backbone or structured water molecules. High level quantum mechanical calculations on a data set of representative crystal structures were performed to shed light on the structural stability and energetics of the various crystallographic motifs. This analysis was extended to the binding of the preQ1 metabolite to a preQ1-II riboswitch. 2013 The Author(s).

  17. Empirical correlation between protein backbone {sup 15}N and {sup 13}C secondary chemical shifts and its application to nitrogen chemical shift re-referencing

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liya [Cold Spring Harbor Laboratory (United States); Markley, John L. [University of Wisconsin, Biochemistry Department (United States)], E-mail: markley@nmrfam.wisc.edu

    2009-06-15

    The linear analysis of chemical shifts (LACS) has provided a robust method for identifying and correcting {sup 13}C chemical shift referencing problems in data from protein NMR spectroscopy. Unlike other approaches, LACS does not require prior knowledge of the three-dimensional structure or inference of the secondary structure of the protein. It also does not require extensive assignment of the NMR data. We report here a way of extending the LACS approach to {sup 15}N NMR data from proteins, so as to enable the detection and correction of inconsistencies in chemical shift referencing for this nucleus. The approach is based on our finding that the secondary {sup 15}N chemical shift of the backbone nitrogen atom of residue i is strongly correlated with the secondary chemical shift difference (experimental minus random coil) between the alpha and beta carbons of residue i - 1. Thus once alpha and beta {sup 13}C chemical shifts are available (their difference is referencing error-free), the {sup 15}N referencing can be validated, and an appropriate offset correction can be derived. This approach can be implemented prior to a structure determination and can be used to analyze potential referencing problems in database data not associated with three-dimensional structure. Application of the LACS algorithm to the current BMRB protein chemical shift database, revealed that nearly 35% of the BMRB entries have {delta}{sup 15}N values mis-referenced by over 0.7 ppm and over 25% of them have {delta}{sup 1}H{sup N} values mis-referenced by over 0.12 ppm. One implication of the findings reported here is that a backbone {sup 15}N chemical shift provides a better indicator of the conformation of the preceding residue than of the residue itself.

  18. Effect of oligonucleic acid (ONA) backbone features on assembly of ONA-star polymer conjugates: a coarse-grained molecular simulation study.

    Science.gov (United States)

    Condon, Joshua E; Jayaraman, Arthi

    2017-10-04

    Understanding the impact of incorporating new physical and chemical features in oligomeric DNA mimics, termed generally as "oligonucleic acids" (ONAs), on their structure and thermodynamics will be beneficial in designing novel materials for a variety of applications. In this work, we conduct coarse-grained molecular simulations of ONA-star polymer conjugates with varying ONA backbone flexibility, ONA backbone charge, and number of arms in the star polymer at a constant ONA strand volume fraction to elucidate the effect of these design parameters on the thermodynamics and assembly of multi-arm ONA-star polymer conjugates. We quantify the thermo-reversible behavior of the ONA-star polymer conjugates by quantifying the hybridization of the ONA strands in the system as a function of temperature (i.e. melting curve). Additionally, we characterize the assembly of the ONA-star polymer conjugates by tracking cluster formation and percolation as a function of temperature, as well as cluster size distribution at temperatures near the assembly transition region. The key results are as follows. The melting temperature (T m ) of the ONA strands decreases upon going from a neutral to a charged ONA backbone and upon increasing flexibility of the ONA backbone. Similar behavior is seen for the assembly transition temperature (T a ) with varying ONA backbone charge and flexibility. While the number of arms in the ONA-star polymer conjugate has a negligible effect on the ONA T m in these systems, as the number of ONA-star polymer arms increase, the assembly temperature T a increases and local ordering in the assembled state improves. By understanding how factors like ONA backbone charge, backbone flexibility, and ONA-star polymer conjugate architecture impact the behavior of ONA-star polymer conjugate systems, we can better inform how the selection of ONA chemistry will influence resulting ONA-star polymer assembly.

  19. Structure-based barcoding of proteins.

    Science.gov (United States)

    Metri, Rahul; Jerath, Gaurav; Kailas, Govind; Gacche, Nitin; Pal, Adityabarna; Ramakrishnan, Vibin

    2014-01-01

    A reduced representation in the format of a barcode has been developed to provide an overview of the topological nature of a given protein structure from 3D coordinate file. The molecular structure of a protein coordinate file from Protein Data Bank is first expressed in terms of an alpha-numero code and further converted to a barcode image. The barcode representation can be used to compare and contrast different proteins based on their structure. The utility of this method has been exemplified by comparing structural barcodes of proteins that belong to same fold family, and across different folds. In addition to this, we have attempted to provide an illustration to (i) the structural changes often seen in a given protein molecule upon interaction with ligands and (ii) Modifications in overall topology of a given protein during evolution. The program is fully downloadable from the website http://www.iitg.ac.in/probar/. © 2013 The Protein Society.

  20. Data base on structural materials aging properties

    International Nuclear Information System (INIS)

    Oland, C.B.

    1992-01-01

    The US Nuclear Regulatory Commission has initiated a Structural Aging Program at the Oak Ridge National Laboratory to identify potential structural safety issues related to continued service of nuclear power plants and to establish criteria for evaluating and resolving these issues. One of the tasks in this program focuses on the establishment of a Structural Materials Information Center where long-term and environment-dependent properties of concretes and other structural materials are being collected and assembled into a data base. These properties will be used to evaluate the current condition of critical structural components in nuclear power plants and to estimate the future performance of these materials during the continued service period

  1. IPE data base structure and insights

    International Nuclear Information System (INIS)

    Lehner, J.; Youngblood, R.

    1993-01-01

    A data base (the ''IPE Insights Data Base''), has been developed that stores data obtained from the Individual Plant Examinations (IPEs) which licensees of nuclear power plants are conducting in response to the Nuclear Regulatory Commission's (NRC) Generic Letter GL88-20. The data base, which is a collection of linked dbase files, stores information about individual plant designs, core damage frequency, and containment performance in a uniform, structured way. This data base can be queried and used as a computational tool to derive insights regarding the plants for which data is stored. This paper sets out the objectives of the IPE Insights Data Base, describes its structure and contents, illustrates sample queries, and discusses possible future uses

  2. IPE data base structure and insights

    International Nuclear Information System (INIS)

    Lehner, J.; Youngblood, R.

    1994-01-01

    A data base (the open-quotes IPE Insights Data Baseclose quotes), has been developed that stores data obtained from the Individual Plant Examinations (IPEs) which licensees of nuclear power plants are conducting in response to the Nuclear Regulatory Commission's (NRC) Generic Letter GL88-20. The data base, which is a collection of linked dBase files, stores information about individual plant designs, core damage frequency, and containment performance in a uniform, structured way. This data base can be queried and used as a computational tool to derive insights regarding the plants for which data is stored. This paper sets out the objectives of the IPE Insights Data Base, describes its structure and contents, illustrates sample queries, and discusses possible future uses

  3. Reliability based Design of Coastal Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    2003-01-01

    Conventional design practice for coastal structures is deterministic in nature and is based on the concept of a design load which should not exceed the resistance (carrying capacity) of the structure. The design load is usually defined on a probabilistic basis as a characteristic value of the load......, for example the expectation (mean) value of the 100-year return period event. However, this selection is often made without consideration of the involved uncertainties. In most cases the resistance is defined in terms of the load that causes a certain design impact or damage to the structure...

  4. Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for interferon antagonism.

    Directory of Open Access Journals (Sweden)

    Shridhar Bale

    2012-09-01

    Full Text Available Filoviruses, including Marburg virus (MARV and Ebola virus (EBOV, cause fatal hemorrhagic fever in humans and non-human primates. All filoviruses encode a unique multi-functional protein termed VP35. The C-terminal double-stranded (dsRNA-binding domain (RBD of VP35 has been implicated in interferon antagonism and immune evasion. Crystal structures of the VP35 RBD from two ebolaviruses have previously demonstrated that the viral protein caps the ends of dsRNA. However, it is not yet understood how the expanses of dsRNA backbone, between the ends, are masked from immune surveillance during filovirus infection. Here, we report the crystal structure of MARV VP35 RBD bound to dsRNA. In the crystal structure, molecules of dsRNA stack end-to-end to form a pseudo-continuous oligonucleotide. This oligonucleotide is continuously and completely coated along its sugar-phosphate backbone by the MARV VP35 RBD. Analysis of dsRNA binding by dot-blot and isothermal titration calorimetry reveals that multiple copies of MARV VP35 RBD can indeed bind the dsRNA sugar-phosphate backbone in a cooperative manner in solution. Further, MARV VP35 RBD can also cap the ends of the dsRNA in solution, although this arrangement was not captured in crystals. Together, these studies suggest that MARV VP35 can both coat the backbone and cap the ends, and that for MARV, coating of the dsRNA backbone may be an essential mechanism by which dsRNA is masked from backbone-sensing immune surveillance molecules.

  5. Design of an IPTV Multicast System for Internet Backbone Networks

    Directory of Open Access Journals (Sweden)

    T. H. Szymanski

    2010-01-01

    Full Text Available The design of an IPTV multicast system for the Internet backbone network is presented and explored through extensive simulations. In the proposed system, a resource reservation algorithm such as RSVP, IntServ, or DiffServ is used to reserve resources (i.e., bandwidth and buffer space in each router in an IP multicast tree. Each router uses an Input-Queued, Output-Queued, or Crosspoint-Queued switch architecture with unity speedup. A recently proposed Recursive Fair Stochastic Matrix Decomposition algorithm used to compute near-perfect transmission schedules for each IP router. The IPTV traffic is shaped at the sources using Application-Specific Token Bucker Traffic Shapers, to limit the burstiness of incoming network traffic. The IPTV traffic is shaped at the destinations using Application-Specific Playback Queues, to remove residual network jitter and reconstruct the original bursty IPTV video streams at each destination. All IPTV traffic flows are regenerated at the destinations with essentially zero delay jitter and essentially-perfect QoS. The destination nodes deliver the IPTV streams to the ultimate end users using the same IPTV multicast system over a regional Metropolitan Area Network. It is shown that all IPTV traffic is delivered with essentially-perfect end-to-end QoS, with deterministic bounds on the maximum delay and jitter on each video frame. Detailed simulations of an IPTV distribution system, multicasting several hundred high-definition IPTV video streams over several essentially saturated IP backbone networks are presented.

  6. Backbone dynamics of the human CC-chemokine eotaxin

    Energy Technology Data Exchange (ETDEWEB)

    Ye Jiqing; Mayer, Kristen L.; Stone, Martin J. [Indiana University, Department of Chemistry (United States)

    1999-10-15

    Eotaxin is a CC chemokine with potent chemoattractant activity towards eosinophils. {sup 15}N NMR relaxation data have been used to characterize the backbone dynamics of recombinant human eotaxin. {sup 15}N longitudinal (R{sub 1}) and transverse (R{sub 2}) auto relaxation rates, heteronuclear {sup 1}H-{sup 15}N steady-state NOEs, and transverse cross-relaxation rates ({eta}{sub xy}) were obtained at 30 deg. C for all resolved backbone secondary amide groups using {sup 1} H-detected two-dimensional NMR experiments. Ratios of transverse auto and cross relaxation rates were used to identify NH groups influenced by slow conformational rearrangement. Relaxation data were fit to the extended model free dynamics formalism, yielding parameters describing axially symmetric molecular rotational diffusion and the internal dynamics of each NH group. The molecular rotational correlation time ({tau}{sub m}) is 5.09{+-}0.02 ns, indicating that eotaxin exists predominantly as a monomer under the conditions of the NMR study. The ratio of diffusion rates about unique and perpendicular axes (D{sub parallel}/D{sub perpendicular}) is 0.81{+-}0.02. Residues with large amplitudes of subnanosecond motion are clustered in the N-terminal region (residues 1-19), the C-terminus (residues 68-73) and the loop connecting the first two {beta}-strands (residues 30-37). N-terminal flexibility appears to be conserved throughout the chemokine family and may have implications for the mechanism of chemokine receptor activation. Residues exhibiting significant dynamics on the microsecond-millisecond time scale are located close to the two conserved disulfide bonds, suggesting that these motions may be coupled to disulfide bond isomerization.

  7. Cognitive diagnostic assessment based on knowledge structure

    Directory of Open Access Journals (Sweden)

    Huang Sue-Fen

    2018-01-01

    Full Text Available The purpose of this study is to provide an integrated method of fuzzy theory basis for individualized concept structure analysis. In order to insight the misconception of learning basic mathematics and progress teaching. This method integrates Fuzzy Logic Model of Perception (FLMP and Interpretive Structural Modelling (ISM. The combined algorithm could analyze individualized concepts structure based on the comparisons with concept structure of expert. In this paper, some well-known knowledge structure assessment methods will be discussed. For item connection, Bart et al ordering theory and Takeya’s item relational structure provided ordering coefficient to construct item relationships and hierarchies. For concepts or skills connection, Warfield’s ISM and Lin et al Concept Advanced Interpretive Structural Modelling (CAISM provided to construct graphic relationship among elements and display the individualized concept hierarchy structure by numeric and picture. Samples contain 427 which come from Min-Hwei Junior College. Subjects were analyzed by CAISM. It shows the traditional assessment is not the only criteria; it must be combined with other assessment tools. The result shows that CAISM gives meaningful learning and lacks of learners.

  8. The Prediction of Botulinum Toxin Structure Based on in Silico and in Vitro Analysis

    Science.gov (United States)

    Suzuki, Tomonori; Miyazaki, Satoru

    2011-01-01

    Many of biological system mediated through protein-protein interactions. Knowledge of protein-protein complex structure is required for understanding the function. The determination of huge size and flexible protein-protein complex structure by experimental studies remains difficult, costly and five-consuming, therefore computational prediction of protein structures by homolog modeling and docking studies is valuable method. In addition, MD simulation is also one of the most powerful methods allowing to see the real dynamics of proteins. Here, we predict protein-protein complex structure of botulinum toxin to analyze its property. These bioinformatics methods are useful to report the relation between the flexibility of backbone structure and the activity.

  9. Structured Performance Analysis for Component Based Systems

    OpenAIRE

    Salmi , N.; Moreaux , Patrice; Ioualalen , M.

    2012-01-01

    International audience; The Component Based System (CBS) paradigm is now largely used to design software systems. In addition, performance and behavioural analysis remains a required step for the design and the construction of efficient systems. This is especially the case of CBS, which involve interconnected components running concurrent processes. % This paper proposes a compositional method for modeling and structured performance analysis of CBS. Modeling is based on Stochastic Well-formed...

  10. Vibrational Based Inspection of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Rytter, Anders

    at the University of Aalborg from 1988 to 1991. Secondly, a research project, In-Field Vibration Based Inspection of Civil Engineering Structures, which has been performed as a pilot project by the Consulting Engineers Rambøll, Hannemann and Højlund in cooperation with the department of Building Technology......The thesis has been written in relation to two different research projects. Firstly, an offshore test programme, Integrated Experimental/Numerical Analysis of the Dynamic behavior of offshore structures, which was performed at the department of Building Technology and Structural Engineering...... and Structural Engineering at the University of Aalborg since the beginning of 1992. Both projects have been supported by the Danish Technical Research Council. Further, the first mentioned project was supported by the Danish Energy Agency. Their financial support is gratefully acknowledged....

  11. Electronic structure of Fe-based superconductors

    Indian Academy of Sciences (India)

    Abstract. Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the dominant ...

  12. Electronic structure of Fe-based superconductors

    Indian Academy of Sciences (India)

    2015-05-29

    May 29, 2015 ... Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the ...

  13. Assignment of protein backbone resonances using connectivity, torsion angles and 13Cα chemical shifts

    International Nuclear Information System (INIS)

    Morris, Laura C.; Valafar, Homayoun; Prestegard, James H.

    2004-01-01

    A program is presented which will return the most probable sequence location for a short connected set of residues in a protein given just 13 C α chemical shifts (δ( 13 C α )) and data restricting the φ and ψ backbone angles. Data taken from both the BioMagResBank and the Protein Data Bank were used to create a probability density function (PDF) using a multivariate normal distribution in δ( 13 C α ), φ, and ψ space for each amino acid residue. Extracting and combining probabilities for particular amino acid residues in a short proposed sequence yields a score indicative of the correctness of the proposed assignment. The program is illustrated using several proteins for which structure and 13 C α chemical shift data are available

  14. Side chain and backbone contributions of Phe508 to CFTR folding

    Energy Technology Data Exchange (ETDEWEB)

    Thibodeau, Patrick H.; Brautigam, Chad A.; Machius, Mischa; Thomas, Philip J. (U. of Texas-SMED)

    2010-12-07

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an integral membrane protein, cause cystic fibrosis (CF). The most common CF-causing mutant, deletion of Phe508, fails to properly fold. To elucidate the role Phe508 plays in the folding of CFTR, missense mutations at this position were generated. Only one missense mutation had a pronounced effect on the stability and folding of the isolated domain in vitro. In contrast, many substitutions, including those of charged and bulky residues, disrupted folding of full-length CFTR in cells. Structures of two mutant nucleotide-binding domains (NBDs) reveal only local alterations of the surface near position 508. These results suggest that the peptide backbone plays a role in the proper folding of the domain, whereas the side chain plays a role in defining a surface of NBD1 that potentially interacts with other domains during the maturation of intact CFTR.

  15. Cross-correlated relaxation rates between protein backbone H–X dipolar interactions

    International Nuclear Information System (INIS)

    Vögeli, Beat

    2017-01-01

    The relaxation interference between dipole–dipole interactions of two separate spin pairs carries structural and dynamics information. In particular, when compared to individual dynamic behavior of those spin pairs, such cross-correlated relaxation (CCR) rates report on the correlation between the spin pairs. We have recently mapped out correlated motion along the backbone of the protein GB3, using CCR rates among and between consecutive H N –N and H α –C α dipole–dipole interactions. Here, we provide a detailed account of the measurement of the four types of CCR rates. All rates were obtained from at least two different pulse sequences, of which the yet unpublished ones are presented. Detailed comparisons between the different methods and corrections for unwanted pathways demonstrate that the averaged CCR rates are highly accurate and precise with errors of 1.5–3% of the entire value ranges.

  16. Cross-correlated relaxation rates between protein backbone H–X dipolar interactions

    Energy Technology Data Exchange (ETDEWEB)

    Vögeli, Beat, E-mail: beat.vogeli@ucdenver.edu [University of Colorado Denver, Department of Biochemistry and Molecular Genetics (United States)

    2017-03-15

    The relaxation interference between dipole–dipole interactions of two separate spin pairs carries structural and dynamics information. In particular, when compared to individual dynamic behavior of those spin pairs, such cross-correlated relaxation (CCR) rates report on the correlation between the spin pairs. We have recently mapped out correlated motion along the backbone of the protein GB3, using CCR rates among and between consecutive H{sup N}–N and H{sup α}–C{sup α} dipole–dipole interactions. Here, we provide a detailed account of the measurement of the four types of CCR rates. All rates were obtained from at least two different pulse sequences, of which the yet unpublished ones are presented. Detailed comparisons between the different methods and corrections for unwanted pathways demonstrate that the averaged CCR rates are highly accurate and precise with errors of 1.5–3% of the entire value ranges.

  17. Molecular couplings and energy exchange between DNA and water mapped by femtosecond infrared spectroscopy of backbone vibrations

    Directory of Open Access Journals (Sweden)

    Yingliang Liu

    2017-07-01

    Full Text Available Molecular couplings between DNA and water together with the accompanying processes of energy exchange are mapped via the ultrafast response of DNA backbone vibrations after OH stretch excitation of the water shell. Native salmon testes DNA is studied in femtosecond pump-probe experiments under conditions of full hydration and at a reduced hydration level with two water layers around the double helix. Independent of their local hydration patterns, all backbone vibrations in the frequency range from 940 to 1120 cm–1 display a quasi-instantaneous reshaping of the spectral envelopes of their fundamental absorption bands upon excitation of the water shell. The subsequent reshaping kinetics encompass a one-picosecond component, reflecting the formation of a hot ground state of the water shell, and a slower contribution on a time scale of tens of picoseconds. Such results are benchmarked by measurements with resonant excitation of the backbone modes, resulting in distinctly different absorption changes. We assign the fast changes of DNA absorption after OH stretch excitation to structural changes in the water shell which couple to DNA through the local electric fields. The second slower process is attributed to a flow of excess energy from the water shell into DNA, establishing a common heated ground state in the molecular ensemble. This interpretation is supported by theoretical calculations of the electric fields exerted by the water shell at different temperatures.

  18. The Role of Backbone Hydrogen Bonds in the Transition State for Protein Folding of a PDZ Domain.

    Directory of Open Access Journals (Sweden)

    Søren W. Pedersen

    Full Text Available Backbone hydrogen bonds are important for the structure and stability of proteins. However, since conventional site-directed mutagenesis cannot be applied to perturb the backbone, the contribution of these hydrogen bonds in protein folding and stability has been assessed only for a very limited set of small proteins. We have here investigated effects of five amide-to-ester mutations in the backbone of a PDZ domain, a 90-residue globular protein domain, to probe the influence of hydrogen bonds in a β-sheet for folding and stability. The amide-to-ester mutation removes NH-mediated hydrogen bonds and destabilizes hydrogen bonds formed by the carbonyl oxygen. The overall stability of the PDZ domain generally decreased for all amide-to-ester mutants due to an increase in the unfolding rate constant. For this particular region of the PDZ domain, it is therefore clear that native hydrogen bonds are formed after crossing of the rate-limiting barrier for folding. Moreover, three of the five amide-to-ester mutants displayed an increase in the folding rate constant suggesting that the hydrogen bonds are involved in non-native interactions in the transition state for folding.

  19. Geography-based structural analysis of the Internet

    Energy Technology Data Exchange (ETDEWEB)

    Kasiviswanathan, Shiva [Los Alamos National Laboratory; Eidenbenz, Stephan [Los Alamos National Laboratory; Yan, Guanhua [Los Alamos National Laboratory

    2010-01-01

    In this paper, we study some geographic aspects of the Internet. We base our analysis on a large set of geolocated IP hop-level session data (including about 300,000 backbone routers, 150 million end hosts, and 1 billion sessions) that we synthesized from a variety of different input sources such as US census data, computer usage statistics, Internet market share data, IP geolocation data sets, CAJDA's Skitter data set for backbone connectivity, and BGP routing tables. We use this model to perform a nationwide and statewide geographic analysis of the Internet. Our main observations are: (1) There is a dominant coast-to-coast pattern in the US Internet traffic. In fact, in many instances even if the end-devices are not near either coast, still the traffic between them takes a long detour through the coasts. (2) More than half of the Internet paths are inflated by 100% or more compared to their corresponding geometric straight-line distance. This circuitousness makes the average ratio between the routing distance and geometric distance big (around 10). (3) The weighted mean hop count is around 5, but the hop counts are very loosely correlated with the distances. The weighted mean AS count (number of ASes traversed) is around 3. (4) The AS size and the AS location number distributions are heavy-tailed and strongly correlated. Most of the ASes are medium sized and there is a wide variability in the geographic dispersion size (measured in terms of the convex hull area) of these ASes.

  20. UV-POSIT: Web-Based Tools for Rapid and Facile Structural Interpretation of Ultraviolet Photodissociation (UVPD) Mass Spectra

    Science.gov (United States)

    Rosenberg, Jake; Parker, W. Ryan; Cammarata, Michael B.; Brodbelt, Jennifer S.

    2018-04-01

    UV-POSIT (Ultraviolet Photodissociation Online Structure Interrogation Tools) is a suite of web-based tools designed to facilitate the rapid interpretation of data from native mass spectrometry experiments making use of 193 nm ultraviolet photodissociation (UVPD). The suite includes four separate utilities which assist in the calculation of fragment ion abundances as a function of backbone cleavage sites and sequence position; the localization of charge sites in intact proteins; the calculation of hydrogen elimination propensity for a-type fragment ions; and mass-offset searching of UVPD spectra to identify unknown modifications and assess false positive fragment identifications. UV-POSIT is implemented as a Python/Flask web application hosted at http://uv-posit.cm.utexas.edu. UV-POSIT is available under the MIT license, and the source code is available at https://github.com/jarosenb/UV_POSIT. [Figure not available: see fulltext.

  1. UV-POSIT: Web-Based Tools for Rapid and Facile Structural Interpretation of Ultraviolet Photodissociation (UVPD) Mass Spectra.

    Science.gov (United States)

    Rosenberg, Jake; Parker, W Ryan; Cammarata, Michael B; Brodbelt, Jennifer S

    2018-04-06

    UV-POSIT (Ultraviolet Photodissociation Online Structure Interrogation Tools) is a suite of web-based tools designed to facilitate the rapid interpretation of data from native mass spectrometry experiments making use of 193 nm ultraviolet photodissociation (UVPD). The suite includes four separate utilities which assist in the calculation of fragment ion abundances as a function of backbone cleavage sites and sequence position; the localization of charge sites in intact proteins; the calculation of hydrogen elimination propensity for a-type fragment ions; and mass-offset searching of UVPD spectra to identify unknown modifications and assess false positive fragment identifications. UV-POSIT is implemented as a Python/Flask web application hosted at http://uv-posit.cm.utexas.edu . UV-POSIT is available under the MIT license, and the source code is available at https://github.com/jarosenb/UV_POSIT . Graphical Abstract.

  2. Mapping population-based structural connectomes.

    Science.gov (United States)

    Zhang, Zhengwu; Descoteaux, Maxime; Zhang, Jingwen; Girard, Gabriel; Chamberland, Maxime; Dunson, David; Srivastava, Anuj; Zhu, Hongtu

    2018-05-15

    Advances in understanding the structural connectomes of human brain require improved approaches for the construction, comparison and integration of high-dimensional whole-brain tractography data from a large number of individuals. This article develops a population-based structural connectome (PSC) mapping framework to address these challenges. PSC simultaneously characterizes a large number of white matter bundles within and across different subjects by registering different subjects' brains based on coarse cortical parcellations, compressing the bundles of each connection, and extracting novel connection weights. A robust tractography algorithm and streamline post-processing techniques, including dilation of gray matter regions, streamline cutting, and outlier streamline removal are applied to improve the robustness of the extracted structural connectomes. The developed PSC framework can be used to reproducibly extract binary networks, weighted networks and streamline-based brain connectomes. We apply the PSC to Human Connectome Project data to illustrate its application in characterizing normal variations and heritability of structural connectomes in healthy subjects. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. NMR in structure-based drug design.

    Science.gov (United States)

    Carneiro, Marta G; Ab, Eiso; Theisgen, Stephan; Siegal, Gregg

    2017-11-08

    NMR spectroscopy is a powerful technique that can provide valuable structural information for drug discovery endeavors. Here, we discuss the strengths (and limitations) of NMR applications to structure-based drug discovery, highlighting the different levels of resolution and throughput obtainable. Additionally, the emerging field of paramagnetic NMR in drug discovery and recent developments in approaches to speed up and automate protein-observed NMR data collection and analysis are discussed. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Intelligent-based Structural Damage Detection Model

    International Nuclear Information System (INIS)

    Lee, Eric Wai Ming; Yu, K.F.

    2010-01-01

    This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.

  5. Intelligent-based Structural Damage Detection Model

    Science.gov (United States)

    Lee, Eric Wai Ming; Yu, Kin Fung

    2010-05-01

    This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.

  6. (1)H, (13)C, and (15)N backbone resonance assignments of the full-length 40 kDa S. acidocaldarius Y-family DNA polymerase, dinB homolog.

    Science.gov (United States)

    Moro, Sean L; Cocco, Melanie J

    2015-10-01

    The dinB homolog (Dbh) is a member of the Y-family of translesion DNA polymerases, which are specialized to accurately replicate DNA across from a wide variety of lesions in living cells. Lesioned bases block the progression of high-fidelity polymerases and cause detrimental replication fork stalling; Y-family polymerases can bypass these lesions. The active site of the translesion synthesis polymerase is more open than that of a replicative polymerase; consequently Dbh polymerizes with low fidelity. Bypass polymerases also have low processivity. Short extension past the lesion allows the high-fidelity polymerase to switch back onto the site of replication. Dbh and the other Y-family polymerases have been used as structural models to investigate the mechanisms of DNA polymerization and lesion bypass. Many high-resolution crystal structures of Y-family polymerases have been reported. NMR dynamics studies can complement these structures by providing a measure of protein motions. Here we report the (15)N, (1)H, and (13)C backbone resonance assignments at two temperatures (35 and 50 °C) for Sulfolobus acidocaldarius Dbh polymerase. Backbone resonance assignments have been obtained for 86 % of the residues. The polymerase active site is assigned as well as the majority of residues in each of the four domains.

  7. Data Extraction Based on Page Structure Analysis

    Directory of Open Access Journals (Sweden)

    Ren Yichao

    2017-01-01

    Full Text Available The information we need has some confusing problems such as dispersion and different organizational structure. In addition, because of the existence of unstructured data like natural language and images, extracting local content pages is extremely difficult. In the light of of the problems above, this article will apply a method combined with page structure analysis algorithm and page data extraction algorithm to accomplish the gathering of network data. In this way, the problem that traditional complex extraction model behave poorly when dealing with large-scale data is perfectly solved and the page data extraction efficiency is also boosted to a new level. In the meantime, the article will also make a comparison about pages and content of different types between the methods of DOM structure based on the page and HTML regularities of distribution. After all of those, we may find a more efficient extract method.

  8. Deployable structures for a human lunar base

    Science.gov (United States)

    Gruber, Petra; Häuplik, Sandra; Imhof, Barbara; Özdemir, Kürsad; Waclavicek, Rene; Perino, Maria Antoinetta

    2007-06-01

    The study Lunar exploration architecture—deployable structures for a lunar base was performed within the Alcatel Alenia Space “Lunar Exploration Architecture” study for the European Space Agency. The purpose of the study was to investigate bionic concepts applicable to deployable structures and to interpret the findings for possible implementation concepts. The study aimed at finding innovative solutions for deployment possibilities. Translating folding/unfolding principles from nature, candidate geometries were developed and researched using models, drawings and visualisations. The use of materials, joints between structural elements and construction details were investigated for these conceptual approaches. Reference scenarios were used to identify the technical and environmental conditions, which served as design drivers. Mechanical issues and the investigation of deployment processes narrowed the selection down to six chosen concepts. Their applicability was evaluated at a conceptual stage in relation to the timescale of the mission.

  9. Reliability Based Optimization of Structural Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    1987-01-01

    The optimization problem to design structural systems such that the reliability is satisfactory during the whole lifetime of the structure is considered in this paper. Some of the quantities modelling the loads and the strength of the structure are modelled as random variables. The reliability...... is estimated using first. order reliability methods ( FORM ). The design problem is formulated as the optimization problem to minimize a given cost function such that the reliability of the single elements satisfies given requirements or such that the systems reliability satisfies a given requirement....... For these optimization problems it is described how a sensitivity analysis can be performed. Next, new optimization procedures to solve the optimization problems are presented. Two of these procedures solve the system reliability based optimization problem sequentially using quasi-analytical derivatives. Finally...

  10. Hidden Markov model approach for identifying the modular framework of the protein backbone.

    Science.gov (United States)

    Camproux, A C; Tuffery, P; Chevrolat, J P; Boisvieux, J F; Hazout, S

    1999-12-01

    The hidden Markov model (HMM) was used to identify recurrent short 3D structural building blocks (SBBs) describing protein backbones, independently of any a priori knowledge. Polypeptide chains are decomposed into a series of short segments defined by their inter-alpha-carbon distances. Basically, the model takes into account the sequentiality of the observed segments and assumes that each one corresponds to one of several possible SBBs. Fitting the model to a database of non-redundant proteins allowed us to decode proteins in terms of 12 distinct SBBs with different roles in protein structure. Some SBBs correspond to classical regular secondary structures. Others correspond to a significant subdivision of their bounding regions previously considered to be a single pattern. The major contribution of the HMM is that this model implicitly takes into account the sequential connections between SBBs and thus describes the most probable pathways by which the blocks are connected to form the framework of the protein structures. Validation of the SBBs code was performed by extracting SBB series repeated in recoding proteins and examining their structural similarities. Preliminary results on the sequence specificity of SBBs suggest promising perspectives for the prediction of SBBs or series of SBBs from the protein sequences.

  11. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones

    NARCIS (Netherlands)

    Voortman, Thomas P; Chiechi, Ryan C

    2015-01-01

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or

  12. Generation of Marker- and/or Backbone-Free Transgenic Wheat Plants via Agrobacterium-Mediated Transformation.

    Science.gov (United States)

    Wang, Gen-Ping; Yu, Xiu-Dao; Sun, Yong-Wei; Jones, Huw D; Xia, Lan-Qin

    2016-01-01

    Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM) crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154, and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants, and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154) were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium -mediated transformation will be useful to facilitate the creation of "clean" GM wheat containing only the foreign genes of agronomic importance.

  13. Generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation

    Directory of Open Access Journals (Sweden)

    Wang Genping

    2016-09-01

    Full Text Available Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154 and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154 were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation will be useful to facilitate the creation of ‘clean’ GM wheat containing only the foreign genes of agronomic importance.

  14. Base isolation strategies for structures and components

    International Nuclear Information System (INIS)

    Varma, Veto; Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    2003-08-01

    In the present report the effect of laminated rubber bearing (LRB) system on the dynamic response of the structure was studied. A LRB system was designed and tested in the laboratory for its dynamic characteristics. Finite element analysis was also performed and based on this analysis, isolator for PHWR nuclear power plant was designed. Analysis of the building was performed with and without isolator. Comparison of responses was made in terms of frequencies, accelerations and displacements and floor response spectra. (author)

  15. Data Acquisition Backbone Core DABC release v1.0

    International Nuclear Information System (INIS)

    Adamczewski-Musch, J; Kurz, N; Linev, S; Essel, H G

    2010-01-01

    The Data Acquisition Backbone Core (DABC) is a general purpose software framework designed for the implementation of a wide-range of data acquisition systems - from various small detector test beds to high performance systems. DABC consists of a compact data-flow kernel and a number of plug-ins for various functional components like data inputs, device drivers, user functional modules and applications. DABC provides configurable components for implementing event building over fast networks like InfiniBand or Gigabit Ethernet. A generic Java GUI provides the dynamic control and visualization of control parameters and commands, provided by DIM servers. A first set of application plug-ins has been implemented to use DABC as event builder for the front-end components of the GSI standard DAQ system MBS (Multi Branch System). Another application covers the connection to DAQ readout chains from detector front-end boards (N-XYTER) linked to read-out controller boards (ROC) over UDP into DABC for event building, archiving and data serving. This was applied for data taking in the September 2008 test beamtime for the CBM experiment at GSI. DABC version 1.0 is released and available from the website.

  16. Solid state radiation chemistry of the DNA backbone

    International Nuclear Information System (INIS)

    Bernhard, W.A.

    1989-09-01

    The long term goal of this program is to determine the fundamental rules needed to predict the type and yield of damage produced in DNA due to direct effects of ionizing radiation. The focus is on damage to the sugar-phosphate backbone, damage that would lead to strand breaks. Model systems have been chosen that permit various aspects of this problem to be investigated. The emphasis will be on single crystals of monosaccharides, nucleosides, and nucleotides but will also include some powder work on polynucleotides. In these model systems, free radical products and reactions are observed by electron spin resonance (ESR) and electron nuclear double resonance (ENDOR) techniques. The information thus gained is used in constructing rules that predict what primary free radicals are formed in single crystals of model compounds and the reactions stemming from the primary radicals. The formulation of a set of rules that work in model systems will represent a major advance toward formulating a set of rules that predict the direct damage in DNA itself. In a broader context this program is part of the effort to understand and predict the effects of exposure to ionizing radiation received at low dose rates over long periods of time. Assessment of low dose effects requires a basic understanding of the action of radiation at the molecular level. By contributing to that basic understanding, this program will help solve the problems of risk assessment under low dose conditions. 5 refs., 3 figs

  17. Data acquisition backbone core DABC release v1.0

    Energy Technology Data Exchange (ETDEWEB)

    Adamczewski-Musch, Joern; Essel, Hans G.; Kurz, Nikolaus; Linev, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2010-07-01

    The new experiments at FAIR require new concepts of data acquisition systems for the distribution of self-triggered, time stamped data streams over high performance networks for event building. The Data Acquisition Backbone Core (DABC) is a general purpose software framework developed for the implementation of such data acquisition systems. A DABC application consists of functional components like data input, combiner, scheduler, event builder, filter, analysis and storage which can be configured at runtime. Application specific code including the support of all kinds of data channels (front-end systems) is implemented by C++ program plug-ins. DABC is also well suited as environment for various detector and readout components test beds. A set of DABC plug-ins has been developed for the FAIR experiment CBM (Compressed Baryonic Matter) at GSI. This DABC application is used as DAQ system for test beamtimes. Front-end boards equipped with n-XYTER ASICs and ADCs are connected to read-out controller boards (ROC). From there the data is sent over Ethernet (UDP), or over optics and PCIe interface cards into Linux PCs. DABC does the controlling, event building, archiving and data serving. The first release of DABC was published in 2009 and is available under GPL license.

