WorldWideScience

Sample records for bacillus thuringiensis bt

  1. Bacillus thuringiensis (Bt)

    Science.gov (United States)

    2004-01-01

    Bacillus thuringiensis (Bt), a natural bacteria found all over the Earth, has a fairly novel way of getting rid of unwanted insects. Bt forms a protein substance (shown on the right) that is not harmful to humans, birds, fish or other vertebrates. When eaten by insect larvae the protein causes a fatal loss of appetite. For over 25 years agricultural chemical companies have relied heavily upon safe Bt pesticides. New space based research promises to give the insecticide a new dimension in effectiveness and applicability. Researchers from the Consortium for Materials Development in Space along with industrial affiliates such as Abott Labs and Pern State University flew Bt on a Space Shuttle mission in the fall of 1996. Researchers expect that the Shuttle's microgravity environment will reveal new information about the protein that will make it more effective against a wider variety of pests.

  2. The impact of secondary pests on Bacillus thuringiensis (Bt) crops.

    Science.gov (United States)

    Catarino, Rui; Ceddia, Graziano; Areal, Francisco J; Park, Julian

    2015-06-01

    The intensification of agriculture and the development of synthetic insecticides enabled worldwide grain production to more than double in the last third of the 20th century. However, the heavy dependence and, in some cases, overuse of insecticides has been responsible for negative environmental and ecological impacts across the globe, such as a reduction in biodiversity, insect resistance to insecticides, negative effects on nontarget species (e.g. natural enemies) and the development of secondary pests. The use of recombinant DNA technology to develop genetically engineered insect-resistant crops could mitigate many of the negative side effects of insecticides. One such genetic alteration enables crops to express toxic crystalline (Cry) proteins from the soil bacteria Bacillus thuringiensis (Bt). Despite the widespread adoption of Bt crops, there are still a range of unanswered questions concerning longer term agro-ecosystem interactions. For instance, insect species that are not susceptible to the expressed toxin can develop into secondary pests and cause significant damage to the crop. Here, we review the main causes surrounding secondary pest dynamics in Bt crops and the impact of such outbreaks. Regardless of the causes, if nonsusceptible secondary pest populations exceed economic thresholds, insecticide spraying could become the immediate solution at farmers' disposal, and the sustainable use of this genetic modification technology may be in jeopardy. Based on the literature, recommendations for future research are outlined that will help to improve the knowledge of the possible long-term ecological trophic interactions of employing this technology. PMID:25832330

  3. Cannibalism of Helicoverpa zea (Lepidoptera: Noctuidae) from Bacillus thuringiensis (Bt) transgenic corn versus non-Bt corn.

    Science.gov (United States)

    Chilcutt, Charles F

    2006-06-01

    Because of the importance of cannibalism in population regulation of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in corn, Zea mays L., it is useful to understand the interactions between Bacillus thuringiensis (Bt) transgenic corn and cannibalism. To determine the effects of Bt corn on cannibalism in H. zea, pairs of the same or different instars were taken from Bt or non-Bt corn and placed on artificial diet in proximity. Cannibalism occurred in 91% of pairs and was approximately 7% greater for pairs of larvae reared from Bt transgenic corn (95%) than from non-Bt corn (88%). Also, first instar by first instar pairs had a lower rate of cannibalism than other pairs. Time until cannibalism was not different for larvae from Bt corn versus non-Bt corn. Pupation rate of cannibals and surviving victims was not different for pairs from Bt corn versus non-Bt corn. Finally, cannibalism increased pupation rate of cannibals from both Bt and non-Bt corn by approximately 23 and 12%, respectively, although the increases were not significant. Thus, negative effects of Bt on larvae were compensated by increased cannibalism in comparison with larvae reared on non-Bt corn, which increased larval survival to levels comparable with larvae reared on non-Bt plants.

  4. IMPACT OF BT ( BACILLUS THURINGIENSIS ) CROPS ON BAT ACTIVITY IN SOUTH TEXAS AGROECOSYSTEMS

    Science.gov (United States)

    The widespread adoption of transgenic insecticidal crops raises concerns that nontarget species may be harmed and food webs disrupted. The goal of this research is to determine how transgenic Bt (Bacillus thuringiensis) crops impact the activity of Brazilian freetailed bats (Tada...

  5. Transgenic Bacillus thuringiensis (Bt) rice is safer to aquatic ecosystems than its non-transgenic counterpart.

    Science.gov (United States)

    Li, Guangsheng; Wang, Yongmo; Liu, Biao; Zhang, Guoan

    2014-01-01

    Rice lines genetically modified with the crystal toxin genes from Bacillus thuringiensis (Bt) have experienced rapid development, with biosafety certificates for two Bt rice lines issued in 2009. There has still been no commercial release of these lines yet due to public concerns about human health and environmental risks. Some studies confirmed that Bt rice was as safe as conventional rice to non-target organisms when pesticides were not applied, however, pesticides are still required in Bt rice to control non-lepidopteran pests. In this study, we assessed the environmental effects of two Bt rice lines expressing either the cry1Ab/1Ac or cry2A genes, respectively, by using zooplanktons as indicator species under normal field management practices using pesticides when required. In the whole rice growing season, non-Bt rice was sprayed 5 times while Bt rice was sprayed 2 times, which ensured both rice achieved a normal yield. Field investigations showed that rice type (Bt and non-Bt) significantly influenced zooplankton abundance and diversity, which were up to 95% and 80% lower in non-Bt rice fields than Bt rice fields. Laboratory rearing showed that water from non-Bt rice fields was significantly less suitable for the survival and reproduction of Daphnia magna and Paramecium caudatum in comparison with water from Bt rice fields. Higher pesticide residues were detected in the water from non-Bt than Bt rice fields, accounting for the bad performance of zooplankton in non-Bt field water. Our results demonstrate that Bt rice is safer to aquatic ecosystems than non-Bt rice, and its commercialization will be beneficial for biodiversity restoration in rice-based ecosystems.

  6. Transgenic Bacillus thuringiensis (Bt rice is safer to aquatic ecosystems than its non-transgenic counterpart.

    Directory of Open Access Journals (Sweden)

    Guangsheng Li

    Full Text Available Rice lines genetically modified with the crystal toxin genes from Bacillus thuringiensis (Bt have experienced rapid development, with biosafety certificates for two Bt rice lines issued in 2009. There has still been no commercial release of these lines yet due to public concerns about human health and environmental risks. Some studies confirmed that Bt rice was as safe as conventional rice to non-target organisms when pesticides were not applied, however, pesticides are still required in Bt rice to control non-lepidopteran pests. In this study, we assessed the environmental effects of two Bt rice lines expressing either the cry1Ab/1Ac or cry2A genes, respectively, by using zooplanktons as indicator species under normal field management practices using pesticides when required. In the whole rice growing season, non-Bt rice was sprayed 5 times while Bt rice was sprayed 2 times, which ensured both rice achieved a normal yield. Field investigations showed that rice type (Bt and non-Bt significantly influenced zooplankton abundance and diversity, which were up to 95% and 80% lower in non-Bt rice fields than Bt rice fields. Laboratory rearing showed that water from non-Bt rice fields was significantly less suitable for the survival and reproduction of Daphnia magna and Paramecium caudatum in comparison with water from Bt rice fields. Higher pesticide residues were detected in the water from non-Bt than Bt rice fields, accounting for the bad performance of zooplankton in non-Bt field water. Our results demonstrate that Bt rice is safer to aquatic ecosystems than non-Bt rice, and its commercialization will be beneficial for biodiversity restoration in rice-based ecosystems.

  7. Susceptibility of Ostrinia furnacalis to Bacillus thuringiensis and Bt Corn Under Long-Term Laboratory Selection

    Institute of Scientific and Technical Information of China (English)

    WEN Li-ping; HE Kang-lai; WANG Zhen-ying; ZHOU Da-rong; BAI Shu-xiong

    2005-01-01

    The susceptibility of the Asian corn borer, Ostrinia furnacalis to Bacillus thuringiensis (Bt) formulation and Bt corn was evaluated using insect bioassays for 6 years. Four strains of O. furnacalis were developed by laboratory selection from the laboratory strain reared on a non-agar semi-artificial diet. The RR-1 strain was exposed to a commercial formulation of B. thuringiensis subsp. kurstaki (Btk) incorporated into the artificial diet, the RR-2 strain was exposed to Bt corn (MON810)tissue incorporated into the diet, and the SS-1 and SS-2 strains were reared on the standard diet with or without non-Bt corn tissues material. Decreasing susceptibility of O. furnacalis to Bt and to Bt corn were found in each selected strain although the ED50 and larval weight fluctuated from generation to generation. The resistance of Bt-exposed strain (RR-1)to Btk increased 48-fold by generation 39; the Bt corn-exposed strain (RR-2) increased its resistance 37-fold to Btk by generation 24. No larvae of SS-1 survived when they were exposed to the leaves of Bt corn, Bt1 1 and MON810. However,2-54% of the RR-1 (generation 46) and RR-2 (generation 20) larvae survived a 3 day-exposure to the leaves of Bt1 1 and MON810. The survival of both selected strains on Bt corn silk increased by 10-69%, and the larval weights after many generations selection were increased by 15-22% compared with the unselected susceptible strain. The young larvae were much more susceptible to Bt than older larvae. The highest mortality occurred when the larvae were exposed to Bt at the neonate stage. All of the results suggested that ACB could not only develop resistance to Bt preparation but also to Bt corn. Bt had significant effects on the growth and development of Asian corn borer than on the larval mortality. In order to maintain the long-term effectiveness of Bt pesticide and Bt corn, the resistance management should pay much attention to the larvae that may have opportunities to grow and developed on non-Bt

  8. Consequences for Protaphorura armata (Collembola: Onychiuridae) following exposure to genetically modified Bacillus thuringiensis (Bt) maize and non-Bt maize

    International Nuclear Information System (INIS)

    Studies on the effect of genetically modified Bacillus thuringiensis (Bt) crops on true soil dwelling non-target arthropods are scarce. The objective of this study was to assess the influence of a 4-week exposure to two Bt maize varieties (Cry1Ab) Cascade and MEB307 on the collembolan Protaphorura armata. For comparison three non-Bt maize varieties, Rivaldo (isogenic to Cascade), Monumental (isogenic to MEB307) and DK242, and two control diets based on baker's yeast (uncontaminated and contaminated with Bt toxin Cry1Ab) were also tested. Due to a lower C:N ratio, individuals reared on yeast performed significantly better in all of the measured endpoints than those reared on maize. P. armata performed equally well when reared on two Bt and three non-Bt maize varieties. Although there were no negative effects of Bt maize in this experiment, we recommend future studies on Bt crops to focus on species interactions in long-term, multi-species experiments. - Protaphorura armata performed equally well when reared on two Bt and three non-Bt maize varieties

  9. Consequences for Protaphorura armata (Collembola: Onychiuridae) following exposure to genetically modified Bacillus thuringiensis (Bt) maize and non-Bt maize

    Energy Technology Data Exchange (ETDEWEB)

    Heckmann, Lars-Henrik [National Environmental Research Institute, Department of Terrestrial Ecology, Vejlsovej 25, PO Box 314, DK-8600 Silkeborg (Denmark); Griffiths, Bryan S. [Scottish Crop Research Institute, Department of Soil Plant Dynamics, Invergowrie, Dundee DD2 5DA (United Kingdom); Caul, Sandra [Scottish Crop Research Institute, Department of Soil Plant Dynamics, Invergowrie, Dundee DD2 5DA (United Kingdom); Thompson, Jacqueline [Scottish Crop Research Institute, Department of Soil Plant Dynamics, Invergowrie, Dundee DD2 5DA (United Kingdom); Pusztai-Carey, Marianne [Case Western Reserve University, Cleveland, OH 44106 (United States); Moar, William J. [Auburn University, Department of Entomology and Plant Pathology, Auburn, AL 36849 (United States); Andersen, Mathias N. [Danish Institute of Agricultural Sciences, Research Centre Foulum, PO Box 50, DK-8830 Tjele (Denmark); Krogh, Paul Henning [National Environmental Research Institute, Department of Terrestrial Ecology, Vejlsovej 25, PO Box 314, DK-8600 Silkeborg (Denmark)]. E-mail: phk@dmu.dk

    2006-07-15

    Studies on the effect of genetically modified Bacillus thuringiensis (Bt) crops on true soil dwelling non-target arthropods are scarce. The objective of this study was to assess the influence of a 4-week exposure to two Bt maize varieties (Cry1Ab) Cascade and MEB307 on the collembolan Protaphorura armata. For comparison three non-Bt maize varieties, Rivaldo (isogenic to Cascade), Monumental (isogenic to MEB307) and DK242, and two control diets based on baker's yeast (uncontaminated and contaminated with Bt toxin Cry1Ab) were also tested. Due to a lower C:N ratio, individuals reared on yeast performed significantly better in all of the measured endpoints than those reared on maize. P. armata performed equally well when reared on two Bt and three non-Bt maize varieties. Although there were no negative effects of Bt maize in this experiment, we recommend future studies on Bt crops to focus on species interactions in long-term, multi-species experiments. - Protaphorura armata performed equally well when reared on two Bt and three non-Bt maize varieties.

  10. Effects of Bacillus thuringiensis (Bt) corn on soil Folsomia fimetaria, Folsomia candida (Collembola), Hypoaspis aculeifer (Acarina) and Enchytraeus crypticus (Oligochaeta)

    DEFF Research Database (Denmark)

    Ke, X.; Krogh, P. H.

    The effects of the Cry1Ab toxin from Bacillus thuringiensis (corn variety Cascade Bt MON810 and DeKalb variety 618 Bt) were studied on survival and reproduction of the soil collembolan Folsomia fimetaria, Folsomia candida, the collembolan predator mite Hypoaspis aculeifer and enchytraeids...

  11. INSECTICIDAL TOXIN FROM BACILLUS THURINGIENSIS IS RELEASED FROM ROOTS OF TRANSGENIC BT CORN IN VITRO AND IN SITU. (R826107)

    Science.gov (United States)

    AbstractThe insecticidal toxin encoded by the cry1Ab gene from Bacillus thuringiensis was released in root exudates from transgenic Bt corn during 40 days of growth in soil amended to 0, 3, 6, 9, or 12% (v/v) with montmorillonite or kaolinite in a...

  12. Consequences for Protaphorura armata (Collembola: Onychiuridae) following exposure to genetically modified Bacillus thuringiensis (Bt) maize and non-Bt maize

    DEFF Research Database (Denmark)

    Heckmann, L.-H.; Griffiths, B. S.; Caul, S.;

    2006-01-01

    Studies on the effect of genetically modified Bacillus thuringiensis (Bt) crops on true soil dwelling non-target arthropods are scarce. The objective of this study was to assess the influence of a 4-week exposure to two Bt maize varieties (Cry1Ab) Cascade and MEB307 on the collembolan Protaphorura...

  13. Persistence of Bt Bacillus thuringiensis Cry1Aa toxin in various soils determined by physicochemical reactions

    Science.gov (United States)

    Helassa, N.; Noinville, S.; Déjardin, P.; Janot, J. M.; Quiquampoix, H.; Staunton, S.

    2009-04-01

    Insecticidal Cry proteins from the soil bacterium, Bacillus thuringiensis (Bt) are produced by a class of genetically modified (GM) crops, and released into soils through root exudates and upon decomposition of residues. In contrast to the protoxin produced by the Bacillus, the protein produced in GM crops does not require activation in insect midguts and thereby potentially looses some of its species specificity. Although gene transfer and resistance emergence phenomena are well documented, the fate of these toxins in soil has not yet been clearly elucidated. Cry proteins, in common with other proteins, are adsorbed on soils and soil components. Adsorption on soil, and the reversibility of this adsorption is an important aspect of the environmental behaviour of these toxins. The orientation of the molecule and conformational changes on surfaces may modify the toxicity and confer some protection against microbial degradation. Adsorption will have important consequences for both the risk of exposition of non target species and the acquisition of resistance by target species. We have adopted different approaches to investigate the fate of Cry1Aa in soils and model minerals. In each series of experiments we endeavoured to maintain the protein in a monomeric form (pH above 6.5 and a high ionic strength imposed with 150 mM NaCl). The adsorption and the desorbability of the Cry1Aa Bt insecticidal protein were measured on two different homoionic clays: montmorillonite and kaolinite. Adsorption isotherms obtained followed a low affinity interaction for both clays and could be fitted using the Langmuir equation. Binding of the toxin decreased as the pH increased from 6.5 (close to the isoelectric point) to 9. Maximum adsorption was about 40 times greater on montmorillonite (1.71 g g-1) than on kaolinite (0.04 g g-1) in line with the contrasting respective specific surface areas of the minerals. Finally, some of the adsorbed toxin was desorbed by water and more, about 36

  14. Susceptibility of legume pod borer (LPB), Maruca vitrata to delta-endotoxins of Bacillus thuringiensis (Bt) in Taiwan.

    Science.gov (United States)

    Srinivasan, R

    2008-01-01

    Baseline susceptibility of legume pod borer (LPB) to the insecticidal crystal proteins (ICPs) from Bacillus thuringiensis, viz, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca and Cry2Aa was assessed in Taiwan. Insect bioassays were performed by incorporating the Bt delta-endotoxins into the LPB artificial diet. The efficacy of different Bt delta-endotoxins against second instar larvae of LPB showed that the toxin Cry1Ab was the most potent toxin (LC(50) 0.207ppm), followed by Cry1Ca, Cry1Aa, Cry2Aa and Cry1Ac in descending order, with LC(50)s 0.477ppm, 0.812ppm, 1.058ppm and 1.666ppm, respectively. Hence, Cry1Ab and/or Cry1Ca toxins would provide effective control of early larval stages of LPB.

  15. Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy.

    Science.gov (United States)

    Kumar, Suresh; Chandra, Amaresh; Pandey, K C

    2008-09-01

    Introduction of DDT (dichloro-diphenyl-trichloroethane) and following move towards indiscriminate use of synthetic chemical insecticides led to the contamination of water and food sources, poisoning of non-target beneficial insects and development of insect-pests resistant to the chemical insecticides. Increased public concems about the adverse environmental effects of indiscriminate use of chemical insecticides prompted search of altemative methods for insect-pest control. One of the promising alternatives has been the use of biological control agents. There is well-documented history of safe application of Bt (B. thuringiensis, a gram positive soil bacterium) as effective biopesticides and a number of reports of expression of delta-endotoxin gene(s) in crop plants are available. Only a few insecticidal sprays are required on Bt transgenic crops, which not only save cost and time, but also reduce health risks. Insects exhibit remarkable ability to develop resistance to different insecticidal compounds, which raises concern about the unsystematic use of Bt transgenic technology also. Though resistance to Bt products among insect species under field conditions has been rare, laboratory studies show that insects are capable of developing high levels of resistance to one ormore Cry proteins. Now it is generally agreed that 'high-dose/refuge strategy' is the most promising and practical approach to prolong the effectiveness of Bt toxins. Although manybiosafety concerns, ethical and moral issues exist, area under Bt transgenic crops is rapidly increasing and they are cultivated on more than 32 million hectares world over Even after reservation of European Union (EU) for acceptance of geneticaly modified (GM) crops, 6 out of 25 countries have already adopted Bt crops and many otherindustrial countries will adopt Bt transgenic crops in near future. While the modem biotechnology has been recognized to have a great potential for the promotion of human well-being, adoption

  16. Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy.

    Science.gov (United States)

    Kumar, Suresh; Chandra, Amaresh; Pandey, K C

    2008-09-01

    Introduction of DDT (dichloro-diphenyl-trichloroethane) and following move towards indiscriminate use of synthetic chemical insecticides led to the contamination of water and food sources, poisoning of non-target beneficial insects and development of insect-pests resistant to the chemical insecticides. Increased public concems about the adverse environmental effects of indiscriminate use of chemical insecticides prompted search of altemative methods for insect-pest control. One of the promising alternatives has been the use of biological control agents. There is well-documented history of safe application of Bt (B. thuringiensis, a gram positive soil bacterium) as effective biopesticides and a number of reports of expression of delta-endotoxin gene(s) in crop plants are available. Only a few insecticidal sprays are required on Bt transgenic crops, which not only save cost and time, but also reduce health risks. Insects exhibit remarkable ability to develop resistance to different insecticidal compounds, which raises concern about the unsystematic use of Bt transgenic technology also. Though resistance to Bt products among insect species under field conditions has been rare, laboratory studies show that insects are capable of developing high levels of resistance to one ormore Cry proteins. Now it is generally agreed that 'high-dose/refuge strategy' is the most promising and practical approach to prolong the effectiveness of Bt toxins. Although manybiosafety concerns, ethical and moral issues exist, area under Bt transgenic crops is rapidly increasing and they are cultivated on more than 32 million hectares world over Even after reservation of European Union (EU) for acceptance of geneticaly modified (GM) crops, 6 out of 25 countries have already adopted Bt crops and many otherindustrial countries will adopt Bt transgenic crops in near future. While the modem biotechnology has been recognized to have a great potential for the promotion of human well-being, adoption

  17. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent

    International Nuclear Information System (INIS)

    Sustained cultivation of Bacillus thuringiensis (Bt) transgenic crops requires stable transgene expression under variable abiotic conditions. We studied the interactions of Bt toxin production and chronic ozone exposure in Bt cry1Ac-transgenic oilseed rape and found that the insect resistance trait is robust under ozone elevations. Bt Cry1Ac concentrations were higher in the leaves of Bt oilseed rape grown under elevated ozone compared to control treatment, measured either per leaf fresh weight or per total soluble protein of leaves. The mean relative growth rate of a Bt target herbivore, Plutella xylostella L. larvae was negative on Bt plants in all ozone treatments. On the non-transgenic plants, larval feeding damage was reduced under elevated ozone. Our results indicate the need for monitoring fluctuations in Bt toxin concentrations to reveal the potential of ozone exposure for altering dosing of Bt proteins to target and non-target herbivores in field environments experiencing increasing ozone pollution. - Elevated atmospheric ozone can induce fluctuations in insecticidal protein concentrations in transgenic plants

  18. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent

    Energy Technology Data Exchange (ETDEWEB)

    Himanen, Sari J. [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland)], E-mail: sari.himanen@uku.fi; Nerg, Anne-Marja [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland); Nissinen, Anne [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland); MTT Agrifood Research Finland, Plant Protection, FIN-31600 Jokioinen (Finland); Stewart, C. Neal [University of Tennessee, Department of Plant Sciences, Knoxville, TN 37996-4561 (United States); Poppy, Guy M. [University of Southampton, School of Biological Sciences, Southampton SO16 7PX (United Kingdom); Holopainen, Jarmo K. [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland)

    2009-01-15

    Sustained cultivation of Bacillus thuringiensis (Bt) transgenic crops requires stable transgene expression under variable abiotic conditions. We studied the interactions of Bt toxin production and chronic ozone exposure in Bt cry1Ac-transgenic oilseed rape and found that the insect resistance trait is robust under ozone elevations. Bt Cry1Ac concentrations were higher in the leaves of Bt oilseed rape grown under elevated ozone compared to control treatment, measured either per leaf fresh weight or per total soluble protein of leaves. The mean relative growth rate of a Bt target herbivore, Plutella xylostella L. larvae was negative on Bt plants in all ozone treatments. On the non-transgenic plants, larval feeding damage was reduced under elevated ozone. Our results indicate the need for monitoring fluctuations in Bt toxin concentrations to reveal the potential of ozone exposure for altering dosing of Bt proteins to target and non-target herbivores in field environments experiencing increasing ozone pollution. - Elevated atmospheric ozone can induce fluctuations in insecticidal protein concentrations in transgenic plants.

  19. In Silico Modeling and Functional Interpretations of Cry1Ab15 Toxin from Bacillus thuringiensis BtB-Hm-16

    Directory of Open Access Journals (Sweden)

    Sudhanshu Kashyap

    2013-01-01

    Full Text Available The theoretical homology based structural model of Cry1Ab15 δ-endotoxin produced by Bacillus thuringiensis BtB-Hm-16 was predicted using the Cry1Aa template (resolution 2.25 Å. The Cry1Ab15 resembles the template structure by sharing a common three-domain extending conformation structure responsible for pore-forming and specificity determination. The novel structural differences found are the presence of β0 and α3, and the absence of α7b, β1a, α10a, α10b, β12, and α11a while α9 is located spatially downstream. Validation by SUPERPOSE and with the use of PROCHECK program showed folding of 98% of modeled residues in a favourable and stable orientation with a total energy Z-score of −6.56; the constructed model has an RMSD of only 1.15 Å. These increments of 3D structure information will be helpful in the design of domain swapping experiments aimed at improving toxicity and will help in elucidating the common mechanism of toxin action.

  20. Effectiveness of the High Dose/Refuge Strategy for Managing Pest Resistance to Bacillus thuringiensis (Bt Plants Expressing One or Two Toxins

    Directory of Open Access Journals (Sweden)

    Aiko Gryspeirt

    2012-10-01

    Full Text Available To delay resistance development to Bacillus thuringiensis (Bt plants expressing their own insecticide, the application of the Insect Resistance Management strategy called “High Dose/Refuge Strategy” (HD/R is recommended by the US Environmental Protection Agency (US EPA. This strategy was developed for Bt plants expressing one toxin. Presently, however, new Bt plants that simultaneously express two toxins are on the market. We used a mathematical model to evaluate the efficiency of the HD/R strategy for both these Bt toxins. As the current two-toxin Bt plants do not express two new Cry toxins but reuse one toxin already in use with a one-toxin plant, we estimated the spread of resistance when the resistance alleles are not rare. This study assesses: (i whether the two toxins have to be present in high concentration, and (ii the impact of the relative size of the refuge zone on the evolution of resistance and population density. We concluded that for Bt plants expressing one toxin, a high concentration is an essential condition for resistance management. For the pyramided Bt plants, one toxin could be expressed at a low titer if the two toxins are used for the first time, and a small refuge zone is acceptable.

  1. Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India.

    Science.gov (United States)

    Kathage, Jonas; Qaim, Matin

    2012-07-17

    Despite widespread adoption of genetically modified crops in many countries, heated controversies about their advantages and disadvantages continue. Especially for developing countries, there are concerns that genetically modified crops fail to benefit smallholder farmers and contribute to social and economic hardship. Many economic studies contradict this view, but most of them look at short-term impacts only, so that uncertainty about longer-term effects prevails. We address this shortcoming by analyzing economic impacts and impact dynamics of Bt cotton in India. Building on unique panel data collected between 2002 and 2008, and controlling for nonrandom selection bias in technology adoption, we show that Bt has caused a 24% increase in cotton yield per acre through reduced pest damage and a 50% gain in cotton profit among smallholders. These benefits are stable; there are even indications that they have increased over time. We further show that Bt cotton adoption has raised consumption expenditures, a common measure of household living standard, by 18% during the 2006-2008 period. We conclude that Bt cotton has created large and sustainable benefits, which contribute to positive economic and social development in India. PMID:22753493

  2. EFEKTIVITAS VECTOBAC 12 AS (Bt H-14 DAN Bacillus thuringiensis H-14 TERHADAP VEKTOR MALARIA An. maculatus DI KOBAKAN DESA HARGOTIRTO, KECAMATAN KOKAP, KABUPATEN KULON PROGO

    Directory of Open Access Journals (Sweden)

    Blondine Ch. P.

    2012-09-01

    Full Text Available A study using Vectobac 12 AS ( Bt H-14 and Bacillus thuringiensis H-14 local strain was conducted at laboratory Vector and Reservoir Control Research Unit and breeding ponds of Anopheles maculatus in Kokap regency and Kulon Progo district. The objectives of this study are : (1. to detect the efficacy of B. thuringiensis H-14 local strain toward An. maculatus larvae at the laboratory. (2. to measure the effectiveness of B. thuringiensis H-14 local strain dosages 1 x LC95. 5 x LC95 and 10 x LC95 toward An. maculatus at the field. The efficacy test of B. thuringiensis H-14 local strain toward An. maculatus based on to the method proposed by WHO in order to determine the LC50 and LC90 which is computed using the probit analysis at the laboratory. The methods used R thuringiensis H-14 local strain dosages of 2.145 ppm (1 x LC95, 10.724 ppm (5 x LC95 and 21.448 ppm (10 x LC95 respectively were applied 8 ponds with the width of ponds ranging from 0.08 to 0.45 m2, 0.29 to 0.64 m2 and from 0.08-0.79 m2.The results showed, the dosages after 24 hours were 10.22 ppm (LC50, 27.11 ppm (LC90 and 35.75 ppm (LC95. After 48 hours the dosages were needed 7.74 ppm (LC50, 17.06 ppm (LC90 and 21.34 ppm (LC95, The effectiveness o/R thuringiensis H-14 local strain dosages of 2.145ppm (1 x LC95 toward An. maculatus larvae until 50 % survive the same time (7.35 days as B. thuringiensis H-14 (8.14 days dosages of 10.724 ppm (5 x LC95. B. thuringiensis H-14 local strain dosages of 21.448 ppm (10 x LC95 toward An. maculatus larvae until 50 % survive longer time (16.21 days than B. thuringiensis H-14 local strain 1 x LC95 and 5 x LC95 The B. thuringiensis H-14 local strain is effective for controlling mosquitoes larvae

  3. Evaluation of an aerial spray strategy against the spruce budworm (choristoneura fumiferana clem.) using fenitrothion and B.t., (bacillus thuringiensis): Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kettela, E.G.

    1993-12-31

    This report presents results from a series of trials to evaluate replicate test sites, two treated with fenitrothion followed by an application of Bacillus thuringiensis (B.t.) and two treated with two applications of B.t. A team of Cessna 188 aircraft equipped with Micronair AU4000 rotary atomizers applied all spray treatments; there were also unsprayed control plots for comparison. The investigators conducted biological evaluations of 60 selected balsam fir trees at each treatment site to record such information as number of buds and shoots, defoliation category for each bud/shoot, number of spruce budworms, and state of development of each bud/shoot. They also determined spray deposition. The report concludes with an assessment of the comparative efficacy of the treatments studied on spruce budworm mortality.

  4. Monarch larvae sensitivity to Bacillus thuringiensis- purified proteins and pollen

    OpenAIRE

    Hellmich, Richard L; Blair D Siegfried; Sears, Mark K.; Stanley-Horn, Diane E.; Daniels, Michael J.; Mattila, Heather R.; Spencer, Terrence; Bidne, Keith G.; Lewis, Leslie C.

    2001-01-01

    Laboratory tests were conducted to establish the relative toxicity of Bacillus thuringiensis (Bt) toxins and pollen from Bt corn to monarch larvae. Toxins tested included Cry1Ab, Cry1Ac, Cry9C, and Cry1F. Three methods were used: (i) purified toxins incorporated into artificial diet, (ii) pollen collected from Bt corn hybrids applied directly to milkweed leaf discs, and (iii) Bt pollen contaminated with corn tassel material applied directly to milkweed leaf discs. Bioassays of purified Bt tox...

  5. Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727

    Directory of Open Access Journals (Sweden)

    Mahillon Jacques

    2005-07-01

    Full Text Available Abstract Background Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis belong to the genetically close-knit Bacillus cereus sensu lato group, a family of rod-shaped Gram-positive bacteria. pAW63 is the first conjugative plasmid from the B. cereus group to be completely sequenced. Results The 71,777 bp nucleotide sequence of pAW63 reveals a modular structure, including a 42 kb tra region encoding homologs of the Type IV secretion systems components VirB11, VirB4 and VirD4, as well as homologs of Gram-positive conjugation genes from Enterococcus, Lactococcus, Listeria, Streptococcus and Staphylococcus species. It also firmly establishes the existence of a common backbone between pAW63, pXO2 from Bacillus anthracis and pBT9727 from the pathogenic Bacillus thuringiensis serovar konkukian strain 97-27. The alignment of these three plasmids highlights the presence of well conserved segments, in contrast to distinct regions of high sequence plasticity. The study of their specific differences has provided a three-point reference framework that can be exploited to formulate solid hypotheses concerning the functionalities and the molecular evolution of these three closely related plasmids. This has provided insight into the chronology of their divergence, and led to the discovery of two Type II introns on pAW63, matching copies of the mobile element IS231L in different loci of pXO2 and pBT9727, and the identification on pXO2 of a 37 kb pathogenicity island (PAI containing the anthrax capsule genes. Conclusion The complete sequence determination of pAW63 has led to a functional map of the plasmid yielding insights into its conjugative apparatus, which includes T4SS-like components, as well as its resemblance to other large plasmids of Gram-positive bacteria. Of particular interest is the extensive homology shared between pAW63 and pXO2, the second virulence plasmid of B. anthracis, as well as pBT9727 from the pathogenic strain B. thuringiensis

  6. Changes in bacillus thuringiensis tolerance levels due to hybridization of Bt-tolerant and susceptible silkworm populations

    International Nuclear Information System (INIS)

    Males and females of a Bt-tolerant mulberry silkworm (Bombyx mori L.) population were crossed with females and males of a Bt-susceptible population, to produce Bt-tolerant silkworm hybrids, and to determine the expression of the Bt-tolerance pattern in the F 1 hybrids. It was observed that when a Bt-tolerant (42% larval mortality) female (BtT ) silkworm was crossed with a Bt-susceptible (85% larval mortality) male (BtS ), the resultant F 1 offspring showed lower levels of Bt-tolerance (87% larval mortality). On the other hand, when a Bt-tolerant male (BtT ) was crossed with a Bt-susceptible female (BtS ), the F 1 hybrid showed higher levels of Bt-tolerance (35% larval mortality) characteristic. The probit statistics showed that both hybrids expressed Bt-tolerance or susceptible levels similar to their male parents. These different patterns of Bt-tolerance in F 1 hybrids might be due to the transferring of a Bt-tolerant gene, from the parents to offspring, through the homozygotic male (ZZ) silkworm. (author)

  7. TRANSGENIC PLANTS EXPRESSING BACILLUS THURINGIENSIS DELTA-ENDOTOXINS

    Institute of Scientific and Technical Information of China (English)

    Hua-rong,Li; BrendaOppert; KunYanZhu; RandallA.Higgins; Fang-nengHuang; LawrentL.Buschman

    2003-01-01

    Commercial varieties of transgenic Bacillus thuringiensis (Bt) plants have been developed in many countries to control target pests. Initially, the expression of native Bt genes in plants was low due to mRNA instability, improper splicing, and post-translation modifications. Subsequently, modifications of the native Bt genes greatly enhanced expression levels. This is a review of the developments that made modem high-expression transgenic Bt plants possible, with an emphasis on the reasons for the low-level expression of native Bt genes in plant systems, and the techniques that have been used to improve plant expression of Bt toxin genes.

  8. Comparison of Bacillus thuringiensis and Bacillus cereus

    International Nuclear Information System (INIS)

    Bacillus cereus and Bacillus thuringiensis are closely related, spore forming soil bacteria. B. thuringiensis produces insecticidal crystal proteins during sporulation and these toxins are the most important biopesticides in the world today. Genomes of the B. thuringiensis and B. cereus strains were analysed by pulsed field gel electrophoresis after treatment of the DNA with the restriction enzyme NotI. The NotI fingerprint patterns varied both within the B. thuringiensis and the B. cereus strains. The size of the fragments varied between 15 and 1350 kb. When physical maps of the B. thuringiensis and B. cereus strains were compared, B. thuringiensis appeared to be as closely related to B. cereus as the B. cereus strains were to each other. Nine out of 12 B. thuringiensis strains and 18 out of 25 B. cereus strains produced enterotoxins. The close relationship between B. thuringiensis and B. cereus should be taken into consideration when B. thuringiensis is used as a biopesticide. (author). 10 refs, 4 figs, 1 tab

  9. Screening Bacillus thuringiensis strains for toxicity against Manduca sexta and Plutella xylostella

    Science.gov (United States)

    Screening Bacillus thuringiensis (Bt) isolates or strains for toxicity has traditionally been performed with one bacterial isolate at time versus a specific insect. By testing of Bt strains in groups, we identified 28 of 147 Bt isolates as toxic to either diamondback moth, Plutella xylostella (L.),...

  10. Resistance to Bacillus thuringiensis endotoxins in the European corn borer (Ostrinia nubilalis)

    Science.gov (United States)

    The European corn borer, Ostrinia nubilalis (Hübner), is the primary target of the widely adopted transgenic corn events MON810 and Bt11, expressing the Bacillus thuringiensis (Bt) insecticidal toxin, Cry1Ab. Resistant strains of O. nubilalis have been selected in the laboratory by exposure to Bt ...

  11. BACILLUS THURINGIENSIS ELASTASES WITH INSECTICIDE ACTIVITY

    Directory of Open Access Journals (Sweden)

    E. V. Matseliukh

    2015-10-01

    Full Text Available The purpose of the research was a screening of proteases with elastase activity among Bacillus thuringiensis strains, their isolation, partially purification, study of physicochemical properties and insecticide activity in relation to the larvae of the Colorado beetle. The objects of the investigation were 18 strains of B. thuringiensis, isolated from different sources: sea water, dry biological product "Bitoksibatsillin" and also from natural populations of Colorado beetles of the Crimea, Kherson, Odesa, Mykolaiv and Zaporizhiia regions of Ukraine. Purification of enzymes with elastase activity isolated from above mentioned strains was performed by gel-chromatography and insecticide activity was studied on the 3–4 larvae instar of Colorado beetle. The ability of a number of B. thuringiensis strains to synthesize the proteases with elastase activity has been established. The most active were enzymes obtained from strains IMV B-7465, IMV B-7324 isolated from sea water, and strains 9, 902, Bt-H and 0-239 isolated from Colorado beetles. The study of the physicochemical properties of the partially purified proteases of these strains showed that they belonged to enzymes of the serine type. Peptidases of a number of B. thuringiensis strains (IMV B-7324, IMV B-7465, 902, 0-239, 9 are metal-dependent enzymes. Optimal conditions of action of all tested enzymes are the neutral and alkaline рН values and the temperatures of 30–40 °С. The studies of influence of the complex enzyme preparations and partially purified ones of B. thuringiensis strains on the larvae instar of Colorado beetles indicated that enzymes with elastase activity could be responsible for insecticide action of the tested strains.

  12. Bacteriocins synthesized by Bacillus thuringiensis: generalities and potential applications

    Science.gov (United States)

    Salazar-Marroquín, Elma Laura; Galán-Wong, Luis J.; Moreno-Medina, Víctor Ricardo; Reyes-López, Miguel Ángel; Pereyra-Alférez, Benito

    2016-01-01

    The members of the Bacillus thuringiensis group, commonly known as Bt, produce a huge number of metabolites, which show biocidal and antagonistic activity. B. thuringiensis is widely known for synthesizing Cry, Vip and Cyt proteins, active against insects and other parasporins with biocidal activity against certain types of cancerous cells. Nevertheless, B. thuringiensis also synthesizes compounds with antimicrobial activity, especially bacteriocins. Some B. thuringiensis bacteriocins resemble lantibiotics and other small linear peptides (class IIa) from the lactic acid bacteria bacteriocins classification system. Although many bacteriocins produced by Bt have been reported, there is no proper classification for them. In this work, we have grouped these based on molecular weight and functionality. Bacteriocins are small peptides synthesized by bacteria, presenting inhibitory activity against Gram-positive and Gram-negative bacteria and to a lesser extent against fungi. These molecules represent a good study model in the search for microbial control alternatives. Lactic acid bacteria produces a huge number of these types of molecules with great potential. Nonetheless, members of the Bacillus, cereus group, especially B. thuringiensis, emerge as an attractive alternative for obtaining bacteriocins showing novel activities. This review describes the potential applications of B. thuringiensis bacteriocins in the control of foodborne pathogens, environment and medical area. PMID:27340340

  13. Complete Genome of Bacillus thuringiensis Myophage Spock

    OpenAIRE

    Maroun, Justin W.; Whitcher, Kelvin J.; Chamakura, Karthik R.; Kuty Everett, Gabriel F.

    2013-01-01

    Bacillus thuringiensis is a Gram-positive, sporulating soil microbe with valuable pesticide-producing properties. The study of bacteriophages of B. thuringiensis could provide new biotechnological tools for the use of this bacterium. Here, we present the complete annotated genome of Spock, a myophage of B. thuringiensis, and describe its features.

  14. Recovery of Bacillus thuringiensis and insect toxic related strains from forest soil

    Science.gov (United States)

    We attempted to recover Bacillus thuringiensis (Bt) from soil that had been sprayed two years prior with Bt for gypsy moth control. By amplifying the bacteria found in the soil on bacterial agar and feeding this diverse microbial population to tobacco hornworm larvae, 15 spore-forming bacteria from ...

  15. Efficient transformation of Bacillus thuringiensis requires nonmethylated plasmid DNA.

    OpenAIRE

    Macaluso, A; Mettus, A M

    1991-01-01

    The transformation efficiency of Bacillus thuringiensis depends upon the source of plasmid DNA. DNA isolated from B. thuringiensis, Bacillus megaterium, or a Dam- Dcm- Escherichia coli strain efficiently transformed several B. thuringiensis strains, B. thuringiensis strains were grouped according to which B. thuringiensis backgrounds were suitable sources of DNA for transformation of other B. thuringiensis strains, suggesting that B. thuringiensis strains differ in DNA modification and restri...

  16. Effects of transgenic Bacillus thuringiensis maize grain on B. thuringiensis-susceptible Plodia interpunctella (Lepidoptera: Pyralidae).

    Science.gov (United States)

    Giles, K L; Hellmich, R L; Iverson, C T; Lewis, L C

    2000-06-01

    Percentage survivorship, developmental time, adult body length, and sex ratio of Plodia interpunctella (Hübner) reared on field-produced grain from sixteen cultivars of maize, Zea mays L., including several transgenic Bacillus thuringiensis (Bt) Berliner hybrids and selected non-Bt isolines, were evaluated under laboratory conditions. Compared with isolines, development was delayed and survivorship reduced for P. interpunctella reared on grain from transgenic hybrids with the CaMV/35s promoter that express Cry1Ab protein. Similarly, compared with non-Bt hybrids, a transgenic hybrid with the CaMV/35s promoter that expresses Cry9C protein delayed development, decreased survivorship, and caused reductions in adult body length of P. interpunctella. In contrast, no significant differences in P. interpunctella developmental times or survivorship were observed between transgenic hybrids with the PEPC promoter expressing Cry1Ab and their isolines. Additionally, developmental time, survivorship, and adult body length were similar between P. interpunctella reared on a transgenic hybrid with the CaMV/35s promoter expressing Cry1Ac and non-Bt hybrids. Our data demonstrate that transgenic Bt maize grain, especially grain from hybrids with the CaMV/35s promoter expressing Cry1Ab or Cry9C, can significantly affect B. thuringiensis-susceptible P. interpunctella populations up to 4 or 5 mo after harvest.

  17. The ecological roles of Bacillus thuringiensis within phyllosphere environments.

    Science.gov (United States)

    Wang, Xiaoxian; Xue, Yarong; Han, Meizhe; Bu, Yuanqing; Liu, Changhong

    2014-08-01

    Bacillus thuringiensis (Bt) is one of the most used bio-control agents to control plant insects, but little is known about its effect on the microbial population and communities on plant leaves. With the culture dependent method, it has been observed that the dynamics of Bt within the phyllosphere varied dependent on both the doses of Bt sprayed on the leaves and the plant species, however, Bt's population size kept stable at about 1000 cfu g(-1) after 15 d since inoculation. By comparing the bacterial abundances and community structures within the phyllosphere of three plant species, we confirmed that Bt at the doses of 1.5×10(7) and 1.5×10(9) cfu mL(-1) respectively did not significantly influence the natural bacterial population size on the leaf surfaces based on culture dependent assay. However, based on culture independent denaturing gradient gel electrophoresis (DGGE), Shannon-Wiener index (H') and Unweighted Pair Group Method with Arithmetic Mean (UPGMA) analysis, Bt has a significant influence on the bacterial communities within the phyllosphere of amaranth and cotton, but not rice. These results indicate that Bt exhibits different behaviors and ecological roles on the microbial diversity within the phyllosphere, and its environmental safety has to be concerned and evaluated in the future. PMID:24534157

  18. Monarch larvae sensitivity to Bacillus thuringiensis- purified proteins and pollen.

    Science.gov (United States)

    Hellmich, R L; Siegfried, B D; Sears, M K; Stanley-Horn, D E; Daniels, M J; Mattila, H R; Spencer, T; Bidne, K G; Lewis, L C

    2001-10-01

    Laboratory tests were conducted to establish the relative toxicity of Bacillus thuringiensis (Bt) toxins and pollen from Bt corn to monarch larvae. Toxins tested included Cry1Ab, Cry1Ac, Cry9C, and Cry1F. Three methods were used: (i) purified toxins incorporated into artificial diet, (ii) pollen collected from Bt corn hybrids applied directly to milkweed leaf discs, and (iii) Bt pollen contaminated with corn tassel material applied directly to milkweed leaf discs. Bioassays of purified Bt toxins indicate that Cry9C and Cry1F proteins are relatively nontoxic to monarch first instars, whereas first instars are sensitive to Cry1Ab and Cry1Ac proteins. Older instars were 12 to 23 times less susceptible to Cry1Ab toxin compared with first instars. Pollen bioassays suggest that pollen contaminants, an artifact of pollen processing, can dramatically influence larval survival and weight gains and produce spurious results. The only transgenic corn pollen that consistently affected monarch larvae was from Cry1Ab event 176 hybrids, currently corn planted and for which re-registration has not been applied. Results from the other types of Bt corn suggest that pollen from the Cry1Ab (events Bt11 and Mon810) and Cry1F, and experimental Cry9C hybrids, will have no acute effects on monarch butterfly larvae in field settings. PMID:11559841

  19. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants

    OpenAIRE

    Zhao, Jian-Zhou; Cao, Jun; Collins, Hilda L.; Bates, Sarah L.; Roush, Richard T.; Earle, Elizabeth D.; Anthony M Shelton

    2005-01-01

    Transgenic plants expressing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) were grown on over 13 million ha in the United States and 22.4 million ha worldwide in 2004. Preventing or slowing the evolution of resistance by insects (“resistance management”) is critical for the sustainable use of Bt crops. Plants containing two dissimilar Bt toxin genes in the same plant (“pyramided”) have the potential to delay insect resistance. However, the advantage of pyramided Bt plan...

  20. Bacillus thuringiensis resistance in Plutella - too many trees?

    Science.gov (United States)

    Crickmore, Neil

    2016-06-01

    Plutella xylostella was the first insect for which resistance to Bacillus thuringiensis was reported in the field, yet despite many studies on the nature of this resistance phenotype its genetic and molecular basis remains elusive. Many different factors have been proposed as contributing to resistance, although in many cases it has not been possible to establish a causal link. Indeed, there are so many studies published that it has become very difficult to 'see the wood for the trees'. This article will attempt to clarify our current understanding of Bt resistance in P. xylostella and consider the criteria that are used when validating a particular model. PMID:27436736

  1. Bacillus thuringiensis resistance in Plutella - too many trees?

    Science.gov (United States)

    Crickmore, Neil

    2016-06-01

    Plutella xylostella was the first insect for which resistance to Bacillus thuringiensis was reported in the field, yet despite many studies on the nature of this resistance phenotype its genetic and molecular basis remains elusive. Many different factors have been proposed as contributing to resistance, although in many cases it has not been possible to establish a causal link. Indeed, there are so many studies published that it has become very difficult to 'see the wood for the trees'. This article will attempt to clarify our current understanding of Bt resistance in P. xylostella and consider the criteria that are used when validating a particular model.

  2. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance.

    Science.gov (United States)

    Badran, Ahmed H; Guzov, Victor M; Huai, Qing; Kemp, Melissa M; Vishwanath, Prashanth; Kain, Wendy; Nance, Autumn M; Evdokimov, Artem; Moshiri, Farhad; Turner, Keith H; Wang, Ping; Malvar, Thomas; Liu, David R

    2016-05-01

    The Bacillus thuringiensis δ-endotoxins (Bt toxins) are widely used insecticidal proteins in engineered crops that provide agricultural, economic, and environmental benefits. The development of insect resistance to Bt toxins endangers their long-term effectiveness. Here we have developed a phage-assisted continuous evolution selection that rapidly evolves high-affinity protein-protein interactions, and applied this system to evolve variants of the Bt toxin Cry1Ac that bind a cadherin-like receptor from the insect pest Trichoplusia ni (TnCAD) that is not natively bound by wild-type Cry1Ac. The resulting evolved Cry1Ac variants bind TnCAD with high affinity (dissociation constant Kd = 11-41 nM), kill TnCAD-expressing insect cells that are not susceptible to wild-type Cry1Ac, and kill Cry1Ac-resistant T. ni insects up to 335-fold more potently than wild-type Cry1Ac. Our findings establish that the evolution of Bt toxins with novel insect cell receptor affinity can overcome insect Bt toxin resistance and confer lethality approaching that of the wild-type Bt toxin against non-resistant insects. PMID:27120167

  3. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance.

    Science.gov (United States)

    Badran, Ahmed H; Guzov, Victor M; Huai, Qing; Kemp, Melissa M; Vishwanath, Prashanth; Kain, Wendy; Nance, Autumn M; Evdokimov, Artem; Moshiri, Farhad; Turner, Keith H; Wang, Ping; Malvar, Thomas; Liu, David R

    2016-05-01

    The Bacillus thuringiensis δ-endotoxins (Bt toxins) are widely used insecticidal proteins in engineered crops that provide agricultural, economic, and environmental benefits. The development of insect resistance to Bt toxins endangers their long-term effectiveness. Here we have developed a phage-assisted continuous evolution selection that rapidly evolves high-affinity protein-protein interactions, and applied this system to evolve variants of the Bt toxin Cry1Ac that bind a cadherin-like receptor from the insect pest Trichoplusia ni (TnCAD) that is not natively bound by wild-type Cry1Ac. The resulting evolved Cry1Ac variants bind TnCAD with high affinity (dissociation constant Kd = 11-41 nM), kill TnCAD-expressing insect cells that are not susceptible to wild-type Cry1Ac, and kill Cry1Ac-resistant T. ni insects up to 335-fold more potently than wild-type Cry1Ac. Our findings establish that the evolution of Bt toxins with novel insect cell receptor affinity can overcome insect Bt toxin resistance and confer lethality approaching that of the wild-type Bt toxin against non-resistant insects.

  4. Effects of Exogenous Jasmonic Acid on Concentrations of Direct-Defense Chemicals and Expression of Related Genes in Bt(Bacillus thuringiensis)Corn(Zea mays)

    Institute of Scientific and Technical Information of China (English)

    FENG Yuan-jiao; WANG Jian-wu; LUO Shi-ming

    2007-01-01

    Bt corn is one of the top three large-scale commercialized transgenic crops around the world.It is increasingly clear that the complementary durable approaches for pest control,which combine the endogenous defense of the crop with the introduced foreign genes,are promising alternative strategies for pest resistance management and the next generation of insect-resistant transgenic crops.In the present study,we tested the inducible effects of exogenous jasmonic acid(JA) on direct-defense chemical content,Bt protein concentration,and related gene expression in the leaves of Bt corn cultivar 34B24 and non-Bt cultivar 34B23 by chemical analysis,ELISA,and RT-PCR.The results show that the expression of LOX,PR-2αMPI,and PR-1 genes in the treated leaf(the first leaf)was promoted by exogenous JA both in 34B24 and 34B23.As compared with the control,the concentration of DIMBOA in the treated leaf was significantly increased by 63 and 18% for 34B24 and 34B23,respectively.The total phenolic acid was also increased by 24 and 12% for both 34B24 and 34B23.The Bt protein content of 34B24 in the treated leaf was increased by 13% but decreased significantly by 27% in the second leaf.The induced response of 34B24 was in a systemic way and was much stronger than that of 34B23.Those findings indicated that there is a synergistic interaction between Bt gene and internally induced chemical defense system triggered by externally applied JA in Bt corn.

  5. Susceptibility of Cry1Ab-resistant and -susceptible Sugarcane Borer (Lepidoptera: crambidae) to Four Bacillus thuringiensis Toxins

    Science.gov (United States)

    Sugarcane borer, Diatraea saccharalis (F.), is a primary corn stalk borer pest targeted by transgenic corn expressing Bacillus thuringiensis (Bt) proteins in many areas of the mid-southern region of the United States. Recently, genes encoding for Cry1A.105 and Cry2Ab2 Bt proteins were transferred in...

  6. A Novel Tenebrio molitor Cadherin is a Functional Receptor for Bacillus thuringiensis Toxin Cry3Aa

    Science.gov (United States)

    Cry toxins produced by the bacterium Bacillus thuringiensis (Bt) are effective biological insecticides. Cadherin-like proteins have been reported as functional Cry1A toxin receptors in Lepidoptera. We present the first report demonstrating a functional interaction between the coleopteran-specific ...

  7. The occurrence of Photorhabdus-like toxin complexes in Bacillus thuringiensis

    Science.gov (United States)

    Recently, genomic sequencing of a Bacillus thuringiensis (Bt) isolate from our collection revealed the presence of an apparent operon encoding an insecticidal toxin complex (Tca) similar to that first described from the entomopathogen Photorhabdus luminescens. To determine whether these genes are w...

  8. Sub-chronic lung inflammation after airway exposures to Bacillus thuringiensis biopesticides in mice

    DEFF Research Database (Denmark)

    Barfod, Kenneth K; Poulsen, Steen Seier; Hammer, Maria;

    2010-01-01

    The aim of the present study was to assess possible health effects of airway exposures to Bacillus thuringiensis (Bt) based biopesticides in mice. Endpoints were lung inflammation evaluated by presence of inflammatory cells in bronchoalveolar lavage fluid (BALF), clearance of bacteria from the lung...

  9. BOOK REVIEW – BACILLUS THURINGIENSIS: A CORNERSTONE OF MODERN AGRICULTURE BACILLUS THURINGIENSIS

    Science.gov (United States)

    Are you interested in the technical issues surrounding the use of Bacillus thuringiensis pesticidal traits as sprays and as plant incorporated protectants (transgenic crops)? Should the dimensions of human health, ecology, entomology, risk assessment, resistance management, and d...

  10. Fluorescent Amplified Fragment Length Polymorphism Analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis Isolates

    OpenAIRE

    Hill, Karen K.; Ticknor, Lawrence O.; Okinaka, Richard T.; Asay, Michelle; Blair, Heather; Bliss, Katherine A.; Laker, Mariam; Pardington, Paige E.; Richardson, Amber P.; Tonks, Melinda; Beecher, Douglas J.; Kemp, John D.; Kolstø, Anne-Brit; Wong, Amy C. Lee; Keim, Paul

    2004-01-01

    DNA from over 300 Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis isolates was analyzed by fluorescent amplified fragment length polymorphism (AFLP). B. thuringiensis and B. cereus isolates were from diverse sources and locations, including soil, clinical isolates and food products causing diarrheal and emetic outbreaks, and type strains from the American Type Culture Collection, and over 200 B. thuringiensis isolates representing 36 serovars or subspecies were from the U.S. D...

  11. Narrow terahertz attenuation signatures in Bacillus thuringiensis.

    Science.gov (United States)

    Zhang, Weidong; Brown, Elliott R; Viveros, Leamon; Burris, Kellie P; Stewart, C Neal

    2014-10-01

    Terahertz absorption signatures from culture-cultivated Bacillus thuringiensis were measured with a THz photomixing spectrometer operating from 400 to 1200 GHz. We observe two distinct signatures centered at ∼955 and 1015 GHz, and attribute them to the optically coupled particle vibrational resonance (surface phonon-polariton) of Bacillus spores. This demonstrates the potential of the THz attenuation signatures as "fingerprints" for label-free biomolecular detection. PMID:23821459

  12. Narrow terahertz attenuation signatures in Bacillus thuringiensis.

    Science.gov (United States)

    Zhang, Weidong; Brown, Elliott R; Viveros, Leamon; Burris, Kellie P; Stewart, C Neal

    2014-10-01

    Terahertz absorption signatures from culture-cultivated Bacillus thuringiensis were measured with a THz photomixing spectrometer operating from 400 to 1200 GHz. We observe two distinct signatures centered at ∼955 and 1015 GHz, and attribute them to the optically coupled particle vibrational resonance (surface phonon-polariton) of Bacillus spores. This demonstrates the potential of the THz attenuation signatures as "fingerprints" for label-free biomolecular detection.

  13. Mode of action of mosquitocidal Bacillus thuringiensis toxins.

    Science.gov (United States)

    Soberón, Mario; Fernández, Luisa E; Pérez, Claudia; Gill, Sarjeet S; Bravo, Alejandra

    2007-04-01

    Cry toxins from Bacillus thuringiensis (Bt) are used for insect control. Their primary action is to lyse midgut epithelial cells. In lepidopteran insects, Cry1A monomeric toxins interact with a first receptor and this interaction triggers toxin oligomerization. The oligomeric structure interacts then with a second GPI-anchored receptor that induces insertion into membrane microdomains and larvae death. In the case of mosquitocidal Bt strains, two different toxins participate, Cry and Cyt. These toxins have a synergistic effect and Cyt1Aa overcomes Cry toxin-resistance. We will summarize recent findings on the identification of Cry receptors in mosquitoes and the mechanism of synergism: Cyt1Aa synergizes or suppresses resistance to Cry toxins by functioning as a Cry membrane-bound receptor. PMID:17145072

  14. Characterization of native Bacillus thuringiensis strains and selection of an isolate active against Spodoptera frugiperda and Peridroma saucia.

    Science.gov (United States)

    Alvarez, Analía; Virla, Eduardo G; Pera, Licia M; Baigorí, Mario D

    2009-12-01

    Twelve Bacillus thuringiensis (Bt) strains, isolated from larvae and soil samples in Argentina, were molecularly and phenotypically characterized and their insecticidal activities against Spodoptera frugiperda and Peridroma saucia were determined. One isolate--Bt RT--produced more than 93% mortality on first instar larvae of both species, which was higher than that produced by the reference strain Bt 4D1. Bt RT carried a different cry gene profile than Bt 4D1. Scanning electron microscopy showed the presence of bipyramidal and cuboidal crystals. Phenotypic characterization revealed lytic enzymes that could contribute to Bt pathogenicity. PMID:19693442

  15. Mobility of adsorbed Cry1Aa insecticidal toxin from Bacillus thuringiensis (Bt) on montmorillonite measured by fluorescence recovery after photobleaching (FRAP)

    Science.gov (United States)

    Helassa, Nordine; Daudin, Gabrielle; Noinville, Sylvie; Janot, Jean-Marc; Déjardin, Philippe; Staunton, Siobhán; Quiquampoix, Hervé

    2010-06-01

    The insecticidal toxins produced by genetically modified Bt crops are introduced into soil through root exudates and tissue decomposition and adsorb readily on soil components, especially on clays. This immobilisation and the consequent concentration of the toxins in "hot spots" could increase the exposure of soil organisms. Whereas the effects on non-target organisms are well documented, few studies consider the migration of the toxin in soil. In this study, the residual mobility of Bt Cry1Aa insecticidal toxin adsorbed on montmorillonite was assessed using fluorescence recovery after photobleaching (FRAP). This technique, which is usually used to study dynamics of cytoplasmic and membrane molecules in live cells, was applied for the first time to a protein adsorbed on a finely divided swelling clay mineral, montmorillonite. No mobility of adsorbed toxin was observed at any pH and at different degrees of surface saturation.

  16. Bacillus thuringiensis: fermentation process and risk assessment: a short review

    Directory of Open Access Journals (Sweden)

    Deise M. F Capalbo

    1995-02-01

    Full Text Available Several factors make the local production of Bacillus thuringiensis (Bt highly appropriate for pest control in developing nations. Bt can be cheaply produced on a wide variety of low cost, organic substrates. Local production results in considerable savings in hard currency which otherwise would be spent on importation of chemical and biological insecticides. The use of Bt in Brazil has been limited in comparison with chemical insecticides. Although Bt is imported, some Brazilian researchers have been working on its development and production. Fermentation processes (submerged and semi-solid were applied, using by-products from agro-industries. As the semi-solid fermentation process demonstrated to be interesting for Bt endotoxins production, it could be adopted for small scale local production. Although promising results had been achieved, national products have not been registered due to the absence of a specific legislation for biological products. Effective actions are being developed in order to solve this gap. Regardless of the biocontrol agents being considered atoxic and harmless to the environment, information related to direct and indirect effects of microbials are still insufficient in many cases. The risk analysis of the use of microbial control agents is of upmost importance nowadays, and is also discussed.

  17. Bacillus thuringiensis Toxins: An Overview of Their Biocidal Activity

    Science.gov (United States)

    Palma, Leopoldo; Muñoz, Delia; Berry, Colin; Murillo, Jesús; Caballero, Primitivo

    2014-01-01

    Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize crystal proteins whose biological activity is still unknown. In this review, we provide an updated overview of the known active Bt toxins to date and discuss their activities. PMID:25514092

  18. Screeninq on Synergist of Bacillus thuringiensis Wettable Powder

    Institute of Scientific and Technical Information of China (English)

    Donghua GE; Xiaohong ZHANG; Ziyan NANGONG; Ping SONG; Qinying WANG; Keqiang CAO

    2012-01-01

    [Objective] This study aimed to screen the best synergistic material for Bt wettable powder and evaluate their synergistic effect. [Method] The synergism of six different kinds of additives for Bacillus thuringiensis wettable powder (Bt WP) on the 2^nd instar larvae of Plutella xylostella was tested by method of leaf dipping in labora- tory. [Result] The mixtures of Bt with 0.1% ZnCl2, 0.5% ZnCl2, 1.0% ZnCl2, 1.0% MgCI2, 0.5% boric acid, 1.0% boric acid, 0.5% citric acid or 1.0% citric acid all ex- hibited synergistic effect, in which the synergistic effect of mixture containing 0.5% boric acid was the highest, with 17.2 synergistic ratio; followed by the mixture containing 1.0% ZnCl2, with 15.6 synergistic ratio. Moreover, addition of 0.5% boric acid could shorten the median lethal time of Bt wettable powder by about 10 h. After the mixtures of Bt with 0.5% boracic acid or 1.0% ZnCl2 was stored for 15 d at room temperature, toxicities of the two mixtures did not change significantly. [Conclusion] Boracic acid as the synergist of Bt wettable powder could not only increase insecti- cidal effect of Bt, but also accelerate its insecticidal rate. So, boracic acid could improve the disadvantages of Bt wettable powder such as poor insecticidal effect and slow insecticidal speed in a certain degree.

  19. Genome Sequence of Bacillus thuringiensis subsp. kurstaki Strain HD-1

    OpenAIRE

    Day, Michael; Ibrahim, Mohamed; Dyer, David; Bulla, Lee

    2014-01-01

    We report here the complete genome sequence of Bacillus thuringiensis subsp. kurstaki strain HD-1, which serves as the primary U.S. reference standard for all commercial insecticidal formulations of B. thuringiensis manufactured around the world.

  20. The Complete Genome Sequence of Bacillus thuringiensis AlHakam

    Energy Technology Data Exchange (ETDEWEB)

    Challacombe, Jean F.; Altherr, Michael R.; Xie, Gary; Bhotika,Smriti S.; Brown, Nancy; Bruce, David; Campbell, Connie S.; Campbell,Mary L.; Chen, Jin; Chertkov, Olga; Cleland, Cathy; Dimitrijevic, Mira; Doggett, Norman A.; Fawcett, John J.; Glavina, Tijana; Goodwin, Lynne A.; Green, Lance D.; Han, Cliff S.; Hill, Karen K.; Hitchcock, Penny; Jackson, Paul J.; Keim, Paul; Kewalramani, Avinash Ramesh; Longmire, Jon; Lucas, Susan; Malfatti, Stephanie; Martinez, Diego; McMurry, Kim; Meincke, Linda J.; Misra, Monica; Moseman, Bernice L.; Mundt, Mark; Munk,A. Christine; Okinaka, Richard T.; Parson-Quintana, B.; Reilly, LeePhilip; Richardson, Paul; Robinson, Donna L.; Rubin, Eddy; Saunders,Elizabeth; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson,Linda S.; Tice, Hope; Ticknor, Lawrence O.; Wills, Patti L.; Gilna, Paul; Brettin, Thomas S.

    2007-04-01

    Bacillus thuringiensis is an insect pathogen that is widelyused as a biopesticide (3). Here we report the finished, annotated genomesequence of B. thuringiensis Al Hakam, which was collected in Iraq by theUnited Nations Special Commission (2).

  1. Effect of Bacillus thuringiensis on Habrobracon hebetor during combined biological control of Plodia interpunctella

    Institute of Scientific and Technical Information of China (English)

    Akinkurolere Rotimi Oluwafemi; Qiong Rao; Xi-Qiao Wang; Hong-Yu Zhang

    2009-01-01

    The suitability of combining microbial pesticides and an insect parasitoid for pest management of stored cereal in China was evaluated using laboratory assays.For this purpose,interactions between Bacillus thuringiensis (Bt),Bt-intoxicated host larvae and the parasitoid Habrobracon hebetor (Say) (Hymenoptera:Braconidae) were alone caused 41.67% and 35.35% P.interpunctella larval mortality respectively.The Btparasitoid combined treatment significantly increased mortality of P.interpunctella (86%).Progeny development of H.hebetor was dependent upon its susceptibility to Bt.Fewer parasitoids emerged from Bt-parasitoid combined treatment than in non-Bt treatments.However,since Bt did not prevent parasitoid development,a combined treatment with Bt and parasitoid release could produce better protection against P.interpunctella than either treatments when used singly,because their lethal effects were additive to each other.

  2. A pangenomic study of Bacillus thuringiensis

    Institute of Scientific and Technical Information of China (English)

    Yongjun Fang; Songnian Hu; Jie Zhang; Ibrahim A1-Mssallem; Jun Yu; Zhaolong Li; Jiucheng Liu; Changlong Shu; Xumin Wang; Xiaowei Zhang; Xiaoguang Yu; Duojun Zhao; Guiming Liu

    2011-01-01

    Bacillus thuringiensis (B.thuringiensis) is a soil-dwelling Gram-positive bacterium and its plasmid-encoded toxins (Cry) are commonly used as biological alternatives to pesticides.In a pangenomic study,we sequenced seven B.thuringiensis isolates in both high coverage and base quality using the next-generation sequencing platform.The B.thuringiensis pangenome was extrapolated to have 4196 core genes and an asymptotic value of 558 unique genes when a new genome is added.Compared to the pangenomes of its closely related species of the same genus,B.thuringiensis pangenome shows an open characteristic,similar to B.cereus but not to B.anthracis; the latter has a closed pangenome.We also found extensive divergence among the seven B.thuringiensis genome assemblies,which harbor ample repeats and single nucleotide polymorphisms (SNPs).The identities among orthologous genes are greater than 84.5% and the hotspots for the genome variations were discovered in genomic regions of 2.3-2.8 Mb and 5.0-5.6 Mb.We concluded that high-coverage sequence assemblies from multiple strains,before all the gaps are closed,are very useful for pangenomic studies.

  3. Genome characteristics of a novel phage from Bacillus thuringiensis showing high similarity with phage from Bacillus cereus.

    Directory of Open Access Journals (Sweden)

    Yihui Yuan

    Full Text Available Bacillus thuringiensis is an important entomopathogenic bacterium belongs to the Bacillus cereus group, which also includes B. anthracis and B. cereus. Several genomes of phages originating from this group had been sequenced, but no genome of Siphoviridae phage from B. thuringiensis has been reported. We recently sequenced and analyzed the genome of a novel phage, BtCS33, from a B. thuringiensis strain, subsp. kurstaki CS33, and compared the gneome of this phage to other phages of the B. cereus group. BtCS33 was the first Siphoviridae phage among the sequenced B. thuringiensis phages. It produced small, turbid plaques on bacterial plates and had a narrow host range. BtCS33 possessed a linear, double-stranded DNA genome of 41,992 bp with 57 putative open reading frames (ORFs. It had a typical genome structure consisting of three modules: the "late" region, the "lysogeny-lysis" region and the "early" region. BtCS33 exhibited high similarity with several phages, B. cereus phage Wβ and some variants of Wβ, in genome organization and the amino acid sequences of structural proteins. There were two ORFs, ORF22 and ORF35, in the genome of BtCS33 that were also found in the genomes of B. cereus phage Wβ and may be involved in regulating sporulation of the host cell. Based on these observations and analysis of phylogenetic trees, we deduced that B. thuringiensis phage BtCS33 and B. cereus phage Wβ may have a common distant ancestor.

  4. Effects of bacillus thuringiensis transgenic corn on corn earworm and fall armyworm (Lepidoptera: Noctuidae) densities.

    Science.gov (United States)

    Chilcutt, Charles F; Odvody, Gary N; Correa, J Carlos; Remmers, Jeff

    2007-04-01

    We examined 17 pairs of near-isogenic hybrids of Bacillus thuringiensis (Bt) (176, Mon810, and Bt11) and non-Bt corn, Zea mays L., to examine the effects of Bt on larval densities of Helicoverpa zea (Boddie) and Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) during 2 yr. During ear formation, instar densities of H. zea and S. frugiperda were recorded for each hybrid. We found that H. zea first, second, and fifth instar densities were each affected by Mon810 and Bt11 Bt corn but not by 176 corn. Surprisingly, first and second instars were found in higher numbers on ears of Mon810 and Bt11 corn than on non-Bt corn. Densities of third and fourth instars were equal on Bt and non-Bt hybrids, whereas densities of fifth instars were lower on Bt plants. S. frugiperda larval densities were only affected during 1 yr when second, and fourth to sixth instars were lower on ears of Mon810 and Bt11 hybrids compared with their non-Bt counterparts. Two likely explanations for early instar H. zea densities being higher on Bt corn than non-Bt corn are that (1) Bt toxins delay development, creating a greater abundance of early instars that eventually die, and (2) reduced survival of H. zea to later instars on Bt corn decreased the normal asymmetric cannibalism or H. zea-S. frugiperda intraguild predation of late instars on early instars. Either explanation could explain why differences between Bt and non-Bt plants were greater for H. zea than S. frugiperda, because H. zea is more strongly affected by Bt toxins and more cannibalistic.

  5. Isolation of bacillus thuringiensis from different samples from Mansehra District

    International Nuclear Information System (INIS)

    The insecticidal activity of Bacillus thuringiensis has made it very interesting for the control of a variety of agricultural pests and human disease vectors. The present study is an attempt to explore the potential and diversity. of Bacillus thuringiensis. from the local environment for the control of cotton spotted bollworm (Earias sp.), a major pest of cotton. Two hundred and ninety eight samples of soil, grain dust, wild animal dung, birds dropping, decaying leaves and dead insects were collected from different ecological environments of Mansehra District yielding 438 Bacillus thuringiensis isolates that produce parasporal crystalline inclusions. In this study the soil samples were found to be the richest source for Bacillus thuringiensis. (author)

  6. Adhesion of Spores of Bacillus thuringiensis on a Planar Surface

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Joy, David Charles [ORNL; Palumbo, Anthony Vito [ORNL; Tsouris, Costas [ORNL

    2010-01-01

    Adhesion of spores of Bacillus thuringiensis (Bt) and spherical silica particles on surfaces was experimentally and theoretically investigated in this study. Topography analysis via atomic force microscopy (AFM) and electron microscopy indicates that Bt spores are rod shaped, {approx}1.3 {mu}m in length and {approx}0.8 {mu}m in diameter. The adhesion force of Bt spores and silica particles on gold-coated glass was measured at various relative humidity (RH) levels by AFM. It was expected that the adhesion force would vary with RH because the individual force components contributing to the adhesion force depend on RH. The adhesion force between a particle and a planar surface in atmospheric environments was modeled as the contribution of three major force components: capillary, van der Waals, and electrostatic interaction forces. Adhesion force measurements for Bt spore (silica particle) and the gold surface system were comparable with calculations. Modeling results show that there is a critical RH value, which depends on the hydrophobicity of the materials involved, below which the water meniscus does not form and the contribution of the capillary force is zero. As RH increases, the van der Waals force decreases while the capillary force increases to a maximum value.

  7. Complete Genome Sequence of Bacillus thuringiensis Bacteriophage BMBtp2

    OpenAIRE

    Dong, Zhaoxia; Peng, Donghai; Wang, Yueying; Zhu, Lei; Ruan, Lifang; Sun, Ming

    2013-01-01

    Bacillus thuringiensis is an insect pathogen which has been widely used for biocontrol. During B. thuringiensis fermentation, lysogenic bacteriophages cause severe losses of yield. Here, we announce the complete genome sequence of a bacteriophage, BMBtp2, which is induced from B. thuringiensis strain YBT-1765, which may be helpful to clarify the mechanism involved in bacteriophage contamination.

  8. Characterization of the parasporal inclusion of Bacillus thuringiensis subsp. kyushuensis.

    OpenAIRE

    Held, G. A.; Kawanishi, C. Y.; Huang, Y. S.

    1990-01-01

    Electron microscopy of Bacillus thuringiensis subsp. kyushuensis revealed that the parasporal inclusions are composed of a homogeneous center surrounded by a thick, electron-dense coating. Antibodies directed against the 135- and 65-kilodalton B. thuringiensis subsp. israelensis peptides cross-reacted with the 70- and 26-kilodalton peptides, respectively, of B. thuringiensis subsp. kyushuensis.

  9. Structural relatedness between mosquitocidal endotoxins of Bacillus thuringiensis subsp. israelensis.

    OpenAIRE

    Garduno, F; Thorne, L.; Walfield, A M; Pollock, T J

    1988-01-01

    A mosquitocidal toxin gene, cloned from Bacillus thuringiensis subsp. israelensis, was introduced into mutant crystal-negative B. thuringiensis subsp. israelensis cells. Partial toxicity to mosquitos was restored. The 58-kilodalton cloned gene product is a minor protein component of B. thuringiensis subsp. israelensis crystals and is structurally related to a major, 135-kilodalton crystal toxin.

  10. Cloning of the Bacillus thuringiensis serovar sotto chitinase (Schi gene and characterization of its protein

    Directory of Open Access Journals (Sweden)

    Wan-Fang Zhong

    2005-12-01

    Full Text Available Chitinase plays a positive role in the pathogenicity of Bacillus thuringiensis to insect pests. We used touchdown PCR to clone the chitinase (Schi gene from Bacillus thuringiensis serovar sotto (Bt sotto chromosomal DNA. Our DNA sequencing analysis revealed that the Bt sotto Schi gene consists of an open reading frame (ORF of 2067 nucleotides with codes for the chitinase precursor. We also found that the putative promoter consensus sequences (the -35 and -10 regions of the Bt soto Schi gene are identical to those of the chiA71 gene from Bt Pakistani, the chiA74 gene from Bt kenyae and the ichi gene from Bt israelensis. The Schi chitinase precursor is 688 amino acids long with an estimated molecular mass of 75.75 kDa and a theoretical isoelectric point of 5.74, and contains four domains, which are, in sequence, a signal peptide, an N-terminal catalytic domain, a fibronectin type III like domain and a C-terminal chitin-binding domain. Sequence comparison and the evolutionary relationship of the Bt sotto Schi chitinase to other chitinase and chitinase-like proteins are also discussed.

  11. Worldwide Abundance and Distribution of Bacillus thuringiensis Isolates

    OpenAIRE

    Martin, Phyllis A. W.; Travers, Russell S.

    1989-01-01

    We found the insect control agent Bacillus thuringiensis to be a ubiquitous soil microorganism. Using acetate selection to screen soil samples, we isolated B. thuringiensis in 785 of 1,115 soil samples. These samples were obtained in the United States and 29 other countries. A total of 48% of the B. thuringiensis isolates (8,916 isolates) fit the biochemical description of known varieties, while 52% represented undescribed B. thuringiensis types. Over 60% (1,052 isolates) of the isolates test...

  12. Novel toxicity of Bacillus thuringiensis strains against the melon fruit fly, Bactrocera cucurbitae (Diptera: Tephritidae).

    Science.gov (United States)

    Shishir, Md Asaduzzaman; Akter, Asma; Bodiuzzaman, Md; Hossain, M Aftab; Alam, Md Musfiqul; Khan, Shakil Ahmed; Khan, Shakila Nargis; Hoq, M Mozammel

    2015-01-01

    Bactrocera cucurbitae (melon fruit fly) is one of the most detrimental vegetable-damaging pests in Bangladesh. The toxicity of Bacillus thuringiensis (Bt) has been reported against a few genera of Bactrocera in addition to numerous other insect species. Bt strains, harbouring cry1A-type genes were, therefore, assayed in vivo against the 3(rd) instar larvae of B. cucurbitae in this study. The biotype-based prevalence of cry1 and cry1A genes was calculated to be 30.8% and 11.16%, respectively, of the test strains (n=224) while their prevalence was greatest in biotype kurstaki. Though three indigenous Bt strains from biotype kurstaki with close genetic relationship exhibited higher toxicity, maximum mortalities were recorded for Btk HD-73 (96%) and the indigenous Bt JSc1 (93%). LC50 and LC99 values were determined to be 6.81 and 8.32 for Bt JSc1, 7.30 and 7.92 for Bt SSc2, and 6.99 and 7.67 for Btk HD-73, respectively. The cause of toxicity and its variation among the strains was found to be correlated with the synergistic toxic effects of cry1, cry2, cry3 and cry9 gene products, i.e. relevant Cry proteins. The novel toxicity of the B. thuringiensis strains against B. cucurbitae revealed in the present study thus will help in developing efficient and eco-friendly control measures such as Bt biopesticides and transgenic Bt cucurbits.

  13. Inactivation of Spores of Bacillus anthracis Sterne, Bacillus cereus, and Bacillus thuringiensis subsp. israelensis by Chlorination

    OpenAIRE

    Rice, E W; Adcock, N. J.; Sivaganesan, M; Rose, L. J.

    2005-01-01

    Three species of Bacillus were evaluated as potential surrogates for Bacillus anthracis for determining the sporicidal activity of chlorination as commonly used in drinking water treatment. Spores of Bacillus thuringiensis subsp. israelensis were found to be an appropriate surrogate for spores of B. anthracis for use in chlorine inactivation studies.

  14. Biological characteristics of Bacillus thuringiensis strain Btll and identification of its cry-type genes

    Institute of Scientific and Technical Information of China (English)

    Tinghui LIU; Wei GUO; Weiming SUN; Yongxiang SUN

    2009-01-01

    A novel strain of Bacillus thuringiensis Bt11, isolated from soil samples in China, was classified and characterized in terms of its crystal proteins, cry genes content. The Bt11 strain showed high toxicity against Spodoptera exigua and Helicoverpa armigera neonates. Btll strain shares morphological and biochemical characteristics with the previously described Bacillus thuringiensis subsp. kurstaki. SDS-polyacrylamide gel electrophoresis revealed that crystals were composed of several polypeptides ranging from 20 to 130 kDa, of which the 35, 80, and 130 kDa proteins were the major components. PCR-RFLP with total DNA from strain Btll and specific primers for cryl, cry2, cry3, cry4/10, cry7, cry8, cry9, and cryll genes revealed that crylAa, crylAb, crylla, and cry9Ea genes were present.

  15. The Regulation of Exosporium-Related Genes in Bacillus thuringiensis

    Science.gov (United States)

    Peng, Qi; Kao, Guiwei; Qu, Ning; Zhang, Jie; Li, Jie; Song, Fuping

    2016-01-01

    Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis (Bt) are spore-forming members of the Bacillus cereus group. Spores of B. cereus group species are encircled by exosporium, which is composed of an external hair-like nap and a paracrystalline basal layer. Despite the extensive studies on the structure of the exosporium-related proteins, little is known about the transcription and regulation of exosporium gene expression in the B. cereus group. Herein, we studied the regulation of several exosporium-related genes in Bt. A SigK consensus sequence is present upstream of genes encoding hair-like nap proteins (bclA and bclB), basal layer proteins (bxpA, bxpB, cotB, and exsY ), and inosine hydrolase (iunH). Mutation of sigK decreased the transcriptional activities of all these genes, indicating that the transcription of these genes is controlled by SigK. Furthermore, mutation of gerE decreased the transcriptional activities of bclB, bxpB, cotB, and iunH but increased the expression of bxpA, and GerE binds to the promoters of bclB, bxpB, cotB, bxpA, and iunH. These results suggest that GerE directly regulates the transcription of these genes, increasing the expression of bclB, bxpB, cotB, and iunH and decreasing that of bxpA. These findings provide insight into the exosporium assembly process at the transcriptional level. PMID:26805020

  16. Unlinked genetic loci control the reduced transcription of aminopeptidase N 1 and 3 in the European corn borer and determine tolerance to Bacillus thuringiensis Cry1Ab toxin

    Science.gov (United States)

    Crystalline (Cry) toxins from Bacillus thuringiensis (Bt) control insect feeding damage on crop plants via foliar applications or by expression within transgenic plants, but continued Bt use is threatened by the buildup of insect resistance traits. Aminopeptidase N (apn) gene family members encode m...

  17. A Comparison of Soil microbial community structure, protozoa and nematodes in field plots of conventional and genetically modified maize expressing the Bacillus thuringiensis Cry1Ab toxin

    DEFF Research Database (Denmark)

    Griffiths, B. S.; Caul, S.; Thompson, J.;

    2005-01-01

    Field trials were established at three European sites (Denmark, Eastern France, South-West France) of genetically modified maize (Zea mays L.) expressing the CryIAb Bacillus thuringiensis toxin (Bt), the near-isogenic non-Bt cultivar, another conventional maize cultivar and grass. Soil from Denmark...

  18. Linkage of an ABCC transporter to a single QTL that controls Ostrinia nubilalis larval resistance to the Bacillus thuringiensis Cry1Fa toxin

    Science.gov (United States)

    Field evolved resistance of insect populations to Bacillus thuringiensis (Bt) crystalline (Cry) toxins expressed by crop plants has resulted in reduced control of insect feeding damage to field crops, and threatens the sustainability of Bt transgenic technologies. A single quantitative trait locus ...

  19. Genome Differences That Distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis

    OpenAIRE

    Radnedge, Lyndsay; Agron, Peter G.; Hill, Karen K.; Jackson, Paul J.; Ticknor, Lawrence O; Keim, Paul; Andersen, Gary L.

    2003-01-01

    The three species of the group 1 bacilli, Bacillus anthracis, B. cereus, and B. thuringiensis, are genetically very closely related. All inhabit soil habitats but exhibit different phenotypes. B. anthracis is the causative agent of anthrax and is phylogenetically monomorphic, while B. cereus and B. thuringiensis are genetically more diverse. An amplified fragment length polymorphism analysis described here demonstrates genetic diversity among a collection of non-anthrax-causing Bacillus speci...

  20. Bacillus thuringiensis Cry3Aa protoxin intoxication of Tenebrio molitor induces widespread changes in the expression of serine peptidase transcripts

    Science.gov (United States)

    The yellow mealworm, Tenebrio molitor, is a pest of stored grain products and is sensitive to the coleopteran-specific Cry3Aa toxin from Bacillus thuringiensis (Bt). Larvae digest protein initially with cysteine peptidases in the anterior midgut and further with serine peptidases in middle and poste...

  1. Isolation of transcripts from Diabrotica virgifera virgifera LeConte responsive to the Bacillus thuringiensis toxin Cry3Bb1

    Science.gov (United States)

    Crystal proteins derived from Bacillus thuringiensis (Bt) have been widely used as a method of insect pest management for several decades. In recent years, a transgenic corn expressing the Cry3Bb1 toxin has been successfully used for protection against corn rootworm larvae (Genus...

  2. The introduction of integrated pest management in the Ethiopian horticultural sector : Bacillus thuringiensis strains and its toxicity

    NARCIS (Netherlands)

    Belder, den E.; Elderson, J.

    2012-01-01

    1 Introduction As hazards of conventional broad acting pesticides are documented, researchers, poli cymakers and growers look for pesticides that are toxic only to the target pest, have no impact on other such as beneficial species, and have fewer environmental effects. Bacillus thuringiensis (Bt) i

  3. Bacillus thuringiensis Cry34Ab1/Cry35Ab1 Interactions with Western Corn Rootworm Midgut Membrane Binding Sites

    OpenAIRE

    Huarong Li; Monica Olson; Gaofeng Lin; Timothy Hey; Sek Yee Tan; Narva, Kenneth E.

    2013-01-01

    BACKGROUND: Bacillus thuringiensis (Bt) Cry34Ab1/Cry35Ab1 are binary insecticidal proteins that are co-expressed in transgenic corn hybrids for control of western corn rootworm, Diabrotica virgifera virgifera LeConte. Bt crystal (Cry) proteins with limited potential for field-relevant cross-resistance are used in combination, along with non-transgenic corn refuges, as a strategy to delay development of resistant rootworm populations. Differences in insect midgut membrane binding site interact...

  4. Isolation of strains of Bacillus thuringiensis insecticidal biological activity against Ceratitis capitata

    International Nuclear Information System (INIS)

    The present work is to study the effect of toxins (δ-endotoxins) extracted from strains of Bacillus thuringiensis isolated from the mud on the fly Sabkhat Dejoumi Ceratitis capitata, a pest of citrus and fruit trees. Among 51 isolated tested, 15 showed a very significant insecticidal activity, characterized by mortality rates exceeding 80 pour cent. These mortality rates are caused by endotoxins of Bt revealed variability between them. The preliminary results of this study encourage us towards the characterization of the insecticidal activity produced by strains of Bt for large scale application.

  5. Analysis of opportunities and challenges in patenting of Bacillus thuringiensis insecticidal crystal protein genes.

    Science.gov (United States)

    Swamy, H M Mahadeva; Asokan, R; Rajasekaran, P E; Mahmood, Riaz; Nagesha, S N; Arora, D K

    2012-04-01

    Bacillus thuringiensis (Bt) is the most widely used microbial control agent. The broad spectrum of susceptible hosts, production on artificial media and ease of application has caused the widespread use of this bacterium against several pests in agriculture, forest and vectors of human diseases. B.thuringiensis toxins are highly species specific which provide economic, environmental benefits, potential for future control and spread of the technology worldwide. This makes the B. thuringiensis crystal proteins an interesting tool for the implementation in integrated pest management programs. It has gained importance over the last 100 years for its biocontrol properties which is used in this review as a case study and analysis of the patents granted on B. thuringiensis was carried out. This study categorizes a number of patents related to B.thuringiensis insecticidal crystal proteins, application of B.thuringiensis insecticidal crystal proteins and the development of patentable technologies. The analyses were done using various criteria like patenting trends over the years, assignees playing a major role, comparison of the technology used in different patents and the patenting activity across the insect orders. Patent documents related to bacterium B.thuringiensis contain a trove of technical and commercial information and thus, patent analysis is considered as a useful tool for R management and techno economical development. Patent analysis also helps identifying and evaluating new and alternate technologies, keeping abreast with latest technologies for business interests, finding solutions to technical problems and ideas for new innovative trends.

  6. Analysis of opportunities and challenges in patenting of Bacillus thuringiensis insecticidal crystal protein genes.

    Science.gov (United States)

    Swamy, H M Mahadeva; Asokan, R; Rajasekaran, P E; Mahmood, Riaz; Nagesha, S N; Arora, D K

    2012-04-01

    Bacillus thuringiensis (Bt) is the most widely used microbial control agent. The broad spectrum of susceptible hosts, production on artificial media and ease of application has caused the widespread use of this bacterium against several pests in agriculture, forest and vectors of human diseases. B.thuringiensis toxins are highly species specific which provide economic, environmental benefits, potential for future control and spread of the technology worldwide. This makes the B. thuringiensis crystal proteins an interesting tool for the implementation in integrated pest management programs. It has gained importance over the last 100 years for its biocontrol properties which is used in this review as a case study and analysis of the patents granted on B. thuringiensis was carried out. This study categorizes a number of patents related to B.thuringiensis insecticidal crystal proteins, application of B.thuringiensis insecticidal crystal proteins and the development of patentable technologies. The analyses were done using various criteria like patenting trends over the years, assignees playing a major role, comparison of the technology used in different patents and the patenting activity across the insect orders. Patent documents related to bacterium B.thuringiensis contain a trove of technical and commercial information and thus, patent analysis is considered as a useful tool for R management and techno economical development. Patent analysis also helps identifying and evaluating new and alternate technologies, keeping abreast with latest technologies for business interests, finding solutions to technical problems and ideas for new innovative trends. PMID:22239684

  7. PROFILIN ACTIVATES BACILLUS THURINGIENSIS PHOSPHOINOSITIDE SPECIFIC PHOSPHOLIPASE C

    Directory of Open Access Journals (Sweden)

    Sandeepta Burgula

    2012-08-01

    Full Text Available Many extracellular signaling molecules including hormones, growth factors, neurotransmitters andimmunoglobulins elicit intracellular responses by activating phosphatidylinositol-specific phospholipase C (PI-PLCupon binding to their cell surface receptors. Activated PLC catalyses the hydrolysis of Phosphotidylinositol 4,5-bisphosphate (PIP2 to generate DAG and IP3 , which act as signaling molecules that control various cellular processes.Exploring the mechanism of regulation of PLC activity may lead to understanding various signaling events thatregulate cell growth and differentiation. One of the dramatic effects of profilin is inhibition of PIP2 hydrolysis by PLC-γ in eukaryotic cells. In the present study, the effect of profilin on Phosphotidylinositol specific phospholipase C (PI-PLC purified from Bacillus thuringiensis (Bt was examined. Assay of PI-PLC activity indicated that Bovine profilinactivated the hydrolysis of phosphotidylinositol (PI by BtPI-PLC in a concentration dependent manner under in vitroconditions. A 250 % increase in activity was noted in the presence of profilin but not in presence of phosphoprofilin. Inthe presence of profilin more proteins are observed in the soluble fraction. In conclusion it can be stated that thatprofilin activates bacterial PLC activity towards PI hydrolysis

  8. The Phylloplane as a Source of Bacillus thuringiensis Variants

    OpenAIRE

    Smith, Robert A.; Couche, Graham A.

    1991-01-01

    Novel variants of Bacillus thuringiensis were isolated from the phylloplane of deciduous and conifer trees as well as of other plants. These isolates displayed a range of toxicity towards Trichoplusia ni. Immunoblot and toxin protein analysis indicate that these strains included representatives of the three principal B. thuringiensis pathotypes active against larvae of the orders Lepidoptera, Diptera, and Coleoptera. We propose that B. thuringiensis be considered part of the common leaf micro...

  9. Resistance of Trichoplusia ni Populations Selected by Bacillus thuringiensis Sprays to Cotton Plants Expressing Pyramided Bacillus thuringiensis Toxins Cry1Ac and Cry2Ab

    Science.gov (United States)

    Kain, Wendy; Song, Xiaozhao; Janmaat, Alida F.; Zhao, Jian-Zhou; Myers, Judith; Shelton, Anthony M.

    2014-01-01

    Two populations of Trichoplusia ni that had developed resistance to Bacillus thuringiensis sprays (Bt sprays) in commercial greenhouse vegetable production were tested for resistance to Bt cotton (BollGard II) plants expressing pyramided Cry1Ac and Cry2Ab. The T. ni colonies resistant to Bacillus thuringiensis serovar kurstaki formulations were not only resistant to the Bt toxin Cry1Ac, as previously reported, but also had a high frequency of Cry2Ab-resistant alleles, exhibiting ca. 20% survival on BollGard II foliage. BollGard II-resistant T. ni strains were established by selection with BollGard II foliage to further remove Cry2Ab-sensitive alleles in the T. ni populations. The BollGard II-resistant strains showed incomplete resistance to BollGard II, with adjusted survival values of 0.50 to 0.78 after 7 days. The resistance to the dual-toxin cotton plants was conferred by two genetically independent resistance mechanisms: one to Cry1Ac and one to Cry2Ab. The 50% lethal concentration of Cry2Ab for the resistant strain was at least 1,467-fold that for the susceptible T. ni strain. The resistance to Cry2Ab in resistant T. ni was an autosomally inherited, incompletely recessive monogenic trait. Results from this study indicate that insect populations under selection by Bt sprays in agriculture can be resistant to multiple Bt toxins and may potentially confer resistance to multitoxin Bt crops. PMID:25480752

  10. Effects of two varieties of Bacillus thuringiensis maize on the biology of Plodia interpunctella.

    Science.gov (United States)

    Gryspeirt, Aiko; Grégoire, Jean-Claude

    2012-05-01

    On the market since 1996, genetically modified plants expressing an insecticidal toxin (Cry toxin stemmed from Bacillus thuringiensis) target several lepidopteran and coleopteran pests. In this study, we assessed the impact of two varieties of Bt maize producing different toxins (Cry1Ab or Cry1Fa, respectively) on the biology of a storage pest: Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). The Indianmeal moths were susceptible to both toxins but showed an escape behavior only from Cry1Fa. The weight of females issued from larvae reared on Cry1Ab increased with increasing toxin concentration, but adults of both sexes reared on Cry1Fa had decreased weight. Both toxins increased development time from egg to adult regardless of sex and had no impact on the male adult lifespan. Finally, we recorded a time lag between metamorphosis from the non-Bt and the Bt diets, which increased proportionally to Cry concentration in the Bt diet.

  11. BOOK REVIEW: BACILLUS THURINGIENSIS: A CORNERSTONE OF MODERN AGRICULTURE

    Science.gov (United States)

    Are you interested in the technical issues surrounding the use of Bacillus thuringiensis pesticidal traits as sprays and as plant incorporated protectants (transgenic crops)? Should the dimensions of human health, ecology, entomology, risk assessment, resistance management, and d...

  12. Specificity of Bacillus thuringiensis endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts

    International Nuclear Information System (INIS)

    Binding studies were performed with two 125I-labeled Bacillus thuringiensis δ-endotoxins on brush border membrane vesicles prepared from the larval midgut of the tobacco hornworm Manduca sexta or the cabbage butterfly Pieris brassicae. One δ-endotoxin, Bt2-protoxin, is a 130-kDa recombinant crystalline protein from B. thuringiensis subsp. berliner. It kills larvae of both insect species. The active Bt2-toxin is a 60-kDa proteolytic fragment of the Bt2-protoxin. It binds saturably and with high affinity to brush border membrane vesicles from the midgut of both species. The other δ-endotoxin, Bt4412-protoxin, is a 136-kDa crystalline protein from B. thuringiensis subsp. thuringiensis, which is highly toxic for P. brassicae, but not for M. sexta larvae. Bt4412-toxin, obtained after proteolytic activation of Bt4412-protoxin, shows high-affinity saturable binding to P. brassicae vesicles but not to M. sexta vesicles. The correlation between toxicity and specific binding is further strengthened by competition studies. Other B. thuringiensis δ-endotoxins active against M. sexta compete for binding of 125I-labeled Bt2-toxin to M. sexta vesicles, whereas toxins active against dipteran or coleopteran larvae do not compete. Bt2-toxin and Bt4412-toxin bind to different sites on P. brassicae vesicles

  13. Specificity of Bacillus thuringiensis endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, C.; Vanderbruggen, H.; Hoefte, H.; Van Rie, J.; Jansens, S.; Van Mellaert, H. (J. Plateaustraat, Gent (Belgium))

    1988-11-01

    Binding studies were performed with two {sup 125}I-labeled Bacillus thuringiensis {delta}-endotoxins on brush border membrane vesicles prepared from the larval midgut of the tobacco hornworm Manduca sexta or the cabbage butterfly Pieris brassicae. One {delta}-endotoxin, Bt2-protoxin, is a 130-kDa recombinant crystalline protein from B. thuringiensis subsp. berliner. It kills larvae of both insect species. The active Bt2-toxin is a 60-kDa proteolytic fragment of the Bt2-protoxin. It binds saturably and with high affinity to brush border membrane vesicles from the midgut of both species. The other {delta}-endotoxin, Bt4412-protoxin, is a 136-kDa crystalline protein from B. thuringiensis subsp. thuringiensis, which is highly toxic for P. brassicae, but not for M. sexta larvae. Bt4412-toxin, obtained after proteolytic activation of Bt4412-protoxin, shows high-affinity saturable binding to P. brassicae vesicles but not to M. sexta vesicles. The correlation between toxicity and specific binding is further strengthened by competition studies. Other B. thuringiensis {delta}-endotoxins active against M. sexta compete for binding of {sup 125}I-labeled Bt2-toxin to M. sexta vesicles, whereas toxins active against dipteran or coleopteran larvae do not compete. Bt2-toxin and Bt4412-toxin bind to different sites on P. brassicae vesicles.

  14. Effect of midgut proteolytic activity on susceptibility of lepidopteran larvae to Bacillus thuringiensis subsp. kurstaki

    Directory of Open Access Journals (Sweden)

    Reza eTalaei-Hassanloui

    2014-01-01

    Full Text Available Bacillus thuringiensis (Bt is the most effective microbial control agent for controlling numerous species from different insect orders. All subspecies and strains of B. thuringiensis can produce a spore and a crystalline parasporal body. This crystal which contains proteinaceous protoxins is dissolved in the alkaline midgut, the resulting molecule is then cleaved and activated by proteolytic enzymes and acts as a toxin. An interesting aspect of this activation process is that variations in midgut pH and protease activity have been shown to account for the spectrum of some Bt proteins activity. Thus, an important factor that could be a determinant of toxin activity is the presence of proteases in the midgut microenvironment of susceptible insects. Reciprocally, any alteration in the midgut protease composition of the host can result in resistance to Bt. Here in this paper, we reviewed this processes in general and presented our assays to reveal whether resistance mechanism to Bt in Diamondback Moth larvae could be due to the function of the midgut proteases? We estimated LC50 for both probable susceptible and resistant populations in laboratory and greenhouse tests. Then, the midgut protease activities of the B. thuringiensis ind

  15. Ecological aspects of Bacillus thuringiensis in an Oxisol Ecologia do Bacillus thuringiensis num Latossolo

    Directory of Open Access Journals (Sweden)

    Lessandra Heck Paes Leme Ferreira

    2003-02-01

    Full Text Available Bacillus thuringiensis is a Gram positive, sporangial bacterium, known for its insecticidal habilities. Survival and conjugation ability of B. thuringiensis strains were investigated; vegetative cells were evaluated in non-sterile soil. Vegetative cells decreased rapidly in number, and after 48 hours the population was predominantly spores. No plasmid transfer was observed in non-sterile soil, probably because the cells died and the remaining cells sporulated quickly. Soil is not a favorable environment for B. thuringiensis multiplication and conjugation. The fate of purified B. thuringiensis toxin was analyzed by extractable toxin quantification using ELISA. The extractable toxin probably declined due to binding on surface-active particles in the soil.O comportamento de células vegetativas do Bacillus thuringiensis foi estudado em solo não esterilizado. Após o inóculo grande parte das células morrem e o restante esporula em 24 horas. Não foi observada conjugação provavelmente porque poucas células sobrevivem no solo e rapidamente esporulam, mostrando que este não é o ambiente propício para a multiplicação e conjugação desta bactéria. A toxina purificada, portanto livre de células, diminui rapidamente sua quantidade em solo não esterilizado. Provavelmente a ligação da toxina na fração argilosa do solo é a principal responsável por este fenômeno.

  16. Bacillus thuringiensis in Fecal Samples from Greenhouse Workers after Exposure to B. thuringiensis-Based Pesticides

    OpenAIRE

    Jensen, Gert B.; Larsen, Preben; Jacobsen, Bodil L.; Madsen, Bodil; Smidt, Lasse; Andrup, Lars

    2002-01-01

    In a study of occupational exposure to Bacillus thuringiensis, 20 exposed greenhouse workers were examined for Bacillus cereus-like bacteria in fecal samples and on biomonitoring filters. Bacteria with the following characteristics were isolated from eight individuals: intracellular crystalline inclusions characteristic of B. thuringiensis, genes for and production of B. cereus enterotoxins, and positivity for cry11 as determined by PCR. DNA fingerprints of the fecal isolates were identical t...

  17. Bacillus thuringiensis Conjugation in Simulated Microgravity

    Science.gov (United States)

    Beuls, Elise; van Houdt, Rob; Leys, Natalie; Dijkstra, Camelia; Larkin, Oliver; Mahillon, Jacques

    2009-10-01

    Spaceflight experiments have suggested a possible effect of microgravity on the plasmid transfer among strains of the Gram-positive Bacillus thuringiensis, as opposed to no effect recorded for Gram-negative conjugation. To investigate these potential effects in a more affordable experimental setup, three ground-based microgravity simulators were tested: the Rotating Wall Vessel (RWV), the Random Positioning Machine (RPM), and a superconducting magnet. The bacterial conjugative system consisted in biparental matings between two B. thuringiensis strains, where the transfer frequencies of the conjugative plasmid pAW63 and its ability to mobilize the nonconjugative plasmid pUB110 were assessed. Specifically, potential plasmid transfers in a 0-g position (simulated microgravity) were compared to those obtained under 1-g (normal gravity) condition in each device. Statistical analyses revealed no significant difference in the conjugative and mobilizable transfer frequencies between the three different simulated microgravitational conditions and our standard laboratory condition. These important ground-based observations emphasize the fact that, though no stimulation of plasmid transfer was observed, no inhibition was observed either. In the case of Gram-positive bacteria, this ability to exchange plasmids in weightlessness, as occurs under Earth's conditions, should be seen as particularly relevant in the scope of spread of antibiotic resistances and bacterial virulence.

  18. Risk assessment and ecological effects of transgenic Bacillus thuringiensis crops on non-target organisms.

    Science.gov (United States)

    Yu, Hui-Lin; Li, Yun-He; Wu, Kong-Ming

    2011-07-01

    The application of recombinant DNA technology has resulted in many insect-resistant varieties by genetic engineering (GE). Crops expressing Cry toxins derived from Bacillus thuringiensis (Bt) have been planted worldwide, and are an effective tool for pest control. However, one ecological concern regarding the potential effects of insect-resistant GE plants on non-target organisms (NTOs) has been continually debated. In the present study, we briefly summarize the data regarding the development and commercial use of transgenic Bt varieties, elaborate on the procedure and methods for assessing the non-target effects of insect-resistant GE plants, and synthetically analyze the related research results, mostly those published between 2005 and 2010. A mass of laboratory and field studies have shown that the currently available Bt crops have no direct detrimental effects on NTOs due to their narrow spectrum of activity, and Bt crops are increasing the abundance of some beneficial insects and improving the natural control of specific pests. The use of Bt crops, such as Bt maize and Bt cotton, results in significant reductions of insecticide application and clear benefits on the environment and farmer health. Consequently, Bt crops can be a useful component of integrated pest management systems to protect the crop from targeted pests.

  19. Risk Assessment and Ecological Effects of Transgenic Bacillus thuringiensis Crops on Non-Target Organisms

    Institute of Scientific and Technical Information of China (English)

    Hui-Lin Yu; Yun-He Li; Kong-Ming Wu

    2011-01-01

    The application of recombinant DNA technology has resulted in many insect-resistant varieties by genetic engineering (GE). Crops expressing Cry toxins derived from Bacillus thuringiensis (Bt) have been planted worldwide, and are an effective tool for pest control. However, one ecological concern regarding the potential effects of insect-resistant GE plants on non-target organisms (NTOs) has been continually debated.In the present study, we briefly summarize the data regarding the development and commercial use of transgenic Bt varieties, elaborate on the procedure and methods for assessing the non-target effects of insect-resistant GE plants, and synthetically analyze the related research results, mostly those published between 2005 and 2010. A mass of laboratory and field studies have shown that the currently available Bt crops have no direct detrimental effects on NTOs due to their narrow spectrum of activity, and Bt crops are increasing the abundance of some beneficial insects and improving the natural control of specific pests. The use of Bt crops, such as Bt maize and Bt cotton, results in significant reductions of insecticide application and clear benefits on the environment and farmer health. Consequently, Bt crops can be a useful component of integrated pest management systems to protect the crop from targeted pests.

  20. Broad-spectrum resistance to Bacillus thuringiensis toxins by western corn rootworm (Diabrotica virgifera virgifera).

    Science.gov (United States)

    Jakka, Siva R K; Shrestha, Ram B; Gassmann, Aaron J

    2016-06-14

    The evolution of resistance and cross-resistance threaten the sustainability of genetically engineered crops that produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt). Western corn rootworm, Diabrotica virgifera virgifera LeConte, is a serious pest of maize and has been managed with Bt maize since 2003. We conducted laboratory bioassays with maize hybrids producing Bt toxins Cry3Bb1, mCry3A, eCry3.1Ab, and Cry34/35Ab1, which represent all commercialized Bt toxins for management of western corn rootworm. We tested populations from fields where severe injury to Cry3Bb1 maize was observed, and populations that had never been exposed to Bt maize. Consistent with past studies, bioassays indicated that field populations were resistant to Cry3Bb1 maize and mCry3A maize, and that cross-resistance was present between these two types of Bt maize. Additionally, bioassays revealed resistance to eCry3.1Ab maize and cross-resistance among Cry3Bb1, mCry3A and eCry3.1Ab. However, no resistance or cross-resistance was detected for Cry34/35Ab1 maize. This broad-spectrum resistance illustrates the potential for insect pests to develop resistance rapidly to multiple Bt toxins when structural similarities are present among toxins, and raises concerns about the long-term durability of Bt crops for management of some insect pests.

  1. Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize.

    Science.gov (United States)

    Gassmann, Aaron J; Petzold-Maxwell, Jennifer L; Clifton, Eric H; Dunbar, Mike W; Hoffmann, Amanda M; Ingber, David A; Keweshan, Ryan S

    2014-04-01

    The widespread planting of crops genetically engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) places intense selective pressure on pest populations to evolve resistance. Western corn rootworm is a key pest of maize, and in continuous maize fields it is often managed through planting of Bt maize. During 2009 and 2010, fields were identified in Iowa in which western corn rootworm imposed severe injury to maize producing Bt toxin Cry3Bb1. Subsequent bioassays revealed Cry3Bb1 resistance in these populations. Here, we report that, during 2011, injury to Bt maize in the field expanded to include mCry3A maize in addition to Cry3Bb1 maize and that laboratory analysis of western corn rootworm from these fields found resistance to Cry3Bb1 and mCry3A and cross-resistance between these toxins. Resistance to Bt maize has persisted in Iowa, with both the number of Bt fields identified with severe root injury and the ability western corn rootworm populations to survive on Cry3Bb1 maize increasing between 2009 and 2011. Additionally, Bt maize targeting western corn rootworm does not produce a high dose of Bt toxin, and the magnitude of resistance associated with feeding injury was less than that seen in a high-dose Bt crop. These first cases of resistance by western corn rootworm highlight the vulnerability of Bt maize to further evolution of resistance from this pest and, more broadly, point to the potential of insects to develop resistance rapidly when Bt crops do not achieve a high dose of Bt toxin.

  2. MAPK Signaling Pathway Alters Expression of Midgut ALP and ABCC Genes and Causes Resistance to Bacillus thuringiensis Cry1Ac Toxin in Diamondback Moth

    OpenAIRE

    Zhaojiang Guo; Shi Kang; Defeng Chen; Qingjun Wu; Shaoli Wang; Wen Xie; Xun Zhu; Baxter, Simon W.; Xuguo Zhou; Juan Luis Jurat-Fuentes; Youjun Zhang

    2015-01-01

    Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resis...

  3. Resistance of Trichoplusia ni to Bacillus thuringiensis Toxin Cry1Ac Is Independent of Alteration of the Cadherin-Like Receptor for Cry Toxins

    OpenAIRE

    Xin Zhang; Kasorn Tiewsiri; Wendy Kain; Lihua Huang; Ping Wang

    2012-01-01

    Alteration of binding sites for Bacillus thuringiensis (Bt) toxins in insect midgut is the major mechanism of high-level resistance to Bt toxins in insects. The midgut cadherin is known to be a major binding protein for Bt Cry1A toxins and linkage of Bt-resistance to cadherin gene mutations has been identified in lepidopterans. The resistance to Bt toxin Cry1Ac evolved in greenhouse populations of Trichoplusia ni has been identified to be associated with the down-regulation of an aminopeptida...

  4. Bacillus thuringiensis: legado para el siglo XXI Bacillus thuringiensis: the legacy to the XXI century

    Directory of Open Access Journals (Sweden)

    Orduz S.

    1998-06-01

    Full Text Available

    Los insecticidas basados en la bacteria Bacillus thuringiensis son el principal renglón productivo del mercado mundial de biopesticidas. La investigación dedicada a esta área, promovida por la urgente necesidad de resolver problemas agrícolas y de salud pública, ha dado lugar a un conocimiento exhaustivo de su biología. La diversidad de cepas diferentes de B. thuringiensis ha permitido desarrollar productos principalmente, pero no exclusivamente, para el control de insectos. Con los nuevos desarrollos de la biología molecular, se ha logrado comprender su mecanismo de acción a nivel molecular y también se ha logrado extender sus capacidades entomopatógenas. Como producto de su amplio uso en muchos países, se han presentado casos de resistencia en poblaciones de insectos susceptibles. Con esta revisión se pretende elaborar un contexto teórico del estado actual de la investigación sobre B. thuringiensis, describiendo brevemente el conocimiento sobre esta bacteria, haciendo hincapié en los fenómenos biológicos que subyacen su actividad tóxica y la problemática que se avecina en el próximo siglo con los fenómenos de resistencia cada vez más comunes, todo esto analizado desde una perspectiva biotecnológica.

    Bacillus thuringiensis-based insecticides are the main production line of the biopesticides world market. The research devoted to this area, promoted by the necessity to solve problems in agriculture and public health has resulted in an exhaustive knowledge of its biology. The diversity of the B. thuringiensis strains has permitted to develop several products mainly, but not exclusively, for insect control. With the new developments in the field of molecular biology, it has been possible to understand the molecular basis of the mode of action and to increase the range of activity as well. As a result

  5. Complete Genome Sequence of Bacillus thuringiensis Bacteriophage Smudge.

    Science.gov (United States)

    Cornell, Jessica L; Breslin, Eileen; Schuhmacher, Zachary; Himelright, Madison; Berluti, Cassandra; Boyd, Charles; Carson, Rachel; Del Gallo, Elle; Giessler, Caris; Gilliam, Benjamin; Heatherly, Catherine; Nevin, Julius; Nguyen, Bryan; Nguyen, Justin; Parada, Jocelyn; Sutterfield, Blake; Tukruni, Muruj; Temple, Louise

    2016-01-01

    Smudge, a bacteriophage enriched from soil using Bacillus thuringiensis DSM-350 as the host, had its complete genome sequenced. Smudge is a myovirus with a genome consisting of 292 genes and was identified as belonging to the C1 cluster of Bacillus phages. PMID:27540049

  6. Complete Genome of Bacillus thuringiensis Myophage BigBertha

    OpenAIRE

    Ting, Jose H.; Smyth, Trinity B.; Chamakura, Karthik R.; Kuty Everett, Gabriel F.