  18. Bioinspired twisted composites based on Bouligand structures

    Science.gov (United States)

    Pinto, F.; Iervolino, O.; Scarselli, G.; Ginzburg, D.; Meo, M.

    2016-04-01

    The coupling between structural support and protection makes biological systems an important source of inspiration for the development of advanced smart composite structures. In particular, some particular material configurations can be implemented into traditional composites in order to improve their impact resistance and the out-of-plane properties, which represents one of the major weakness of commercial carbon fibres reinforced polymers (CFRP) structures. Based on this premise, a three-dimensional twisted arrangement shown in a vast multitude of biological systems (such as the armoured cuticles of Scarabei, the scales of Arapaima Gigas and the smashing club of Odontodactylus Scyllarus) has been replicated to develop an improved structural material characterised by a high level of in-plane isotropy and a higher interfacial strength generated by the smooth stiffness transition between each layer of fibrils. Indeed, due to their intrinsic layered nature, interlaminar stresses are one of the major causes of failure of traditional CFRP and are generated by the mismatch of the elastic properties between plies in a traditional laminate. Since the energy required to open a crack or a delamination between two adjacent plies is due to the difference between their orientations, the gradual angle variation obtained by mimicking the Bouligand Structures could improve energy absorption and the residual properties of carbon laminates when they are subjected to low velocity impact event. Two different bioinspired laminates were manufactured following a double helicoidal approach and a rotational one and were subjected to a complete test campaign including low velocity impact loading and compared to a traditional quasi-isotropic panel. Fractography analysis via X-Ray tomography was used to understand the mechanical behaviour of the different laminates and the residual properties were evaluated via Compression After Impact (CAI) tests. Results confirmed that the biological

  19. Protein structure based prediction of catalytic residues.

    Science.gov (United States)

    Fajardo, J Eduardo; Fiser, Andras

    2013-02-22

    Worldwide structural genomics projects continue to release new protein structures at an unprecedented pace, so far nearly 6000, but only about 60% of these proteins have any sort of functional annotation. We explored a range of features that can be used for the prediction of functional residues given a known three-dimensional structure. These features include various centrality measures of nodes in graphs of interacting residues: closeness, betweenness and page-rank centrality. We also analyzed the distance of functional amino acids to the general center of mass (GCM) of the structure, relative solvent accessibility (RSA), and the use of relative entropy as a measure of sequence conservation. From the selected features, neural networks were trained to identify catalytic residues. We found that using distance to the GCM together with amino acid type provide a good discriminant function, when combined independently with sequence conservation. Using an independent test set of 29 annotated protein structures, the method returned 411 of the initial 9262 residues as the most likely to be involved in function. The output 411 residues contain 70 of the annotated 111 catalytic residues. This represents an approximately 14-fold enrichment of catalytic residues on the entire input set (corresponding to a sensitivity of 63% and a precision of 17%), a performance competitive with that of other state-of-the-art methods. We found that several of the graph based measures utilize the same underlying feature of protein structures, which can be simply and more effectively captured with the distance to GCM definition. This also has the added the advantage of simplicity and easy implementation. Meanwhile sequence conservation remains by far the most influential feature in identifying functional residues. We also found that due the rapid changes in size and composition of sequence databases, conservation calculations must be recalibrated for specific reference databases.

  20. Backbone resonance assignments for G protein α(i3) subunit in the GDP-bound state.

    Science.gov (United States)

    Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2014-10-01

    Guanine-nucleotide binding proteins (G proteins) serve as molecular switches in signaling pathways, by coupling the activation of G protein-coupled receptors (GPCRs) at the cell surface to intracellular responses. In the resting state, G protein forms a heterotrimer, consisting of the G protein α subunit with GDP (Gα·GDP) and the G protein βγ subunit (Gβγ). Ligand binding to GPCRs promotes the GDP-GTP exchange on Gα, leading to the dissociation of the GTP-bound form of Gα (Gα·GTP) and Gβγ. Then, Gα·GTP and Gβγ bind to their downstream effector enzymes or ion channels and regulate their activities, leading to a variety of cellular responses. Finally, Gα hydrolyzes the bound GTP to GDP and returns to the resting state by re-associating with Gβγ. The G proteins are classified with four major families based on the amino acid sequences of Gα: i/o, s, q/11, and 12/13. Here, we established the backbone resonance assignments of human Gαi3, a member of the i/o family with a molecular weight of 41 K, in complex with GDP. The chemical shifts were compared with those of Gα(i3) in complex with a GTP-analogue, GTPγS, which we recently reported, indicating that the residues with significant chemical shift differences are mostly consistent with the regions with the structural differences between the GDP- and GTPγS-bound states, as indicated in the crystal structures. The assignments of Gα(i3)·GDP would be useful for the analyses of the dynamics of Gα(i3) and its interactions with various target molecules.

  1. Backbone modified TBA analogues endowed with antiproliferative activity.

    Science.gov (United States)

    Esposito, Veronica; Russo, Annapina; Amato, Teresa; Varra, Michela; Vellecco, Valentina; Bucci, Mariarosaria; Russo, Giulia; Virgilio, Antonella; Galeone, Aldo

    2017-05-01

    The thrombin binding aptamer (TBA) is endowed with antiproliferative properties but its potential development is counteracted by the concomitant anticoagulant activity. Five oligonucleotides (ODNs) based on TBA sequence (GGTTGGTGTGGTTGG) and containing l-residues or both l-residues and inversion of polarity sites have been investigated by NMR and CD techniques for their ability to form G-quadruplex structures. Furthermore, their anticoagulant (PT assay) and antiproliferative properties (MTT assay), and their resistance in fetal bovine serum have been tested. CD and NMR data suggest that the investigated ODNs are able to form right- and left-handed G-quadruplex structures. All ODNs do not retain the anticoagulant activity characteristic of TBA but are endowed with a significant antiproliferative activity against two cancerous cell lines. Their resistance in biological environment after six days is variable, depending on the ODN. A comparison between results and literature data suggests that the antiproliferative activity of the TBA analogues investigated could depends on two factors: a) biological pathways and targets different from those already identified or proposed for other antiproliferative G-quadruplex aptamers, and b) the contribution of the guanine-based degradation products. Modified TBA analogues containing l-residues and inversion of polarity sites lose the anticoagulant activity but gain antiproliferative properties against two cancer cell lines. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Gas separation performance of 6FDA-based polyimides with different chemical structures

    KAUST Repository

    Qiu, Wulin

    2013-10-01

    This work reports the gas separation performance of several 6FDA-based polyimides with different chemical structures, to correlate chemical structure with gas transport properties with a special focus on CO2 and CH 4 transport and plasticization stability of the polyimides membranes relevant to natural gas purification. The consideration of the other gases (He, O2 and N2) provided additional insights regarding effects of backbone structure on detailed penetrant properties. The polyimides studied include 6FDA-DAM, 6FDA-mPDA, 6FDA-DABA, 6FDA-DAM:DABA (3:2), 6FDA-DAM:mPDA (3:2) and 6FDA-mPDA:DABA (3:2). Both pure and binary gas permeation were investigated. The packing density, which is tunable by adjusting monomer type and composition of the various samples, correlated with transport permeability and selectivity. The separation performance of the polyimides for various gas pairs were also plotted for comparison to the upper bound curves, and it was found that this family of materials shows attractive performance. The CO 2 plasticization responses for the un-cross-linked polyimides showed good plasticization resistance to CO2/CH4 mixed gas with 10% CO2; however, only the cross-linked polyimides showed good plasticization resistance under aggressive gas feed conditions (CO 2/CH4 mixed gas with 50% CO2 or pure CO 2). For future work, asymmetric hollow fibers and carbon molecular sieve membranes based on the most attractive members of the family will be considered. © 2013 Elsevier Ltd. All rights reserved.

  3. Conformation-specific spectroscopy of capped glutamine-containing peptides: role of a single glutamine residue on peptide backbone preferences.

    Science.gov (United States)

    Walsh, Patrick S; Dean, Jacob C; McBurney, Carl; Kang, Hyuk; Gellman, Samuel H; Zwier, Timothy S

    2016-04-28

    The conformational preferences of a series of short, aromatic-capped, glutamine-containing peptides have been studied under jet-cooled conditions in the gas phase. This work seeks a bottom-up understanding of the role played by glutamine residues in directing peptide structures that lead to neurodegenerative diseases. Resonant ion-dip infrared (RIDIR) spectroscopy is used to record single-conformation infrared spectra in the NH stretch, amide I and amide II regions. Comparison of the experimental spectra with the predictions of calculations carried out at the DFT M05-2X/6-31+G(d) level of theory lead to firm assignments for the H-bonding architectures of a total of eight conformers of four molecules, including three in Z-Gln-OH, one in Z-Gln-NHMe, three in Ac-Gln-NHBn, and one in Ac-Ala-Gln-NHBn. The Gln side chain engages actively in forming H-bonds with nearest-neighbor amide groups, forming C8 H-bonds to the C-terminal side, C9 H-bonds to the N-terminal side, and an amide-stacked geometry, all with an extended (C5) peptide backbone about the Gln residue. The Gln side chain also stabilizes an inverse γ-turn in the peptide backbone by forming a pair of H-bonds that bridge the γ-turn and stabilize it. Finally, the entire conformer population of Ac-Ala-Gln-NHBn is funneled into a single structure that incorporates the peptide backbone in a type I β-turn, stabilized by the Gln side chain forming a C7 H-bond to the central amide group in the β-turn not otherwise involved in a hydrogen bond. This β-turn backbone structure is nearly identical to that observed in a series of X-(AQ)-Y β-turns in the protein data bank, demonstrating that the gas-phase structure is robust to perturbations imposed by the crystalline protein environment.

  4. An Unusual Conformational Isomer of Verrucosidin Backbone from a Hydrothermal Vent Fungus, Penicillium sp. Y-50-10.

    Science.gov (United States)

    Pan, Chengqian; Shi, Yutong; Auckloo, Bibi Nazia; Chen, Xuegang; Chen, Chen-Tung Arthur; Tao, Xinyi; Wu, Bin

    2016-08-18

    A new verrucosidin derivative, methyl isoverrucosidinol (1), was isolated from the marine fungus Penicillium sp. Y-50-10, dwelling in sulfur rich sediment in the Kueishantao hydrothermal vents off Taiwan. The structure was established by spectroscopic means including HRMS and 2D-NMR spectroscopic analysis. The absolute configuration was defined mainly by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. Among hitherto known compounds with a verrucosidine backbone isolated from natural resource, compound 1 represents the first example of a new conformational isomer of its skeleton, exhibiting antibiotic activity against Bacillus subtilis with MIC value 32 μg/mL.

  5. An Unusual Conformational Isomer of Verrucosidin Backbone from a Hydrothermal Vent Fungus, Penicillium sp. Y-50-10

    Directory of Open Access Journals (Sweden)

    Chengqian Pan

    2016-08-01

    Full Text Available A new verrucosidin derivative, methyl isoverrucosidinol (1, was isolated from the marine fungus Penicillium sp. Y-50-10, dwelling in sulfur rich sediment in the Kueishantao hydrothermal vents off Taiwan. The structure was established by spectroscopic means including HRMS and 2D-NMR spectroscopic analysis. The absolute configuration was defined mainly by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. Among hitherto known compounds with a verrucosidine backbone isolated from natural resource, compound 1 represents the first example of a new conformational isomer of its skeleton, exhibiting antibiotic activity against Bacillus subtilis with MIC value 32 μg/mL.

  6. Rigidity of the polypeptide backbone in the triple-stranded collagen molecule.

    Science.gov (United States)

    Nemethy, G

    1981-02-01

    Conformational energy computations were carried out on collagen-like triple-stranded conformations of several polytripeptides with the structure CH3CO(GXY)3NHCH3, where X and Y can be Pro, Ala, or Gly. The computed minimum-energy conformations for various sequences are compared with that computed earlier for poly(Gly-Pro-Pro). Usually, substitution of Ala or Gly residues for Pro does not cause any strain or distortion of the conformation of the triple-stranded complex. Thus, the structure is a very stable and essentially rigid one. Unfavorable interactions were found only in the case of CH3CO(Gly-Ala-Pro)NHCH3. These interactions are a consequence of differences between the residue geometry of Ala and Pro. They result in small changes of some backbone dihedral angles and in an increase of intra- and interchain energies. The presence of a single Gly-Ala-Pro tripeptide within a sequence of Gly-Pro-Pro tripeptides is not sufficient, however, to cause even a small distoration of the triple strand. No deviation of the peptide groups from planarity is required to stabilize the triple-stranded structure.

  7. Uganda's National Transmission Backbone Infrastructure Project: Technical Challenges and the Way Forward

    Science.gov (United States)

    Bulega, T.; Kyeyune, A.; Onek, P.; Sseguya, R.; Mbabazi, D.; Katwiremu, E.

    2011-10-01

    Several publications have identified technical challenges facing Uganda's National Transmission Backbone Infrastructure project. This research addresses the technical limitations of the National Transmission Backbone Infrastructure project, evaluates the goals of the project, and compares the results against the technical capability of the backbone. The findings of the study indicate a bandwidth deficit, which will be addressed by using dense wave division multiplexing repeaters, leasing bandwidth from private companies. Microwave links for redundancy, a Network Operation Center for operation and maintenance, and deployment of wireless interoperability for microwave access as a last-mile solution are also suggested.

  8. Tungsten - Yttrium Based Nuclear Structural Materials

    Science.gov (United States)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  9. Structural constraints-based evaluation of immunogenic avirulent toxins from Clostridium botulinum C2 and C3 toxins as subunit vaccines.

    Science.gov (United States)

    Prisilla, A; Prathiviraj, R; Sasikala, R; Chellapandi, P

    2016-10-01

    Clostridium botulinum (group-III) is an anaerobic bacterium producing C2 and C3 toxins in addition to botulinum neurotoxins in avian and mammalian cells. C2 and C3 toxins are members of bacterial ADP-ribosyltransferase superfamily, which modify the eukaryotic cell surface proteins by ADP-ribosylation reaction. Herein, the mutant proteins with lack of catalytic and pore forming function derived from C2 (C2I and C2II) and C3 toxins were computationally evaluated to understand their structure-function integrity. We have chosen many structural constraints including local structural environment, folding process, backbone conformation, conformational dynamic sub-space, NAD-binding specificity and antigenic determinants for screening of suitable avirulent toxins. A total of 20 avirulent mutants were identified out of 23 mutants, which were experimentally produced by site-directed mutagenesis. No changes in secondary structural elements in particular to α-helices and β-sheets and also in fold rate of all-β classes. Structural stability was maintained by reordered hydrophobic and hydrogen bonding patterns. Molecular dynamic studies suggested that coupled mutations may restrain the binding affinity to NAD(+) or protein substrate upon structural destabilization. Avirulent toxins of this study have stable energetic backbone conformation with a common blue print of folding process. Molecular docking studies revealed that avirulent mutants formed more favorable hydrogen bonding with the side-chain of amino acids near to conserved NAD-binding core, despite of restraining NAD-binding specificity. Thus, structural constraints in the avirulent toxins would determine their immunogenic nature for the prioritization of protein-based subunit vaccine/immunogens to avian and veterinary animals infected with C. botulinum. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Vision based condition assessment of structures

    International Nuclear Information System (INIS)

    Uhl, Tadeusz; Kohut, Piotr; Holak, Krzysztof; Krupinski, Krzysztof

    2011-01-01

    In this paper, a vision-based method for measuring a civil engineering construction's in-plane deflection curves is presented. The displacement field of the analyzed object which results from loads was computed by means of a digital image correlation coefficient. Image registration techniques were introduced to increase the flexibility of the method. The application of homography mapping enabled the deflection field to be computed from two images of the structure, acquired from two different points in space. An automatic shape filter and a corner detector were implemented to calculate the homography mapping between the two views. The developed methodology, created architecture and the capabilities of software tools, as well as experimental results obtained from tests made on a lab set-up and civil engineering constructions, are discussed.

  11. Vision based condition assessment of structures

    Energy Technology Data Exchange (ETDEWEB)

    Uhl, Tadeusz; Kohut, Piotr; Holak, Krzysztof; Krupinski, Krzysztof, E-mail: tuhl@agh.edu.pl, E-mail: pko@agh.edu.pl, E-mail: holak@agh.edu.pl, E-mail: krzysiek.krupinski@wp.pl [Department of Robotics and Mechatronics, AGH-University of Science and Technology, Al.Mickiewicza 30, 30-059 Cracow (Poland)

    2011-07-19

    In this paper, a vision-based method for measuring a civil engineering construction's in-plane deflection curves is presented. The displacement field of the analyzed object which results from loads was computed by means of a digital image correlation coefficient. Image registration techniques were introduced to increase the flexibility of the method. The application of homography mapping enabled the deflection field to be computed from two images of the structure, acquired from two different points in space. An automatic shape filter and a corner detector were implemented to calculate the homography mapping between the two views. The developed methodology, created architecture and the capabilities of software tools, as well as experimental results obtained from tests made on a lab set-up and civil engineering constructions, are discussed.

  12. Lagrangian based methods for coherent structure detection

    Energy Technology Data Exchange (ETDEWEB)

    Allshouse, Michael R., E-mail: mallshouse@chaos.utexas.edu [Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States); Peacock, Thomas, E-mail: tomp@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-09-15

    There has been a proliferation in the development of Lagrangian analytical methods for detecting coherent structures in fluid flow transport, yielding a variety of qualitatively different approaches. We present a review of four approaches and demonstrate the utility of these methods via their application to the same sample analytic model, the canonical double-gyre flow, highlighting the pros and cons of each approach. Two of the methods, the geometric and probabilistic approaches, are well established and require velocity field data over the time interval of interest to identify particularly important material lines and surfaces, and influential regions, respectively. The other two approaches, implementing tools from cluster and braid theory, seek coherent structures based on limited trajectory data, attempting to partition the flow transport into distinct regions. All four of these approaches share the common trait that they are objective methods, meaning that their results do not depend on the frame of reference used. For each method, we also present a number of example applications ranging from blood flow and chemical reactions to ocean and atmospheric flows.

  13. Backbone assignment of the little finger domain of a Y-family DNA polymerase.

    Science.gov (United States)

    Ma, Dejian; Fowler, Jason D; Suo, Zucai

    2011-10-01

    Sulfolobus solfataricus DNA polymerase IV (Dpo4), a prototype Y-family DNA polymerase, contains a unique little finger domain besides a catalytic core. Here, we report the chemical shift assignments for the backbone nitrogens, α and β carbons, and amide protons of the little finger domain of Dpo4. This work and our published backbone assignment for the catalytic core provide the basis for investigating the conformational dynamics of Dpo4 during catalysis using solution NMR spectroscopy.

  14. Structure-Based Algorithms for Microvessel Classification

    KAUST Repository

    Smith, Amy F.

    2015-02-01

    © 2014 The Authors. Microcirculation published by John Wiley & Sons Ltd. Objective: Recent developments in high-resolution imaging techniques have enabled digital reconstruction of three-dimensional sections of microvascular networks down to the capillary scale. To better interpret these large data sets, our goal is to distinguish branching trees of arterioles and venules from capillaries. Methods: Two novel algorithms are presented for classifying vessels in microvascular anatomical data sets without requiring flow information. The algorithms are compared with a classification based on observed flow directions (considered the gold standard), and with an existing resistance-based method that relies only on structural data. Results: The first algorithm, developed for networks with one arteriolar and one venular tree, performs well in identifying arterioles and venules and is robust to parameter changes, but incorrectly labels a significant number of capillaries as arterioles or venules. The second algorithm, developed for networks with multiple inlets and outlets, correctly identifies more arterioles and venules, but is more sensitive to parameter changes. Conclusions: The algorithms presented here can be used to classify microvessels in large microvascular data sets lacking flow information. This provides a basis for analyzing the distinct geometrical properties and modelling the functional behavior of arterioles, capillaries, and venules.

  15. Chemical characteristics and antithrombotic effect of chondroitin sulfates from sturgeon skull and sturgeon backbone.

    Science.gov (United States)

    Gui, Meng; Song, Juyi; Zhang, Lu; Wang, Shun; Wu, Ruiyun; Ma, Changwei; Li, Pinglan

    2015-06-05

    Chondroitin sulfates (CSs) were extracted from sturgeon skull and backbone, and their chemical composition, anticoagulant, anti-platelet and thrombolysis activities were evaluated. The average molecular weights of CS from sturgeon skull and backbone were 38.5kDa and 49.2kDa, respectively. Disaccharide analysis indicated that the sturgeon backbone CS was primarily composed of disaccharide monosulfated in position four of the GalNAc (37.8%) and disaccharide monosulfated in position six of the GalNAc (59.6%) while sturgeon skull CS was primarily composed of nonsulfated disaccharide (74.2%). Sturgeon backbone CS showed stronger antithrombotic effect than sturgeon skull CS. Sturgeon backbone CS could significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT), inhibited ADP-induced platelet aggregation and dissolved platelet plasma clots in vitro. The results suggested that sturgeon backbone CS can be explored as a functional food with antithrombotic function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Degenerate primer MOB typing of multiresistant clinical isolates of E. coli uncovers new plasmid backbones.

    Science.gov (United States)

    Garcillán-Barcia, M Pilar; Ruiz del Castillo, Belén; Alvarado, Andrés; de la Cruz, Fernando; Martínez-Martínez, Luis

    2015-01-01

    Degenerate Primer MOB Typing is a PCR-based protocol for the classification of γ-proteobacterial transmissible plasmids in five phylogenetic relaxase MOB families. It was applied to a multiresistant E. coli collection, previously characterized by PCR-based replicon-typing, in order to compare both methods. Plasmids from 32 clinical isolates of multiresistant E. coli (19 extended spectrum beta-lactamase producers and 13 non producers) and their transconjugants were analyzed. A total of 95 relaxases were detected, at least one per isolate, underscoring the high potential of these strains for antibiotic-resistance transmission. MOBP12 and MOBF12 plasmids were the most abundant. Most MOB subfamilies detected were present in both subsets of the collection, indicating a shared mobilome among multiresistant E. coli. The plasmid profile obtained by both methods was compared, which provided useful data upon which decisions related to the implementation of detection methods in the clinic could be based. The phylogenetic depth at which replicon and MOB-typing classify plasmids is different. While replicon-typing aims at plasmid replication regions with non-degenerate primers, MOB-typing classifies plasmids into relaxase subfamilies using degenerate primers. As a result, MOB-typing provides a deeper phylogenetic depth than replicon-typing and new plasmid groups are uncovered. Significantly, MOB typing identified 17 plasmids and an integrative and conjugative element, which were not detected by replicon-typing. Four of these backbones were different from previously reported elements. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. An Enhanced Backbone-Assisted Reliable Framework for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Amna Ali

    2010-03-01

    Full Text Available An extremely reliable source to sink communication is required for most of the contemporary WSN applications especially pertaining to military, healthcare and disaster-recovery. However, due to their intrinsic energy, bandwidth and computational constraints, Wireless Sensor Networks (WSNs encounter several challenges in reliable source to sink communication. In this paper, we present a novel reliable topology that uses reliable hotlines between sensor gateways to boost the reliability of end-to-end transmissions. This reliable and efficient routing alternative reduces the number of average hops from source to the sink. We prove, with the help of analytical evaluation, that communication using hotlines is considerably more reliable than traditional WSN routing. We use reliability theory to analyze the cost and benefit of adding gateway nodes to a backbone-assisted WSN. However, in hotline assisted routing some scenarios where source and the sink are just a couple of hops away might bring more latency, therefore, we present a Signature Based Routing (SBR scheme. SBR enables the gateways to make intelligent routing decisions, based upon the derived signature, hence providing lesser end-to-end delay between source to the sink communication. Finally, we evaluate our proposed hotline based topology with the help of a simulation tool and show that the proposed topology provides manifold increase in end-to-end reliability.

  18. X-Pol Potential: An Electronic Structure-Based Force Field for Molecular Dynamics Simulation of a Solvated Protein in Water.

    Science.gov (United States)

    Xie, Wangshen; Orozco, Modesto; Truhlar, Donald G; Gao, Jiali

    2009-02-17

    A recently proposed electronic structure-based force field called the explicit polarization (X-Pol) potential is used to study many-body electronic polarization effects in a protein, in particular by carrying out a molecular dynamics (MD) simulation of bovine pancreatic trypsin inhibitor (BPTI) in water with periodic boundary conditions. The primary unit cell is cubic with dimensions ~54 × 54 × 54 Å(3), and the total number of atoms in this cell is 14281. An approximate electronic wave function, consisting of 29026 basis functions for the entire system, is variationally optimized to give the minimum Born-Oppenheimer energy at every MD step; this allows the efficient evaluation of the required analytic forces for the dynamics. Intramolecular and intermolecular polarization and intramolecular charge transfer effects are examined and are found to be significant; for example, 17 out of 58 backbone carbonyls differ from neutrality on average by more than 0.1 electron, and the average charge on the six alanines varies from -0.05 to +0.09. The instantaneous excess charges vary even more widely; the backbone carbonyls have standard deviations in their fluctuating net charges from 0.03 to 0.05, and more than half of the residues have excess charges whose standard deviation exceeds 0.05. We conclude that the new-generation X-Pol force field permits the inclusion of time-dependent quantum mechanical polarization and charge transfer effects in much larger systems than was previously possible.

  19. Structure-based characterization of multiprotein complexes.

    Science.gov (United States)

    Wiederstein, Markus; Gruber, Markus; Frank, Karl; Melo, Francisco; Sippl, Manfred J

    2014-07-08

    Multiprotein complexes govern virtually all cellular processes. Their 3D structures provide important clues to their biological roles, especially through structural correlations among protein molecules and complexes. The detection of such correlations generally requires comprehensive searches in databases of known protein structures by means of appropriate structure-matching techniques. Here, we present a high-speed structure search engine capable of instantly matching large protein oligomers against the complete and up-to-date database of biologically functional assemblies of protein molecules. We use this tool to reveal unseen structural correlations on the level of protein quaternary structure and demonstrate its general usefulness for efficiently exploring complex structural relationships among known protein assemblies. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. New theories for smectic and nematic liquid-crystal polymers: Backbone LCPs [liquid crystalline polymers] and their mixtures and side-chain LCPs

    International Nuclear Information System (INIS)

    Dowell, F.

    1987-01-01

    A summary of predictions and explanations from statistical-physics theories for both backbone and side-chain liquid crystalline polymers (LCPs) and for mixtures with backbone LCPs are presented. Trends in the thermodynamic and molecular ordering properties have been calculated as a function of pressure, density, temperature, and molecule chemical structures (including degree of polymerization and the following properties of the chemical structures of the repeat units: lengths and shapes, intra-chain rotation energies, dipole moments, site-site polarizabilities and Lennard-Jones potentials, etc.) in nematic and multiple smectic-A LC phases and in the isotropic liquid phase. The theoretical results are found to be in good agreement with existing experimental data. These theories can also be applied to combined LCPs. Since these theories have no ad hoc or arbitrarily adjustable parameters, these theories can be used to design new LCPs and new solvents as well as to predict and explain properties. 27 refs., 4 tabs

  1. Semiconductor wire array structures, and solar cells and photodetectors based on such structures

    Science.gov (United States)

    Kelzenberg, Michael D.; Atwater, Harry A.; Briggs, Ryan M.; Boettcher, Shannon W.; Lewis, Nathan S.; Petykiewicz, Jan A.

    2014-08-19

    A structure comprising an array of semiconductor structures, an infill material between the semiconductor materials, and one or more light-trapping elements is described. Photoconverters and photoelectrochemical devices based on such structure also described.

  2. Reliability-Based Optimization of Structural Elements

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    In this paper structural elements from an optimization point of view are considered, i.e. only the geometry of a structural element is optimized. Reliability modelling of the structural element is discussed both from an element point of view and from a system point of view. The optimization...

  3. SDSL-ESR-based protein structure characterization

    NARCIS (Netherlands)

    Strancar, J.; Kavalenka, A.A.; Urbancic, I.; Ljubetic, A.; Hemminga, M.A.

    2010-01-01

    As proteins are key molecules in living cells, knowledge about their structure can provide important insights and applications in science, biotechnology, and medicine. However, many protein structures are still a big challenge for existing high-resolution structure-determination methods, as can be

  4. Redox-controlled backbone dynamics of human cytochrome c revealed by 15N NMR relaxation measurements

    International Nuclear Information System (INIS)

    Sakamoto, Koichi; Kamiya, Masakatsu; Uchida, Takeshi; Kawano, Keiichi; Ishimori, Koichiro

    2010-01-01

    Research highlights: → The dynamic parameters for the backbone dynamics in Cyt c were determined. → The backbone mobility of Cyt c is highly restricted due to the covalently bound heme. → The backbone mobility of Cyt c is more restricted upon the oxidation of the heme. → The redox-dependent dynamics are shown in the backbone of Cyt c. → The backbone dynamics of Cyt c would regulate the electron transfer from Cyt c. -- Abstract: Redox-controlled backbone dynamics in cytochrome c (Cyt c) were revealed by 2D 15 N NMR relaxation experiments. 15 N T 1 and T 2 values and 1 H- 15 N NOEs of uniformly 15 N-labeled reduced and oxidized Cyt c were measured, and the generalized order parameters (S 2 ), the effective correlation time for internal motion (τ e ), the 15 N exchange broadening contributions (R ex ) for each residue, and the overall correlation time (τ m ) were estimated by model-free dynamics formalism. These dynamic parameters clearly showed that the backbone dynamics of Cyt c are highly restricted due to the covalently bound heme that functions as the stable hydrophobic core. Upon oxidation of the heme iron in Cyt c, the average S 2 value was increased from 0.88 ± 0.01 to 0.92 ± 0.01, demonstrating that the mobility of the backbone is further restricted in the oxidized form. Such increases in the S 2 values were more prominent in the loop regions, including amino acid residues near the thioether bonds to the heme moiety and positively charged region around Lys87. Both of the regions are supposed to form the interaction site for cytochrome c oxidase (CcO) and the electron pathway from Cyt c to CcO. The redox-dependent mobility of the backbone in the interaction site for the electron transfer to CcO suggests an electron transfer mechanism regulated by the backbone dynamics in the Cyt c-CcO system.

  5. Dependence of crystallite formation and preferential backbone orientations on the side chain pattern in PBDTTPD polymers

    KAUST Repository

    El Labban, Abdulrahman

    2014-11-26

    (Figure Presented) Alkyl substituents appended to the π-conjugated main chain account for the solution-processability and film-forming properties of most π-conjugated polymers for organic electronic device applications, including field-effect transistors (FETs) and bulk-heterojunction (BHJ) solar cells. Beyond film-forming properties, recent work has emphasized the determining role that side-chain substituents play on polymer self-assembly and thin-film nanostructural order, and, in turn, on device performance. However, the factors that determine polymer crystallite orientation in thin-films, implying preferential backbone orientation relative to the device substrate, are a matter of some debate, and these structural changes remain difficult to anticipate. In this report, we show how systematic changes in the side-chain pattern of poly(benzo[1,2-b:4,5-b′]dithiophene-alt-thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers can (i) influence the propensity of the polymer to order in the π-stacking direction, and (ii) direct the preferential orientation of the polymer crystallites in thin films (e.g., "face-on" vs "edge-on"). Oriented crystallites, specifically crystallites that are well-ordered in the π-stacking direction, are believed to be a key contributor to improved thin-film device performance in both FETs and BHJ solar cells.

  6. Oligomerized backbone pilin helps piliated Lactococcus lactis to withstand shear flow.

    Science.gov (United States)

    Castelain, Mickaël; Duviau, Marie-Pierre; Oxaran, Virginie; Schmitz, Philippe; Cocaign-Bousquet, Muriel; Loubière, Pascal; Piard, Jean-Christophe; Mercier-Bonin, Muriel

    2016-09-01

    The present work focuses on the role of pili present at the cell surface of Lactococcus lactis in bacterial adhesion to abiotic (hydrophobic polystyrene) and biotic (mucin-coated polystyrene) surfaces. Native pili-displaying strains and isogenic derivatives in which pilins or sortase C structural genes had been modified were used. Surface physico-chemistry, morphology and shear-flow-induced detachment of lactococcal cells were evaluated. The involvement of pili in L. lactis adhesion was clearly demonstrated, irrespective of the surface characteristics (hydrophobic/hydrophilic, presence or not of specific binding sites). The accessory pilin, PilC, and the backbone pilin, PilB, were revealed to play a major role in adhesion, provided that the PilB was present in its polymerized form. Within the population fraction that remained attached to the surface under increasing shear flow, different association behaviors were observed, showing that pili could serve as anchoring sites thus hampering the effect of shear flow on cell orientation and detachment.

  7. Navigating the massive world of reddit: using backbone networks to map user interests in social media

    Directory of Open Access Journals (Sweden)

    Randal S. Olson

    2015-05-01

    Full Text Available In the massive online worlds of social media, users frequently rely on organizing themselves around specific topics of interest to find and engage with like-minded people. However, navigating these massive worlds and finding topics of specific interest often proves difficult because the worlds are mostly organized haphazardly, leaving users to find relevant interests by word of mouth or using a basic search feature. Here, we report on a method using the backbone of a network to create a map of the primary topics of interest in any social network. To demonstrate the method, we build an interest map for the social news web site reddit and show how such a map could be used to navigate a social media world. Moreover, we analyze the network properties of the reddit social network and find that it has a scale-free, small-world, and modular community structure, much like other online social networks such as Facebook and Twitter. We suggest that the integration of interest maps into popular social media platforms will assist users in organizing themselves into more specific interest groups, which will help alleviate the overcrowding effect often observed in large online communities.

  8. Pemetrexed With Platinum Combination as a Backbone for Targeted Therapy in Non-Small-Cell Lung Cancer.

    Science.gov (United States)

    Stinchcombe, Thomas E; Borghaei, Hossein; Barker, Scott S; Treat, Joseph Anthony; Obasaju, Coleman

    2016-01-01

    Standard platinum-based chemotherapy combinations for advanced non-small-cell lung cancer (NSCLC) have reached a plateau in terms of the survival benefit they offer for patients. In addition, the emerging clinical trend of tailored treatment based on patient characteristics has led to the development of therapeutic strategies that target specific cancer-related molecular pathways, including epidermal growth factor receptor (EGFR), angiogenesis, and anaplastic lymphoma kinase inhibitors. Current research is focused on combining targeted therapy with platinum-based chemotherapy in an endeavor to achieve an additional benefit in specific patient populations. Currently, pemetrexed is indicated for use in the first-line, maintenance, and second-line settings for the treatment of nonsquamous NSCLC. The combination of pemetrexed and cisplatin is well tolerated and is the approved standard first-line therapy. Thus, the pemetrexed-platinum backbone provides an attractive option for combination with targeted therapies. This review aims to summarize the current knowledge and future prospects of the use of pemetrexed-platinum as a backbone for combination with targeted therapies for NSCLC. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Aluminium based amorphous and nanocrystalline structure

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, Jozef; Degmova, Jarmila, E-mail: jarmila.degmova@stuba.sk [Slovak University of Technology, Department of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information Technology (Slovakia)

    2005-09-15

    Aluminium based rapidly quenched alloys of nominal composition Al{sub 90}Fe{sub 7}Nb{sub 3} and Al{sub 94}Fe{sub 2}V{sub 4} were studied by Moessbauer spectroscopy. Samples annealed up to 573 K showed amorphous structure represented by quadrupole doublet. From corrected spectra areas the values of f-factor were calculated. In the case of AlFeNb samples f-factor was estimated as f = 0.26 and for AlFeV f = 0.31. The corresponding Debye temperatures were also calculated. Higher temperature annealing at 773 and 873 K induced deformation of nano- and microcrystalline state. Moessbauer spectra of samples of both compositions (with vanadium as well as with niobium) annealed at 773 K showed superposition of crystalline phases with dominant role of Al{sub 3}Fe alloy. During annealing at 873 K, phases with large grains and small amount of FeAl metastable phase were developed (Das et al. Mat. Sci. Eng., A304-A306, 159, 2001; Illekova et al. Mat. Sci. Eng., A375-A377, 946, 2004).

  10. Aluminium based amorphous and nanocrystalline structure

    International Nuclear Information System (INIS)

    Sitek, Jozef; Degmova, Jarmila

    2005-01-01

    Aluminium based rapidly quenched alloys of nominal composition Al 90 Fe 7 Nb 3 and Al 94 Fe 2 V 4 were studied by Moessbauer spectroscopy. Samples annealed up to 573 K showed amorphous structure represented by quadrupole doublet. From corrected spectra areas the values of f-factor were calculated. In the case of AlFeNb samples f-factor was estimated as f = 0.26 and for AlFeV f = 0.31. The corresponding Debye temperatures were also calculated. Higher temperature annealing at 773 and 873 K induced deformation of nano- and microcrystalline state. Moessbauer spectra of samples of both compositions (with vanadium as well as with niobium) annealed at 773 K showed superposition of crystalline phases with dominant role of Al 3 Fe alloy. During annealing at 873 K, phases with large grains and small amount of FeAl metastable phase were developed (Das et al. Mat. Sci. Eng., A304-A306, 159, 2001; Illekova et al. Mat. Sci. Eng., A375-A377, 946, 2004).

  11. Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns

    Science.gov (United States)

    Shen, Hui; Jin, Dongmei; Shu, Jiang-Ping; Zhou, Xi-Le; Lei, Ming; Wei, Ran; Shang, Hui; Wei, Hong-Jin; Zhang, Rui; Liu, Li; Gu, Yu-Feng; Zhang, Xian-Chun; Yan, Yue-Hong

    2018-01-01

    Abstract Background Ferns, originated about 360 million years ago, are the sister group of seed plants. Despite the remarkable progress in our understanding of fern phylogeny, with conflicting molecular evidence and different morphological interpretations, relationships among major fern lineages remain controversial. Results With the aim to obtain a robust fern phylogeny, we carried out a large-scale phylogenomic analysis using high-quality transcriptome sequencing data, which covered 69 fern species from 38 families and 11 orders. Both coalescent-based and concatenation-based methods were applied to both nucleotide and amino acid sequences in species tree estimation. The resulting topologies are largely congruent with each other, except for the placement of Angiopteris fokiensis, Cheiropleuria bicuspis, Diplaziopsis brunoniana, Matteuccia struthiopteris, Elaphoglossum mcclurei, and Tectaria subpedata. Conclusions Our result confirmed that Equisetales is sister to the rest of ferns, and Dennstaedtiaceae is sister to eupolypods. Moreover, our result strongly supported some relationships different from the current view of fern phylogeny, including that Marattiaceae may be sister to the monophyletic clade of Psilotaceae and Ophioglossaceae; that Gleicheniaceae and Hymenophyllaceae form a monophyletic clade sister to Dipteridaceae; and that Aspleniaceae is sister to the rest of the groups in eupolypods II. These results were interpreted with morphological traits, especially sporangia characters, and a new evolutionary route of sporangial annulus in ferns was suggested. This backbone phylogeny in ferns sets a foundation for further studies in biology and evolution in ferns, and therefore in plants. PMID:29186447

  12. Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns.

    Science.gov (United States)

    Shen, Hui; Jin, Dongmei; Shu, Jiang-Ping; Zhou, Xi-Le; Lei, Ming; Wei, Ran; Shang, Hui; Wei, Hong-Jin; Zhang, Rui; Liu, Li; Gu, Yu-Feng; Zhang, Xian-Chun; Yan, Yue-Hong

    2018-02-01

    Ferns, originated about 360 million years ago, are the sister group of seed plants. Despite the remarkable progress in our understanding of fern phylogeny, with conflicting molecular evidence and different morphological interpretations, relationships among major fern lineages remain controversial. With the aim to obtain a robust fern phylogeny, we carried out a large-scale phylogenomic analysis using high-quality transcriptome sequencing data, which covered 69 fern species from 38 families and 11 orders. Both coalescent-based and concatenation-based methods were applied to both nucleotide and amino acid sequences in species tree estimation. The resulting topologies are largely congruent with each other, except for the placement of Angiopteris fokiensis, Cheiropleuria bicuspis, Diplaziopsis brunoniana, Matteuccia struthiopteris, Elaphoglossum mcclurei, and Tectaria subpedata. Our result confirmed that Equisetales is sister to the rest of ferns, and Dennstaedtiaceae is sister to eupolypods. Moreover, our result strongly supported some relationships different from the current view of fern phylogeny, including that Marattiaceae may be sister to the monophyletic clade of Psilotaceae and Ophioglossaceae; that Gleicheniaceae and Hymenophyllaceae form a monophyletic clade sister to Dipteridaceae; and that Aspleniaceae is sister to the rest of the groups in eupolypods II. These results were interpreted with morphological traits, especially sporangia characters, and a new evolutionary route of sporangial annulus in ferns was suggested. This backbone phylogeny in ferns sets a foundation for further studies in biology and evolution in ferns, and therefore in plants. © The Authors 2017. Published by Oxford University Press.

  13. Role of monomer sequence and backbone chemistry in polypeptoid copolymers for marine antifouling coatings

    Science.gov (United States)

    Patterson, Anastasia; Wenning, Brandon; Rizis, Georgios; Calabrese, David; Finlay, John; Franco, Sofia; Clare, Anthony; Kramer, Edward; Ober, Christopher; Segalman, Rachel

    The design rules elucidated in this work suggest that antifouling coatings bearing pendant peptoid side chains perform better overall in marine fouling tests than those with peptide side chains, with extremely low attachment of N. incerta and high removal of U. linza. This difference in performance is likely due to the lack of a hydrogen bond donor in the peptoid backbone. Furthermore, we show that the bulk polymer material of these hierarchical coatings (based on PEO or PDMS) plays a key role in determining both surface presentation and fouling release performance. We demonstrate these trends utilizing a modular coating based on a triblock copolymer consisting of polystyrene and a vinyl-containing midblock, to which sequence-defined pendant oligomers (peptides or peptoids with sequences of oligo-PEO and fluoroalkyl groups) are attached via thiol-ene ``click'' chemistry. Surface presentation was analyzed with X-ray photoelectron spectroscopy and captive bubble water contact angle, and antifouling performance was evaluated with attachment and removal bioassays of the marine macroalga U. linza and diatom N. incerta. NSF GRFP and ONR PECASE.

  14. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution.

    Science.gov (United States)

    Bond, Jason E; Garrison, Nicole L; Hamilton, Chris A; Godwin, Rebecca L; Hedin, Marshal; Agnarsson, Ingi

    2014-08-04

    Spiders represent an ancient predatory lineage known for their extraordinary biomaterials, including venoms and silks. These adaptations make spiders key arthropod predators in most terrestrial ecosystems. Despite ecological, biomedical, and biomaterial importance, relationships among major spider lineages remain unresolved or poorly supported. Current working hypotheses for a spider "backbone" phylogeny are largely based on morphological evidence, as most molecular markers currently employed are generally inadequate for resolving deeper-level relationships. We present here a phylogenomic analysis of spiders including taxa representing all major spider lineages. Our robust phylogenetic hypothesis recovers some fundamental and uncontroversial spider clades, but rejects the prevailing paradigm of a monophyletic Orbiculariae, the most diverse lineage, containing orb-weaving spiders. Based on our results, the orb web either evolved much earlier than previously hypothesized and is ancestral for a majority of spiders or else it has multiple independent origins, as hypothesized by precladistic authors. Cribellate deinopoid orb weavers that use mechanically adhesive silk are more closely related to a diverse clade of mostly webless spiders than to the araneoid orb-weaving spiders that use adhesive droplet silks. The fundamental shift in our understanding of spider phylogeny proposed here has broad implications for interpreting the evolution of spiders, their remarkable biomaterials, and a key extended phenotype--the spider web. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. SDSL-ESR-based protein structure characterization.

    Science.gov (United States)

    Strancar, Janez; Kavalenka, Aleh; Urbancic, Iztok; Ljubetic, Ajasja; Hemminga, Marcus A

    2010-03-01

    As proteins are key molecules in living cells, knowledge about their structure can provide important insights and applications in science, biotechnology, and medicine. However, many protein structures are still a big challenge for existing high-resolution structure-determination methods, as can be seen in the number of protein structures published in the Protein Data Bank. This is especially the case for less-ordered, more hydrophobic and more flexible protein systems. The lack of efficient methods for structure determination calls for urgent development of a new class of biophysical techniques. This work attempts to address this problem with a novel combination of site-directed spin labelling electron spin resonance spectroscopy (SDSL-ESR) and protein structure modelling, which is coupled by restriction of the conformational spaces of the amino acid side chains. Comparison of the application to four different protein systems enables us to generalize the new method and to establish a general procedure for determination of protein structure.

  16. Sub-nanoscale surface ruggedness provides a water-tight seal for exposed regions in soluble protein structure.

    Directory of Open Access Journals (Sweden)

    Erica Schulz

    2010-09-01

    Full Text Available Soluble proteins must maintain backbone hydrogen bonds (BHBs water-tight to ensure structural integrity. This protection is often achieved by burying the BHBs or wrapping them through intermolecular associations. On the other hand, water has low coordination resilience, with loss of hydrogen-bonding partnerships carrying significant thermodynamic cost. Thus, a core problem in structural biology is whether natural design actually exploits the water coordination stiffness to seal the backbone in regions that are exposed to the solvent. This work explores the molecular design features that make this type of seal operative, focusing on the side-chain arrangements that shield the protein backbone. We show that an efficient sealing is achieved by adapting the sub-nanoscale surface topography to the stringency of water coordination: an exposed BHB may be kept dry if the local concave curvature is small enough to impede formation of the coordination shell of a penetrating water molecule. Examination of an exhaustive database of uncomplexed proteins reveals that exposed BHBs invariably occur within such sub-nanoscale cavities in native folds, while this level of local ruggedness is absent in other regions. By contrast, BHB exposure in misfolded proteins occurs with larger local curvature promoting backbone hydration and consequently, structure disruption. These findings unravel physical constraints fitting a spatially dependent least-action for water coordination, introduce a molecular design concept, and herald the advent of water-tight peptide-based materials with sufficient backbone exposure to remain flexible.

  17. Modal Based Fatigue Monitoring of Steel Structures

    DEFF Research Database (Denmark)

    Graugaard-Jensen, J.; Brincker, Rune; Hjelm, H. P.

    2005-01-01

    In this paper it is shown how the accumulated fatigue in steel structures can be estimated with high accuracy by continuously measuring the accelerations in a few points of the structure. First step is to obtain a good estimate of the mode shapes by performing a natural input modal analysis. The so...... by applying the mode shapes of the calibrated Finite Element model and strains are obtained using the shape functions for the actual elements. The technique has been applied on a model frame structure in the laboratory and on a wind loaded lattice pylon structure. In both cases the estimated stresses has been...

  18. Robustness and backbone motif of a cancer network regulated by miR-17-92 cluster during the G1/S transition.

    Directory of Open Access Journals (Sweden)

    Lijian Yang

    Full Text Available Based on interactions among transcription factors, oncogenes, tumor suppressors and microRNAs, a Boolean model of cancer network regulated by miR-17-92 cluster is constructed, and the network is associated with the control of G1/S transition in the mammalian cell cycle. The robustness properties of this regulatory network are investigated by virtue of the Boolean network theory. It is found that, during G1/S transition in the cell cycle process, the regulatory networks are robustly constructed, and the robustness property is largely preserved with respect to small perturbations to the network. By using the unique process-based approach, the structure of this network is analyzed. It is shown that the network can be decomposed into a backbone motif which provides the main biological functions, and a remaining motif which makes the regulatory system more stable. The critical role of miR-17-92 in suppressing the G1/S cell cycle checkpoint and increasing the uncontrolled proliferation of the cancer cells by targeting a genetic network of interacting proteins is displayed with our model.

  19. Reliability-Based Design of Coastal Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    1997-01-01

    The objective of this paper is to introduce the application of reliability theory for conceptual design and evaluation of coastal structures. It is without the scope to discuss the validity and quality of the various design formulae available for coastal structures. The contents of the paper is a....... Proceedings Conference of Port and Coastal Engineering in developing countries. Rio de Janeiro, Brazil, 1995....

  20. Cost-effectiveness analysis of dolutegravir plus backbone compared with raltegravir plus backbone, darunavir+ritonavir plus backbone and efavirenz/tenofovir/emtricitabine in treatment naïve and experienced HIV-positive patients

    Directory of Open Access Journals (Sweden)

    Restelli U

    2017-06-01

    Full Text Available Umberto Restelli,1,2 Giuliano Rizzardini,3,4 Andrea Antinori,5 Adriano Lazzarin,6 Marzia Bonfanti,1 Paolo Bonfanti,7 Davide Croce1,2 1Centre for Research on Health Economics, Social and Health Care Management, LIUC – Università Cattaneo, Castellanza, Varese, Italy; 2School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; 3First and Second Divisions of Infectious Diseases, “Luigi Sacco” Hospital, Milan, Italy; 4School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; 5National Institute for Infectious Diseases “L Spallanzani”, Rome, 6Department of Infectious Diseases, San Raffaele Scientific Institute, 7Department of Infectious and Tropical Diseases, A Manzoni Hospital, Lecco, Italy Background: In January 2014, the European Medicines Agency issued a marketing authorization for dolutegravir (DTG, a second-generation integrase strand transfer inhibitor for HIV treatment. The study aimed at determining the incremental cost-effectiveness ratio (ICER of the use of DTG+backbone compared with raltegravir (RAL+backbone, darunavir (DRV+ritonavir(r+backbone and efavirenz/tenofovir/emtricitabine (EFV/TDF/FTC in HIV-positive treatment-naïve patients and compared with RAL+backbone in treatment-experienced patients, from the Italian National Health Service’s point of view.Materials and methods: A published Monte Carlo Individual Simulation Model (ARAMIS-DTG model was used to perform the analysis. Patients pass through mutually exclusive health states (defined in terms of diagnosis of HIV with or without opportunistic infections [OIs] and cardiovascular disease [CVD] and successive lines of therapy. The model considers costs (2014 and quality of life per monthly cycle in a lifetime horizon. Costs and quality-adjusted life years (QALYs are dependent on OI, CVD, AIDS events, adverse events and antiretroviral therapies.Results: In

  1. Structure based alignment and clustering of proteins (STRALCP)

    Science.gov (United States)

    Zemla, Adam T.; Zhou, Carol E.; Smith, Jason R.; Lam, Marisa W.

    2013-06-18

    Disclosed are computational methods of clustering a set of protein structures based on local and pair-wise global similarity values. Pair-wise local and global similarity values are generated based on pair-wise structural alignments for each protein in the set of protein structures. Initially, the protein structures are clustered based on pair-wise local similarity values. The protein structures are then clustered based on pair-wise global similarity values. For each given cluster both a representative structure and spans of conserved residues are identified. The representative protein structure is used to assign newly-solved protein structures to a group. The spans are used to characterize conservation and assign a "structural footprint" to the cluster.

  2. A new strategy for backbone resonance assignment in large proteins using a MQ-HACACO experiment

    International Nuclear Information System (INIS)

    Pervushin, Konstantin; Eletsky, Alexander

    2003-01-01

    A new strategy of backbone resonance assignment is proposed based on a combination of the most sensitive TROSY-type triple resonance experiments such as TROSY-HNCA and TROSY-HNCO with a new 3D multiple-quantum HACACO experiment. The favourable relaxation properties of the multiple-quantum coherences and signal detection using the 13 C' antiphase coherences optimize the performance of the proposed experiment for application to larger proteins. In addition to the 1 H N , 15 N, 13 C α and 13 C' chemical shifts the 3D multiple-quantum HACACO experiment provides assignment for the 1 H α resonances in contrast to previously proposed experiments for large proteins. The strategy is demonstrated with the 44 kDa uniformly 15 N, 13 C-labeled and fractionally 35% deuterated trimeric B. subtilis Chorismate Mutase measured at 20 deg. C and 9 deg. C. Measurements at the lower temperature indicate that the new strategy can be applied to even larger proteins with molecular weights up to 80 kDa

  3. Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes

    Science.gov (United States)

    Zhu, Liang; Yu, Xuedi; Hickner, Michael A.

    2018-01-01

    In order to systematically study how the arrangement of cations on the side chain and length of alkyl spacers between cations impact the performance of multi-cation AEMs for alkaline fuel cells, a series of polyphenylene oxide (PPO)-based AEMs with different cationic side chains were synthesized. This work resulted in samples with two or three cations in a side chain pendant to the PPO backbone. More importantly, the length of the spacer between cations varied from 3 methylene (-CH2-) (C3) groups to 8 methylene (C8) groups. The highest conductivity, up to 99 mS/cm in liquid water at room temperature, was observed for the triple-cation side chain AEM with pentyl (C5) or hexyl (C6) spacers. The multi-cation AEMs were found to have decreased water uptake and ionic conductivity when the spacer chains between cations were lengthened from pentyl (C5) or hexyl (C6) to octyl (C8) linking groups. The triple-cation membranes with pentyl (C5) or hexyl (C6) groups between cations showed greatest stability after immersion in 1 M NaOH at 80 °C for 500 h.

  4. Gender features of functional condition of backbone of teenagers with scoliotic posture

    Directory of Open Access Journals (Sweden)

    Sergiy Afanasiev

    2016-10-01

    Full Text Available Purpose: to study mobility of backbone, endurance of muscles of a trunk and to define gender features of functional condition of backbone at children of the middle school age with scoliotic posture depending on the direction of the top of arch of curvature of spine. Material & Methods: 40 girls and 40 boys, including 18 girls and 18 boys with the right-side deformation of backbone in the thoracic department, the left-side – 22 girls and 22 boys are examined. Results: features of changes of indicators, depending on sex of children and frontage of the top of arch of curvature of spine column, are revealed when studying the level of flexibility of backbone and endurance of muscles of a trunk at children of the middle school age with scoliotic posture. Conclusions: it is established that the level of decrease in flexibility of backbone is higher at boys, than at girls, whereas indicators of contractile ability and tone of muscles of "muscular corset" are higher at boys.

  5. Quantification of protein backbone hydrogen-deuterium exchange rates by solid state NMR spectroscopy

    International Nuclear Information System (INIS)

    Lopez del Amo, Juan-Miguel; Fink, Uwe; Reif, Bernd

    2010-01-01

    We present the quantification of backbone amide hydrogen-deuterium exchange rates (HDX) for immobilized proteins. The experiments make use of the deuterium isotope effect on the amide nitrogen chemical shift, as well as on proton dilution by deuteration. We find that backbone amides in the microcrystalline α-spectrin SH3 domain exchange rather slowly with the solvent (with exchange rates negligible within the individual 15 N-T 1 timescales). We observed chemical exchange for 6 residues with HDX exchange rates in the range from 0.2 to 5 s -1 . Backbone amide 15 N longitudinal relaxation times that we determined previously are not significantly affected for most residues, yielding no systematic artifacts upon quantification of backbone dynamics (Chevelkov et al. 2008b). Significant exchange was observed for the backbone amides of R21, S36 and K60, as well as for the sidechain amides of N38, N35 and for W41ε. These residues could not be fit in our previous motional analysis, demonstrating that amide proton chemical exchange needs to be considered in the analysis of protein dynamics in the solid-state, in case D 2 O is employed as a solvent for sample preparation. Due to the intrinsically long 15 N relaxation times in the solid-state, the approach proposed here can expand the range of accessible HDX rates in the intermediate regime that is not accessible so far with exchange quench and MEXICO type experiments.

  6. Proposed Doctrine Based Structure of the Armored Reconnaissance Squadron

    Science.gov (United States)

    2017-06-09

    squadron. A new structure was proposed based on the deduced required capabilities, utilizing organizational theory and current army practices. This...squadron, which now puts greater emphasis on this analysis to link structure to doctrinally based task. Organizational Theory Since earliest...expect to find capability based discourse; there is a lack of proposed structure based on capability, task or equipment . The Armour Bulletin serves

  7. Insight into a conformation of the PNA-PNA duplex with (2‧R,4‧R)- and (2‧R,4‧S)-prolyl-(1S,2S)-2-aminocyclopentanecarboxylic acid backbones

    Science.gov (United States)

    Maitarad, Amphawan; Poomsuk, Nattawee; Vilaivan, Chotima; Vilaivan, Tirayut; Siriwong, Khatcharin

    2018-04-01

    Suitable conformations for peptide nucleic acid (PNA) self-hybrids with (2‧R,4‧R)- and (2‧R,4‧S)-prolyl-(1S,2S)-2-aminocyclopentanecarboxylic acid backbones (namely, acpcPNA and epi-acpcPNA, respectively) were investigated based on molecular dynamics simulations. The results revealed that hybridization of the acpcPNA was observed only in the parallel direction, with a conformation close to the P-type structure. In contrast, self-hybrids of the epi-acpcPNA were formed in the antiparallel and parallel directions; the antiparallel duplex adopted the B-form conformation, and the parallel duplex was between B- and P-forms. The calculated binding energies and the experimental data indicate that the antiparallel epi-acpcPNA self-hybrid was more stable than the parallel duplex.

  8. Evolutionary Relationships Based on Cellular Structure.

    Science.gov (United States)

    Van Winkle, Lon J.

    1979-01-01

    This laboratory exercise integrates the topics of cell structure, classification of living organisms, and evolution. It is suitable for secondary or college biology courses and was used in an interdisciplinary science course for nonscience majors. (BB)

  9. Distributed Prognostics Based on Structural Model Decomposition

    Data.gov (United States)

    National Aeronautics and Space Administration — Within systems health management, prognostics focuses on predicting the remaining useful life of a system. In the model-based prognostics paradigm, physics-based...

  10. Wetting of nonconserved residue-backbones: A feature indicative of aggregation associated regions of proteins.

    Science.gov (United States)

    Pradhan, Mohan R; Pal, Arumay; Hu, Zhongqiao; Kannan, Srinivasaraghavan; Chee Keong, Kwoh; Lane, David P; Verma, Chandra S

    2016-02-01

    Aggregation is an irreversible form of protein complexation and often toxic to cells. The process entails partial or major unfolding that is largely driven by hydration. We model the role of hydration in aggregation using "Dehydrons." "Dehydrons" are unsatisfied backbone hydrogen bonds in proteins that seek shielding from water molecules by associating with ligands or proteins. We find that the residues at aggregation interfaces have hydrated backbones, and in contrast to other forms of protein-protein interactions, are under less evolutionary pressure to be conserved. Combining evolutionary conservation of residues and extent of backbone hydration allows us to distinguish regions on proteins associated with aggregation (non-conserved dehydron-residues) from other interaction interfaces (conserved dehydron-residues). This novel feature can complement the existing strategies used to investigate protein aggregation/complexation. © 2015 Wiley Periodicals, Inc.

  11. Reliability based Robustness of Timber Structures through NDT Data Updating

    DEFF Research Database (Denmark)

    Sousa, Hélder S.; Sørensen, John Dalsgaard; Kirkegaard, Poul Henning

    2011-01-01

    This work presents a framework for reliability-based assessment of timber structures / members using data gathered from non-destructive test results. These results are used for modeling an update of the mechanical characteristics of timber, using Bayesian methods. Results gathered from ultrasound...... of the structure, thus, being possible to evaluate reliability based in time dependent factors, as well to categorize that structure in terms of robustness. For exemplification of the underlined concepts, three different types of structures are studied....

  12. Polyolefin backbone substitution in binders for low temperature powder injection moulding feedstocks.

    Science.gov (United States)

    Hausnerova, Berenika; Kuritka, Ivo; Bleyan, Davit

    2014-02-27

    This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al₂O₃ feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  13. Polyolefin Backbone Substitution in Binders for Low Temperature Powder Injection Moulding Feedstocks

    Directory of Open Access Journals (Sweden)

    Berenika Hausnerova

    2014-02-01

    Full Text Available This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al2O3 feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  14. Base connections for signal/sign structures.

    Science.gov (United States)

    2012-02-01

    The Atlantic hurricane season of 2004 brought with it a series of four major hurricanes that made landfall across : Florida within a six-week period. During this time, a number of cantilever sign structures along the state interstate system : failed....

  15. Structuring AHP-based maintenance policy selection

    NARCIS (Netherlands)

    Goossens, Adriaan; Basten, Robertus Johannes Ida; Hummel, J. Marjan; van der Wegen, Leonardus L.M.

    2015-01-01

    We aim to structure the maintenance policy selection process for ships, using the Analytic Hierarchy Process (AHP). Maintenance is an important contributor to reach the intended life-time of capital technical assets, and it is gaining increasing interest and relevance. A maintenance policy is a

  16. Risk Based Inspection Planning of Ageing Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Ersdal, Gerhard

    2008-01-01

    . Different approaches for updating inspection plans for older installations are considered in order to achieve decreased inspection intervals as the structure are ageing. The most promising method consists in increasing the rate of defects / crack initiation at the end of the expected lifetime. Different...

  17. Real-time prediction of atmospheric Lagrangian coherent structures based on forecast data: An application and error analysis

    Science.gov (United States)

    BozorgMagham, Amir E.; Ross, Shane D.; Schmale, David G.

    2013-09-01

    The language of Lagrangian coherent structures (LCSs) provides a new means for studying transport and mixing of passive particles advected by an atmospheric flow field. Recent observations suggest that LCSs govern the large-scale atmospheric motion of airborne microorganisms, paving the way for more efficient models and management strategies for the spread of infectious diseases affecting plants, domestic animals, and humans. In addition, having reliable predictions of the timing of hyperbolic LCSs may contribute to improved aerobiological sampling of microorganisms with unmanned aerial vehicles and LCS-based early warning systems. Chaotic atmospheric dynamics lead to unavoidable forecasting errors in the wind velocity field, which compounds errors in LCS forecasting. In this study, we reveal the cumulative effects of errors of (short-term) wind field forecasts on the finite-time Lyapunov exponent (FTLE) fields and the associated LCSs when realistic forecast plans impose certain limits on the forecasting parameters. Objectives of this paper are to (a) quantify the accuracy of prediction of FTLE-LCS features and (b) determine the sensitivity of such predictions to forecasting parameters. Results indicate that forecasts of attracting LCSs exhibit less divergence from the archive-based LCSs than the repelling features. This result is important since attracting LCSs are the backbone of long-lived features in moving fluids. We also show under what circumstances one can trust the forecast results if one merely wants to know if an LCS passed over a region and does not need to precisely know the passage time.

  18. Photonic structures based on hybrid nanocomposites

    Science.gov (United States)

    Husaini, Saima

    In this thesis, photonic structures embedded with two types of nanomaterials, (i) quantum dots and (ii) metal nanoparticles are studied. Both of these exhibit optical and electronic properties different from their bulk counterpart due to their nanoscale physical structure. By integrating these nanomaterials into photonic structures, in which the electromagnetic field can be confined and controlled via modification of geometry and composition, we can enhance their linear and nonlinear optical properties to realize functional photonic structures. Before embedding quantum dots into photonic structures, we study the effect of various host matrices and fabrication techniques on the optical properties of the colloidal quantum dots. The two host matrices of interest are SU8 and PMMA. It is shown that the emission properties of the quantum dots are significantly altered in these host matrices (especially SU8) and this is attributed to a high rate of nonradiative quenching of the dots. Furthermore, the effects of fabrication techniques on the optical properties of quantum dots are also investigated. Finally a microdisk resonator embedded with quantum dots is fabricated using soft lithography and luminescence from the quantum dots in the disk is observed. We investigate the absorption and effective index properties of silver nanocomposite films. It is shown that by varying the fill factor of the metal nanoparticles and fabrication parameters such as heating time, we can manipulate the optical properties of the metal nanocomposite. Optimizing these parameters, a silver nanocomposite film with a 7% fill factor is prepared. A one-dimensional photonic crystal consisting of alternating layers of the silver nanocomposite and a polymer (Polymethyl methacrylate) is fabricated using spin coating and its linear and nonlinear optical properties are investigated. Using reflectivity measurements we demonstrate that the one-dimensional silver-nanocomposite-dielectric photonic crystal

  19. Beta-scission of alkoxyl radicals on peptides and proteins can give rise to backbone cleavage and loss of side-chains

    International Nuclear Information System (INIS)

    Headlam, H.A.; Davies, M.J.; Mortimer, A.; Easton, C.J.

    2000-01-01

    Full text: Exposure of proteins to radicals in the presence of O 2 brings about multiple changes including side-chain oxidation, backbone fragmentation, cross-linking, unfolding, changes in hydrophobicity and conformation, altered susceptibility to proteolytic enzymes and formation of new reactive groups (e.g. hydroperoxides and 3,4-dihydroxyphenylalanine). All of these processes can result in loss of structural or enzymatic activity. The mechanisms that give rise to backbone cleavage are only partly understood. Whilst it is known that direct hydrogen atom abstraction at a-carbon sites gives backbone cleavages it has also been proposed that initial attack at side-chain sites might also give rise to backbone cleavage. In this study we have examined whether initial attack at the β- (C-3) position can give rise to α-carbon radicals (and hence backbone cleavage) via the formation, and subsequent β- scission, of C-3 alkoxyl radicals. This process has been observed previously with protected amino acids in organic solvents (J. Chem. Soc. Perkin Trans. 2, 1997, 503-507) but the occurrence of such reactions with proteins in aqueous solution has not been explored. Alkoxyl radicals were generated at the C-3 position of a variety of protected amino acids and small peptides by two methods: metal-ion catalysed decomposition of hydroperoxides formed as a result of γ-radiolysis in the presence of O 2 , and UV photolysis of nitrate esters. In most cases radicals have been detected by EPR spectroscopy using nitroso and nitrone spin traps, which can be assigned by comparison with literature data to α-carbon radicals; in some case assignments were confirmed by the generation of the putative species by other routes. With Ala peptide hydroperoxides and nitrate esters, and MNP as the spin trap, the major radical detected in each case has been assigned to the adduct of an α-carbon radical with partial structure - NH- . CH-C(O) - consistent with the rapid occurrence of the above

  20. Use of Just in Time Maintenance of Reinforced Concrete Bridge Structures based on Real Historical Data Deterioration Models

    Directory of Open Access Journals (Sweden)

    Abu-Tair A.

    2016-01-01

    Full Text Available Concrete is the backbone of any developed economy. Concrete can suffer from a large number of deleterious effects including physical, chemical and biological causes. Large owning bridge structures organizations are facing very serious questions when asking for maintenance budgets. The questions range from needing to justify the need for the work, its urgency, to also have to predict or show the consequences of delayed rehabilitation of a particular structure. There is therefore a need for a probabilistic model that can estimate the range of service lives of bridge populations and also the likelihood of level of deteriorations it can reached for every incremental time interval. A model was developed for such estimation based on statistical data from actual inspection records of a large reinforced concrete bridge portfolio. The method used both deterministic and stochastic methods to predict the service life of a bridge, using these service lives in combination with the just in time (JIT principle of management would enable maintenance managers to justify the need for action and the budgets needed, to intervene at the optimum time in the life of the structure and that of the deterioration. The paper will report on the model which is based on a large database of deterioration records of concrete bridges covering a period of over 60 years and include data from over 400 bridge structures. The paper will also illustrate how the service life model was developed and how these service lives combined with the JIT can be used to effectively allocate resources and use them to keep a major infrastructure asset moving with little disruption to the transport system and its users.

  1. The Deuterator: software for the determination of backbone amide deuterium levels from H/D exchange MS data

    Directory of Open Access Journals (Sweden)

    Tsinoremas NF

    2007-05-01

    Full Text Available Abstract Background The combination of mass spectrometry and solution phase amide hydrogen/deuterium exchange (H/D exchange experiments is an effective method for characterizing protein dynamics, and protein-protein or protein-ligand interactions. Despite methodological advancements and improvements in instrumentation and automation, data analysis and display remains a tedious process. The factors that contribute to this bottleneck are the large number of data points produced in a typical experiment, each requiring manual curation and validation, and then calculation of the level of backbone amide exchange. Tools have become available that address some of these issues, but lack sufficient integration, functionality, and accessibility required to address the needs of the H/D exchange community. To date there is no software for the analysis of H/D exchange data that comprehensively addresses these issues. Results We have developed an integrated software system for the automated analysis and representation of H/D exchange data that has been titled "The Deuterator". Novel approaches have been implemented that enable high throughput analysis, automated determination of deuterium incorporation, and deconvolution of overlapping peptides. This has been achieved by using methods involving iterative theoretical envelope fitting, and consideration of peak data within expected m/z ranges. Existing common file formats have been leveraged to allow compatibility with the output from the myriad of MS instrument platforms and peptide sequence database search engines. A web-based interface is used to integrate the components of The Deuterator that are able to analyze and present mass spectral data from instruments with varying resolving powers. The results, if necessary, can then be confirmed, adjusted, re-calculated and saved. Additional tools synchronize the curated calculation parameters with replicate time points, increasing throughput. Saved results can then

  2. Characterizing structural transitions using localized free energy landscape analysis.

    Directory of Open Access Journals (Sweden)

    Nilesh K Banavali

    Full Text Available Structural changes in molecules are frequently observed during biological processes like replication, transcription and translation. These structural changes can usually be traced to specific distortions in the backbones of the macromolecules involved. Quantitative energetic characterization of such distortions can greatly advance the atomic-level understanding of the dynamic character of these biological processes.Molecular dynamics simulations combined with a variation of the Weighted Histogram Analysis Method for potential of mean force determination are applied to characterize localized structural changes for the test case of cytosine (underlined base flipping in a GTCAGCGCATGG DNA duplex. Free energy landscapes for backbone torsion and sugar pucker degrees of freedom in the DNA are used to understand their behavior in response to the base flipping perturbation. By simplifying the base flipping structural change into a two-state model, a free energy difference of upto 14 kcal/mol can be attributed to the flipped state relative to the stacked Watson-Crick base paired state. This two-state classification allows precise evaluation of the effect of base flipping on local backbone degrees of freedom.The calculated free energy landscapes of individual backbone and sugar degrees of freedom expectedly show the greatest change in the vicinity of the flipping base itself, but specific delocalized effects can be discerned upto four nucleotide positions away in both 5' and 3' directions. Free energy landscape analysis thus provides a quantitative method to pinpoint the determinants of structural change on the atomic scale and also delineate the extent of propagation of the perturbation along the molecule. In addition to nucleic acids, this methodology is anticipated to be useful for studying conformational changes in all macromolecules, including carbohydrates, lipids, and proteins.

  3. Mnn10 Maintains Pathogenicity in Candida albicans by Extending α-1,6-Mannose Backbone to Evade Host Dectin-1 Mediated Antifungal Immunity.

    Directory of Open Access Journals (Sweden)

    Shi Qun Zhang

    2016-05-01

    Full Text Available The cell wall is a dynamic structure that is important for the pathogenicity of Candida albicans. Mannan, which is located in the outermost layer of the cell wall, has been shown to contribute to the pathogenesis of C. albicans, however, the molecular mechanism by which this occurs remains unclear. Here we identified a novel α-1,6-mannosyltransferase encoded by MNN10 in C. albicans. We found that Mnn10 is required for cell wall α-1,6-mannose backbone biosynthesis and polysaccharides organization. Deletion of MNN10 resulted in significant attenuation of the pathogenesis of C. albicans in a murine systemic candidiasis model. Inhibition of α-1,6-mannose backbone extension did not, however, impact the invasive ability of C. albicans in vitro. Notably, mnn10 mutant restored the invasive capacity in athymic nude mice, which further supports the notion of an enhanced host antifungal defense related to this backbone change. Mnn10 mutant induced enhanced Th1 and Th17 cell mediated antifungal immunity, and resulted in enhanced recruitment of neutrophils and monocytes for pathogen clearance in vivo. We also demonstrated that MNN10 could unmask the surface β-(1,3-glucan, a crucial pathogen-associated molecular pattern (PAMP of C. albicans recognized by host Dectin-1. Our results demonstrate that mnn10 mutant could stimulate an enhanced Dectin-1 dependent immune response of macrophages in vitro, including the activation of nuclear factor-κB, mitogen-activated protein kinase pathways, and secretion of specific cytokines such as TNF-α, IL-6, IL-1β and IL-12p40. In summary, our study indicated that α-1,6-mannose backbone is critical for the pathogenesis of C. albicans via shielding β-glucan from recognition by host Dectin-1 mediated immune recognition. Moreover, our work suggests that inhibition of α-1,6-mannose extension by Mnn10 may represent a novel modality to reduce the pathogenicity of C. albicans.