    2013-01-01

    BigBertha is a myophage of Bacillus thuringiensis, a widely used biocontrol agent that is active against many insect pests of plants. Here, we present the complete annotated genome of BigBertha. The genome shares 85.9% sequence identity with Bacillus cereus phage B4.

  7. Complete Genome Sequence of Bacillus thuringiensis Bacteriophage Smudge

    Science.gov (United States)

    Cornell, Jessica L.; Breslin, Eileen; Schuhmacher, Zachary; Himelright, Madison; Berluti, Cassandra; Boyd, Charles; Carson, Rachel; Del Gallo, Elle; Giessler, Caris; Gilliam, Benjamin; Heatherly, Catherine; Nevin, Julius; Nguyen, Bryan; Nguyen, Justin; Parada, Jocelyn; Sutterfield, Blake; Tukruni, Muruj

    2016-01-01

    Smudge, a bacteriophage enriched from soil using Bacillus thuringiensis DSM-350 as the host, had its complete genome sequenced. Smudge is a myovirus with a genome consisting of 292 genes and was identified as belonging to the C1 cluster of Bacillus phages. PMID:27540049

  8. Complete Genome Sequence of Bacillus thuringiensis Bacteriophage Smudge.

    Science.gov (United States)

    Cornell, Jessica L; Breslin, Eileen; Schuhmacher, Zachary; Himelright, Madison; Berluti, Cassandra; Boyd, Charles; Carson, Rachel; Del Gallo, Elle; Giessler, Caris; Gilliam, Benjamin; Heatherly, Catherine; Nevin, Julius; Nguyen, Bryan; Nguyen, Justin; Parada, Jocelyn; Sutterfield, Blake; Tukruni, Muruj; Temple, Louise

    2016-08-18

    Smudge, a bacteriophage enriched from soil using Bacillus thuringiensis DSM-350 as the host, had its complete genome sequenced. Smudge is a myovirus with a genome consisting of 292 genes and was identified as belonging to the C1 cluster of Bacillus phages.

  9. UJI TOKSISITAS ISOLAT Bacillus thuringiensis dari Kabupaten Lahat, Palembang, Sumatera Selatan TERHADAP LARVA NYAMUK Culex sp.

    OpenAIRE

    Chandra, Welianto

    2016-01-01

    This study aims to determine the optimal concentration of isolates of Bacillus thuringiensis to control larvae of the mosquito Culex sp. The method used is the isolation of the bacterium Bacillus thuringiensis, then the inoculation of bacteria. Bacillus thuringiensis mud samples, as much as 25 grams, obtained in the area of Lahat, South Sumatra containing Bacillus thuringiensis which includes five districts, namely Sub Gumay Talang, Jaray, Kikim West, South Kikim, and Central Kikim. Gumay ...

  10. Novel actin filaments from Bacillus thuringiensis form nanotubules for plasmid DNA segregation.

    Science.gov (United States)

    Jiang, Shimin; Narita, Akihiro; Popp, David; Ghoshdastider, Umesh; Lee, Lin Jie; Srinivasan, Ramanujam; Balasubramanian, Mohan K; Oda, Toshiro; Koh, Fujiet; Larsson, Mårten; Robinson, Robert C

    2016-03-01

    Here we report the discovery of a bacterial DNA-segregating actin-like protein (BtParM) from Bacillus thuringiensis, which forms novel antiparallel, two-stranded, supercoiled, nonpolar helical filaments, as determined by electron microscopy. The BtParM filament features of supercoiling and forming antiparallel double-strands are unique within the actin fold superfamily, and entirely different to the straight, double-stranded, polar helical filaments of all other known ParMs and of eukaryotic F-actin. The BtParM polymers show dynamic assembly and subsequent disassembly in the presence of ATP. BtParR, the DNA-BtParM linking protein, stimulated ATP hydrolysis/phosphate release by BtParM and paired two supercoiled BtParM filaments to form a cylinder, comprised of four strands with inner and outer diameters of 57 Å and 145 Å, respectively. Thus, in this prokaryote, the actin fold has evolved to produce a filament system with comparable features to the eukaryotic chromosome-segregating microtubule.

  11. Isolation of Bacillus thuringiensis from the state of Amazonas, in Brazil, and screening against Aedes aegypti (Diptera, Culicidae

    Directory of Open Access Journals (Sweden)

    Joelma Soares-da-Silva

    2015-03-01

    Full Text Available We investigated the use of Bacillus thuringiensis isolated in the state of Amazonas, in Brazil, for the biological control of the dengue vector Aedes aegypti. From 25 soil samples collected in nine municipalities, 484 bacterial colonies were obtained, 57 (11.78% of which were identified as B. thuringiensis. Six isolates, IBt-03, IBt-06, IBt-07, IBt-28, IBt-30, and BtAM-27 showed insecticidal activity, and only BtAM-27 presents the five genes investigated cry4Aa, cry4Ba, cry10Aa, cry11Aa, and cry11Ba. The IBt-07 and IBt- 28, with lower LC50 values, showed equal toxicity compared to the standards. The isolates of B. thuringiensis from Amazonas constitute potential new means of biological control for A. aegypti, because of their larvicidal activity and the possibility that they may also contain new combinations of toxins.

  12. Mechanism of Insect Resistance to the Microbial Insecticide Bacillus thuringiensis

    Science.gov (United States)

    van Rie, J.; McGaughey, W. H.; Johnson, D. E.; Barnett, B. D.; van Mellaert, H.

    1990-01-01

    Receptor binding studies show that resistance of a laboratory-selected Plodia interpunctella strain to a Bacillus thuringiensis insecticidal crystal protein (ICP) is correlated with a 50-fold reduction in affinity of the membrane receptor for this protein. The strain is sensitive to a second type of ICP that apparently recognizes a different receptor. Understanding the mechanism of resistance will provide strategies to prevent or delay resistance and hence prolong the usefulness of B. thuringiensis ICPs as environmentally safe insecticides.

  13. Ultra-violet-resistant mutants of Bacillus thuringiensis

    International Nuclear Information System (INIS)

    One of the main disadvantages of using Bacillus thuringiensis as an insecticide is that the spore and crystal preparations applied to foliage are readily washed away by rain and are inactivated by sunlight. Spores from some strains of B. thuringiensis have been shown to be highly sensitive to u.v. light. This study has demonstrated how mutants with increased resistance to u.v., isolated by successive rounds of u.v. irradiation, and additionally with increased specific pathogenicity can be isolated. These techniques should be applied to strains that are frequently used in the industrial production of B.thuringiensis toxin. (author)

  14. Ultra-violet-resistant mutants of Bacillus thuringiensis

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.R.; Karunakaran, V. (Polytechnic of Central London (UK). Faculty of Engineering and Science, School of Biological and Health Sciences); Burges, H.D. (Institute of Horticultural Research, Littlehampton (UK)); Hacking, A.J. (Reading Univ. (UK). Dextra Labs.Ltd.)

    1991-06-01

    One of the main disadvantages of using Bacillus thuringiensis as an insecticide is that the spore and crystal preparations applied to foliage are readily washed away by rain and are inactivated by sunlight. Spores from some strains of B. thuringiensis have been shown to be highly sensitive to u.v. light. This study has demonstrated how mutants with increased resistance to u.v., isolated by successive rounds of u.v. irradiation, and additionally with increased specific pathogenicity can be isolated. These techniques should be applied to strains that are frequently used in the industrial production of B.thuringiensis toxin. (author).

  15. Specificities of monoclonal antibodies against the activated delta-endotoxin of Bacillus thuringiensis var. thuringiensis.

    OpenAIRE

    Huber-Lukac, M; Lüthy, P; Braun, D G

    1983-01-01

    Eight hybrid cell lines secreting monoclonal antibodies directed against the activated delta-endotoxin of Bacillus thuringiensis var. thuringiensis were grown in BALB/c mice. Ascites fluids were collected, and the antibodies were purified by antigen-affinity chromatography. The specificity of each monoclonal antibody for the toxin and protoxin was established by the indirect enzyme-linked immunosorbent assay. All the antibodies consisted of gamma 1 heavy and kappa light chains. They were reac...

  16. Plasmid-associated sensitivity of Bacillus thuringiensis to UV light

    International Nuclear Information System (INIS)

    Spores and vegetative cells of Bacillus thuringiensis were more sensitive to UV light than were spores or cells of plasmid-cured B. thuringiensis strains or of the closely related Bacillus cereus. Introduction of B. thuringiensis plasmids into B. cereus by cell mating increased the UV sensitivity of the cells and spores. Protoxins encoded by one or more B. thuringiensis plasmids were not involved in spore sensitivity, since a B. thuringiensis strain conditional for protoxin accumulation was equally sensitive at the permissive and nonpermissive temperatures. In addition, introduction of either a cloned protoxin gene, the cloning vector, or another plasmid not containing a protoxin gene into a plasmid-cured strain of B. thuringiensis all increased the UV sensitivity of the spores. Although the variety of small, acid-soluble proteins was the same in the spores of all strains examined, the quantity of dipicolinic acid was about twice as high in the plasmid-containing strains, and this may account for the differences in UV sensitivity of the spores. The cells of some strains harboring only B. thuringiensis plasmids were much more sensitive than cells of any of the other strains, and the differences were much greater than observed with spores

  17. Plasmid-associated sensitivity of Bacillus thuringiensis to UV light

    Energy Technology Data Exchange (ETDEWEB)

    Benoit, T.G.; Wilson, G.R.; Bull, D.L.; Aronson, A.I. (Department of Agriculture, College Station, TX (USA))

    1990-08-01

    Spores and vegetative cells of Bacillus thuringiensis were more sensitive to UV light than were spores or cells of plasmid-cured B. thuringiensis strains or of the closely related Bacillus cereus. Introduction of B. thuringiensis plasmids into B. cereus by cell mating increased the UV sensitivity of the cells and spores. Protoxins encoded by one or more B. thuringiensis plasmids were not involved in spore sensitivity, since a B. thuringiensis strain conditional for protoxin accumulation was equally sensitive at the permissive and nonpermissive temperatures. In addition, introduction of either a cloned protoxin gene, the cloning vector, or another plasmid not containing a protoxin gene into a plasmid-cured strain of B. thuringiensis all increased the UV sensitivity of the spores. Although the variety of small, acid-soluble proteins was the same in the spores of all strains examined, the quantity of dipicolinic acid was about twice as high in the plasmid-containing strains, and this may account for the differences in UV sensitivity of the spores. The cells of some strains harboring only B. thuringiensis plasmids were much more sensitive than cells of any of the other strains, and the differences were much greater than observed with spores.

  18. An overview of the safety and biological effects of Bacillus thuringiensis Cry toxins in mammals.

    Science.gov (United States)

    Rubio-Infante, Néstor; Moreno-Fierros, Leticia

    2016-05-01

    Crystal proteins (Cry) produced during the growth and sporulation phases of Bacillus thuringiensis (Bt) bacterium are known as delta endotoxins. These toxins are being used worldwide as bioinsecticides to control pests in agriculture, and some Cry toxins are used against mosquitoes to control vector transmission. This review summarizes the relevant information currently available regarding the biosafety and biological effects that Bt and its insecticidal Cry proteins elicit in mammals. This work was performed because of concerns regarding the possible health impact of Cry toxins on vertebrates, particularly because Bt toxins might be associated with immune-activating or allergic responses. The controversial data published to date are discussed in this review considering earlier toxicological studies of B. thuringiensis, spores, toxins and Bt crops. We discussed the experimental studies performed in humans, mice, rats and sheep as well as in diverse mammalian cell lines. Although the term 'toxic' is not appropriate for defining the effects these toxins have on mammals, they cannot be considered innocuous, as they have some physiological effects that may become pathological; thus, trials that are more comprehensive are necessary to determine their effects on mammals because knowledge in this field remains limited.

  19. An overview of the safety and biological effects of Bacillus thuringiensis Cry toxins in mammals.

    Science.gov (United States)

    Rubio-Infante, Néstor; Moreno-Fierros, Leticia

    2016-05-01

    Crystal proteins (Cry) produced during the growth and sporulation phases of Bacillus thuringiensis (Bt) bacterium are known as delta endotoxins. These toxins are being used worldwide as bioinsecticides to control pests in agriculture, and some Cry toxins are used against mosquitoes to control vector transmission. This review summarizes the relevant information currently available regarding the biosafety and biological effects that Bt and its insecticidal Cry proteins elicit in mammals. This work was performed because of concerns regarding the possible health impact of Cry toxins on vertebrates, particularly because Bt toxins might be associated with immune-activating or allergic responses. The controversial data published to date are discussed in this review considering earlier toxicological studies of B. thuringiensis, spores, toxins and Bt crops. We discussed the experimental studies performed in humans, mice, rats and sheep as well as in diverse mammalian cell lines. Although the term 'toxic' is not appropriate for defining the effects these toxins have on mammals, they cannot be considered innocuous, as they have some physiological effects that may become pathological; thus, trials that are more comprehensive are necessary to determine their effects on mammals because knowledge in this field remains limited. PMID:26537666

  20. Identification of a Bacillus thuringiensis Cry11Ba toxin-binding aminopeptidase from the mosquito, Anopheles quadrimaculatus

    Directory of Open Access Journals (Sweden)

    Abdullah Mohd

    2006-05-01

    Full Text Available Abstract Background Aminopeptidase N (APN type proteins isolated from several species of lepidopteran insects have been implicated as Bacillus thuringiensis (Bt toxin-binding proteins (receptors for Cry toxins. We examined brush border membrane vesicle (BBMV proteins from the mosquito Anopheles quadrimaculatus to determine if APNs from this organism would bind mosquitocidal Cry toxins that are active to it. Results A 100-kDa protein with APN activity (APNAnq 100 was isolated from the brush border membrane of Anopheles quadrimaculatus. Native state binding analysis by surface plasmon resonance shows that APNAnq 100 forms tight binding to a mosquitocidal Bt toxin, Cry11Ba, but not to Cry2Aa, Cry4Ba or Cry11Aa. Conclusion An aminopeptidase from Anopheles quadrimaculatus mosquitoes is a specific binding protein for Bacillus thuringiensis Cry11Ba.

  1. Diversity and Toxicity of Bacillus thuringiensis from Shifting Cultivation (Jhum) Habitat.

    Science.gov (United States)

    Zothansanga, Ralte; Senthilkumar, Nachimuthu; Gurusubramanian, Guruswami

    2016-01-01

    Bacillus thuringiensis (Bt) strains were isolated from jhum-agriculture, jhum-forest, aquatic and fallow soil samples from Mizoram by acetate selection method. Isolates were characterized for biochemical typing, cry gene and protein profiling, growth curve study and toxicity against Culex tritaeniorhynchus. Bt frequency was high in jhum-agriculture land (69.56%) whereas low in jhum-forest soils (31.57%). Bt was found to be abundant in jhum shifting cultivation soil with an index ranging between 0.010 and 0.015. Majority of the isolates from jhum soils produced oval and spherical crystals and showed eleven types of crystal proteins groups. PCR analysis revealed predominance of dipteran-active cry genes (cry4 and cry9). The variations in crystal morphology, cry genes and Cry protein (s) from the isolates of Bt revealed molecular diversity. Higher mortality, lower lethal dose, and lesser time to kill were observed in Bt isolates from jhum soils than aquatic and fallow habitats. Based on the toxicity test, SC1 and HP7 isolates containing cry 4 and cry 9 genes showed higher activity. Growth curve analysis showed significant variations among Bt isolates to reach the sporulating stage. Higher growth index and lower mean generation time were observed in SC1 and HP7 Bt isolates. Bt strains express different endotoxin genes and crystal proteins and their harvesting time also varied from strain to strain. Significant variation was found in Bt isolates from jhum habitats in relation to the cry gene composition, protein profiling and toxicity. Results from this study suggest that novel Bt entomopathogens may complement for regulating mosquito vectors. PMID:27350428

  2. Toxicidad biológica de cepas nativas de Bacillus thuringiensis Berliner en larvas de Tecia solanivora Povolny

    OpenAIRE

    Paola Martínez; Wilson Martínez

    2011-01-01

    La biodiversidad microbiológica de los suelos del departamento de Boyacá aún no ha sido explorada en toda su magnitud y existen microorganismos, como en el caso de Bacillus thuringiensis Berliner (Bt), que pueden emplearse para el desarrollo de estrategias biológicas de control de plagas en el futuro. Por lo anterior, el presente trabajo evaluó la actividad biológica, expresada como  toxicidad, de cepas nativas de B. thuringiensis en la Polilla Guatemalteca  de  la  papa  Tecia  solanivora Po...

  3. Bacillus thuringiensis Crystal Protein Cry6Aa Triggers Caenorhabditis elegans Necrosis Pathway Mediated by Aspartic Protease (ASP-1)

    OpenAIRE

    Fengjuan Zhang; Donghai Peng; Chunsheng Cheng; Wei Zhou; Shouyong Ju; Danfeng Wan; Ziquan Yu; Jianwei Shi; Yaoyao Deng; Fenshan Wang; Xiaobo Ye; Zhenfei Hu; Jian Lin; Lifang Ruan; Ming Sun

    2016-01-01

    Cell death plays an important role in host-pathogen interactions. Crystal proteins (toxins) are essential components of Bacillus thuringiensis (Bt) biological pesticides because of their specific toxicity against insects and nematodes. However, the mode of action by which crystal toxins to induce cell death is not completely understood. Here we show that crystal toxin triggers cell death by necrosis signaling pathway using crystal toxin Cry6Aa-Caenorhabditis elegans toxin-host interaction sys...

  4. Aerobic granulation of pure bacterial strain Bacillus thuringiensis

    Institute of Scientific and Technical Information of China (English)

    Sunil S ADAV; Duu-Jong LEE

    2008-01-01

    The objective of this study is to cultivate aer-obic granules by pure bacterial strain, Bacillus thuringien-sis, in a sequencing batch reactor. Stable granules sized 2.0-2.2 mm were formed in the reactor after a five-week cultivation. These granules exhibited excellent settling attributes, and degraded phenol at rates of 1.49 and concentration, respectively. Confocal laser scanning microscopic test results show that Bacillus thuringiensis was distributed over the initial small aggregates, and the outer edge of the granule was away from the core regime in the following stage.

  5. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm

    Science.gov (United States)

    Morin, Shai; Biggs, Robert W.; Sisterson, Mark S.; Shriver, Laura; Ellers-Kirk, Christa; Higginson, Dawn; Holley, Daniel; Gahan, Linda J.; Heckel, David G.; Carrière, Yves; Dennehy, Timothy J.; Brown, Judith K.; Tabashnik, Bruce E.

    2003-01-01

    Evolution of resistance by pests is the main threat to long-term insect control by transgenic crops that produce Bacillus thuringiensis (Bt) toxins. Because inheritance of resistance to the Bt toxins in transgenic crops is typically recessive, DNA-based screening for resistance alleles in heterozygotes is potentially much more efficient than detection of resistant homozygotes with bioassays. Such screening, however, requires knowledge of the resistance alleles in field populations of pests that are associated with survival on Bt crops. Here we report that field populations of pink bollworm (Pectinophora gossypiella), a major cotton pest, harbored three mutant alleles of a cadherin-encoding gene linked with resistance to Bt toxin Cry1Ac and survival on transgenic Bt cotton. Each of the three resistance alleles has a deletion expected to eliminate at least eight amino acids upstream of the putative toxin-binding region of the cadherin protein. Larvae with two resistance alleles in any combination were resistant, whereas those with one or none were susceptible to Cry1Ac. Together with previous evidence, the results reported here identify the cadherin gene as a leading target for DNA-based screening of resistance to Bt crops in lepidopteran pests. PMID:12695565

  6. Construction of an environmental safe Bacillus thuringiensis engineered strain against Coleoptera.

    Science.gov (United States)

    Yu, Yajun; Yuan, Yihui; Gao, Meiying

    2016-05-01

    Cloning of new toxic genes from Bacillus thuringiensis (Bt) and construction of Bt engineered strains are two key strategies for bio-control of coleopteran pests in agriculture and forestry. In this study, we cloned a new cry3Aa-type gene, cry3Aa8, from wild Bt strain YC-03 against coleopteran, and constructed a Bt engineered strain, ACE-38, containing insecticidal protein-encoding gene cry3Aa8. The engineered strain, with almost four times of Cry3Aa yield compared with strain YC-03, was an antibiotic marker-free strain. Though no selective pressure was presented in the medium, cry3Aa8 in the engineered strain ACE-38 remained stable. The yield of Cry3Aa by strain ACE-38 reached 2.09 mg/ml in the optimized fermentation medium. The activity of strain ACE-38 against Plagiodera versicolora was tested, and the LC50 of ACE-38 cultures in the optimized fermentation medium was 1.13 μl/ml. Strain ACE-38 is a non-antibiotic Bt engineered strain with high Chrysomelidae toxicity and exhibits good fermentation property. The modified indigenous site-specific recombination system constructed in this study might be useful for the construction of Bt engineered strains containing genes that cannot be expressed in the indigenous site-specific recombination system using plasmid pBMB1205R. PMID:26767987

  7. Construction of an environmental safe Bacillus thuringiensis engineered strain against Coleoptera.

    Science.gov (United States)

    Yu, Yajun; Yuan, Yihui; Gao, Meiying

    2016-05-01

    Cloning of new toxic genes from Bacillus thuringiensis (Bt) and construction of Bt engineered strains are two key strategies for bio-control of coleopteran pests in agriculture and forestry. In this study, we cloned a new cry3Aa-type gene, cry3Aa8, from wild Bt strain YC-03 against coleopteran, and constructed a Bt engineered strain, ACE-38, containing insecticidal protein-encoding gene cry3Aa8. The engineered strain, with almost four times of Cry3Aa yield compared with strain YC-03, was an antibiotic marker-free strain. Though no selective pressure was presented in the medium, cry3Aa8 in the engineered strain ACE-38 remained stable. The yield of Cry3Aa by strain ACE-38 reached 2.09 mg/ml in the optimized fermentation medium. The activity of strain ACE-38 against Plagiodera versicolora was tested, and the LC50 of ACE-38 cultures in the optimized fermentation medium was 1.13 μl/ml. Strain ACE-38 is a non-antibiotic Bt engineered strain with high Chrysomelidae toxicity and exhibits good fermentation property. The modified indigenous site-specific recombination system constructed in this study might be useful for the construction of Bt engineered strains containing genes that cannot be expressed in the indigenous site-specific recombination system using plasmid pBMB1205R.

  8. Bacillus thuringiensis toxin resistance mechanisms among Lepidoptera: progress on genomic approaches to uncover causal mutations in the European corn borer, Ostrinia nubilalis

    Science.gov (United States)

    Transgenic plants that expressed Bacillus thuringiensis (Bt) crystalline (Cry) protein toxins can suffer feeding damage from a small number of lepidopteran insect species under field conditions, which has heightened concerns about the durability of pest control tactics. Genomics research has provid...

  9. Expressed sequence tags from larval gut of the european corn borer (Ostrinia nubilalis): exploring candidate genes potenially involved in Bacillus thuringiensis toxicity and resistance

    Science.gov (United States)

    Background: Knowledge of the genes that are expressed in the insect gut are crucial for understanding basic physiology of food digestion, their interactions with Bacillus thuringiensis (Bt) toxin and for discovering new targets for novel toxins for use in pest management. This study analyzed the ES...

  10. Susceptibility of northern corn rootworm Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae) to mCry3A and eCry3.1Ab Bacillus thuringiensis proteins

    Science.gov (United States)

    Susceptibility of the northern corn rootworm (NCR), to mCry3A and eCry3.1Ab proteins derived from Bacillus thuringiensis (Bt) was determined using a diet bioassay. Northern corn rootworm neonates were exposed to different concentrations of mCry3A and eCry3.1Ab, incorporated into artificial diet. Lar...

  11. Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined

    OpenAIRE

    Renzi, Maria Tereza; Amichot, Marcel; Pauron, David; Tchamitchian, Sylvie; Brunet, Jean-Luc; Kretzschmar, Andre; Maini, Stefano

    2016-01-01

    In the agricultural environment,honeybees may be exposed to combinations of pesticides. Untilnow, the effects of these combinations on honey bee health have been poorly investigated. In this study,we assessed the impacts of biological and chemical insecticides, combining low dietary concentrations of Bacillus thuringiensis (Bt) spores (100 and 1000 mg/L) with the chemical insecticide fipronil(1 mg/L). In order to assess the possible effects of Crytoxins, the Bt kurstaki strain (Btk) was compa...

  12. Purification and Characterization of a Novel Cold Shock Protein-Like Bacteriocin Synthesized by Bacillus thuringiensis

    Science.gov (United States)

    Huang, Tianpei; Zhang, Xiaojuan; Pan, Jieru; Su, Xiaoyu; Jin, Xin; Guan, Xiong

    2016-01-01

    Bacillus thuringiensis (Bt), one of the most successful biopesticides, may expand its potential by producing bacteriocins (thuricins). The aim of this study was to investigate the antimicrobial potential of a novel Bt bacteriocin, thuricin BtCspB, produced by Bt BRC-ZYR2. The results showed that this bacteriocin has a high similarity with cold-shock protein B (CspB). BtCspB lost its activity after proteinase K treatment; however it was active at 60 °C for 30 min and was stable in the pH range 5–7. The partial loss of activity after the treatments of lipase II and catalase were likely due to the change in BtCspB structure and the partial degradation of BtCspB, respectively. The loss of activity at high temperatures and the activity variation at different pHs were not due to degradation or large conformational change. BtCspB did not inhibit four probiotics. It was only active against B. cereus strains 0938 and ATCC 10987 with MIC values of 3.125 μg/mL and 0.781 μg/mL, and MBC values of 12.5 μg/mL and 6.25 μg/mL, respectively. Taken together, these results provide new insights into a novel cold shock protein-like bacteriocin, BtCspB, which displayed promise for its use in food preservation and treatment of B. cereus-associated diseases. PMID:27762322

  13. Ostrinia nubilalis parasitism and the field abundance of non-target insects in transgenic Bacillus thuringiensis corn (Zea mays).

    Science.gov (United States)

    Bourguet, Denis; Chaufaux, Josette; Micoud, Annie; Delos, Marc; Naibo, Bernard; Bombarde, Fany; Marque, Gilles; Eychenne, Nathalie; Pagliari, Carine

    2002-10-01

    In this study, we evaluated in field trials the effects on non-target species, of transgenic corn producing the Cry1Ab toxin of Bacillus thuringiensis (Bt). In 1998, we collected Ostrinia nubilalis (Hübner) larvae from transgenic Bt corn (Novartis Hybrid 176) and non-Bt corn at four geographical sites. We found a significant variation in parasitism by the tachinids Lydella thompsoni (Herting) and Pseudoperichaeta nigrolineata (Walker) among sites, and more parasitism in non-Bt than in Bt fields. The Bt effect did not vary significantly among fields. In 1999, we performed a field experiment at two sites, comparing the temporal abundance of non-target arthropods in Bt corn (Monsanto Hybrid MON810) and non-Bt corn. The non-target insects studied included the aphids Metopolophium dirhodum (Walker), Rhopalosiphum padi (L.) and Sitobion avenae (F.), the bug Orius insidiosus (Say), the syrphid Syrphus corollae (Meigen), the ladybird Coccinella septempunctata (L.), the lacewing Chrysoperla carnea (Stephens), thrips and hymenopteran parasitoids. For all species but one, the number of individuals varied greatly over the season but did not differ between the types of corn. The only exception was thrips which, at one site, was significantly more abundant in Bt corn than in non-Bt corn. However this difference did not remain significant when we took the multiple tests into account. Implications for pest resistance management, population dynamics and risk assessment are discussed.

  14. Resistance to Bacillus thuringiensis Toxin Cry2Ab in Trichoplusia ni Is Conferred by a Novel Genetic Mechanism

    OpenAIRE

    Song, Xiaozhao; Kain, Wendy; Cassidy, Douglas; Wang, Ping

    2015-01-01

    The resistance to the Bacillus thuringiensis (Bt) toxin Cry2Ab in a greenhouse-originated Trichoplusia ni strain resistant to both Bt toxins Cry1Ac and Cry2Ab was characterized. Biological assays determined that the Cry2Ab resistance in the T. ni strain was a monogenic recessive trait independent of Cry1Ac resistance, and there existed no significant cross-resistance between Cry1Ac and Cry2Ab in T. ni. From the dual-toxin-resistant T. ni strain, a strain resistant to Cry2Ab only was isolated,...

  15. Regulation of cry Gene Expression in Bacillus thuringiensis

    OpenAIRE

    Chao Deng; Qi Peng; Fuping Song; Didier Lereclus

    2014-01-01

    Bacillus thuringiensis differs from the closely related Bacillus cereus group species by its ability to produce crystalline inclusions. The production of these crystals mainly results from the expression of the cry genes, from the stability of their transcripts and from the synthesis, accumulation and crystallization of large amounts of insecticidal Cry proteins. This process normally coincides with sporulation and is regulated by various factors operating at the transcriptional, post-transcr...

  16. Transfer of the toxin protein genes of Bacillus sphaericus into Bacillus thuringiensis subsp. israelensis and their expression.

    OpenAIRE

    Bourgouin, C.; Delécluse, A; La Torre, F.; Szulmajster, J

    1990-01-01

    The genes encoding the toxic determinants of Bacillus sphaericus have been expressed in a nontoxic and a toxic strain of Bacillus thuringiensis subsp. israelensis. In both cases, the B. sphaericus toxin proteins were produced at a high level during sporulation of B. thuringiensis and accumulated as crystalline structures. B. thuringiensis transformants expressing B. sphaericus and B. thuringiensis subsp. israelensis toxins did not show a significant enhancement of toxicity against Aedes aegyp...

  17. Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis CryIA(c) protoxin.

    Science.gov (United States)

    Oppert, B; Kramer, K J; Johnson, D; Upton, S J; Mcgaughey, W H

    1996-06-01

    The ability of proteinases in gut extracts of the Indianmeal moth, Plodia interpunctella, to hydrolyze Bacillus thuringiensis (Bt) protoxin, casein, and rho-nitroanilide substrates was investigated. A polyclonal antiserum to protoxin CryIA(c) was used in Western blots to demonstrate slower protoxin processing by gut enzymes from Bt subspecies entomocidus-resistant larvae than enzymes from susceptible or kurstaki-resistant strains. Enzymes from all three strains hydrolyzed N-alpha-benzoyl-L-arginine rho-nitroanilide, N-succinyl-ala-ala-pro-phenylalanine rho-nitroanilide, and N-succinyl-ala-ala-pro-leucine rho-nitroanilide. Zymograms and activity blots were used to estimate the apparent molecular masses, number of enzymes, and relative activities in each strain. Several serine proteinase inhibitors reduced gut enzyme activities, with two soybean trypsin inhibitors, two potato inhibitors, and chymostatin the most effective in preventing protoxin hydrolysis.

  18. Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Banu, A Najitha; Balasubramanian, C; Moorthi, P Vinayaga

    2014-01-01

    The present study reveals the larvicidal activity of silver nanoparticles (AgNPs) synthesized by Bacillus thuringiensis (Bt) against Aedes aegypti responsible for the diseases of public health importance. The Bt-AgNPs were characterized by using UV-visible spectrophotometer followed by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy. A surface plasmon resonance spectrum of AgNps was obtained at 420 nm. The particle sizes were measured through SEM imaging ranging from 43.52 to 142.97 nm. The Bt-AgNPs has also given a characteristic peak at 3 keV in EDX image. Interestingly, the mortality rendered by Bt-AgNPs was comparatively high than that of the control against third-instar larvae of A. aegypti (LC50 0.10 ppm and LC90 0.39 ppm) in all the tested concentrations, viz. 0.03, 0.06, 0.09, 0.12, and 0.15 ppm. Hence, Bt-AgNPs would be significantly used as a potent mosquito larvicide against A. aegypti.

  19. Microcalorimetric Studies on Influence of Sm3+, Dy3+ on Growth and Sporulation of Bacillus thuringiensis

    Institute of Scientific and Technical Information of China (English)

    赵儒铭; 刘义; 杨昌英; 谢志雄; 沈萍; 屈松生

    2004-01-01

    By using an LKB-2277 Bioactivity Monitor and cycle-flow method, the thermogenic curves of aerobic growth for Bacillus thuringiensis cry Ⅱ strain at 28 ℃ have been obtained. The metabolic thermogenic curves of Bt cry Ⅱ contain two distinct parts: the first part reflects the changes of bacterial growth phase and the second part corresponds to sporulation phase. From these thermogenic curves in the absence or presence of Sm3+, Dy3+ ions, the thermokinetic parameters such as the growth rate constants k, the interval time τI, the maximum power PMAxl and heat-output QLoG for log phase, the maximum power PMAX2 and heat-output QSTAT for stationary phase, the heat-output QSPOR for sporulation phase and total heat effects QT were calculated. Sm3+ and Dy3+ ions have promoting action on the growth of Bt cry Ⅱ in their lower concentration range, on the other hand, they have inhibitory action on the sporulation of Bt in their higher concentration range. It has also been found that the effects of Sm3+ and Dy3+ ions on Bt during the sporulation phase were far greater than those during the bacterial growth phase. It was concluded that the application of Bt for controlling insecticide could not be affected by the presence of the rare-earth elements in the environmental ecosystem.

  20. Broad-spectrum resistance to Bacillus thuringiensis toxins by western corn rootworm (Diabrotica virgifera virgifera).

    Science.gov (United States)

    Jakka, Siva R K; Shrestha, Ram B; Gassmann, Aaron J

    2016-01-01

    The evolution of resistance and cross-resistance threaten the sustainability of genetically engineered crops that produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt). Western corn rootworm, Diabrotica virgifera virgifera LeConte, is a serious pest of maize and has been managed with Bt maize since 2003. We conducted laboratory bioassays with maize hybrids producing Bt toxins Cry3Bb1, mCry3A, eCry3.1Ab, and Cry34/35Ab1, which represent all commercialized Bt toxins for management of western corn rootworm. We tested populations from fields where severe injury to Cry3Bb1 maize was observed, and populations that had never been exposed to Bt maize. Consistent with past studies, bioassays indicated that field populations were resistant to Cry3Bb1 maize and mCry3A maize, and that cross-resistance was present between these two types of Bt maize. Additionally, bioassays revealed resistance to eCry3.1Ab maize and cross-resistance among Cry3Bb1, mCry3A and eCry3.1Ab. However, no resistance or cross-resistance was detected for Cry34/35Ab1 maize. This broad-spectrum resistance illustrates the potential for insect pests to develop resistance rapidly to multiple Bt toxins when structural similarities are present among toxins, and raises concerns about the long-term durability of Bt crops for management of some insect pests. PMID:27297953

  1. Draft Genome Sequence of Bacillus thuringiensis NBIN-866 with High Nematocidal Activity

    OpenAIRE

    Liu, Xiaoyan; Zhou, Ronghua; Fu, Guiping; Zhang, Wei; Min, Yong; Tian, Yuxi; Huang, Daye; Wang, Kaimei; Wan, Zhongyi; Yao, Jingwu; Yang, Ziwen

    2014-01-01

    Bacillus thuringiensis NBIN-866, a Gram-positive bacterium, was isolated from soil in China. We announce here the draft genome sequence of strain B. thuringiensis NBIN-866, which possesses highly nematocidal factors, such as proteins and small molecular peptides.

  2. Occurrence and diversity of mosquitocidal strains of Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    K. Balaraman

    2005-09-01

    Full Text Available Ever since the discovery of the first Bacillus thuringiensis strain capable of killing mosquito larvae,namely, B. thuringiensis var israelensis, there are several reports from different parts of the worldabout the occurrence of mosquitocidal strains belonging to different subspecies/serotypes numberingthirty-six. The main sources of these wild type strains are soils/sediments, plants, animal feces,sick/moribund insects and waters. The toxicity of the strains within a subspecies/serotype variedwidely. Some of the strains exhibited toxicity to mosquitoes as well as lepidopterans and dipterans(including mosquitoes as well as plant parasitic nematodes.

  3. Bt Sweet Corn: What Is It and Why Should We Use It?

    OpenAIRE

    Barlow, Vonny M.; Kuhar, Thomas Patrick, 1969-; Speese, III, John

    2009-01-01

    This publication reviews Transgenic Bt sweet corn hybrids which are a genetically modified organism (GMO) that are the result of combining commercially available sweet corn varieties with genes from a naturally occurring soil bacterium called Bacillus thuringiensis Berliner or Bt.

  4. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    Directory of Open Access Journals (Sweden)

    Annika Gillis

    2014-07-01

    Full Text Available Many bacteriophages (phages have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here.

  5. Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: past, present and future.

    Science.gov (United States)

    Gillis, Annika; Mahillon, Jacques

    2014-07-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here. PMID:25010767

  6. Genetic Differentiation between Sympatric Populations of Bacillus cereus and Bacillus thuringiensis

    Science.gov (United States)

    Vilas-Boas, Gislayne; Sanchis, Vincent; Lereclus, Didier; Lemos, Manoel Victor F.; Bourguet, Denis

    2002-01-01

    Little is known about genetic exchanges in natural populations of bacteria of the spore-forming Bacillus cereus group, because no population genetics studies have been performed with local sympatric populations. We isolated strains of Bacillus thuringiensis and B. cereus from small samples of soil collected at the same time from two separate geographical sites, one within the forest and the other at the edge of the forest. A total of 100 B. cereus and 98 B. thuringiensis strains were isolated and characterized by electrophoresis to determine allelic composition at nine enzymatic loci. We observed genetic differentiation between populations of B. cereus and B. thuringiensis. Populations of a given Bacillus species—B. thuringiensis or B. cereus—were genetically more similar to each other than to populations of the other Bacillus species. Hemolytic activity provided further evidence of this genetic divergence, which remained evident even if putative clones were removed from the data set. Our results suggest that the rate of gene flow was higher between strains of the same species, but that exchanges between B. cereus and B. thuringiensis were nonetheless possible. Linkage disequilibrium analysis revealed sufficient recombination for B. cereus populations to be considered panmictic units. In B. thuringiensis, the balance between clonal proliferation and recombination seemed to depend on location. Overall, our data indicate that it is not important for risk assessment purposes to determine whether B. cereus and B. thuringiensis belong to a single or two species. Assessment of the biosafety of pest control based on B. thuringiensis requires evaluation of the extent of genetic exchange between strains in realistic natural conditions. PMID:11872495

  7. Impact of six transgenic Bacillus thuringiensis rice lines on four nontarget thrips species attacking rice panicles in the paddy field.

    Science.gov (United States)

    Akhtar, Z R; Tian, J C; Chen, Y; Fang, Q; Hu, C; Peng, Y F; Ye, G Y

    2013-02-01

    As a key component of ecological risk assessments, nontarget effects of Bacillus thuringiensis (Bt) rice have been tested under laboratory and field conditions for various organisms. A 2-yr field experiment was conducted to observe the nontarget effects of six transgenic rice lines (expressing the Cry1Ab or fused protein of Cry1Ab and Cry1Ac) on four nontarget thrips species including Frankliniella intonsa (Trybom), F. tenuicornis (Uzel), Haplothrips aculeatus (F.), and H. tritici (Kurd), as compared with their rice parental control lines. Two sampling methods including the beat plate and plastic bag method were used to monitor the population densities of the four thrips species for 2 yr. The results showed that the seasonal average densities of four tested thrips species in Bt rice plots were significantly lower than or very similar to those in the non-Bt rice plots depending on rice genotypes, sampling methods, and years. Among all six tested Bt rice lines, transgenic B1 and KMD2 lines suppressed the population of these tested thrips species the most. Our results indicate that the tested Bt rice lines are unlikely to result in high population pressure of thrips species in comparison with non-Bt rice. In some cases, Bt rice lines could significantly suppress thrips populations in the rice ecosystem. In addition, compatibility of Bt rice, with rice host plant resistance to nontarget sucking pests is also discussed within an overall integrated pest management program for rice. PMID:23339799

  8. Occurrence, characterization and insecticidal activity of Bacillus thuringiensis strains isolated from argan fields in Morocco.

    Science.gov (United States)

    Aboussaid, H; Vidal-Quist, J C; Oufdou, K; El Messoussi, S; Castañera, P; González-Cabrera, J

    2011-01-01

    Soils collected from five locations in the argan forest (an endemic plant) in Morocco were used to form the first collection of Bacillus thuringiensis (Bt) strains from this area (58 strains). Here we found that the argan forest is a major source of Bt, as 90.62% of the samples contained Bt strains. These strains produced mainly spherical or irregular crystals that in some cases remained adhered to the spore after cell lysis. There was no strain producing bipyramidal crystals, suggesting the absence of strains bearing crv1 genes. This was confirmed by PCR analysis using eight primer pairs that can potentially detect 13 different groups of cry and cyt genes. Strains containing cry7/8 were the most abundant (25.53%), followed by strains harbouring cry9A (14.89%), cry11 (8.51%) and cry4 (4.25%). The mixtures of spores and crystals as well as culture supernatants were assayed for toxicity towards Ceratitis capitata (Medfly), showing up to 30% mortality. Our findings suggest that the argan region is a suitable target for future and wider screening programmes looking for strains bearing toxins or combinations of them to develop more efficient Bt-based formulates. PMID:21970180

  9. Production of Protocatechuic Acid in Bacillus Thuringiensis ATCC33679

    Directory of Open Access Journals (Sweden)

    Bianca L. Garner

    2012-03-01

    Full Text Available Protocatechuic acid, or 3,4-dihydroxybenzoic acid, is produced by both soil and marine bacteria in the free form and as the iron binding component of the siderophore petrobactin. The soil bacterium, Bacillus thuringiensis kurstaki ATCC 33679, contains the asb operon, but does not produce petrobactin. Iron restriction resulted in diminished B. thuringiensis kurstaki ATCC 33679 growth and the production of catechol(s. The gene product responsible for protocatechuic acid (asbF and its receptor (fatB were expressed during stationary phase growth. Gene expression varied with growth temperature, with optimum levels occurring well below the Bacillus anthracis virulence temperature of 37 °C. Regulation of protocatechuic acid suggests a possible role for this compound during soil growth cycles.

  10. Photoprotection of Bacillus thuringiensis kurstaki from ultraviolet irradiation

    International Nuclear Information System (INIS)

    Irradiation of Bacillus thuringiensis var. kurstaki HD1 at 300-350 nm for up to 12 hr using a photochemical reactor results in a rapid loss of its toxicity to larvae of Heliothis armigera. Photoprotection of the toxic component was obtained by adsorption of cationic chromophores such as acriflavin (AF), methyl green, and rhodamine B to B. thuringiensis. AF gave the best photoprotection and a level of 0.42 mmol/g dye absorbed per gram of B. thuringiensis was highly toxic even after 12 hr of ultraviolet (uv) irradiation as compared to the control (77.5 and 5% of insect mortality, respectively). Ultraviolet and Fourier-transform infrared spectroscopic studies indicate molecular interactions between B. thuringiensis and AF. The nature of these interactions and energy or charge transfer as possible mechanisms of photoprotection are discussed. It is speculated that tryptophan residues are essential for the toxic effect of B. thuringiensis. It is suggested that photoprotection is attained as energy is transferred from the excited tryptophan moieties to the chromophore molecules

  11. Photoprotection of Bacillus thuringiensis kurstaki from ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, E.; Rozen, H.; Joseph, T.; Braun, S.; Margulies, L. (Department of Entomology, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot (Israel))

    1991-05-01

    Irradiation of Bacillus thuringiensis var. kurstaki HD1 at 300-350 nm for up to 12 hr using a photochemical reactor results in a rapid loss of its toxicity to larvae of Heliothis armigera. Photoprotection of the toxic component was obtained by adsorption of cationic chromophores such as acriflavin (AF), methyl green, and rhodamine B to B. thuringiensis. AF gave the best photoprotection and a level of 0.42 mmol/g dye absorbed per gram of B. thuringiensis was highly toxic even after 12 hr of ultraviolet (uv) irradiation as compared to the control (77.5 and 5% of insect mortality, respectively). Ultraviolet and Fourier-transform infrared spectroscopic studies indicate molecular interactions between B. thuringiensis and AF. The nature of these interactions and energy or charge transfer as possible mechanisms of photoprotection are discussed. It is speculated that tryptophan residues are essential for the toxic effect of B. thuringiensis. It is suggested that photoprotection is attained as energy is transferred from the excited tryptophan moieties to the chromophore molecules.

  12. SinR controls enterotoxin expression in Bacillus thuringiensis biofilms.

    Directory of Open Access Journals (Sweden)

    Annette Fagerlund

    Full Text Available The entomopathogen Bacillus thuringiensis produces dense biofilms under various conditions. Here, we report that the transition phase regulators Spo0A, AbrB and SinR control biofilm formation and swimming motility in B. thuringiensis, just as they control biofilm formation and swarming motility in the closely related saprophyte species B. subtilis. However, microarray analysis indicated that in B. thuringiensis, in contrast to B. subtilis, SinR does not control an eps operon involved in exopolysaccharides production, but regulates genes involved in the biosynthesis of the lipopeptide kurstakin. This lipopeptide is required for biofilm formation and was previously shown to be important for survival in the host cadaver (necrotrophism. Microarray analysis also revealed that the SinR regulon contains genes coding for the Hbl enterotoxin. Transcriptional fusion assays, Western blots and hemolysis assays confirmed that SinR controls Hbl expression, together with PlcR, the main virulence regulator in B. thuringiensis. We show that Hbl is expressed in a sustained way in a small subpopulation of the biofilm, whereas almost all the planktonic population transiently expresses Hbl. The gene coding for SinI, an antagonist of SinR, is expressed in the same biofilm subpopulation as hbl, suggesting that hbl transcription heterogeneity is SinI-dependent. B. thuringiensis and B. cereus are enteric bacteria which possibly form biofilms lining the host intestinal epithelium. Toxins produced in biofilms could therefore be delivered directly to the target tissue.

  13. Bacillus thuringiensis toxin resistance mechanisms among Lepidoptera: progress on genomic approaches to uncover causal mutations in the European corn borer, Ostrinia nubilalis.

    Science.gov (United States)

    Coates, Brad S

    2016-06-01

    Transgenic plants that express Bacillus thuringiensis (Bt) crystal (Cry) protein toxins (Bt crops) effectively control feeding by the European corn borer, Ostrinia nubilalis, although documented resistance evolution among a number of species in both the laboratory and field has heightened concerns about the durability of this technology. Research has provided major insights into the mutations that alter Bt toxin binding receptor structure and function within the midgut of Lepidoptera that directly impacts the efficacy of Bt toxins, and potentially leads to the evolution of resistance to Bt crops in the field. In this manuscript we provide an overview of available data on the identification of genes involved in high levels of resistance to Cry toxins, with emphasis on resistance described for O. nubilalis as the main target of Bt corn. PMID:27436734

  14. Bacillus thuringiensis toxin resistance mechanisms among Lepidoptera: progress on genomic approaches to uncover causal mutations in the European corn borer, Ostrinia nubilalis.

    Science.gov (United States)

    Coates, Brad S

    2016-06-01

    Transgenic plants that express Bacillus thuringiensis (Bt) crystal (Cry) protein toxins (Bt crops) effectively control feeding by the European corn borer, Ostrinia nubilalis, although documented resistance evolution among a number of species in both the laboratory and field has heightened concerns about the durability of this technology. Research has provided major insights into the mutations that alter Bt toxin binding receptor structure and function within the midgut of Lepidoptera that directly impacts the efficacy of Bt toxins, and potentially leads to the evolution of resistance to Bt crops in the field. In this manuscript we provide an overview of available data on the identification of genes involved in high levels of resistance to Cry toxins, with emphasis on resistance described for O. nubilalis as the main target of Bt corn.

  15. Use of Bacillus thuringiensis supernatant from a fermentation process to improve bioremediation of chlorpyrifos in contaminated soils.

    Science.gov (United States)

    Aceves-Diez, Angel E; Estrada-Castañeda, Kelly J; Castañeda-Sandoval, Laura M

    2015-07-01

    The aim of this research was to investigate the potential of a nutrient-rich organic waste, namely the cell-free supernatant of Bacillus thuringiensis (BtS) gathered from fermentation, as a biostimulating agent to improve and sustain microbial populations and their enzymatic activities, thereby assisting in the bioremediation of chlorpyrifos-contaminated soil at a high dose (70 mg kg(-1)). Experiments were performed for up to 80 d. Chlorpyrifos degradation and its major metabolic product, 3,5,6-trichloro-2-pyridinol (TCP), were quantified by high-performance liquid chromatography (HPLC); total microbial populations were enumerated by direct counts in specific medium; and fluorescein diacetate (FDA) hydrolysis was measured as an index of soil microbial activity. Throughout the experiment, there was higher chlorpyrifos degradation in soil supplemented with BtS (83.1%) as compared to non-supplemented soil. TCP formation and degradation occurred in all soils, but the greatest degradation (30.34%) was observed in soil supplemented with BtS. The total microbial populations were significantly improved by supplementation with BtS. The application of chlorpyrifos to soil inhibited the enzymatic activity; however, this negative effect was counteracted by BtS, inducing an increase of approximately 16% in FDA hydrolysis. These results demonstrate the potential of B. thuringiensis supernatant as a suitable biostimulation agent for enhancing chlorpyrifos and TCP biodegradation in chlorpyrifos-contaminated soils.

  16. Cytolytic Toxin and Related Genes in Bacillus thuringiensis

    Institute of Scientific and Technical Information of China (English)

    QI Dong-lai; LI Yi-dan; GAO Ji-guo

    2005-01-01

    Bacillus thuringiensis is a ubiquitous gram-positive, spore-forming bacterium that forms parasporal crystal during the stationary phase of its growth cycle. These crystal proteins, including Cry and Cyt protein, are toxic to certain insects. Lately, some problems about Cyt classification, structural characteristic, action mechanism and resistance to Cyt toxin are becoming new hotspots. We review the progress of above problems in several foreign labs.

  17. Studies on the fermentation of bacillus thuringiensis var israelensis

    OpenAIRE

    Pearson, Dermot

    1985-01-01

    During this work the fermentation of Bacillus thuringiensis var israelensis under industrial conditions was studied with respect to the development of a process for the production of a mosquitocidal insecticide elaborated by this organism. This was done by the development of a two-stage inoculum protocol which produced a high biomass-containing inoculum of vegetative cells which were found to be preferable to free spores for use as an inoculum source. In order to optimize the production st...

  18. Genome Sequence of the Endophytic Bacterium Bacillus thuringiensis Strain KB1, a Potential Biocontrol Agent against Phytopathogens

    OpenAIRE

    Jeong, Haeyoung; Jo, Sung Hee; Hong, Chi Eun; Park, Jeong Mee

    2016-01-01

    Bacillus thuringiensis is the most widely known microbial pesticide used in agricultural applications. Herein, we report a draft genome sequence of the endophytic bacterium Bacillus thuringiensis strain KB1, which exhibits antagonism against phytopathogens.

  19. Bacillus thuringiensis: general characteristics and fermentation
    Bacillus thuringiensis: características gerais e fermentação

    OpenAIRE

    Raúl Jorge Hernan Castro-Gómez; Gislayne Trindade Vilas-Bôas; Elisangela Andrade Angelo

    2010-01-01

    The insect control is carried out mostly by chemical products, whose cumulative effects cause serious losses to environmental and human health, highlighting rapid selection of resistant insects. Biological control by entomopathogenic bacteria is an efficient alternative, mainly due to high specificity, absence of resistance in the target insects and low environment residual effect. Bacillus thuringiensis is a Gram-positive spore-forming bacterium that produces a parasporal crystal protein tox...

  20. Effects of Ionic Strength and Sesquioxides on Adsorption of Toxin of Bacillus thuringiensis subsp, kurstaki on Soils

    Institute of Scientific and Technical Information of China (English)

    FU Qing-Ling; PENG Ya-Wen; HUANG Tao; HU Hong-Qing; DENG Ya-Li; YU Xia

    2012-01-01

    Chemical reactions and fate of the toxins of Bacillus thuringiensis (Bt) in the soil environment are causing increasing concerns due to the large-scale cultivation of transgenic Bt plants.In this study,the effect of ionic strength (0-1000 mmol kg-1) adjusted by NaCl or CaCl2 on adsorption of Bt toxin by a lateritic red soil,a paddy soil and these soils after chemical removal of organic-bound or free Fe and Al oxides,as well as by pure minerals (goethite,hematite and gibbsite) which are widespread in these soils,were studied.The results indicated that when the supporting electrolyte was NaCl,the adsorption of Bt toxin by the lateritic red soil and paddy soil increased rapidly until the ionic strength reached 250 mmol kg- 1 and then gradually slowed down with the increase of ionic strength; while in case the supporting electrolyte was CaCl2,the adsorption of Bt toxin enhanced significantly at low ionic strength (< 10 mmol kg-1) and then decreased as the ionic strength increased.The adsorption of Bt toxin by the tested minerals and soils after the removal of organic-bound or free Fe and Al oxides also increased with increasing ionic strength controlled by NaC1.Removing organic-bound Fe and Al oxides obviously increased the adsorption of Bt toxin in the tested soils.Differently,removing free Fe and Al oxides increased the Bt adsorption by the paddy soil,but decreased the adsorption by the lateritic red soil.The study indicated that the varieties of ionic strength and the presence of Fe and Al oxides affected the adsorption of Bt toxin by the soils,which would contribute to the further understanding of the fate of Bt toxin in the soil environment and provide references for the ecological risk assessment of transgenic Bt plants.

  1. Transformation of Bacillus thuringiensis subsp. galleria protoplasts by plasmid pBC16.

    OpenAIRE

    Alikhanian, S. I.; Ryabchenko, N F; Bukanov, N O; Sakanyan, V A

    1981-01-01

    Protoplasts of the entomopathogenic bacterium Bacillus thuringiensis subsp. galleria were transformed by plasmid pBC16. The frequency of transformation was much lower than that of Bacillus subtilis. All isolated B. thuringiensis transformants were characterized by increased sensitivity to lysozyme as compared with the original strain.

  2. SR450 and Superhawk XP applications of Bacillus thuringiensis israelensis de Barjac against Culex quinquefasciatus Say

    Science.gov (United States)

    Sprayer comparisons and larval morality assays were conducted following SR450 backpack mist blower and Superhawk XP thermal fogger applications of Vectobac® WDG Bacillus thuringiensis israelensis (Bti) de Barjac against Culex quinquefasciatus Say. Bacillus thuringiensis israelensis was applied at m...

  3. [Characterization of crystal-forming bacteria Bacillus thuringiensis subsp. tohokuensis toxic to mosquitos].

    Science.gov (United States)

    Khodyrev, V P; Kalmykova, G V; Burtseva, L I; Glupov, V V

    2006-01-01

    Distribution study of Bacillus thuringiensis strains in Western Siberian soils allowed us to isolate crystal-forming bacteria assigned to a new pathovar of Bacillus thuringiensis ssp. tohokuensis with a toxic effect on mosquito larvae. A description of this bacterial pathovar is presented.