  4. Structure-based bayesian sparse reconstruction

    KAUST Repository

    Quadeer, Ahmed Abdul

    2012-12-01

    Sparse signal reconstruction algorithms have attracted research attention due to their wide applications in various fields. In this paper, we present a simple Bayesian approach that utilizes the sparsity constraint and a priori statistical information (Gaussian or otherwise) to obtain near optimal estimates. In addition, we make use of the rich structure of the sensing matrix encountered in many signal processing applications to develop a fast sparse recovery algorithm. The computational complexity of the proposed algorithm is very low compared with the widely used convex relaxation methods as well as greedy matching pursuit techniques, especially at high sparsity. © 1991-2012 IEEE.

  5. Structural Bases of Postresuscitative Heart Failure

    Directory of Open Access Journals (Sweden)

    V. T. Dolgikh

    2005-01-01

    Full Text Available An experiment on 106 non-inbred male albino rats undergone 4-minute clinical death from acute blood loss has revealed that the first three days after resuscitation are marked by a concomitance of vascular disorders and cardiomyocytic dystrophic changes, the leading role being played by sludge, stasis, thrombosis, increased vascular permeability, perivascular edema, and hemorrhages. Cardiomyocytic destruction (various contractures, block-like myofibrillolysis, myocytoly-sis is a structural basis of postresuscitative heart failure. Three days later the heart displayed concomitant processes of recovery and damage. Three types of cardiac morphological changes have been identified in relation to the ratio of these processes.

  6. Quantum Chemical Benchmark Study on 46 RNA Backbone Families Using a Dinucleotide Unit

    Czech Academy of Sciences Publication Activity Database

    Kruse, H.; Mládek, Arnošt; Gkionis, Konstantinos; Hansen, A.; Grimme, S.; Šponer, Jiří

    2015-01-01

    Roč. 11, č. 10 (2015), s. 4972-4991 ISSN 1549-9618 R&D Projects: GA ČR(CZ) GBP305/12/G034 Institutional support: RVO:68081707 Keywords : MOLECULAR-DYNAMICS SIMULATIONS * DENSITY-FUNCTIONAL THEORY * SUGAR-PHOSPHATE BACKBONE Subject RIV: BO - Biophysics Impact factor: 5.301, year: 2015

  7. Comparing the Reliability of Regular Topologies on a Backbone Network. A Case Study

    DEFF Research Database (Denmark)

    Cecilio, Sergio Labeage; Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir

    2009-01-01

    The aim of this paper is to compare the reliability of regular topologies on a backbone network. The study is focused on a large-scale fiberoptic network. Different regular topological solutions as single ring, double ring or 4-Regular grid are applied to the case study, and compared in terms...

  8. Treatment Results of Injuries of Thoracic and Lumbar Backbone Departments at Osteoporosis Patients

    Directory of Open Access Journals (Sweden)

    D.Y. Sumin

    2009-06-01

    Full Text Available Information relates to radiologic (computer tomography manifestations providing the visualization of thoracic and lumbar backbone department injuries at osteoporotic patients. Contemporary methods of transcutaneous and trans-pedicle vertebroplasty with bone cement allows to obtain a stable positive healing effect against such pathologies.

  9. SEVA Linkers: A Versatile and Automatable DNA Backbone Exchange Standard for Synthetic Biology

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Cavaleiro, Mafalda; Rennig, Maja

    2016-01-01

    flexibility, and different researchers prefer and master different molecular technologies. Here, we describe a new, highly versatile and automatable standard “SEVA linkers” for vector exchange. SEVA linkers enable backbone swapping with 20 combinations of classical enzymatic restriction/ligation, Gibson...

  10. Integrative technology of massage manipulations in physical rehabilitation of students with backbone pathology

    Directory of Open Access Journals (Sweden)

    V.I. Kotelevskiy

    2016-06-01

    Full Text Available Purpose:to analyze effectiveness of massage manipulations’ integrative technology in physical rehabilitation of higher educational establishments’ students with backbone pathology. Material: in the research 195 students of 19-20 years’ age participated. All students had periodical initial neurological symptoms of functional pathology and first stage osteochondrosis in different parts of backbone. We conducted a course of 10 sessions of therapeutic massage. Results: the sense of massage integrative technology is that every specialist shall have certain optimal set of skills and knowledge in technique of manipulation sessions of massage. Integrative technology of massage manipulations consists of psycho-corrective and manipulation parts. It considers psycho-somatic, mechanical and reflex rehabilitation aspects of patho-genesis of backbone functional disorders and vertebral osteochondrosis. Conclusions: depending on pathological process or backbone functional state of every person (peculiarities of his (her psycho-somatic status or, even, his (her bents. Individual approach in choice of strategy, tactic and methodological provisioning of massage session shall be used.

  11. “Pinning strategy”: a novel approach for predicting the backbone ...

    Indian Academy of Sciences (India)

    Prakash

    To assess the quality of the strategy, we define two measures. The first one ...... modular framework of the protein backbone; Protein Eng. 12. 1063–1073 .... Richardson J S, Getzoff E D and Richardson D C 1978 The beta bulge: a common ...

  12. Benefits of Risk Based Inspection Planning for Offshore Structures

    DEFF Research Database (Denmark)

    Straub, D.M.; Goyet, J.; Sørensen, John Dalsgaard

    2006-01-01

    The economical benefits of applying risk-based inspection planning (RBI) for offshore structures subject to fatigue are evaluated based on experiences from past industrial projects. To this end, the factors influencing the cost of inspection, repair and failure of structures are discussed......, the financial benefit of RBI is assessed....

  13. Three-Dimensional Protein Fold Determination from Backbone Amide Pseudocontact Shifts Generated by Lanthanide Tags at Multiple Sites

    KAUST Repository

    Yagi, Hiromasa

    2013-06-01

    Site-specific attachment of paramagnetic lanthanide ions to a protein generates pseudocontact shifts (PCS) in the nuclear magnetic resonance (NMR) spectra of the protein that are easily measured as changes in chemical shifts. By labeling the protein with lanthanide tags at four different sites, PCSs are observed for most amide protons and accurate information is obtained about their coordinates in three-dimensional space. The approach is demonstrated with the chaperone ERp29, for which large differences have been reported between X-ray and NMR structures of the C-terminal domain, ERp29-C. The results unambiguously show that the structure of rat ERp29-C in solution is similar to the crystal structure of human ERp29-C. PCSs of backbone amides were the only structural restraints required. Because these can be measured for more dilute protein solutions than other NMR restraints, the approach greatly widens the range of proteins amenable to structural studies in solution. © 2013 Elsevier Ltd. All rights reserved.

  14. Structural Acoustic Physics Based Modeling of Curved Composite Shells

    Science.gov (United States)

    2017-09-19

    NUWC-NPT Technical Report 12,236 19 September 2017 Structural Acoustic Physics -Based Modeling of Curved Composite Shells Rachel E. Hesse...SUBTITLE Structural Acoustic Physics -Based Modeling of Curved Composite Shells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...study was to use physics -based modeling (PBM) to investigate wave propagations through curved shells that are subjected to acoustic excitation. An

  15. The backbone of the post-synaptic density originated in a unicellular ancestor of choanoflagellates and metazoans

    Directory of Open Access Journals (Sweden)

    Manuel Michaël

    2010-02-01

    Full Text Available Abstract Background Comparative genomics of the early diverging metazoan lineages and of their unicellular sister-groups opens new window to reconstructing the genetic changes which preceded or accompanied the evolution of multicellular body plans. A recent analysis found that the genome of the nerve-less sponges encodes the homologues of most vertebrate post-synaptic proteins. In vertebrate excitatory synapses, these proteins assemble to form the post-synaptic density, a complex molecular platform linking membrane receptors, components of their signalling pathways, and the cytoskeleton. Newly available genomes from Monosiga brevicollis (a member of Choanoflagellata, the closest unicellular relatives of animals and Trichoplax adhaerens (a member of Placozoa: besides sponges, the only nerve-less metazoans offer an opportunity to refine our understanding of post-synaptic protein evolution. Results Searches for orthologous proteins and reconstruction of gene gains/losses based on the taxon phylogeny indicate that post-synaptic proteins originated in two main steps. The backbone scaffold proteins (Shank, Homer, DLG and some of their partners were acquired in a unicellular ancestor of choanoflagellates and metazoans. A substantial additional set appeared in an exclusive ancestor of the Metazoa. The placozoan genome contains most post-synaptic genes but lacks some of them. Notably, the master-scaffold protein Shank might have been lost secondarily in the placozoan lineage. Conclusions The time of origination of most post-synaptic proteins was not concomitant with the acquisition of synapses or neural-like cells. The backbone of the scaffold emerged in a unicellular context and was probably not involved in cell-cell communication. Based on the reconstructed protein composition and potential interactions, its ancestral function could have been to link calcium signalling and cytoskeleton regulation. The complex later became integrated into the evolving

  16. Selecting Question-Specific Genes to Reduce Incongruence in Phylogenomics: A Case Study of Jawed Vertebrate Backbone Phylogeny.

    Science.gov (United States)

    Chen, Meng-Yun; Liang, Dan; Zhang, Peng

    2015-11-01

    Incongruence between different phylogenomic analyses is the main challenge faced by phylogeneticists in the genomic era. To reduce incongruence, phylogenomic studies normally adopt some data filtering approaches, such as reducing missing data or using slowly evolving genes, to improve the signal quality of data. Here, we assembled a phylogenomic data set of 58 jawed vertebrate taxa and 4682 genes to investigate the backbone phylogeny of jawed vertebrates under both concatenation and coalescent-based frameworks. To evaluate the efficiency of extracting phylogenetic signals among different data filtering methods, we chose six highly intractable internodes within the backbone phylogeny of jawed vertebrates as our test questions. We found that our phylogenomic data set exhibits substantial conflicting signal among genes for these questions. Our analyses showed that non-specific data sets that are generated without bias toward specific questions are not sufficient to produce consistent results when there are several difficult nodes within a phylogeny. Moreover, phylogenetic accuracy based on non-specific data is considerably influenced by the size of data and the choice of tree inference methods. To address such incongruences, we selected genes that resolve a given internode but not the entire phylogeny. Notably, not only can this strategy yield correct relationships for the question, but it also reduces inconsistency associated with data sizes and inference methods. Our study highlights the importance of gene selection in phylogenomic analyses, suggesting that simply using a large amount of data cannot guarantee correct results. Constructing question-specific data sets may be more powerful for resolving problematic nodes. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. A structural informatics approach to mine kinase knowledge bases.

    Science.gov (United States)

    Brooijmans, Natasja; Mobilio, Dominick; Walker, Gary; Nilakantan, Ramaswamy; Denny, Rajiah A; Feyfant, Eric; Diller, David; Bikker, Jack; Humblet, Christine

    2010-03-01

    In this paper, we describe a combination of structural informatics approaches developed to mine data extracted from existing structure knowledge bases (Protein Data Bank and the GVK database) with a focus on kinase ATP-binding site data. In contrast to existing systems that retrieve and analyze protein structures, our techniques are centered on a database of ligand-bound geometries in relation to residues lining the binding site and transparent access to ligand-based SAR data. We illustrate the systems in the context of the Abelson kinase and related inhibitor structures. 2009 Elsevier Ltd. All rights reserved.

  18. CheShift-2 resolves a local inconsistency between two X-ray crystal structures

    International Nuclear Information System (INIS)

    Vila, Jorge A.; Sue, Shih-Che; Fraser, James S.; Scheraga, Harold A.; Dyson, H. Jane

    2012-01-01

    Since chemical shifts provide important and relatively accessible information about protein structure in solution, a Web server, CheShift-2, was developed for structure interrogation, based on a quantum mechanics database of 13 C α chemical shifts. We report the application of CheShift-2 to a local inconsistency between two X-ray crystal structures (PDB IDs 1IKN and 1NFI) of the complex between the p65/p50 heterodimer of NFκB and its inhibitor IκBα. The availability of NMR resonance assignments that included the region of the inconsistency provided an opportunity for independent validation of the CheShift-2 server. Application of the server showed that the 13 C α chemical shifts measured for the Gly270-Pro281 sequence close to the C-terminus of IκBα were unequivocally consistent with the backbone structure modeled in the 1IKN structure, and were inconsistent with the 1NFI structure. Previous NOE measurements had demonstrated that the position of a tryptophan ring in the region immediately N-terminal in this region was not consistent with either structure. Subsequent recalculation of the local structure in this region, based on the electron density of the deposited structure factors for 1IKN, confirmed that the local backbone structure was best modeled by 1IKN, but that the rotamer of Trp258 is consistent with the 1NFI structure, including the presence of a hydrogen bond between the ring NεH of Trp258 and the backbone carbonyl group of Gln278. The consensus between all of these measures suggests that the CheShift-2 server operates well under circumstances in which backbone chemical shifts are available but where local plasticity may render X-ray structural data ambiguous.

  19. Structural Health Monitoring Based on Combined Structural Global and Local Frequencies

    Directory of Open Access Journals (Sweden)

    Jilin Hou

    2014-01-01

    Full Text Available This paper presents a parameter estimation method for Structural Health Monitoring based on the combined measured structural global frequencies and structural local frequencies. First, the global test is experimented to obtain the low order modes which can reflect the global information of the structure. Secondly, the mass is added on the member of structure to increase the local dynamic characteristic and to make the member have local primary frequency, which belongs to structural local frequency and is sensitive to local parameters. Then the parameters of the structure can be optimized accurately using the combined structural global frequencies and structural local frequencies. The effectiveness and accuracy of the proposed method are verified by the experiment of a space truss.

  20. Equipment response spectra for base-isolated shear beam structures

    International Nuclear Information System (INIS)

    Ahmadi, G.; Su, L.

    1992-01-01

    Equipment response spectra in base-isolated structure under seismic ground excitations are studied. The equipment is treated as a single-degree-of-freedom system attached to a nonuniform elastic beam structural model. Several leading base isolation systems, including the laminated rubber bearing, the resilient-friction base isolator with and without a sliding upper plate, and the EDF system are considered. Deflection and acceleration response spectra for the equipment and the shear beam structure subject to a sinusoidal and the accelerogram of the N00W component of El Centro 1940 earthquake are evaluated. Primary-secondary interaction effects are included in the analysis. Several numerical parametric studies are carried out and the effectiveness of different base isolation systems in protecting the nonstructural components is studied. It is shown that use of properly designed base isolation systems provides considerable protection for secondary systems, as well as, the structure against severe seismic loadings. (orig.)

  1. Seismic Response Analysis and Design of Structure with Base Isolation

    International Nuclear Information System (INIS)

    Rosko, Peter

    2010-01-01

    The paper reports the study on seismic response and energy distribution of a multi-story civil structure. The nonlinear analysis used the 2003 Bam earthquake acceleration record as the excitation input to the structural model. The displacement response was analyzed in time domain and in frequency domain. The displacement and its derivatives result energy components. The energy distribution in each story provides useful information for the structural upgrade with help of added devices. The objective is the structural displacement response minimization. The application of the structural seismic response research is presented in base-isolation example.

  2. Performance-based shape optimization of continuum structures

    International Nuclear Information System (INIS)

    Liang Qingquan

    2010-01-01

    This paper presents a performance-based optimization (PBO) method for optimal shape design of continuum structures with stiffness constraints. Performance-based design concepts are incorporated in the shape optimization theory to achieve optimal designs. In the PBO method, the traditional shape optimization problem of minimizing the weight of a continuum structure with displacement or mean compliance constraints is transformed to the problem of maximizing the performance of the structure. The optimal shape of a continuum structure is obtained by gradually eliminating inefficient finite elements from the structure until its performance is maximized. Performance indices are employed to monitor the performance of optimized shapes in an optimization process. Performance-based optimality criteria are incorporated in the PBO method to identify the optimum from the optimization process. The PBO method is used to produce optimal shapes of plane stress continuum structures and plates in bending. Benchmark numerical results are provided to demonstrate the effectiveness of the PBO method for generating the maximum stiffness shape design of continuum structures. It is shown that the PBO method developed overcomes the limitations of traditional shape optimization methods in optimal design of continuum structures. Performance-based optimality criteria presented can be incorporated in any shape and topology optimization methods to obtain optimal designs of continuum structures.

  3. Strengthening of Concrete Structures with cement based bonded composites

    DEFF Research Database (Denmark)

    Täljsten, Björn; Blanksvärd, Thomas

    2008-01-01

    Polymers). The method is very efficient and has achieved world wide attention. However, there are some drawbacks with the use of epoxy, e.g. working environment, compatibility and permeability. Substituting the epoxy adherent with a cement based bonding agent will render a strengthening system...... with improved working environment and better compatibility to the base concrete structure. This study gives an overview of different cement based systems, all with very promising results for structural upgrading. Studied parameters are structural retrofit for bending, shear and confinement. It is concluded...

  4. Dissimilarity-based classification of anatomical tree structures

    DEFF Research Database (Denmark)

    Sørensen, Lauge; Lo, Pechin Chien Pau; Dirksen, Asger

    2011-01-01

    A novel method for classification of abnormality in anatomical tree structures is presented. A tree is classified based on direct comparisons with other trees in a dissimilarity-based classification scheme. The pair-wise dissimilarity measure between two trees is based on a linear assignment betw...

  5. Dissimilarity-based classification of anatomical tree structures

    DEFF Research Database (Denmark)

    Sørensen, Lauge Emil Borch Laurs; Lo, Pechin Chien Pau; Dirksen, Asger

    2011-01-01

    A novel method for classification of abnormality in anatomical tree structures is presented. A tree is classified based on direct comparisons with other trees in a dissimilarity-based classification scheme. The pair-wise dissimilarity measure between two trees is based on a linear assignment...

  6. The Latent Structure of Secure Base Script Knowledge

    Science.gov (United States)

    Waters, Theodore E. A.; Fraley, R. Chris; Groh, Ashley M.; Steele, Ryan D.; Vaughn, Brian E.; Bost, Kelly K.; Veríssimo, Manuela; Coppola, Gabrielle; Roisman, Glenn I.

    2015-01-01

    There is increasing evidence that attachment representations abstracted from childhood experiences with primary caregivers are organized as a cognitive script describing secure base use and support (i.e., the "secure base script"). To date, however, the latent structure of secure base script knowledge has gone unexamined--this despite…

  7. A data base for aging of structural materials

    International Nuclear Information System (INIS)

    Oland, C.B.; Naus, D.J.; Jerath, S.

    1993-01-01

    The U.S. Nuclear Regulatory Commission (USNRC) initiated a Structural Aging (SAG) Program at the Oak Ridge National Laboratory (ORNL). The objective of the program is to provide assistance in identifying potential structural safety issues and to establish acceptance criteria for use in nuclear power plant evaluations for continued service. One of the main parts of the program focuses on the development of a Structural Materials Information Center where long-term and environment-dependent material properties are being collected and assembled into a data base. This data base is presented in two complementary formats. The Structural Materials Handbook is an expandable, hard-copy reference document that contains the complete data base for each material. The Structural Materials Electronic Data Base is accessible using an IBM-compatible personal computer. This paper presents an overview of the Structural Materials Information Center and briefly describes the features of the handbook and the electronic data base. In addition, a proposed method for using the data base to establish current property values for materials in existing concrete structures and to estimate the future performance of these materials is also presented. (author)

  8. A data base for aging of structural materials

    International Nuclear Information System (INIS)

    Oland, C.B.; Naus, D.J.; Jerath, S.

    1993-01-01

    USNRC initiated a Structural Aging (SAG) Program ORNL. The objective of the program is to provide assistance in identifying potential structural safety issues and to establish acceptance criteria for use in nuclear power plant evaluations for continued service. One main part focuses on the development of a Structural Materials Information Center where long-term and environment-dependent material properties are being collected and assembled into a data base. This data base is presented in two complementary formats. The Structural Materials Handbook is an expandable, hard-copy reference document that contains the complete data base for each material. The Structural Materials Electronic Data Base is accessible using an IBM-compatible personal computer. This paper presents an overview of the Structural Materials Information Center and briefly describes the features of the handbook and the electronic data base. In addition, a proposed method for using the data base to establish current property values for materials in existing concrete structures and to estimate the future performance of these materials is also presented

  9. Graph-based linear scaling electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.; Swart, Pieter J.; Germann, Timothy C.; Bock, Nicolas [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Mniszewski, Susan M.; Mohd-Yusof, Jamal; Wall, Michael E.; Djidjev, Hristo [Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rubensson, Emanuel H. [Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala (Sweden)

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  10. Protein Function Prediction Based on Sequence and Structure Information

    KAUST Repository

    Smaili, Fatima Z.

    2016-01-01

    operate. In this master thesis project, we worked on inferring protein functions based on the primary protein sequence. In the approach we follow, 3D models are first constructed using I-TASSER. Functions are then deduced by structurally matching

  11. Electronic and chemical properties of graphene-based structures:

    DEFF Research Database (Denmark)

    Vanin, Marco

    In the present thesis several aspects of graphene-based structures have been investigated using density functional theory calculations to solve the electronic structure problem. A review of the implementation of a localized basis-set within the projector augmented wave method - the way of describ...... are attractive candidates although issues regarding the poisoning of the active site remain to be addressed....

  12. Economic structure and performance of forest-based industries

    International Nuclear Information System (INIS)

    O'Laughlin, J.

    1989-01-01

    This paper reports on the economic structure, conduct, and performance of industries dependent on the nation's forests that are topics of special importance for research. A major challenge to research involving industrial organization of forest-based industries is to link descriptions of structure, conduct, and industrial performance in ways that facilitate public and private policy making. Not to be overlooked is the need to continue efforts to monitor changes in structure and conduct dimensions at the national level and to conduct baseline studies of industry structure-conduct-performance at regional, state, and local levels. Specifically needed is research that will improve understanding of restructuring within the wood-based industry; definitions of the wood-based industry and segments thereof; linkages between structure and regional economic development; timberland as a managerial and economic variable; structural consequences of technological innovations; corporate strategies as related to performance; structural dimensions in an international setting; and structure and performance of nonwood-based forest industries. Economics research focused in such directions will go far toward improving the manner in which the nation's many forest industries organize and conduct their activities

  13. Probability based high temperature engineering creep and structural fire resistance

    CERN Document Server

    Razdolsky, Leo

    2017-01-01

    This volume on structural fire resistance is for aerospace, structural, and fire prevention engineers; architects, and educators. It bridges the gap between prescriptive- and performance-based methods and simplifies very complex and comprehensive computer analyses to the point that the structural fire resistance and high temperature creep deformations will have a simple, approximate analytical expression that can be used in structural analysis and design. The book emphasizes methods of the theory of engineering creep (stress-strain diagrams) and mathematical operations quite distinct from those of solid mechanics absent high-temperature creep deformations, in particular the classical theory of elasticity and structural engineering. Dr. Razdolsky’s previous books focused on methods of computing the ultimate structural design load to the different fire scenarios. The current work is devoted to the computing of the estimated ultimate resistance of the structure taking into account the effect of high temperatur...

  14. Ca-C backbone fragmentation dominates in electron detachment dissociation of gas-phase polypeptide polyanions

    DEFF Research Database (Denmark)

    Kjeldsen, Frank; Silivra, Oleg A; Ivonin, Igor A

    2005-01-01

    the dissociation of oxidized radical anions [M-nH]((n-1)-*. We demonstrate that C(alpha)-C cleavages, which are otherwise rarely observed in tandem mass spectrometry, can account for most of the backbone fragmentation, with even-electron x fragments dominating over radical a* ions. Ab initio calculations at the B3...... LYP level of theory with the 6-311+G(2 p,2 d)//6-31+G(d,p) basis set suggested a unidirectional mechanism for EDD (cleavage always N-terminal to the radical site), with a*, x formation being favored over a, x* fragmentation by 74.2 kJ mol(-1). Thus, backbone C(alpha)-C bonds N-terminal to proline...

  15. Aromatic Copolyamides with Anthrazoline Units in the Backbone: Synthesis, Characterization, Pervaporation Application

    Directory of Open Access Journals (Sweden)

    Galina A. Polotskaya

    2016-10-01

    Full Text Available Copolyamides with anthrazoline units in the backbone (coPA were synthesized and dense nonporous films were prepared by solvent evaporation. Glass transition temperature, density, and fractional free volume were determined for the dense nonporous films composed of polyamide and two of its copolymers containing 20 and 30 mol % anthrazoline units in the backbone. Transport properties of the polymer films were estimated by sorption and pervaporation tests toward methanol, toluene, and their mixtures. An increase in anthrazoline fragments content leads to an increasing degree of methanol sorption but to a decreasing degree of toluene sorption. Pervaporation of a methanol–toluene mixture was studied over a wide range of feed concentration (10–90 wt % methanol. Maximal separation factor was observed for coPA-20 containing 20 mol % fragments with anthrazoline units; maximal total flux was observed for coPA-30 with the highest fractional free volume.

  16. Microstructure and structural phase transitions in iron-based superconductors

    International Nuclear Information System (INIS)

    Wang Zhen; Cai Yao; Yang Huai-Xin; Tian Huan-Fang; Wang Zhi-Wei; Ma Chao; Chen Zhen; Li Jian-Qi

    2013-01-01

    Crystal structures and microstructural features, such as structural phase transitions, defect structures, and chemical and structural inhomogeneities, are known to have profound effects on the physical properties of superconducting materials. Recently, many studies on the structural properties of Fe-based high-T c superconductors have been published. This review article will mainly focus on the typical microstructural features in samples that have been well characterized by physical measurements. (i) Certain common structural features are discussed, in particular, the crystal structural features for different superconducting families, the local structural distortions in the Fe 2 Pn 2 (Pn = P As, Sb) or Fe 2 Ch 2 (Ch = S, Se, Te) blocks, and the structural transformations in the 122 system. (ii) In FeTe(Se) (11 family), the superconductivity, chemical and structural inhomogeneities are investigated and discussed in correlation with superconductivity. (iii) In the K 0.8 Fe 1.6+x Se 2 system, we focus on the typical compounds with emphasis on the Fe-vacancy order and phase separations. The microstructural features in other superconducting materials are also briefly discussed. (topical review - iron-based high temperature superconductors)

  17. Backbone resonance assignments of the outer membrane lipoprotein FrpD from Neisseria meningitidis

    Czech Academy of Sciences Publication Activity Database

    Bumba, Ladislav; Sviridova, E.; Kutá-Smatanová, Ivana; Řezáčová, Pavlína; Veverka, Václav

    2014-01-01

    Roč. 8, č. 1 (2014), s. 53-55 ISSN 1874-2718 R&D Projects: GA ČR(CZ) GAP207/11/0717; GA MŠk(CZ) LK11205 Institutional support: RVO:61388963 ; RVO:61388971 ; RVO:67179843 Keywords : Neisseria meningitidis * FrpC * FrpD * backbone assignments * NMR * iron-regulated protein Subject RIV: CE - Biochemistry Impact factor: 0.760, year: 2014

  18. Tritium containing polymers having a polymer backbone substantially void of tritium

    Science.gov (United States)

    Jensen, G.A.; Nelson, D.A.; Molton, P.M.

    1992-03-31

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium. 2 figs.

  19. LoopX: A Graphical User Interface-Based Database for Comprehensive Analysis and Comparative Evaluation of Loops from Protein Structures.

    Science.gov (United States)

    Kadumuri, Rajashekar Varma; Vadrevu, Ramakrishna

    2017-10-01

    Due to their crucial role in function, folding, and stability, protein loops are being targeted for grafting/designing to create novel or alter existing functionality and improve stability and foldability. With a view to facilitate a thorough analysis and effectual search options for extracting and comparing loops for sequence and structural compatibility, we developed, LoopX a comprehensively compiled library of sequence and conformational features of ∼700,000 loops from protein structures. The database equipped with a graphical user interface is empowered with diverse query tools and search algorithms, with various rendering options to visualize the sequence- and structural-level information along with hydrogen bonding patterns, backbone φ, ψ dihedral angles of both the target and candidate loops. Two new features (i) conservation of the polar/nonpolar environment and (ii) conservation of sequence and conformation of specific residues within the loops have also been incorporated in the search and retrieval of compatible loops for a chosen target loop. Thus, the LoopX server not only serves as a database and visualization tool for sequence and structural analysis of protein loops but also aids in extracting and comparing candidate loops for a given target loop based on user-defined search options.

  20. Performance Analysis of Space Information Networks with Backbone Satellite Relaying for Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Jian Jiao

    2017-01-01

    Full Text Available Space Information Network (SIN with backbone satellites relaying for vehicular network (VN communications is regarded as an effective strategy to provide diverse vehicular services in a seamless, efficient, and cost-effective manner in rural areas and highways. In this paper, we investigate the performance of SIN return channel cooperative communications via an amplify-and-forward (AF backbone satellite relaying for VN communications, where we assume that both of the source-destination and relay-destination links undergo Shadowed-Rician fading and the source-relay link follows Rician fading, respectively. In this SIN-assisted VN communication scenario, we first obtain the approximate statistical distributions of the equivalent end-to-end signal-to-noise ratio (SNR of the system. Then, we derive the closed-form expressions to efficiently evaluate the average symbol error rate (ASER of the system. Furthermore, the ASER expressions are taking into account the effect of satellite perturbation of the backbone relaying satellite, which reveal the accumulated error of the antenna pointing error. Finally, simulation results are provided to verify the accuracy of our theoretical analysis and show the impact of various parameters on the system performance.

  1. Backbone dynamics of oxidized and reduced D. vulgaris flavodoxin in solution

    International Nuclear Information System (INIS)

    Hrovat, Andrea; Bluemel, Markus; Loehr, Frank; Mayhew, Stephen G.; Rueterjans, Heinz

    1997-01-01

    Recombinant Desulfovibrio vulgaris flavodoxin was produced in Escherichia coli. A complete backbone NMR assignment for the two-electron reduced protein revealed significant changes of chemical shift values compared to the oxidized protein, in particular for the flavine mononucleotide (FMN)-binding site. A comparison of homo- and heteronuclear NOESY spectra for the two redox states led to the assumption that reduction is not accompanied by significant changes of the global fold of the protein.The backbone dynamics of both the oxidized and reduced forms of D. vulgaris flavodoxin were investigated using two-dimensional 15 N- 1 H correlation NMR spectroscopy.T 1 , T 2 and NOE data are obtained for 95% of the backbone amide groups in both redox states. These values were analysed in terms of the 'model-free' approach introduced by Lipari and Szabo [(1982) J. Am. Chem. Soc., 104, 4546-;4559, 4559-;4570]. A comparison of the two redox states indicates that in the reduced species significantly more flexibility occurs in the two loop regions enclosing FMN.Also, a higher amplitude of local motion could be found for the N(3)H group of FMN bound to the reduced protein compared to the oxidized state

  2. Neighboring Structure Visualization on a Grid-based Layout.

    Science.gov (United States)

    Marcou, G; Horvath, D; Varnek, A

    2017-10-01

    Here, we describe an algorithm to visualize chemical structures on a grid-based layout in such a way that similar structures are neighboring. It is based on structure reordering with the help of the Hilbert Schmidt Independence Criterion, representing an empirical estimate of the Hilbert-Schmidt norm of the cross-covariance operator. The method can be applied to any layout of bi- or three-dimensional shape. The approach is demonstrated on a set of dopamine D5 ligands visualized on squared, disk and spherical layouts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Magnetophoresis of flexible DNA-based dumbbell structures

    Science.gov (United States)

    Babić, B.; Ghai, R.; Dimitrov, K.

    2008-02-01

    Controlled movement and manipulation of magnetic micro- and nanostructures using magnetic forces can give rise to important applications in biomedecine, diagnostics, and immunology. We report controlled magnetophoresis and stretching, in aqueous solution, of a DNA-based dumbbell structure containing magnetic and diamagnetic microspheres. The velocity and stretching of the dumbbell were experimentally measured and correlated with a theoretical model based on the forces acting on individual magnetic beads or the entire dumbbell structures. The results show that precise and predictable manipulation of dumbbell structures is achievable and can potentially be applied to immunomagnetic cell separators.

  4. Structure of 2,4-Diaminopyrimidine - Theobromine Alternate Base Pairs

    Science.gov (United States)

    Gengeliczki, Zsolt; Callahan, Michael P.; Kabelac, Martin; Rijs, Anouk M.; deVries, Mattanjah S.

    2011-01-01

    We report the structure of clusters of 2,4-diaminopyrimidine with 3,7-dimethylxanthine (theobromine) in the gas phase determined by IR-UV double resonance spectroscopy in both the near-IR and mid-IR regions in combination with ab initio computations. These clusters represent potential alternate nucleobase pairs, geometrically equivalent to guanine-cytosine. We have found the four lowest energy structures, which include the Watson-Crick base pairing motif. This Watson-Crick structure has not been observed by resonant two-photon ionization (R2PI) in the gas phase for the canonical DNA base pairs.

  5. Data base on avian mortality on man-made structures

    Energy Technology Data Exchange (ETDEWEB)

    Dailey, N. S.

    1978-01-01

    A computerized data base concerning avian mortality on man-made structures is available for searching at the Ecological Sciences Information Center of the Information Center Complex, Information Division, Oak Ridge National Laboratory. This data base, which contains entries from the available literature, provides information on avian mortality from either collision into or electrocution on man-made structures. Primary emphasis has been placed on avian collision with obstacles such as television and radio towers, airport ceilometers, transmission lines, and cooling towers. Other structures included in the studies are fences, glass walls and windows, lighthouses, telegraph and telephone wires, buildings, monuments, smokestacks, and water towers.

  6. SA-Search: a web tool for protein structure mining based on a Structural Alphabet

    OpenAIRE

    Guyon, Frédéric; Camproux, Anne-Claude; Hochez, Joëlle; Tufféry, Pierre

    2004-01-01

    SA-Search is a web tool that can be used to mine for protein structures and extract structural similarities. It is based on a hidden Markov model derived Structural Alphabet (SA) that allows the compression of three-dimensional (3D) protein conformations into a one-dimensional (1D) representation using a limited number of prototype conformations. Using such a representation, classical methods developed for amino acid sequences can be employed. Currently, SA-Search permits the performance of f...

  7. Betavoltaic Battery Conversion Efficiency Improvement Based on Interlayer Structures

    International Nuclear Information System (INIS)

    Li Da-Rang; Jiang Lan; Yin Jian-Hua; Lin Nai; Tan Yuan-Yuan

    2012-01-01

    Significant differences among the doping densities of PN junctions in semiconductors cause lattice mismatch and lattice defects that increase the recombination current of betavoltaic batteries. This extensively decreases the open circuit voltage and the short current, which results in low conversion efficiency. This study proposes P + PINN + -structure based betavoltaic batteries by adding an interlayer to typical PIN structures to improve conversion efficiency. Numerical simulations are conducted for the energy deposition of beta particles along the thickness direction in semiconductors. Based on this, 63 Ni-radiation GaAs batteries with PIN and P + PINN + structures are designed and fabricated to experimentally verify the proposed design. It turns out that the conversion efficiency of the betavoltaic battery with the proposed P + PINN + structure is about 1.45 times higher than that with the traditional PIN structure. (cross-disciplinary physics and related areas of science and technology)

  8. Turning the backbone into an ankylosed concrete-like structure: Case report.

    Science.gov (United States)

    Kaissi, Ali Al; Chehida, Farid Ben; Grill, Franz; Ganger, Rudolf; Kircher, Susanne Gerit

    2018-04-01

    Progressive restriction of the spinal bio-mechanics is not-uncommon deformity encountered in spine clinics. Congenital spinal fusion as seen in Klippel-Feil-anomaly, progressive non-infectious anterior vertebral fusion, and progressive spinal hyperostosis secondary to ossification of the anterior longitudinal spinal ligament are well delineated and recognized. A 24-year-old girl has history of osteoporosis since her early childhood, associated with multiple axial and appendicular fractures and scoliosis. Recently she presented with episodes of severe back pain, spinal rigidity/stiffness with total loss of spine biomechanics. She was provisionally diagnosed as having osteogenesis imperfecta and was investigated for COL1A1/A2 mutations which have been proven to be negative. Autosomal recessive type of osteogenesis imperfecta was proposed as well, no mutations have been encountered. A homozygous for CTSA gene mutation, the gene associated with Galactosialidosis was identified via whole exome sequencing (Next-Generation Sequencing projects) has been identified. Early in her life she had a history of frequent fractures of the long bones since she was 4 years which was followed by vertebral fractures at the age of 12 years. She manifested lower serum 25OH-D levels and were associated with lower LS-aBMD Z-scores with higher urinary bone turnover indexes (urinary NTX/Cr). Lysosomal storage diseases (LSD) have a strong correlation with the development of osteoporosis. LSD causes skeletal abnormalities results from a lack of skeletal remodeling and ossification abnormalities owing to abnormal deposition of GAGs (impaired degradation of glycosaminoglycans ) in bone and cartilage. 3D reconstruction CT scan of the spine showed diffuse hyperostosis of almost the entire spine (begins at the level of T4- extending downwards to involve the whole thoraco-lumbar and upper part of the sacrum) with total diffuse fusion of the pedicles, the transverse and articular processes, the laminae and the spinous processes. This is the first clinical report of adult patient with a history of osteoporosis and fractures with the late diagnosis of Galactosialidosis. Osteogenesis imperfecta (autosomal dominant and recessive) were the first given diagnoses which proven negative. The pathophysiology of the spine ankylosis in our current patient and its correlation with LSD, antiresorptive medications, vitamin D3 and supplemental calcium is not fully understood. Therefore, further studies are needed to elucidate this sort of correlation.