  4. Isolation and Characterization of Coproporphyrin Produced by Four Subspecies of Bacillus thuringiensis

    OpenAIRE

    Harms, R. L.; Martinez, D. R.; Griego, V M

    1986-01-01

    It was found by using spectrophotometric, spectrofluorometric, and high-pressure liquid chromatography that four subspecies of Bacillus thuringiensis produce coproporphyrin. The porphyrin isomer was identified as coproporphyrin I for B. thuringiensis subsp. kurstaki (HD1). The porphyrin was isolated both from spores and from a variety of spent growth media. The quantity of porphyrin released by each Bacillus subspecies differed. The rank order of porphyrin production follows: B. thuringiensis...

  5. Bacillus thuringiensis membrane-damaging toxins acting on mammalian cells.

    Science.gov (United States)

    Celandroni, Francesco; Salvetti, Sara; Senesi, Sonia; Ghelardi, Emilia

    2014-12-01

    Bacillus thuringiensis is widely used as a biopesticide in forestry and agriculture, being able to produce potent species-specific insecticidal toxins and considered nonpathogenic to other animals. More recently, however, repeated observations are documenting the association of this microorganism with various infectious diseases in humans, such as food-poisoning-associated diarrheas, periodontitis, bacteremia, as well as ocular, burn, and wound infections. Similar to B. cereus, B. thuringiensis produces an array of virulence factors acting against mammalian cells, such as phosphatidylcholine- and phosphatidylinositol-specific phospholipase C (PC-PLC and PI-PLC), hemolysins, in particular hemolysin BL (HBL), and various enterotoxins. The contribution of some of these toxins to B. thuringiensis pathogenicity has been studied in animal models of infection, following intravitreous, intranasal, or intratracheal inoculation. These studies lead to the speculation that the activities of PC-PLC, PI-PLC, and HBL are responsible for most of the pathogenic properties of B. thuringiensis in nongastrointestinal infections in mammals. This review summarizes data regarding the biological activity, the genetic basis, and the structural features of these membrane-damaging toxins.

  6. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism.

    Science.gov (United States)

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Ercolini, Danilo; Pennacchio, Francesco

    2016-08-23

    Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host.

  7. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism.

    Science.gov (United States)

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Ercolini, Danilo; Pennacchio, Francesco

    2016-08-23

    Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host. PMID:27506800

  8. Methodology for fast evaluation of Bacillus thuringiensis crystal protein content

    Directory of Open Access Journals (Sweden)

    Alves Lúcia M. Carareto

    2000-01-01

    Full Text Available The development of the production and use of Bacillus thuringiensis in Brazil at a commercial scale faces certain difficulties, among them the establishment of efficient methodologies for the quantitation of toxic products to be commercialized. Presently, the amount of toxin is given in percentage by analyzing the samples total protein content. Such methodology however, does not measure the actual amount of active protein present in the product, since most strains express different endotoxin genes and might even produce b-toxin. Since the various types of toxins exhibit different antigenic characteristics, this work has as objective the utilization of fast immunological techniques to quantify the level of crystal protein. Crystal protein produced by a subspecies of Bacillus thuringiensis var. israelensis was purified by ultracentrifugation and utilized to immunize rabbits and to produce hiperimmune sera. Such sera were latter used to evaluate the level of proteins on commercial bioinsecticide and on laboratory cultures of B. thuringiensis through the immunodot technique. The results were obtained by comparison of data obtained from reactions with known concentrations of crystal protein permitting to evaluate the level of such protein on various materials.

  9. Toxicity of Bacillus thuringiensis crystal proteins against eri silkworm, Samia cynthia ricini (Lepidoptera: Saturniidae).

    Science.gov (United States)

    Sandeep Kumar, Donthula; Tarakeswari, Muddanuru; Lakshminarayana, Maddukuri; Sujatha, Mulpuri

    2016-07-01

    Ten purified crystal proteins of Bacillus thuringiensis (Bt) were tested at concentrations ranging from 2.93 to 3000ng/cm(2) for their toxicity to eri silkworm through protein paint bioassays using castor leaves. Based on LC50 values, Cry1Aa (2.6ng/cm(2)) was highly toxic followed by Cry1Ac (29.3ng/cm(2)) and Cry1Ab (68.7ng/cm(2)). The Cry1Ca and Cry1Ea proteins were moderately toxic to eri silkworm larvae and resulted in 23% and 28% mortality, respectively at the highest concentration tested (3000ng/cm(2)). Only reduction in larval weight was observed with Cry2Aa, Cry1Da and Cry9Aa proteins while Cry3Aa and Cry1Ba proteins were found to be nontoxic. PMID:27377590

  10. Toxicity of Bacillus thuringiensis crystal proteins against eri silkworm, Samia cynthia ricini (Lepidoptera: Saturniidae).

    Science.gov (United States)

    Sandeep Kumar, Donthula; Tarakeswari, Muddanuru; Lakshminarayana, Maddukuri; Sujatha, Mulpuri

    2016-07-01

    Ten purified crystal proteins of Bacillus thuringiensis (Bt) were tested at concentrations ranging from 2.93 to 3000ng/cm(2) for their toxicity to eri silkworm through protein paint bioassays using castor leaves. Based on LC50 values, Cry1Aa (2.6ng/cm(2)) was highly toxic followed by Cry1Ac (29.3ng/cm(2)) and Cry1Ab (68.7ng/cm(2)). The Cry1Ca and Cry1Ea proteins were moderately toxic to eri silkworm larvae and resulted in 23% and 28% mortality, respectively at the highest concentration tested (3000ng/cm(2)). Only reduction in larval weight was observed with Cry2Aa, Cry1Da and Cry9Aa proteins while Cry3Aa and Cry1Ba proteins were found to be nontoxic.

  11. Acute, sublethal, and combination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera.

    Science.gov (United States)

    Abedi, Zahra; Saber, Moosa; Vojoudi, Samad; Mahdavi, Vahid; Parsaeyan, Ehsan

    2014-01-01

    The cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a polyphagous and cosmopolitan insect pest that causes damage to various plants. In this study, the lethal and sublethal effects of azadirachtin and Bacillus thuringiensis Berliner sub sp . kurstaki (Bacillales: Bacillaceae) were evaluated on third instar H. armigera under laboratory conditions. The LC50 values of azadirachtin and Bt were 12.95 and 96.8 µg a.i./mL, respectively. A total mortality of 56.7% was caused on third instar larvae when LC20 values of the insecticides were applied in combination with each other. The LT50 values of azadirachtin and Bt were 4.8 and 3.6 days, respectively. The results of the sublethal study showed that the application of LC30 value of azadirachtin and Bt reduced the larval and pupal weight and increased larval and pupal duration of H. armigera. The longevity and fecundity of female adults were affected significantly by the insecticides. Female fecundity was reduced by the treatments, respectively. The lowest adult emergence ratio and pupation ratio were observed in the azadirachtin treatment. The results indicated that both insecticides have high potential for controlling of the pest. PMID:25373177

  12. Proteolytic Activation of Bacillus thuringiensis Cry2Ab through a Belt-and-Braces Approach.

    Science.gov (United States)

    Xu, Lian; Pan, Zhi-Zhen; Zhang, Jing; Liu, Bo; Zhu, Yu-Jing; Chen, Qing-Xi

    2016-09-28

    Proteolytic processing of Bacillus thuringiensis (Bt) crystal toxins by insect midgut proteases plays an essential role in their insecticidal toxicities against target insects. In the present study, proteolysis of Bt crystal toxin Cry2Ab by Plutella xylostella L. midgut proteases (PxMJ) was evaluated. Both trypsin and chymotrypsin were identified involving the proteolytic activation of Cry2Ab and cleaving Cry2Ab at Arg(139) and Leu(144), respectively. Three Cry2Ab mutants (R139A, L144A, and R139A-L144A) were constructed by replacing residues Arg(139), Leu(144), and Arg(139)-Leu(144) with alanine. Proteolysis assays revealed that mutants R139A and L144A but not R139A-L144A could be cleaved into 50 kDa activated toxins by PxMJ. Bioassays showed that mutants R139A and L144A were highly toxic against P. xylostella larvae, while mutant R139A-L144A was almost non-insecticidal. Those results demonstrated that proteolysis by PxMJ was associated with the toxicity of Cry2Ab against P. xylostella. It also revealed that either trypsin or chymotrypsin was enough to activate Cry2Ab protoxin. This characteristic was regarded as a belt-and-braces approach and might contribute to the control of resistance development in target insects. Our studies characterized the proteolytic processing of Cry2Ab and provided new insight into the activation of this Bt toxin.

  13. Crystallization and preliminary crystallographic analysis of poly(3-hydroxybutyrate) depolymerase from Bacillus thuringiensis

    Science.gov (United States)

    Wang, Yung-Lin; Lin, Yi-Ting; Chen, Chia-Lin; Shaw, Gwo-Chyuan; Liaw, Shwu-Huey

    2014-01-01

    Poly[(R)-3-hydroxybutyrate] (PHB) is a microbial biopolymer that has been commercialized as biodegradable plastics. The key enzyme for the degradation is PHB depolymerase (PhaZ). A new intracellular PhaZ from Bacillus thuringiensis (BtPhaZ) has been screened for potential applications in polymer biodegradation. Recombinant BtPhaZ was crystallized using 25% polyethylene glycol 3350, 0.2 M ammonium acetate, 0.1 M bis-tris pH 6.5 at 288 K. The crystals belonged to space group P1, with unit-cell parameters a = 42.97, b = 83.23, c = 85.50 Å, α = 73.45, β = 82.83, γ = 83.49°. An X-ray diffraction data set was collected to 1.42 Å resolution with an R merge of 6.4%. Unexpectedly, a molecular-replacement solution was obtained using the crystal structure of Streptomyces lividans chloroperoxidase as a template, which shares 24% sequence identity to BtPhaZ. This is the first crystal structure of an intracellular poly(3-hydroxybutyrate) depolymerase. PMID:25286954

  14. Proteomic Analysis of Bacillus thuringiensis Strain 4.0718 at Different Growth Phases

    Directory of Open Access Journals (Sweden)

    Xiaohui Li

    2012-01-01

    Full Text Available The growth process of Bacillus thuringiensis Bt4.0718 strain was studied using proteomic technologies. The proteins of Bt whole cells at three phases—middle vegetative, early sporulation, and late sporulation—were extracted with lysis buffer, followed with separation by 2-DE and identified by MALDI-TOF/TOF MS. Bioactive factors such as insecticidal crystal proteins (ICPs including Cry1Ac(3, Cry2Aa, and BTRX28, immune inhibitor (InhA, and InhA precursor were identified. InhA started to express at the middle vegetative phase, suggesting its contribution to the survival of Bt in the host body. At the early sporulation phase, ICPs started their expression. CotJC, OppA, ORF1, and SpoIVA related to the formation of crystals and spores were identified, the expression characteristics of which ensured the stable formation of crystals and spores. This study provides an important foundation for further exploration of the stable expression of ICPs, the smooth formation of crystals, and the construction of recombinant strains.

  15. Host-Pathogen Coevolution: The Selective Advantage of Bacillus thuringiensis Virulence and Its Cry Toxin Genes.

    Science.gov (United States)

    Masri, Leila; Branca, Antoine; Sheppard, Anna E; Papkou, Andrei; Laehnemann, David; Guenther, Patrick S; Prahl, Swantje; Saebelfeld, Manja; Hollensteiner, Jacqueline; Liesegang, Heiko; Brzuszkiewicz, Elzbieta; Daniel, Rolf; Michiels, Nicolaas K; Schulte, Rebecca D; Kurtz, Joachim; Rosenstiel, Philip; Telschow, Arndt; Bornberg-Bauer, Erich; Schulenburg, Hinrich

    2015-06-01

    Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i) high virulence was specifically favoured during pathogen-host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii) the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii) high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv) loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins. We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen's genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host-pathogen interaction system. PMID:26042786

  16. Host-Pathogen Coevolution: The Selective Advantage of Bacillus thuringiensis Virulence and Its Cry Toxin Genes.

    Directory of Open Access Journals (Sweden)

    Leila Masri

    2015-06-01

    Full Text Available Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i high virulence was specifically favoured during pathogen-host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins. We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen's genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host-pathogen interaction system.

  17. Gamma Radiation to Increase Efficiency of Bacillus thuringiensis Thai Strain for Insect Pets Control

    International Nuclear Information System (INIS)

    Bacillus thuringiensis (Bt) isolates JCPT16 and JCPT68 were gamma-irradiated at 2, 4, 6 and 8 kGy. The efficiency of these Bt isolates on S. litura control was also undertaken. It was found that the 4 kGy irradiated JCPT16 isolate had lowest LC50 of 6.6x103 spore/ml while the non-irradiated JCPT 16 isolate had LC50 of 6.2x103 spore/ml. Whereas the irradiated JCPT68 isolate at 8 kGy was noticed to have the lowest LC50 of 2.7 x 103 spores/ml, the non-irradiated JCPT68 had LC50 of 1.8x103 spores/ml. The efficiency test of B. thuringiensis isolate on S. exigua showed that the 2 kGy irradiated JCPT16 isolate had the lowest LC50 of 2.52x104 spores/ml while the non-irradiated JCPT16 isolate had LC50 of 6.04x103 spores/ml. The irradiated JCPT68 isolate at 4 kGy had the lowest LC50 of 5.41x104 spores/ml, the non irradiated JCPT68 had LC50 of 1.51x104 spores/ml. According to LC50 values, there were no significant differences of efficiency on S. litura and S. exigua control among Bt isolates irradiated at various concentrations. The isolate JCPT16, JCPT35, JCPT50 and JCPT68 irradiated at dose of 10 kGy showed higher UV tolerance. After expose by UV ray, most of irradiated isolates still displayed high efficiency of controlling S. litura, S. exigua and Plutella xylostell.

  18. Effect of Bacillus thuringiensis on microbial functional groups in sorghum rhizosphere Efeito do Bacillus thuringiensis sobre grupos funcionais de microrganismos na rizosfera de sorgo

    OpenAIRE

    Carlos Brasil; Leopoldo Sussumu Matsumoto; Marco Antonio Nogueira; Flavia Regina Spago; Luís Gustavo Rampazo; Marcio Ferreira Cruz; Galdino Andrade

    2006-01-01

    The objective of this work was to assess the effect of two strains of Bacillus thuringiensis var. kurstaki on sorghum rhizosphere microorganisms. The strains were HD1, that produces the bioinsecticidal protein, and 407, that is a mutant non-producer. The strains do not influence microbial population, but reduce plant growth and improve mycorrhizal colonization and free living fixing N2 community.O objetivo deste trabalho foi avaliar o efeito de duas cepas de Bacillus thuringiensis var. kursta...

  19. Estudio de las bases de la resistencia a las proteínas insecticidas de bacillus thuringiensis en ostrinia nubilalis

    OpenAIRE

    Crava, Maria C.

    2013-01-01

    Ostrinia nubilalis (Hübner) es una de las plagas más devastadoras de los cultivos de maíz de Europa y Norte América, y a nivel económico la obtención de un control eficaz de esta plaga es un logro fundamental. En 1996, se permitió la comercialización de las plantas transgénicas que llevan insertado en el genoma un gen procedente de Bacillus thuringiensis (Berliner) (Bt) y que codifica para una proteína insecticida de las que esta bacteria produce en forma de cristales paraesporales (proteínas...

  20. Caracterización molecular del mecanismo de patogénesis de las toxinas Cry de Bacillus thuringiensis activas contra insectos coleópteros

    OpenAIRE

    Contreras Navarro, Estefanía

    2013-01-01

    Los bioinsecticidas basados en Bacillus thuringiensis (Bt) constituyen una herramienta de gran valor para el control de plagas de insectos, ya que presentan una forma de aplicación muy específica e inocua para los usuarios y el medio ambiente. Entender, tanto el mecanismo de toxicidad de estos bioinsecticidas como la respuesta desencadenada en los insectos diana, tiene como objetivo proporcionar una base útil para el desarrollo de insecticidas mejorados dirigidos contra estas importantes plag...

  1. Efficacy of single and double applications of Foray 48B (bacillus thuringiensis) against the gypsy moth (lymantria dispar l. ) in Ontario. Information report No. O-X-423

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    In May 1991, an experimental aerial spraying program was conducted in Pembroke District to compare the efficacy of single and double applications of Foray 48B (Bacillus thuringiensis Berliner) (B.t.) against gypsy moths. Two blocks were treated with a double application of 30 BIU/2.4L/ha and six blocks (three early and three late) were treated with a single application of 50 BIU/4 L/ha. This report gives the results of the program.

  2. 苏云金芽孢杆菌杀虫晶体蛋白与DNA分子的相互作用%Interaction Between Insecticidal Crystal Proteins and DNA Molecule from Bacillus thuringiensis

    Institute of Scientific and Technical Information of China (English)

    夏立秋; 孙运军; 莫湘涛; 丁学知

    2003-01-01

    @@ 苏云金芽孢杆菌(Bacillus thuringiensis,简称Bt)在形成芽孢的同时能够产生伴孢晶体,其中含有一种或几种杀虫晶体蛋白(ICPs,Insecticidal Crystal Proteins),即δ-内毒素[1].

  3. A Western Corn Rootworm Cadherin-like Protein is not Involved in the Binding and Toxicity of Cry34/35Ab1 and Cry3Aa Bacillus Thuringiensis Proteins

    Science.gov (United States)

    The western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte is an important insect pest of corn. Bacillus thuringiensis (Bt) insecticidal proteins Cry3Aa (as mCry3A) and Cry34Ab1/Cry35Ab1 have been expressed in transgenic corn and are used to control the insect in the U.S. To date, there ...

  4. Genetic relationships between sympatric populations of Bacillus cereus and Bacillus thuringiensis, as revealed by rep-PCR genomic fingerprinting

    Directory of Open Access Journals (Sweden)

    Ana Paula S Peruca

    2008-08-01

    Full Text Available The bacterial strain Bacillus cereus is closely related to Bacillus thuringiensis, although any genetic relationship between the two strains is still in debate. Using rep-PCR genomic fingerprinting, we established the genetic relationships between Brazilian sympatric populations of B. cereus and B. thuringiensis simultaneously collected from two geographically separate sites. We observed the formation of both B. thuringiensis and B. cereus clusters, as well as strains of B. cereus that are more closely related to B. thuringiensis than to other B. cereus strains. In addition, lower genetic variability was observed among B. thuringiensis clusters compared to B. cereus clusters, indicating that either the two species should be categorized as separate or that B. thuringiensis may represent a clone from a B. cereus background.

  5. Chitinolitic activity in proteic extracts of Bacillus thuringiensis toxic to boll weevil (Anthonomus grandis)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, T.S; Rocha, T.L. [EMBRAPA Recursos Geneticos e Biotecnologia, DF (Brazil); Vasconcelos, E.A.R [Universidade de Brasilia (UnB), DF (Brazil); Grossi-de-Sa, M.F. [Universidade Catolica de Brasilia, DF (Brazil)

    2008-07-01

    Full text: Bacillus thuringiensis (Bt) is a spore forming bacteria, which produces Cry proteins toxic towards several insect orders. Bt S 811 strain produces at least three Cry toxins: Cry1Ab, Cry1Ia12, and Cry8, and shown toxicity to insects from Coleoptera order. In order to characterize the production of theses toxins, and check its activity against Boll weevil larvae, proteic extracts from Bt cells and supernatant proteins from the bacterial culture, were obtained at different stages of cell cycle; 8, 16, 24, and 32 hours after inoculation (HAI). Proteins from 32 HAI of the supernatant, and 8 HAI of the cellular fractions, shown highest activity towards the Boll weevil larvae. Western blotting assays using anti-Cry8 and anti-Cry1I were carried out to analyse these toxins in the Bt proteic extracts. The existence of a Cry8 was detected at 8 HAI in the cellular fraction, what allow associate this molecule with the toxicity of this fraction. However, toxicity observed at 32 HAI in the supernatant fraction, was not possible to be associated with Cry8 or Cry1Ia toxins, indicating that there are another protein(s) responsible for the toxicity. A protein homo log to Cry1Ab was identified by 'Peptide Mass Fingerprint' at 32 HAI of the supernatant fraction and a chitin binding protein was identified by 2DE/MS/MS in this same stage and chitinolitic activity was also observed by enzymatic assay. All our data suggest a possible synergism between Cry toxins and a chitinase in the activity of this strain towards Boll weevil.

  6. Chitinolitic activity in proteic extracts of Bacillus thuringiensis toxic to boll weevil (Anthonomus grandis)

    International Nuclear Information System (INIS)

    Full text: Bacillus thuringiensis (Bt) is a spore forming bacteria, which produces Cry proteins toxic towards several insect orders. Bt S 811 strain produces at least three Cry toxins: Cry1Ab, Cry1Ia12, and Cry8, and shown toxicity to insects from Coleoptera order. In order to characterize the production of theses toxins, and check its activity against Boll weevil larvae, proteic extracts from Bt cells and supernatant proteins from the bacterial culture, were obtained at different stages of cell cycle; 8, 16, 24, and 32 hours after inoculation (HAI). Proteins from 32 HAI of the supernatant, and 8 HAI of the cellular fractions, shown highest activity towards the Boll weevil larvae. Western blotting assays using anti-Cry8 and anti-Cry1I were carried out to analyse these toxins in the Bt proteic extracts. The existence of a Cry8 was detected at 8 HAI in the cellular fraction, what allow associate this molecule with the toxicity of this fraction. However, toxicity observed at 32 HAI in the supernatant fraction, was not possible to be associated with Cry8 or Cry1Ia toxins, indicating that there are another protein(s) responsible for the toxicity. A protein homo log to Cry1Ab was identified by 'Peptide Mass Fingerprint' at 32 HAI of the supernatant fraction and a chitin binding protein was identified by 2DE/MS/MS in this same stage and chitinolitic activity was also observed by enzymatic assay. All our data suggest a possible synergism between Cry toxins and a chitinase in the activity of this strain towards Boll weevil

  7. Improvement and efficient display of Bacillus thuringiensis toxins on M13 phages and ribosomes.

    Science.gov (United States)

    Pacheco, Sabino; Cantón, Emiliano; Zuñiga-Navarrete, Fernando; Pecorari, Frédéric; Bravo, Alejandra; Soberón, Mario

    2015-12-01

    Bacillus thuringiensis (Bt) produces insecticidal proteins that have been used worldwide in the control of insect-pests in crops and vectors of human diseases. However, different insect species are poorly controlled by the available Bt toxins or have evolved resistance to these toxins. Evolution of Bt toxicity could provide novel toxins to control insect pests. To this aim, efficient display systems to select toxins with increased binding to insect membranes or midgut proteins involved in toxicity are likely to be helpful. Here we describe two display systems, phage display and ribosome display, that allow the efficient display of two non-structurally related Bt toxins, Cry1Ac and Cyt1Aa. Improved display of Cry1Ac and Cyt1Aa on M13 phages was achieved by changing the commonly used peptide leader sequence of the coat pIII-fusion protein, that relies on the Sec translocation pathway, for a peptide leader sequence that relies on the signal recognition particle pathway (SRP) and by using a modified M13 helper phage (Phaberge) that has an amber mutation in its pIII genomic sequence and preferentially assembles using the pIII-fusion protein. Also, both Cry1Ac and Cyt1Aa were efficiently displayed on ribosomes, which could allow the construction of large libraries of variants. Furthermore, Cry1Ac or Cyt1Aa displayed on M13 phages or ribosomes were specifically selected from a mixture of both toxins depending on which antigen was immobilized for binding selection. These improved systems may allow the selection of Cry toxin variants with improved insecticidal activities that could counter insect resistances. PMID:26606918

  8. Interação entre inimigos naturais: Trichogramma e Bacillus thuringiensis no controle biológico de pragas agrícolas = Interaction between natural enemies: Trichogramma and Bacillus thuringiensis in pest control

    Directory of Open Access Journals (Sweden)

    Ricardo Antonio Polanczyk

    2006-04-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos adversos de Bacillus thuringiensis (Bt nos parasitóides de ovos Trichogramma pratissolii e Trichogramma pretiosum. Suspensões de 6 isolados de Bt: E-3, E-10, E-15, E-16, E-19, E-20 e Bt kurstaki foram misturadas com mel (1:1, como fonte de alimento, e cartelas com ovos de Anagasta kuehniella foram fornecidas para o parasitismo. O experimento foi mantido em BOD a 25 + 1ºC, umidade relativa de 70+ 10% e fotofase de 14 horas. Foram analisados a longevidade, os parasitismos diário, acumulado e total. Não houve influência dos tratamentos sobre a longevidade e todos ostratamentos em T. pratissolii e E-3, E-10, E-16 e E- 19 em T. pretiosum diminuíram o tempo necessário para os parasitóides atingirem 80% de parasitismo. Apesar dessa aceleração do parasitismo, o Bt não influenciou o total de ovos parasitados, mostrando-se como tática de controle que pode ser usada com Trichogramma em programas de MIP.The goal of this work was to detect the possible side-effectsprovoked by Bacillus thuringiensis (Bt strains on eggs parasitoids Thichogramma pratissolii and Trichogramma pretiosum. Six strains of Bt: E-3, E-10, E-15, E-16, E-19, and E-20 and Bt kurstaki were assayed in honey drop to stimulate the feeding of the parasitoids in each treatment and offered simultaneously displays with Anagasta kuehniella eggs. The experiment was maintained in a climatized chamber at 25+ 1ºC, RH 70+ 10%, and photophase of 14 hours. The longevity, the daily, the accumulated, and the total parasitism were observed. No treatments affected the longevity of both parasitoids. All treatments in T. pratissolii and E-3, E-10, E-16, and E-19 in T. pretiosum decreased the time necessary to reach 80% of parasitism. The lack of deleterious effects of Bt on these parasitoids suggests that these natural enemies can be used together in IPM programs.

  9. Efficiency of Intergeneric Recombinants Between Bacillus Thuringiensis and Bacillus Subtilis for Increasing Mortality Rate in Cotten Leaf Worm

    Science.gov (United States)

    AlOtaibi, Saad Aied

    2012-12-01

    In this study , two strains of Bacillus belonging to two serotypes and four of their transconjugants were screened with respect to their toxicity against lepidopterous cotton pest. . Bacterial transconjugants isolated from conjugation between both strains were evaluated for their transconjugant efficiency caused mortality in Spodoptera littoralis larvae . Two groups of bioinsecticides ; crystals , crystals and spores have been isolated from Bacillusstrains and their transconjugants . Insecticidal crystal protein ( ICP ) was specific for lepidopteran insects because of the toxin sufficient both for insect specificity and toxicity . The toxicities of these two groups against larvae of Spodoptera littoralis was expressed as transconjugant efficiency , which related to the mean number of larvae died expressed as mortality percentage . The results showed transconjugant efficiency in reducing the mean number of Spodoptera littoralis larvae feeding on leaves of Ricinus communis sprayed with bioinsecticides of Bt transconjugants. Most values of positive transconjugant efficiency related to increasing mortality percentage are due to toxicological effects appeared in response to the treatments with crystals + endospores than that of crystals alone .This indicated that crystals + endospores was more effective for increasing mortality percentage than that resulted by crystals . Higher positive transconjugant efficiency in relation to the mid parents and better parent was appeared at 168 h of treatment . The results indicated that recombinant Bacillus thuringiensis are important control agents for lepidopteran pests , as well as , susceptibility decreased with larval development . The results also suggested a potential for the deployment of these recominant entomopathogens in the management of Spodoptera. littoralis larvae .

  10. Architecture and High-Resolution Structure of Bacillus thuringiensis and Bacillus cereus Spore Coat Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Leighton, T; Wheeler, K; Malkin, A

    2005-02-18

    We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereus was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.

  11. Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food

    DEFF Research Database (Denmark)

    Rosenquist, Hanne; Ørum-Smidt, Lasse; Andersen, Sigrid R;

    2005-01-01

    had at least one gene or component involved in human diarrhoeal disease, while emetic toxin was related to only one B. cereus strain. A new observation was that 31 out of the 40 randomly selected B. cereus-like strains could be classified as Bacillus thuringiensis due to crystal production and......Among 48,901 samples of ready-to-eat food products at the Danish retail market, 0.5% had counts of Bacillus cereus-like bacteria above 10(4) cfu g(-1). The high counts were most frequently found in starchy, cooked products, but also in fresh cucumbers and tomatoes. Forty randomly selected strains....../or content of cry genes. Thus, a large proportion of the B. cereus-like organisms present in food may belong to B. thuringiensis....

  12. Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals

    Science.gov (United States)

    Fu, Qingling; Deng, Yali; Li, Huishu; Liu, Jie; Hu, Hongqing; Chen, Shouwen; Sa, Tongmin

    2009-02-01

    The persistence of Bacillus thuringiensis ( Bt) toxins in soil is further enhanced through association with soil particles. Such persistence may improve the effectiveness of controlling target pests, but impose a hazard to non-target organisms in soil ecosystems. In this study, the equilibrium adsorption of the Bt toxin by four clay minerals (montmorillonite, kaolinite, goethite, and silicon dioxide) was investigated, and the kinetic and thermodynamic parameters were calculated. The results showed that Bt toxin could be adsorbed easily by minerals, and the adsorption was much easier at low temperature than at high temperature at the initial concentration varying from 0 to 1000 mg L -1. The adsorption fitted well to both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The pseudo-second-order (PSO) was the best application model to describe the adsorption kinetic. The adsorption process appeared to be controlled by chemical process, and the intra-particle diffusion was not the only rate-controlling step. The negative standard free energy ( ΔGmθr) values of the adsorption indicated that the adsorption of the Bt toxin by the minerals was spontaneous, and the changes of the standard enthalpy ( ΔHmθr) showed that the adsorption of the Bt toxin by montmorillonite was endothermic while the adsorption by the other three minerals was exothermic.

  13. Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals

    International Nuclear Information System (INIS)

    The persistence of Bacillus thuringiensis (Bt) toxins in soil is further enhanced through association with soil particles. Such persistence may improve the effectiveness of controlling target pests, but impose a hazard to non-target organisms in soil ecosystems. In this study, the equilibrium adsorption of the Bt toxin by four clay minerals (montmorillonite, kaolinite, goethite, and silicon dioxide) was investigated, and the kinetic and thermodynamic parameters were calculated. The results showed that Bt toxin could be adsorbed easily by minerals, and the adsorption was much easier at low temperature than at high temperature at the initial concentration varying from 0 to 1000 mg L-1. The adsorption fitted well to both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The pseudo-second-order (PSO) was the best application model to describe the adsorption kinetic. The adsorption process appeared to be controlled by chemical process, and the intra-particle diffusion was not the only rate-controlling step. The negative standard free energy (ΔrGmθ) values of the adsorption indicated that the adsorption of the Bt toxin by the minerals was spontaneous, and the changes of the standard enthalpy (ΔrHmθ) showed that the adsorption of the Bt toxin by montmorillonite was endothermic while the adsorption by the other three minerals was exothermic.

  14. Mode of Action and Specificity of Bacillus thuringiensis Toxins in the Control of Caterpillars and Stink Bugs in Soybean Culture.

    Science.gov (United States)

    Schünemann, Rogério; Knaak, Neiva; Fiuza, Lidia Mariana

    2014-01-01

    The bacterium Bacillus thuringiensis (Bt) produces delta-endotoxins that possess toxic properties and can be used as biopesticides, as well as a source of genes for the construction of transgenic plants resistant to insects. In Brazil, the introduction of Bt soybean with insecticidal properties to the velvetbean caterpillar, the main insect pest of soybean, has been seen a promising tool in the management of these agroecosystems. However, the increase in stink bug populations in this culture, in various regions of the country, which are not susceptible to the existing genetically modified plants, requires application of chemicals that damage the environment. Little is known about the actual toxicity of Bt to Hemiptera, since these insects present sucking mouthparts, which hamper toxicity assays with artificial diets containing toxins of this bacterium. In recent studies of cytotoxicity with the gut of different hemipterans, susceptibility in the mechanism of action of delta-endotoxins has been demonstrated, which can generate promising subsidies for the control of these insect pests in soybean. This paper aims to review the studies related to the selection, application and mode of action of Bt in the biological control of the major pest of soybean, Anticarsia gemmatalis, and an analysis of advances in research on the use of Bt for control hemipterans.

  15. Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals

    Energy Technology Data Exchange (ETDEWEB)

    Fu Qingling; Deng Yali; Li Huishu; Liu Jie [Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 (China); Hu Hongqing, E-mail: hqhu@mail.hzau.edu.cn [Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 (China); Chen Shouwen [Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 (China); Sa Tongmin [Department of Agricultural Chemistry, College of Agriculture, Chungbuk National University, Cheongju, 361-763 (Korea, Republic of)

    2009-02-01

    The persistence of Bacillus thuringiensis (Bt) toxins in soil is further enhanced through association with soil particles. Such persistence may improve the effectiveness of controlling target pests, but impose a hazard to non-target organisms in soil ecosystems. In this study, the equilibrium adsorption of the Bt toxin by four clay minerals (montmorillonite, kaolinite, goethite, and silicon dioxide) was investigated, and the kinetic and thermodynamic parameters were calculated. The results showed that Bt toxin could be adsorbed easily by minerals, and the adsorption was much easier at low temperature than at high temperature at the initial concentration varying from 0 to 1000 mg L{sup -1}. The adsorption fitted well to both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The pseudo-second-order (PSO) was the best application model to describe the adsorption kinetic. The adsorption process appeared to be controlled by chemical process, and the intra-particle diffusion was not the only rate-controlling step. The negative standard free energy ({Delta}{sub r}G{sub m}{sup {theta}}) values of the adsorption indicated that the adsorption of the Bt toxin by the minerals was spontaneous, and the changes of the standard enthalpy ({Delta}{sub r}H{sub m}{sup {theta}}) showed that the adsorption of the Bt toxin by montmorillonite was endothermic while the adsorption by the other three minerals was exothermic.

  16. Histopathological effects of Bacillus Thuringiensis and gamma irradiation on F1 Larvae of the greater Wax Moth, Galleria Mellonella L

    International Nuclear Information System (INIS)

    Full grown male pupae of the greater wax moth, Galleria mellonella L., were gamma irradiated with 50, 100, 200, 300 and 400 Gy. The resulting F1 larvae were treated at the fourth instar with different concentrations (0, 5, 10, 20, and 40 %) of Bacillus thuringiensis (Bt.) var. kurstaki. Combined effects of the two doses of gamma radiation (50 and 100 Gy) and / or Bt. (LC50) on certain biological aspects in addition to histological effects on larval mid gut were studied. The obtained results indicated that Bt. or irradiation treatments either alone or in combination decreased the number of F1 larvae that reached the adult stage as compared to the control. Also, the reduction in survived individuals was obvious at dose level 400 Gy than 50, 100 and 200 Gy (the lower doses). The larval mortality, percent pupation, percent emergence and adult survival were decreased gradually by increasing the concentration of Bt. especially at the combined treatments. The sex ratio was altered in favour of males at either Bt. and / or irradiation treatments. Certain histological changes through longitudinal sections of the mid gut of F1 larvae due to irradiation and / or Bt. treatments were detected. The damage of tissues was increased by increasing the dose of irradiation and / or concentration of Bt. The cytoplasmic extrusion was appeared as the apical margin of cells as a confluent mass and the muscular layers were broken in some parts, large amount of secretions was released in the lumen of the mid gut while a few amounts were attached to the apical margin of the cells. Much destruction of the mid gut took place when the Bt. treatments were combined with gamma irradiation where large number of epithelial cells became vacuolated and the cytoplasm was appeared as confluent masses because of the hydropic analysis of the epithelium

  17. Susceptibility, mechanisms of response and resistance to Bacillus thuringiensis toxins in Spodoptera spp.

    Science.gov (United States)

    Herrero, Salvador; Bel, Yolanda; Hernández-Martínez, Patricia; Ferré, Juan

    2016-06-01

    Bioinsecticides based on Bacillus thuringiensis have long been used as an alternative to synthetic insecticides to control insect pests. In this review, we focus on insects of the genus Spodoptera, including relevant polyphagous species that are primary and secondary pests of many crops, and how B. thuringiensis toxins can be used for Spodoptera spp. pest management. We summarize the main findings related to susceptibility, midgut binding specificity, mechanisms of response and resistance of this insect genus to B. thuringiensis toxins. PMID:27436737

  18. Cross-Resistance to Bacillus thuringiensis Toxin CryIF in the Diamondback Moth (Plutella xylostella)

    OpenAIRE

    Tabashnik, Bruce E; Finson, Naomi; Johnson, Marshall W.; Heckel, David G.

    1994-01-01

    Selection with Bacillus thuringiensis subsp. kurstaki, which contains CryIA and CryII toxins, caused a >200-fold cross-resistance to CryIF toxin from B. thuringiensis subsp. aizawai in the diamondback moth, Plutella xylostella. CryIE was not toxic, but CryIB was highly toxic to both selected and unselected larvae. The results show that extremely high levels of cross-resistance can be conferred across classes of CryI toxins of B. thuringiensis.

  19. An Ultra-Violet Tolerant Wild-Type Strain of Melanin-Producing Bacillus thuringiensis

    OpenAIRE

    Sansinenea, Estibaliz; Salazar, Francisco de, (S.I.); Ramirez, Melanie; Ortiz, Aurelio

    2015-01-01

    Background: Bacillus thuringiensis is the most successful biological control agent used in agriculture, forestry and mosquito control. However, the insecticidal activity of the B. thuringiensis formulation is not very stable and rapidly loses its biological activity under field conditions, due to the ultraviolet radiation in sunlight. Melanin is known to absorb radiation therefore photo protection of B. thuringiensis based on melanin has been extensively studied. Objectives: The aim of this s...

  20. Susceptibility, mechanisms of response and resistance to Bacillus thuringiensis toxins in Spodoptera spp.

    Science.gov (United States)

    Herrero, Salvador; Bel, Yolanda; Hernández-Martínez, Patricia; Ferré, Juan

    2016-06-01

    Bioinsecticides based on Bacillus thuringiensis have long been used as an alternative to synthetic insecticides to control insect pests. In this review, we focus on insects of the genus Spodoptera, including relevant polyphagous species that are primary and secondary pests of many crops, and how B. thuringiensis toxins can be used for Spodoptera spp. pest management. We summarize the main findings related to susceptibility, midgut binding specificity, mechanisms of response and resistance of this insect genus to B. thuringiensis toxins.

  1. Cry-like genes, in an uncommon gene configuration, produce a crystal that localizes within the exosporium when expressed in an acrystalliferous strain of Bacillus thuringiensis.

    Science.gov (United States)

    Ammons, David; Toal, Graham; Roman, Angel; Rojas-Avelizapa, Luz I; Ventura-Suárez, Antonio; Rampersad, Joanne

    2016-02-01

    Cry proteins are pesticidal toxins produced by the bacterium Bacillus thuringiensis (Bt), which aggregate in sporulating cells to form a crystal. Except in a relatively few cases, these crystals are located outside the exosporium that surrounds the spore. Bt2-56 is a strain of Bt that has the relatively uncommon characteristic of locating its Cry protein-containing crystal within the exosporium, and in association with a long, multifiber filament. With the ultimate goal of both understanding and manipulating the localization of Cry proteins within the exosporium, we sought to identify the genes coding for the exosporium-localized Cry proteins in Bt2-56. Herein we show (i) that five cry-like genes are present in the genome of Bt2-56, (ii) that two pairs of these genes show organizational similarity to a relatively uncommon gene configuration that coexpress a cry gene along with a gene whose product aids crystal formation and (iii) that when one of these two gene pairs (cry21A-cdA) is expressed in an acrystalliferous strain of Bt, crystals are formed that localize within the exosporium. In Bt ssp. finitimus, the only other strain in which crystal localization has been studied, a Cry protein needed expression of two non-cry ORFs in order to localize within the exosporium, indicating that there are some mechanistic differences for crystal localization between Bt ssp. finitimus and Bt2-56. PMID:26781916

  2. Draft Genome Sequence of Bacillus thuringiensis Strain DAR 81934, Which Exhibits Molluscicidal Activity

    OpenAIRE

    Wang, Aisuo; Pattemore, Julie; Ash, Gavin; Williams, Angela; Hane, James

    2013-01-01

    Bacillus thuringiensis has been widely used as a biopesticide for a long time. Its molluscicidal activity, however, is rarely realized. Here, we report the genome sequence of B. thuringiensis strain DAR 81934, a strain with molluscicidal activity against the pest snail Cernuella virgata.

  3. Separation of Protein Crystals from Spores of Bacillus thuringiensis by Ludox Gradient Centrifugation

    OpenAIRE

    Zhu, Yu Sheng; Brookes, Allan; Carlson, Ken; Filner, Philip

    1989-01-01

    A method is described for the purification of Bacillus thuringiensis protein crystals by Ludox gradient centrifugation. This method is simple, inexpensive, fast, and efficient compared with other techniques. It has been successfully used to purify and characterize the protein crystals from several B. thuringiensis strains.

  4. Identification of metabolism pathways directly regulated by Sigma54 factor in Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Qi ePeng

    2015-05-01

    Full Text Available Sigma54 (σ54 normally regulates nitrogen and carbon utilization in bacteria. Promoters that are σ54-dependent are highly conserved and contain short sequences located at the −24 and −12 positions upstream of the transcription initiation site. σ54 requires regulatory proteins known as bacterial enhancer-binding proteins (bEBPs to activate gene transcription. We show that σ54 regulates the capacity to grow on various nitrogen sources using a Bacillus thuringiensis HD73 mutant lacking the sigL gene encoding σ54 (ΔsigL. A 2-fold-change cutoff and a false discovery rate cutoff of P < 0.05 were used to analyze the DNA microarray data, which revealed 255 genes that were downregulated and 121 that were upregulated in the ΔsigL mutant relative to the wild-type HD73 strain. The σ54 regulon (stationary phase was characterized by DNA microarray, bioinformatics, and functional assay; 16 operons containing 47 genes were identified whose promoter regions contain the conserved −12/−24 element and whose transcriptional activities were abolished or reduced in the ΔsigL mutant. Eight σ54-dependent transcriptional bEBPs were found in the Bt HD73 genome, and they regulated night σ54-dependent promoters.The metabolic pathways activated by σ54 in this process have yet to be identified in Bacillus thuringiensis; nonetheless, the present analysis of the σ54 regulon provides a better understanding of the physiological roles of σ factors in bacteria.

  5. Characterization of a Bacillus thuringiensis strain collection isolated from diverse Costa Rican natural ecosystems.

    Science.gov (United States)

    Arrieta, Glen; Espinoza, Ana M

    2006-03-01

    Costa Rican natural ecosystems are among the most diverse in the world. For this reason, we isolated strains of the entomopathogenic bacteria Bacillus thuringiensis (Bt) to determine their diversity, distribution and abundance. A total of 146 Bt strains were obtained from environmental samples collected from diverse natural ecosystems and life zones of Costa Rica. We recovered Bt strains from 71%, 63%, 61% and 54% of soil samples, fresh leaves, other substrates and leaf litter respectively. Bt was isolated in 65% of the samples collected in the humid tropical forest in national parks (Braulio Carrillo, Gandoca Manzanillo, Sierpe, Hitoy Cerere, and Cahuita), and in 59% of the samples collected in the dry tropical forest (Parque Nacional Marino las Baulas, Palo Verde and Santa Rosa). In the very humid tropical forest (Tortuguero) Bt was isolated in 75% of the samples and in the very humid tropical forest transition perhumid (Carara) it was found in 69% of the samples. The strains exhibit a diverse number, size and morphology of parasporal inclusion bodies: irregular (47%), oval (20%), bipyramidal (3%), bipyramidal and cubic (1%), bipyramidal, oval and irregular (5%) and bipyramidal, oval and cubic crystals (2%). Strains isolated from Braulio Carrillo, Tortuguero and Cahuita, presented predominantly irregular crystals. On the other hand, more than 60% of the isolates from Térraba-Sierpe and Hitoy-Cerere had medium oval crystals. Strains from Gandoca-Manzanillo, Palo Verde and Carara presented mainly combinations of oval and irregular crystals. Nevertheless, the greatest diversity in crystal morphology was observed in those from Santa Rosa, Llanos del Rio Medio Queso and Parque Marino las Baulas. Protein analyses of the crystal-spore preparations showed delta-endotoxin with diverse electrophoretic patterns, with molecular weights in the range of 20 to 160 kDa. Fifty six percent of the strains amplified with the cry2 primer, 54% with vip3, 20% with cry1, 9% with cry3

  6. A high-throughput, in-vitro assay for Bacillus thuringiensis insecticidal proteins.

    Science.gov (United States)

    Izumi Willcoxon, Michi; Dennis, Jaclyn R; Lau, Sabina I; Xie, Weiping; You, You; Leng, Song; Fong, Ryan C; Yamamoto, Takashi

    2016-01-10

    A high-throughput, in-vitro assay for Bacillus thuringiensis (Bt) insecticidal proteins designated as Cry was developed and evaluated for screening a large number of Cry protein variants produced by DNA shuffling. This automation-amenable assay exploits an insect cell line expressing a single receptor of Bt Cry proteins. The Cry toxin used to develop this assay is a variant of the Cry1Ab protein called IP1-88, which was produced previously by DNA shuffling. Cell mortality caused by the activated Bt Cry toxin was determined by chemical cell viability assay in 96/384-well microtiter plates utilizing CellTiter 96(®) obtained from Promega. A widely-accepted mode-of-action theory of certain Bt Cry proteins suggests that the activated toxin binds to one or more receptors and forms a pore through the insect gut epithelial cell apical membrane. A number of insect proteins such as cadherin-like protein (Cad), aminopeptidase-N (APN), alkaline phosphatase (ALP) and ABC transporter (ABCC) have been identified as the receptors of Bt Cry toxins. In this study, Bt Cry toxin receptors Ostrinia nubilalis (European corn borer) cadherin-like protein (On-Cad) and aminopeptidase-N 1 and 3 (On-APN1, On-APN3) and Spodoptera frugiperda (fall armyworm) cadherin-like protein (Sf-Cad) were cloned in an insect cell line, Sf21, and a mammalian cell line, Expi293F. It was observed by ligand blotting and immunofluorescence microscopy that trypsin-activated IP1-88 bound to On-Cad and On-APN1, but not Sf-Cad or On-APN3. In contrast, IP1-88 bound only to APN1 in BBMV (Brush Border Membrane Vesicles) prepared from the third and fourth-instar O. nubilalis larval midgut. The sensitivity of the recombinant cells to the toxin was then tested. IP1-88 showed no toxicity to non-recombinant Sf21 and Expi293F. Toxicity was observed only when the On-Cad gene was cloned and expressed. Sf-Cad and On-APN1 were not able to make those cells sensitive to the toxin. Since the expression of On-Cad alone was

  7. Genome-wide Screening Reveals the Genetic Determinants of an Antibiotic Insecticide in Bacillus thuringiensis*

    OpenAIRE

    Liu, Xiao-Yan; Ruan, Li-Fang; Hu, Zhen-Fei; Peng, Dong-hai; Cao, Shi-Yun; Yu, Zi-Niu; Liu, Yao; Zheng, Jin-Shui; Sun, Ming

    2010-01-01

    Thuringiensin is a thermostable secondary metabolite in Bacillus thuringiensis and has insecticidal activity against a wide range of insects. Until now, the regulatory mechanisms and genetic determinants involved in thuringiensin production have remained unclear. Here, we successfully used heterologous expression-guided screening in an Escherichia coli–Bacillus thuringiensis shuttle bacterial artificial chromosome library, to clone the intact thuringiensin synthesis (thu) cluster. Then the th...

  8. Avaliação de produtos à base de Bacillus thuringiensis no controle da traça-das-crucíferas Evaluation of insecticides based on Bacillus thuringiensis in the control of the diamondback moth

    Directory of Open Access Journals (Sweden)

    Patrícia T Medeiros

    2006-06-01

    Full Text Available Avaliou-se em dois experimentos a suscetibilidade da traça-das-crucíferas a inseticidas à base de Bacillus thuringiensis em repolho cv. Itiban. O delineamento do primeiro experimento (de julho a setembro/03, em área de plantio comercial em Brazlândia (DF, foi de blocos casualizados, com seis tratamentos e dez repetições; os bioinseticidas utilizados foram B. thuringiensis kurstaki (S1450CO, B. thuringiensis aizawai comercial (Bta e três produtos formulados com as estirpes S1450BB, S811BB, S845BB de B. thuringiensis pertencentes ao Banco de Bacillus spp. da Embrapa Recursos Genéticos e Biotecnologia. No segundo experimento, realizado no campo experimental da Embrapa (DF, de outubro/03 a janeiro/04, o delineamento foi de blocos casualizados, com seis tratamentos e quatro repetições; os inseticidas utilizados foram os mesmos do primeiro experimento, com a adição de Spinosad, e retirado o tratamento S811BB. Os produtos foram aplicados quando foi atingido o nível de dano de seis furos nas quatro folhas centrais do repolho. O Bta comercial foi o produto mais eficaz no primeiro experimento, tendo sido aplicado cinco vezes e diferiu estaticamente dos demais produtos. Os formulados S845BB e S1450BB não apresentaram diferenças quando comparados ao produto comercial S1450 e foram aplicados seis vezes. O produto S811BB também foi aplicado seis vezes, mas sua eficácia foi inferior aos demais produtos e não diferiu da testemunha. Já no segundo experimento, o S1450 comercial foi aplicado cinco vezes e os demais produtos à base de Bt, seis vezes. Todos os produtos utilizados não diferiram entre si, diferindo apenas no número de aplicações.Two experiments were performed to evaluate the susceptibility of the diamondback moth to insecticides based on Bacillus thuringiensis in cabbage cv. Itiban. The first experiment was carried out from July to September 2003, in a production area in Brazlândia (DF, Brazil. Randomized blocks with six

  9. Flexibility Analysis of Bacillus thuringiensis Cry1Aa

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xin Min; XIA Li Qiu; YANG Xiao Ping; PENG Xiao Yun

    2015-01-01

    Objective To investigate the flexibility and mobility of the Bacillus thuringiensis toxin Cry1Aa. Methods The graph theory-based program Constraint Network Analysis and normal mode-based program NMsim were used to analyze the global and local flexibility indices as well as the fluctuation of individual residues in detail. Results The decrease in Cry1Aa network rigidity with the increase of temperature was evident. Two phase transition points in which the Cry1Aa structure lost rigidity during the thermal simulation were identified. Two rigid clusters were found in domains I and II. Weak spots were found in C-terminal domain III. Several flexible regions were found in all three domains;the largest residue fluctuation was present in the apical loop2 of domain II. Conclusion Although several flexible regions could be found in all the three domains, the most flexible regions were in the apical loops of domain II.

  10. Proteolytic Activation of Bacillus thuringiensis Cry2Ab through a Belt-and-Braces Approach.

    Science.gov (United States)

    Xu, Lian; Pan, Zhi-Zhen; Zhang, Jing; Liu, Bo; Zhu, Yu-Jing; Chen, Qing-Xi

    2016-09-28

    Proteolytic processing of Bacillus thuringiensis (Bt) crystal toxins by insect midgut proteases plays an essential role in their insecticidal toxicities against target insects. In the present study, proteolysis of Bt crystal toxin Cry2Ab by Plutella xylostella L. midgut proteases (PxMJ) was evaluated. Both trypsin and chymotrypsin were identified involving the proteolytic activation of Cry2Ab and cleaving Cry2Ab at Arg(139) and Leu(144), respectively. Three Cry2Ab mutants (R139A, L144A, and R139A-L144A) were constructed by replacing residues Arg(139), Leu(144), and Arg(139)-Leu(144) with alanine. Proteolysis assays revealed that mutants R139A and L144A but not R139A-L144A could be cleaved into 50 kDa activated toxins by PxMJ. Bioassays showed that mutants R139A and L144A were highly toxic against P. xylostella larvae, while mutant R139A-L144A was almost non-insecticidal. Those results demonstrated that proteolysis by PxMJ was associated with the toxicity of Cry2Ab against P. xylostella. It also revealed that either trypsin or chymotrypsin was enough to activate Cry2Ab protoxin. This characteristic was regarded as a belt-and-braces approach and might contribute to the control of resistance development in target insects. Our studies characterized the proteolytic processing of Cry2Ab and provided new insight into the activation of this Bt toxin. PMID:27598769

  11. Nanoscale imaging of Bacillus thuringiensis flagella using atomic force microscopy

    Science.gov (United States)

    Gillis, Annika; Dupres, Vincent; Delestrait, Guillaume; Mahillon, Jacques; Dufrêne, Yves F.

    2012-02-01

    Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in Gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in cell surface appendages.Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in Gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in

  12. Occurrence of Toxigenic Bacillus cereus and Bacillus thuringiensis in Doenjang, a Korean Fermented Soybean Paste.

    Science.gov (United States)

    Park, Kyung Min; Kim, Hyun Jung; Jeong, Moon Cheol; Koo, Minseon

    2016-04-01

    This study determined the prevalence and toxin profile of Bacillus cereus and Bacillus thuringiensis in doenjang, a fermented soybean food, made using both traditional and commercial methods. The 51 doenjang samples tested were broadly contaminated with B. cereus; in contrast, only one sample was positive for B. thuringiensis. All B. cereus isolates from doenjang were positive for diarrheal toxin genes. The frequencies of nheABC and hblACD in traditional samples were 22.7 and 0%, respectively, whereas 5.1 and 5.1% of B. cereus isolates from commercial samples possessed nheABC and hblACD, respectively. The detection rate of ces gene was 10.8%. The predominant toxin profile among isolates from enterotoxigenic B. cereus in doenjang was profile 4 (entFM-bceT-cytK). The major enterotoxin genes in emetic B. cereus were cytK, entFM, and nheA genes. The B. thuringiensis isolate was of the diarrheagenic type. These results provide a better understanding of the epidemiology of the enterotoxigenic and emetic B. cereus groups in Korean fermented soybean products.

  13. Research Progress in Paraslporal Crystal from Bacillus thuringiensis%苏云金芽孢杆菌伴孢晶体的研究进展

    Institute of Scientific and Technical Information of China (English)

    李雪; 马玉超; 李煦; 于慧敏; 张建

    2012-01-01

    伴胞晶体是苏云金芽孢杆菌(Bacillus thuringiensis,简称Bt)在芽孢形成过程中产生的一种蛋白晶体.作为生物杀虫农药之一,伴胞晶体/Bt由于具有高效、广谱、环保及生物安全等优势,在农林业中得到广泛应用.介绍了伴胞晶体的最新分类、命名情况,综速了其结构、杀虫机理及应用方面的研究进展,并对Bc生物农药的发展前景进行了展望.%Parasporal crystals are insecticidal δ-endoloxin proteins (named Cry and Cyl toxins) produced by Bacillus thuringiensis (Bt) during the sporulation phase. As one of the bio-pesticides, parasporal cryatals/Bt have been widely used in agriculture and forestry with the advantages of high efficiency, broad-spectrum, environmental protection and bio-safety. The latest classification and nomenclature of parasporal crystals were introduced, the research progress in their structure, inseeticidal mechanism and application were reviewed in this paper, and their development prospect in Bt biological pesticides was forecasted.

  14. Degradation and detection of transgenic Bacillus thuringiensis DNA and proteins in flour of three genetically modified rice events submitted to a set of thermal processes.

    Science.gov (United States)

    Wang, Xiaofu; Chen, Xiaoyun; Xu, Junfeng; Dai, Chen; Shen, Wenbiao

    2015-10-01

    This study aimed to investigate the degradation of three transgenic Bacillus thuringiensis (Bt) genes (Cry1Ab, Cry1Ac, and Cry1Ab/Ac) and the corresponding encoded Bt proteins in KMD1, KF6, and TT51-1 rice powder, respectively, following autoclaving, cooking, baking, or microwaving. Exogenous Bt genes were more stable than the endogenous sucrose phosphate synthase (SPS) gene, and short DNA fragments were detected more frequently than long DNA fragments in both the Bt and SPS genes. Autoclaving, cooking (boiling in water, 30 min), and baking (200 °C, 30 min) induced the most severe Bt protein degradation effects, and Cry1Ab protein was more stable than Cry1Ac and Cry1Ab/Ac protein, which was further confirmed by baking samples at 180 °C for different periods of time. Microwaving induced mild degradation of the Bt and SPS genes, and Bt proteins, whereas baking (180 °C, 15 min), cooking and autoclaving led to further degradation, and baking (200 °C, 30 min) induced the most severe degradation. The findings of the study indicated that degradation of the Bt genes and proteins somewhat correlated with the treatment intensity. Polymerase chain reaction, enzyme-linked immunosorbent assay, and lateral flow tests were used to detect the corresponding transgenic components. Strategies for detecting transgenic ingredients in highly processed foods are discussed.

  15. Degradation and detection of transgenic Bacillus thuringiensis DNA and proteins in flour of three genetically modified rice events submitted to a set of thermal processes.

    Science.gov (United States)

    Wang, Xiaofu; Chen, Xiaoyun; Xu, Junfeng; Dai, Chen; Shen, Wenbiao

    2015-10-01

    This study aimed to investigate the degradation of three transgenic Bacillus thuringiensis (Bt) genes (Cry1Ab, Cry1Ac, and Cry1Ab/Ac) and the corresponding encoded Bt proteins in KMD1, KF6, and TT51-1 rice powder, respectively, following autoclaving, cooking, baking, or microwaving. Exogenous Bt genes were more stable than the endogenous sucrose phosphate synthase (SPS) gene, and short DNA fragments were detected more frequently than long DNA fragments in both the Bt and SPS genes. Autoclaving, cooking (boiling in water, 30 min), and baking (200 °C, 30 min) induced the most severe Bt protein degradation effects, and Cry1Ab protein was more stable than Cry1Ac and Cry1Ab/Ac protein, which was further confirmed by baking samples at 180 °C for different periods of time. Microwaving induced mild degradation of the Bt and SPS genes, and Bt proteins, whereas baking (180 °C, 15 min), cooking and autoclaving led to further degradation, and baking (200 °C, 30 min) induced the most severe degradation. The findings of the study indicated that degradation of the Bt genes and proteins somewhat correlated with the treatment intensity. Polymerase chain reaction, enzyme-linked immunosorbent assay, and lateral flow tests were used to detect the corresponding transgenic components. Strategies for detecting transgenic ingredients in highly processed foods are discussed. PMID:26277627

  16. Improving SERS Detection of Bacillus thuringiensis Using Silver Nanoparticles Reduced with Hydroxylamine and with Citrate Capped Borohydride

    International Nuclear Information System (INIS)

    The development of techniques that could be useful in fields other than biological warfare agents countermeasures such as medical diagnostics, industrial microbiology, and environmental applications have become a very important subject of research. Raman spectroscopy can be used in near field or at long distances from the sample to obtain fingerprinting information of chemical composition of microorganisms. In this research, biochemical components of the cell wall and endospores of Bacillus thuringiensis (Bt) were identified by surface-enhanced Raman scattering (SERS) spectroscopy using silver (Ag) nanoparticles (NPs) reduced by hydroxylamine and borohydride capped with sodium citrate. Activation of hot spots, aggregation and surface charge modification of the NPs, was studied and optimized to obtain signal enhancements from Bt by SERS. Slight aggregation of the NPs as well as surface charge modification to a more acidic ambient was induced using small-size borohydride-reduced NPs in the form of metallic suspensions aimed at increasing the Ag NP-Bt interactions. Hydroxylamine-reduced NPs required slight aggregation and no pH modifications in order to obtain high spectral quality results in bringing out SERS signatures of Bt.

  17. Transport of Bacillus thuringiensis var. kurstaki via fomites.

    Science.gov (United States)

    Van Cuyk, Sheila; Veal, Lee Ann B; Simpson, Beverley; Omberg, Kristin M

    2011-09-01

    The intentional and controlled release of an aerosolized bacterium provides an opportunity to investigate the implications of a biological attack. Since 2006, Los Alamos National Laboratory has worked with several urban areas, including Fairfax County, VA, to design experiments to evaluate biodefense concepts of operations using routine spraying of Bacillus thuringiensis var. kurstaki (Btk). Btk is dispersed in large quantities as a slurry to control the gypsy moth, Lymantria dispar. Understanding whether personnel and equipment pick up residual contamination during sampling activities and transport it to other areas is critical for the formulation of appropriate response and recovery plans. While there is a growing body of literature surrounding the transmission of viral diseases via fomites, there is limited information on the transport of Bacillus species via this route. In 2008, LANL investigated whether field sampling activities conducted near sprayed areas, post-spray, resulted in measurable cross-contamination of sampling personnel, equipment, vehicles, and hotel rooms. Viable Btk was detected in all sample types, indicating transport of the agent occurred via fomites.

  18. Screening of Bacillus thuringiensis strains effective against mosquitoes Prospecção de estirpes de Bacillus thuringiensis efetivas contra mosquitos

    Directory of Open Access Journals (Sweden)

    Rose Gomes Monnerat

    2005-02-01

    Full Text Available The objective of this work was to evaluate 210 Bacillus thuringiensis strains against Aedes aegypti and Culex quinquefasciatus larvae to select the most effective. These strains were isolated from different regions of Brazil and are stored in a Bacillus spp. collection at Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil. The selected strains were characterized by morphological (microscopy, biochemical (SDS-PAGE 10% and molecular (PCR methods. Six B. thuringiensis strains were identified as mosquito-toxic after the selective bioassays. None of the strains produced the expected PCR products for detection of cry4, cry11 and cyt1A genes. These results indicate that the activity of mosquitocidal Brazilian strains are not related with Cry4, Cry11 or Cyt proteins, so they could be used as an alternative bioinsecticide against mosquitoes.Neste trabalho foram realizados testes de patogenicidade com 210 estirpes de Bacillus thuringiensis contra larvas de Aedes aegypti e Culex quinquefasciatus, a fim de se determinar as mais eficazes. Estas estirpes foram isoladas de diversas regiões do Brasil e estão armazenadas na coleção de Bacillus spp. da Embrapa Recursos Genéticos e Biotecnologia. As estirpes selecionadas foram caracterizadas por métodos morfológicos (microscopia, bioquímicos (SDS-PAGE 10% e moleculares (Reação em Cadeia da Polimerase. Foram selecionadas seis estirpes entomopatogênicas de Bacillus thuringiensis. Nenhuma das estirpes de Bacillus thuringiensis apresentou produtos de PCR esperados para a detecção dos genes cry4, cry11 e cyt1A. A patogenicidade das estirpes não está associada à presença das toxinas Cry4, Cry11 ou Cyt, assim, essas estirpes poderão ser utilizadas para a formatação de um bioinseticida alternativo contra mosquitos.

  19. Impact of Bt crops on non-target organisms – 3 systematic reviews

    Science.gov (United States)

    The cultivation of genetically modified (GM) crops producing Cry toxins, originating from the bacterium Bacillus thuringiensis (Bt), has raised environmental concerns over their sustainable use and consequences for biodiversity and ecosystem services in agricultural land. During the last two decades...

  20. Bt crop effects on functional guilds of non-target arthropods: A meta-analysis (journal)

    Science.gov (United States)

    Background: Uncertainty persists over the environmental effects of genetically-engineered crops that produce the insecticidal Cry proteins of Bacillus thuringiensis (Bt). We performed meta-analyses on a modified public database to synthesize current knowledge about the effects of...

  1. Individual and Combined Effects of Bacillus Thuringiensis and Azadirachtin on Plodia Interpunctella Hübner (Lepidoptera: Pyralidae).

    Science.gov (United States)

    Nouri-Ganbalani, Gadir; Borzoui, Ehsan; Abdolmaleki, Arman; Abedi, Zahra; George Kamita, Shizuo

    2016-01-01

    The Indianmeal moth, Plodia interpunctella Hübner (Lepidoptera: Pyralidae), is a major stored product pest that is found throughout the world. In this study, the effect of oral exposure to Bacillus thuringiensis (Berliner) subsp. kurstaki (Bacillales: Bacillaceae) and azadirachtin was evaluated in third instar P. interpunctella under laboratory conditions. The median lethal concentration (LC50) of Bt and azadirachtin on third instars was 490 and 241 μg a.i./ml, respectively. The median lethal time (LT50) of these insecticides was the same (4.5 d following exposure to 750 or 400 μg a.i./ml of Bt or azadirachtin, respectively). When the larvae fed on diet containing LC30 concentrations of both Bt and azadirachtin an additive interaction in terms of mortality was found. A synergistic interaction was found when the larvae fed on diet containing LC50 concentrations of both insecticides. Larvae that fed on insecticide-containing diet (either Bt or azadirachtin at an LC30 concentration, or both insecticides at LC30 or LC50 concentrations) showed lower glycogen and lipid levels, and generally lower protein content in comparison to control larvae. Larvae that fed on diet containing both Bt and azadirachtin showed reduced weight gain and nutritional indices in comparison to control larvae or larvae fed on the diet containing only one of the insecticides. Finally, exposure to both insecticides, either individually or in combination, reduced the level of digestive enzymes found in the midgut. Our findings indicate that both Bt and azadirachtin, either individually or in combination have significant potential for use in controlling of P. interpunctella. PMID:27638953

  2. cDNAs of aminopeptidase-like protein genes from Plodia interpunctella strains with different susceptibilities to Bacillus thuringiensis toxins.

    Science.gov (United States)

    Zhu, Y C; Kramer, K J; Oppert, B; Dowdy, A K

    2000-03-01

    Aminopeptidase N has been reported to be a Bacillus thuringiensis (Bt) Cry1A toxin-binding protein in several lepidopteran insects. cDNAs of aminopeptidase-like proteins from both Bt-susceptible RC688s and Bt-resistant HD198r strains of the Indianmeal moth, Plodia interpunctella, were cloned and sequenced. They contain 3345 and 3358 nucleotides, respectively, and each has a 3048 bp open reading frame that encodes 1016 amino acids. Putative protein sequences include 10 potential glycosylation sites and a zinc metal binding site motif of HEXXH, which is typical of the active site of zinc-dependent metallopeptidases. Sequence analysis indicated that the deduced protein sequences are most similar to an aminopeptidase from Heliothis virescens with 62% sequence identity and highly similar to three other lepidopteran aminopeptidases from Plutella xylostella, Manduca sexta, Bombyx mori with sequence identities of 51-52%. Four nucleotide differences were observed in the open reading frames that translated into two amino acid differences in the putative protein sequences. Polymerase chain reaction (PCR) confirmed an aminopeptidase gene coding difference between RC688s and HD198r strains of P. interpunctella in the PCR amplification of a specific allele (PASA) using preferential primers designed from a single base substitution. The gene mutation for Asp185-->Glu185 was also confirmed in two additional Bt-resistant P. interpunctella strains. This mutation is located within a region homologous to the conserved Cry1Aa toxin binding regions from Bombyx mori and Plutella xylostella. The aminopeptidase-like mRNA expression levels in the Bt-resistant strain were slightly higher than those in the Bt-susceptible strain. The sequences reported in this paper have been deposited in the GenBank database (accession numbers AF034483 for susceptible strain RC688s and AF034484 for resistant strain HD198r).

  3. Individual and Combined Effects of Bacillus Thuringiensis and Azadirachtin on Plodia Interpunctella Hübner (Lepidoptera: Pyralidae).

    Science.gov (United States)

    Nouri-Ganbalani, Gadir; Borzoui, Ehsan; Abdolmaleki, Arman; Abedi, Zahra; George Kamita, Shizuo

    2016-01-01

    The Indianmeal moth, Plodia interpunctella Hübner (Lepidoptera: Pyralidae), is a major stored product pest that is found throughout the world. In this study, the effect of oral exposure to Bacillus thuringiensis (Berliner) subsp. kurstaki (Bacillales: Bacillaceae) and azadirachtin was evaluated in third instar P. interpunctella under laboratory conditions. The median lethal concentration (LC50) of Bt and azadirachtin on third instars was 490 and 241 μg a.i./ml, respectively. The median lethal time (LT50) of these insecticides was the same (4.5 d following exposure to 750 or 400 μg a.i./ml of Bt or azadirachtin, respectively). When the larvae fed on diet containing LC30 concentrations of both Bt and azadirachtin an additive interaction in terms of mortality was found. A synergistic interaction was found when the larvae fed on diet containing LC50 concentrations of both insecticides. Larvae that fed on insecticide-containing diet (either Bt or azadirachtin at an LC30 concentration, or both insecticides at LC30 or LC50 concentrations) showed lower glycogen and lipid levels, and generally lower protein content in comparison to control larvae. Larvae that fed on diet containing both Bt and azadirachtin showed reduced weight gain and nutritional indices in comparison to control larvae or larvae fed on the diet containing only one of the insecticides. Finally, exposure to both insecticides, either individually or in combination, reduced the level of digestive enzymes found in the midgut. Our findings indicate that both Bt and azadirachtin, either individually or in combination have significant potential for use in controlling of P. interpunctella.

  4. How Quorum Sensing Connects Sporulation to Necrotrophism in Bacillus thuringiensis.

    Science.gov (United States)

    Perchat, Stéphane; Talagas, Antoine; Poncet, Sandrine; Lazar, Noureddine; Li de la Sierra-Gallay, Inès; Gohar, Michel; Lereclus, Didier; Nessler, Sylvie

    2016-08-01

    Bacteria use quorum sensing to coordinate adaptation properties, cell fate or commitment to sporulation. The infectious cycle of Bacillus thuringiensis in the insect host is a powerful model to investigate the role of quorum sensing in natural conditions. It is tuned by communication systems regulators belonging to the RNPP family and directly regulated by re-internalized signaling peptides. One such RNPP regulator, NprR, acts in the presence of its cognate signaling peptide NprX as a transcription factor, regulating a set of genes involved in the survival of these bacteria in the insect cadaver. Here, we demonstrate that, in the absence of NprX and independently of its transcriptional activator function, NprR negatively controls sporulation. NprR inhibits expression of Spo0A-regulated genes by preventing the KinA-dependent phosphorylation of the phosphotransferase Spo0F, thus delaying initiation of the sporulation process. This NprR function displays striking similarities with the Rap proteins, which also belong to the RNPP family, but are devoid of DNA-binding domain and indirectly control gene expression via protein-protein interactions in Bacilli. Conservation of the Rap residues directly interacting with Spo0F further suggests a common inhibition of the sporulation phosphorelay. The crystal structure of apo NprR confirms that NprR displays a highly flexible Rap-like structure. We propose a molecular regulatory mechanism in which key residues of the bifunctional regulator NprR are directly and alternatively involved in its two functions. NprX binding switches NprR from a dimeric inhibitor of sporulation to a tetrameric transcriptional activator involved in the necrotrophic lifestyle of B. thuringiensis. NprR thus tightly coordinates sporulation and necrotrophism, ensuring survival and dissemination of the bacteria during host infection. PMID:27483473

  5. How Quorum Sensing Connects Sporulation to Necrotrophism in Bacillus thuringiensis.

    Science.gov (United States)

    Perchat, Stéphane; Talagas, Antoine; Poncet, Sandrine; Lazar, Noureddine; Li de la Sierra-Gallay, Inès; Gohar, Michel; Lereclus, Didier; Nessler, Sylvie

    2016-08-01

    Bacteria use quorum sensing to coordinate adaptation properties, cell fate or commitment to sporulation. The infectious cycle of Bacillus thuringiensis in the insect host is a powerful model to investigate the role of quorum sensing in natural conditions. It is tuned by communication systems regulators belonging to the RNPP family and directly regulated by re-internalized signaling peptides. One such RNPP regulator, NprR, acts in the presence of its cognate signaling peptide NprX as a transcription factor, regulating a set of genes involved in the survival of these bacteria in the insect cadaver. Here, we demonstrate that, in the absence of NprX and independently of its transcriptional activator function, NprR negatively controls sporulation. NprR inhibits expression of Spo0A-regulated genes by preventing the KinA-dependent phosphorylation of the phosphotransferase Spo0F, thus delaying initiation of the sporulation process. This NprR function displays striking similarities with the Rap proteins, which also belong to the RNPP family, but are devoid of DNA-binding domain and indirectly control gene expression via protein-protein interactions in Bacilli. Conservation of the Rap residues directly interacting with Spo0F further suggests a common inhibition of the sporulation phosphorelay. The crystal structure of apo NprR confirms that NprR displays a highly flexible Rap-like structure. We propose a molecular regulatory mechanism in which key residues of the bifunctional regulator NprR are directly and alternatively involved in its two functions. NprX binding switches NprR from a dimeric inhibitor of sporulation to a tetrameric transcriptional activator involved in the necrotrophic lifestyle of B. thuringiensis. NprR thus tightly coordinates sporulation and necrotrophism, ensuring survival and dissemination of the bacteria during host infection.

  6. Spider mite infestations reduce Bacillus thuringiensis toxin concentration in corn leaves and predators avoid spider mites that have fed on Bacillus thuringiensis corn

    Science.gov (United States)

    Transgenic crops containing pyramid-stacked genes for Bacillus thuringiensis derived toxins for controlling coleopteran and lepidopteran pests are increasingly common. As part of environmental risk assessments, these crops are evaluated for toxicity against non-target organisms, and for their poten...

  7. Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined.

    Science.gov (United States)

    Renzi, Maria Teresa; Amichot, Marcel; Pauron, David; Tchamitchian, Sylvie; Brunet, Jean-Luc; Kretzschmar, André; Maini, Stefano; Belzunces, Luc P

    2016-05-01

    In the agricultural environment, honey bees may be exposed to combinations of pesticides. Until now, the effects of these combinations on honey bee health have been poorly investigated. In this study, we assessed the impacts of biological and chemical insecticides, combining low dietary concentrations of Bacillus thuringiensis (Bt) spores (100 and 1000µg/L) with the chemical insecticide fipronil (1µg/L). In order to assess the possible effects of Cry toxins, the Bt kurstaki strain (Btk) was compared with a Bt strain devoid of toxin-encoding plasmids (Bt Cry(-)). The oral exposure to fipronil and Bt spores from both strains for 10 days did not elicit significant effects on the feeding behavior and survival after 25 days. Local and systemic physiological effects were investigated by measuring the activities of enzymes involved in the intermediary and detoxication metabolisms at two sampling dates (day 10 and day 20). Attention was focused on head and midgut glutathione-S-transferase (GST), midgut alkaline phosphatase (ALP), abdomen glyceraldehyde-3-phosphate dehydrogenase (GAPD) and glucose-6-phosphate dehydrogenase (G6PD). We found that Bt Cry(-) and Btk spores induced physiological modifications by differentially modulating enzyme activities. Fipronil influenced the enzyme activities differently at days 10 and 20 and, when combined with Bt spores, elicited modulations of some spore-induced physiological responses. These results show that an apparent absence of toxicity may hide physiological disruptions that could be potentially damaging for the bees, especially in the case of combined exposures to other environmental stressors.

  8. Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined.

    Science.gov (United States)

    Renzi, Maria Teresa; Amichot, Marcel; Pauron, David; Tchamitchian, Sylvie; Brunet, Jean-Luc; Kretzschmar, André; Maini, Stefano; Belzunces, Luc P

    2016-05-01

    In the agricultural environment, honey bees may be exposed to combinations of pesticides. Until now, the effects of these combinations on honey bee health have been poorly investigated. In this study, we assessed the impacts of biological and chemical insecticides, combining low dietary concentrations of Bacillus thuringiensis (Bt) spores (100 and 1000µg/L) with the chemical insecticide fipronil (1µg/L). In order to assess the possible effects of Cry toxins, the Bt kurstaki strain (Btk) was compared with a Bt strain devoid of toxin-encoding plasmids (Bt Cry(-)). The oral exposure to fipronil and Bt spores from both strains for 10 days did not elicit significant effects on the feeding behavior and survival after 25 days. Local and systemic physiological effects were investigated by measuring the activities of enzymes involved in the intermediary and detoxication metabolisms at two sampling dates (day 10 and day 20). Attention was focused on head and midgut glutathione-S-transferase (GST), midgut alkaline phosphatase (ALP), abdomen glyceraldehyde-3-phosphate dehydrogenase (GAPD) and glucose-6-phosphate dehydrogenase (G6PD). We found that Bt Cry(-) and Btk spores induced physiological modifications by differentially modulating enzyme activities. Fipronil influenced the enzyme activities differently at days 10 and 20 and, when combined with Bt spores, elicited modulations of some spore-induced physiological responses. These results show that an apparent absence of toxicity may hide physiological disruptions that could be potentially damaging for the bees, especially in the case of combined exposures to other environmental stressors. PMID:26866756

  9. Environmental Distribution and Diversity of Insecticidal Proteins of Bacillus thuringiensis Berliner

    Directory of Open Access Journals (Sweden)

    Xavier, R.

    2007-01-01

    Full Text Available Bacillus thuringiensis Berliner based biopesticides have been successfully used world over for the control of agricultural pests and vectors of human diseases. Currently there are more than 200 B. thuringiensis strains with differing insecticidal activities are available as biocontrol agents and for developing transgenic plants. However, two major disadvantages are the development of insect resistance and high target specificity (narrow host range. Globally there is a continuous search for new B. thuringiensis strains with novel insecticidal activities. The present study aims to study the environmental distribution of B. thuringiensis and their toxic potential against insect pests. Soil and grain samples were collected from different environments and were processed by a modified acetate selection method. Initially B. thuringiensis isolates were screened on the basis of colony morphology and phase contrast microscopy for the presence of parasporal crystal inclusions. The population dynamics showed that B. thuringiensis is abundant in sericulture environment compared to other niches. Relative abundance of B. thuringiensis strains in sericulture environment shows the persistent association of B. thuringiensis with Bombyx mori (silk worm as insect pathogen. The protein profiles of the selected strains were studied by SDS-PAGE. The protein profiles of majority of B. thuringiensis isolates from grain storage facilities predominantly showing the 130 kDa and 68 kDa proteins, which is characteristics of lepidopteran active B. thuringiensis. However, one isolate BTRX-4 has 80-85 kDa protein, which is novel in that, this strain also exhibits antilepidopteran activity, which is normally presented by B. thuringiensis strains having 130 kDa and 68 kDa proteins. The protein profile of B. thuringiensis isolates from sericulture environment shows two different protein profiles. B. thuringiensis isolates BTRX-16 to BTRX-22 predominantly show 130 kDa protein

  10. Comparative genomics analysis of the companion mechanisms of Bacillus thuringiensis Bc601 and Bacillus endophyticus Hbe603 in bacterial consortium.

    Science.gov (United States)

    Jia, Nan; Ding, Ming-Zhu; Gao, Feng; Yuan, Ying-Jin

    2016-01-01

    Bacillus thuringiensis and Bacillus endophyticus both act as the companion bacteria, which cooperate with Ketogulonigenium vulgare in vitamin C two-step fermentation. Two Bacillus species have different morphologies, swarming motility and 2-keto-L-gulonic acid productivities when they co-culture with K. vulgare. Here, we report the complete genome sequencing of B. thuringiensis Bc601 and eight plasmids of B. endophyticus Hbe603, and carry out the comparative genomics analysis. Consequently, B. thuringiensis Bc601, with greater ability of response to the external environment, has been found more two-component system, sporulation coat and peptidoglycan biosynthesis related proteins than B. endophyticus Hbe603, and B. endophyticus Hbe603, with greater ability of nutrients biosynthesis, has been found more alpha-galactosidase, propanoate, glutathione and inositol phosphate metabolism, and amino acid degradation related proteins than B. thuringiensis Bc601. Different ability of swarming motility, response to the external environment and nutrients biosynthesis may reflect different companion mechanisms of two Bacillus species. Comparative genomic analysis of B. endophyticus and B. thuringiensis enables us to further understand the cooperative mechanism with K. vulgare, and facilitate the optimization of bacterial consortium. PMID:27353048

  11. Comparative genomics analysis of the companion mechanisms of Bacillus thuringiensis Bc601 and Bacillus endophyticus Hbe603 in bacterial consortium.

    Science.gov (United States)

    Jia, Nan; Ding, Ming-Zhu; Gao, Feng; Yuan, Ying-Jin

    2016-06-29

    Bacillus thuringiensis and Bacillus endophyticus both act as the companion bacteria, which cooperate with Ketogulonigenium vulgare in vitamin C two-step fermentation. Two Bacillus species have different morphologies, swarming motility and 2-keto-L-gulonic acid productivities when they co-culture with K. vulgare. Here, we report the complete genome sequencing of B. thuringiensis Bc601 and eight plasmids of B. endophyticus Hbe603, and carry out the comparative genomics analysis. Consequently, B. thuringiensis Bc601, with greater ability of response to the external environment, has been found more two-component system, sporulation coat and peptidoglycan biosynthesis related proteins than B. endophyticus Hbe603, and B. endophyticus Hbe603, with greater ability of nutrients biosynthesis, has been found more alpha-galactosidase, propanoate, glutathione and inositol phosphate metabolism, and amino acid degradation related proteins than B. thuringiensis Bc601. Different ability of swarming motility, response to the external environment and nutrients biosynthesis may reflect different companion mechanisms of two Bacillus species. Comparative genomic analysis of B. endophyticus and B. thuringiensis enables us to further understand the cooperative mechanism with K. vulgare, and facilitate the optimization of bacterial consortium.

  12. Persistence of detectable insecticidal proteins from Bacillus thuringiensis (Cry) and toxicity after adsorption on contrasting soils.

    Science.gov (United States)

    Hung, T P; Truong, L V; Binh, N D; Frutos, R; Quiquampoix, H; Staunton, S

    2016-01-01

    Insecticidal Cry, or Bt, proteins are produced by the soil-endemic bacterium, Bacillus thuringiensis and some genetically modified crops. Their environmental fate depends on interactions with soil. Little is known about the toxicity of adsorbed proteins and the change in toxicity over time. We incubated Cry1Ac and Cry2A in contrasting soils subjected to different treatments to inhibit microbial activity. The toxin was chemically extracted and immunoassayed. Manduca sexta was the target insect for biotests. Extractable toxin decreased during incubation for up to four weeks. Toxicity of Cry1Ac was maintained in the adsorbed state, but lost after 2 weeks incubation at 25 °C. The decline in extractable protein and toxicity were much slower at 4 °C with no significant effect of soil sterilization. The major driving force for decline may be time-dependent fixation of adsorbed protein, leading to a decrease in the extraction yield in vitro, paralleled by decreasing solubilisation in the larval gut. PMID:26549751

  13. No adjuvant effect of Bacillus thuringiensis-maize on allergic responses in mice.

    Directory of Open Access Journals (Sweden)

    Daniela Reiner

    Full Text Available Genetically modified (GM foods are evaluated carefully for their ability to induce allergic disease. However, few studies have tested the capacity of a GM food to act as an adjuvant, i.e. influencing allergic responses to other unrelated allergens at acute onset and in individuals with pre-existing allergy. We sought to evaluate the effect of short-term feeding of GM Bacillus thuringiensis (Bt-maize (MON810 on the initiation and relapse of allergic asthma in mice. BALB/c mice were provided a diet containing 33% GM or non-GM maize for up to 34 days either before ovalbumin (OVA-induced experimental allergic asthma or disease relapse in mice with pre-existing allergy. We observed that GM-maize feeding did not affect OVA-induced eosinophilic airway and lung inflammation, mucus hypersecretion or OVA-specific antibody production at initiation or relapse of allergic asthma. There was no adjuvant effect upon GM-maize consumption on the onset or severity of allergic responses in a mouse model of allergic asthma.

  14. Instruction for evaluating deposit of bacillus thuringiensis formulas during aerial treatments. Information report No. LAU-X-54

    Energy Technology Data Exchange (ETDEWEB)

    Smirnoff, W.A.

    1982-01-01

    Studies carried out form many years revealed that the methods used for deposit assessment of chemical insecticides could not be used with Bacillus thuringiensis. A new method was developed giving the quantity of viable spores dispersed per surface unit. Details of this method are concisely described in this document. It specifically provides instructions for evaluating deposit of Bacillus thuringiensis formulas during aerial treatments.

  15. Draft Genome Sequence of Bacillus thuringiensis var. thuringiensis Strain T01-328, a Brazilian Isolate That Produces a Soluble Pesticide Protein, Cry1Ia

    OpenAIRE

    Varani, Alessandro M; Lemos, Manoel V.F.; Fernandes, Camila C.; Eliana G. M. Lemos; Alves, Eliane C. C.; Desidério, Janete A.

    2013-01-01

    Bacillus thuringiensis var. thuringiensis strain T01-328, isolated from Cubatão county (São Paulo State, Brazil), produces a soluble pesticide protein, Cry1Ia, during vegetative growth. Here, we report the 7.089-Mbp draft genome sequence, composed of a 5.5-Mb chromosome and 14 plasmids, which is the largest B. thuringiensis genome sequenced to date.

  16. Cloning, Expression and Toxicity of a Mosquitocidal Toxin Gene of Bacillus thuringiensis subsp. medellin

    Directory of Open Access Journals (Sweden)

    Restrepo Nora

    1997-01-01

    Full Text Available Bacillus thuringiensis (Bt subsp. medellin (Btmed produces parasporal crystalline inclusions which are toxic to mosquito larvae. It has been shown that the inclusions of this bacterium contain mainly proteins of 94, 68 and 28-30 kDa. EcoRI partially digested total DNA of Btmed was cloned by using the Lambda Zap II cloning kit. Recombinant plaques were screened with a mouse policlonal antibody raised against the 94 kDa crystal protein of Btmed. One of the positive plaques was selected, and by in vivo excision, a recombinant pBluescript SK(- was obtained. The gene encoding the 94 kDa toxin of Btmed DNA was cloned in a 4.4 kb DNA fragment. Btmed DNA was then subcloned as a EcoRI/EcoRI fragment into the shuttle vector pBU4 producing the recombinant plasmid pBTM3 and used to transform by electroporation Bt subsp. israelensis (Bti crystal negative strain 4Q2-81. Toxicity to mosquito larvae was estimated by using first instar laboratory reared Aedes aegypti, and Culex quinquefasciatus larvae challenged with whole crystals. Toxicity results indicate that the purified inclusions from the recombinant Bti strain were toxic to all mosquito species tested, although the toxicity was not as high as the one produced by the crystal of the Btmed wild type strain. Poliacrylamide gel electrophoresis indicate that the inclusions produced by the recombinant strain Bti (pBTM3 were mainly composed of the 94 kDa protein of Btmed, as it was determined by Western blot

  17. Germination and conjugation of Bacillus thuringiensis subsp. israelensis in the intestine of gnotobiotic rats

    DEFF Research Database (Denmark)

    Wilcks, Andrea; Ørum-Smidt, Lasse; Bahl, Martin Iain;

    2008-01-01

    Aims: To study the ability of Bacillus thuringiensis subsp. israelensis spores to germinate and subsequently transfer a conjugative plasmid in the intestinal tract of gnotobiotic rats. Methods and Results: Germination was studied by feeding germ-free rats with spores of a B. thuringiensis strain...... the conjugative plasmid pXO16 was introduced. Both strains were given as spores and transfer of pXO16 was observed from the donor to the recipient strain. Conclusions: Bacillus thuringiensis is able to have a full life cycle in the intestine of gnotobiotic rats including germination of spores, several cycles...... harbouring a plasmid encoding green fluorescent protein (GFP), which enabled quantification of germinated bacteria by flow cytometry. To study in vivo conjugation, germ-free rats were first associated with a B. thuringiensis recipient strain and after 1 week an isogenic donor strain harbouring...

  18. Extended genetic analysis of Brazilian isolates of Bacillus cereus and Bacillus thuringiensis

    Science.gov (United States)

    Zahner, Viviane; Silva, Ana Carolina Telles de Carvalho e; de Moraes, Gabriela Pinhel; McIntosh, Douglas; de Filippis, Ivano

    2013-01-01

    Multiple locus sequence typing (MLST) was undertaken to extend the genetic characterization of 29 isolates of Bacillus cereus and Bacillus thuringiensis previously characterized in terms of presence/absence of sequences encoding virulence factors and via variable number tandem repeat (VNTR). Additional analysis involved polymerase chain reaction for the presence of sequences (be, cytK, inA, pag, lef, cya and cap), encoding putative virulence factors, not investigated in the earlier study. MLST analysis ascribed novel and unique sequence types to each of the isolates. A phylogenetic tree was constructed from a single sequence of 2,838 bp of concatenated loci sequences. The strains were not monophyletic by analysis of any specific housekeeping gene or virulence characteristic. No clear association in relation to source of isolation or to genotypic profile based on the presence or absence of putative virulence genes could be identified. Comparison of VNTR profiling with MLST data suggested a correlation between these two methods of genetic analysis. In common with the majority of previous studies, MLST was unable to provide clarification of the basis for pathogenicity among members of the B. cereus complex. Nevertheless, our application of MLST served to reinforce the notion that B. cereus and B. thuringiensis should be considered as the same species. PMID:23440117

  19. Extended genetic analysis of Brazilian isolates of Bacillus cereus and Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Viviane Zahner

    2013-02-01

    Full Text Available Multiple locus sequence typing (MLST was undertaken to extend the genetic characterization of 29 isolates of Bacillus cereus and Bacillus thuringiensis previously characterized in terms of presence/absence of sequences encoding virulence factors and via variable number tandem repeat (VNTR. Additional analysis involved polymerase chain reaction for the presence of sequences (be, cytK, inA, pag, lef, cya and cap, encoding putative virulence factors, not investigated in the earlier study. MLST analysis ascribed novel and unique sequence types to each of the isolates. A phylogenetic tree was constructed from a single sequence of 2,838 bp of concatenated loci sequences. The strains were not monophyletic by analysis of any specific housekeeping gene or virulence characteristic. No clear association in relation to source of isolation or to genotypic profile based on the presence or absence of putative virulence genes could be identified. Comparison of VNTR profiling with MLST data suggested a correlation between these two methods of genetic analysis. In common with the majority of previous studies, MLST was unable to provide clarification of the basis for pathogenicity among members of the B. cereus complex. Nevertheless, our application of MLST served to reinforce the notion that B. cereus and B. thuringiensis should be considered as the same species.

  20. Isolation and identification of some Bacillus thuringiensis strains with insecticidal activity against Ceratitis capitata

    International Nuclear Information System (INIS)

    The aims of the present work is to study the effect of toxins (delta-endotoxins), extracted from different strains of Bacillus thuringiensis on Ceratitis capitata, a devastating of citrus and fruit trees. Strains of B. thuringiensis were isolated from the mud of Sebket Sejoumi. Among 70 isolates tested, 15 showed a significant identicalness activity in which 5 isolates led to mortality rates ≥ 90 pour cent . These mortality rates are caused by endotoxins of B. thuringiensis. Analysis of proteins profiles of different isolates of B. thuringiensis revealed variability between them. The preliminary results of this study encourage us towards the characterization of the insecticidal activity produced by B. thuringiensis strains for large scale application.

  1. Persistence of Bacillus thuringiensis bioinsecticides in the gut of human-flora-associated rats

    DEFF Research Database (Denmark)

    Wilcks, Andrea; Hansen, Bjarne Munk; Hendriksen, Niels Bohse;

    2006-01-01

    The capability of two bioinsecticide strains of Bacillus thuringiensis (ssp. israelensis and ssp. kurstaki) to germinate and persist in vivo in the gastrointestinal tract of human-flora-associated rats was studied. Rats were dosed either with vegetative cells or spores of the bacteria for 4...... consecutive days. In animals fed spores, B. thuringiensis cells were detected in faecal and intestinal samples of all animals, whereas vegetative cells only poorly survived the gastric passage. Heat-treatment of intestinal samples, which kills vegetative cells, revealed that B. thuringiensis spores were...... capable of germination in the gastrointestinal tract. In one animal fed spores of B. thuringiensis ssp. kurstaki, these bacteria were detected at high density (10(3)-10(4) CFU g(-1) faecal and intestinal samples) even 2 weeks after the last dosage. In the same animal, passage of B. thuringiensis ssp...

  2. IS231A from Bacillus thuringiensis is functional in Escherichia coli: transposition and insertion specificity.

    OpenAIRE

    Hallet, Bernard; Rezsohazy, René; Delcour, Jean

    1991-01-01

    A kanamycin resistance gene was introduced within the insertion sequence IS231A from Bacillus thuringiensis, and transposition of the element was demonstrated in Escherichia coli. DNA sequencing at the target sites showed that IS231A transposition results in direct repeats of variable lengths (10, 11, and 12 bp). These target sequences resemble the terminal inverted repeats of the transposon Tn4430, which are the preferred natural insertion sites of IS231 in B. thuringiensis.

  3. Incorporation of Specific Fatty Acid Precursors During Spore Germination and Outgrowth in Bacillus thuringiensis

    OpenAIRE

    Nickerson, Kenneth W.; Bulla, Lee A

    1980-01-01

    The selective incorporation of precursors specific for individual fatty acids in germinating and outgrowing spores of Bacillus thuringiensis is described. The specific precursors utilized were [14C]butyrate, -isobutyrate, -valerate, and -isovalerate, which were incorporated into even-numbered normal-chain isomers, even-numbered iso-isomers, odd-numbered normal-chain acids, and odd-numbered isohomologs, respectively. This preferential incorporation by B. thuringiensis allows the terminal carbo...

  4. Binding of Bacillus thuringiensis proteins to a laboratory-selected line of Heliothis virescens.

    OpenAIRE

    MacIntosh, S C; Stone, T B; Jokerst, R S; Fuchs, R L

    1991-01-01

    A laboratory-selected colony of Heliothis virescens displaying a 20- to 70-fold level of resistance to Bacillus thuringiensis proteins was evaluated to identify mechanism(s) of resistance. Brush-border membrane vesicles were isolated from larval midgut epithelium from the susceptible and resistant strains of H. virescens. Two B. thuringiensis proteins, CryIA(b) and CryIA(c), were iodinated and shown to specifically bind to brush-border membrane vesicles of both insect strains. Multiple change...

  5. Shared Binding Sites in Lepidoptera for Bacillus thuringiensis Cry1Ja and Cry1A Toxins

    OpenAIRE

    Herrero, Salvador; González-Cabrera, Joel; Tabashnik, Bruce E; Ferré, Juan

    2001-01-01

    Bacillus thuringiensis toxins act by binding to specific target sites in the insect midgut epithelial membrane. The best-known mechanism of resistance to B. thuringiensis toxins is reduced binding to target sites. Because alteration of a binding site shared by several toxins may cause resistance to all of them, knowledge of which toxins share binding sites is useful for predicting cross-resistance. Conversely, cross-resistance among toxins suggests that the toxins share a binding site. At lea...

  6. Role of receptors in Bacillus thuringiensis crystal toxin activity.

    Science.gov (United States)

    Pigott, Craig R; Ellar, David J

    2007-06-01

    Bacillus thuringiensis produces crystalline protein inclusions with insecticidal or nematocidal properties. These crystal (Cry) proteins determine a particular strain's toxicity profile. Transgenic crops expressing one or more recombinant Cry toxins have become agriculturally important. Individual Cry toxins are usually toxic to only a few species within an order, and receptors on midgut epithelial cells have been shown to be critical determinants of Cry specificity. The best characterized of these receptors have been identified for lepidopterans, and two major receptor classes have emerged: the aminopeptidase N (APN) receptors and the cadherin-like receptors. Currently, 38 different APNs have been reported for 12 different lepidopterans. Each APN belongs to one of five groups that have unique structural features and Cry-binding properties. While 17 different APNs have been reported to bind to Cry toxins, only 2 have been shown to mediate toxin susceptibly in vivo. In contrast, several cadherin-like proteins bind to Cry toxins and confer toxin susceptibility in vitro, and disruption of the cadherin gene has been associated with toxin resistance. Nonetheless, only a small subset of the lepidopteran-specific Cry toxins has been shown to interact with cadherin-like proteins. This review analyzes the interactions between Cry toxins and their receptors, focusing on the identification and validation of receptors, the molecular basis for receptor recognition, the role of the receptor in resistant insects, and proposed models to explain the sequence of events at the cell surface by which receptor binding leads to cell death. PMID:17554045

  7. Raman spectroscopy of Bacillus thuringiensis physiology and inactivation

    Science.gov (United States)

    Morrow, J. B.; Almeida, J.; Cole, K. D.; Reipa, V.

    2012-12-01

    The ability to detect spore contamination and inactivation is relevant to developing and determining decontamination strategy success for food and water safety. This study was conducted to develop a systematic comparison of nondestructive vibrational spectroscopy techniques (Surface-Enhanced Raman Spectroscopy, SERS, and normal Raman) to determine indicators of Bacillus thuringiensis physiology (spore, vegetative, outgrown, germinated and inactivated spore forms). SERS was found to provide better resolution of commonly utilized signatures of spore physiology (dipicolinic acid at 1006 cm-1 and 1387 cm-1) compared to normal Raman and native fluorescence indigenous to vegetative and outgrown cell samples was quenched in SERS experiment. New features including carotenoid pigments (Raman features at 1142 cm-1, 1512 cm-1) were identified for spore cell forms. Pronounced changes in the low frequency region (300 cm-1 to 500 cm-1) in spore spectra occurred upon germination and inactivation (with both free chlorine and by autoclaving) which is relevant to guiding decontamination and detection strategies using Raman techniques.

  8. The complete genome sequence of Bacillus thuringiensis serovar Hailuosis YWC2-8.

    Science.gov (United States)

    Zhu, Jun; Zhang, Qinbin; Cao, Ye; Li, Qiao; Zhu, Zizhong; Wang, Linxia; Li, Ping

    2016-02-10

    Bacillus thuringiensis, a typical aerobic, Gram-positive, spore-forming bacterium, is an important microbial insecticide widely used in the control of agricultural pests. B. thuringiensis serovar Hailuosis YWC2-8 with high insecticidal activity against Diptera and Lepidoptera insects has three insecticidal crystal protein genes, such as cry4Cb2, cry30Ea2, and cry56Aa1. In this study, the complete genome sequence of B. thuringiensis YWC2-8 was analyzed, which contains one circular gapless chromosome and six circular plasmids.

  9. Characterization and selection of Bacillus thuringiensis isolates effective against Sitophilus oryzae Caracterização e seleção de isolados de Bacillus thuringiensis efetivos contra Sitophilus oryzae

    Directory of Open Access Journals (Sweden)

    Najara da Silva

    2010-08-01

    Full Text Available The entomopathogenic bacterium Bacillus thuringiensis is a control agent with toxic and environmental characteristics that allows the control of pest insects according to the Integrate Pest Management (IPM precepts. In order to find new strains, potentially toxic to Sitophilus oryzae L. 1763 (Coleoptera: Curculinidae, 1.073 strains of B. thuringiensis from parts of Brazil were used. Genetic material was extracted with InstaGene Matrix kit, used for the amplification of sequences in Polymerase chain reaction (PCR, and viewed in 1.5% agarose gel. The gene cry35Ba class was represented by 60 B. thuringiensis isolates (5.6%, which were then subjected to bioassays with S. oryzae larvae. Among the isolates studied, four caused more than 50% mortality in pathogenicity tests, and the isolates 544 and 622 were the most virulent, as determined by CL50 estimates. The four toxic isolates had spherical, bi-pyramidal and cuboid crystals, and a 44-kDa protein was found in sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-PAGE, which coded for the product of cry35Ba genes. These data demonstrate the potential of B. thuringiensis for the management of S. oryzae larvae.A bactéria entomopatogênica Bacillus thuringiensis (Bt é um agente de controle com características tóxicas e ambientais que permitem o controle de insetos-praga de acordo com as premissas do Manejo integrado de pragas (MIP. Com o objetivo de buscar novas linhagens potencialmente tóxicas para Sitophilus oryzae L. 1763 (Coleoptera: Curculinidae, caracterizaram-se molecularmente 1,073 isolados de B. thuringiensis de regiões do Brasil. O material genético foi extraído através do kit InstaGene Matrix, utilizado para a amplificação das seqüências através da técnica de Polymerase chain reaction PCR, sendo os resultados visualizados em gel de agarose 1,5%. A classe do gene cry35Ba foi representada por 60 isolados (5,6% de Bt, os quais foram submetidos a bioensaio com larvas

  10. Can pyramids and seed mixtures delay resistance to Bt crops?

    Science.gov (United States)

    The primary strategy for delaying evolution of pest resistance to transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt) entails refuges of plants that do not produce Bt toxins and thus allow survival of susceptible pests. Recent advances include using refuges together...

  11. 害虫对苏云金芽孢杆菌的抗性及其延缓措施%Research on the Pest Resistance to Bacillus thuringiensis

    Institute of Scientific and Technical Information of China (English)

    汪伦记; 纠敏

    2005-01-01

    苏云金芽孢杆菌(Bacillus thuringiensis,简称Bt)在害虫防治中发挥着重要作用.现已表明,有近20种昆虫可对Bt生物制剂产生抗性,转Bt基因作物的释放更加剧了害虫的抗性进化.开展害虫的抗性研究,加强对Bt基因的保护,对持续利用Bt生物制剂和转Bt基因作物具有非常重要的意义.

  12. Actividad biológica de Bacillus thuringiensis sobre la polilla guatemalteca de la papa, Tecia solanivora Povolny (Lepidoptera: Gelechiidae)

    OpenAIRE

    Adriana Carolina Rojas Arias; Silvio Alejandro López Pazos; Alejandro Chaparro Giraldo

    2013-01-01

    La papa (Solanum tuberosum) es uno de los cultivos más importantes de Colombia. Las larvas de la polilla guatemalteca de la papa, Tecia solanivora Povolny (Lepidoptera: Gelechiidae), causan daños directos a los tubérculos, produciendo pérdidas económicas e incremento en el uso de agroquímicos. Bacillus thuringiensis (Bt) es una alternativa en el manejo de insectos plaga gracias a su especificidad. Su actividad depende de proteínas denominadas Cry, que cuando son ingeridas por un insecto susce...

  13. Microcalorimetric Study of the Biological Effects of Zn+ on Bacillus thuringiensis Growth

    Institute of Scientific and Technical Information of China (English)

    姚俊; 刘义; 等

    2002-01-01

    A microcalorimetric technique was used to investigate the influence of Zn2+ on the growth metabolism of Bacillus thuringiensis .LKB-2277 Bioactivity Monitor was employed to obtain the power-time curves,from which the maximum peak-heat output power(Pmax) in the log phase,the growth rate constants(k), the inhibitory ratios(I) ,the generational time(tG) and the total heat effect (Qtotal) in 23 h for the growth metabolism of Bacillus thuringiensis at 28℃ can be evaluated,The results indicate that the concentration of Zn2+ affects its growth obviously,Low concentration (0-50μg/mL) of Zn2+ promotes the growth of Bacillus thuringiensis while high concentration (50-500μg/mL) of Zn2+ inhibits its growth .When the concentration reached up to 600μg/mL,it can not grow at all.

  14. Microcalorimetric Study of the Biological Effects of Zn2+ on Bacillus thuringiensis Growth

    Institute of Scientific and Technical Information of China (English)

    YAO,Jun(姚俊); LIU,Yi(刘义); GAO,Zhen-Ting(高振霆); LIU,Peng(刘鹏); SUN,Ming(孙明); ZOU,xueb(邹雪); QU,Song-Sheng(屈松生); YU,Zi-Niu(喻子牛)

    2002-01-01

    A microcalorimetric technique was used to investigate the influence of Zn2 + on the growth metabolism of Bacillus thuringiensis. LKB-2277 Bioaciivity Monitor was employed to obtain the power-iime curves, from which the maximum peak-heat output power(Pmax) in the log phase, the growth rate constants (k),the inhibitory raiios (Ⅰ), the generational time (tG) and the total heat effect (Qtotal) in 23 h for the growth metabolism of Bacillus thuringiensis at 28 ℃ can be evaluated. The results indicate that the concentration of Zn2+ affects its growth obviously. Low concentration (0-50 μg/mL) of Zn2 + promotes the growth of Bacillus thuringiensis while high concentration (50-500 μg/mL) of Zn2 + inhibits its growth. When the concentration reached up to 600 μg/mL, it can not grow at all.

  15. Mortality of Oryzophagus oryzae (Costa Lima, 1936 (Coleoptera: Curculionidae and Spodoptera frugiperda (J E Smith, 1797 (Lepidoptera: Noctuidae Larvae Exposed to Bacillus thuringiensis and Extracts of Melia azedarach

    Directory of Open Access Journals (Sweden)

    Diouneia Lisiane Berlitz

    2012-10-01

    Full Text Available Oryzophagus oryzae (Costa Lima 1936 (Coleoptera: Curculionidae and Spodoptera frugiperda (J E Smith, 1797 (Lepidoptera: Noctuidae cause important crop losses in southern Brazil. Control is possible by the use of the bacteria Bacillus thuringiensis and extracts of Melia azedarach. This study aimed to evaluate the mortality, in vivo, of O. oryzae and S. frugiperda submitted to two isolates of B. thuringiensis and the aqueous extract of M. azedarach. The LC50 for O. oryzae due to bacteria was 5.40μg/mL (Bt 2014-2 and due to plant extract 0.90μg/mL. For S. frugiperda, the Bt 1958-2 bacterial suspension (1.10(10UFC/mL caused a 100% of corrected mortality, showing that the purified Cry proteins caused a CL10 of 268μg/mL five days after the treatments, and M. azedarach toxins caused a CL50 173μg/mL four days after the treatment. Corrected mortality for O. oryzae and S. frugiperda in the interaction between the bacterial and plant toxins were 11 and 6%, respectively. In the PCR analysis of B. thuringiensis isolates, DNA fragments were enlarged and corresponded to the cry1 and cry2 genes for Bt 1958-2. Thus, it could be concluded that the usage of Bt 2014-2 active against O. oryzae larvae; Bt 1958-2 for S. frugiperda and, for both the insect species, M. azedarach aqueous extract could be used.

  16. Screening and Full - length Amplification of Novel Chitinase Genes from 15 Serovars of Bacillus thuringiensis%苏云金杆菌几丁质酶新基因的筛选和全长基因的扩增

    Institute of Scientific and Technical Information of China (English)

    林毅; 关雄

    2004-01-01

    以煮沸冻融法制备PCR扩增模板,利用苏云金芽孢杆菌(Bacillus thuringiensis,Bt)几丁质酶基因特异引物进行15个Bt血清变种的扩增分析,获得9个几丁质酶全长基因扩增产物.经克隆和序列测定,从Bt serovar.entomocidus HD109、Bt serovar.canadensis HD224、Bt serovar.alesti HD16和Bt serovar.toumanoffiHD201等4个菌株中分离了几丁质酶新基因.

  17. 苏云金芽胞杆菌挥发性物质的测定%Determination of Bacillus thuringiensis volatile substances

    Institute of Scientific and Technical Information of China (English)

    郑梅霞; 潘志针; 刘波; 陈峥; 车建美; 唐建阳; 朱育菁; 陈梅春

    2014-01-01

    目的:分析、鉴定苏云金芽胞杆菌(Bacillus thuringiensis, Bt)的挥发性成分。方法采用顶空固相微萃取技术(HS-SPME)对 Bt 的挥发性成分进行捕集,再通过气相色谱-质谱联用(GC-MS)技术对挥发性成分进行鉴定。以本实验室分离的高效苏云金芽胞杆菌 FJAT-12菌株为实验菌株,探索 Bt 菌株的不同培养方式、不同固相微萃取吸附方式及不同萃取头的选择对挥发性成分鉴定结果的影响,确定 Bt 菌株挥发性物质测定的最优方法。结果采用NA液体培养基培养,选择水浴至气-液平衡再吸附的吸附方式,采用65µm PDMS/DVB萃取头的萃取效果最佳。Bt菌株的挥发性成分主要为6-甲基-2-庚酮、2,4-二氨基甲苯、苯甲醇、2,3-二乙基-5-甲基吡嗪、2-甲基萘、2,3-Dimethyl-5-isopentylpyrazine、十四烷、正十二烷、2-甲硫基苯并噻唑。结论 HS-SPME/GC-MS效果好,方法实用,便于操作,适用于对Bt挥发性成分进行分析,从而为食品安全评估提供理论依据。%Objective To analyze and identify the volatile substances of Bacillus thuringiensis. Methods The volatile constituents of Bacillus thuringiensis were captured by headspace solid phase micro-extraction technology (HS-SPME) and identified by gas chromatography-mass spectrometry (GC-MS) tech-nology. The optimal method was used to analyze the volatile constituents of Bacillus thuringiensis FJAT-12, which was a high efficient strain separated by our lab, investigated from the culture way, adsorption pattern and fibers type. Results Bacillus thuringiensis FJAT-12 was better cultured by NA liquid medium, and volatile vial was maintained in a water bath at 50 ℃ for equilibrating (180 min) and then extracted by 65 µm PDMS/DVB fibers for 60 min. The mainly volatile constituents of Bt were 6-methyl-2-Heptanone, 4-methyl-1,3-Benzenediamine, Benzyl Alcohol, 3,5-diethyl-2-methyl-Pyrazine, 2-methyl-Naphthalene, 2,3-Dimethyl-5-isopentylpyrazine

  18. Studied on Convenient Rapid and Efficient Methods for Recovering Plasmids DNA of Bacillus thuringiensis%高效回收苏云金杆菌质粒DNA的方法研究

    Institute of Scientific and Technical Information of China (English)

    刘全兰; 张何; 陈宇; 夏立秋

    2001-01-01

    介绍三种简易、快速和高效回收苏云金杆菌(Bacillus thuringiensis,简称Bt)质粒DNA的方法. 这些方法省时、经济、适用范围广,回收的Bt质粒DNA质量高,可直接用于各种分子克隆操作.

  19. Results of three years of experimental aerial application of Bacillus thuringiensis at 2. 0 l/ha against choristoneura fumiferana c. Information report No. LAU-X-89B

    Energy Technology Data Exchange (ETDEWEB)

    Valero, J.R.

    1989-01-01

    Research into the potential of using Bacillus thuringiensis 3a3b for control of the spruce budworm led to the development of a concentrated, effective and economical suspension of B.t. called Futura. This report gives the results of spraying Futura in the Saguenay/Lac St.-Jean and Lower St. Lawrence regions of Quebec in 1985, 1986 and 1987. Eight blocks of mature forest dominated by fir and white spruce were treated using two different strengths.