  9. Backbone assignment and secondary structure of the PsbQ protein from Photosystem II

    Czech Academy of Sciences Publication Activity Database

    Horničáková, M.; Kohoutová, Jaroslava; Schlagnitweit, J.; Wohlschlager, Ch.; Ettrich, Rüdiger; Fiala, R.; Schoefberger, W.; Müller, N.

    2011-01-01

    Roč. 5, č. 2 (2011), s. 169-175 ISSN 1874-2718 R&D Projects: GA MŠk(CZ) LC06010 Institutional research plan: CEZ:AV0Z60870520 Keywords : Photosystem II * PsbQ * Missing link * NMR resonance assignment * Protein-protein interaction Subject RIV: BO - Biophysics Impact factor: 0.720, year: 2011 http://www.springerlink.com/content/3n38075w5h1l1082/fulltext.pdf

  10. Geometrical and electronic structure variability of the sugar-phosphate backbone in nucleic acids

    Czech Academy of Sciences Publication Activity Database

    Svozil, Daniel; Šponer, Judit E.; Marchan, I.; Pérez, A.; Cheatham III., T.E.; Forti, F.; Luque, F.J.; Orözcö, M.; Šponer, Jiří

    2008-01-01

    Roč. 112, č. 27 (2008), s. 8188-8197 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) LC512; GA AV ČR(CZ) IAA400550701; GA AV ČR(CZ) 1QS500040581 Grant - others:GA AV ČR(CZ) IAA400040802 Program:IA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z40550506 Keywords : molecular dynamics * force field * quantum chemistry Subject RIV: BO - Biophysics Impact factor: 4.189, year: 2008

  11. Reliability analysis of offshore structures using OMA based fatigue stresses

    DEFF Research Database (Denmark)

    Silva Nabuco, Bruna; Aissani, Amina; Glindtvad Tarpø, Marius

    2017-01-01

    focus is on the uncertainty observed on the different stresses used to predict the damage. This uncertainty can be reduced by Modal Based Fatigue Monitoring which is a technique based on continuously measuring of the accelerations in few points of the structure with the use of accelerometers known...... points of the structure, the stress history can be calculated in any arbitrary point of the structure. The accuracy of the estimated actual stress is analyzed by experimental tests on a scale model where the obtained stresses are compared to strain gauges measurements. After evaluating the fatigue...... stresses directly from the operational response of the structure, a reliability analysis is performed in order to estimate the reliability of using Modal Based Fatigue Monitoring for long term fatigue studies....

  12. Study on geology and geological structure based on literature studies

    International Nuclear Information System (INIS)

    Funaki, Hironori; Ishii, Eiichi; Yasue, Ken-ichi; Takahashi, Kazuharu

    2005-03-01

    Japan Nuclear Cycle Development Institute (JNC) is proceeding with underground research laboratory (URL) project for the sedimentary rock in Horonobe, Hokkaido. This project is an investigation project which is planned over 20 years. Surface-based investigations (Phase 1) have been conducted for the present. The purposes of the Phase 1 are to construct the geological environment model (geological-structural, hydrogeological, and hydrochemical models) and to confirm the applicability of investigation technologies for the geological environment. The geological-structural model comprises the base for the hydrogeological and hydrochemical models. We constructed the geological-structural model by mainly using data obtained from literature studies. Particulars regarding which data the model is based on and who has performed the interpretation are also saved for traceability. As a result, we explain the understanding of degree and the need of information on stratigraphy and discontinuous structure. (author)

  13. Smectic order and backbone anisotropy of a side-chain liquid crystalline polymer by Small-Angle Neutron Scattering

    Science.gov (United States)

    Noirez, L.; Pépy, G.; Keller, P.; Benguigui, L.

    1991-07-01

    We have simultaneously measured, for the first time, the extension of the polymer backbone of a side-chain liquid crystalline polymer and the intensity of the 001 Bragg reflection, which gives the smectic order parameter Psi as a function of temperature in the smectic phase. We have qualitatively demonstrated that the more the smectic phase is ordered, the more the polymer backbone is localized between the mesogenic layers. It is shown that the Landau theory allows us to relate the radius of gyration parallel to the magnetic field of the polymer backbone to the smectic order parameter. We also show that the Renz-Warner theory is suitable at low temperatures.

  14. Generalized structured component analysis a component-based approach to structural equation modeling

    CERN Document Server

    Hwang, Heungsun

    2014-01-01

    Winner of the 2015 Sugiyama Meiko Award (Publication Award) of the Behaviormetric Society of Japan Developed by the authors, generalized structured component analysis is an alternative to two longstanding approaches to structural equation modeling: covariance structure analysis and partial least squares path modeling. Generalized structured component analysis allows researchers to evaluate the adequacy of a model as a whole, compare a model to alternative specifications, and conduct complex analyses in a straightforward manner. Generalized Structured Component Analysis: A Component-Based Approach to Structural Equation Modeling provides a detailed account of this novel statistical methodology and its various extensions. The authors present the theoretical underpinnings of generalized structured component analysis and demonstrate how it can be applied to various empirical examples. The book enables quantitative methodologists, applied researchers, and practitioners to grasp the basic concepts behind this new a...

  15. New reconstruction of the sunspot group numbers since 1739 using direct calibration and "backbone" methods

    Science.gov (United States)

    Chatzistergos, Theodosios; Usoskin, Ilya G.; Kovaltsov, Gennady A.; Krivova, Natalie A.; Solanki, Sami K.

    2017-06-01

    Context. The group sunspot number (GSN) series constitute the longest instrumental astronomical database providing information on solar activity. This database is a compilation of observations by many individual observers, and their inter-calibration has usually been performed using linear rescaling. There are multiple published series that show different long-term trends for solar activity. Aims: We aim at producing a GSN series, with a non-linear non-parametric calibration. The only underlying assumptions are that the differences between the various series are due to different acuity thresholds of the observers, and that the threshold of each observer remains constant throughout the observing period. Methods: We used a daisy chain process with backbone (BB) observers and calibrated all overlapping observers to them. We performed the calibration of each individual observer with a probability distribution function (PDF) matrix constructed considering all daily values for the overlapping period with the BB. The calibration of the BBs was carried out in a similar manner. The final series was constructed by merging different BB series. We modelled the propagation of errors straightforwardly with Monte Carlo simulations. A potential bias due to the selection of BBs was investigated and the effect was shown to lie within the 1σ interval of the produced series. The exact selection of the reference period was shown to have a rather small effect on our calibration as well. Results: The final series extends back to 1739 and includes data from 314 observers. This series suggests moderate activity during the 18th and 19th century, which is significantly lower than the high level of solar activity predicted by other recent reconstructions applying linear regressions. Conclusions: The new series provides a robust reconstruction, based on modern and non-parametric methods, of sunspot group numbers since 1739, and it confirms the existence of the modern grand maximum of solar

  16. Gradient-based optimization in nonlinear structural dynamics

    DEFF Research Database (Denmark)

    Dou, Suguang

    The intrinsic nonlinearity of mechanical structures can give rise to rich nonlinear dynamics. Recently, nonlinear dynamics of micro-mechanical structures have contributed to developing new Micro-Electro-Mechanical Systems (MEMS), for example, atomic force microscope, passive frequency divider......, frequency stabilization, and disk resonator gyroscope. For advanced design of these structures, it is of considerable value to extend current optimization in linear structural dynamics into nonlinear structural dynamics. In this thesis, we present a framework for modelling, analysis, characterization......, and optimization of nonlinear structural dynamics. In the modelling, nonlinear finite elements are used. In the analysis, nonlinear frequency response and nonlinear normal modes are calculated based on a harmonic balance method with higher-order harmonics. In the characterization, nonlinear modal coupling...

  17. General enumeration of RNA secondary structures based on new ...

    African Journals Online (AJOL)

    Crick base pairs between AU and GC. Based on the new representation, this paper also computes the number of various types of constrained secondary structures taking the minimum stack length 1 and minimum size m for each bonding loop as ...

  18. Towards Computerized Adaptive Assessment Based on Structured Tasks

    NARCIS (Netherlands)

    Tvarožek, Jozef; Kravcik, Milos; Bieliková, Mária

    2008-01-01

    Tvarožek, J., Kravčík, M., & Bieliková, M. (2008). Towards Computerized Adaptive Assessment Based on Structured Tasks. In W. Nejdl et al. (Eds.), Adaptive Hypermedia and Adaptive Web-Based Systems (pp. 224-234). Springer Berlin / Heidelberg.

  19. Design and manufacturing of bio-based sandwich structures

    CSIR Research Space (South Africa)

    John, Maya J

    2017-03-01

    Full Text Available The aim of this chapter is to discuss the design and manufacturing of bio-based sandwich structures. As the economic advantages of weight reduction have become mandatory for many advanced industries, bio-based sandwich panels have emerged...

  20. Value of information-based inspection planning for offshore structures

    DEFF Research Database (Denmark)

    Irman, Arifian Agusta; Thöns, Sebastian; Leira, Bernt J.

    2017-01-01

    with each inspection strategy. A simplified and generic risk-based inspection planning utilizing pre- posterior Bayesian decision analysis had been proposed by Faber et al. [1] and Straub [2]. This paper provides considerations on the theoretical background and a Value of Information analysis......-based inspection planning. The paper will start out with a review of the state-of-art RBI planning procedure based on Bayesian decision theory and its application in offshore structure integrity management. An example of the Value of Information approach is illustrated and it is pointed to further research......Asset integrity and management is an important part of the oil and gas industry especially for existing offshore structures. With declining oil price, the production rate is an important factor to be maintained that makes integrity of the structures one of the main concerns. Reliability based...

  1. First principles based multiparadigm modeling of electronic structures and dynamics

    Science.gov (United States)

    Xiao, Hai

    enabling the tunability of CBO. We predict that Na further improves the CBO through electrostatically elevating the valence levels to decrease the CBO, explaining the observed essential role of Na for high performance. Moreover we find that K leads to a dramatic decrease in the CBO to 0.05 eV, much better than Na. We suggest that the efficiency of CIGS devices might be improved substantially by tuning the ratio of Na to K, with the improved phase stability of Na balancing phase instability from K. All these defects reduce interfacial stability slightly, but not significantly. A number of exotic structures have been formed through high pressure chemistry, but applications have been hindered by difficulties in recovering the high pressure phase to ambient conditions (i.e., one atmosphere and room temperature). Here we use dispersion-corrected DFT (PBE-ulg flavor) to predict that above 60 GPa the most stable form of N2O (the laughing gas in its molecular form) is a 1D polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03-0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions both polymers relax below 14 GPa to the same stable non-planar trans-polymer, accompanied by possible electronic structure transitions. The predicted phonon spectrum and dissociation kinetics validate the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a new type of conducting polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions. Modeling non-adiabatic electron dynamics has been a long-standing challenge for computational chemistry and materials science, and the eFF method presents a cost-efficient alternative. However, due to the deficiency of FSG representation, eFF is limited to low-Z elements with

  2. Substrate structures for InP-based devices

    International Nuclear Information System (INIS)

    Wanlass, M.W.; Sheldon, P.

    1990-01-01

    A substrate structure for an InP-based semiconductor device having an InP based film is described. The substrate structure includes a substrate region having a lightweight bulk substrate and an upper GaAs layer. An interconnecting region is disposed between the substrate region and the InP-based device. The interconnecting region includes a compositionally graded intermediate layer substantially lattice-matched at the opposite end to the InP=based film. The interconnecting region further includes a dislocation mechanism disposed between the GaAs layer and the InP-based film in cooperation with the graded intermediate layer, the buffer mechanism blocking and inhibiting propagation of threading dislocations between the substrate region, and the InP-based device

  3. CRBRP structural and thermal margin beyond the design base

    International Nuclear Information System (INIS)

    Strawbridge, L.E.

    1979-01-01

    Prudent margins beyond the design base have been included in the design of Clinch River Breeder Reactor Plant to further reduce the risk to the public from highly improbable occurrences. These margins include Structural Margin Beyond the Design Base to address the energetics aspects and Thermal Margin Beyond the Design Base to address the longer term thermal and radiological consequences. The assessments that led to the specification of these margins are described, along with the experimental support for those assessments. 8 refs

  4. Structure-based classification and ontology in chemistry

    Directory of Open Access Journals (Sweden)

    Hastings Janna

    2012-04-01

    Full Text Available Abstract Background Recent years have seen an explosion in the availability of data in the chemistry domain. With this information explosion, however, retrieving relevant results from the available information, and organising those results, become even harder problems. Computational processing is essential to filter and organise the available resources so as to better facilitate the work of scientists. Ontologies encode expert domain knowledge in a hierarchically organised machine-processable format. One such ontology for the chemical domain is ChEBI. ChEBI provides a classification of chemicals based on their structural features and a role or activity-based classification. An example of a structure-based class is 'pentacyclic compound' (compounds containing five-ring structures, while an example of a role-based class is 'analgesic', since many different chemicals can act as analgesics without sharing structural features. Structure-based classification in chemistry exploits elegant regularities and symmetries in the underlying chemical domain. As yet, there has been neither a systematic analysis of the types of structural classification in use in chemistry nor a comparison to the capabilities of available technologies. Results We analyze the different categories of structural classes in chemistry, presenting a list of patterns for features found in class definitions. We compare these patterns of class definition to tools which allow for automation of hierarchy construction within cheminformatics and within logic-based ontology technology, going into detail in the latter case with respect to the expressive capabilities of the Web Ontology Language and recent extensions for modelling structured objects. Finally we discuss the relationships and interactions between cheminformatics approaches and logic-based approaches. Conclusion Systems that perform intelligent reasoning tasks on chemistry data require a diverse set of underlying computational

  5. Integrated Reliability-Based Optimal Design of Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1987-01-01

    In conventional optimal design of structural systems the weight or the initial cost of the structure is usually used as objective function. Further, the constraints require that the stresses and/or strains at some critical points have to be less than some given values. Finally, all variables......-based optimal design is discussed. Next, an optimal inspection and repair strategy for existing structural systems is presented. An optimization problem is formulated , where the objective is to minimize the expected total future cost of inspection and repair subject to the constraint that the reliability...... value. The reliability can be measured from an element and/or a systems point of view. A number of methods to solve reliability-based optimization problems has been suggested, see e.g. Frangopol [I]. Murotsu et al. (2], Thoft-Christensen & Sørensen (3] and Sørensen (4). For structures where...

  6. Oxidation Responsive Polymers with a Triggered Degradation via Arylboronate Self-Immolative Motifs on a Polyphosphazene Backbone.

    Science.gov (United States)

    Iturmendi, Aitziber; Monkowius, Uwe; Teasdale, Ian

    2017-02-21

    Oxidation responsive polymers with triggered degradation pathways have been prepared via attachment of self-immolative moieties onto a hydrolytically unstable polyphosphazene backbone. After controlled main-chain growth, postpolymerization functionalization allows the preparation of hydrolytically stable poly(organo)phosphazenes decorated with a phenylboronic ester caging group. In oxidative environments, triggered cleavage of the caging group is followed by self-immolation, exposing the unstable glycine-substituted polyphosphazene which subsequently undergoes to backbone degradation to low-molecular weight molecules. As well as giving mechanistic insights, detailed GPC and 1 H and 31 P NMR analysis reveal the polymers to be stable in aqueous solutions, but show a selective, fast degradation upon exposure to hydrogen peroxide containing solutions. Since the post-polymerization functionalization route allows simple access to polymer backbones with a broad range of molecular weights, the approach of using the inorganic backbone as a platform significantly expands the toolbox of polymers capable of stimuli-responsive degradation.

  7. Ensemble-based prediction of RNA secondary structures.

    Science.gov (United States)

    Aghaeepour, Nima; Hoos, Holger H

    2013-04-24

    Accurate structure prediction methods play an important role for the understanding of RNA function. Energy-based, pseudoknot-free secondary structure prediction is one of the most widely used and versatile approaches, and improved methods for this task have received much attention over the past five years. Despite the impressive progress that as been achieved in this area, existing evaluations of the prediction accuracy achieved by various algorithms do not provide a comprehensive, statistically sound assessment. Furthermore, while there is increasing evidence that no prediction algorithm consistently outperforms all others, no work has been done to exploit the complementary strengths of multiple approaches. In this work, we present two contributions to the area of RNA secondary structure prediction. Firstly, we use state-of-the-art, resampling-based statistical methods together with a previously published and increasingly widely used dataset of high-quality RNA structures to conduct a comprehensive evaluation of existing RNA secondary structure prediction procedures. The results from this evaluation clarify the performance relationship between ten well-known existing energy-based pseudoknot-free RNA secondary structure prediction methods and clearly demonstrate the progress that has been achieved in recent years. Secondly, we introduce AveRNA, a generic and powerful method for combining a set of existing secondary structure prediction procedures into an ensemble-based method that achieves significantly higher prediction accuracies than obtained from any of its component procedures. Our new, ensemble-based method, AveRNA, improves the state of the art for energy-based, pseudoknot-free RNA secondary structure prediction by exploiting the complementary strengths of multiple existing prediction procedures, as demonstrated using a state-of-the-art statistical resampling approach. In addition, AveRNA allows an intuitive and effective control of the trade-off between

  8. Structured Light-Based 3D Reconstruction System for Plants

    OpenAIRE

    Nguyen, Thuy Tuong; Slaughter, David C.; Max, Nelson; Maloof, Julin N.; Sinha, Neelima

    2015-01-01

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud regi...

  9. Oxidation resistance coating for niobium base structural composites

    International Nuclear Information System (INIS)

    Tabaru, T.; Shobu, K.; Kim, J.H.; Hirai, H.; Hanada, S.

    2003-01-01

    Oxidation behavior of Al-rich Mo(Si,Al) 2 base alloys, which is a candidate material for the oxidation resistance coating on Nb base structural composites, were investigated by thermogravimetry. The Mo(Si,Al) 2 base alloys containing Mo 5 (Si,Al) 3 up to about 10 vol% exhibits excellent oxidation resistance at temperatures ranging from 780 to 1580 K, particularly at 1580 K due to continuous Al 2 O 3 layer development. To evaluate the applicability of the Mo(Si,Al) 2 base coating, plasma spraying on Nb base composites were undertaken. However, interface reaction layer was found to form during the following heat treatment. Preparation of Mo(Si,Al) 2 /Al 2 O 3 /Nb layered structures via powder metallurgical process was attempted to preclude diffusion reaction between coating and substrate. (orig.)

  10. Smartphone based hemispherical photography for canopy structure measurement

    Science.gov (United States)

    Wan, Xuefen; Cui, Jian; Jiang, Xueqin; Zhang, Jingwen; Yang, Yi; Zheng, Tao

    2018-01-01

    The canopy is the most direct and active interface layer of the interaction between plant and environment, and has important influence on energy exchange, biodiversity, ecosystem matter and climate change. The measurement about canopy structure of plant is an important foundation to analyze the pattern, process and operation mechanism of forest ecosystem. Through the study of canopy structure of plant, solar radiation, ambient wind speed, air temperature and humidity, soil evaporation, soil temperature and other forest environmental climate characteristics can be evaluated. Because of its accuracy and effectiveness, canopy structure measurement based on hemispherical photography has been widely studied. However, the traditional method of canopy structure hemispherical photogrammetry based on SLR camera and fisheye lens. This method is expensive and difficult to be used in some low-cost occasions. In recent years, smartphone technology has been developing rapidly. The smartphone not only has excellent image acquisition ability, but also has the considerable computational processing ability. In addition, the gyroscope and positioning function on the smartphone will also help to measure the structure of the canopy. In this paper, we present a smartphone based hemispherical photography system. The system consists of smart phones, low-cost fisheye lenses and PMMA adapters. We designed an Android based App to obtain the canopy hemisphere images through low-cost fisheye lenses and provide horizontal collimation information. In addition, the App will add the acquisition location tag obtained by GPS and auxiliary positioning method in hemisphere image information after the canopy structure hemisphere image acquisition. The system was tested in the urban forest after it was completed. The test results show that the smartphone based hemispherical photography system can effectively collect the high-resolution canopy structure image of the plant.

  11. Hard and soft acids and bases: structure and process.

    Science.gov (United States)

    Reed, James L

    2012-07-05

    Under investigation is the structure and process that gives rise to hard-soft behavior in simple anionic atomic bases. That for simple atomic bases the chemical hardness is expected to be the only extrinsic component of acid-base strength, has been substantiated in the current study. A thermochemically based operational scale of chemical hardness was used to identify the structure within anionic atomic bases that is responsible for chemical hardness. The base's responding electrons have been identified as the structure, and the relaxation that occurs during charge transfer has been identified as the process giving rise to hard-soft behavior. This is in contrast the commonly accepted explanations that attribute hard-soft behavior to varying degrees of electrostatic and covalent contributions to the acid-base interaction. The ability of the atomic ion's responding electrons to cause hard-soft behavior has been assessed by examining the correlation of the estimated relaxation energies of the responding electrons with the operational chemical hardness. It has been demonstrated that the responding electrons are able to give rise to hard-soft behavior in simple anionic bases.

  12. Probing the structural dependence of carbon space lengths of poly(N-hydroxyalkyl acrylamide)-based brushes on antifouling performance.

    Science.gov (United States)

    Yang, Jintao; Zhang, Mingzhen; Chen, Hong; Chang, Yung; Chen, Zhan; Zheng, Jie

    2014-08-11

    Numerous biocompatible antifouling polymers have been developed for a wide variety of fundamental and practical applications in drug delivery, biosensors, marine coatings, and many other areas. Several antifouling mechanisms have been proposed, but the exact relationship among molecular structure, surface hydration property, and antifouling performance of antifouling polymers still remains elusive. Here this work strives to provide a better understanding of the structure-property relationship of poly(N-hydroxyalkyl acrylamide)-based materials. We have designed, synthesized, and characterized a series of polyHAAA brushes of various carbon spacer lengths (CSLs), that is, poly(N-hydroxymethyl acrylamide) (polyHMAA), poly(N-(2-hydroxyethyl)acrylamide) (polyHEAA), poly(N-(3-hydroxypropyl)acrylamide) (polyHPAA), and poly(N-(5-hydroxypentyl)acrylamide) (polyHPenAA), to study the structural dependence of CSLs on their antifouling performance. HMAA, HEAA, HPAA, and HPenAA monomers contained one, two, three, and five methylene groups between hydroxyl and amide groups, while the other groups in polymer backbones were the same as each other. The relation of such small structural differences of polymer brushes to their surface hydration and antifouling performance was studied by combined experimental and computational methods including surface plasmon resonance sensors, sum frequency generation (SFG) vibrational spectroscopy, cell adhesion assay, and molecular simulations. Antifouling results showed that all polyHAAA-based brushes were highly surface resistant to protein adsorption from single protein solutions, undiluted blood serum and plasma, as well as cell adhesion up to 7 days. In particular, polyHMAA and polyHEAA with the shorter CSLs exhibited higher surface hydration and better antifouling ability than polyHPMA and polyHPenAA. SFG and molecular simulations further revealed that the variation of CSLs changed the ratio of hydrophobicity/hydrophilicity of polymers

  13. Discrete Discriminant analysis based on tree-structured graphical models

    DEFF Research Database (Denmark)

    Perez de la Cruz, Gonzalo; Eslava, Guillermina

    The purpose of this paper is to illustrate the potential use of discriminant analysis based on tree{structured graphical models for discrete variables. This is done by comparing its empirical performance using estimated error rates for real and simulated data. The results show that discriminant a...... analysis based on tree{structured graphical models is a simple nonlinear method competitive with, and sometimes superior to, other well{known linear methods like those assuming mutual independence between variables and linear logistic regression.......The purpose of this paper is to illustrate the potential use of discriminant analysis based on tree{structured graphical models for discrete variables. This is done by comparing its empirical performance using estimated error rates for real and simulated data. The results show that discriminant...

  14. Symmetric metamaterials based on flower-shaped structure

    International Nuclear Information System (INIS)

    Tuong, P.V.; Park, J.W.; Rhee, J.Y.; Kim, K.W.; Cheong, H.; Jang, W.H.; Lee, Y.P.

    2013-01-01

    We proposed new models of metamaterials (MMs) based on a flower-shaped structure (FSS), whose “meta-atoms” consist of two flower-shaped metallic parts separated by a dielectric layer. Like the non-symmetric MMs based on cut-wire-pairs or electric ring resonators, the symmetrical FSS demonstrates the negative permeability at GHz frequencies. Employing the results, we designed a symmetric negative-refractive-index MM [a symmetric combined structure (SCS)], which is composed of FSSs and cross continuous wires. The MM properties of the FSS and the SCS are presented numerically and experimentally. - Highlights: • A new designed of sub-wavelength metamaterial, flower-shaped structure was proposed. • Flower-shaped meta-atom illustrated effective negative permeability. • Based on the meta-atom, negative refractive index was conventionally gained. • Negative refractive index was demonstrated with symmetric properties for electromagnetic wave. • Dimensional parameters were studied under normal electromagnetic wave

  15. A Tensor-Based Structural Damage Identification and Severity Assessment

    Science.gov (United States)

    Anaissi, Ali; Makki Alamdari, Mehrisadat; Rakotoarivelo, Thierry; Khoa, Nguyen Lu Dang

    2018-01-01

    Early damage detection is critical for a large set of global ageing infrastructure. Structural Health Monitoring systems provide a sensor-based quantitative and objective approach to continuously monitor these structures, as opposed to traditional engineering visual inspection. Analysing these sensed data is one of the major Structural Health Monitoring (SHM) challenges. This paper presents a novel algorithm to detect and assess damage in structures such as bridges. This method applies tensor analysis for data fusion and feature extraction, and further uses one-class support vector machine on this feature to detect anomalies, i.e., structural damage. To evaluate this approach, we collected acceleration data from a sensor-based SHM system, which we deployed on a real bridge and on a laboratory specimen. The results show that our tensor method outperforms a state-of-the-art approach using the wavelet energy spectrum of the measured data. In the specimen case, our approach succeeded in detecting 92.5% of induced damage cases, as opposed to 61.1% for the wavelet-based approach. While our method was applied to bridges, its algorithm and computation can be used on other structures or sensor-data analysis problems, which involve large series of correlated data from multiple sensors. PMID:29301314

  16. Structure based design of 11β-HSD1 inhibitors.

    Science.gov (United States)

    Singh, Suresh; Tice, Colin

    2010-11-01

    Controlling elevated tissue-specific levels of cortisol may provide a novel therapeutic approach for treating metabolic syndrome. This concept has spurred large scale medicinal chemistry efforts in the pharmaceutical industry for the design of 11β-HSD1 inhibitors. High resolution X-ray crystal structures of inhibitors in complex with the enzyme have facilitated the structure-based design of diverse classes of molecules. A summary of binding modes, trends in structure-activity relationships, and the pharmacodynamic data of inhibitors from each class is presented.

  17. Probability based load combinations for design of category I structures

    International Nuclear Information System (INIS)

    Reich, M.; Hwang, H.

    1985-01-01

    This paper discusses a reliability analysis method and a procedure for developing the load combination design criteria for category I structures. For safety evaluation of category I concrete structures under various static and dynamic loads, a probability-based reliability analysis method has been developed. This reliability analysis method is also used as a tool for determining the load factors for design of category I structures. In this paper, the load combinations for design of concrete containments, corresponding to a target limit state probability of 1.0 x 10 -6 in 4 years, are described. A comparison of containments designed using the ASME code and the proposed design criteria is also presented

  18. Optical-based smart structures for tamper-indicating applications

    International Nuclear Information System (INIS)

    Sliva, P.; Anheier, N.C.; Simmons, K.L.; Undem, H.A.

    1996-11-01

    This report is a compilation of several related projects performed from 1991 through 1996 concerning the design, construction, and application of optical-based smart structure to tamper-indicating and sensing secure containers. Due to several influences, the projects were carried through to varying degrees of completion. Cancellation of the overall project at the client level motivated the authors to gather all of the technology and ideas about smart structures developed during these several projects, whether completed or just conceptualized, into one document. Although each section individually discusses a specific project, the overall document is written chronologically with each successive section showing how increased smart structure complexity was integrated into the container

  19. Pre-Stressing Timber-Based Plate Tensegrity Structures

    DEFF Research Database (Denmark)

    Falk, Andreas; Kirkegaard, Poul Henning

    2012-01-01

    Tensile structures occur in numerous varieties utilising combinations of tension and compression. Introducing structural plates in the basic tensegrity unit and tensegric assemblies varies the range of feasible topologies and provides the structural system with an integrated surface. The present...... paper considers the concept of plate tensegrity based on CLT plates (cross-laminated timber). It combines the principles of tensegrity with the principles of plate shells and is characterised by a plate shell stabilised by struts and cables. The paper deals with material aspects and robustness of timber...

  20. Distance matrix-based approach to protein structure prediction.

    Science.gov (United States)

    Kloczkowski, Andrzej; Jernigan, Robert L; Wu, Zhijun; Song, Guang; Yang, Lei; Kolinski, Andrzej; Pokarowski, Piotr

    2009-03-01

    Much structural information is encoded in the internal distances; a distance matrix-based approach can be used to predict protein structure and dynamics, and for structural refinement. Our approach is based on the square distance matrix D = [r(ij)(2)] containing all square distances between residues in proteins. This distance matrix contains more information than the contact matrix C, that has elements of either 0 or 1 depending on whether the distance r (ij) is greater or less than a cutoff value r (cutoff). We have performed spectral decomposition of the distance matrices D = sigma lambda(k)V(k)V(kT), in terms of eigenvalues lambda kappa and the corresponding eigenvectors v kappa and found that it contains at most five nonzero terms. A dominant eigenvector is proportional to r (2)--the square distance of points from the center of mass, with the next three being the principal components of the system of points. By predicting r (2) from the sequence we can approximate a distance matrix of a protein with an expected RMSD value of about 7.3 A, and by combining it with the prediction of the first principal component we can improve this approximation to 4.0 A. We can also explain the role of hydrophobic interactions for the protein structure, because r is highly correlated with the hydrophobic profile of the sequence. Moreover, r is highly correlated with several sequence profiles which are useful in protein structure prediction, such as contact number, the residue-wise contact order (RWCO) or mean square fluctuations (i.e. crystallographic temperature factors). We have also shown that the next three components are related to spatial directionality of the secondary structure elements, and they may be also predicted from the sequence, improving overall structure prediction. We have also shown that the large number of available HIV-1 protease structures provides a remarkable sampling of conformations, which can be viewed as direct structural information about the

  1. Image-based corrosion recognition for ship steel structures

    Science.gov (United States)

    Ma, Yucong; Yang, Yang; Yao, Yuan; Li, Shengyuan; Zhao, Xuefeng

    2018-03-01

    Ship structures are subjected to corrosion inevitably in service. Existed image-based methods are influenced by the noises in images because they recognize corrosion by extracting features. In this paper, a novel method of image-based corrosion recognition for ship steel structures is proposed. The method utilizes convolutional neural networks (CNN) and will not be affected by noises in images. A CNN used to recognize corrosion was designed through fine-turning an existing CNN architecture and trained by datasets built using lots of images. Combining the trained CNN classifier with a sliding window technique, the corrosion zone in an image can be recognized.

  2. Structure-Based Search for New Inhibitors of Cholinesterases

    Directory of Open Access Journals (Sweden)

    Barbara Malawska

    2013-03-01

    Full Text Available Cholinesterases are important biological targets responsible for regulation of cholinergic transmission, and their inhibitors are used for the treatment of Alzheimer’s disease. To design new cholinesterase inhibitors, of different structure-based design strategies was followed, including the modification of compounds from a previously developed library and a fragment-based design approach. This led to the selection of heterodimeric structures as potential inhibitors. Synthesis and biological evaluation of selected candidates confirmed that the designed compounds were acetylcholinesterase inhibitors with IC50 values in the mid-nanomolar to low micromolar range, and some of them were also butyrylcholinesterase inhibitors.

  3. Reliability-Based Structural Optimization of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kramer, Morten; Sørensen, John Dalsgaard

    2014-01-01

    More and more wave energy converter (WEC) concepts are reaching prototype level. Once the prototype level is reached, the next step in order to further decrease the levelized cost of energy (LCOE) is optimizing the overall system with a focus on structural and maintenance (inspection) costs......, as well as on the harvested power from the waves. The target of a fully-developed WEC technology is not maximizing its power output, but minimizing the resulting LCOE. This paper presents a methodology to optimize the structural design of WECs based on a reliability-based optimization problem...

  4. Easy and unambiguous sequential assignments of intrinsically disordered proteins by correlating the backbone 15N or 13C′ chemical shifts of multiple contiguous residues in highly resolved 3D spectra

    International Nuclear Information System (INIS)

    Yoshimura, Yuichi; Kulminskaya, Natalia V.; Mulder, Frans A. A.

    2015-01-01

    Sequential resonance assignment strategies are typically based on matching one or two chemical shifts of adjacent residues. However, resonance overlap often leads to ambiguity in resonance assignments in particular for intrinsically disordered proteins. We investigated the potential of establishing connectivity through the three-bond couplings between sequentially adjoining backbone carbonyl carbon nuclei, combined with semi-constant time chemical shift evolution, for resonance assignments of small folded and larger unfolded proteins. Extended sequential connectivity strongly lifts chemical shift degeneracy of the backbone nuclei in disordered proteins. We show here that 3D (H)N(COCO)NH and (HN)CO(CO)NH experiments with relaxation-optimized multiple pulse mixing correlate up to seven adjacent backbone amide nitrogen or carbonyl carbon nuclei, respectively, and connections across proline residues are also obtained straightforwardly. Multiple, recurrent long-range correlations with ultra-high resolution allow backbone 1 H N , 15 N H , and 13 C′ resonance assignments to be completed from a single pair of 3D experiments

  5. Management of Adolescent Low-Risk Classical Hodgkin Lymphoma: Which Chemotherapy Backbone Gives the Best Chance of Omitting Radiotherapy Safely.

    Science.gov (United States)

    Algiraigri, Ali H; Essa, Mohammed F

    2016-03-01

    Even though more than 90% of adolescents with low-risk classical Hodgkin lymphoma (LRcHL) will be cured with first-line therapy, many will suffer serious late toxic effects from radiotherapy (RT). The goals for care have shifted toward minimizing late toxic effects without compromising the outstanding cure rates by adapting a risk and response-based therapy. Recent published and ongoing randomized clinical trials, using functional imaging, may allow for better identification of those patients for whom RT may be safely omitted while maintaining excellent cure rates. To evaluate the best chemotherapy regimens with a reasonable toxicity profile and that are expected to have a high chance of omitting RT based on a response-directed therapy while maintaining high cure rates, a mini review was conducted of the recent clinical trials in pediatric and adult LRcHL. The UK RAPID trial chemotherapy backbone (3 × ABVD) followed by a response-based positron emission tomography scan offers up to a 75% chance of safely omitting RT without compromising the cure rate, which remained well above 90%.

  6. Dynamic Resource Allocation and QoS Control Capabilities of the Japanese Academic Backbone Network

    Directory of Open Access Journals (Sweden)

    Michihiro Aoki

    2010-08-01

    Full Text Available Dynamic resource control capabilities have become increasingly important for academic networks that must support big scientific research projects at the same time as less data intensive research and educational activities. This paper describes the dynamic resource allocation and QoS control capabilities of the Japanese academic backbone network, called SINET3, which supports a variety of academic applications with a wide range of network services. The article describes the network architecture, networking technologies, resource allocation, QoS control, and layer-1 bandwidth on-demand services. It also details typical services developed for scientific research, including the user interface, resource control, and management functions, and includes performance evaluations.