  20. Study of Thermokinetic Properties of Sodium Selenite on Bacillus thuringiensis Cry B by Microcalorimetry

    Institute of Scientific and Technical Information of China (English)

    LI,Xi; LIU,Yi; ZHAO,Ru-Ming; YU,Zi-Niu; QU Song-Sheng

    2001-01-01

    By using an LKB2277 Bioactivity Monitor, the power-time curves of Bacillus thuringiensis Cry B at 28℃ effected by Na2SeO3 were determined. Some paarameters, such as growh rate constant k, inhibitory ratio I, the maximum heat production rate Pmax, heat output Q, were obtained. Considering both the growth rate constant k and heat output Q, it was found that a low concentration of Na2SeO3 had a promoting action on the growth of Bacillus thuringiensis Cry B, but a high concentration of Na2SeO3 had an inhibitory action.

  1. Comparative Analysis of Genomics and Proteomics in the New Isolated Bacillus thuringiensis X022 Revealed the Metabolic Regulation Mechanism of Carbon Flux Following Cu(2+) Treatment.

    Science.gov (United States)

    Quan, Meifang; Xie, Junyan; Liu, Xuemei; Li, Yang; Rang, Jie; Zhang, Tong; Zhou, Fengjuan; Xia, Liqiu; Hu, Shengbiao; Sun, Yunjun; Ding, Xuezhi

    2016-01-01

    Bacillus thuringiensis (Bt) X022 is a novel strain isolated from soil in China, and showed strong insecticidal activity against several Lepidopteran pests. In this work, we performed whole genome sequencing of this Bt strain using the next-generation sequencing technology, and further conducted a comparative analysis with the proteomics data of the specific spore-release period based on LC-MS/MS approach. The Bt X022 genome consisted of one circular chromosomal DNA and seven plasmids, which were further functionally annotated using the RAST server. Comparative analysis of insecticidal substances showed that X022 contained genes coding for three Cry proteins (Cry1Ac, Cry1Ia and Cry2Ab) and a vegetative insecticidal protein (Vip3A). However, three insecticidal crystal proteins (ICPs) (Cry1Ca, Cry1Ac and Cry1Da) were detected by proteomics in the spore-release period. Moreover, a putative biosynthetic gene cluster and the metabolic pathway for poly-β-hydroxybutyrate in Bt X022 were deduced based on the comparative analysis of genomic and proteomic data, which revealed the metabolic regulation mechanism of carbon flux correlated with increased production of ICPs caused by Cu(2+.) Hence, these results provided a deeper understanding of the genetic background and protein expression profile of Bt X022. This study established a foundation for directed genetic modification and further application of this new isolated Bt strain. PMID:27303381

  2. Transgenic insect-resistant corn affects the fourth trophic level: effects of Bacillus thuringiensis-corn on the facultative hyperparasitoid Tetrastichus howardi

    Science.gov (United States)

    Prütz, Gernot; Brink, Andreas; Dettner, Konrad

    2004-09-01

    As hyperparasitoids may have a considerable influence on the control of herbivorous arthropods, analyzing the host-mediated impact of Bacillus thuringiensis-plants (“Bt-plants”) on hyperparasitoids is of interest. Laboratory-scale experiments were conducted in order to assess the potential effect of Bt-corn leaf material on the facultative hyperparasitoid Tetrastichus howardi (Olliff) (Hymenoptera: Eulophidae), mediated through the herbivore Chilo partellus Swinhoe (Lepidoptera: Crambidae) and its primary parasitoid Cotesia flavipes (Cameron) (Hymenoptera: Braconidae). In the Bt-group, significantly less C. flavipes larvae per host spun cocoons and pupated than in the control, and the mean fresh weight of a single C. flavipes cocoon was significantly reduced compared to the control. All C. flavipes cocoons of one host formed cocoon clusters. T. howardi females of the Bt-group parasitized significantly less cocoon clusters than in the control. Moreover, significantly fewer C. flavipes cocoons per cocoon cluster were successfully parasitized as compared to the control. As a consequence, T. howardi females of the control had more offspring than in the Bt-group. Adult female T. howardi offspring of the Bt-group weighed significantly less than in the control, but there was no significant weight difference between males of both groups. Our results suggest that transgenic insect-resistant plants could affect hyperparasitoids indirectly. However, it remains to be determined whether facultative hyperparasitoids prefer to develop as primary or secondary parasitoids under field conditions.

  3. Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua.

    Science.gov (United States)

    Qiu, Lin; Hou, Leilei; Zhang, Boyao; Liu, Lang; Li, Bo; Deng, Pan; Ma, Weihua; Wang, Xiaoping; Fabrick, Jeffrey A; Chen, Lizhen; Lei, Chaoliang

    2015-05-01

    Bacillus thuringiensis (Bt) insecticidal crystal (Cry) proteins are effective against some insect pests in sprays and transgenic crops, although the evolution of resistance could threaten the long-term efficacy of such Bt use. One strategy to delay resistance to Bt crops is to "pyramid" two or more Bt proteins that bind to distinct receptor proteins within the insect midgut. The most common Bt pyramid in cotton (Gossypium hirsutum L.) employs Cry1Ac with Cry2Ab to target several key lepidopteran pests, including the beet armyworm, Spodoptera exigua (Hübner), which is a serious migratory pest of many vegetable crops and is increasingly important in cotton in China. While cadherin and aminopeptidase-N are key receptors of Cry1 toxins in many lepidopterans including S. exigua, the receptor for Cry2A toxins remains poorly characterized. Here, we show that a heterologous expressed peptide corresponding to cadherin repeat 7 to the membrane proximal extracellular domain (CR7-MPED) in the S. exigua cadherin 1b (SeCad1b) binds Cry1Ac and Cry2Aa. Moreover, SeCad1b transcription was suppressed in S. exigua larvae by oral RNA interference and susceptibility to Cry1Ac and Cry2Aa was significantly reduced. These results indicate that SeCad1b plays important functional roles of both Cry1Ac and Cry2Aa, having major implications for resistance management for S. exigua in Bt crops. PMID:25754522

  4. Detection of cry1 genes in Bacillus thuringiensis isolates from South of Brazil and activity against Aanticarsia gemmatalis (Lepidoptera:Noctuidae

    Directory of Open Access Journals (Sweden)

    Bobrowski Vera Lucia

    2001-01-01

    Full Text Available The bacterium Bacillus thuringiensis (Bt is characterized by its ability to produce proteic crystalline inclusions during sporulation. Cry1 protein has insecticidal activity and is highly specific to certain insects and not toxic to unrelated insects, plants or vertebrates. In this work, the patogenicity of twelve Bt isolates was tested against Anticarsia gemmatalis, one of the most important insect pests of soybeans. Spore-crystal complex was applied to the surface of artificial diets and the mortality of A. gemmatalis larvae was assessed seven days after each treatment. When compared to a control Bt isolate known by its high toxicity to A. gemmatalis larvae, four novel Bt isolates exhibited even higher toxic activities against the insect, resulting in more than 90% mortality. PCR was used to amplify DNA fragments related to known cry1 genes. Bt strains with high toxicity produced expected PCR products of around 280 bp, whereas non-toxic or low toxic strains did not produce any PCR product or showed amplified fragments of different sizes. Toxic Bt isolates also exhibited an expected protein profile when total protein extracts were evaluated by SDS-PAGE.

  5. Comparative Analysis of Genomics and Proteomics in the New Isolated Bacillus thuringiensis X022 Revealed the Metabolic Regulation Mechanism of Carbon Flux Following Cu2+ Treatment

    Science.gov (United States)

    Quan, Meifang; Xie, Junyan; Liu, Xuemei; Li, Yang; Rang, Jie; Zhang, Tong; Zhou, Fengjuan; Xia, Liqiu; Hu, Shengbiao; Sun, Yunjun; Ding, Xuezhi

    2016-01-01

    Bacillus thuringiensis (Bt) X022 is a novel strain isolated from soil in China, and showed strong insecticidal activity against several Lepidopteran pests. In this work, we performed whole genome sequencing of this Bt strain using the next-generation sequencing technology, and further conducted a comparative analysis with the proteomics data of the specific spore-release period based on LC-MS/MS approach. The Bt X022 genome consisted of one circular chromosomal DNA and seven plasmids, which were further functionally annotated using the RAST server. Comparative analysis of insecticidal substances showed that X022 contained genes coding for three Cry proteins (Cry1Ac, Cry1Ia and Cry2Ab) and a vegetative insecticidal protein (Vip3A). However, three insecticidal crystal proteins (ICPs) (Cry1Ca, Cry1Ac and Cry1Da) were detected by proteomics in the spore-release period. Moreover, a putative biosynthetic gene cluster and the metabolic pathway for poly-β-hydroxybutyrate in Bt X022 were deduced based on the comparative analysis of genomic and proteomic data, which revealed the metabolic regulation mechanism of carbon flux correlated with increased production of ICPs caused by Cu2+. Hence, these results provided a deeper understanding of the genetic background and protein expression profile of Bt X022. This study established a foundation for directed genetic modification and further application of this new isolated Bt strain. PMID:27303381

  6. Comparative Analysis of Genomics and Proteomics in the New Isolated Bacillus thuringiensis X022 Revealed the Metabolic Regulation Mechanism of Carbon Flux Following Cu(2+) Treatment.

    Science.gov (United States)

    Quan, Meifang; Xie, Junyan; Liu, Xuemei; Li, Yang; Rang, Jie; Zhang, Tong; Zhou, Fengjuan; Xia, Liqiu; Hu, Shengbiao; Sun, Yunjun; Ding, Xuezhi

    2016-01-01

    Bacillus thuringiensis (Bt) X022 is a novel strain isolated from soil in China, and showed strong insecticidal activity against several Lepidopteran pests. In this work, we performed whole genome sequencing of this Bt strain using the next-generation sequencing technology, and further conducted a comparative analysis with the proteomics data of the specific spore-release period based on LC-MS/MS approach. The Bt X022 genome consisted of one circular chromosomal DNA and seven plasmids, which were further functionally annotated using the RAST server. Comparative analysis of insecticidal substances showed that X022 contained genes coding for three Cry proteins (Cry1Ac, Cry1Ia and Cry2Ab) and a vegetative insecticidal protein (Vip3A). However, three insecticidal crystal proteins (ICPs) (Cry1Ca, Cry1Ac and Cry1Da) were detected by proteomics in the spore-release period. Moreover, a putative biosynthetic gene cluster and the metabolic pathway for poly-β-hydroxybutyrate in Bt X022 were deduced based on the comparative analysis of genomic and proteomic data, which revealed the metabolic regulation mechanism of carbon flux correlated with increased production of ICPs caused by Cu(2+.) Hence, these results provided a deeper understanding of the genetic background and protein expression profile of Bt X022. This study established a foundation for directed genetic modification and further application of this new isolated Bt strain.

  7. Call for Papers--Bt Research (ISSN 1925-1939)

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Bt Research (ISSN 1925-1939) is a new launched, open access and peer-reviewed journal that disseminates significant creative reviews and opinions or innovative research work in the area of Bacillus thuringiensis, including the isolation and identification of novel Bt strains, identification of novel Bt toxic genes and their functions, the insecticidal mechanism Bt toxics, Bt genetic engineering, transgenic Bt plants, the resistance mechanism of target-insect to Bt toxins, and the development of novel experimental methods and techniques for Bt Research.

  8. Identification of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH as a binding protein for a 68-kDa Bacillus thuringiensis parasporal protein cytotoxic against leukaemic cells

    Directory of Open Access Journals (Sweden)

    Nadarajah Vishna

    2010-11-01

    Full Text Available Abstract Background Bacillus thuringiensis (Bt, an ubiquitous gram-positive spore-forming bacterium forms parasporal proteins during the stationary phase of its growth. Recent findings of selective human cancer cell-killing activity in non-insecticidal Bt isolates resulted in a new category of Bt parasporal protein called parasporin. However, little is known about the receptor molecules that bind parasporins and the mechanism of anti-cancer activity. A Malaysian Bt isolate, designated Bt18 produces parasporal protein that exhibit preferential cytotoxic activity for human leukaemic T cells (CEM-SS but is non-cytotoxic to normal T cells or other cancer cell lines such as human cervical cancer (HeLa, human breast cancer (MCF-7 and colon cancer (HT-29 suggesting properties similar to parasporin. In this study we aim to identify the binding protein for Bt18 in human leukaemic T cells. Methods Bt18 parasporal protein was separated using Mono Q anion exchange column attached to a HPLC system and antibody was raised against the purified 68-kDa parasporal protein. Receptor binding assay was used to detect the binding protein for Bt18 parasporal protein in CEM-SS cells and the identified protein was sent for N-terminal sequencing. NCBI protein BLAST was used to analyse the protein sequence. Double immunofluorescence staining techniques was applied to localise Bt18 and binding protein on CEM-SS cell. Results Anion exchange separation of Bt18 parasporal protein yielded a 68-kDa parasporal protein with specific cytotoxic activity. Polyclonal IgG (anti-Bt18 for the 68-kDa parasporal protein was successfully raised and purified. Receptor binding assay showed that Bt18 parasporal protein bound to a 36-kDa protein from the CEM-SS cells lysate. N-terminal amino acid sequence of the 36-kDa protein was GKVKVGVNGFGRIGG. NCBI protein BLAST revealed that the binding protein was Glyceraldehyde-3-phosphate dehydrogenase (GAPDH. Double immunofluorescence staining showed

  9. Spatio-Temporal Evolution of Sporulation in Bacillus thuringiensis Biofilm.

    Science.gov (United States)

    El-Khoury, Nay; Majed, Racha; Perchat, Stéphane; Kallassy, Mireille; Lereclus, Didier; Gohar, Michel

    2016-01-01

    Bacillus thuringiensis can produce a floating biofilm which includes two parts: a ring and a pellicle. The ring is a thick structure which sticks to the culture container, while the pellicle extends over the whole liquid surface and joins the ring. We have followed over time, from 16 to 96 h, sporulation in the two biofilm parts. Sporulation was followed in situ in 48-wells polystyrene microtiterplates with a fluorescence binocular stereomicroscope and a spoIID-yfp transcriptional fusion. Sporulation took place much earlier in the ring than in the pellicle. In 20 h-aged biofilms, spoIID was expressed only in the ring, which could be seen as a green fluorescent circle surrounding the non-fluorescent pellicle. However, after 48 h of culture, the pellicle started to express spoIID in specific area corresponding to protrusions, and after 96 h both the ring and the whole pellicle expressed spoIID. Spore counts and microscopy observations of the ring and the pellicle harvested separately confirmed these results and revealed that sporulation occured 24 h-later in the pellicle comparatively to the ring, although both structures contained nearly 100% spores after 96 h of culture. We hypothesize that two mechanisms, due to microenvironments in the biofilm, can explain this difference. First, the ring experiences a decreased concentration of nutrients earlier than the pellicle, because of a lower exchange area with the culture medium. An second, the ring is exposed to partial dryness. Both reasons could speed up sporulation in this biofilm structure. Our results also suggest that spores in the biofilm display a phenotypic heterogeneity. These observations might be of particular significance for the food industry, since the biofilm part sticking to container walls - the ring - is likely to contain spores and will therefore resist both to washing and to cleaning procedures, and will be able to restart a new biofilm when food production has resumed.

  10. Spatio-Temporal Evolution of Sporulation in Bacillus thuringiensis Biofilm.

    Science.gov (United States)

    El-Khoury, Nay; Majed, Racha; Perchat, Stéphane; Kallassy, Mireille; Lereclus, Didier; Gohar, Michel

    2016-01-01

    Bacillus thuringiensis can produce a floating biofilm which includes two parts: a ring and a pellicle. The ring is a thick structure which sticks to the culture container, while the pellicle extends over the whole liquid surface and joins the ring. We have followed over time, from 16 to 96 h, sporulation in the two biofilm parts. Sporulation was followed in situ in 48-wells polystyrene microtiterplates with a fluorescence binocular stereomicroscope and a spoIID-yfp transcriptional fusion. Sporulation took place much earlier in the ring than in the pellicle. In 20 h-aged biofilms, spoIID was expressed only in the ring, which could be seen as a green fluorescent circle surrounding the non-fluorescent pellicle. However, after 48 h of culture, the pellicle started to express spoIID in specific area corresponding to protrusions, and after 96 h both the ring and the whole pellicle expressed spoIID. Spore counts and microscopy observations of the ring and the pellicle harvested separately confirmed these results and revealed that sporulation occured 24 h-later in the pellicle comparatively to the ring, although both structures contained nearly 100% spores after 96 h of culture. We hypothesize that two mechanisms, due to microenvironments in the biofilm, can explain this difference. First, the ring experiences a decreased concentration of nutrients earlier than the pellicle, because of a lower exchange area with the culture medium. An second, the ring is exposed to partial dryness. Both reasons could speed up sporulation in this biofilm structure. Our results also suggest that spores in the biofilm display a phenotypic heterogeneity. These observations might be of particular significance for the food industry, since the biofilm part sticking to container walls - the ring - is likely to contain spores and will therefore resist both to washing and to cleaning procedures, and will be able to restart a new biofilm when food production has resumed. PMID:27536298

  11. Spatio-Temporal Evolution of Sporulation in Bacillus thuringiensis Biofilm

    Science.gov (United States)

    El-Khoury, Nay; Majed, Racha; Perchat, Stéphane; Kallassy, Mireille; Lereclus, Didier; Gohar, Michel

    2016-01-01

    Bacillus thuringiensis can produce a floating biofilm which includes two parts: a ring and a pellicle. The ring is a thick structure which sticks to the culture container, while the pellicle extends over the whole liquid surface and joins the ring. We have followed over time, from 16 to 96 h, sporulation in the two biofilm parts. Sporulation was followed in situ in 48-wells polystyrene microtiterplates with a fluorescence binocular stereomicroscope and a spoIID-yfp transcriptional fusion. Sporulation took place much earlier in the ring than in the pellicle. In 20 h-aged biofilms, spoIID was expressed only in the ring, which could be seen as a green fluorescent circle surrounding the non-fluorescent pellicle. However, after 48 h of culture, the pellicle started to express spoIID in specific area corresponding to protrusions, and after 96 h both the ring and the whole pellicle expressed spoIID. Spore counts and microscopy observations of the ring and the pellicle harvested separately confirmed these results and revealed that sporulation occured 24 h-later in the pellicle comparatively to the ring, although both structures contained nearly 100% spores after 96 h of culture. We hypothesize that two mechanisms, due to microenvironments in the biofilm, can explain this difference. First, the ring experiences a decreased concentration of nutrients earlier than the pellicle, because of a lower exchange area with the culture medium. An second, the ring is exposed to partial dryness. Both reasons could speed up sporulation in this biofilm structure. Our results also suggest that spores in the biofilm display a phenotypic heterogeneity. These observations might be of particular significance for the food industry, since the biofilm part sticking to container walls – the ring – is likely to contain spores and will therefore resist both to washing and to cleaning procedures, and will be able to restart a new biofilm when food production has resumed. PMID:27536298

  12. Potencial de Bacillus thuringiensis israelensis Berliner no controle de Aedes aegypti Potential of Bacillus thuringiensis israelensis Berliner for controlling Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Ricardo Antonio Polanczyk

    2003-12-01

    Full Text Available Relata-se a importância da bactéria entomopatogênica Bacillus thuringiensis israelensis para o controle de Aedes aegypti. São abordados a utilização e potencial de B. thuringiensis israelensis contra o mosquito vetor da dengue. Outros aspectos são discutidos como a evolução da resistência dos insetos em relação aos inseticidas químicos e as vantagens e desvantagens do controle microbiano como estratégia de controle. É dada ênfase à importância da utilização desta bactéria no Brasil como alternativa para resolver o problema em questão sem afetar o ambiente, o homem e outros vertebrados nas áreas de risco.The importance of the entomopathogenic bacterium Bacillus thuringiensis israelensis in the control of Aedes aegypti is presented. The use and potential of B. thuringiensis israelensis against the mosquito vector of dengue fever is described. Other aspects such as insect's resistance development against chemicals and advantages and constraints of using microbial control are discussed. Emphasis is given to the importance of the use of this bacterium in Brazil, which could contribute significantly to solving the mosquito problem without affecting the environment, humans and others invertebrate organisms in critical regions.

  13. Effect of Bacillus thuringiensis on microbial functional groups in sorghum rhizosphere Efeito do Bacillus thuringiensis sobre grupos funcionais de microrganismos na rizosfera de sorgo

    Directory of Open Access Journals (Sweden)

    Carlos Brasil

    2006-05-01

    Full Text Available The objective of this work was to assess the effect of two strains of Bacillus thuringiensis var. kurstaki on sorghum rhizosphere microorganisms. The strains were HD1, that produces the bioinsecticidal protein, and 407, that is a mutant non-producer. The strains do not influence microbial population, but reduce plant growth and improve mycorrhizal colonization and free living fixing N2 community.O objetivo deste trabalho foi avaliar o efeito de duas cepas de Bacillus thuringiensis var. kurstaki sobre microrganismos na rizosfera do sorgo. As cepas foram a HD1, produtora do cristal bioinseticida, e a 407, uma mutante não-produtora. As duas cepas não influenciam a comunidade microbiana, mas reduzem o crescimento da planta. A colonização micorrízica e a população de fixadores de N2 de vida livre aumentaram.

  14. Estructura tridimensional de las toxinas de Bacillus thuringiensis: revisión Three dimensional structure of Bacillus thuringiensis toxins: a review

    Directory of Open Access Journals (Sweden)

    Cerón Salamanca JA.

    2007-08-01

    Full Text Available La ingeniería de proteínas de las d-endotoxinas de Bacillus thuringiensis puede orientar la búsqueda de variantes con un espectro mayor de especies susceptibles, potencia optimizada, y estabilidad apropiada. Aquí, nosotros revisamos las características más importantes de la estructura tridimensional de las proteínas Cry y Cyt. Es posible concluir que existe un modelo general obvio con propiedades específicas de acuerdo a su función y organismo susceptible.Structure-based protein engineering of Bacillus thuringiensis d-endotoxins may direct the search for variants with broader susceptible species spectra, optimal potency, and stability properties. Here, we revised the more important characteristics of the Cry and Cyt proteins three-dimensional structure; it is possible to conclude that an obvious general model exists with specific properties according to its function and target organism.

  15. Molecular characterization of a novel vegetative insecticidal protein from Bacillus thuringiensis effective against sap-sucking insect pest.

    Science.gov (United States)

    Sattar, Sampurna; Maiti, Mrinal K

    2011-09-01

    Several isolates of Bacillus thuringiensis (Bt) were screened for the vegetative insecticidal protein (Vip) effective against sap-sucking insect pests. Screening results were based on LC(50) values against cotton aphid (Aphis gossypii), one of the dangerous pests of various crop plants including cotton. Among the isolates, the Bt#BREF24 showed promising results, and upon purification the aphidicidal protein was recognized as a binary toxin. One of the components of this binary toxin was identified by peptide sequencing to be a homolog of Vip2A that has been reported previously in other Bacillus spp. Vip2 belongs to the binary toxin group Vip1-Vip2, and is responsible for the enzymatic activity; and Vip1 is the translocation and receptor binding protein. The two genes encoding the corresponding proteins of the binary toxin, designated as vip2Ae and vip1Ae, were cloned from the Bt#BREF24, sequenced, and heterologously expressed in Escherichia coli. Aphid feeding assay with the recombinant proteins confirmed that these proteins are indeed the two components of the binary toxins, and the presence of both partners is essential for the activity. Aphid specificity of the binary toxin was further verified by ligand blotting experiment, which identified an ~50 kDa receptor in the brush border membrane vesicles of the cotton aphids only, but not in the lepidopteran insects. Our finding holds a promise of its use in future as a candidate gene for developing transgenic crop plants tolerant against sap-sucking insect pests. PMID:21952370

  16. Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera

    Directory of Open Access Journals (Sweden)

    Holt Jonathan

    2009-03-01

    Full Text Available Abstract Background Gut microbiota contribute to the health of their hosts, and alterations in the composition of this microbiota can lead to disease. Previously, we demonstrated that indigenous gut bacteria were required for the insecticidal toxin of Bacillus thuringiensis to kill the gypsy moth, Lymantria dispar. B. thuringiensis and its associated insecticidal toxins are commonly used for the control of lepidopteran pests. A variety of factors associated with the insect host, B. thuringiensis strain, and environment affect the wide range of susceptibilities among Lepidoptera, but the interaction of gut bacteria with these factors is not understood. To assess the contribution of gut bacteria to B. thuringiensis susceptibility across a range of Lepidoptera we examined larval mortality of six species in the presence and absence of their indigenous gut bacteria. We then assessed the effect of feeding an enteric bacterium isolated from L. dispar on larval mortality following ingestion of B. thuringiensis toxin. Results Oral administration of antibiotics reduced larval mortality due to B. thuringiensis in five of six species tested. These included Vanessa cardui (L., Manduca sexta (L., Pieris rapae (L. and Heliothis virescens (F. treated with a formulation composed of B. thuringiensis cells and toxins (DiPel, and Lymantria dispar (L. treated with a cell-free formulation of B. thuringiensis toxin (MVPII. Antibiotics eliminated populations of gut bacteria below detectable levels in each of the insects, with the exception of H. virescens, which did not have detectable gut bacteria prior to treatment. Oral administration of the Gram-negative Enterobacter sp. NAB3, an indigenous gut resident of L. dispar, restored larval mortality in all four of the species in which antibiotics both reduced susceptibility to B. thuringiensis and eliminated gut bacteria, but not in H. virescens. In contrast, ingestion of B. thuringiensis toxin (MVPII following antibiotic

  17. Isolation and partial characterization of a mutant of Bacillus thuringiensis producing melanin Isolamento e caracterização parcial de um mutante de Bacillus thuringiensis produtor de melanina

    Directory of Open Access Journals (Sweden)

    Gislayne T. Vilas-Bôas

    2005-09-01

    Full Text Available A mutant (407-P of Bacillus thuringiensis subsp. thuringiensis strain 407 producing a melanin was obtained after treatment with the mutagenic agent ethyl-methane-sulfonate. Several microbiological and biochemical properties of the two strains were analyzed and the results were similar. The mutant 407-P was also incorporated into non-sterilized soil samples, recovered, easily identified, and quantified, what enables its use in ecology of B. thuringiensis.Um mutante (407-P da linhagem Bacillus thuringiensis subsp. thuringiensis 407 produtor de melanina foi obtido após tratamento com o agente mutagênico etil-metano-sulfonato. Diversas propriedades microbiológicas e bioquímicas das duas linhagens foram analisadas e os resultados foram similares. O mutante 407-P foi incorporado em amostras de solo não esterilizado, recuperado, facilmente identificado e quantificado, possibilitando seu uso em estudos de ecologia de B. thuringiensis.

  18. Valorization of soy waste through SSF for the production of compost enriched with Bacillus thuringiensis with biopesticide properties.

    Science.gov (United States)

    Ballardo, Cindy; Abraham, Juliana; Barrena, Raquel; Artola, Adriana; Gea, Teresa; Sánchez, Antoni

    2016-03-15

    There is a growing generation of biodegradable wastes from different human activities from industrial to agricultural including home and recreational activities. On the other hand, agricultural and horticultural activities require significant amounts of organic amendments and pesticides. In this framework, the present study evaluates the viability of soy fiber residue valorization as organic soil amendment with biopesticide properties through aerobic solid-state fermentation (SSF) in the presence of Bacillus thuringiensis (Bt). The experiments were performed first under sterile and non-sterile conditions at lab scale using 115 g of sample and controlled temperature (30 °C). Bt growth was successful in sterile conditions, obtaining 6.2 × 10(11) CFU g(-1) DM and 8.6 × 10(10) spores g(-1) DM after 6 days. Bt survived on solid culture under non-sterile conditions (3.8 × 10(9) CFU g(-1) DM and 1.3 × 10(8) spores g(-1) DM). Further, the valorization process was scaled-up to 10 L reactors (2300 g) under non-sterile conditions obtaining a final stabilized material with viable Bt cells and spores (9.5 × 10(7) CFU g(-1) DM and 1.1 × 10(8) spores g(-1) DM in average) after 9 days of SSF. These results confirm the possibility of managing biodegradable wastes by their transformation to a waste derived soil amendment with enhanced biopesticide effect, in comparison to traditional compost using a valuable and low-cost technique (SSF). PMID:26731311

  19. A naturally occurring plant cysteine protease possesses remarkable toxicity against insect pests and synergizes Bacillus thuringiensis toxin.

    Directory of Open Access Journals (Sweden)

    Srinidi Mohan

    Full Text Available When caterpillars feed on maize (Zea maize L. lines with native resistance to several Lepidopteran pests, a defensive cysteine protease, Mir1-CP, rapidly accumulates at the wound site. Mir1-CP has been shown to inhibit caterpillar growth in vivo by attacking and permeabilizing the insect's peritrophic matrix (PM, a structure that surrounds the food bolus, assists in digestion and protects the midgut from microbes and toxins. PM permeabilization weakens the caterpillar defenses by facilitating the movement of other insecticidal proteins in the diet to the midgut microvilli and thereby enhancing their toxicity. To directly determine the toxicity of Mir1-CP, the purified recombinant enzyme was directly tested against four economically significant Lepidopteran pests in bioassays. Mir1-CP LC(50 values were 1.8, 3.6, 0.6, and 8.0 ppm for corn earworm, tobacco budworm, fall armyworm and southwestern corn borer, respectively. These values were the same order of magnitude as those determined for the Bacillus thuringiensis toxin Bt-CryIIA. In addition to being directly toxic to the larvae, 60 ppb Mir1-CP synergized sublethal concentrations of Bt-CryIIA in all four species. Permeabilization of the PM by Mir1-CP probably provides ready access to Bt-binding sites on the midgut microvilli and increases its activity. Consequently, Mir1-CP could be used for controlling caterpillar pests in maize using non-transgenic approaches and potentially could be used in other crops either singly or in combination with Bt-toxins.

  20. Valorization of soy waste through SSF for the production of compost enriched with Bacillus thuringiensis with biopesticide properties.

    Science.gov (United States)

    Ballardo, Cindy; Abraham, Juliana; Barrena, Raquel; Artola, Adriana; Gea, Teresa; Sánchez, Antoni

    2016-03-15

    There is a growing generation of biodegradable wastes from different human activities from industrial to agricultural including home and recreational activities. On the other hand, agricultural and horticultural activities require significant amounts of organic amendments and pesticides. In this framework, the present study evaluates the viability of soy fiber residue valorization as organic soil amendment with biopesticide properties through aerobic solid-state fermentation (SSF) in the presence of Bacillus thuringiensis (Bt). The experiments were performed first under sterile and non-sterile conditions at lab scale using 115 g of sample and controlled temperature (30 °C). Bt growth was successful in sterile conditions, obtaining 6.2 × 10(11) CFU g(-1) DM and 8.6 × 10(10) spores g(-1) DM after 6 days. Bt survived on solid culture under non-sterile conditions (3.8 × 10(9) CFU g(-1) DM and 1.3 × 10(8) spores g(-1) DM). Further, the valorization process was scaled-up to 10 L reactors (2300 g) under non-sterile conditions obtaining a final stabilized material with viable Bt cells and spores (9.5 × 10(7) CFU g(-1) DM and 1.1 × 10(8) spores g(-1) DM in average) after 9 days of SSF. These results confirm the possibility of managing biodegradable wastes by their transformation to a waste derived soil amendment with enhanced biopesticide effect, in comparison to traditional compost using a valuable and low-cost technique (SSF).

  1. A naturally occurring plant cysteine protease possesses remarkable toxicity against insect pests and synergizes Bacillus thuringiensis toxin.

    Science.gov (United States)

    Mohan, Srinidi; Ma, Peter W K; Williams, W Paul; Luthe, Dawn S

    2008-03-12

    When caterpillars feed on maize (Zea maize L.) lines with native resistance to several Lepidopteran pests, a defensive cysteine protease, Mir1-CP, rapidly accumulates at the wound site. Mir1-CP has been shown to inhibit caterpillar growth in vivo by attacking and permeabilizing the insect's peritrophic matrix (PM), a structure that surrounds the food bolus, assists in digestion and protects the midgut from microbes and toxins. PM permeabilization weakens the caterpillar defenses by facilitating the movement of other insecticidal proteins in the diet to the midgut microvilli and thereby enhancing their toxicity. To directly determine the toxicity of Mir1-CP, the purified recombinant enzyme was directly tested against four economically significant Lepidopteran pests in bioassays. Mir1-CP LC(50) values were 1.8, 3.6, 0.6, and 8.0 ppm for corn earworm, tobacco budworm, fall armyworm and southwestern corn borer, respectively. These values were the same order of magnitude as those determined for the Bacillus thuringiensis toxin Bt-CryIIA. In addition to being directly toxic to the larvae, 60 ppb Mir1-CP synergized sublethal concentrations of Bt-CryIIA in all four species. Permeabilization of the PM by Mir1-CP probably provides ready access to Bt-binding sites on the midgut microvilli and increases its activity. Consequently, Mir1-CP could be used for controlling caterpillar pests in maize using non-transgenic approaches and potentially could be used in other crops either singly or in combination with Bt-toxins.

  2. Transcriptome of the gypsy moth (Lymantria dispar) larval midgut in response to infection by Bacillus thuringiensis

    Science.gov (United States)

    Transcriptomic profiles of the lepidopteran insect pest Lymantria dispar (gypsy moth) were characterized in the larval midgut in response to infection by the biopesticide Bacillus thuringiensis kurstaki. RNA-Seq approaches were used to define a set of 49,613 assembled transcript sequences, of which...

  3. 40 CFR 180.1011 - Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the requirement of a tolerance. 180.1011 Section 180.1011 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL...

  4. INGESTION AND ADSORPTION OF 'BACILLUS THURINGIENSIS' SUBSP. 'ISRAELENSIS' BY 'GAMMARUS LACUSTRIS' IN THE LABORATORY

    Science.gov (United States)

    Several groups of Gammarus lacustris adults were exposed to solutions containing 0.5 and 5.0 mg of Bacillus thuringiensis subsp. israelensis per liter for 1- or 24-hour periods by using traditional static bioassay exposure procedures. The experiments verified that traditional exp...

  5. BACILLUS THURINGIENSIS VAR. KURSTAKI AFFECTS A BENEFICIAL INSECT, THE CINNABAR MOTH (LEPIDOPTERA: ARCTIIDAE)

    Science.gov (United States)

    The microbial insecticide bacillus thuringiensis Berliner var. kurstaki is used to control forest pests in regions where tansy ragwort, Senecio jacobaea L. occurs. iological control of this noxious weed may be compromised if the cinnabar moth, Tyria jacobaeae (L), is susceptible ...

  6. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. 180.1107 Section 180.1107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES...

  7. Investigation of Cytocidal Activity of Bacillus Thuringiensis Parasporal Toxin on CCRF-CEM Cell Line

    Directory of Open Access Journals (Sweden)

    Elham Moazamian

    2013-03-01

    Full Text Available Background & Objective: Parasporin is a parasporal protein of Bacillus thuringiensis and exhibits special cytocidal activity against human cancer cells. Similar to other insecticidal Bacillus thuringiensis crystal toxins, parasporin shows target specificity and damages the cellular membrane. In this study, different strains of Bacillus thuringiensis isolated from various regions of Iran and their cytocidal activity against CCRF-CEM cell line and human erythrocyte were investigated.   Materials & Methods: Fifty soil samples were collected from different Iranian provinces, and characterization was performed based on protein crystal morphology by phase-contrast microscope and variations of Cry protein toxin using SDS-PAGE. After parasporin was processed with proteinase K, the active form was produced and protein activity on the cell line was evaluated. Results: Parasporal inclusion proteins showed different cytotoxicity against acute lymphoblastic leukemia cells (ALL, but not against normal lymphocyte. Isolated parasporin demonstrated no hemolytic activity against human erythrocyte. It appears that these proteins have the ability to differentiate between normal lymphocytes and leukemia cells and have specific receptors on specific cancer cell lines. Conclusion: Our results provide evidence that the parasporin-producing organism is a common member in Bacillus thuringiensis populations occurring in the natural environments of Iran.

  8. Solubilization, Activation, and Insecticidal Activity of Bacillus thuringiensis Serovar thompsoni HD542 Crystal Proteins

    NARCIS (Netherlands)

    Naimov, S.; Boncheva, R.; Karlova, R.B.; Dukiandjiev, S.; Minkov, I.; Maagd, de R.A.

    2008-01-01

    Cry15Aa protein, produced by Bacillus thuringiensis serovar thompsoni HD542 in a crystal together with a 40 kDa accompanying protein is one of a small group of non-typical, less well-studied members of the Cry family of insecticidal proteins, and may provide an alternative for the more commonly used

  9. Toxicidad de δ-endotoxinas recombinantes de Bacillus thuringiensis sobre larvas de la polilla guatemalteca (Tecia solanivora (Lepidóptera: Gelechiidae

    Directory of Open Access Journals (Sweden)

    Javier Hernández-Fernández

    2009-01-01

    Full Text Available Con el objetivo de determinar la actividad tóxica específica de las proteínas recombinantes Cry1Aa, Cry1Ac, Cry1B y Cry1C de Bacillus thuringiensis (Bt, sobre larvas de primer instar de Tecia solanivora se estableció la CL50 para las toxinas. Para este fin se implementó la cría masiva de este insecto bajo condiciones de laboratorio, 58±5% de humedad relativa, 18±5ºC de temperatura y un fotoperiodo de 23 h oscuridad y 1 h luz. Se utilizó una dieta seminatural consistente en láminas de papa variedad parda pastusa autoclavada con solución preservante (ácido ascórbico 7 g/L y metilparabeno 5 g/L, ya que fue estable en el tiempo, garantizó la reproducibilidad de los resultados y fue de fácil evaluación. Las proteínas recombinantes se evaluaron a una concentración de 0,1 μg/cm2. Los resultados obtenidos de porcentaje de mortalidad indicaron que no había diferencias entre las delta-endotoxinas recombinantes Cry1Aa, Cry1Ac, Cry1B y Cry1C de Bt (PPalabras clave: Bacillus thuringiensis; proteínas recombinantes; Tecia solanivora; papa parda pastusa; Bacillus thuringiensis; bioassay; recombinant endotoxin; Tecia solanivora; pastusa potato variety.

  10. Comparison of susceptibility of Chilo suppressalis and Bombyx mori to five Bacillus thuringiensis proteins.

    Science.gov (United States)

    Jiao, Yaoyu; Yang, Yan; Meissle, Michael; Peng, Yufa; Li, Yunhe

    2016-05-01

    Transformation of rice with genes encoding insecticidal Cry proteins from Bacillus thuringiensis (Bt) should confer high resistance to target lepidopteran pests, such as Chilo suppressalis, and low toxicity to non-target organisms, such as silkworm Bombyx mori. Five purified Cry proteins that have been used for plant transformation were tested using dietary exposure assays. The susceptibility of C. suppressalis larvae to the five insecticidal proteins in the decreasing order was: Cry1Ca>Cry1Ab>Cry1Ac>Cry2Aa>Cry1Fa. However, the toxicities of the Cry proteins to B. mori were in the order: Cry1Fa>Cry1Ca>Cry2Aa>Cry1Ab>Cry1Ac. The Cry1Ca, Cry1Ab and Cry1Ac proteins exhibited relatively high toxicity to C. suppressalis larvae, with EC50 values of 16.4, 45.8 and 89.6ng/g, respectively. The toxicities of the three Cry proteins to B. mori larvae were 8, 14, and 22times lower, with EC50 values of 138.3, 628.4 and 1939.2ng/g, respectively. The Cry1Fa and Cry2Aa proteins showed high toxicity to B. mori larvae, with EC50 values of 135.7 and 373.9ng/g, respectively, but low toxicity to C. suppressalis larvae, with EC50 values of 6092.1 and 1208.5ng/g, respectively. We thus conclude that Cry1Ab, Cry1Ac and Cry1Ca are appropriate for transforming rice to control lepidopteran rice pests. In contrast, Cry1Fa and Cry2Aa are not appropriate due to their high toxicity to silkworm larvae and low activity against the target pest.

  11. pH-controlled Bacillus thuringiensis Cry1Ac protoxin loading and release from polyelectrolyte microcapsules.

    Directory of Open Access Journals (Sweden)

    Wenhui Yang

    Full Text Available Crystal proteins synthesized by Bacillus thuringiensis (Bt have been used as biopesticides because of their toxicity to the insect larval hosts. To protect the proteins from environmental stress to extend their activity, we have developed a new microcapsule formulation. Poly (acrylic acid (PAH and poly (styrene sulfonate (PSS were fabricated through layer-by-layer self-assembly based on a CaCO(3 core. Cry1Ac protoxins were loaded into microcapsules through layer-by-layer self-assembly at low pH, and the encapsulated product was stored in water at 4°C. Scanning electron microscopy (SEM was used to observe the morphology of the capsules. To confirm the successful encapsulation, the loading results were observed with a confocal laser scattering microscope (CLSM, using fluorescein-labeled Cry1Ac protoxin (FITC-Cry1Ac. The protoxins were released from the capsule under the alkaline condition corresponding to the midgut of certain insects, a condition which seldom exists elsewhere in the environment. The following bioassay experiment demonstrated that the microcapsules with Cry1Ac protoxins displayed approximately equivalent insecticidal activity to the Asian corn borer compared with free Cry1Ac protoxins, and empty capsules proved to have no effect on insects. Further result also indicated that the formulation could keep stable under the condition of heat and desiccation. These results suggest that this formulation provides a promising methodology that protects protoxins from the environment and releases them specifically in the target insects' midgut, which has shown potential as biopesticide in the field.

  12. Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Broderick Nichole A

    2010-04-01

    Full Text Available Abstract Background The gut comprises an essential barrier that protects both invertebrate and vertebrate animals from invasion by microorganisms. Disruption of the balanced relationship between indigenous gut microbiota and their host can result in gut bacteria eliciting host responses similar to those caused by invasive pathogens. For example, ingestion of Bacillus thuringiensis by larvae of some species of susceptible Lepidoptera can result in normally benign enteric bacteria exerting pathogenic effects. Results We explored the potential role of the insect immune response in mortality caused by B. thuringiensis in conjunction with gut bacteria. Two lines of evidence support such a role. First, ingestion of B. thuringiensis by gypsy moth larvae led to the depletion of their hemocytes. Second, pharmacological agents that are known to modulate innate immune responses of invertebrates and vertebrates altered larval mortality induced by B. thuringiensis. Specifically, Gram-negative peptidoglycan pre-treated with lysozyme accelerated B. thuringiensis-induced killing of larvae previously made less susceptible due to treatment with antibiotics. Conversely, several inhibitors of the innate immune response (eicosanoid inhibitors and antioxidants increased the host's survival time following ingestion of B. thuringiensis. Conclusions This study demonstrates that B. thuringiensis infection provokes changes in the cellular immune response of gypsy moth larvae. The effects of chemicals known to modulate the innate immune response of many invertebrates and vertebrates, including Lepidoptera, also indicate a role of this response in B. thuringiensis killing. Interactions among B. thuringiensis toxin, enteric bacteria, and aspects of the gypsy moth immune response may provide a novel model to decipher mechanisms of sepsis associated with bacteria of gut origin.

  13. Resistance to Bacillus thuringiensis Mediated by an ABC Transporter Mutation Increases Susceptibility to Toxins from Other Bacteria in an Invasive Insect

    Science.gov (United States)

    Zhang, Dandan; Gong, Lingling; He, Fei; Soberón, Mario; Bravo, Alejandra; Tabashnik, Bruce E.; Wu, Kongming

    2016-01-01

    Evolution of pest resistance reduces the efficacy of insecticidal proteins from the gram-positive bacterium Bacillus thuringiensis (Bt) used widely in sprays and transgenic crops. Recent efforts to delay pest adaptation to Bt crops focus primarily on combinations of two or more Bt toxins that kill the same pest, but this approach is often compromised because resistance to one Bt toxin causes cross-resistance to others. Thus, integration of Bt toxins with alternative controls that do not exhibit such cross-resistance is urgently needed. The ideal scenario of negative cross-resistance, where selection for resistance to a Bt toxin increases susceptibility to alternative controls, has been elusive. Here we discovered that selection of the global crop pest, Helicoverpa armigera, for >1000-fold resistance to Bt toxin Cry1Ac increased susceptibility to abamectin and spineotram, insecticides derived from the soil bacteria Streptomyces avermitilis and Saccharopolyspora spinosa, respectively. Resistance to Cry1Ac did not affect susceptibility to the cyclodiene, organophospate, or pyrethroid insecticides tested. Whereas previous work demonstrated that the resistance to Cry1Ac in the strain analyzed here is conferred by a mutation disrupting an ATP-binding cassette protein named ABCC2, the new results show that increased susceptibility to abamectin is genetically linked with the same mutation. Moreover, RNAi silencing of HaABCC2 not only decreased susceptibility to Cry1Ac, it also increased susceptibility to abamectin. The mutation disrupting ABCC2 reduced removal of abamectin in live larvae and in transfected Hi5 cells. The results imply that negative cross-resistance occurs because the wild type ABCC2 protein plays a key role in conferring susceptibility to Cry1Ac and in decreasing susceptibility to abamectin. The negative cross-resistance between a Bt toxin and other bacterial insecticides reported here may facilitate more sustainable pest control. PMID:26872031

  14. Specificity and combinatorial effects of Bacillus thuringiensis Cry toxins in the context of GMO environmental risk assessment

    Directory of Open Access Journals (Sweden)

    Angelika eHilbeck

    2015-11-01

    Full Text Available Stacked GM crops expressing up to six Cry toxins from Bacillus thuringiensis are today replacing the formerly grown single- transgene GM crop varieties. Stacking of multiple Cry toxins not only increase the environmental load of toxins but also raise the question on how possible interactions of the toxins can be assessed for risk assessment, which is mandatory for GM crops. However, no operational guidelines for a testing strategy or testing procedures exist. From the developers point of view, little data testing for combinatorial effects of Cry toxins is necessary as the range of affected organisms is focused on pest species and no evidence is claimed to exists pointing to combinatorial effects on nontarget organisms. We have examined this rationale critically using information reported in the scientific literature. To do so we address the hypothesis of narrow specificity of Cry toxins subdivided into three underlying different conceptual conditions i 'efficacy' in target pests as indicator for 'narrow specificity', ii lack of reported adverse effects of Cry toxins on nontarget organisms, and iii proposed modes of action of Cry toxins (or the lack thereof as mechanisms underlying the reported activity/efficacy/specificity of Cry toxins. Complementary to this information we evaluate reports about outcomes of combinatorial effect testing of Cry toxins in the scientific literature and relate those findings to the practice of the environmental risk assessment of Bt-corps in general and of stacked Bt-events in particular.

  15. Three toxins, two receptors, one mechanism: Mode of action of Cry1A toxins from Bacillus thuringiensis in Heliothis virescens.

    Science.gov (United States)

    Bretschneider, Anne; Heckel, David G; Pauchet, Yannick

    2016-09-01

    Insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) are highly active against Lepidoptera. However, field-evolved resistance to Bt toxins is on the rise. The 12-cadherin domain protein HevCaLP and the ABC transporter HevABCC2 are both genetically linked to Cry toxin resistance in Heliothis virescens. We investigated their interaction using stably expressing non-lytic clonal Sf9 cell lines expressing either protein or both together. Untransfected Sf9 cells are innately sensitive to Cry1Ca toxin, but not to Cry1A toxins; and quantitative PCR revealed negligible expression of genes involved in Cry1A toxicity such as cadherin, ABCC2, alkaline phosphatase (ALP) and aminopeptidase N (APN). Cry1Aa, Cry1Ab or Cry1Ac caused swelling of Sf9 cells expressing HevABCC2, and caused faster swelling, lysis and up to 86% mortality in cells expressing both proteins. No such effect was observed in control Sf9 cells or in cells expressing only HevCaLP. The results of a mixing experiment demonstrated that both proteins need to be expressed within the same cell for high cytotoxicity, and suggest a novel role for HevCaLP. Binding assays showed that the toxin-receptor interaction is specific. Our findings confirm that HevABCC2 is the central target in Cry1A toxin mode of action, and that HevCaLP plays a supporting role in increasing Cry1A toxicity.

  16. Bacillus thuringiensis Crystal Protein Cry6Aa Triggers Caenorhabditis elegans Necrosis Pathway Mediated by Aspartic Protease (ASP-1)

    Science.gov (United States)

    Zhang, Fengjuan; Peng, Donghai; Cheng, Chunsheng; Zhou, Wei; Ju, Shouyong; Wan, Danfeng; Yu, Ziquan; Shi, Jianwei; Deng, Yaoyao; Wang, Fenshan; Ye, Xiaobo; Hu, Zhenfei; Lin, Jian; Ruan, Lifang; Sun, Ming

    2016-01-01

    Cell death plays an important role in host-pathogen interactions. Crystal proteins (toxins) are essential components of Bacillus thuringiensis (Bt) biological pesticides because of their specific toxicity against insects and nematodes. However, the mode of action by which crystal toxins to induce cell death is not completely understood. Here we show that crystal toxin triggers cell death by necrosis signaling pathway using crystal toxin Cry6Aa-Caenorhabditis elegans toxin-host interaction system, which involves an increase in concentrations of cytoplasmic calcium, lysosomal lyses, uptake of propidium iodide, and burst of death fluorescence. We find that a deficiency in the necrosis pathway confers tolerance to Cry6Aa toxin. Intriguingly, the necrosis pathway is specifically triggered by Cry6Aa, not by Cry5Ba, whose amino acid sequence is different from that of Cry6Aa. Furthermore, Cry6Aa-induced necrosis pathway requires aspartic protease (ASP-1). In addition, ASP-1 protects Cry6Aa from over-degradation in C. elegans. This is the first demonstration that deficiency in necrosis pathway confers tolerance to Bt crystal protein, and that Cry6A triggers necrosis represents a newly added necrosis paradigm in the C. elegans. Understanding this model could lead to new strategies for nematode control. PMID:26795495

  17. Functional characterizations of residues Arg-158 and Tyr-170 of the mosquito-larvicidal Bacillus thuringiensis Cry4Ba

    Science.gov (United States)

    Leetachewa, Somphob; Moonsom, Saengduen; Chaisri, Urai; Khomkhum, Narumol; Yoonim, Nonglak; Wang, Ping; Angsuthanasombat, Chanan

    2014-01-01

    The insecticidal activity of Bacillus thuringiensis (Bt) Cry toxins involves toxin stabilization, oligomerization, passage across the peritrophic membrane (PM), binding to midgut receptors and pore-formation. The residues Arg-158 and Tyr-170 have been shown to be crucial for the toxicity of Bt Cry4Ba. We characterized the biological function of these residues. In mosquito larvae, the mutants R158A/E/Q (R158) could hardly penetrate the PM due to a significantly reduced ability to alter PM permeability; the mutant Y170A, however, could pass through the PM, but degraded in the space between the PM and the midgut epithelium. Further characterization by oligomerization demonstrated that Arg-158 mutants failed to form correctly sized high-molecular weight oligomers. This is the first report that Arg-158 plays a role in the formation of Cry4Ba oligomers, which are essential for toxin passage across the PM. Tyr-170, meanwhile, is involved in toxin stabilization in the toxic mechanism of Cry4Ba in mosquito larvae. [BMB Reports 2014; 47(10): 546-551] PMID:24286331

  18. Bacillus thuringiensis Crystal Protein Cry6Aa Triggers Caenorhabditis elegans Necrosis Pathway Mediated by Aspartic Protease (ASP-1.

    Directory of Open Access Journals (Sweden)

    Fengjuan Zhang

    2016-01-01

    Full Text Available Cell death plays an important role in host-pathogen interactions. Crystal proteins (toxins are essential components of Bacillus thuringiensis (Bt biological pesticides because of their specific toxicity against insects and nematodes. However, the mode of action by which crystal toxins to induce cell death is not completely understood. Here we show that crystal toxin triggers cell death by necrosis signaling pathway using crystal toxin Cry6Aa-Caenorhabditis elegans toxin-host interaction system, which involves an increase in concentrations of cytoplasmic calcium, lysosomal lyses, uptake of propidium iodide, and burst of death fluorescence. We find that a deficiency in the necrosis pathway confers tolerance to Cry6Aa toxin. Intriguingly, the necrosis pathway is specifically triggered by Cry6Aa, not by Cry5Ba, whose amino acid sequence is different from that of Cry6Aa. Furthermore, Cry6Aa-induced necrosis pathway requires aspartic protease (ASP-1. In addition, ASP-1 protects Cry6Aa from over-degradation in C. elegans. This is the first demonstration that deficiency in necrosis pathway confers tolerance to Bt crystal protein, and that Cry6A triggers necrosis represents a newly added necrosis paradigm in the C. elegans. Understanding this model could lead to new strategies for nematode control.

  19. Three toxins, two receptors, one mechanism: Mode of action of Cry1A toxins from Bacillus thuringiensis in Heliothis virescens.

    Science.gov (United States)

    Bretschneider, Anne; Heckel, David G; Pauchet, Yannick

    2016-09-01

    Insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) are highly active against Lepidoptera. However, field-evolved resistance to Bt toxins is on the rise. The 12-cadherin domain protein HevCaLP and the ABC transporter HevABCC2 are both genetically linked to Cry toxin resistance in Heliothis virescens. We investigated their interaction using stably expressing non-lytic clonal Sf9 cell lines expressing either protein or both together. Untransfected Sf9 cells are innately sensitive to Cry1Ca toxin, but not to Cry1A toxins; and quantitative PCR revealed negligible expression of genes involved in Cry1A toxicity such as cadherin, ABCC2, alkaline phosphatase (ALP) and aminopeptidase N (APN). Cry1Aa, Cry1Ab or Cry1Ac caused swelling of Sf9 cells expressing HevABCC2, and caused faster swelling, lysis and up to 86% mortality in cells expressing both proteins. No such effect was observed in control Sf9 cells or in cells expressing only HevCaLP. The results of a mixing experiment demonstrated that both proteins need to be expressed within the same cell for high cytotoxicity, and suggest a novel role for HevCaLP. Binding assays showed that the toxin-receptor interaction is specific. Our findings confirm that HevABCC2 is the central target in Cry1A toxin mode of action, and that HevCaLP plays a supporting role in increasing Cry1A toxicity. PMID:27456115

  20. Binding specificity of Bacillus thuringiensis Cry1Aa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors

    Directory of Open Access Journals (Sweden)

    Jenkins Jeremy L

    2001-10-01

    Full Text Available Abstract Background To better understand the molecular interactions of Bt toxins with non-target insects, we have examined the real-time binding specificity and affinity of Cry1 toxins to native silkworm (Bombyx mori midgut receptors. Previous studies on B. mori receptors utilized brush border membrane vesicles or purifed receptors in blot-type assays. Results The Bombyx mori (silkworm aminopeptidase N (APN and cadherin-like receptors for Bacillus thuringiensis insecticidal Cry1Aa toxin were purified and their real-time binding affinities for Cry toxins were examined by surface plasmon resonance. Cry1Ab and Cry1Ac toxins did not bind to the immobilized native receptors, correlating with their low toxicities. Cry1Aa displayed moderate affinity for B. mori APN (75 nM, and unusually tight binding to the cadherin-like receptor (2.6 nM, which results from slow dissociation rates. The binding of a hybrid toxin (Aa/Aa/Ac was identical to Cry1Aa. Conclusions These results indicate domain II of Cry1Aa is essential for binding to native B. mori receptors and for toxicity. Moreover, the high-affinity binding of Cry1Aa to native cadherin-like receptor emphasizes the importance of this receptor class for Bt toxin research.

  1. Sensitivity of the bacterium Bacillus Thuringiensis as an insect disease agent to gamma-rays

    International Nuclear Information System (INIS)

    The effect of gamma radiation on the viability of the entomopathogenic spore-forming bacterium, Bacillus thuringiensis, was tested. The different gamma doses varied much in their effect on such bacterium. All irradiated Bacillus suspensions with doses below 85 krad showed different degrees of inhibitory activity. However, bacterial suspensions irradiated at a dose of 90 krad. proved to promote spore germination. Changes in the physiological, and morphological characters of the irradiated Bacillus at these levels were detected. The new observed characters were induced at a particular dose level of 90 krad. These new characters are assumed to be due to genetic changes induced at this particular gamma dose

  2. Genome Sequence of the Acrystalliferous Bacillus thuringiensis Serovar Israelensis Strain 4Q7, Widely Used as a Recombination Host

    OpenAIRE

    Jeong, Haeyoung; Park, Seung-Hwan; Choi, Soo-Keun

    2014-01-01

    Bacillus thuringiensis serovar israelensis is well known for its mosquitocidal activity and has long been used as a biopesticide. Herein, we present the genome sequence of B. thuringiensis serovar israelensis strain 4Q7, a plasmid-cured derivative with higher transformation efficiency than wild types.

  3. Evaluation of Cytotoxicity, Genotoxicity and Hematotoxicity of the Recombinant Spore-Crystal Complexes Cry1Ia, Cry10Aa and Cry1Ba6 from Bacillus thuringiensis in Swiss Mice

    Science.gov (United States)

    de Souza Freire, Ingrid; Miranda-Vilela, Ana Luisa; Barbosa, Lilian Carla Pereira; Martins, Erica Soares; Monnerat, Rose Gomes; Grisolia, Cesar Koppe

    2014-01-01

    The insecticidal properties of Cry-endotoxins from Bacillus thuringiensis (Bt) have long been used as spore-crystals in commercial spray formulations for insect control. Recently, some Bt-endotoxin genes have been cloned in many different plants. Toxicological evaluations of three spore-crystal endotoxins, BtCry1Ia, BtCry10Aa and BtCry1Ba6 from B. thuringiensis, were carried out on mice to understand their adverse effects on hematological systems and on genetic material. These three spore-crystals have shown toxic activity to the boll weevil, which is one of the most aggressive pests of the cotton crop. Cry1Ia, Cry10Aa and Cry1Ba6 did not increase the micronucleus frequency in the peripheral erythrocytes of mice and did not cause changes in the frequency of polychromatic erythrocytes. However, some hematologic disburbances were observed, specifically related to Cry1Ia and Cry1Ba6, respectively, for the erythroid and lymphoid lineage. Thus, although the profile of such adverse side effects can be related to their high level of exposure, which is not commonly found in the environment, results showed that these Bt spore-crystals were not harmless to mice, indicating that each spore-crystal endotoxin presents a characteristic profile of toxicity and might be investigated individually. PMID:25268978

  4. Analysis of Bacillus thuringiensis Population Dynamics and Its Interaction With Pseudomonas fluorescens in Soil

    Science.gov (United States)

    Rojas-Ruiz, Norma Elena; Sansinenea-Royano, Estibaliz; Cedillo-Ramirez, Maria Lilia; Marsch-Moreno, Rodolfo; Sanchez-Alonso, Patricia; Vazquez-Cruz, Candelario

    2015-01-01

    Background: Bacillus thuringiensis is the most successful biological control agent, however, studies so far have shown that B. thuringiensis is very sensitive to environmental factors such as soil moisture and pH. Ultraviolet light from the sun had been considered as the main limiting factor for its persistence in soil and it has recently been shown that the antagonism exerted by other native soil organisms, such as Pseudomonas fluorescens, is a determining factor in the persistence of this bacterium under in vitro culture conditions. Objectives: The aim of the present investigation was to analyze the population dynamics of B. thuringiensis and its interaction with P. fluorescens using microbiological and molecular methods in soil, under different conditions, and to determinate the effect of nutrients and moisture on its interaction. Materials and Methods: The monitoring was performed by microbiological methods, such as viable count of bacteria, and molecular methods such as Polymerase Chain Reaction (PCR) and hybridization, using the direct extraction of DNA from populations of inoculated soil. Results: The analysis of the interaction between B. thuringiensis and P. fluorescens in soil indicated that the disappearance of B. thuringiensis IPS82 is not dependent on the moisture but the composition of nutrients that may be affecting the secretion of toxic compounds in the environment of P. fluorescens. The results showed that the recovered cells were mostly spores and not vegetative cells in all proved treatments. The molecular methods were effective for monitoring bacterial population inoculated in soil. Conclusions: Bacillus thuringiensis is very sensitive to the interaction of P. fluorescens, however is capable to survive in soil due to its capacity of sporulate. Some of the cells in the form of spores germinated and folded slightly and remained in a constant cycle of sporulation and germination. This confirms that B. thuringiensis IPS82 can germinate, grow and

  5. Use of by-products rich in carbon and nitrogen as a nutrient source to produce Bacillus thuringiensis (Berliner)-based bio pesticide

    International Nuclear Information System (INIS)

    The amount and sources of carbon and nitrogen used to produce Bacillus thuringiensis (Berliner)-based biopesticide may influence the quality of the fi nal product. The objective of this research was to test different levels of carbon and nitrogen: medium 1 - 1.5% maize glucose + 0.5% soy fl our, medium 2 - 3.0% maize glucose + 1.0% soy flour, medium 3 - 1.0% maize glucose + 3.0% soy fl our and medium 4 - Luria Bertani (LB) + salts (FeSO4, ZnSO4, MnSO4, MgSO4). The seed culture was produced in LB medium plus salt, under agitation (200 rpm) for 18h at 30 deg C. The strain 344 of Bt was used (B. thuringiensis var tolworthi - belonging to the EMBRAPA's Bt Bank). The pH was measured at regular intervals, and After culturing for 96h, the pH of the four tested media was basified (6.91 and 8.15), the number of spores yielded 4.39 x 109 spores/ml in medium 3, where the amount of protein is high. The dry biomass weight accumulated in media 3 was 39.3 g/l. Mortality of 2-day-old larvae Spodoptera frugiperda (J.E. Smith) was 100% when using Bt produced in media 3 and 4. CL50 for medium 3 was 8.4 x 106 spores/ml. All tested media were satisfactory to Bt growth, and medium 3 was the most promising to be used on a large scale Bt-based biopesticide production. (author)

  6. Use of by-products rich in carbon and nitrogen as a nutrient source to produce Bacillus thuringiensis (Berliner)-based bio pesticide

    Energy Technology Data Exchange (ETDEWEB)

    Valicente, Fernando H. [EMBRAPA Milho e Sorgo, Sete Lagoas, MG (Brazil)]. E-mail: valicent@cnpms.embrapa.br; Mourao, Andre H.C. [Curso de Meio Ambiente, Sete Lagoas, MG (Brazil)

    2008-11-15

    The amount and sources of carbon and nitrogen used to produce Bacillus thuringiensis (Berliner)-based biopesticide may influence the quality of the fi nal product. The objective of this research was to test different levels of carbon and nitrogen: medium 1 - 1.5% maize glucose + 0.5% soy fl our, medium 2 - 3.0% maize glucose + 1.0% soy flour, medium 3 - 1.0% maize glucose + 3.0% soy fl our and medium 4 - Luria Bertani (LB) + salts (FeSO{sub 4}, ZnSO{sub 4}, MnSO{sub 4}, MgSO{sub 4}). The seed culture was produced in LB medium plus salt, under agitation (200 rpm) for 18h at 30 deg C. The strain 344 of Bt was used (B. thuringiensis var tolworthi - belonging to the EMBRAPA's Bt Bank). The pH was measured at regular intervals, and After culturing for 96h, the pH of the four tested media was basified (6.91 and 8.15), the number of spores yielded 4.39 x 10{sup 9} spores/ml in medium 3, where the amount of protein is high. The dry biomass weight accumulated in media 3 was 39.3 g/l. Mortality of 2-day-old larvae Spodoptera frugiperda (J.E. Smith) was 100% when using Bt produced in media 3 and 4. CL{sub 50} for medium 3 was 8.4 x 10{sup 6} spores/ml. All tested media were satisfactory to Bt growth, and medium 3 was the most promising to be used on a large scale Bt-based biopesticide production. (author)

  7. A novel metalloproteinase virulence factor is involved in Bacillus thuringiensis pathogenesis in nematodes and insects.

    Science.gov (United States)

    Peng, Donghai; Lin, Jian; Huang, Qiong; Zheng, Wen; Liu, Guoqiang; Zheng, Jinshui; Zhu, Lei; Sun, Ming

    2016-03-01

    The Gram-positive soil bacterium Bacillus thuringiensis has been developed as the leading microbial insecticide for years. The pathogenesis of B. thuringiensis requires common extracellular factors that depend on the PlcR regulon, which regulates a large number of virulence factors; however, the precise role of many of these proteins is not known. In this study, we describe the complete lifecycle of a nematicidal B. thuringiensis strain in the free living nematode Caenorhabditis elegans using in vitro and in vivo molecular techniques to follow host and bacterial effectors during the infection process. We then focus on the metalloproteinase ColB, a collagenase, which was found highly important for destruction of the intestine thereby facilitates the adaptation and colonization of B. thuringiensis in C. elegans. In vivo green fluorescent protein (GFP) reporter-gene studies showed that ColB expression is highly induced and regulated by the global activator PlcR. Finally, we demonstrated that ColB also takes part in B. thuringiensis virulence in an insect model following injection and oral infection. Indeed, addition of purified ColB accelerates the action of Cry toxin proteins in insects, too. These results give novel insights into host adaptation for B. thuringiensis and other B. cereus group bacteria and highlight the role of collagenase metalloproteases to synergize infection process.

  8. A novel metalloproteinase virulence factor is involved in Bacillus thuringiensis pathogenesis in nematodes and insects.

    Science.gov (United States)

    Peng, Donghai; Lin, Jian; Huang, Qiong; Zheng, Wen; Liu, Guoqiang; Zheng, Jinshui; Zhu, Lei; Sun, Ming

    2016-03-01

    The Gram-positive soil bacterium Bacillus thuringiensis has been developed as the leading microbial insecticide for years. The pathogenesis of B. thuringiensis requires common extracellular factors that depend on the PlcR regulon, which regulates a large number of virulence factors; however, the precise role of many of these proteins is not known. In this study, we describe the complete lifecycle of a nematicidal B. thuringiensis strain in the free living nematode Caenorhabditis elegans using in vitro and in vivo molecular techniques to follow host and bacterial effectors during the infection process. We then focus on the metalloproteinase ColB, a collagenase, which was found highly important for destruction of the intestine thereby facilitates the adaptation and colonization of B. thuringiensis in C. elegans. In vivo green fluorescent protein (GFP) reporter-gene studies showed that ColB expression is highly induced and regulated by the global activator PlcR. Finally, we demonstrated that ColB also takes part in B. thuringiensis virulence in an insect model following injection and oral infection. Indeed, addition of purified ColB accelerates the action of Cry toxin proteins in insects, too. These results give novel insights into host adaptation for B. thuringiensis and other B. cereus group bacteria and highlight the role of collagenase metalloproteases to synergize infection process. PMID:26995589

  9. Identification of beta-exotoxin production, plasmids encoding beta-exotoxin, and a new exotoxin in Bacillus thuringiensis by using high-performance liquid chromatography.

    OpenAIRE

    Levinson, B L; Kasyan, K J; Chiu, S S; Currier, T C; González, J M

    1990-01-01

    An improved high-performance liquid chromatography separation was developed to detect and quantify beta-exotoxin production in Bacillus thuringiensis culture supernatants. Exotoxin production was assigned to a plasmid in five strains, from three subspecies (B. thuringiensis subsp. thuringiensis serotype 1, B. thuringiensis subsp. tolworthi serotype 9, and B. thuringiensis subsp. darmstadiensis serotype 10). A new exotoxin, called type II beta-exotoxin in this report, was discovered in B. thur...

  10. Estudio de la ecología de Bacillus thuringiensis en la hoja

    OpenAIRE

    Maduell Soler, Pau

    2008-01-01

    La ecología de Bacillus thuringiensis, un bioinsecticida muy común, es poco conocida. Nuestro principal objetivo era investigar acerca de la ecología de esta bacteria en la filosfera. En un primer estudio se recogieron 35 muestras de hojas del género Piper de bosques andinos colombianos. Se obtuvieron 256 aislamientos de B. thuringiensis del 74% de las muestras estudiadas. Los aislamientos fueron caracterizados según la morfología del cristal, la presencia de genes cry por PCR y la toxicidad ...

  11. Estirpes de Bacillus thuringiensis efetivas contra insetos das ordens Lepidoptera, Coleoptera e Diptera Bacillus thuringiensis strains effective against insects of Lepidoptera, Coleoptera and Diptera orders

    Directory of Open Access Journals (Sweden)

    Lílian Botelho Praça

    2004-01-01

    Full Text Available O objetivo deste trabalho foi selecionar entre 300 estirpes de Bacillus thuringiensis as efetivas simultaneamente contra larvas de Spodoptera frugiperda J.E. Smith e Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae, Anthonomus grandis Boheman (Coleoptera: Curculionidae, Aedes aegypti Linnaeus e Culex quinquefasciatus Say (Diptera: Culicidae. Foram selecionadas duas estirpes de B. thuringiensis, denominadas S234 e S997, que apresentaram atividade contra as três ordens de insetos. As estirpes foram caracterizadas por métodos morfológicos, bioquímicos e moleculares. As mesmas apresentaram duas proteínas principais de 130 e 65 kDa, produtos de reação em cadeia da polimerase de tamanho esperado para a detecção dos genes cry1Aa, cry1Ab, cry1Ac, cry1B e cry2 e cristais bipiramidais, cubóides e esféricos.The aim of this work was to select among 300 strains of Bacillus thuringiensis those which are simultaneously effective against larvae of Spodoptera frugiperda J.E. Smith and Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae, Anthonomus grandis Boheman (Coleoptera: Curculionidae, Aedes aegypti Linnaeus and Culex quinquefasciatus Say (Diptera: Culicidae. Two strains of B. thuringiensis were selected, S234 and S997, which presented activity against those three insect orders. Both strains were characterized by morphological, biochemical and molecular methods. They have presented two main proteins with 130 and 65 kDa, polimerase chain reaction products with expected sizes for detection of the genes cry1Aa, cry1Ab, cry1Ac, cry1B and cry2 and bipiramidal, cubical and spherical crystals.

  12. Biological and Histological Studies on the F1 Progeny of the Black Cutworm, Agrotis ipsilon Treated with Gamma Irradiation and / or Bacillus Thuringiensis

    International Nuclear Information System (INIS)

    Full grown male pupae of black cutworm, Agrotis ipsilon (Hufn) were gamma irradiated with two sub sterilizing doses (50 and 100 Gy). the resulting F1 larvae were treated t the fourth instar larvae with six different concentrations (12.5,25,50,100,200 and 400 ppm.) of bacillus thuringiensis aizawai HD-112(Bta). the effect of radiation and / or B.t.on certain biological aspects in addition to histological effects on larval midgut were studied. the obtained results indicated that B.t. or irradiation treatments either alone or combined with each other decreased the number of F1 larvae that reached the adult stage as compared to the control. also the reduction in survived individuals was obvious at dose level 100 Gy than 50 Gy. the larval duration , percent pupation, percent emergence decreased gradually by increasing the concentration of B.t. especially at the combined treatments. as well percentage of adult malformations increased by increasing the irradiation dose or B.t. concentrations at separate or combined treatments. the sex ratio was altered in favor of male at either B.t. and / or irradiation treatments. certain histological changes through transverse section of the midgut tissues of F1 larvae due to irradiation and / or B.t. treatments were detected. the damage of the tissue increased by increasing the dose of irradiation and /or concentration of B.t. the cytoplasmic extrusion appeared as the apical margin of cells as a confluent mass and the muscular layers are broken in some parts, large amount of secretions released in the lumen of the midgut while a few amount were attached to the apical margin of the cells. Much destruction of the midgut took place when the B.t. treatments were combined with gamma irradiation where, large number of epithelial cells became vacuolated and the cytoplasm appeared as confluent masses because of the hydropic analysis of the epithelium

  13. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth.

    Directory of Open Access Journals (Sweden)

    Zhaojiang Guo

    2015-04-01

    Full Text Available Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L., was previously mapped to a multigenic resistance locus (BtR-1. Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella.

  14. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth.

    Science.gov (United States)

    Guo, Zhaojiang; Kang, Shi; Chen, Defeng; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhu, Xun; Baxter, Simon W; Zhou, Xuguo; Jurat-Fuentes, Juan Luis; Zhang, Youjun

    2015-04-01

    Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella. PMID:25875245

  15. The Comparison of Methods Isolated Bacillus Thuringiensis from soil%土壤分离苏云金芽胞杆菌的方法比较

    Institute of Scientific and Technical Information of China (English)

    鞠守勇

    2014-01-01

    苏云金芽胞杆菌(Bacillus thuringiensis,简称Bt)是世界上应用最广的微生物农药,通过比较三种经典的从土壤样品中分离Bt的方法,发现NaAC-抗生素法的分离效果最好,最高分离率5.06%,平均达到2.82%,为大规模从土样中分离Bt奠定了基础。%Bacillus thuringiensis (Bt) is the most widely used microbial pesticides in the world. This paper com-pared three classic Bt isolated methods and found that the best one was NaAC-antibiotic methods,the maximum isola-tion rate was 5.06%,the average was 2.82%. It established the foundation for the further research on the large-scale Bt isolated from soil.

  16. Ubiquity of parasporin-1 producers in Bacillus thuringiensis natural populations of Japan

    Science.gov (United States)

    Uemori, Akiko; Maeda, Minoru; Yasutake, Koichi; Ohgushi, Akira; Kagoshima, Kumiko; Mizuki, Eiichi; Ohba, Michio

    2007-01-01

    Parasporin, a Bacillus thuringiensis parasporal protein, is unique in having a strong cytocidal activity preferential for human cancer cells. In this study, we characterized parasporin activities associated with three novel geographical isolates of B. thuringiensis. Parasporal inclusion proteins of the three isolates were highly toxic to human uterus cervix cancer cells (HeLa), but not to non-cancer uterine smooth muscle cells (UtSMC). Inclusions of the isolates lacked insect toxicity and hemolytic activity against sheep erythrocytes. Ouchterlony immunodiffusion tests revealed that the proteins of the three isolates are immunologically closely related to parasporin-1 (Cry31A), but dissimilar to the three other existing parasporin groups. Our results provide evidence that the parasporin-1-producing organism is a common member in B. thuringiensis populations occurring in natural environments of Japan.

  17. Structural Insights into Bacillus thuringiensis Cry, Cyt and Parasporin Toxins

    Directory of Open Access Journals (Sweden)

    Chengchen Xu

    2014-09-01

    Full Text Available Since the first X-ray structure of Cry3Aa was revealed in 1991, numerous structures of B. thuringiensis toxins have been determined and published. In recent years, functional studies on the mode of action and resistance mechanism have been proposed, which notably promoted the developments of biological insecticides and insect-resistant transgenic crops. With the exploration of known pore-forming toxins (PFTs structures, similarities between PFTs and B. thuringiensis toxins have provided great insights into receptor binding interactions and conformational changes from water-soluble to membrane pore-forming state of B. thuringiensis toxins. This review mainly focuses on the latest discoveries of the toxin working mechanism, with the emphasis on structural related progress. Based on the structural features, B. thuringiensis Cry, Cyt and parasporin toxins could be divided into three categories: three-domain type α-PFTs, Cyt toxin type β-PFTs and aerolysin type β-PFTs. Structures from each group are elucidated and discussed in relation to the latest data, respectively.

  18. Structural Insights into Bacillus thuringiensis Cry, Cyt and Parasporin Toxins

    Science.gov (United States)

    Xu, Chengchen; Wang, Bi-Cheng; Yu, Ziniu; Sun, Ming

    2014-01-01

    Since the first X-ray structure of Cry3Aa was revealed in 1991, numerous structures of B. thuringiensis toxins have been determined and published. In recent years, functional studies on the mode of action and resistance mechanism have been proposed, which notably promoted the developments of biological insecticides and insect-resistant transgenic crops. With the exploration of known pore-forming toxins (PFTs) structures, similarities between PFTs and B. thuringiensis toxins have provided great insights into receptor binding interactions and conformational changes from water-soluble to membrane pore-forming state of B. thuringiensis toxins. This review mainly focuses on the latest discoveries of the toxin working mechanism, with the emphasis on structural related progress. Based on the structural features, B. thuringiensis Cry, Cyt and parasporin toxins could be divided into three categories: three-domain type α-PFTs, Cyt toxin type β-PFTs and aerolysin type β-PFTs. Structures from each group are elucidated and discussed in relation to the latest data, respectively. PMID:25229189

  19. Effects of Transgenic Bt Cotton on Insecticide Use and Predatory Insect Abundance

    Science.gov (United States)

    Considerable effort has been expended to determine if crops genetically engineered to produce Bacillus thuringiensis (Bt) toxins harm non-target arthropods. However, if Bt crops kill target pests and thereby reduce insecticide use, this could benefit some non-target arthropods. We analyzed data fr...

  20. 苏云金芽孢杆菌的生物防治安全性研究进展%Advances on the Safety of Biological Control with Bacillus thuringiensis

    Institute of Scientific and Technical Information of China (English)

    曹琼; 倪超超

    2014-01-01

    Bacillus thuringiensis is one of the most successful biological insecticides applied so far in the world. However, some reports in the past ten years showed that people doubted the safety of Bacillus thuringiensis, which was considered non-toxic to human and animals. Some experts thought that it was necessary to develop new Bt strains with better safety and efficiency with modern biological technology to avoid potential toxicity to human and animals.%苏云金芽孢杆菌(Bacillus thuringiensis,Bt)是目前全球应用最成功的生物杀虫剂之一。然而近10年多的研究成果表明,一直以来人们认为对人畜无毒性的苏云金芽孢杆菌的安全性问题受到质疑,一些专家认为有必要通过现代生物技术对苏云金芽孢杆菌进一步改良,重新选育一些安全性更可靠、杀虫效率更高的 Bt 菌株应用于生物防治,以避免其对人畜的可能毒害。

  1. Effects of Two Varieties of Bacillus thuringiensis Maize on the Biology of Plodia interpunctella

    Directory of Open Access Journals (Sweden)

    Jean-Claude Grégoire

    2012-05-01

    Full Text Available On the market since 1996, genetically modified plants expressing an insecticidal toxin (Cry toxin stemmed from Bacillus thuringiensis target several lepidopteran and coleopteran pests. In this study, we assessed the impact of two varieties of Bt maize producing different toxins (Cry1Ab or Cry1Fa, respectively on the biology of a storage pest: Plodia interpunctella (Hübner (Lepidoptera: Pyralidae. The Indianmeal moths were susceptible to both toxins but showed an escape behavior only from Cry1Fa. The weight of females issued from larvae reared on Cry1Ab increased with increasing toxin concentration, but adults of both sexes reared on Cry1Fa had decreased weight. Both toxins increased development time from egg to adult regardless of sex and had no impact on the male adult lifespan. Finally, we recorded a time lag between metamorphosis from the non-Bt and the Bt diets, which increased proportionally to Cry concentration in the Bt diet.

  2. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.).

    Science.gov (United States)

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-03-01

    The Gram-positive bacterium Bacillus thuringiensis (Bt) produces Cry toxins that have been used to control important agricultural pests. Evolution of resistance in target pests threatens the effectiveness of these toxins when used either in sprayed biopesticides or in Bt transgenic crops. Although alterations of the midgut cadherin-like receptor can lead to Bt Cry toxin resistance in many insects, whether the cadherin gene is involved in Cry1Ac resistance of Plutella xylostella (L.) remains unclear. Here, we present experimental evidence that resistance to Cry1Ac or Bt var. kurstaki (Btk) in P. xylostella is not due to alterations of the cadherin gene. The bona fide P. xylostella cadherin cDNA sequence was cloned and analyzed, and comparisons of the cadherin cDNA sequence among susceptible and resistant P. xylostella strains confirmed that Cry1Ac resistance was independent of mutations in this gene. In addition, real-time quantitative PCR (qPCR) indicated that cadherin transcript levels did not significantly differ among susceptible and resistant P. xylostella strains. RNA interference (RNAi)-mediated suppression of cadherin gene expression did not affect larval susceptibility to Cry1Ac toxin. Furthermore, genetic linkage assays using four cadherin gDNA allelic biomarkers confirmed that the cadherin gene is not linked to resistance against Cry1Ac in P. xylostella. Taken together, our findings demonstrate that Cry1Ac resistance of P. xylostella is independent of the cadherin gene. PMID:25595643

  3. Effect of crop plants on fitness costs associated with resistance to Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in cabbage loopers

    Science.gov (United States)

    Wang, Ran; Tetreau, Guillaume; Wang, Ping

    2016-01-01

    Fitness costs associated with resistance to Bacillus thuringiensis (Bt) toxins critically impact the development of resistance in insect populations. In this study, the fitness costs in Trichoplusia ni strains associated with two genetically independent resistance mechanisms to Bt toxins Cry1Ac and Cry2Ab, individually and in combination, on four crop plants (cabbage, cotton, tobacco and tomato) were analyzed, in comparison with their near-isogenic susceptible strain. The net reproductive rate (R0) and intrinsic rate of increase (r) of the T. ni strains, regardless of their resistance traits, were strongly affected by the host plants. The ABCC2 gene-linked mechanism of Cry1Ac resistance was associated with relatively low fitness costs, while the Cry2Ab resistance mechanism was associated with higher fitness costs. The fitness costs in the presence of both resistance mechanisms in T. ni appeared to be non-additive. The relative fitness of Bt-resistant T. ni depended on the specific resistance mechanisms as well as host plants. In addition to difference in survivorship and fecundity, an asynchrony of adult emergence was observed among T. ni with different resistance mechanisms and on different host plants. Therefore, mechanisms of resistance and host plants available in the field are both important factors affecting development of Bt resistance in insects. PMID:26868936

  4. Comparison of quantitative PCR and culture-based methods for evaluating dispersal of Bacillus thuringiensis endospores at a bioterrorism hoax crime scene.

    Science.gov (United States)

    Crighton, Taryn; Hoile, Rebecca; Coleman, Nicholas V

    2012-06-10

    Since the anthrax mail attacks of 2001, law enforcement agencies have processed thousands of suspicious mail incidents globally, many of which are hoax bioterrorism threats. Bio-insecticide preparations containing Bacillus thuringiensis (Bt) spores have been involved in several such threats in Australia, leading to the requirement for rapid and sensitive detection techniques for this organism, a close relative of Bacillus anthracis. Here we describe the development of a quantitative PCR (qPCR) method for the detection of Bt crystal toxin gene cry1, and evaluation of the method's effectiveness during a hoax bioterrorism event in 2009. When combined with moist wipe sampling, the cry1 qPCR was a rapid, reliable, and sensitive diagnostic tool for detecting and quantifying Bt contamination, and mapping endospore dispersal within a mail sorting facility. Results from the cry1 qPCR were validated by viable counts of the same samples on Bacillus-selective agar (PEMBA), which revealed a similar pattern of contamination. Extensive and persistent contamination of the facility was detected, both within the affected mailroom, and extending into office areas up to 30m distant from the source event, emphasising the need for improved containment procedures for suspicious mail items, both during and post-event. The cry1 qPCR enables detection of both viable and non-viable Bt spores and cells, which is important for historical crime scenes or scenes subjected to decontamination. This work provides a new rapid method to add to the forensics toolbox for crime scenes suspected to be contaminated with biological agents. PMID:22227150

  5. Comparison of quantitative PCR and culture-based methods for evaluating dispersal of Bacillus thuringiensis endospores at a bioterrorism hoax crime scene.

    Science.gov (United States)

    Crighton, Taryn; Hoile, Rebecca; Coleman, Nicholas V

    2012-06-10

    Since the anthrax mail attacks of 2001, law enforcement agencies have processed thousands of suspicious mail incidents globally, many of which are hoax bioterrorism threats. Bio-insecticide preparations containing Bacillus thuringiensis (Bt) spores have been involved in several such threats in Australia, leading to the requirement for rapid and sensitive detection techniques for this organism, a close relative of Bacillus anthracis. Here we describe the development of a quantitative PCR (qPCR) method for the detection of Bt crystal toxin gene cry1, and evaluation of the method's effectiveness during a hoax bioterrorism event in 2009. When combined with moist wipe sampling, the cry1 qPCR was a rapid, reliable, and sensitive diagnostic tool for detecting and quantifying Bt contamination, and mapping endospore dispersal within a mail sorting facility. Results from the cry1 qPCR were validated by viable counts of the same samples on Bacillus-selective agar (PEMBA), which revealed a similar pattern of contamination. Extensive and persistent contamination of the facility was detected, both within the affected mailroom, and extending into office areas up to 30m distant from the source event, emphasising the need for improved containment procedures for suspicious mail items, both during and post-event. The cry1 qPCR enables detection of both viable and non-viable Bt spores and cells, which is important for historical crime scenes or scenes subjected to decontamination. This work provides a new rapid method to add to the forensics toolbox for crime scenes suspected to be contaminated with biological agents.

  6. Laser He-Ne effect on bacillus thuringiensis var. kurstaki strain LBT-24

    International Nuclear Information System (INIS)

    Bacillus thuringiensis toxin is one of the world widely used entomopathogen. It presents an strong insecticide activity on Lepidoptera, Coleoptera and Diptera. It was studied the effect of Laser He-Ne on Bacillus thuringiensis var. kurstaki strain LBT-24. Growing curves were made and were calculated the duplication time and the specific growing speed of each one. The curves were statistically compared. It was also analysed the phage induction with and without Laser red light influence. Also, it was observed the presence of the d-endotoxin crystal with this treatment. The red Laser He-Ne enhanced the growth of this micro-organism under laboratory conditions and didn't have any effect over the other characteristics analysed

  7. Enhancement of virulence of bacillus thuringiensis and serratia marcescens by chemicals

    International Nuclear Information System (INIS)

    Studies were conducted on the enhancement of pathogenicity of Bacillus thuringiensis by 1% boric acid against various species of termites. The increase in virulence of Serratia marcescens by 1% potassium chloride or 1% Sodium citrate against the workers of M. championi has also been established. The increase in virulence is confirmed by the enhancement ratio, which are ranging from about 1.5 to 1.8 for Bacillus thuringiensis and 1.3 to 1.6 for Serratia marcescens. It was also noted that 1% boric acid alone was found toxic to various species of termites. However, Potassium chloride and Sodium citrate in a concentration of 1% were non-toxic to the workers of M. championi. (author)

  8. The Pathogenomic Sequence Analysis of B. cereus and B. Thuringiensis isolates closely related to Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Han, C S; Xie, G; Challacombe, J F; Altherr, M R; Bhotika, S S; Bruce, D; Campbell, C S; Campbell, M L; Chen, J; Chertkov, O; Cleland, C; Dimitrijevic-Bussod, M; Doggett, N A; Fawcett, J J; Glavina, T; Goodwin, L A; Hill, K K; Hitchcock, P; Jackson, P J; Keim, P; Kewalramani, A R; Longmire, J; Lucas, S; Malfatti, S; McMurry, K; Meincke, L J; Misra, M; Moseman, B L; Mundt, M; Munk, A C; Okinaka, R T; Parson-Quintana, B; Reilly, L P; Richardson, P; Robinson, D L; Rubin, E; Saunders, E; Tapia, R; Tesmer, J G; Thayer, N; Thompson, L S; Tice, H; Ticknor, L O; Wills, P L; Gilna, P; Brettin, T S

    2005-10-12

    The sequencing and analysis of two close relatives of Bacillus anthracis are reported. AFLP analysis of over 300 isolates of B. cereus, B. thuringiensis and B. anthracis identified two isolates as being very closely related to B. anthracis. One, a B. cereus, BcE33L, was isolated from a zebra carcass in Nambia; the second, a B. thuringiensis, 97-27, was isolated from a necrotic human wound. The B. cereus appears to be the closest anthracis relative sequenced to date. A core genome of over 3,900 genes was compiled for the Bacillus cereus group, including B anthracis. Comparative analysis of these two genomes with other members of the B. cereus group provides insight into the evolutionary relationships among these organisms. Evidence is presented that differential regulation modulates virulence, rather than simple acquisition of virulence factors. These genome sequences provide insight into the molecular mechanisms contributing to the host range and virulence of this group of organisms.

  9. Multi-method approach for characterizing the interaction between Fusarium verticillioides and Bacillus thuringiensis subsp. Kurstaki.

    Directory of Open Access Journals (Sweden)

    Liliana O Rocha

    Full Text Available Bacterial antagonists used as biocontrol agents represent part of an integrated management program to reduce pesticides in the environment. Bacillus thuringiensis is considered a good alternative as a biocontrol agent for suppressing plant pathogens such as Fusarium. In this study, we used microscopy, flow cytometry, indirect immunofluorescence, and high performance liquid chromatography to determine the interaction between B. thuringiensis subsp. kurstaki LFB-FIOCRUZ (CCGB 257 and F. verticillioides MRC 826, an important plant pathogen frequently associated with maize. B. thuringiensis showed a strong in vitro suppressive effect on F. verticillioides growth and inhibited fumonisin production. Flow cytometry analysis was found to be adequate for characterizing the fungal cell oscillations and death during these interactions. Further studies of the antagonistic effect of this isolate against other fungi and in vivo testing are necessary to determine the efficacy of B. thuringiensis subsp. kurstaki in controlling plant pathogens. This is the first report on the use of flow cytometry for quantifying living and apoptotic F. verticillioides cells and the B. thuringiensis Cry 1Ab toxin.

  10. Current state and trends of patent protection for insecticidal genes from Bacillus thuringiensis%Bt杀虫基因专利保护现状与趋势

    Institute of Scientific and Technical Information of China (English)

    张杰; 束长龙; 张春鸽

    2011-01-01

    苏云金芽胞杆菌(Bacillus thuringiensis,Bt)能产生多种对昆虫有特异活性的杀虫晶体蛋白,这些毒蛋白由cry或cyt基因编码.目前Bt杀虫基因已经广泛应用于转基因抗虫作物并且取得了巨大的经济、社会和生态效益.Bt杀虫基因的巨大市场价值引起国内外相关研究机构和企业的高度关注,并且利用知识产权将这些基因和技术转化为自己独占的权利.本文主要分析Bt杀虫基因的克隆命名情况,并对其中受专利保护的基因进行统计分析,借此为我国在转基因技术研发、产业化应用过程中,合理有效地规避知识产权陷阱,有效利用Bt资源提供决策参考.%Bacillus thuringiensis can produce various crystalline proteins with specific activities against pests during its life cycle. All of these insecticidal proteins are encoded by cry or cyt genes. Currently, pesticidal Bt genes have been widely incorporated into several major crops, resulting in transgenic insect-resistant crops, and thus achieved enormous economical, social and environmental benefits. The tremendous market value of Bt genes is attractive for both the research institutions and giant enterprises in the world, and the genes and techniques obtained were patented and transferred as the exclusive intellectual property rights. In this study, cloning and nomenclature of Bt novel toxin genes were reviewed, and the patents of Bt genes and techniques were treated respectively. The results will provide a reference for the researchers of our country to evade the patent trap and use the Bt gene resources efficiently in their transgenic and industrialization procedures.

  11. Occurrence of natural Bacillus thuringiensis contaminants and residues of Bacillus thuringiensis-based insecticides on fresh fruits and vegetables

    DEFF Research Database (Denmark)

    Frederiksen, Kristine; Rosenquist, Hanne; Jørgensen, Kirsten;

    2006-01-01

    . kurstaki HD1 present in the products Dipel, Biobit, and Foray, and nine isolates grouped with B. thuringiensis subsp. aizawai present in Turex. The commercial strains were primarily isolated from samples of tomatoes, cucumbers, and peppers. A multiplex PCR method was developed to simultaneously detect all...

  12. Susceptibility of Aedes albopictus from dengue outbreak areas to temephos and Bacillus thuringiensis subsp. israelensis

    OpenAIRE

    Ahmad Mohiddin; Asmalia Md Lasim; Wan Fatma Zuharah

    2016-01-01

    Objective: To monitor the current duration of the application rates in vector programme and the level of Aedes albopictus larvae susceptibility from three selected areas in northeast district of Penang on two selected larvicides, temephos and Bacillus thuringiensis subsp. israelensis (Bti) which are commonly used by Penang Health Department for vector control. Methods: The mosquito larvae were tested against two types of larvicides: (1) temephos (Abate®) with diagnostic dosage (0.012 mg/L)...

  13. Genetical and radiobiological characteristics of phage Tg13 of Bacillus thuringiensis

    International Nuclear Information System (INIS)

    The radiation-genetical aspects of interrelations between phages and cells of the spore-forming bacteria Bacillus thurin-giensis were studied. The phage Tg13 liberates C-mutants, forming transparent negative colonies, both spontaneously and under the effect of UV irradiation. UV-radiation increases reliably the level of C-mutants in the population. The phenotype of the observed mutants is, evidently, caused by the specific features of interaction in the system: preudolysogenic culture -phage Tg13

  14. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control

    OpenAIRE

    Bravo, Alejandra; Gill, Sarjeet S.; Soberón, Mario

    2006-01-01

    Bacillus thuringiensis Cry and Cyt protein families are a diverse group of proteins with activity against insects of different orders - Lepidoptera, Coleoptera, Diptera and also against other invertebrates such as nematodes. Their primary action is to lyse midgut epithelial cells by inserting into the target membrane and forming pores. Among this group of proteins, members of the 3-Domain Cry family are used worldwide for insect control, and their mode of action has been characterized in some...

  15. Selection of high-yield strain of entomopathogenic bacteria Bacillus thuringiensis ppomising for nature protection

    Directory of Open Access Journals (Sweden)

    N. S. Dyrda

    2011-07-01

    means of the ultraviolet irradiation of the В-2 strain Bacillus thuringiensis spores. Insecticidal activity of the obtained variation is characterized by the deaths of 64.3 % of the great brown twist Archips podana at the 3rd day and 97 % at the 10th day after the treatment, which is 20.4 % higher than B-2 strain activity. Possibility of the obtained variation implementation for the natural plants protection against the leaf-eating insects is under discussion.

  16. Activity of Bacillus thuringiensis D(delta)-endotoxins against codling moth (Cydia pomonella L.) larvae

    NARCIS (Netherlands)

    Boncheva, R.; Dukiandjiev, S.; Minkov, I.; Maagd, de R.A.; Naimov, S.

    2006-01-01

    Solubilized protoxins of nine Cry1 and one hybrid Cry1 ¿-endotoxin from Bacillus thuringiensis were tested for their activity against larvae of the codling moth (Cydia pomonella L). Cry1Da was the most toxic, followed by Cry1Ab, Cry1Ba, and Cry1Ac, while Cry1Aa, Cry1Fa, Cry1Ia, and SN19 were still l

  17. Eficiência e Persistência de Três Produtos Comerciais à Base de Bacillus thuringiensis israelensis e Bacillus sphaericus no controle de Culicidae (Diptera em Lagoas de Tratamento de Efluentes

    Directory of Open Access Journals (Sweden)

    Jose Lopes

    2010-11-01

    Abstract. The hematofagic effect caused by females belonging to some species of Culicidae on humans and animals can be directly related to pathogen transmission, allergic reactions and uneasiness. The emergence of populations resistant to chemical insecticides has fostered the use of alternative methods, mainly biological control. The trials were conducted in three effluent treatment lagoons, on larvae of Culicidae to test the efficiency and persistence of commercial products whose active principles are based on Bacillus thuringiensis israelensis Berliner and Bacillus sphaericus Neide. The products tested were Vectolex (a granulated formulation of B. sphaericus, Sphaericus (a liquid formulation of B. sphaericus and Bt-horus (a liquid formulation of B. thuringiensis. The products were applied biweekly and evaluations were conducted 0, 24, 48, 72, and 120 hours after each application. The lagoons were colonized by Culex nigripalpus Theobald (1.5%, Culex saltanensis Dyar (2.25%, and Culex quinquefasciatus Say (96.25%. Bt-horus reduced larvae by 89.06%, 83.97% and 89.96% at 24, 48 and 72 hours after product application, respectively. The granulated and the liquid formulations containing B. sphaericus reduced larvae by 98.89 % and 98.34% 24 hours after application, and by 99.79% and 99.78% after 48 hours, respectively. The products and the different formulations were effective in controlling larvae of all three Culicidae species in lagoons with high levels of organic matter, but the persistence was recorded in two and three days for products containing respectively B. sphaericus and B. thuringiensis israelensis.

  18. Cloning, characterization and expression of a novel haplotype cry2A-type gene from Bacillus thuringiensis strain SWK1, native to Himalayan valley Kashmir.

    Science.gov (United States)

    Reyaz, A L; Arulselvi, P Indra

    2016-05-01

    Bacillus thuringiensis (Bt) is a gram positive bacterium which is effectively being used in pest management strategies as an eco-friendly bioinsecticide. In the present study a new cry2A gene was cloned from a promising indigenous B. thuringiensis SWK1 strain previously characterized for its toxicity against Spodoptera litura and Helicoverpa armigera larvae. The nucleotide sequence of the cloned cry2A gene pointed out that the open reading frame has 1902 bases encoding a polypeptide of 634 amino acid residues with a probable molecular weight of 70kDa. Homology comparisons showed that the deduced amino acid sequence of Cry2A had a similarity of 94% compared to that of the known Cry2Aa protein in the NCBI database and this gene has been named as cry2Al1 by the B. thuringiensis δ-endotoxin Nomenclature Committee. cry2Al1 was ligated into pET 22b vector and expressed in Escherichia coli BL21 (DE3) pLysS under the control of T7 promoter induced by isopropyl-beta-d-thiogalactopyranoside (IPTG). SDS-PAGE analysis confirmed the expression of cry2Al1 as ∼65kDa protein. Insect pest bioassays with neonate larvae of S. litura and H. armigera showed that the purified Cry2Al1 are toxic to S. litura and H. armigera with LC50 2.448μg/ml and H. armigera with 3.374μg/ml respectively.

  19. Tn5401 disruption of the spo0F gene, identified by direct chromosomal sequencing, results in CryIIIA overproduction in Bacillus thuringiensis.

    OpenAIRE

    Malvar, T.; Baum, J A

    1994-01-01

    The Bacillus thuringiensis spo0F gene was identified by chromosomal DNA sequencing of sporulation mutants derived from a B. thuringiensis transposon insertion library. A spo0F defect in B. thuringiensis, which was suppressed by multicopy hknA or kinA, resulted in the overproduction of the CryIIIA insecticidal crystal protein.

  20. Field persistence of Bacillus thuringiensis on maize leaves (Zea mays L. Persistência de Bacillus thuringiensis em folhas de milho em condições de campo (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Marinéia de Lara Haddad

    2005-12-01

    Full Text Available The persistence slope of Bacillus thuringiensis (Bt based products in the field is an important parameter to evaluate their efficacy. The half-life, estimated based on persistence slope parameters, is one of the most effective tools to select microbial pesticides. The aim of this research was to study the relationship between viability loss of Bt spores on maize leaves and their concentration, comparing it with field persistence. The experimental design was split-plot on time, composed by maize plants, in which three concentrations (half, normal and double doses of a Dipel commercial formulation were applied. In each plot three leaves in the upper part of three plants where randomly selected. Samples of these leaves were collected 3 to 72 hours after treatment, to count the number of viable spores in two foliar dishes with 1 cm in diameter. The field persistence was determined using an exponential model, linearized by a logarithmic transformation of viable spores number in time. Using the log linear method of confidence intervals, there were no significantly differences (P = 0.05 in half-lifes: 18.2 hours for half-dose, 16.5 hours for normal dose and 13.6 hours for double dose. Assuming a fictitious index of insect consumption equal to one, the effective doses according to concentrations were calculated. It was verified that 77%, 78% and 80.5% of the effective doses (viable spores remained on the leaf surface after the first day of treatment, respectively.A curva de persistência de produtos à base de Bacillus thuringiensis (Bt no campo é um importante parâmetro para avaliar a sua eficiência. A meia-vida, baseada em estimativas dos parâmetros desta curva, é um aspecto importante na seleção de pesticidas microbianos. O objetivo desta pesquisa foi estudar a relação entre a perda de viabilidade de esporos de Bt em folhas de milho, e sua concentração, comparando-as com a persistência em campo. O delineamento experimental utilizado foi o

  1. Proteome response of Tribolium castaneum larvae to Bacillus thuringiensis toxin producing strains.

    Directory of Open Access Journals (Sweden)

    Estefanía Contreras

    Full Text Available Susceptibility of Tribolium castaneum (Tc larvae was determined against spore-crystal mixtures of five coleopteran specific and one lepidopteran specific Bacillus thuringiensis Cry toxin producing strains and those containing the structurally unrelated Cry3Ba and Cry23Aa/Cry37Aa proteins were found toxic (LC(50 values 13.53 and 6.30 µg spore-crystal mixture/µL flour disc, respectively. Using iTRAQ combined with LC-MS/MS allowed the discovery of seven novel differentially expressed proteins in early response of Tc larvae to the two active spore-crystal mixtures. Proteins showing a statistically significant change in treated larvae compared to non-intoxicated larvae fell into two major categories; up-regulated proteins were involved in host defense (odorant binding protein C12, apolipophorin-III and chemosensory protein 18 and down-regulated proteins were linked to metabolic pathways affecting larval metabolism and development (pyruvate dehydrogenase Eα subunit, cuticular protein, ribosomal protein L13a and apolipoprotein LI-II. Among increased proteins, Odorant binding protein C12 showed the highest change, 4-fold increase in both toxin treatments. The protein displayed amino acid sequence and structural homology to Tenebrio molitor 12 kDa hemolymph protein b precursor, a non-olfactory odorant binding protein. Analysis of mRNA expression and mortality assays in Odorant binding protein C12 silenced larvae were consistent with a general immune defense function of non-olfactory odorant binding proteins. Regarding down-regulated proteins, at the transcriptional level, pyruvate dehydrogenase and cuticular genes were decreased in Tc larvae exposed to the Cry3Ba producing strain compared to the Cry23Aa/Cry37Aa producing strain, which may contribute to the developmental arrest that we observed with larvae fed the Cry3Ba producing strain. Results demonstrated a distinct host transcriptional regulation depending upon the Cry toxin treatment. Knowledge

  2. Oxygen mass transfer in fermentation of bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    R. Ríos

    2011-12-01

    Full Text Available The purpose of this work was to obtain a correlation based on literature, depicting the relationships betwen the physical oxygen transfer rate (OTR and microbial oxygen uptake rate (OUR in order to determine the conditions (mass transfer coefficient, resulting on diferents combinations of aereations and agitations rates, under which growth will not be limited by oxygen. This correlation was adapted to culture with B. thuringiensis in order to estimate what biomass concentration are feasible for the physical limits set by operations conditions before microbial activity becomes limited by oxygen.

  3. Expression of cry1Ab gene from a novel Bacillus thuringiensis strain SY49-1 active on pest insects.

    Science.gov (United States)

    Azizoglu, Ugur; Ayvaz, Abdurrahman; Yılmaz, Semih; Karabörklü, Salih; Temizgul, Rıdvan

    2016-01-01

    In this study, the cry1Ab gene of previously characterized and Lepidoptera-, Diptera-, and Coleoptera-active Bacillus thuringiensis SY49-1 strain was cloned, expressed and individually tested on Ephestia kuehniella (Lepidoptera: Pyralidae) and Plodia interpunctella (Lepidoptera: Pyralidae) larvae. pET-cry1Ab plasmids were constructed by ligating the cry1Ab into pET28a (+) expression vector. Constructed plasmids were transferred to an Escherichia coli BL21 (DE3) strain rendered competent with CaCl2. Isopropyl β-d-1-thiogalactopyranoside was used to induce the expression of cry1Ab in E. coli BL21(DE3), and consequently, ∼130kDa of Cry1Ab was obtained. Bioassay results indicated that recombinant Cry1Ab at a dose of 1000μgg(-1) caused 40% and 64% mortality on P. interpunctella and E. kuehniella larvae, respectively. However, the mortality rates of Bt SY49-1 strains' spore-crystal mixture at the same dose were observed to be 70% on P. interpunctella and 90% on E. kuehniella larvae. The results indicated that cry1Ab may be considered as a good candidate in transgenic crop production and as an alternative biocontrol agent in controlling stored product moths.

  4. Expression of cry1Ab gene from a novel Bacillus thuringiensis strain SY49-1 active on pest insects.

    Science.gov (United States)

    Azizoglu, Ugur; Ayvaz, Abdurrahman; Yılmaz, Semih; Karabörklü, Salih; Temizgul, Rıdvan

    2016-01-01

    In this study, the cry1Ab gene of previously characterized and Lepidoptera-, Diptera-, and Coleoptera-active Bacillus thuringiensis SY49-1 strain was cloned, expressed and individually tested on Ephestia kuehniella (Lepidoptera: Pyralidae) and Plodia interpunctella (Lepidoptera: Pyralidae) larvae. pET-cry1Ab plasmids were constructed by ligating the cry1Ab into pET28a (+) expression vector. Constructed plasmids were transferred to an Escherichia coli BL21 (DE3) strain rendered competent with CaCl2. Isopropyl β-d-1-thiogalactopyranoside was used to induce the expression of cry1Ab in E. coli BL21(DE3), and consequently, ∼130kDa of Cry1Ab was obtained. Bioassay results indicated that recombinant Cry1Ab at a dose of 1000μgg(-1) caused 40% and 64% mortality on P. interpunctella and E. kuehniella larvae, respectively. However, the mortality rates of Bt SY49-1 strains' spore-crystal mixture at the same dose were observed to be 70% on P. interpunctella and 90% on E. kuehniella larvae. The results indicated that cry1Ab may be considered as a good candidate in transgenic crop production and as an alternative biocontrol agent in controlling stored product moths. PMID:27143037

  5. Fitness cost of resistance to Bacillus thuringiensis in velvetbean caterpillar Anticarsia gemmatalis Hübner (Lepidoptera, Noctuidae

    Directory of Open Access Journals (Sweden)

    Daniel Ricardo Sosa-Gómez

    2012-09-01

    Full Text Available Selection pressure to obtain resistant genotypes can result in fitness cost. In this study, we report the effects of the selection pressure of a commercial formulation of Bacillus thuringiensis on biological aspects of a Dipel-resistant strain of velvetbean caterpillar, Anticarsia gemmatalis Hübner. Comparisons of Dipel-resistant and susceptible individuals revealed significant differences in pupal weight and larval development time. Both strains (Dipel-resistant and susceptible were susceptible to Cry1Ac toxin expressed in foliar cotton tissues. Resistant and susceptible strains showed low survival rates of 22.5% and 51.2%, respectively, when fed with Greene diet containing Bt-cotton. Larvae bioassayed after three laboratory generations presented lower survival and less instar numbers than individuals maintained in the laboratory for more than 144 generations. Pupal weight was 9.4% lower and larval development time was 1.9 days longer in the resistant population than in the susceptible strain. Other parameters, such as duration of pupal stage, adult longevity, number of eggs per female, oviposition period, and egg fertility, remained unaffected.

  6. Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis.

    Science.gov (United States)

    Kumar, Prasun; Sharma, Rishi; Ray, Subhasree; Mehariya, Sanjeet; Patel, Sanjay K S; Lee, Jung-Kul; Kalia, Vipin C

    2015-04-01

    Biodiesel manufacturing units discharge effluents rich in glycerol. The need is to convert crude glycerol (CG) into useful products such as hydrogen (H2). Under batch culture, Bacillusthuringiensis EGU45 adapted on pure glycerol (PG, 2% v/v) resulted in an H2 yield of 0.646 mol/mol glycerol consumed on minimal media (250 mL) supplemented with 1% ammonium nitrate at 37°C over 4 days. Here, H2 constituted 67% of the total biogas. Under continuous culture, at 2 days of hydraulic retention time, B. thuringiensis immobilized on ligno-cellulosic materials (banana leaves - BL, 10% v/v) resulted in a H2 yield of 0.386 mol/mol PG consumed. On CG, the maximal H2 yield of 0.393 mol/mol feed consumed was recorded. In brief, B. thuringiensis could transform CG, on limited resources - minimal medium with sodium nitrate, by immobilizing them on cheap and easily available biowaste, which makes it a suitable candidate for H2 production on a large scale. PMID:25686722

  7. Investigating alternatives to traditional insecticides: effectiveness of entomopathogenic fungi and Bacillus thuringiensis against citrus thrips and avocado thrips (Thysanoptera: Thripidae).

    Science.gov (United States)

    Zahn, Deane K; Morse, Joseph G

    2013-02-01

    Citrus thrips, Scirtothrips citri (Moulton) (Thysanoptera: Thripidae), is a plant-feeding pest most widely recognized for causing damage to citrus (Citrus spp. L. [Rutaceae]) and mango (Mangifera indica L. [Anacardiaceae]) fruits. This insect has recently broadened its known host range to become a significant pest of California grown blueberries. Avocado thrips, Scirtothrips. perseae Nakahara (Thysanoptera: Thripidae), is a recent, invasive pest of California avocados, Persea americana Mill. (Laurales: Lauraceae). Effective alternatives to traditional pesticides are desirable for both pests to reduce impacts on natural enemies and broaden control options in an effort to minimize pesticide resistance via rotation of control materials. We evaluated Bacillus thuringiensis (Bt) subsp. israelensis proteins (Cyt 1A and Cry 11A, activated and inactivated) and multiple strains (GHA, 1741ss, SFBb1, S44ss, NI1ss, and 3769ss) of Beauveria bassiana (Balsamo) Vuillemin against both species. Avocado thrips and citrus thrips were not susceptible to either Bt protein tested, regardless of activation status. All strains of B. bassiana were able to infect both avocado thrips and citrus thrips. However, the commercially available GHA strain was the most effective strain against both species and had a faster rate of infection then the other strains tested. Citrus thrips were more susceptible than avocado thrips to all B. bassiana strains (LC50 and LC95 of 8.6 x 10(4) and 4.8 x 10(6) conidia per ml for citrus thrips, respectively). Investigation of citrus thrips field control using the GHA strain of B. bassiana is therefore justified.

  8. A cadherin-like protein influences Bacillus thuringiensis Cry1Ab toxicity in the oriental armyworm, Mythimna separata.