  7. Synthesis of branched–backbone oligosaccharides of the pectic RG-I plant cell wall polysaccharide

    DEFF Research Database (Denmark)

    Awan, Shahid Iqbal; Clausen, Mads Hartvig

    with numerous branches of galactan, arabinan, or arabinogalactan positioned at C-4 of the rhamnose residues. The use of defined oligosaccharides rather than isolated polysaccharides can aid in obtaining detailedinformation about biosynthetic pathways, plant evolution, and agronomical properties. Furthermore......,biological testing can provide new insight into plant biology; important for plant preservation, engineering,and utilization of plants as a source of bioenergy. Present work towards defined RG-I substructures involvesa [4+3]-coupling to furnish a heptasaccharide backbone unit (see Figure 1). Moreover, installation...

  8. Tamper indicating and sensing optical-based smart structures

    International Nuclear Information System (INIS)

    Sliva, P.; Anheier, N.C.; Gordon, N.R.; Simmons, K.L.; Stahl, K.A.; Undem, H.A.

    1995-05-01

    This paper has presented an overview of the type of optical-based structures that can be designed and constructed. These smart structures are capable of responding to their environment. The examples given represent a modest sampling of the complexity that can be achieved in both design and practice. Tamper-indicating containers and smart, sensing windows demonstrate just a few of the applications. We have shown that optical-based smart structures can be made multifunctional with the sensing built in. The next generation smart structure will combine the sensing functionality of these optical-based smart structures with other sensors such as piezoelectrics and electro-rheological fluids to not only be able to respond to the environment, but to adapt to it as well. An example of functionality in this regime would be a piezosensor that senses pressure changes (e.g., shock waves), which then causes an electro-rheological fluid to change viscosity. A fiber sensor located in or near the electro-rheological fluid senses the stiffness change and sends a signal through a feedback loop back to the piezosensor for additional adjustments to the electro-rheological fluid

  9. Interactive physically-based structural modeling of hydrocarbon systems

    International Nuclear Information System (INIS)

    Bosson, Mael; Grudinin, Sergei; Bouju, Xavier; Redon, Stephane

    2012-01-01

    Hydrocarbon systems have been intensively studied via numerical methods, including electronic structure computations, molecular dynamics and Monte Carlo simulations. Typically, these methods require an initial structural model (atomic positions and types, topology, etc.) that may be produced using scripts and/or modeling tools. For many systems, however, these building methods may be ineffective, as the user may have to specify the positions of numerous atoms while maintaining structural plausibility. In this paper, we present an interactive physically-based modeling tool to construct structural models of hydrocarbon systems. As the user edits the geometry of the system, atomic positions are also influenced by the Brenner potential, a well-known bond-order reactive potential. In order to be able to interactively edit systems containing numerous atoms, we introduce a new adaptive simulation algorithm, as well as a novel algorithm to incrementally update the forces and the total potential energy based on the list of updated relative atomic positions. The computational cost of the adaptive simulation algorithm depends on user-defined error thresholds, and our potential update algorithm depends linearly with the number of updated bonds. This allows us to enable efficient physically-based editing, since the computational cost is decoupled from the number of atoms in the system. We show that our approach may be used to effectively build realistic models of hydrocarbon structures that would be difficult or impossible to produce using other tools.

  10. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field.

    Science.gov (United States)

    Xu, Dong; Zhang, Yang

    2012-07-01

    Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. Copyright © 2012 Wiley Periodicals, Inc.

  11. Biomedical application of hierarchically built structures based on metal oxides

    Science.gov (United States)

    Korovin, M. S.; Fomenko, A. N.

    2017-12-01

    Nowadays, the use of hierarchically built structures in biology and medicine arouses much interest. The aim of this work is to review and summarize the available literature data about hierarchically organized structures in biomedical application. Nanoparticles can serve as an example of such structures. Medicine holds a special place among various application methods of similar systems. Special attention is paid to inorganic nanoparticles based on different metal oxides and hydroxides, such as iron, zinc, copper, and aluminum. Our investigations show that low-dimensional nanostructures based on aluminum oxides and hydroxides have an inhibitory effect on tumor cells and possess an antimicrobial activity. At the same time, it is obvious that the large-scale use of nanoparticles by humans needs to thoroughly study their properties. Special attention should be paid to the study of nanoparticle interaction with living biological objects. The numerous data show that there is no clear understanding of interaction mechanisms between nanoparticles and various cell types.

  12. A new entropy based method for computing software structural complexity

    CERN Document Server

    Roca, J L

    2002-01-01

    In this paper a new methodology for the evaluation of software structural complexity is described. It is based on the entropy evaluation of the random uniform response function associated with the so called software characteristic function SCF. The behavior of the SCF with the different software structures and their relationship with the number of inherent errors is investigated. It is also investigated how the entropy concept can be used to evaluate the complexity of a software structure considering the SCF as a canonical representation of the graph associated with the control flow diagram. The functions, parameters and algorithms that allow to carry out this evaluation are also introduced. After this analytic phase follows the experimental phase, verifying the consistency of the proposed metric and their boundary conditions. The conclusion is that the degree of software structural complexity can be measured as the entropy of the random uniform response function of the SCF. That entropy is in direct relation...

  13. Inelastic Structural Control Based on MBC and FAM

    Directory of Open Access Journals (Sweden)

    Li Gang

    2011-01-01

    Full Text Available A complex structure has the characters of many degrees of freedom and intricate shape, especially inelastic behavior under strong external loadings. It is hard to apply the structural control technology to it. In this paper, a new method that combines the Market-Based Control (MBC strategy and Force Analogy Method (FAM is presented to analyze the inelastic behavior of structure with magnetorheological dampers. The MBC is used to reduce the structural vibration response, and FAM is proposed to perform the inelastic analysis. A numerical example is used to compare the control effect of the new method and LQR algorithm, which show the accuracy and efficiency of the proposed computational method.

  14. Modern earthquake engineering offshore and land-based structures

    CERN Document Server

    Jia, Junbo

    2017-01-01

    This book addresses applications of earthquake engineering for both offshore and land-based structures. It is self-contained as a reference work and covers a wide range of topics, including topics related to engineering seismology, geotechnical earthquake engineering, structural engineering, as well as special contents dedicated to design philosophy, determination of ground motions, shock waves, tsunamis, earthquake damage, seismic response of offshore and arctic structures, spatial varied ground motions, simplified and advanced seismic analysis methods, sudden subsidence of offshore platforms, tank liquid impacts during earthquakes, seismic resistance of non-structural elements, and various types of mitigation measures, etc. The target readership includes professionals in offshore and civil engineering, officials and regulators, as well as researchers and students in this field.

  15. Search-based model identification of smart-structure damage

    Science.gov (United States)

    Glass, B. J.; Macalou, A.

    1991-01-01

    This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.

  16. Assessment of Peer-Based and Structural Strategies for Increasing ...

    African Journals Online (AJOL)

    Assessment of Peer-Based and Structural Strategies for Increasing Male Participation in an Antenatal Setting in Lilongwe, Malawi. SM Mphonda, NE Rosenberg, E Kamanga, I Mofolo, G Mwale, E Boa, M Mwale, F Martinson, I Hoffman, MC Hosseinipour ...

  17. Characterization and crystal structures of new Schiff base macrocyclic compounds

    Czech Academy of Sciences Publication Activity Database

    Khalaji, A.D.; Ghoran, S.H.; Pojarová, Michaela; Dušek, Michal

    2015-01-01

    Roč. 56, č. 7 (2015), s. 1410-1414 ISSN 0022-4766 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : synthesis * macrocyclic Schiff base * single crystal structure analysis * spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.536, year: 2015

  18. Global stability-based design optimization of truss structures using ...

    Indian Academy of Sciences (India)

    Furthermore, a pure pareto-ranking based multi-objective optimization model is employed for the design optimization of the truss structure with multiple objectives. The computational performance of the optimization model is increased by implementing an island model into its evolutionary search mechanism. The proposed ...

  19. Structure and manual of radioisotope-production data base, ISOP

    International Nuclear Information System (INIS)

    Hata, Kentaro; Terunuma, Kusuo

    1994-02-01

    We planned on collecting the information of radioisotope production which was obtained from research works and tasks at the Department of Radioisotopes in JAERI, and constructed a proto-type data base ISOP after discussion of the kinds and properties of the information available for radioisotope production. In this report the structure and the manual of ISOP are described. (author)

  20. Structure and properties of compositions based on petroleum sulfonic acids

    Energy Technology Data Exchange (ETDEWEB)

    Tutorskii, I.A.; Sultanova, A.S.; Belkina, E.V.; Fomin, A.G. [Lomonosov Academy of Fine Chemical Technology, Moscow (Russian Federation)

    1995-03-01

    Colloidal characteristics of compositions based on petroleum sulfonic acids were studied. Neutralized heavy oil residue exhibits surface-active properties and contains an ultradisperse filler. Analysis of the compositions by size-exclusion-chromatography shows deep structural changes in the heavy acid residue upon neutralization with calcium carbonate.

  1. An improved AODV routing protocol based on tower structure

    Directory of Open Access Journals (Sweden)

    Li Yong Qiang

    2016-01-01

    Full Text Available The paper proposed a new routing protocol(IAODV based on tower structure in the Ad Hoc network for the problem which Location Routing Protocol need hardware and Complex algorithm. By the simulation, The complexity of the new routing protocol is reduced without reducing the performance of the network.

  2. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.

  3. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Erlach, Markus Beck; Koehler, Joerg [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany); Crusca, Edson [University of São Paulo, Physics Institute of São Carlos (Brazil); Kremer, Werner [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany); Munte, Claudia E. [University of São Paulo, Physics Institute of São Carlos (Brazil); Kalbitzer, Hans Robert, E-mail: hans-robert.kalbitzer@biologie.uni-regensburg.de [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany)

    2016-06-15

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms {sup 1}H{sup α}, {sup 13}C{sup α} and {sup 13}C′ in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH{sub 2} (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B{sub 1} and B{sub 2} are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.Graphical Abstract.

  4. Weighted voting-based consensus clustering for chemical structure databases

    Science.gov (United States)

    Saeed, Faisal; Ahmed, Ali; Shamsir, Mohd Shahir; Salim, Naomie

    2014-06-01

    The cluster-based compound selection is used in the lead identification process of drug discovery and design. Many clustering methods have been used for chemical databases, but there is no clustering method that can obtain the best results under all circumstances. However, little attention has been focused on the use of combination methods for chemical structure clustering, which is known as consensus clustering. Recently, consensus clustering has been used in many areas including bioinformatics, machine learning and information theory. This process can improve the robustness, stability, consistency and novelty of clustering. For chemical databases, different consensus clustering methods have been used including the co-association matrix-based, graph-based, hypergraph-based and voting-based methods. In this paper, a weighted cumulative voting-based aggregation algorithm (W-CVAA) was developed. The MDL Drug Data Report (MDDR) benchmark chemical dataset was used in the experiments and represented by the AlogP and ECPF_4 descriptors. The results from the clustering methods were evaluated by the ability of the clustering to separate biologically active molecules in each cluster from inactive ones using different criteria, and the effectiveness of the consensus clustering was compared to that of Ward's method, which is the current standard clustering method in chemoinformatics. This study indicated that weighted voting-based consensus clustering can overcome the limitations of the existing voting-based methods and improve the effectiveness of combining multiple clusterings of chemical structures.

  5. Quality assessment of protein model-structures based on structural and functional similarities.

    Science.gov (United States)

    Konopka, Bogumil M; Nebel, Jean-Christophe; Kotulska, Malgorzata

    2012-09-21

    Experimental determination of protein 3D structures is expensive, time consuming and sometimes impossible. A gap between number of protein structures deposited in the World Wide Protein Data Bank and the number of sequenced proteins constantly broadens. Computational modeling is deemed to be one of the ways to deal with the problem. Although protein 3D structure prediction is a difficult task, many tools are available. These tools can model it from a sequence or partial structural information, e.g. contact maps. Consequently, biologists have the ability to generate automatically a putative 3D structure model of any protein. However, the main issue becomes evaluation of the model quality, which is one of the most important challenges of structural biology. GOBA--Gene Ontology-Based Assessment is a novel Protein Model Quality Assessment Program. It estimates the compatibility between a model-structure and its expected function. GOBA is based on the assumption that a high quality model is expected to be structurally similar to proteins functionally similar to the prediction target. Whereas DALI is used to measure structure similarity, protein functional similarity is quantified using standardized and hierarchical description of proteins provided by Gene Ontology combined with Wang's algorithm for calculating semantic similarity. Two approaches are proposed to express the quality of protein model-structures. One is a single model quality assessment method, the other is its modification, which provides a relative measure of model quality. Exhaustive evaluation is performed on data sets of model-structures submitted to the CASP8 and CASP9 contests. The validation shows that the method is able to discriminate between good and bad model-structures. The best of tested GOBA scores achieved 0.74 and 0.8 as a mean Pearson correlation to the observed quality of models in our CASP8 and CASP9-based validation sets. GOBA also obtained the best result for two targets of CASP8, and

  6. Understanding of Android-Based Robotic and Game Structure

    Science.gov (United States)

    Phongtraychack, A.; Syryamkin, V.

    2018-05-01

    The development of an android with impressive lifelike appearance and behavior has been a long-standing goal in robotics and a new and exciting approach of smartphone-based robotics for research and education. Recent years have been progressive for many technologies, which allowed creating such androids. There are different examples including the autonomous Erica android system capable of conversational interaction and speech synthesis technologies. The behavior of Android-based robot could be running on the phone as the robot performed a task outdoors. In this paper, we present an overview and understanding of the platform of Android-based robotic and game structure for research and education.

  7. Probabilistic structural damage identification based on vibration data

    International Nuclear Information System (INIS)

    Hao, H.; Xia, Y.

    2001-01-01

    Vibration-based methods are being rapidly developed and applied to detect structural damage in civil, mechanical and aerospace engineering communities in the last two decades. But uncertainties existing in the structural model and measured vibration data might lead to unreliable results. This paper will present some recent research results to tackle the above mentioned uncertainty problems. By assuming each of the FE model parameters and measured vibration data as a normally distributed random variable, a probabilistic damage detection procedure is developed based on perturbation method and validated by Monte Carlo simulation technique. With this technique, the damage probability of each structural element can be determined. The method developed has been verified by applying it to identify the damages of laboratory tested structures. It was proven that, as compared to the deterministic damage identification method, the present method can not only reduce the possibility of false identification, but also give the identification results in terms of probability. which is deemed more realistic and practical in detecting possible damages in a structure. It has also been found that the modal data included in damage identification analysis have a great influence on the identification results. With a sensitivity study, an optimal measurement set for damage detection is determined. This set includes the optimal measurement locations and the most appropriate modes that should be used in the damage identification analysis. Numerical results indicated that if the optimal set determined in a pre-analysis is used in the damage detection better results will be achieved. (author)

  8. Single-Walled Carbon-Nanotubes-Based Organic Memory Structures

    Directory of Open Access Journals (Sweden)

    Sundes Fakher

    2016-09-01

    Full Text Available The electrical behaviour of organic memory structures, based on single-walled carbon-nanotubes (SWCNTs, metal–insulator–semiconductor (MIS and thin film transistor (TFT structures, using poly(methyl methacrylate (PMMA as the gate dielectric, are reported. The drain and source electrodes were fabricated by evaporating 50 nm gold, and the gate electrode was made from 50 nm-evaporated aluminium on a clean glass substrate. Thin films of SWCNTs, embedded within the insulating layer, were used as the floating gate. SWCNTs-based memory devices exhibited clear hysteresis in their electrical characteristics (capacitance–voltage (C–V for MIS structures, as well as output and transfer characteristics for transistors. Both structures were shown to produce reliable and large memory windows by virtue of high capacity and reduced charge leakage. The hysteresis in the output and transfer characteristics, the shifts in the threshold voltage of the transfer characteristics, and the flat-band voltage shift in the MIS structures were attributed to the charging and discharging of the SWCNTs floating gate. Under an appropriate gate bias (1 s pulses, the floating gate is charged and discharged, resulting in significant threshold voltage shifts. Pulses as low as 1 V resulted in clear write and erase states.

  9. Blind Test of Physics-Based Prediction of Protein Structures

    Science.gov (United States)

    Shell, M. Scott; Ozkan, S. Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A.

    2009-01-01

    We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences. PMID:19186130

  10. Influence of Backbone Fluorination in Regioregular Poly(3-alkyl-4-fluoro)thiophenes

    KAUST Repository

    Fei, Zhuping

    2015-06-03

    © 2015 American Chemical Society. We report two strategies toward the synthesis of 3-alkyl-4-fluorothiophenes containing straight (hexyl and octyl) and branched (2-ethylhexyl) alkyl groups. We demonstrate that treatment of the dibrominated monomer with 1 equiv of alkyl Grignard reagent leads to the formation of a single regioisomer as a result of the pronounced directing effect of the fluorine group. Polymerization of the resulting species affords highly regioregular poly(3-alkyl-4-fluoro)thiophenes. Comparison of their properties to those of the analogous non-fluorinated polymers shows that backbone fluorination leads to an increase in the polymer ionization potential without a significant change in optical band gap. Fluorination also results in an enhanced tendency to aggregate in solution, which is ascribed to a more co-planar backbone on the basis of Raman and DFT calculations. Average charge carrier mobilities in field-effect transistors are found to increase by up to a factor of 5 for the fluorinated polymers.

  11. Improving VANETs Connectivity with a Totally Ad Hoc Living Mobile Backbone

    Directory of Open Access Journals (Sweden)

    Joilson Alves Junior

    2015-01-01

    Full Text Available The vehicular ad hoc network (VANET for intelligent transportation systems is an emerging concept to improve transportation security, reliability, and management. The network behavior can be totally different in topological aspects because of the mobility of vehicular nodes. The topology can be fully connected when the flow of vehicles is high and may have low connectivity or be invalid when the flow of vehicles is low or unbalanced. In big cities, the metropolitan buses that travel on exclusive lanes may be used to set up a metropolitan vehicular data network (backbone, raising the connectivity among the vehicles. Therefore, this paper proposes the implementation of a living mobile backbone, totally ad hoc (MOB-NET, which will provide infrastructure and raise the network connectivity. In order to show the viability of MOB-NET, statistical analyses were made with real data of express buses that travel through exclusive lanes, besides evaluations through simulations and analytic models. The statistic, analytic, and simulation results prove that the buses that travel through exclusive lanes can be used to build a communication network totally ad hoc and provide connectivity in more than 99% of the time, besides raising the delivery rate up to 95%.

  12. Reliability-Based Structural Optimization of Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Simon Ambühl

    2014-12-01

    Full Text Available More and more wave energy converter (WEC concepts are reaching prototypelevel. Once the prototype level is reached, the next step in order to further decrease thelevelized cost of energy (LCOE is optimizing the overall system with a focus on structuraland maintenance (inspection costs, as well as on the harvested power from the waves.The target of a fully-developed WEC technology is not maximizing its power output,but minimizing the resulting LCOE. This paper presents a methodology to optimize thestructural design of WECs based on a reliability-based optimization problem and the intentto maximize the investor’s benefits by maximizing the difference between income (e.g., fromselling electricity and the expected expenses (e.g., structural building costs or failure costs.Furthermore, different development levels, like prototype or commercial devices, may havedifferent main objectives and will be located at different locations, as well as receive varioussubsidies. These points should be accounted for when performing structural optimizationsof WECs. An illustrative example on the gravity-based foundation of the Wavestar deviceis performed showing how structural design can be optimized taking target reliability levelsand different structural failure modes due to extreme loads into account.

  13. Valence band electronic structure of Pd based ternary chalcogenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lohani, H. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Mishra, P. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Goyal, R.; Awana, V.P.S. [National Physical Laboratory(CSIR), Dr. K. S. Krishnan Road, New Delhi 110012 (India); Sekhar, B.R., E-mail: sekhar@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India)

    2016-12-15

    Highlights: • VB Photoemission study and DFT calculations on Pd based ternary superconductors are presented. • Nb{sub 2}Pd{sub 0.95}S{sub 5} shows a temperature dependent pseudogap. • VB spectral features of ternary superconductors are correlated to their structural geometry. - Abstract: We present a comparative study of the valence band electronic structure of Pd based ternary chalcogenide superconductors Nb{sub 2}Pd{sub 0.95}S{sub 5}, Ta{sub 2}Pd{sub 0.97}S{sub 6} and Ta{sub 2}Pd{sub 0.97}Te{sub 6} using experimental photoemission spectroscopy and density functional based theoretical calculations. We observe a qualitatively similarity between valence band (VB) spectra of Nb{sub 2}Pd{sub 0.95}S{sub 5} and Ta{sub 2}Pd{sub 0.97}S{sub 6}. Further, we find a pseudogap feature in Nb{sub 2}Pd{sub 0.95}S{sub 5} at low temperature, unlike other two compounds. We have correlated the structural geometry with the differences in VB spectra of these compounds. The different atomic packing in these compounds could vary the strength of inter-orbital hybridization among various atoms which leads to difference in their electronic structure as clearly observed in our DOS calculations.

  14. Optimization of morphing flaps based on fluid structure interaction modeling

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Akay, Busra

    2018-01-01

    This article describes the design optimization of morphing trailing edge flaps for wind turbines with ‘smart blades’. A high fidelity Fluid Structure Interaction (FSI) simulation framework is utilized, comprised of 2D Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) models....... A coupled aero-structural simulation of a 10% chordwise length morphing trailing edge flap for a 4 MW wind turbine rotor is carried out and response surfaces are produced with respect to the flap internal geometry design parameters for the design conditions. Surrogate model based optimization is applied...

  15. Bending-active reciprocal structures based on equilateral polyhedral geometries

    DEFF Research Database (Denmark)

    Popovic Larsen, Olga; BRANCART, Stijn; DE TEMMERMAN, Niels

    2017-01-01

    As mutually supported beam structures, reciprocal frames limit the number of components that are joined at each connection to two. However, this system of intermediate connections introduces undesirable bending moments in the beam elements. By utilising elastic deformation to create curved...... of parts of reciprocal bending-active components based on a selection of polyhedral dome types. To simplify the assembly of the structures and avoid the manual bending of the components on site, we introduce the concept of a double-layered, pre-bent component. Finally, this paper presents the development...

  16. Qrator: A web-based curation tool for glycan structures

    Science.gov (United States)

    Eavenson, Matthew; Kochut, Krys J; Miller, John A; Ranzinger, René; Tiemeyer, Michael; Aoki, Kazuhiro; York, William S

    2015-01-01

    Most currently available glycan structure databases use their own proprietary structure representation schema and contain numerous annotation errors. These cause problems when glycan databases are used for the annotation or mining of data generated in the laboratory. Due to the complexity of glycan structures, curating these databases is often a tedious and labor-intensive process. However, rigorously validating glycan structures can be made easier with a curation workflow that incorporates a structure-matching algorithm that compares candidate glycans to a canonical tree that embodies structural features consistent with established mechanisms for the biosynthesis of a particular class of glycans. To this end, we have implemented Qrator, a web-based application that uses a combination of external literature and database references, user annotations and canonical trees to assist and guide researchers in making informed decisions while curating glycans. Using this application, we have started the curation of large numbers of N-glycans, O-glycans and glycosphingolipids. Our curation workflow allows creating and extending canonical trees for these classes of glycans, which have subsequently been used to improve the curation workflow. PMID:25165068

  17. Particle filtering based structural assessment with acoustic emission sensing

    Science.gov (United States)

    Yan, Wuzhao; Abdelrahman, Marwa; Zhang, Bin; Ziehl, Paul

    2017-02-01

    Nuclear structures are designed to withstand severe loading events under various stresses. Over time, aging of structural systems constructed with concrete and steel will occur. This deterioration may reduce service life of nuclear facilities and/or lead to unnecessary or untimely repairs. Therefore, online monitoring of structures in nuclear power plants and waste storage has drawn significant attention in recent years. Of many existing non-destructive evaluation and structural monitoring approaches, acoustic emission is promising for assessment of structural damage because it is non-intrusive and is sensitive to corrosion and crack growth in reinforced concrete elements. To provide a rapid, actionable, and graphical means for interpretation Intensity Analysis plots have been developed. This approach provides a means for classification of damage. Since the acoustic emission measurement is only an indirect indicator of structural damage, potentially corrupted by non-genuine data, it is more suitable to estimate the states of corrosion and cracking in a Bayesian estimation framework. In this paper, we will utilize the accelerated corrosion data from a specimen at the University of South Carolina to develop a particle filtering-based diagnosis and prognosis algorithm. Promising features of the proposed algorithm are described in terms of corrosion state estimation and prediction of degradation over time to a predefined threshold.

  18. Structures of human cytosolic and mitochondrial nucleotidases: implications for structure-based design of selective inhibitors

    Czech Academy of Sciences Publication Activity Database

    Pachl, Petr; Fábry, Milan; Rosenberg, Ivan; Šimák, Ondřej; Řezáčová, Pavlína; Brynda, Jiří

    2014-01-01

    Roč. 70, February (2014), s. 461-470 ISSN 0907-4449 R&D Projects: GA ČR GA203/09/0820 Institutional support: RVO:68378050 ; RVO:61388963 Keywords : 5′(3′)-deoxyribonucleotidases * enzyme inhibition * hydrolases * structure-based drug design Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.232, year: 2013

  19. Integrated Teaching of Structure-Based Drug Design and Biopharmaceutics: A Computer-Based Approach

    Science.gov (United States)

    Sutch, Brian T.; Romero, Rebecca M.; Neamati, Nouri; Haworth, Ian S.

    2012-01-01

    Rational drug design requires expertise in structural biology, medicinal chemistry, physiology, and related fields. In teaching structure-based drug design, it is important to develop an understanding of the need for early recognition of molecules with "drug-like" properties as a key component. That is, it is not merely sufficient to teach…

  20. Diode rectifier bridge-based structure for DFIG-based wind turbine

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Chen, Zhe; Wu, Xiaojie

    2015-01-01

    This paper proposes a new structure for the doubly-fed induction generator (DFIG)-based wind turbine. The proposed structure consists of a DFIG controlled by a partial rated power converter in the rotor side, a three-phase diode rectifier bridge (DRB) connected to the stator, and a DC/AC full rated...

  1. An Analysis of Rheological Properties of Inconel 625 Superalloy Feedstocks Formulated with Backbone Binder Polypropylene System for Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Gökmen U.

    2017-12-01

    Full Text Available Binder formula is one of the most significant factors which has a considerable influence on powder injection molding (PIM processes. In the study, rheological behaviors and properties of different binder systems containing PIM feedstocks, Inconel 625 powder commonly used in space industry, were investigated. The feedstocks were prepared 59%-69% (volume powder loading ratios with three diversified binder systems by use of Polypropylene as backbone binder. The average particle size of the Inconel 625 powder used was 12.86 microns. Components used in the binder were mixed for 30 minutes as dry in three dimensional mixing to prepare binder systems. Rheological features of the feedstock were characterized by using a capillary rheometer. Viscosities of the feedstocks were calculated within the range of 37.996-1900 Pa.s based on the shear rate, shear stress, binder formula and temperature. “n” parameters for PIM feedstocks were determined to be less than 1. Influences of temperature on the viscosities of the feedstocks were also studied and “Ea” under various shear stresses were determined within the range of 24.41-70.89 kJ/mol.

  2. Simulation tools for guided wave based structural health monitoring

    Science.gov (United States)

    Mesnil, Olivier; Imperiale, Alexandre; Demaldent, Edouard; Baronian, Vahan; Chapuis, Bastien

    2018-04-01

    Structural Health Monitoring (SHM) is a thematic derived from Non Destructive Evaluation (NDE) based on the integration of sensors onto or into a structure in order to monitor its health without disturbing its regular operating cycle. Guided wave based SHM relies on the propagation of guided waves in plate-like or extruded structures. Using piezoelectric transducers to generate and receive guided waves is one of the most widely accepted paradigms due to the low cost and low weight of those sensors. A wide range of techniques for flaw detection based on the aforementioned setup is available in the literature but very few of these techniques have found industrial applications yet. A major difficulty comes from the sensitivity of guided waves to a substantial number of parameters such as the temperature or geometrical singularities, making guided wave measurement difficult to analyze. In order to apply guided wave based SHM techniques to a wider spectrum of applications and to transfer those techniques to the industry, the CEA LIST develops novel numerical methods. These methods facilitate the evaluation of the robustness of SHM techniques for multiple applicative cases and ease the analysis of the influence of various parameters, such as sensors positioning or environmental conditions. The first numerical tool is the guided wave module integrated to the commercial software CIVA, relying on a hybrid modal-finite element formulation to compute the guided wave response of perturbations (cavities, flaws…) in extruded structures of arbitrary cross section such as rails or pipes. The second numerical tool is based on the spectral element method [2] and simulates guided waves in both isotropic (metals) and orthotropic (composites) plate like-structures. This tool is designed to match the widely accepted sparse piezoelectric transducer array SHM configuration in which each embedded sensor acts as both emitter and receiver of guided waves. This tool is under development and

  3. Experimental demonstration of dielectric structure based two beam acceleration

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M. E.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.; Zou, P.

    2000-01-01

    We report on the experimental results of the dielectric based two beam accelerator (step-up transformer). By using a single high charge beam, we have generated and extracted a high power RF pulse from a 7.8 GHz primary dielectric structure and then subsequently transferred to a second accelerating structure with higher dielectric constant and smaller transverse dimensions. We have measured the energy change of a second (witness) beam passing through the acceleration stage. The measured gradient is >4 times the deceleration gradient. The detailed experiment of set-up and results of the measurements are dimmed. Future plans for the development of a 100 MeV demonstration accelerator based on this technique is presented

  4. Rotational stellar structures based on the Lagrangian variational principle

    International Nuclear Information System (INIS)

    Yasutake, Nobutoshi; Fujisawa, Kotaro; Yamada, Shoichi

    2017-01-01

    A new method for multi-dimensional stellar structures is proposed in this study. As for stellar evolution calculations, the Heney method is the defacto standard now, but basically assumed to be spherical symmetric. It is one of the difficulties for deformed stellar-evolution calculations to trace the potentially complex movements of each fluid element. On the other hand, our new method is very suitable to follow such movements, since it is based on the Lagrange coordinate. This scheme is also based on the variational principle, which is adopted to the studies for the pasta structures inside of neutron stars. Our scheme could be a major break through for evolution calculations of any types of deformed stars: proto-planets, proto-stars, and proto-neutron stars, etc. (paper)

  5. Rotational stellar structures based on the Lagrangian variational principle

    Science.gov (United States)

    Yasutake, Nobutoshi; Fujisawa, Kotaro; Yamada, Shoichi

    2017-06-01

    A new method for multi-dimensional stellar structures is proposed in this study. As for stellar evolution calculations, the Heney method is the defacto standard now, but basically assumed to be spherical symmetric. It is one of the difficulties for deformed stellar-evolution calculations to trace the potentially complex movements of each fluid element. On the other hand, our new method is very suitable to follow such movements, since it is based on the Lagrange coordinate. This scheme is also based on the variational principle, which is adopted to the studies for the pasta structures inside of neutron stars. Our scheme could be a major break through for evolution calculations of any types of deformed stars: proto-planets, proto-stars, and proto-neutron stars, etc.

  6. Structure-Based Virtual Screening of Commercially Available Compound Libraries.

    Science.gov (United States)

    Kireev, Dmitri

    2016-01-01

    Virtual screening (VS) is an efficient hit-finding tool. Its distinctive strength is that it allows one to screen compound libraries that are not available in the lab. Moreover, structure-based (SB) VS also enables an understanding of how the hit compounds bind the protein target, thus laying ground work for the rational hit-to-lead progression. SBVS requires a very limited experimental effort and is particularly well suited for academic labs and small biotech companies that, unlike pharmaceutical companies, do not have physical access to quality small-molecule libraries. Here, we describe SBVS of commercial compound libraries for Mer kinase inhibitors. The screening protocol relies on the docking algorithm Glide complemented by a post-docking filter based on structural protein-ligand interaction fingerprints (SPLIF).

  7. Experimental demonstration of dielectric structure based two beam acceleration.

    Energy Technology Data Exchange (ETDEWEB)

    Gai, W.; Conde, M. E.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.; Zou, P.

    2000-11-28

    We report on the experimental results of the dielectric based two beam accelerator (step-up transformer). By using a single high charge beam, we have generated and extracted a high power RF pulse from a 7.8 GHz primary dielectric structure and then subsequently transferred to a second accelerating structure with higher dielectric constant and smaller transverse dimensions. We have measured the energy change of a second (witness) beam passing through the acceleration stage. The measured gradient is >4 times the deceleration gradient. The detailed experiment of set-up and results of the measurements are dimmed. Future plans for the development of a 100 MeV demonstration accelerator based on this technique is presented.

  8. Structural system identification based on variational mode decomposition

    Science.gov (United States)

    Bagheri, Abdollah; Ozbulut, Osman E.; Harris, Devin K.

    2018-03-01

    In this paper, a new structural identification method is proposed to identify the modal properties of engineering structures based on dynamic response decomposition using the variational mode decomposition (VMD). The VMD approach is a decomposition algorithm that has been developed as a means to overcome some of the drawbacks and limitations of the empirical mode decomposition method. The VMD-based modal identification algorithm decomposes the acceleration signal into a series of distinct modal responses and their respective center frequencies, such that when combined their cumulative modal responses reproduce the original acceleration response. The decaying amplitude of the extracted modal responses is then used to identify the modal damping ratios using a linear fitting function on modal response data. Finally, after extracting modal responses from available sensors, the mode shape vector for each of the decomposed modes in the system is identified from all obtained modal response data. To demonstrate the efficiency of the algorithm, a series of numerical, laboratory, and field case studies were evaluated. The laboratory case study utilized the vibration response of a three-story shear frame, whereas the field study leveraged the ambient vibration response of a pedestrian bridge to characterize the modal properties of the structure. The modal properties of the shear frame were computed using analytical approach for a comparison with the experimental modal frequencies. Results from these case studies demonstrated that the proposed method is efficient and accurate in identifying modal data of the structures.

  9. Structural design systems using knowledge-based techniques

    International Nuclear Information System (INIS)

    Orsborn, K.

    1993-01-01

    Engineering information management and the corresponding information systems are of a strategic importance for industrial enterprises. This thesis treats the interdisciplinary field of designing computing systems for structural design and analysis using knowledge-based techniques. Specific conceptual models have been designed for representing the structure and the process of objects and activities in a structural design and analysis domain. In this thesis, it is shown how domain knowledge can be structured along several classification principles in order to reduce complexity and increase flexibility. By increasing the conceptual level of the problem description and representation of the domain knowledge in a declarative form, it is possible to enhance the development, maintenance and use of software for mechanical engineering. This will result in a corresponding increase of the efficiency of the mechanical engineering design process. These ideas together with the rule-based control point out the leverage of declarative knowledge representation within this domain. Used appropriately, a declarative knowledge representation preserves information better, is more problem-oriented and change-tolerant than procedural representations. 74 refs

  10. Structural health monitoring methodology for aircraft condition-based maintenance

    Science.gov (United States)

    Saniger, Jordi; Reithler, Livier; Guedra-Degeorges, Didier; Takeda, Nobuo; Dupuis, Jean Pierre

    2001-06-01

    Reducing maintenance costs while keeping a constant level of safety is a major issue for Air Forces and airlines. The long term perspective is to implement condition based maintenance to guarantee a constant safety level while decreasing maintenance costs. On this purpose, the development of a generalized Structural Health Monitoring System (SHMS) is needed. The objective of such a system is to localize the damages and to assess their severity, with enough accuracy to allow low cost corrective actions. The present paper describes a SHMS based on acoustic emission technology. This choice was driven by its reliability and wide use in the aerospace industry. The described SHMS uses a new learning methodology which relies on the generation of artificial acoustic emission events on the structure and an acoustic emission sensor network. The calibrated acoustic emission events picked up by the sensors constitute the knowledge set that the system relies on. With this methodology, the anisotropy of composite structures is taken into account, thus avoiding the major cause of errors of classical localization methods. Moreover, it is adaptive to different structures as it does not rely on any particular model but on measured data. The acquired data is processed and the event's location and corrected amplitude are computed. The methodology has been demonstrated and experimental tests on elementary samples presented a degree of accuracy of 1cm.

  11. A protein relational database and protein family knowledge bases to facilitate structure-based design analyses.

    Science.gov (United States)

    Mobilio, Dominick; Walker, Gary; Brooijmans, Natasja; Nilakantan, Ramaswamy; Denny, R Aldrin; Dejoannis, Jason; Feyfant, Eric; Kowticwar, Rupesh K; Mankala, Jyoti; Palli, Satish; Punyamantula, Sairam; Tatipally, Maneesh; John, Reji K; Humblet, Christine

    2010-08-01

    The Protein Data Bank is the most comprehensive source of experimental macromolecular structures. It can, however, be difficult at times to locate relevant structures with the Protein Data Bank search interface. This is particularly true when searching for complexes containing specific interactions between protein and ligand atoms. Moreover, searching within a family of proteins can be tedious. For example, one cannot search for some conserved residue as residue numbers vary across structures. We describe herein three databases, Protein Relational Database, Kinase Knowledge Base, and Matrix Metalloproteinase Knowledge Base, containing protein structures from the Protein Data Bank. In Protein Relational Database, atom-atom distances between protein and ligand have been precalculated allowing for millisecond retrieval based on atom identity and distance constraints. Ring centroids, centroid-centroid and centroid-atom distances and angles have also been included permitting queries for pi-stacking interactions and other structural motifs involving rings. Other geometric features can be searched through the inclusion of residue pair and triplet distances. In Kinase Knowledge Base and Matrix Metalloproteinase Knowledge Base, the catalytic domains have been aligned into common residue numbering schemes. Thus, by searching across Protein Relational Database and Kinase Knowledge Base, one can easily retrieve structures wherein, for example, a ligand of interest is making contact with the gatekeeper residue.

  12. SABATPG-A Structural Analysis Based Automatic Test Generation System

    Institute of Scientific and Technical Information of China (English)

    李忠诚; 潘榆奇; 闵应骅

    1994-01-01

    A TPG system, SABATPG, is given based on a generic structural model of large circuits. Three techniques of partial implication, aftereffect of identified undetectable faults and shared sensitization with new concepts of localization and aftereffect are employed in the system to improve FAN algorithm. Experiments for the 10 ISCAS benchmark circuits show that the computing time of SABATPG for test generation is 19.42% less than that of FAN algorithm.

  13. Automated Glioblastoma Segmentation Based on a Multiparametric Structured Unsupervised Classification

    Science.gov (United States)

    Juan-Albarracín, Javier; Fuster-Garcia, Elies; Manjón, José V.; Robles, Montserrat; Aparici, F.; Martí-Bonmatí, L.; García-Gómez, Juan M.

    2015-01-01

    Automatic brain tumour segmentation has become a key component for the future of brain tumour treatment. Currently, most of brain tumour segmentation approaches arise from the supervised learning standpoint, which requires a labelled training dataset from which to infer the models of the classes. The performance of these models is directly determined by the size and quality of the training corpus, whose retrieval becomes a tedious and time-consuming task. On the other hand, unsupervised approaches avoid these limitations but often do not reach comparable results than the supervised methods. In this sense, we propose an automated unsupervised method for brain tumour segmentation based on anatomical Magnetic Resonance (MR) images. Four unsupervised classification algorithms, grouped by their structured or non-structured condition, were evaluated within our pipeline. Considering the non-structured algorithms, we evaluated K-means, Fuzzy K-means and Gaussian Mixture Model (GMM), whereas as structured classification algorithms we evaluated Gaussian Hidden Markov Random Field (GHMRF). An automated postprocess based on a statistical approach supported by tissue probability maps is proposed to automatically identify the tumour classes after the segmentations. We evaluated our brain tumour segmentation method with the public BRAin Tumor Segmentation (BRATS) 2013 Test and Leaderboard datasets. Our approach based on the GMM model improves the results obtained by most of the supervised methods evaluated with the Leaderboard set and reaches the second position in the ranking. Our variant based on the GHMRF achieves the first position in the Test ranking of the unsupervised approaches and the seventh position in the general Test ranking, which confirms the method as a viable alternative for brain tumour segmentation. PMID:25978453

  14. From crystal to compound: structure-based antimalarial drug discovery.

    Science.gov (United States)

    Drinkwater, Nyssa; McGowan, Sheena

    2014-08-01

    Despite a century of control and eradication campaigns, malaria remains one of the world's most devastating diseases. Our once-powerful therapeutic weapons are losing the war against the Plasmodium parasite, whose ability to rapidly develop and spread drug resistance hamper past and present malaria-control efforts. Finding new and effective treatments for malaria is now a top global health priority, fuelling an increase in funding and promoting open-source collaborations between researchers and pharmaceutical consortia around the world. The result of this is rapid advances in drug discovery approaches and technologies, with three major methods for antimalarial drug development emerging: (i) chemistry-based, (ii) target-based, and (iii) cell-based. Common to all three of these approaches is the unique ability of structural biology to inform and accelerate drug development. Where possible, SBDD (structure-based drug discovery) is a foundation for antimalarial drug development programmes, and has been invaluable to the development of a number of current pre-clinical and clinical candidates. However, as we expand our understanding of the malarial life cycle and mechanisms of resistance development, SBDD as a field must continue to evolve in order to develop compounds that adhere to the ideal characteristics for novel antimalarial therapeutics and to avoid high attrition rates pre- and post-clinic. In the present review, we aim to examine the contribution that SBDD has made to current antimalarial drug development efforts, covering hit discovery to lead optimization and prevention of parasite resistance. Finally, the potential for structural biology, particularly high-throughput structural genomics programmes, to identify future targets for drug discovery are discussed.

  15. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  16. Simulations for irradiation of silicon-based structures

    International Nuclear Information System (INIS)

    Sagatova, A.; Pavlovic, M.; Sedlackova, K.; Necas, V.; Hybler, P.; Zatko, B.

    2013-01-01

    The software ModePEB for modelling of electron beam processing in multilayer flat objects was shown to be a very useful tool for optimization of the irradiation of silicon based structures. Except its significant help in setting-up the accelerator parameters corresponding to a desired dose, its proven reliability and consistency with the measured data makes the ModePEB an inevitable instrument for design and optimization of electron irradiation experiments. (authors)

  17. Towards risk-based structural integrity methods for PWRs

    International Nuclear Information System (INIS)

    Chapman, O.J.V.; Lloyd, R.B.

    1992-01-01

    This paper describes the development of risk-based structural integrity assurance methods and their application to Pressurized Water Reactor (PWR) plant. In-service inspection is introduced as a way of reducing the failure probability of high risk sites and the latter are identified using reliability analysis; the extent and interval of inspection can also be optimized. The methodology is illustrated by reference to the aspect of reliability of weldments in PWR systems. (author)

  18. Grid-based electronic structure calculations: The tensor decomposition approach

    Energy Technology Data Exchange (ETDEWEB)

    Rakhuba, M.V., E-mail: rakhuba.m@gmail.com [Skolkovo Institute of Science and Technology, Novaya St. 100, 143025 Skolkovo, Moscow Region (Russian Federation); Oseledets, I.V., E-mail: i.oseledets@skoltech.ru [Skolkovo Institute of Science and Technology, Novaya St. 100, 143025 Skolkovo, Moscow Region (Russian Federation); Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina St. 8, 119333 Moscow (Russian Federation)

    2016-05-01

    We present a fully grid-based approach for solving Hartree–Fock and all-electron Kohn–Sham equations based on low-rank approximation of three-dimensional electron orbitals. Due to the low-rank structure the total complexity of the algorithm depends linearly with respect to the one-dimensional grid size. Linear complexity allows for the usage of fine grids, e.g. 8192{sup 3} and, thus, cheap extrapolation procedure. We test the proposed approach on closed-shell atoms up to the argon, several molecules and clusters of hydrogen atoms. All tests show systematical convergence with the required accuracy.

  19. A new entropy based method for computing software structural complexity

    International Nuclear Information System (INIS)

    Roca, Jose L.

    2002-01-01

    In this paper a new methodology for the evaluation of software structural complexity is described. It is based on the entropy evaluation of the random uniform response function associated with the so called software characteristic function SCF. The behavior of the SCF with the different software structures and their relationship with the number of inherent errors is investigated. It is also investigated how the entropy concept can be used to evaluate the complexity of a software structure considering the SCF as a canonical representation of the graph associated with the control flow diagram. The functions, parameters and algorithms that allow to carry out this evaluation are also introduced. After this analytic phase follows the experimental phase, verifying the consistency of the proposed metric and their boundary conditions. The conclusion is that the degree of software structural complexity can be measured as the entropy of the random uniform response function of the SCF. That entropy is in direct relationship with the number of inherent software errors and it implies a basic hazard failure rate for it, so that a minimum structure assures a certain stability and maturity of the program. This metric can be used, either to evaluate the product or the process of software development, as development tool or for monitoring the stability and the quality of the final product. (author)

  20. Module-based structure design of wheeled mobile robot

    Directory of Open Access Journals (Sweden)

    Z. Luo

    2018-02-01

    Full Text Available This paper proposes an innovative and systematic approach for synthesizing mechanical structures of wheeled mobile robots. The principle and terminologies used for the proposed synthesis method are presented by adopting the concept of modular design, isomorphic and non-isomorphic, and set theory with its associated combinatorial mathematics. The modular-based innovative synthesis and design of wheeled robots were conducted at two levels. Firstly at the module level, by creative design and analysing the structures of classic wheeled robots, a wheel module set containing four types of wheel mechanisms, a suspension module set consisting of five types of suspension frames and a chassis module set composed of five types of rigid or articulated chassis were designed and generalized. Secondly at the synthesis level, two kinds of structure synthesis modes, namely the isomorphic-combination mode and the non-isomorphic combination mode were proposed to synthesize mechanical structures of wheeled robots; which led to 241 structures for wheeled mobile robots including 236 novel ones. Further, mathematical models and a software platform were developed to provide appropriate and intuitive tools for simulating and evaluating performance of the wheeled robots that were proposed in this paper. Eventually, physical prototypes of sample wheeled robots/rovers were developed and tested so as to prove and validate the principle and methodology presented in this paper.

  1. Structural reliability analysis based on the cokriging technique

    International Nuclear Information System (INIS)

    Zhao Wei; Wang Wei; Dai Hongzhe; Xue Guofeng

    2010-01-01

    Approximation methods are widely used in structural reliability analysis because they are simple to create and provide explicit functional relationships between the responses and variables in stead of the implicit limit state function. Recently, the kriging method which is a semi-parameter interpolation technique that can be used for deterministic optimization and structural reliability has gained popularity. However, to fully exploit the kriging method, especially in high-dimensional problems, a large number of sample points should be generated to fill the design space and this can be very expensive and even impractical in practical engineering analysis. Therefore, in this paper, a new method-the cokriging method, which is an extension of kriging, is proposed to calculate the structural reliability. cokriging approximation incorporates secondary information such as the values of the gradients of the function being approximated. This paper explores the use of the cokriging method for structural reliability problems by comparing it with the Kriging method based on some numerical examples. The results indicate that the cokriging procedure described in this work can generate approximation models to improve on the accuracy and efficiency for structural reliability problems and is a viable alternative to the kriging.

  2. Reliability-Based Optimal Design for Very Large Floating Structure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-hua(张淑华); FUJIKUBO Masahiko

    2003-01-01

    Costs and losses induced by possible future extreme environmental conditions and difficulties in repairing post-yielding damage strongly suggest the need for proper consideration in design rather than just life loss prevention. This can be addressed through the development of design methodology that balances the initial cost of the very large floating structure (VLFS) against the expected potential losses resulting from future extreme wave-induced structural damage. Here, the development of a methodology for determining optimal, cost-effective design will be presented and applied to a VLFS located in the Tokyo bay. Optimal design criteria are determined based on the total expected life-cycle cost and acceptable damage probability and curvature of the structure, and a set of sizes of the structure are obtained. The methodology and applications require expressions of the initial cost and the expected life-cycle damage cost as functions of the optimal design variables. This study includes the methodology, total life-cycle cost function, structural damage modeling, and reliability analysis.

  3. Crack width monitoring of concrete structures based on smart film

    International Nuclear Information System (INIS)

    Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhang, Xu; Yang, Guang; Qiu, Minfeng

    2014-01-01

    Due to its direct link to structural security, crack width is thought to be one of the most important parameters reflecting damage conditions of concrete structures. However, the width problem is difficult to solve with the existing structural health monitoring methods. In this paper, crack width monitoring by means of adhering enameled copper wires with different ultimate strains on the surface of structures is proposed, based on smart film crack monitoring put forward by the present authors. The basic idea of the proposed method is related to a proportional relationship between the crack width and ultimate strain of the broken wire. Namely, when a certain width of crack passes through the wire, some low ultimate strain wires will be broken and higher ultimate strain wires may stay non-broken until the crack extends to a larger scale. Detection of the copper wire condition as broken or non-broken may indicate the width of the structural crack. Thereafter, a multi-layered stress transfer model and specimen experiment are performed to quantify the relationship. A practical smart film is then redesigned with this idea and applied to Chongqing Jiangjin Yangtze River Bridge. (paper)

  4. Crack width monitoring of concrete structures based on smart film

    Science.gov (United States)

    Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhang, Xu; Yang, Guang; Qiu, Minfeng

    2014-04-01

    Due to its direct link to structural security, crack width is thought to be one of the most important parameters reflecting damage conditions of concrete structures. However, the width problem is difficult to solve with the existing structural health monitoring methods. In this paper, crack width monitoring by means of adhering enameled copper wires with different ultimate strains on the surface of structures is proposed, based on smart film crack monitoring put forward by the present authors. The basic idea of the proposed method is related to a proportional relationship between the crack width and ultimate strain of the broken wire. Namely, when a certain width of crack passes through the wire, some low ultimate strain wires will be broken and higher ultimate strain wires may stay non-broken until the crack extends to a larger scale. Detection of the copper wire condition as broken or non-broken may indicate the width of the structural crack. Thereafter, a multi-layered stress transfer model and specimen experiment are performed to quantify the relationship. A practical smart film is then redesigned with this idea and applied to Chongqing Jiangjin Yangtze River Bridge.

  5. Road Network Selection Based on Road Hierarchical Structure Control

    Directory of Open Access Journals (Sweden)

    HE Haiwei

    2015-04-01

    Full Text Available A new road network selection method based on hierarchical structure is studied. Firstly, road network is built as strokes which are then classified into hierarchical collections according to the criteria of betweenness centrality value (BC value. Secondly, the hierarchical structure of the strokes is enhanced using structural characteristic identification technique. Thirdly, the importance calculation model was established according to the relationships among the hierarchical structure of the strokes. Finally, the importance values of strokes are got supported with the model's hierarchical calculation, and with which the road network is selected. Tests are done to verify the advantage of this method by comparing it with other common stroke-oriented methods using three kinds of typical road network data. Comparision of the results show that this method had few need to semantic data, and could eliminate the negative influence of edge strokes caused by the criteria of BC value well. So, it is better to maintain the global hierarchical structure of road network, and suitable to meet with the selection of various kinds of road network at the same time.

  6. Coupled vertical-rocking response of base-isolated structures

    International Nuclear Information System (INIS)

    Pan, T.C.; Kelly, J.M.

    1984-01-01

    A base-isolated building can have a small horizontal eccentricity between the center of mass of the superstructure and the center of rigidity of the supporting bearings. The structure can be modeled as a rigid block with tributary masses supported on massless rubber bearings placed at a constant elevation below the center of mass. Perturbation methods are implemented to find the dynamic characteristics for both the detuned and the perfectly tuned cases. The Green's functions for the displacement response of the system are derived for the undamped and the damped conditions. The response spectrum modal superposition method is used in estimating the maximum acceleration. A simple method, accounting for the effect of closely spaced modes, is proposed for combining modal maxima and results in an approximate single-degree-of-freedom solution. This approximate solution may be used for thepreliminary design of a base-isolated structure. Numerical results for a base-isolated building subjected to the vertical component of the El Centro earthquake of 1940 were carried out for comparison with analytical results. It is shown that the effect of rocking coupling on the vertical seismic response of baseisolated structures can generally be neglected because of the combined effects of the time lag between the maximum translational and rotational responses and the influence of damping in the isolation system

  7. Fragment approaches in structure-based drug discovery

    International Nuclear Information System (INIS)

    Hubbard, Roderick E.

    2008-01-01

    Fragment-based methods are successfully generating novel and selective drug-like inhibitors of protein targets, with a number of groups reporting compounds entering clinical trials. This paper summarizes the key features of the approach as one of the tools in structure-guided drug discovery. There has been considerable interest recently in what is known as 'fragment-based lead discovery'. The novel feature of the approach is to begin with small low-affinity compounds. The main advantage is that a larger potential chemical diversity can be sampled with fewer compounds, which is particularly important for new target classes. The approach relies on careful design of the fragment library, a method that can detect binding of the fragment to the protein target, determination of the structure of the fragment bound to the target, and the conventional use of structural information to guide compound optimization. In this article the methods are reviewed, and experiences in fragment-based discovery of lead series of compounds against kinases such as PDK1 and ATPases such as Hsp90 are discussed. The examples illustrate some of the key benefits and issues of the approach and also provide anecdotal examples of the patterns seen in selectivity and the binding mode of fragments across different protein targets

  8. Frequency Response Function Based Damage Identification for Aerospace Structures

    Science.gov (United States)

    Oliver, Joseph Acton

    Structural health monitoring technologies continue to be pursued for aerospace structures in the interests of increased safety and, when combined with health prognosis, efficiency in life-cycle management. The current dissertation develops and validates damage identification technology as a critical component for structural health monitoring of aerospace structures and, in particular, composite unmanned aerial vehicles. The primary innovation is a statistical least-squares damage identification algorithm based in concepts of parameter estimation and model update. The algorithm uses frequency response function based residual force vectors derived from distributed vibration measurements to update a structural finite element model through statistically weighted least-squares minimization producing location and quantification of the damage, estimation uncertainty, and an updated model. Advantages compared to other approaches include robust applicability to systems which are heavily damped, large, and noisy, with a relatively low number of distributed measurement points compared to the number of analytical degrees-of-freedom of an associated analytical structural model (e.g., modal finite element model). Motivation, research objectives, and a dissertation summary are discussed in Chapter 1 followed by a literature review in Chapter 2. Chapter 3 gives background theory and the damage identification algorithm derivation followed by a study of fundamental algorithm behavior on a two degree-of-freedom mass-spring system with generalized damping. Chapter 4 investigates the impact of noise then successfully proves the algorithm against competing methods using an analytical eight degree-of-freedom mass-spring system with non-proportional structural damping. Chapter 5 extends use of the algorithm to finite element models, including solutions for numerical issues, approaches for modeling damping approximately in reduced coordinates, and analytical validation using a composite

  9. A probabilistic fragment-based protein structure prediction algorithm.

    Directory of Open Access Journals (Sweden)

    David Simoncini

    Full Text Available Conformational sampling is one of the bottlenecks in fragment-based protein structure prediction approaches. They generally start with a coarse-grained optimization where mainchain atoms and centroids of side chains are considered, followed by a fine-grained optimization with an all-atom representation of proteins. It is during this coarse-grained phase that fragment-based methods sample intensely the conformational space. If the native-like region is sampled more, the accuracy of the final all-atom predictions may be improved accordingly. In this work we present EdaFold, a new method for fragment-based protein structure prediction based on an Estimation of Distribution Algorithm. Fragment-based approaches build protein models by assembling short fragments from known protein structures. Whereas the probability mass functions over the fragment libraries are uniform in the usual case, we propose an algorithm that learns from previously generated decoys and steers the search toward native-like regions. A comparison with Rosetta AbInitio protocol shows that EdaFold is able to generate models with lower energies and to enhance the percentage of near-native coarse-grained decoys on a benchmark of [Formula: see text] proteins. The best coarse-grained models produced by both methods were refined into all-atom models and used in molecular replacement. All atom decoys produced out of EdaFold's decoy set reach high enough accuracy to solve the crystallographic phase problem by molecular replacement for some test proteins. EdaFold showed a higher success rate in molecular replacement when compared to Rosetta. Our study suggests that improving low resolution coarse-grained decoys allows computational methods to avoid subsequent sampling issues during all-atom refinement and to produce better all-atom models. EdaFold can be downloaded from http://www.riken.jp/zhangiru/software.html [corrected].

  10. Analytical Model based on Green Criteria for Optical Backbone Network Interconnection

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Pedersen, Jens Myrup

    2011-01-01

    Key terms such as Global warming, Green House Gas emissions, or Energy efficiency are currently on the scope of scientific research. Regarding telecommunications networks, wireless applications, routing protocols, etc. are being designed following this new “Green” trend. This work contributes...... to the evaluation of the environmental impact of networks from physical interconnection point of view. Networks deployment, usage, and disposal are analyzed as contributing elements to ICT’s (Information and Communications Technology) CO2 emissions. This paper presents an analytical model for evaluating...

  11. A Review of the Piezoelectric Electromechanical Impedance Based Structural Health Monitoring Technique for Engineering Structures

    Directory of Open Access Journals (Sweden)

    Wongi S. Na

    2018-04-01

    Full Text Available The birth of smart materials such as piezoelectric (PZT transducers has aided in revolutionizing the field of structural health monitoring (SHM based on non-destructive testing (NDT methods. While a relatively new NDT method known as the electromechanical (EMI technique has been investigated for more than two decades, there are still various problems that must be solved before it is applied to real structures. The technique, which has a significant potential to contribute to the creation of one of the most effective SHM systems, involves the use of a single PZT for exciting and sensing of the host structure. In this paper, studies applied for the past decade related to the EMI technique have been reviewed to understand its trend. In addition, new concepts and ideas proposed by various authors are also surveyed, and the paper concludes with a discussion of the potential directions for future works.

  12. SA-Search: a web tool for protein structure mining based on a Structural Alphabet.

    Science.gov (United States)

    Guyon, Frédéric; Camproux, Anne-Claude; Hochez, Joëlle; Tufféry, Pierre

    2004-07-01

    SA-Search is a web tool that can be used to mine for protein structures and extract structural similarities. It is based on a hidden Markov model derived Structural Alphabet (SA) that allows the compression of three-dimensional (3D) protein conformations into a one-dimensional (1D) representation using a limited number of prototype conformations. Using such a representation, classical methods developed for amino acid sequences can be employed. Currently, SA-Search permits the performance of fast 3D similarity searches such as the extraction of exact words using a suffix tree approach, and the search for fuzzy words viewed as a simple 1D sequence alignment problem. SA-Search is available at http://bioserv.rpbs.jussieu.fr/cgi-bin/SA-Search.

  13. Probing the role of backbone hydrogen bonds in protein-peptide interactions by amide-to-ester mutations

    DEFF Research Database (Denmark)

    Eildal, Jonas N N; Hultqvist, Greta; Balle, Thomas

    2013-01-01

    -protein interactions, those of the PDZ domain family involve formation of intermolecular hydrogen bonds: C-termini or internal linear motifs of proteins bind as β-strands to form an extended antiparallel β-sheet with the PDZ domain. Whereas extensive work has focused on the importance of the amino acid side chains...... of the protein ligand, the role of the backbone hydrogen bonds in the binding reaction is not known. Using amide-to-ester substitutions to perturb the backbone hydrogen-bonding pattern, we have systematically probed putative backbone hydrogen bonds between four different PDZ domains and peptides corresponding...... to natural protein ligands. Amide-to-ester mutations of the three C-terminal amides of the peptide ligand severely affected the affinity with the PDZ domain, demonstrating that hydrogen bonds contribute significantly to ligand binding (apparent changes in binding energy, ΔΔG = 1.3 to >3.8 kcal mol(-1...

  14. Effects of backbone conformation and surface texture of polyimide alignment film on the pretilt angle of liquid crystals

    International Nuclear Information System (INIS)

    Chang, Chi-Jung; Chou, Ray-Lin; Lin, Yu-Chi; Liang, Bau-Jy; Chen, Jyun-Ji

    2011-01-01

    Polyimides (PIs) with different inclination angle of polymer backbones, together with polar hydroxyl group and/or nonpolar trifluoromethyl group at various sites of the backbone were synthesized and used as liquid crystal alignment layers. The molecular conformation, surface chemistry, surface energy, surface morphology, and pretilt angle of the PI film were investigated. The distributions of fluorinated group and hydroxyl group at different depths of the PI surfaces were analyzed by X-ray photoelectron spectroscopy. Effects of the conformation of the PI molecular backbone on the surface morphology of the rubbed PI layer, the pretilt angle and surface energy of the alignment film were studied. The PI which contains both nonpolar fluorinated groups sticking out of the surface and the polar hydroxyl groups on the surface exhibits high pretilt angle.

  15. Life estimation and analysis of dielectric strength, hydrocarbon backbone and oxidation of high voltage multi stressed EPDM composites

    Science.gov (United States)

    Khattak, Abraiz; Amin, Muhammad; Iqbal, Muhammad; Abbas, Naveed

    2018-02-01

    Micro and nanocomposites of ethylene propylene diene monomer (EPDM) are recently studied for different characteristics. Study on life estimation and effects of multiple stresses on its dielectric strength and backbone scission and oxidation is also vital for endorsement of these composites for high voltage insulation and other outdoor applications. In order to achieve these goals, unfilled EPDM and its micro and nanocomposites are prepared at 23 phr micro silica and 6 phr nanosilica loadings respectively. Prepared samples are energized at 2.5 kV AC voltage and subjected for a long time to heat, ultraviolet radiation, acid rain, humidity and salt fog in accelerated manner in laboratory. Dielectric strength, leakage current and intensity of saturated backbone and carbonyl group are periodically measured. Loss in dielectric strength, increase in leakage current and backbone degradation and oxidation were observed in all samples. These effects were least in the case of EPDM nanocomposite. The nanocomposite sample also demonstrated longest shelf life.

  16. Reliability-based inspection of prestressed concrete containment structures

    International Nuclear Information System (INIS)

    Pandey, M.D.

    1996-03-01

    A study was undertaken to develop a reliability-based approach to the planning of inspection programs for prestressed concrete containment structures. The main function of the prestressing system is to ensure the leak integrity of the containment by maintaining a compressive state of stress under the tensile forces which arise in a hypothesized loss of coolant accident. Prestressing force losses (due to creep and shrinkage, stress relaxation or tendon corrosion) can lead to tensile stresses under accident pressure, resulting in loss of containment leak integrity due to concrete cracking and tensile yielding of the non-prestressed reinforcement. Therefore, the evaluation of prestressing inspection programs was based on their effectiveness in maintaining an acceptable reliability level with respect to a limit state representing yeilding of non-prestressed reinforcement. An annual target reliability of 10 -4 was used for this limit state. As specified in CSA-N287.7, the evaluation of prestressing systems for containment structures is based on the results of lift-off tests to determine the prestressing force. For unbonded systems the tests are carried out on a randomly selected sample from each tendon group in the structure. For bonded systems, the test is carried out on an unbonded test beam that matches the section geometry and material properties of the containment structure. It was found that flexural testing is useful in updating the probability of concrete cracking under accident pressure. For unbonded systems, the analysis indicated that the sample size recommended by the CSA Standard (4% of the tendon population) is adequate. The CSA recommendation for a five year inspection interval is conservative unless severe degradation of the prestressing system, characterized by a high prestressing loss rate (>3%) and a large coefficient of variation of the measured prestressing force (>15%), is observed

  17. Simulation of chloride transport based description soil structure

    International Nuclear Information System (INIS)

    Mahmood-ul-Hassan, M.; Akhtar, M.S.; Gill, S.M.; Nabi, G.

    2003-01-01

    There is a need of environmental implications of rapid appearance of surface by applying chemical at depths below the vadose zone (tile line or shallow groundwater) for developing better insight into solute flow mechanism through the arable lands. Transport of chloride, a representative non-adsorbing solute, through a moderately structured silty clay loam soil (Gujranwala series, Typic Ustochrepts) and an un-structured sandy loam soil (Nabipur series, Typic Camborthid) was characterized and two existing models viz. convection dispersion equation (CDE) and preferential flow models were tested. The flux average of solute concentration in the outflow as a function of cumulative drainage was fitted to the models. The CDE fitted, relatively, better in the non-structured soil than in the moderately structured soil. Dispersivity value determined by CDE was very high for the structured soil which is physically not possible. The preferential flow model fitted well in the Gujranwala soil, but not in the Nabipur soil. The breakthrough characteristics i.e. drainage to peak concentration (Dp), symmetry coefficient (SC), skewness, and kurtosis were compared. Chloride breakthrough was earlier than expected based on piston flow. It indicated preferential flow in both the soils, yet, immediate appearance of the tracer in the Gujranwala soil demonstrated even larger magnitude of the preferential flow. Breakthrough curves' parameters indicated a large amount of the solute movement through the preferred pathways by passing the soil matrix in the Gujranwala soil. The study suggests that some soil structure parameters (size/shape and degree of aggregation) should be incorporated in the solute transport models.(author)

  18. Extensive Air Showers: from the muonic smoking guns to the hadronic backbone

    Directory of Open Access Journals (Sweden)

    Cazon L.

    2013-06-01

    Full Text Available Extensive Air Showers are complex macroscopic objects initiated by single ultra-high energy particles. They are the result of millions of high energy reactions in the atmosphere and can be described as the superposition of hadronic and electromagnetic cascades. The hadronic cascade is the air shower backbone, and it is mainly made of pions. Decays of neutral pions initiate electromagnetic cascades, while the decays of charged pions produce muons which leave the hadronic core and travel many kilometers almost unaffected. Muons are smoking guns of the hadronic cascade: the energy, transverse momentum, spatial distribution and depth of production are key to reconstruct the history of the air shower. In this work, we overview the phenomenology of muons on the air shower and its relation to the hadronic cascade. We briefly review the experimental efforts to analyze muons within air showers and discuss possible paths to use this information.

  19. Contribution of peptide backbone to Anti-citrulline-dependent antibody reactivity

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Dam, Catharina; Olsen, Dorthe

    2015-01-01

    for ACPA reactivity and to be cross-reactive between the selected citrullinated peptides. The remaining amino acids within the citrullinated peptides were found to be of less importance for antibody reactivity. Moreover, these findings indicated that the Cit-Gly motif in combination with peptide backbone...... found in up to 70% of RA patients’ sera, have received much attention. Several citrullinated proteins are associated with RA, suggesting that ACPAs may react with different sequence patterns, separating them from traditional antibodies, whose reactivity usually is specific towards a single target...... homology rather than sequence homology are favored between citrullinated epitopes. These findings are important in relation to clarifying the etiology of RA and to determine the nature of ACPAs, e.g. why some Cit-Gly-containing sequences are not targeted by ACPAs....

  20. On the purported "backbone fluorescence" in protein three-dimensional fluorescence spectra

    DEFF Research Database (Denmark)

    Bortolotti, Annalisa; Wong, Yin How; Korsholm, Stine S.

    2016-01-01

    In this study, several proteins (albumin, lysozyme, insulin) and model compounds (Trp, Tyr, homopolypeptides) were used to demonstrate the origin of the fluorescence observed upon their excitation at 220-230 nm. In the last 10 years we have observed a worrying increase in the number of articles...... as any traditional protein emission spectrum. The many papers in reputable journals erroneously reporting this peak assignment, contradicting 5 decades of prior knowledge, have led to the creation of a new dogma, where many authors and reviewers now take the purported backbone fluorescence...... as an established fact. We hope the current paper helps counter this new situation and leads to a reassessment of those papers that make this erroneous claim....

  1. FRF-based structural damage detection of controlled buildings with podium structures: Experimental investigation

    Science.gov (United States)

    Xu, Y. L.; Huang, Q.; Zhan, S.; Su, Z. Q.; Liu, H. J.

    2014-06-01

    How to use control devices to enhance system identification and damage detection in relation to a structure that requires both vibration control and structural health monitoring is an interesting yet practical topic. In this study, the possibility of using the added stiffness provided by control devices and frequency response functions (FRFs) to detect damage in a building complex was explored experimentally. Scale models of a 12-storey main building and a 3-storey podium structure were built to represent a building complex. Given that the connection between the main building and the podium structure is most susceptible to damage, damage to the building complex was experimentally simulated by changing the connection stiffness. To simulate the added stiffness provided by a semi-active friction damper, a steel circular ring was designed and used to add the related stiffness to the building complex. By varying the connection stiffness using an eccentric wheel excitation system and by adding or not adding the circular ring, eight cases were investigated and eight sets of FRFs were measured. The experimental results were used to detect damage (changes in connection stiffness) using a recently proposed FRF-based damage detection method. The experimental results showed that the FRF-based damage detection method could satisfactorily locate and quantify damage.

  2. Effects of Tryptophan Content and Backbone Spacing on the Uptake Efficiency of Cell-Penetrating Peptides

    KAUST Repository

    Rydberg, Hanna A.; Matson, Maria; Å mand, Helene L.; Esbjö rner, Elin K.; Nordé n, Bengt

    2012-01-01

    Cell-penetrating peptides (CPPs) are able to traverse cellular membranes and deliver macromolecular cargo. Uptake occurs through both endocytotic and nonendocytotic pathways, but the molecular requirements for efficient internalization are not fully understood. Here we investigate how the presence of tryptophans and their position within an oligoarginine influence uptake mechanism and efficiency. Flow cytometry and confocal fluorescence imaging are used to estimate uptake efficiency, intracellular distribution and toxicity in Chinese hamster ovarian cells. Further, membrane leakage and lipid membrane affinity are investigated. The peptides contain eight arginine residues and one to four tryptophans, the tryptophans positioned either at the N-terminus, in the middle, or evenly distributed along the amino acid sequence. Our data show that the intracellular distribution varies among peptides with different tryptophan content and backbone spacing. Uptake efficiency is higher for the peptides with four tryptophans in the middle, or evenly distributed along the peptide sequence, than for the peptide with four tryptophans at the N-terminus. All peptides display low cytotoxicity except for the one with four tryptophans at the N-terminus, which was moderately toxic. This finding is consistent with their inability to induce efficient leakage of dye from lipid vesicles. All peptides have comparable affinities for lipid vesicles, showing that lipid binding is not a decisive parameter for uptake. Our results indicate that tryptophan content and backbone spacing can affect both the CPP uptake efficiency and the CPP uptake mechanism. The low cytotoxicity of these peptides and the possibilities of tuning their uptake mechanism are interesting from a therapeutic point of view. © 2012 American Chemical Society.

  3. Remote consultation and diagnosis in medical imaging using a global PACS backbone network

    Science.gov (United States)

    Martinez, Ralph; Sutaria, Bijal N.; Kim, Jinman; Nam, Jiseung

    1993-10-01

    A Global PACS is a national network which interconnects several PACS networks at medical and hospital complexes using a national backbone network. A Global PACS environment enables new and beneficial operations between radiologists and physicians, when they are located in different geographical locations. One operation allows the radiologist to view the same image folder at both Local and Remote sites so that a diagnosis can be performed. The paper describes the user interface, database management, and network communication software which has been developed in the Computer Engineering Research Laboratory and Radiology Research Laboratory. Specifically, a design for a file management system in a distributed environment is presented. In the remote consultation and diagnosis operation, a set of images is requested from the database archive system and sent to the Local and Remote workstation sites on the Global PACS network. Viewing the same images, the radiologists use pointing overlay commands, or frames to point out features on the images. Each workstation transfers these frames, to the other workstation, so that an interactive session for diagnosis takes place. In this phase, we use fixed frames and variable size frames, used to outline an object. The data pockets for these frames traverses the national backbone in real-time. We accomplish this feature by using TCP/IP protocol sockets for communications. The remote consultation and diagnosis operation has been tested in real-time between the University Medical Center and the Bowman Gray School of Medicine at Wake Forest University, over the Internet. In this paper, we show the feasibility of the operation in a Global PACS environment. Future improvements to the system will include real-time voice and interactive compressed video scenarios.

  4. Effects of Tryptophan Content and Backbone Spacing on the Uptake Efficiency of Cell-Penetrating Peptides

    KAUST Repository

    Rydberg, Hanna A.

    2012-07-10

    Cell-penetrating peptides (CPPs) are able to traverse cellular membranes and deliver macromolecular cargo. Uptake occurs through both endocytotic and nonendocytotic pathways, but the molecular requirements for efficient internalization are not fully understood. Here we investigate how the presence of tryptophans and their position within an oligoarginine influence uptake mechanism and efficiency. Flow cytometry and confocal fluorescence imaging are used to estimate uptake efficiency, intracellular distribution and toxicity in Chinese hamster ovarian cells. Further, membrane leakage and lipid membrane affinity are investigated. The peptides contain eight arginine residues and one to four tryptophans, the tryptophans positioned either at the N-terminus, in the middle, or evenly distributed along the amino acid sequence. Our data show that the intracellular distribution varies among peptides with different tryptophan content and backbone spacing. Uptake efficiency is higher for the peptides with four tryptophans in the middle, or evenly distributed along the peptide sequence, than for the peptide with four tryptophans at the N-terminus. All peptides display low cytotoxicity except for the one with four tryptophans at the N-terminus, which was moderately toxic. This finding is consistent with their inability to induce efficient leakage of dye from lipid vesicles. All peptides have comparable affinities for lipid vesicles, showing that lipid binding is not a decisive parameter for uptake. Our results indicate that tryptophan content and backbone spacing can affect both the CPP uptake efficiency and the CPP uptake mechanism. The low cytotoxicity of these peptides and the possibilities of tuning their uptake mechanism are interesting from a therapeutic point of view. © 2012 American Chemical Society.

  5. Backbone-hydrazone-containing biodegradable copolymeric micelles for anticancer drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jing; Luan, Shujuan; Qin, Benkai; Wang, Yingying; Wang, Kai; Qi, Peilan; Song, Shiyong, E-mail: pharmsong@henu.edu.cn [Henan University, Institute of Pharmacy (China)

    2016-11-15

    Well-defined biodegradable, pH-sensitive amphiphilic block polymers, poly(ethylene glycol)-Hyd-poly(lactic acid) (mPEG-Hyd-PLA) which have acid-cleavable linkages in their backbones, were synthesized via ring-opening polymerization initiated from hydrazone-containing macroinitiators. Introducing a hydrazone bond onto the backbone of an amphiphilic copolymer will find a broad-spectrum encapsulation of hydrophobic drugs. Dynamic light scattering (DLS) and transmission electron microscopy showed that the diblock copolymers self-assembled into stable micelles with average diameters of 100 nm. The mean diameters and size distribution of the hydrazone-containing micelles changed obviously in mildly acidic pH (multiple peaks from 1 to 202 nm appeared under a pH 4.0 condition) than in neutral, while there were no changes in the case of non-sensitive ones. Doxorubicin (DOX) and paclitaxel (PTX) were loaded with drug loading content ranging from 2.4 to 3.5 %, respectively. Interestingly, the anticancer drugs released from mPEG-Hyd-PLA micelles could also be promoted by the increased acidity. An in vitro cytotoxicity study showed that the DOX-loaded mPEG-Hyd-PLA micelles have significantly enhanced cytotoxicity against HepG2 cells compared with the non-sensitive poly(ethylene glycol)-block-poly(lactic acid) (mPEG-PLA) micelles. Confocal microscopy observation indicated that more DOX were delivered into the nuclei of cells following 6 or 12 h incubation with DOX-loaded mPEG-Hyd-PLA micelles. In vivo studies on H22-bearing Swiss mice demonstrated the superior anticancer activity of DOX-loaded mPEG-Hyd-PLA micelles over free DOX and DOX-loaded mPEG-PLA micelles. These hydrazone-containing pH-responsive degradable micelles provide a useful strategy for antitumor drug delivery.

  6. Backbone-hydrazone-containing biodegradable copolymeric micelles for anticancer drug delivery

    International Nuclear Information System (INIS)

    Xu, Jing; Luan, Shujuan; Qin, Benkai; Wang, Yingying; Wang, Kai; Qi, Peilan; Song, Shiyong

    2016-01-01

    Well-defined biodegradable, pH-sensitive amphiphilic block polymers, poly(ethylene glycol)-Hyd-poly(lactic acid) (mPEG-Hyd-PLA) which have acid-cleavable linkages in their backbones, were synthesized via ring-opening polymerization initiated from hydrazone-containing macroinitiators. Introducing a hydrazone bond onto the backbone of an amphiphilic copolymer will find a broad-spectrum encapsulation of hydrophobic drugs. Dynamic light scattering (DLS) and transmission electron microscopy showed that the diblock copolymers self-assembled into stable micelles with average diameters of 100 nm. The mean diameters and size distribution of the hydrazone-containing micelles changed obviously in mildly acidic pH (multiple peaks from 1 to 202 nm appeared under a pH 4.0 condition) than in neutral, while there were no changes in the case of non-sensitive ones. Doxorubicin (DOX) and paclitaxel (PTX) were loaded with drug loading content ranging from 2.4 to 3.5 %, respectively. Interestingly, the anticancer drugs released from mPEG-Hyd-PLA micelles could also be promoted by the increased acidity. An in vitro cytotoxicity study showed that the DOX-loaded mPEG-Hyd-PLA micelles have significantly enhanced cytotoxicity against HepG2 cells compared with the non-sensitive poly(ethylene glycol)-block-poly(lactic acid) (mPEG-PLA) micelles. Confocal microscopy observation indicated that more DOX were delivered into the nuclei of cells following 6 or 12 h incubation with DOX-loaded mPEG-Hyd-PLA micelles. In vivo studies on H22-bearing Swiss mice demonstrated the superior anticancer activity of DOX-loaded mPEG-Hyd-PLA micelles over free DOX and DOX-loaded mPEG-PLA micelles. These hydrazone-containing pH-responsive degradable micelles provide a useful strategy for antitumor drug delivery.

  7. Determination of structural fluctuations of proteins from structure-based calculations of residual dipolar couplings

    International Nuclear Information System (INIS)

    Montalvao, Rinaldo W.; De Simone, Alfonso; Vendruscolo, Michele

    2012-01-01

    Residual dipolar couplings (RDCs) have the potential of providing detailed information about the conformational fluctuations of proteins. It is very challenging, however, to extract such information because of the complex relationship between RDCs and protein structures. A promising approach to decode this relationship involves structure-based calculations of the alignment tensors of protein conformations. By implementing this strategy to generate structural restraints in molecular dynamics simulations we show that it is possible to extract effectively the information provided by RDCs about the conformational fluctuations in the native states of proteins. The approach that we present can be used in a wide range of alignment media, including Pf1, charged bicelles and gels. The accuracy of the method is demonstrated by the analysis of the Q factors for RDCs not used as restraints in the calculations, which are significantly lower than those corresponding to existing high-resolution structures and structural ensembles, hence showing that we capture effectively the contributions to RDCs from conformational fluctuations.

  8. Structural analysis of paintings based on brush strokes

    Science.gov (United States)

    Sablatnig, Robert; Kammerer, Paul; Zolda, Ernestine

    1998-05-01

    The origin of works of art can often not be attributed to a certain artist. Likewise it is difficult to say whether paintings or drawings are originals or forgeries. In various fields of art new technical methods are used to examine the age, the state of preservation and the origin of the materials used. For the examination of paintings, radiological methods like X-ray and infra-red diagnosis, digital radiography, computer-tomography, etc. and color analyzes are employed to authenticate art. But all these methods do not relate certain characteristics in art work to a specific artist -- the artist's personal style. In order to study this personal style of a painter, experts in art history and image processing try to examine the 'structural signature' based on brush strokes within paintings, in particular in portrait miniatures. A computer-aided classification and recognition system for portrait miniatures is developed, which enables a semi- automatic classification and forgery detection based on content, color, and brush strokes. A hierarchically structured classification scheme is introduced which separates the classification into three different levels of information: color, shape of region, and structure of brush strokes.

  9. MEMS-Based Fuel Reformer with Suspended Membrane Structure

    Science.gov (United States)

    Chang, Kuei-Sung; Tanaka, Shuji; Esashi, Masayoshi

    We report a MEMS-based fuel reformer for supplying hydrogen to micro-fuel cells for portable applications. A combustor and a reforming chamber are fabricated at either side of a suspended membrane structure. This design is used to improve the overall thermal efficiency, which is a critical issue to realize a micro-fuel reformer. The suspended membrane structure design provided good thermal isolation. The micro-heaters consumed 0.97W to maintain the reaction zone of the MEMS-based fuel reformer at 200°C, but further power saving is necessary by improving design and fabrication. The conversion rate of methanol to hydrogen was about 19% at 180°C by using evaporated copper as a reforming catalyst. The catalytic combustion of hydrogen started without any assistance of micro-heaters. By feeding the fuel mixture of an equivalence ratio of 0.35, the temperature of the suspended membrane structure was maintained stable at 100°C with a combustion efficiency of 30%. In future works, we will test a micro-fuel reformer by using a micro-combustor to supply heat.

  10. A Novel SMA-based Concept for Airfoil Structural Morphing

    Science.gov (United States)

    Barbarino, S.; Pecora, R.; Lecce, L.; Concilio, A.; Ameduri, S.; Calvi, E.

    2009-08-01

    The adaptive structures concept is of great interest in the aerospace field because of the several benefits which can be accomplished in the fields including noise reduction, load alleviation, weight reduction, etc., at a level in which they can be considered as compulsory in the design of future aircraft. Improvements in terms of the aerodynamic efficiency, aeroelastic behavior, stability, and manoeuvrability performance have already been proved through many international studies in the past. In the family of the Smart Materials, Shape Memory Alloys (SMA) seem to be a suitable solution for many static applications. Their high structural integrability in conjunction with actuation capabilities and a favorable performance per weight ratio, allows the development of original architectures. In this study, a morphing wing trailing edge concept is presented; morphing ability was introduced with the aim of replacing a conventional flap device. A compliant rib structure was designed, based on SMA actuators exhibiting structural potential (bearing external aerodynamic loads). Numerical results, achieved through a FE approach, are presented in terms of trailing edge induced displacement and morphed shape.

  11. Table of periodic properties of fullerenes based on structural parameters.

    Science.gov (United States)

    Torrens, Francisco

    2004-01-01

    The periodic table (PT) of the elements suggests that hydrogen could be the origin of everything else. The construction principle is an evolutionary process that is formally similar to those of Darwin and Oparin. The Kekulé structure count and permanence of the adjacency matrix of fullerenes are related to structural parameters involving the presence of contiguous pentagons p, q and r. Let p be the number of edges common to two pentagons, q the number of vertices common to three pentagons, and r the number of pairs of nonadjacent pentagon edges shared between two other pentagons. Principal component analysis (PCA) of the structural parameters and cluster analysis (CA) of the fullerenes permit classifying them and agree. A PT of the fullerenes is built based on the structural parameters, PCA and CA. The periodic law does not have the rank of the laws of physics. (1) The properties of the fullerenes are not repeated; only, and perhaps, their chemical character. (2) The order relationships are repeated, although with exceptions. The proposed statement is the following: The relationships that any fullerene p has with its neighbor p + 1 are approximately repeated for each period.

  12. Structural level characterization of base oils using advanced analytical techniques

    KAUST Repository

    Hourani, Nadim

    2015-05-21

    Base oils, blended for finished lubricant formulations, are classified by the American Petroleum Institute into five groups, viz., groups I-V. Groups I-III consist of petroleum based hydrocarbons whereas groups IV and V are made of synthetic polymers. In the present study, five base oil samples belonging to groups I and III were extensively characterized using high performance liquid chromatography (HPLC), comprehensive two-dimensional gas chromatography (GC×GC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) equipped with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) sources. First, the capabilities and limitations of each analytical technique were evaluated, and then the availed information was combined to reveal compositional details on the base oil samples studied. HPLC showed the overwhelming presence of saturated over aromatic compounds in all five base oils. A similar trend was further corroborated using GC×GC, which yielded semiquantitative information on the compound classes present in the samples and provided further details on the carbon number distributions within these classes. In addition to chromatography methods, FT-ICR MS supplemented the compositional information on the base oil samples by resolving the aromatics compounds into alkyl- and naphtheno-subtituted families. APCI proved more effective for the ionization of the highly saturated base oil components compared to APPI. Furthermore, for the detailed information on hydrocarbon molecules FT-ICR MS revealed the presence of saturated and aromatic sulfur species in all base oil samples. The results presented herein offer a unique perspective into the detailed molecular structure of base oils typically used to formulate lubricants. © 2015 American Chemical Society.

  13. Support system of a structure on a support base

    International Nuclear Information System (INIS)

    Arene, G.; Renaux, C.; Minguet, J.L.; Chantot, H.

    1984-01-01

    Two series of strips are fixed to the structure to be supported and to the base to define each one a closed convex envelope; the strips are flexible in the radial direction with regard to the envelope. The two series of strips are connected by a treillis of rigid bars set to form juxtaposed V or X. A good transversal rigidity and a certain radial flexibility are obtained. The invention can be applied to a fast neutron nuclear reactor, the reactor comprising a vertical axis vessel filled with liquid metal; the vessel rests on a support foundation by means of the support system proposed by the invention. The support system allows the supported structure to resist the effects of an eventual earthquake and brutal temperature variations [fr

  14. Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure.

    Science.gov (United States)

    Liu, Shanbiao; Wu, Xing; Zhang, Dongdong; Guo, Congwei; Wang, Peng; Hu, Weida; Li, Xinming; Zhou, Xiaofeng; Xu, Hejun; Luo, Chen; Zhang, Jian; Chu, Junhao

    2017-07-19

    Mechanical flexible electronic skin has been focused on sensing various physical parameters, such as pressure and temperature. The studies of material design and array-accessible devices are the building blocks of strain sensors for subtle pressure sensing. Here, we report a new and facile preparation of a graphene hybrid structure with an ultrafast dynamic pressure response. Graphene oxide nanosheets are used as a surfactant to prevent graphene restacking in aqueous solution. This graphene hybrid structure exhibits a frequency-independent pressure resistive sensing property. Exceeding natural skin, such pressure sensors, can provide transient responses from static up to 10 000 Hz dynamic frequencies. Integrated by the controlling system, the array-accessible sensors can manipulate a robot arm and self-rectify the temperature of a heating blanket. This may pave a path toward the future application of graphene-based wearable electronics.

  15. Edge detection based on computational ghost imaging with structured illuminations

    Science.gov (United States)

    Yuan, Sheng; Xiang, Dong; Liu, Xuemei; Zhou, Xin; Bing, Pibin

    2018-03-01

    Edge detection is one of the most important tools to recognize the features of an object. In this paper, we propose an optical edge detection method based on computational ghost imaging (CGI) with structured illuminations which are generated by an interference system. The structured intensity patterns are designed to make the edge of an object be directly imaged from detected data in CGI. This edge detection method can extract the boundaries for both binary and grayscale objects in any direction at one time. We also numerically test the influence of distance deviations in the interference system on edge extraction, i.e., the tolerance of the optical edge detection system to distance deviation. Hopefully, it may provide a guideline for scholars to build an experimental system.

  16. Structure-based control of complex networks with nonlinear dynamics.

    Science.gov (United States)

    Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka

    2017-07-11

    What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.

  17. Ultrafast protein structure-based virtual screening with Panther

    Science.gov (United States)

    Niinivehmas, Sanna P.; Salokas, Kari; Lätti, Sakari; Raunio, Hannu; Pentikäinen, Olli T.

    2015-10-01

    Molecular docking is by far the most common method used in protein structure-based virtual screening. This paper presents Panther, a novel ultrafast multipurpose docking tool. In Panther, a simple shape-electrostatic model of the ligand-binding area of the protein is created by utilizing the protein crystal structure. The features of the possible ligands are then compared to the model by using a similarity search algorithm. On average, one ligand can be processed in a few minutes by using classical docking methods, whereas using Panther processing takes Panther protocol can be used in several applications, such as speeding up the early phases of drug discovery projects, reducing the number of failures in the clinical phase of the drug development process, and estimating the environmental toxicity of chemicals. Panther-code is available in our web pages (http://www.jyu.fi/panther) free of charge after registration.

  18. Radiography simulation based on exposure buildup factors for multilayer structures

    International Nuclear Information System (INIS)

    Marinkovic, Predrag; Pesic, Milan

    2009-01-01

    Monte Carlo techniques were usually used to study the effect of scattered photons on a radiographic X-ray image. Such approach is accurate, but computer time consuming. On the other hand, the exposure buildup factors can be used as approximate and efficient assessment to account for the scattering of X-rays. This method uses the known radiography parameters to find the resulting detector exposure due to both scattered and un-collided photons. A model for radiography simulation, based on X-ray dose buildup factor, is proposed. This model includes non-uniform attenuation in voxelized object of imaging (patient body tissue). Composition of patient body is considered as a multi-layer structure. Various empirical formulas exist for multi-layer structure calculations and they all calculate multi-layer buildup factors by combining single-layer buildup factors. The proposed model is convenient in cases when more exact techniques (like Monte Carlo) are not economical. (author)

  19. Interactive Reliability-Based Optimization of Structural Systems

    DEFF Research Database (Denmark)

    Pedersen, Claus

    In order to introduce the basic concepts within the field of reliability-based structural optimization problems, this chapter is devoted to a brief outline of the basic theories. Therefore, this chapter is of a more formal nature and used as a basis for the remaining parts of the thesis. In section...... 2.2 a general non-linear optimization problem and corresponding terminology are presented whereupon optimality conditions and the standard form of an iterative optimization algorithm are outlined. Subsequently, the special properties and characteristics concerning structural optimization problems...... are treated in section 2.3. With respect to the reliability evalutation, the basic theory behind a reliability analysis and estimation of probability of failure by the First-Order Reliability Method (FORM) and the iterative Rackwitz-Fiessler (RF) algorithm are considered in section 2.5 in which...

  20. Infrared Fibers for Use in Space-Based Smart Structures

    Science.gov (United States)

    Tucker, Dennis S.; Nettles, Alan T.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Infrared optical fibers are finding a number of applications including laser surgery, remote sensing, and nuclear radiation resistant links. Utilizing these fibers in space-based structures is another application, which can be exploited. Acoustic and thermal sensing are two areas in which these fibers could be utilized. In particular, fibers could be embedded in IM7/8552 toughened epoxy and incorporated into space structures both external and internal. ZBLAN optical fibers are a candidate, which have been studied extensively over the past 20 years for terrestrial applications. For the past seven years the effects of gravity on the crystallization behavior of ZBLAN optical fiber has been studied. It has been found that ZBLAN crystallization is suppressed in microgravity. This lack of crystallization leads to a fiber with better transmission characteristics than its terrestrial counterpart.

  1. Structure-based, rational design of T cell receptors

    Directory of Open Access Journals (Sweden)

    Vincent eZoete

    2013-09-01

    Full Text Available Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce TCR modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction pMHC. Using the well-characterized 2C TCR/SIYR/H-2K(b structure as a model system, we demonstrated that a binding free energy decomposition based on the MM-GBSA approach provides a detailed and reliable description of the TCR/pMHC interactions at the structural and thermodynamic levels. Starting from this result, we developed a new structure-based approach, to rationally design new TCR sequences, and applied it to the BC1 TCR targeting the HLA-A2 restricted NY-ESO-1157-165 cancer-testis epitope. 54% of the designed sequence replacements exhibited improved pMHC-binding as compared to the native TCR, with up to 150 fold increase in affinity, while preserving specificity. Genetically-engineered CD8+ T cells expressing these modified TCRs showed an improved functional activity compared to those expressing BC1 TCR. We measured maximum levels of activities for TCRs within the upper limit of natural affinity. Beyond the affinity threshold at KD < 1 μM we observed an attenuation in cellular function. We have also developed a homology modeling-based approach, TCRep 3D, to obtain accurate structural models of any TCR-pMHC complexes. We have complemented the approach with a simplified rigid method to predict the TCR orientation over pMHC. These methods potentially extend the use of our TCR engineering method to entire TCR repertoires for which no X-ray structure is available. We have also performed a steered molecular dynamics study of the unbinding of the TCR-pMHC complex to get a better understanding of how TCRs interact with pMHCs. This entire rational TCR design pipeline is now being used to produce rationally optimized TCRs for adoptive cell therapies of

  2. Principal Component Analysis Based Measure of Structural Holes

    Science.gov (United States)

    Deng, Shiguo; Zhang, Wenqing; Yang, Huijie

    2013-02-01

    Based upon principal component analysis, a new measure called compressibility coefficient is proposed to evaluate structural holes in networks. This measure incorporates a new effect from identical patterns in networks. It is found that compressibility coefficient for Watts-Strogatz small-world networks increases monotonically with the rewiring probability and saturates to that for the corresponding shuffled networks. While compressibility coefficient for extended Barabasi-Albert scale-free networks decreases monotonically with the preferential effect and is significantly large compared with that for corresponding shuffled networks. This measure is helpful in diverse research fields to evaluate global efficiency of networks.

  3. Localization-based super-resolution imaging of cellular structures.

    Science.gov (United States)

    Kanchanawong, Pakorn; Waterman, Clare M

    2013-01-01

    Fluorescence microscopy allows direct visualization of fluorescently tagged proteins within cells. However, the spatial resolution of conventional fluorescence microscopes is limited by diffraction to ~250 nm, prompting the development of super-resolution microscopy which offers resolution approaching the scale of single proteins, i.e., ~20 nm. Here, we describe protocols for single molecule localization-based super-resolution imaging, using focal adhesion proteins as an example and employing either photoswitchable fluorophores or photoactivatable fluorescent proteins. These protocols should also be easily adaptable to imaging a broad array of macromolecular assemblies in cells whose components can be fluorescently tagged and assemble into high density structures.

  4. Reliability-Based Inspection Planning for Structural Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    1993-01-01

    A general model for reliability-based optimal inspection and repair strategies for structural systems is described. The total expected costs in the design lifetime is minimized with the number of inspections, the inspection times and efforts as decision variables. The equivalence of this model...... with a preposterior analysis from statistical decision theory is discussed. It is described how information obtained by an inspection can be used in a repair decision. Stochastic models for inspection, measurement and repair actions are presented. The general model is applied for inspection and repair planning...

  5. Density-based and transport-based core-periphery structures in networks.

    Science.gov (United States)

    Lee, Sang Hoon; Cucuringu, Mihai; Porter, Mason A

    2014-03-01

    Networks often possess mesoscale structures, and studying them can yield insights into both structure and function. It is most common to study community structure, but numerous other types of mesoscale structures also exist. In this paper, we examine core-periphery structures based on both density and transport. In such structures, core network components are well-connected both among themselves and to peripheral components, which are not well-connected to anything. We examine core-periphery structures in a wide range of examples of transportation, social, and financial networks-including road networks in large urban areas, a rabbit warren, a dolphin social network, a European interbank network, and a migration network between counties in the United States. We illustrate that a recently developed transport-based notion of node coreness is very useful for characterizing transportation networks. We also generalize this notion to examine core versus peripheral edges, and we show that the resulting diagnostic is also useful for transportation networks. To examine the properties of transportation networks further, we develop a family of generative models of roadlike networks. We illustrate the effect of the dimensionality of the embedding space on transportation networks, and we demonstrate that the correlations between different measures of coreness can be very different for different types of networks.

  6. Guided wave based structural health monitoring: A review

    International Nuclear Information System (INIS)

    Mitra, Mira; Gopalakrishnan, S

    2016-01-01

    The paper provides a state of the art review of guided wave based structural health monitoring (SHM). First, the fundamental concepts of guided wave propagation and its implementation for SHM is explained. Following sections present the different modeling schemes adopted, developments in the area of transducers for generation, and sensing of wave, signal processing and imaging technique, statistical and machine learning schemes for feature extraction. Next, a section is presented on the recent advancements in nonlinear guided wave for SHM. This is followed by section on Rayleigh and SH waves. Next is a section on real-life implementation of guided wave for industrial problems. The paper, though briefly talks about the early development for completeness, is primarily focussed on the recent progress made in the last decade. The paper ends by discussing and highlighting the future directions and open areas of research in guided wave based SHM. (topical review)

  7. Structure- and oil type-based efficacy of emulsion adjuvants.

    Science.gov (United States)

    Jansen, Theo; Hofmans, Marij P M; Theelen, Marc J G; Manders, Frans; Schijns, Virgil E J C

    2006-06-29

    Oil-based emulsions are well-known immunopotentiators for inactivated, "killed" vaccines. We addressed the relationship between emulsion structure and levels of in vivo antibody formation to inactivated New Castle Disease virus (NDV) and Infectious Bronchitis virus (IBV) as antigens in 3-week-old chickens. The use of a polymeric emulsifier allowed for direct comparison of three types of emulsions, water-in-oil (W/O), oil-in-water (O/W) and W/O-in-water (W/O/W), while maintaining an identical content of components for each vehicle. They were prepared with either non-metabolizable, mineral oil or metabolizable, Miglyol 840. In addition, we assessed the inherent release capacity of each emulsion variant in vitro. Remarkably, we noted that W/O-type emulsions induced the best immune responses, while they released no antigen during 3 weeks. In general, mineral oil vaccines showed superior efficacy compared to Miglyol 840-based vaccines.

  8. Sparse data structure design for wavelet-based methods

    Directory of Open Access Journals (Sweden)

    Latu Guillaume

    2011-12-01

    Full Text Available This course gives an introduction to the design of efficient datatypes for adaptive wavelet-based applications. It presents some code fragments and benchmark technics useful to learn about the design of sparse data structures and adaptive algorithms. Material and practical examples are given, and they provide good introduction for anyone involved in the development of adaptive applications. An answer will be given to the question: how to implement and efficiently use the discrete wavelet transform in computer applications? A focus will be made on time-evolution problems, and use of wavelet-based scheme for adaptively solving partial differential equations (PDE. One crucial issue is that the benefits of the adaptive method in term of algorithmic cost reduction can not be wasted by overheads associated to sparse data management.

  9. Piezoelectric micromotor based on the structure of serial bending arms.

    Science.gov (United States)

    Tong, Jianhua; Cui, Tianhong; Shao, Peige; Wang, Liding

    2003-09-01

    This paper presents a new piezoelectric micromotor based on the structure of serial bending arms. Serial bending arms are composed of two piezoelectric bimorphs with one end fixed and the other end free, driven by two signals of a biased square wave with a phase difference of pi/2. The free end of a cantilever arm will move along an elliptic orbit so that the cantilever is used to drive a cylinder rotor. The rotor's end surface contacts the free end of the cantilever, resulting in the rotor's rotation. There are six serial bending arms anchored on the base. The driving mechanism of the micromotor is proposed and analyzed. A new micromotor prototype, 5 mm in diameter, has been fabricated and characterized. The maximum rotational speed reaches 325 rpm, and the output torque is about 36.5 microNm.

  10. Development of microwave amplifier based on gallium nitride semiconductor structures

    International Nuclear Information System (INIS)

    Pavlov, D.Yi.; Prokopenko, O.V.; Tsvyirko, Yu.A.; Pavlov, Yi.L.

    2014-01-01

    Microwave properties of microwave amplifier based on gallium nitride (GN) semiconductor structures has been calculated numerically. We proposed the method of numerical calculation of device. This method is accurately sets the value of its characteristics depending on the elements that are used in design of amplifier. It is shown that the device based on GN HEMT-transistors could have amplification factor about 50 dB, while its sizes are 27x18x5.5 mm 3 . Also was provided the absolute stability an amplifier in the whole operating frequency range. It is quite important when using this type of amplifiers in different conditions of exploitation and various fields of use the radioelectronic equipment

  11. Structural analysis of nanocomposites based on HDPE/EPDM blends.

    Science.gov (United States)

    Zitzumbo, Roberto; Alonso, Sergio; Avalos, Felipe; Ortiz, José C; López-Manchado, Miguel A; Arroyo, Miguel

    2006-02-01

    Intercalated and exfoliated nanocomposites based on HDPE and EPDM blends with an organoclay have been obtained through the addition of EPDM-g-MA as a compatibilizer. The combined effect of clay and EPDM-g-MA on the rheological behaviour is very noticeable with a sensible increase in viscosity which suggests the formation of a structural net of percolation induced by the presence of intercalated and exfoliated silicate layer. As deduced from rheological studies, a morphology based on nanostructured micro-domains dispersed in HDPE continuous phase is proposed for EPDM/HDPE blend nanocomposites. XRD and SEM analysis suggest that two different transport phenomena take simultaneously place during the intercalation process in the melt. One due to diffusion of HDPE chains into the tactoid and the other to diffusion of EPDM-g-MA into the silicate galleries.

  12. Performance characterization of structured light-based fingerprint scanner

    Science.gov (United States)

    Hassebrook, Laurence G.; Wang, Minghao; Daley, Raymond C.

    2013-05-01

    Our group believes that the evolution of fingerprint capture technology is in transition to include 3-D non-contact fingerprint capture. More specifically we believe that systems based on structured light illumination provide the highest level of depth measurement accuracy. However, for these new technologies to be fully accepted by the biometric community, they must be compliant with federal standards of performance. At present these standards do not exist for this new biometric technology. We propose and define a set of test procedures to be used to verify compliance with the Federal Bureau of Investigation's image quality specification for Personal Identity Verification single fingerprint capture devices. The proposed test procedures include: geometric accuracy, lateral resolution based on intensity or depth, gray level uniformity and flattened fingerprint image quality. Several 2-D contact analogies, performance tradeoffs and optimization dilemmas are evaluated and proposed solutions are presented.

  13. Automatic Structure-Based Code Generation from Coloured Petri Nets

    DEFF Research Database (Denmark)

    Kristensen, Lars Michael; Westergaard, Michael

    2010-01-01

    Automatic code generation based on Coloured Petri Net (CPN) models is challenging because CPNs allow for the construction of abstract models that intermix control flow and data processing, making translation into conventional programming constructs difficult. We introduce Process-Partitioned CPNs...... (PP-CPNs) which is a subclass of CPNs equipped with an explicit separation of process control flow, message passing, and access to shared and local data. We show how PP-CPNs caters for a four phase structure-based automatic code generation process directed by the control flow of processes....... The viability of our approach is demonstrated by applying it to automatically generate an Erlang implementation of the Dynamic MANET On-demand (DYMO) routing protocol specified by the Internet Engineering Task Force (IETF)....

  14. Design of Composite Structures Using Knowledge-Based and Case Based Reasoning

    Science.gov (United States)

    Lambright, Jonathan Paul

    1996-01-01

    A method of using knowledge based and case based reasoning to assist designers during conceptual design tasks of composite structures was proposed. The cooperative use of heuristics, procedural knowledge, and previous similar design cases suggests a potential reduction in design cycle time and ultimately product lead time. The hypothesis of this work is that the design process of composite structures can be improved by using Case-Based Reasoning (CBR) and Knowledge-Based (KB) reasoning in the early design stages. The technique of using knowledge-based and case-based reasoning facilitates the gathering of disparate information into one location that is easily and readily available. The method suggests that the inclusion of downstream life-cycle issues into the conceptual design phase reduces potential of defective, and sub-optimal composite structures. Three industry experts were interviewed extensively. The experts provided design rules, previous design cases, and test problems. A Knowledge Based Reasoning system was developed using the CLIPS (C Language Interpretive Procedural System) environment and a Case Based Reasoning System was developed using the Design Memory Utility For Sharing Experiences (MUSE) xviii environment. A Design Characteristic State (DCS) was used to document the design specifications, constraints, and problem areas using attribute-value pair relationships. The DCS provided consistent design information between the knowledge base and case base. Results indicated that the use of knowledge based and case based reasoning provided a robust design environment for composite structures. The knowledge base provided design guidance from well defined rules and procedural knowledge. The case base provided suggestions on design and manufacturing techniques based on previous similar designs and warnings of potential problems and pitfalls. The case base complemented the knowledge base and extended the problem solving capability beyond the existence of

  15. Crack diagnosis of metallic profiles based on structural damage indicators

    International Nuclear Information System (INIS)

    Preisler, A; Schröder, K-U; Steenbock, C

    2015-01-01

    Structural Health Monitoring (SHM) faces several challenges before large-scale industrial application. First of all damage diagnosis has to be reliable. Therefore, common SHM approaches use highly advanced sensor techniques to monitor the whole structure on all possible failures. This results in an enormous amount of data gathered during service. The general effort can be drastically reduced, if the knowledge achieved during the sizing process is used. During sizing, potential failure modes and critical locations, so called hot spots, are already evaluated. A very sensitive SHM system can be developed, when the monitoring effort shifts from the damage to its impact on the structural behaviour and the so called damage indicators. These are the two main components of the SmartSHM approach, which reduces the monitoring effort significantly. Not only the amount of data is minimized, but also reliability and robustness are ensured by the SmartSHM approach.This contribution demonstrates the SmartSHM approach by a cracked four point bending beam. To show general applicability a parametric study considering different profiles (bar, box, I, C, T, L, Z), crack positions and lengths has been performed. Questions of sensitivity and minimum size of the sensor network are discussed based on the results of the parametric study. (paper)

  16. Scalable, ultra-resistant structural colors based on network metamaterials

    KAUST Repository

    Galinski, Henning

    2017-05-05

    Structural colors have drawn wide attention for their potential as a future printing technology for various applications, ranging from biomimetic tissues to adaptive camouflage materials. However, an efficient approach to realize robust colors with a scalable fabrication technique is still lacking, hampering the realization of practical applications with this platform. Here, we develop a new approach based on large-scale network metamaterials that combine dealloyed subwavelength structures at the nanoscale with lossless, ultra-thin dielectric coatings. By using theory and experiments, we show how subwavelength dielectric coatings control a mechanism of resonant light coupling with epsilon-near-zero regions generated in the metallic network, generating the formation of saturated structural colors that cover a wide portion of the spectrum. Ellipsometry measurements support the efficient observation of these colors, even at angles of 70°. The network-like architecture of these nanomaterials allows for high mechanical resistance, which is quantified in a series of nano-scratch tests. With such remarkable properties, these metastructures represent a robust design technology for real-world, large-scale commercial applications.

  17. Synthesis/literature review for determining structural layer coefficients (SLC) of bases.

    Science.gov (United States)

    2014-12-01

    FDOTs current method of determining a base material structural layer coefficient (SLC) is detailed in the : Materials Manual, Chapter 2.1, Structural Layer Coefficients for Flexible Pavement Base Materials. : Currently, any new base material not a...

  18. Feedback structure based entropy approach for multiple-model estimation

    Institute of Scientific and Technical Information of China (English)

    Shen-tu Han; Xue Anke; Guo Yunfei

    2013-01-01

    The variable-structure multiple-model (VSMM) approach, one of the multiple-model (MM) methods, is a popular and effective approach in handling problems with mode uncertainties. The model sequence set adaptation (MSA) is the key to design a better VSMM. However, MSA methods in the literature have big room to improve both theoretically and practically. To this end, we propose a feedback structure based entropy approach that could find the model sequence sets with the smallest size under certain conditions. The filtered data are fed back in real time and can be used by the minimum entropy (ME) based VSMM algorithms, i.e., MEVSMM. Firstly, the full Markov chains are used to achieve optimal solutions. Secondly, the myopic method together with particle filter (PF) and the challenge match algorithm are also used to achieve sub-optimal solutions, a trade-off between practicability and optimality. The numerical results show that the proposed algorithm provides not only refined model sets but also a good robustness margin and very high accuracy.

  19. Protein Function Prediction Based on Sequence and Structure Information

    KAUST Repository

    Smaili, Fatima Z.

    2016-05-25

    The number of available protein sequences in public databases is increasing exponentially. However, a significant fraction of these sequences lack functional annotation which is essential to our understanding of how biological systems and processes operate. In this master thesis project, we worked on inferring protein functions based on the primary protein sequence. In the approach we follow, 3D models are first constructed using I-TASSER. Functions are then deduced by structurally matching these predicted models, using global and local similarities, through three independent enzyme commission (EC) and gene ontology (GO) function libraries. The method was tested on 250 “hard” proteins, which lack homologous templates in both structure and function libraries. The results show that this method outperforms the conventional prediction methods based on sequence similarity or threading. Additionally, our method could be improved even further by incorporating protein-protein interaction information. Overall, the method we use provides an efficient approach for automated functional annotation of non-homologous proteins, starting from their sequence.

  20. (Biodegradable Ionomeric Polyurethanes Based on Xanthan: Synthesis, Properties, and Structure

    Directory of Open Access Journals (Sweden)

    T. V. Travinskaya

    2017-01-01

    Full Text Available New (biodegradable environmentally friendly film-forming ionomeric polyurethanes (IPU based on renewable biotechnological polysaccharide xanthan (Xa have been obtained. The influence of the component composition on the colloidal-chemical and physic-mechanical properties of IPU/Xa and based films, as well as the change of their properties under the influence of environmental factors, have been studied. The results of IR-, PMS-, DMA-, and X-ray scattering study indicate that incorporation of Xa into the polyurethane chain initiates the formation of a new polymer structure different from the structure of the pure IPU (matrix: an amorphous polymer-polymer microdomain has occurred as a result of the chemical interaction of Xa and IPU. It predetermines the degradation of the IPU/Xa films as a whole, unlike the mixed polymer systems, and plays a key role in the improvement of material performance. The results of acid, alkaline hydrolysis, and incubation into the soil indicate the increase of the intensity of degradation processes occurring in the IPU/Xa in comparison with the pure IPU. It has been shown that the introduction of Xa not only imparts the biodegradability property to polyurethane, but also improves the mechanical properties.