    Science.gov (United States)

    Wang, Ling; Jiang, Xingfu; Luo, Lizhi; Stanley, David; Sappington, Thomas W; Zhang, Lei

    2013-06-01

    Cadherins comprise a family of calcium-dependent cell adhesion proteins that act in cell-cell interactions. Cadherin-like proteins (CADs) in midguts of some insects act as receptors that bind some of the toxins produced by the Bacillus thuringiensis (Bt). We cloned a CAD gene associated with larval midguts prepared from Mythimna separata. The full-length cDNA (MsCAD1, GenBank Accession No. JF951432) is 5642 bp, with an open reading frame encoding a 1757 amino acid and characteristics typical of insect CADs. Expression of MsCAD1 is predominantly in midgut tissue, with highest expression in the 3rd- to 6th-instars and lowest in newly hatched larvae. Knocking-down MsCAD1 decreased Cry1Ab susceptibility, indicated by reduced developmental time, increased larval weight and reduced larval mortality. We expressed MsCAD1 in E. coli and recovered the recombinant protein, rMsCAD1, which binds Cry1Ab toxin. Truncation analysis and binding experiments revealed that a contiguous 209-aa, located in CR11 and CR12, is the minimal Cry1Ab binding region. These results demonstrate that MsCAD1 is associated with Cry1Ab toxicity and is one of the Cry1Ab receptors in this insect. The significance of this work lies in identifying MsCAD1 as a Cry1Ab receptor, which helps understand the mechanism of Cry1Ab toxicity and of potential resistance to Bt in M. separata. PMID:23754724

  9. Resistance to Bacillus thuringiensis Toxin Cry2Ab in Trichoplusia ni Is Conferred by a Novel Genetic Mechanism.

    Science.gov (United States)

    Song, Xiaozhao; Kain, Wendy; Cassidy, Douglas; Wang, Ping

    2015-08-01

    The resistance to the Bacillus thuringiensis (Bt) toxin Cry2Ab in a greenhouse-originated Trichoplusia ni strain resistant to both Bt toxins Cry1Ac and Cry2Ab was characterized. Biological assays determined that the Cry2Ab resistance in the T. ni strain was a monogenic recessive trait independent of Cry1Ac resistance, and there existed no significant cross-resistance between Cry1Ac and Cry2Ab in T. ni. From the dual-toxin-resistant T. ni strain, a strain resistant to Cry2Ab only was isolated, and the Cry2Ab resistance trait was introgressed into a susceptible laboratory strain to facilitate comparative analysis of the Cry2Ab resistance with the susceptible T. ni strain. Results from biochemical analysis showed no significant difference between the Cry2Ab-resistant and -susceptible T. ni larvae in midgut proteases, including caseinolytic proteolytic activity and zymogram profile and serine protease activities, in midgut aminopeptidase and alkaline phosphatase activity, and in midgut esterases and hemolymph plasma melanization activity. For analysis of genetic linkage of Cry2Ab resistance with potential Cry toxin receptor genes, molecular markers for the midgut cadherin, alkaline phosphatase (ALP), and aminopeptidase N (APN) genes were identified between the original greenhouse-derived dual-toxin-resistant and the susceptible laboratory T. ni strains. Genetic linkage analysis showed that the Cry2Ab resistance in T. ni was not genetically associated with the midgut genes coding for the cadherin, ALP, and 6 APNs (APN1 to APN6) nor associated with the ABC transporter gene ABCC2. Therefore, the Cry2Ab resistance in T. ni is conferred by a novel but unknown genetic mechanism. PMID:26025894

  10. Investigating alternatives to traditional insecticides: effectiveness of entomopathogenic fungi and Bacillus thuringiensis against citrus thrips and avocado thrips (Thysanoptera: Thripidae).

    Science.gov (United States)

    Zahn, Deane K; Morse, Joseph G

    2013-02-01

    Citrus thrips, Scirtothrips citri (Moulton) (Thysanoptera: Thripidae), is a plant-feeding pest most widely recognized for causing damage to citrus (Citrus spp. L. [Rutaceae]) and mango (Mangifera indica L. [Anacardiaceae]) fruits. This insect has recently broadened its known host range to become a significant pest of California grown blueberries. Avocado thrips, Scirtothrips. perseae Nakahara (Thysanoptera: Thripidae), is a recent, invasive pest of California avocados, Persea americana Mill. (Laurales: Lauraceae). Effective alternatives to traditional pesticides are desirable for both pests to reduce impacts on natural enemies and broaden control options in an effort to minimize pesticide resistance via rotation of control materials. We evaluated Bacillus thuringiensis (Bt) subsp. israelensis proteins (Cyt 1A and Cry 11A, activated and inactivated) and multiple strains (GHA, 1741ss, SFBb1, S44ss, NI1ss, and 3769ss) of Beauveria bassiana (Balsamo) Vuillemin against both species. Avocado thrips and citrus thrips were not susceptible to either Bt protein tested, regardless of activation status. All strains of B. bassiana were able to infect both avocado thrips and citrus thrips. However, the commercially available GHA strain was the most effective strain against both species and had a faster rate of infection then the other strains tested. Citrus thrips were more susceptible than avocado thrips to all B. bassiana strains (LC50 and LC95 of 8.6 x 10(4) and 4.8 x 10(6) conidia per ml for citrus thrips, respectively). Investigation of citrus thrips field control using the GHA strain of B. bassiana is therefore justified. PMID:23448016

  11. Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella.

    Science.gov (United States)

    Oppert, B; Kramer, K J; Johnson, D E; MacIntosh, S C; McGaughey, W H

    1994-02-15

    Processing of Bacillus thuringiensis protoxins to toxins by midgut proteinases from a strain of the Indianmeal moth, Plodia interpunctella (Hubner), resistant to B. thuringiensis subspecies entomocidus (HD-198) was slower than that by midgut proteinases from the susceptible parent strain or a strain resistant to B. thuringiensis subspecies kurstaki (HD-1, Dipel). Midgut extracts from entomocidus-resistant insects exhibited five-fold lower activity toward the synthetic substrate alpha-N-benzoyl-DL-arginine rho-nitroanilide than extracts from susceptible or kurstaki-resistant insects. Midgut enzymes from susceptible or kurstaki-resistant insects converted the 133 kDa CryIA(c) protoxin to 61-63 kDa proteins, while incubations with entomocidus-resistant enzymes resulted in predominantly products of intermediate size, even with increased amounts of midgut extract. The 61-63 kDa proteins were only produced by entomocidus-resistant midgut extracts after long term incubations with the protoxin. The data suggest that altered protoxin activation by midgut proteinases is involved in some types of insect resistance to B. thuringiensis.

  12. Bacillus thuringiensis metalloproteinase Bmp1 functions as a nematicidal virulence factor.

    Science.gov (United States)

    Luo, Xiaoxia; Chen, Ling; Huang, Qiong; Zheng, Jinshui; Zhou, Wei; Peng, Donghai; Ruan, Lifang; Sun, Ming

    2013-01-01

    Some Bacillus thuringiensis strains have high toxicity to nematodes. Nematicidal activity has been found in several families of crystal proteins, such as Cry5, Cry6, and Cry55. The B. thuringiensis strain YBT-1518 has three cry genes that have high nematicidal activity. The whole genome sequence of this strain contains multiple potential virulence factors. To evaluate the pathogenic potential of virulence factors, we focused on a metalloproteinase called Bmp1. It encompasses a consecutive N-terminal signal peptide, an FTP superfamily domain, an M4 neutral protease GluZincin superfamily, two Big-3 superfamily motifs, and a Gram-positive anchor superfamily motif as a C-terminal domain. Here, we showed that purified Bmp1 protein showed metalloproteinase activity and toxicity against Caenorhabditis elegans (the 50% lethal concentration is 610 ± 9.37 μg/ml). In addition, mixing Cry5Ba with Bmp1 protein enhanced the toxicity 7.9-fold (the expected toxicity of the two proteins calculated from their separate toxicities) against C. elegans. Confocal microscopic observation revealed that Bmp1 protein was detected from around the mouth and esophagus to the intestine. Striking microscopic images revealed that Bmp1 degrades intestine tissues, and the Cry5Ba causes intestinal shrinkage from the body wall. Thus, the B. thuringiensis Bmp1 metalloproteinase is a nematicidal virulence factor. These findings give a new insight into the relationship between B. thuringiensis and its host nematodes.

  13. Larvicidal activity of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus.

    Science.gov (United States)

    DE Lara, Ana Paula DE Souza Stori; Lorenzon, Lucas Bigolin; Vianna, Ana Muñoz; Santos, Francisco Denis Souza; Pinto, Luciano Silva; Aires Berne, Maria Elisabeth; Leite, Fábio Pereira Leivas

    2016-10-01

    Effective control of gastrointestinal parasites is necessary in sheep production. The development of anthelmintics resistance is causing the available chemically based anthelmintics to become less effective. Biological control strategies present an alternative to this problem. In the current study, we tested the larvicidal effects of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus larvae. Bacterial suspensions [2 × 108 colony-forming units (CFU) g-1 of the feces] of B. thuringiensis var. israelensis and recombinant Escherichia coli expressing Cry11Aa toxin were added to naturally H. contortus egg-contaminated feces. The larvae were quantified, and significant reductions of 62 and 81% (P < 0·001) were, respectively observed, compared with the control group. A 30 mL bacterial suspension (1 × 108 CFU mL-1) of B. thuringiensis var. israelensis and recombinant E. coli expressing Cry11Aa toxin were then orally administered to lambs naturally infected with H. contortus. Twelve hours after administration, feces were collected and submitted to coprocultures. Significant larvae reductions (P < 0·001) of 79 and 90% were observed respectively compared with the control group. The results suggest that the Cry11Aa toxin of B. thuringiensis var. israelensis is a promising new class of biological anthelmintics for treating sheep against H. contortus.

  14. Activity of bacteriocins synthesized by Bacillus thuringiensis against Staphylococcus aureus isolates associated to bovine mastitis.

    Science.gov (United States)

    Barboza-Corona, José Eleazar; de la Fuente-Salcido, Norma; Alva-Murillo, Nayeli; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2009-07-01

    Antimicrobial therapy is a useful tool to control bovine mastitis caused by Staphylococcus aureus, as consequence an increase in staphylococci resistant cases has been registered. Alternative strategies are desirable and bacteriocins represent attractive control agents to prevent bovine mastitis. The aim of this work was to evaluate the activity of five bacteriocins synthesized by Bacillus thuringiensis against S. aureus isolates associated to bovine mastitis. Fifty S. aureus isolates were recovered from milk composite samples of 26 Holstein lactating cows from one herd during September 2007 to February 2008 in México and susceptibility of those isolates to 12 antibiotics and 5 bacteriocins from B. thuringiensis was evaluated. S. aureus isolates were mainly resistant to penicillin (92%), dicloxacillin (86%), ampicillin (74%) and erythromycin (74%); whereas susceptibility to gentamicin, trimethoprim and tetracycline was detected at, respectively, 92%, 88%, and 72%. All S. aureus isolates showed susceptibility to the five bacteriocins synthesized by B. thuringiensis, mainly to morricin 269 and kurstacin 287 followed by kenyacin 404, entomocin 420 and tolworthcin 524. Our results showed that S. aureus isolates had differences in the antimicrobial resistance patterns and were susceptible to bacteriocins produced by B. thuringiensis, which could be useful as an alternative method to control bovine mastitis. PMID:19359107

  15. Binding of Bacillus thuringiensis proteins to a laboratory-selected line of Heliothis virescens.

    Science.gov (United States)

    MacIntosh, S C; Stone, T B; Jokerst, R S; Fuchs, R L

    1991-10-15

    A laboratory-selected colony of Heliothis virescens displaying a 20- to 70-fold level of resistance to Bacillus thuringiensis proteins was evaluated to identify mechanism(s) of resistance. Brush-border membrane vesicles were isolated from larval midgut epithelium from the susceptible and resistant strains of H. virescens. Two B. thuringiensis proteins, CryIA(b) and CryIA(c), were iodinated and shown to specifically bind to brush-border membrane vesicles of both insect strains. Multiple changes in the receptor-binding parameters were seen in the resistant strain as compared with the susceptible strain. A 2- to 4-fold reduction in binding affinity was accompanied by a 4- to 6-fold increase in binding-site concentration for both proteins. Although these two B. thuringiensis proteins competed for the same high-affinity binding site, competition experiments revealed different receptor specificity toward these proteins in the resistant H. virescens line. The H. virescens strains were not sensitive to a coleopteran-active protein, CryIIIA, nor did these proteins compete with the CryIA proteins for binding. Complexity of the mechanism of resistance is consistent with the complex mode of action of B. thuringiensis proteins. PMID:1924353

  16. Effect of inherited sterility and bacillus thuringiensis on mortality and reproduction of phthorimaea opercullela zeller (lepidoptera: gelechidae)

    International Nuclear Information System (INIS)

    The effect of a commercial formulation of Bacillus thuringiensis (Dipel 2X) upon F1 progeny of irradiated and unirradiated phthorimaea operculella male parents was investigated. F1 progeny of irradiated parents was more susceptible to B. thuringiensis than that of unirradiated parents. A combination of irradiation and B. thuringiensis led to higher mortality in F1 progeny of P. operculella. The LC50 was 0.406 g/100ml for F1 progeny of unirradiated parents, but 0.199 g/100ml for those of irradiated parents. There was a great reduction in the pupal weight, fecundity and egg hatchability of F1 progeny of irradiated patents compared to those unirradiated parents. Such reduction was increased by applying higher concentration of B. thuringiensis. A combination between inherited sterility technique and B. thuringiensis application could give a good controlling result against P. operculella. (author)

  17. Progress of Anticancer Researches on Bacillus thuringiensis%苏云金芽孢杆菌抗癌的研究进展

    Institute of Scientific and Technical Information of China (English)

    李今煜; 陈小旋; 关雄

    2002-01-01

    最近研究发现某些非杀虫的苏云金芽孢杆菌(Bacillus thuringiensis,Bt)株系的伴孢蛋白对体外培养的人癌细胞(MOLT-4、HeLa)具有毒杀能力.这类蛋白不属于已知的任何一种Cry/Cyt蛋白,其抗癌活性需经蛋白酶水解活化,所导致的细胞病变有明显的核凝聚和细胞肿胀过程.这个发现可能导致Bt在医疗上的新应用.文章综述了国外一些研究的新进展以期对国内的Bt研究提供新的思路.

  18. Toxicidad de î´-endotoxinas recombinantes de bacillus thuringiensis sobre larvas de la polilla guatemalteca (tecia solanivora) (lepidóptera: gelechiidae)

    OpenAIRE

    Hernández-Fernández, Javier; Pitre Ruiz, Leanis; Bernal Villegas, Jaime

    2009-01-01

    Con el objetivo de determinar la actividad tóxica específica de las proteínas recombinantes Cry1Aa, Cry1Ac, Cry1B y Cry1C de Bacillus thuringiensis (Bt), sobre larvas de primer instar de Tecia solanivora se estableció la CL50 para las toxinas. Para este fin se implementó la cría masiva de este insecto bajo condiciones de laboratorio, 58±5% de humedad relativa, 18±5ºC de temperatura y un fotoperiodo de 23 h oscuridad y 1 h luz. Se utilizó una dieta seminatural consistente en láminas de papa va...

  19. Toxicidad de δ-endotoxinas recombinantes de Bacillus thuringiensis sobre larvas de la polilla guatemalteca (Tecia solanivora) (Lepidóptera: Gelechiidae)

    OpenAIRE

    Javier Hernández-Fernández; Leanis Pitre Ruiz; Jaime Bernal Villegas

    2009-01-01

    Con el objetivo de determinar la actividad tóxica específica de las proteínas recombinantes Cry1Aa, Cry1Ac, Cry1B y Cry1C de Bacillus thuringiensis (Bt), sobre larvas de primer instar de Tecia solanivora se estableció la CL50 para las toxinas. Para este fin se implementó la cría masiva de este insecto bajo condiciones de laboratorio, 58±5% de humedad relativa, 18±5ºC de temperatura y un fotoperiodo de 23 h oscuridad y 1 h luz. Se utilizó una dieta seminatural consistente en láminas de papa va...

  20. Toxicidad biológica de cepas nativas de Bacillus thuringiensis Berliner en larvas de Tecia solanivora Povolny

    Directory of Open Access Journals (Sweden)

    Paola Martínez

    2011-11-01

    Full Text Available La biodiversidad microbiológica de los suelos del departamento de Boyacá aún no ha sido explorada en toda su magnitud y existen microorganismos, como en el caso de Bacillus thuringiensis Berliner (Bt, que pueden emplearse para el desarrollo de estrategias biológicas de control de plagas en el futuro. Por lo anterior, el presente trabajo evaluó la actividad biológica, expresada como  toxicidad, de cepas nativas de B. thuringiensis en la Polilla Guatemalteca  de  la  papa  Tecia  solanivora Povolny, una de  las plagas más  limitantes en el cultivo de papa en la región andina colombiana. Esta  evaluación  se  realizó con  aislados de  Bt obtenidos y conservados por el Grupo de Manejo Biológico de Cultivos (GMBC en el Laboratorio de Control Biológico de la UPTC, colectados de muestras de  suelo en  la Provincia Centro de Boyacá y  previamente  caracterizados  macro  y microscópicamente.  La   toxicidad  se  evaluó mediante bioensayos con larvas de primer instar de  T.  solanivora,  utilizando  el método  decontaminación superficial de cubos de papa. Se evaluó  la mortalidad  ocho  días  después  de montado  el  bioensayo  y  se  determinó, igualmente,  la Concentración letal media (Cl 50 de las cepas que presentaron  la mayor actividad  tóxica en  los  bioensayos  iniciales.  Los  aislamientosGMBC-B054, GMBC-B071, GMBC-B076, GMBC- B098, GMBC-B111 y GMBC-B117 fueron  los más activos, con Cl 50 de 1.08x106, 4.24x106, 5.12x106, 4.36x103, 3.56x103  y  1.19x104  esporas  · mL-1,respectivamente.

  1. Expression of Aminopeptidase N1(APN1),the Main Receptor Protein for Bacillus thuringiensis Cry1A Toxin from Helicoverpa armigera Larval Midgut in Trichoplusia ni cells

    Institute of Scientific and Technical Information of China (English)

    CHANG Hong-lei; LIANG Ge-mei; WANG Gui-rong; YU Hong-kun; GUO Yu-yuan; WU Kong-ming

    2008-01-01

    The aim of this article is to successfully express the Bt(Bacillus thuringiensis)toxin receptor protein located on the internal membrane of larval midgut of cotton bollworm(Helicoverpa armigera Hiibner)within eukaryotic expression system,which is one of the key links for clarifying the relationship between receptor and Bt resistance.The fragments of aminopeptidase N1(APN1)gene without signal peptide in the susceptible and the resistant H. armigera were cloned separately using PCR method,and were separately cloned into pUC 19 vector.After sequencing the gene,the fragments encoding for APN1 without signal peptide were cloned into the Bac-to-Bac baculovirus expression system with transfer vector pFastBacHTB under the polyhedron gene promoter.The recombinant transposing plasmid pFastBacHTB/APN1 was screened and then transformed into Escherichia coli DH10Bac.It was cultured in LB medium,which contained Te, Kan,Ge,X-gal,and IPTG.The resulting recombinant bacmid was transfected into cells of the insect Trichoplusia ni and recombinant baculoviruse was obtained.The lysate of cells infected with recombinant baculoviruse was analyzed by SDS-PAGE and blot analysis.The results showed that the recombinant baculoviruse was fully capable of expressing APN1.The APN1 gene successfully expressed in T. ni cell established the base for continuing the research on its function and relationship of resistance with Bt.

  2. Linkage of an ABCC transporter to a single QTL that controls Ostrinia nubilalis larval resistance to the Bacillus thuringiensis Cry1Fa toxin.

    Science.gov (United States)

    Coates, Brad S; Siegfried, Blair D

    2015-08-01

    Field evolved resistance of insect populations to Bacillus thuringiensis (Bt) crystalline (Cry) toxins expressed by crop plants has resulted in reduced control of insect feeding damage to field crops, and threatens the sustainability of Bt transgenic technologies. A single quantitative trait locus (QTL) that determines resistance in Ostrinia nubilalis larvae capable of surviving on reproductive stage transgenic corn that express the Bt Cry1Fa toxin was previously mapped to linkage group 12 (LG12) in a backcross pedigree. Fine mapping with high-throughput single nucleotide polymorphism (SNP) anchor markers, a candidate ABC transporter (abcc2) marker, and de novo mutations predicted from a genotyping-by-sequencing (GBS) data redefined a 268.8 cM LG12. The single QTL on LG12 spanned an approximate 46.1 cM region, in which marker 02302.286 and abcc2 were ≤ 2.81 cM, and the GBS marker 697 was an estimated 1.89 cM distant from the causal genetic factor. This positional mapping data showed that an O. nubilalis genome region encoding an abcc2 transporter is in proximity to a single QTL involved in the inheritance of Cry1F resistance, and will assist in the future identification the mutation(s) involved with this phenotype. PMID:26093031

  3. LSSP-PCR para la identificación de polimorfismos en el gen cry1B en cepas nativas de Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Martha Ilce Orozco Mera

    2012-02-01

    Full Text Available Normal 0 21 false false false ES-CO X-NONE X-NONE MicrosoftInternetExplorer4 Título en ingles: LSSP-PCR to identify polymorphisms in the gene cry1B of Bacillus thuringiensis native strain Resumen: Se estandarizó la técnica LSSP-PCR (reacción en cadena de la polimerasa con un único oligonucleótido en condiciones de baja astringencia, para identificar polimorfismos del gen cry1B en aislamientos nativos de Bacillus thuringiensis (Bt. Se evaluaron 164 aislamientos nativos colombianos identificándose el gen cry1Ba en 11 de estos aislamientos. Los 11 fragmentos amplificados, junto con el de la cepa de referencia Bt subsp. aizawai HD137, se analizaron por LSSP-PCR y los patrones electroforéticos obtenidos se compararon cualitativamente. Con los productos amplificados mediante el oligonucleótido directo se construyó un dendrograma utilizando UPGMA que  mostró tres agrupamientos con similitud de 83, 79 y 68%. La agrupación con 68% de similaridad correspondió al aislamiento nativo BtGC120 que presentó el patrón de bandas más variable. Con el oligonucleótido reverso el aislamiento BtGC120 mostró una menor variabilidad (43%. La secuencia nucleotidica obtenida de este fragmento de 806 pares de bases mostró una identidad de 93% con la secuencia de los genes cry1Bc1 de Bt morrisoni y cry1Bb1 de la cepa BT-EG5847. Se predijo del marco de lectura +3 una proteína de 268 residuos aminoácidicos, con 88% de identidad con la proteína Cry1Bc. Esta  secuencia reveló dos dominios, una endotoxina N implicada en la formación del poro y otra endotoxina M relacionada en el reconocimiento del receptor. La evaluación biológica del aislamiento BtGC120 sobre larvas de primer instar del insecto plaga Spodoptera frugiperda, mostró una CL50 de 1,896 ng de proteína total por cm2. Este estudio muestra que la LSSP-PCR es una técnica que permite identificar de una manera específica variaciones en las secuencias de los genes cry de Bt, con potencialidad

  4. Are nematodes a missing link in the confounded ecology of the entomopathogen Bacillus thuringiensis?

    Science.gov (United States)

    Ruan, Lifang; Crickmore, Neil; Peng, Donghai; Sun, Ming

    2015-06-01

    Bacillus thuringiensis, which is well known as an entomopathogen, has been accepted by the public as a safe bioinsecticide. The natural ecology of this bacterium has never been particularly clear, with views ranging from it being an obligate pathogen to an opportunist pathogen that can otherwise exist as a soil saprophyte or a plant endophyte. This confusion has recently led to it being considered as an environmental pathogen that has evolved to occupy a diverse set of environmental niches in which it can thrive without needing a host. A significant driving force behind this classification is the fact that B. thuringiensis is found in high numbers in environments that are not occupied by the insect hosts to which it is pathogenic. It is our opinion that the ubiquitous presence of this bacterium in the environment is the result of a variety of vectoring systems, particularly those that include nematodes.

  5. U.v.-induced and N-methyl-N'-nitrosoguanidine-induced mutagenesis in Bacillus thuringiensis

    International Nuclear Information System (INIS)

    The lethal and mutagenic effects of u.v. light and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) on Bacillus thuringiensis were investigated. Lethality studies demonstrated that B. thuringiensis was relatively sensitive to these agents. This bacterium was mutated at the rifampicin resistance marker by u.v. light and to a lesser extent by the direct acting alkylating agent MNNG. One mutant selected for its greater sensitivity to u.v. light expressed a higher frequency of mutagenesis after u.v. light treatment and appeared to be defective in an excision repair pathway. However, this mutant was only slightly mutable by MNNG in comparison with the wild-type strain. This unusual phenotype does not yet have a parallel among the radiation sensitive mutants described in other bacterial species. (author)

  6. U. V. -induced and N-methyl-N'-nitrosoguanidine-induced mutagenesis in Bacillus thuringiensis

    Energy Technology Data Exchange (ETDEWEB)

    Auffray, Y.; Boutibonnes, P.

    1987-03-01

    The lethal and mutagenic effects of u.v. light and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) on Bacillus thuringiensis were investigated. Lethality studies demonstrated that B. thuringiensis was relatively sensitive to these agents. This bacterium was mutated at the rifampicin resistance marker by u.v. light and to a lesser extent by the direct acting alkylating agent MNNG. One mutant selected for its greater sensitivity to u.v. light expressed a higher frequency of mutagenesis after u.v. light treatment and appeared to be defective in an excision repair pathway. However, this mutant was only slightly mutable by MNNG in comparison with the wild-type strain. This unusual phenotype does not yet have a parallel among the radiation sensitive mutants described in other bacterial species.

  7. Potencial de Bacillus thuringiensis israelensis Berliner no controle de Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Polanczyk Ricardo Antonio

    2003-01-01

    Full Text Available Relata-se a importância da bactéria entomopatogênica Bacillus thuringiensis israelensis para o controle de Aedes aegypti. São abordados a utilização e potencial de B. thuringiensis israelensis contra o mosquito vetor da dengue. Outros aspectos são discutidos como a evolução da resistência dos insetos em relação aos inseticidas químicos e as vantagens e desvantagens do controle microbiano como estratégia de controle. É dada ênfase à importância da utilização desta bactéria no Brasil como alternativa para resolver o problema em questão sem afetar o ambiente, o homem e outros vertebrados nas áreas de risco.

  8. Diagnostic properties of three conventional selective plating media for selection of Bacillus cereus, B. thuringiensis and B. weihenstephanensis

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Hansen, Bjarne Munk

    2011-01-01

    The aim of this study was to assess the diagnostic properties of the two selective plating media and a chromogenic medium for identification of Bacillus cereus. The 324 isolates were B. cereus (37%), Bacillus weihenstephanensis (45%) or Bacillus thuringiensis (18%), as identified by a new...... combination of techniques. All isolates were growing on mannitol–egg yolk–polymyxin agar (MYP), and they did not form acid from mannitol. However, a significant lower number of B. thuringiensis isolates did not show lecithinase activity. All isolates were also growing on polymyxin–egg yolk...... recommended selective plating media MYP and PEMBA for detection of B. cereus group bacteria both have their limitations for identification of some B. cereus, B. weihenstephanensis or B. thuringiensis. However, MYP is preferable compared to PEMBA. The chromogenic medium has its own advantages and limitations...

  9. Cloning and Tissue-Specific Expression of a Chitin Deacetylase Gene from Helicoverpa armigera (Lepidoptera: Noctuidae) and Its Response to Bacillus thuringiensis.

    Science.gov (United States)

    Han, Guoying; Li, Xiumin; Zhang, Ting; Zhu, Xiaoting; Li, Jigang

    2015-01-01

    Chitin deacetylases (CDAs) convert chitin into chitosan, the N-deacetylated form of chitin, which influences the mechanical and permeability properties of structures such as the cuticle and peritrophic matrices. In this article, a new CDA encoding gene, Hacda2, was cloned by reverse transcription-polymerase chain reaction method in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), with an open reading frame of 1,611 bp. The deduced protein composed of 536 amino acid residues with a signal peptide, a chitin-binding domain, a low-density lipoprotein receptor class A domain, and a polysaccharide deacetylase-like catalytic domain. The highest expression level of Hacda2 was detected in fat body among tissues tested in the fifth-instar larvae using real-time quantitative polymerase chain reaction method. Feeding of Bacillus thuringiensis (Bt) (Bacillales: Bacillaceae) diet changed the expression level of Hacda1, Hacda2, Hacda5a, and Hacda5b significantly and differentially in the third-instar larvae. Hacda5a and Hacda5b expression were initially down-regulated and then up-regulated, whereas, the expression level of Hacda1 and Hacda2 was suppressed constantly postfeeding on Bt diet. These results suggested that HaCDAs may be involved in the response of H. armigera larvae to Bt and may be helpful to elucidate the roles of HaCDAs in the action of Bt cry toxin. The potential of HaCDAs to be used as synergists of Bt insecticidal protein needs to be further tested. PMID:26163665

  10. ISOLATION, CHARACTERIZATION OF PHYTASE PRODUCING BACILLUS SUBTILS BtRS2 FROM THE RHIZOSPHERE SOIL OF Bt COTTON FIELD

    OpenAIRE

    K. Usha Sri

    2013-01-01

    Soil samples of Bt Rhizosphere were collected from Bt cotton growing area of Andhra Pradesh, India and was used as a source material for isolation and screening of phytase producing bacteria. 19Bacteria were isolated from Bt Rhizosphere. Phytase enzyme activity of the cultures was screened on modified phytase solubulizing medium (MPSM). The result inferred that six isolates BtRS1 to BtRS6 were strongly positive in enzyme activity than six of other microorganisms while seven isolates were foun...

  11. 固定化Bacillus thuringiensis ZJOU-010壳聚糖酶的研究%Immobilization and Enzymatic Properties of Chitosanase from Bacillus thuringiensis ZJOU-010

    Institute of Scientific and Technical Information of China (English)

    陈静; 陈余; 鹿刘奇; 陈小娥; 方旭波

    2010-01-01

    采用吸附交联技术,以DEAE-22纤维素为载体、戊二醛为交联剂,固定Bacillus thuringiensis ZJOU-010壳聚糖酶,考察固定化酶的制备条件,并研究固定化酶的性质.结果表明B.thuringiensis ZJOU-010壳聚糖酶的最佳固定化条件为:戊二醛体积分数3.0%、加酶量20mg、固定化时间10h;在此条件下制备的固定化壳聚糖酶的最适pH值和温度分别为4.83和50℃;与游离酶相比,该固定化酶的热稳定性较好,在40℃和50℃条件下的半衰期(t1/2)分别为36.3h和6.2h,动力学常数Km值为9.19g/L;该固定化酶重复使用10批后活力仍可保持初始活力的88.32%.

  12. Identification of distinct Bacillus thuringiensis 4A4 nematicidal factors using the model nematodes Pristionchus pacificus and Caenorhabditis elegans.

    Science.gov (United States)

    Iatsenko, Igor; Nikolov, Angel; Sommer, Ralf J

    2014-07-14

    Bacillus thuringiensis has been extensively used for the biological control of insect pests. Nematicidal B. thuringiensis strains have also been identified; however, virulence factors of such strains are poorly investigated. Here, we describe virulence factors of the nematicidal B. thuringiensis 4A4 strain, using the model nematodes Pristionchus pacificus and Caenorhabditis elegans. We show that B. thuringiensis 4A4 kills both nematodes via intestinal damage. Whole genome sequencing of B. thuringiensis 4A4 identified Cry21Ha, Cry1Ba, Vip1/Vip2 and β-exotoxin as potential nematicidal factors. Only Cry21Ha showed toxicity to C. elegans, while neither Cry nor Vip toxins were active against P. pacificus, when expressed in E. coli. Purified crystals also failed to intoxicate P. pacificus, while autoclaved spore-crystal mixture of B. thuringiensis 4A4 retained toxicity, suggesting that primary β-exotoxin is responsible for P. pacificus killing. In support of this, we found that a β-exotoxin-deficient variant of B. thuringiensis 4A4, generated by plasmid curing lost virulence to the nematodes. Thus, using two model nematodes we revealed virulence factors of the nematicidal strain B. thuringiensis 4A4 and showed the multifactorial nature of its virulence.

  13. Can Conventional Crop Producers Also Benefit From Bt Technology?

    OpenAIRE

    Dun, Zhe; Mitchell, Paul D.

    2011-01-01

    Transgenic plants producing insecticidal protein derived from Bacillus thuringiensis (Bt) have been widely adopted since their commercial introduction in 1996. In 2009, 25 countries planted 134 million ha of transgenic crops. The widespread adoption of such plants has reduced use of conventional insecticides while attaining yield gains, thus providing economic, environmental and human health benefits. Because of Bt crops’ high pest control efficacy, there is concern that pests will develop re...

  14. Toxicity studies for indigenous Bacillus thuringiensis isolates from Malang city, East Java on Aedes aegypti larvae

    Institute of Scientific and Technical Information of China (English)

    Zulfaidah Penata Gama; Nobukazu Nakagoshi; Suharjono; Faridah Setyowati

    2013-01-01

    Objective: To investigate the toxicity of indigenous Bacillus thuringiensis (B. thuringiensis) isolates from Malang City for controlling Aedes aegypti (Ae. aegypti) larvae. Methods: Soil samples were taken from Purwantoro and Sawojajar sub-districts. Bacterial isolation was performed using B. thuringiensis selective media. Phenotypic characteristics of the isolates were obtained with the simple matching method. The growth and prevalence of spores were determined by the Total Plate Count method, and toxicity tests were also performed on the third instar larval stage of Ae. aegypti. The percentage of larval mortality was analysed using probit regression. The LC50 was analysed by ANOVA, and the Tukey HSD interval was 95%. Results:Among the 33 selected bacterial isolates, six were obtained (PWR4-31, PWR4-32, SWJ4-2b, SWJ4-4b, SWJ-4k and SWJ5-1) that had a similar phenotype to reference B. thuringiensis. Based on the dendrogram, all of the bacterial isolates were 71%similar. Three isolates that had a higher prevalence of reference B. thuringiensis were PWR4-32, SWJ4-4b and SW5-1, of which the spore prevalence was 52.44%, 23.59%, 34.46%, respectively. These three indigenous isolates from Malang City successfully killed Ae. aegypti larvae. The PWR4-32 isolates were the most effective at killing the larvae. Conclusions:Six indigenous B. thuringiensis isolates among the 33 bacterial isolates found in the Sawojajar and Purwantoro sub-districts were toxic to the third instar larvae of Ae. aegypti. The PWR4-32 isolates were identical to the reference B. thuringiensis and had 88%phenotype similarity. The PWR4-32 isolates had the highest spore prevalence (52.44%), and the early stationary phase occurred at 36 h. The PWR4-32 isolates were the most effective at killing Ae. aegypti larvae (LC50-72 h=2.3í108 cells/mL).

  15. Efeito fungistático de Bacillus thuringiensis e de outras bactérias sobre alguns fungos fitopatogênicos Fungistatic effect of Bacillus thuringiensis and of other bacteria on some plant pathogenic fungi

    Directory of Open Access Journals (Sweden)

    Carlos Brasil Batista Junior

    2002-08-01

    Full Text Available Quatro isolados bacterianos da rizosfera de Drosera villosa var. villosa (B1, B2, B3, B4 e dois isolados de Bacillus thuringiensis (B5 e B6, sendo B6 produtor da toxina bioinseticida Cry1Ab, foram avaliados quanto à capacidade de inibir os fungos fitopatogênicos Fusarium solani f. sp. phaseoli, Fusarium solani f. sp. glycines, Fusarium oxysporum e Colletotrichum sp. A cepa mais efetiva foi B1 que inibiu o crescimento dos quatro fungos até o 26º dia. B. thuringiensis inibiu o crescimento de três destes, o que indica que possui atividade antifúngica e abre um novo campo de estudo para a utilização do B. thuringiensis.Four bacteria isolates from the rhizosphere of Drosera villosa var. villosa (B1, B2, B3, B4 and two Bacillus thuringiensis isolates (B5 e B6, being B6 a bioinsecticidal Cry1Ab protein producer, were tested for their capacity to inhibit phytopathogenic fungi such as Fusarium solani f. sp. phaseoli, Fusarium solani f. sp. glycines, Fusarium oxysporum and Colletotrichum sp. The B1 isolate was highly effective and inhibited all fungi up to the 26th day. B. thuringiensis inhibited the growth of three fungi, and this result opens a new area to study and test B. thuringiensis.

  16. Characterization of monoclonal antibodies to a crystal protein of Bacillus thuringiensis subsp. kurstaki.

    OpenAIRE

    Huber-Lukac, M; Jaquet, F; Luethy, P; Huetter, R; Braun, D G

    1986-01-01

    Ten monoclonal antibodies were produced against a k-1-type crystal protein of Bacillus thuringiensis subsp. kurstaki. Eight of the antibodies belong to the immunoglobulin G1 (IgG1) subclass, with pI values ranging from 5.5 to 8.6, one could be assigned to the IgG2b subclass, and one could be assigned to the IgM class. Competitive antibody-binding assays and analysis of antibody specificity indicated that the 10 antibodies recognized at least nine distinct antigenic determinants. Eight antibod...

  17. A Bacillus thuringiensis insecticidal crystal protein with a high activity against members of the family Noctuidae.

    OpenAIRE

    Lambert, B.; Buysse, L; Decock, C.; Jansens, S.; Piens, C; Saey, B; Seurinck, J; Van Audenhove, K; Van Rie, J.; A. van Vliet; Peferoen, M.

    1996-01-01

    The full characterization of a novel insecticidal crystal protein, named Cry9Ca1 according to the revised nomenclature for Cry proteins, from Bacillus thuringiensis serovar tolworthi is reported. The crystal protein has 1,157 amino acids and a molecular mass of 129.8 kDa. It has the typical features of the Lepidoptera-active crystal proteins such as five conserved sequence blocks. Also, it is truncated upon trypsin digestion to a toxic fragment of 68.7 kDa by removal of 43 amino acids at the ...

  18. [Advances in safety studies of soil Bt toxin proteins released from transgenic Bt crops].

    Science.gov (United States)

    Bai, Yaoyu; Jiang, Mingxing; Cheng, Jia; Jiang, Yonghou

    2003-11-01

    Commercialized transgenic Bt (Bacillus thuringiensis) crops are permitted for field growth in a large scale, which leads to significant issues of ecological risk assessment in soil ecosystem. In this paper, some general safety problems involving in the soil Bt active toxins released from insect-resistant transgenic Bt crops in the forms of plant residues, root exudates and pollens were reviewed, including their adsorption by soil active-particles, their insecticidal activity, persistence, and biodegradation by soil microbes, and their effects on soil organisms.

  19. Bacillus thuringiensis Cry34Ab1/Cry35Ab1 interactions with western corn rootworm midgut membrane binding sites.

    Directory of Open Access Journals (Sweden)

    Huarong Li

    Full Text Available BACKGROUND: Bacillus thuringiensis (Bt Cry34Ab1/Cry35Ab1 are binary insecticidal proteins that are co-expressed in transgenic corn hybrids for control of western corn rootworm, Diabrotica virgifera virgifera LeConte. Bt crystal (Cry proteins with limited potential for field-relevant cross-resistance are used in combination, along with non-transgenic corn refuges, as a strategy to delay development of resistant rootworm populations. Differences in insect midgut membrane binding site interactions are one line of evidence that Bt protein mechanisms of action differ and that the probability of receptor-mediated cross-resistance is low. METHODOLOGY/PRINCIPAL FINDINGS: Binding site interactions were investigated between Cry34Ab1/Cry35Ab1 and coleopteran active insecticidal proteins Cry3Aa, Cry6Aa, and Cry8Ba on western corn rootworm midgut brush border membrane vesicles (BBMV. Competitive binding of radio-labeled proteins to western corn rootworm BBMV was used as a measure of shared binding sites. Our work shows that (125I-Cry35Ab1 binds to rootworm BBMV, Cry34Ab1 enhances (125I-Cry35Ab1 specific binding, and that (125I-Cry35Ab1 with or without unlabeled Cry34Ab1 does not share binding sites with Cry3Aa, Cry6Aa, or Cry8Ba. Two primary lines of evidence presented here support the lack of shared binding sites between Cry34Ab1/Cry35Ab1 and the aforementioned proteins: 1 No competitive binding to rootworm BBMV was observed for competitor proteins when used in excess with (125I-Cry35Ab1 alone or combined with unlabeled Cry34Ab1, and 2 No competitive binding to rootworm BBMV was observed for unlabeled Cry34Ab1 and Cry35Ab1, or a combination of the two, when used in excess with (125I-Cry3Aa, or (125I-Cry8Ba. CONCLUSIONS/SIGNIFICANCE: Combining two or more insecticidal proteins active against the same target pest is one tactic to delay the onset of resistance to either protein. We conclude that Cry34Ab1/Cry35Ab1 are compatible with Cry3Aa, Cry6Aa, or Cry8Ba

  20. Spatio-Temporal Evolution of Sporulation in Bacillus thuringiensis Biofilm

    Directory of Open Access Journals (Sweden)

    Nay El Khoury

    2016-08-01

    Full Text Available B. thuringiensis can produce a floating biofilm which includes two parts: a ring and a pellicle. The ring is a thick structure which sticks to the culture container, while the pellicle extends over the whole liquid surface and joins the ring. We have followed over time, from 16 h to 96 h, sporulation in the two biofilm parts. Sporulation was followed in situ in 48-wells polystyrene microtiterplates with a fluorescence binocular stereomicroscope and a spoIID-yfp transcriptional fusion. Sporulation took place much earlier in the ring than in the pellicle. In 20 h-aged biofilms, spoIID was expressed only in the ring, which could be seen as a green fluorescent circle surrounding the non-fluorescent pellicle. However, after 48 h of culture, the pellicle started to express spoIID in specific area corresponding to protrusions, and after 96 h both the ring and the whole pellicle expressed spoIID. Spore counts and microscopy observations of the ring and the pellicle harvested separately confirmed these results and revealed that sporulation occured 24 h-later in the pellicle comparatively to the ring, although both structures contained nearly 100% spores after 96 h of culture. We hypothesize that two mechanisms, due to microenvironments in the biofilm, can explain this difference. First, the ring experiences a decreased concentration of nutrients earlier than the pellicle, because of a lower exchange area with the culture medium. An second, the ring is exposed to partial dryness. Both reasons could speed up sporulation in this biofilm structure. Our results also suggest that spores in the biofilm display a phenotypic heterogeneity. These observations might be of particular significance for the food industry, since the biofilm part sticking to container walls - the ring - is likely to contain spores and will therefore resist both to washing and to cleaning procedures, and will be able to restart a new biofilm when food production has resumed.

  1. Effects of Bacillus thuringiensis var. kurstaki and medicinal plants on Hyphantria cunea Drury (Lepidoptera: Arctiidae

    Directory of Open Access Journals (Sweden)

    I Zibaee, AR Bandani, JJ Sendi, R Talaei-Hassanloei, B Kouchaki

    2010-11-01

    Full Text Available The fall armyworm, Hyphantria cunea Drury (Lepidoptera: Arctiidae is an insect native to NorthAmerica that was recently introduced into Iran resulting in severe damage to trees and agriculturalproduction. An experiment was conducted to examine potential effects of medicinal plants, Artemisiaannua and Lavandula stoechas and the insect pathogenic bacterium Bacillus thuringiensis var.kurstaki on activities of digestive enzymes (α-amylase, α- and β-glucosidase, lipase and proteasesand lactate dehydrogenase (LDH in H. cunea by using two hosts, mulberry and sycamore. Resultsshowed that B. thuringiensis var. kurstaki and plant extracts when administered orally, affected thedigestive enzyme profiles of H. cunea. Combined effect of B. thuringiensis, A. annua and L. stoechasextracts on mulberry decreased the activities of digestive enzymes in a dose-related manner, exceptfor β-glucosidase and lipase. When larvae were treated by different concentrations of the mentionedinsecticides, LDH activity increased i.e. the higher activity was obtained by B. thurengiensis alone andB. thurengiensis and L. stoechas extracts together. The least activity was observed in the case of L.stoechas extracts alone on both hosts. Physiological analysis would be particularly informative whenusing combination of biopesticides to enhance the efficiency of a safe management process.

  2. Heme sensing in Bacillus thuringiensis: a supplementary HssRS-regulated heme resistance system.

    Science.gov (United States)

    Schmidt, Rachel M; Carter, Micaela M; Chu, Michelle L; Latario, Casey J; Stadler, Sarah K; Stauff, Devin L

    2016-05-01

    Several Gram-positive pathogens scavenge host-derived heme to satisfy their nutritional iron requirement. However, heme is a toxic molecule capable of damaging the bacterial cell. Gram-positive pathogens within the phylum Firmicutes overcome heme toxicity by sensing heme through HssRS, a two-component system that regulates the heme detoxification transporter HrtAB. Here we show that heme sensing by HssRS and heme detoxification by HrtAB occur in the insect pathogen Bacillus thuringiensis We find that in B. thuringiensis, HssRS directly regulates an operon, hrmXY, encoding hypothetical membrane proteins that are not found in other Firmicutes with characterized HssRS and HrtAB systems. This novel HssRS-regulated operon or its orthologs BMB171_c3178 and BMB171_c3330 are required for maximal heme resistance. Furthermore, the activity of HrmXY is not dependent on expression of HrtAB. These results suggest that B. thuringiensis senses heme through HssRS and induces expression of separate membrane-localized systems capable of overcoming different aspects of heme toxicity.

  3. Draft Genome Sequences of Two Bacillus thuringiensis Strains and Characterization of a Putative 41.9-kDa Insecticidal Toxin

    Directory of Open Access Journals (Sweden)

    Leopoldo Palma

    2014-04-01

    Full Text Available In this work, we report the genome sequencing of two Bacillus thuringiensis strains using Illumina next-generation sequencing technology (NGS. Strain Hu4-2, toxic to many lepidopteran pest species and to some mosquitoes, encoded genes for two insecticidal crystal (Cry proteins, cry1Ia and cry9Ea, and a vegetative insecticidal protein (Vip gene, vip3Ca2. Strain Leapi01 contained genes coding for seven Cry proteins (cry1Aa, cry1Ca, cry1Da, cry2Ab, cry9Ea and two cry1Ia gene variants and a vip3 gene (vip3Aa10. A putative novel insecticidal protein gene 1143 bp long was found in both strains, whose sequences exhibited 100% nucleotide identity. The predicted protein showed 57 and 100% pairwise identity to protein sequence 72 from a patented Bt strain (US8318900 and to a putative 41.9-kDa insecticidal toxin from Bacillus cereus, respectively. The 41.9-kDa protein, containing a C-terminal 6× HisTag fusion, was expressed in Escherichia coli and tested for the first time against four lepidopteran species (Mamestra brassicae, Ostrinia nubilalis, Spodoptera frugiperda and S. littoralis and the green-peach aphid Myzus persicae at doses as high as 4.8 µg/cm2 and 1.5 mg/mL, respectively. At these protein concentrations, the recombinant 41.9-kDa protein caused no mortality or symptoms of impaired growth against any of the insects tested, suggesting that these species are outside the protein’s target range or that the protein may not, in fact, be toxic. While the use of the polymerase chain reaction has allowed a significant increase in the number of Bt insecticidal genes characterized to date, novel NGS technologies promise a much faster, cheaper and efficient screening of Bt pesticidal proteins.

  4. Draft genome sequences of two Bacillus thuringiensis strains and characterization of a putative 41.9-kDa insecticidal toxin.

    Science.gov (United States)

    Palma, Leopoldo; Muñoz, Delia; Berry, Colin; Murillo, Jesús; Caballero, Primitivo

    2014-04-30

    In this work, we report the genome sequencing of two Bacillus thuringiensis strains using Illumina next-generation sequencing technology (NGS). Strain Hu4-2, toxic to many lepidopteran pest species and to some mosquitoes, encoded genes for two insecticidal crystal (Cry) proteins, cry1Ia and cry9Ea, and a vegetative insecticidal protein (Vip) gene, vip3Ca2. Strain Leapi01 contained genes coding for seven Cry proteins (cry1Aa, cry1Ca, cry1Da, cry2Ab, cry9Ea and two cry1Ia gene variants) and a vip3 gene (vip3Aa10). A putative novel insecticidal protein gene 1143 bp long was found in both strains, whose sequences exhibited 100% nucleotide identity. The predicted protein showed 57 and 100% pairwise identity to protein sequence 72 from a patented Bt strain (US8318900) and to a putative 41.9-kDa insecticidal toxin from Bacillus cereus, respectively. The 41.9-kDa protein, containing a C-terminal 6× HisTag fusion, was expressed in Escherichia coli and tested for the first time against four lepidopteran species (Mamestra brassicae, Ostrinia nubilalis, Spodoptera frugiperda and S. littoralis) and the green-peach aphid Myzus persicae at doses as high as 4.8 µg/cm2 and 1.5 mg/mL, respectively. At these protein concentrations, the recombinant 41.9-kDa protein caused no mortality or symptoms of impaired growth against any of the insects tested, suggesting that these species are outside the protein's target range or that the protein may not, in fact, be toxic. While the use of the polymerase chain reaction has allowed a significant increase in the number of Bt insecticidal genes characterized to date, novel NGS technologies promise a much faster, cheaper and efficient screening of Bt pesticidal proteins.

  5. Extraction of antibiotic zwittermicin A from Bacillus thuringiensis by macroporous resin and silica gel column chromatography.

    Science.gov (United States)

    Hao, Zaibin; Yan, Li; Liu, Jianguo; Song, Fuping; Zhang, Jie; Li, Xia

    2015-01-01

    To establish a production process capable of providing refined zwittermicin A (ZwA) on a large scale, the macroporous resin and silica gel column chromatography were used to separate and purify the antibiotic ZwA from the fermentation broth of Bacillus thuringiensis HD-1. The result of high-performance liquid chromatography-mass spectrometry after purification suggests that the samples of ZwA were of high purity, 89%, and the average yield was 20 mg L(-1). Erwinia herbicola LS005, Escherichia coli, Staphylococcus aureus, and Bacillus subtilis were used to assess the toxicity of ZwA. The antibiotic had strong antibacterial activity against E. herbicola LS005 and a color reaction with ninhydrin. PMID:25099664

  6. Development and Adoption of Bt Cotton in India : Economic, Environmental and Health Issues

    OpenAIRE

    -, Dr S Saravanan; -, Dr V Mohanasundaram

    2016-01-01

    Bt Cotton, is genetically engineered with Bt (Bacillus thuringiensis), a bio-toxin which comes from soil bacterium. Bt which was isolated from soil in 1911, has been available to farmers as an organic pesticide since 1930..The engineered Bt gene produces a protein that cuts into the guts of specific insects, rendering the cotton resistant to these insects. Biotechnology for control of bollworms is made available in the seed itself. Farmers have to just sow the Bt cotton seeds as they do with...

  7. Identification and Distribution of Bacillus thuringiensis Isolates from Primeval Forests in Yunnan and Hainan Provinces and Northeast Region of China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ninety-two Bacillus thuringiensis isolates were screened from 683 soil samples collected from tropical and semitropical primeval forests in Yunnan and Hainan provinces of China. Several shapes of crystals, including bipyramidal, square,ovoid, spherical, and amorphous, were observed in the B. thuringiensis isolates. Twenty-six pairs of primers were used to identify 31 holotype cry genes at primary rank of the B. thuringiensis cry gene nomenclature system. The cry gene-types of 92 B. thuringiensis isolates and 33 B. thuringiensis isolates screened from Northeast region of China were identified by PCR-RFLP and SDS-PAGE methods. Fifty-eight isolates harbored cryl genes, 32 isolates cry2 genes, 12 isolates cry8 genes, 3 isolates cry9 genes, 12 isolates cry11 genes, and 13 isolates cry30 genes. Of the tested isolates, 42 produced no reaction product with 26 pairs of primers and also exhibited no toxicity against 8 insect species tested. The isolate Z2-34 harbored a novel cry30 gene, exhibited insecticidal activity against Aedes albopictus of Dipterans. The accession number of the novel genes in this study is AY916046. Isolation and identification of B. thuringiensis and cry gene are important for investigating the diversity of B. thuringiensis resources and cloning new cry gene.

  8. Cry Proteins from Bacillus thuringiensis Active against Diamondback Moth and Fall Armyworm.

    Science.gov (United States)

    Silva, M C; Siqueira, H A A; Silva, L M; Marques, E J; Barros, R

    2015-08-01

    Biopesticides based on Bacillus thuringiensis and genetically modified plants with genes from this bacterium have been used to control Plutella xylostella (L.) and Spodoptera frugiperda (J.E. Smith). However, the selection pressure imposed by these technologies may undermine the efficiency of this important alternative to synthetic insecticides. Toxins with different modes of action allow a satisfactory control of these insects. The purpose of this study was to characterize the protein and gene contents of 20 B. thuringiensis isolates from soil and insect samples collected in several areas of Northeast Brazil which are active against P. xylostella and S. frugiperda. Protein profiles were obtained by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Polymerase chain reaction assays were used to determine toxin genes present within bacterial isolates. The protein profile of the majority of the isolates produced bands of approximately 130 kDa, suggesting the presence of Cry1, Cry8 and Cry9 proteins. The gene content of the isolates of B. thuringiensis investigated showed different gene profiles. Isolates LIIT-4306 and LIIT-4311 were the most actives against both species, with LC50 of 0.03 and 0.02 × 10(8) spores mL(-1), respectively, for P. xylostella, and LC50 of 0.001 × 10(8) spores mL(-1) for S. frugiperda. These isolates carried the cry1, cry1Aa, cry1Ab, cry1Ac, cry1B, cry1C, cry1D, cry1F, cry2, cry2A, cry8, and cry9C genes. The obtained gene profiles showed great potential for the control of P. xylostella and S. frugiperda, primarily because of the presence of several cry1A genes, which are found in isolates of B. thuringiensis active against these insects. PMID:26070631

  9. 苏云金芽胞杆菌晶体毒素的多样性%Diversity of Bacillus thuringiensis crystal toxins

    Institute of Scientific and Technical Information of China (English)

    赵新民; 刘淑云; 周攀登; 徐玲; 夏莉; 夏立秋; 成飞雪

    2013-01-01

    苏云金芽胞杆菌是生物防治中应用最为广泛的一种杀虫剂,它对多种昆虫和其他一些无脊椎动物具有特异的毒杀活性.苏云金芽胞杆菌的杀虫活性主要来自于菌体在形成芽胞期间生成的伴胞晶体毒素,这些晶体毒素在结构和生物学功能方面表现高度的多样性.本文介绍了苏云金芽胞杆菌晶体毒素的分类、命名方法,深入讨论了晶体毒素的氨基酸序列、三维结构、靶标生物和杀虫机理的多样性.评价了各种分类方法的特点,并展望了晶体毒素作用机制研究和未来晶体毒素新基因的发掘.%Bacillus thuringiensis (Bt) is the most widely used biopesticide in pest control. Bt has the specific toxici-ty against many kinds of insects and some other invertebrate pests. The toxicity is largely attributed to its paraspo-ral crystals that produced during the stationary phase. The crystal toxins were shown to be different in their structure and biofunction. The classification and nomenclature of the crystal toxins were introduced, and the diversity of amino acid sequences, 3D structures, target pests and action mechanism of Bt crystal toxins were discussed in detail. The distinguishing features of various classifications were reviewed, and the study on the mode of action of crystal toxin and the finding of more Bt crystal toxin genes were prospected.

  10. Requirement of Simultaneous Assessment of Crystal- and Supernatant-Related Entomotoxic Activities of Bacillus thuringiensis Strains for Biocontrol-Product Development

    Directory of Open Access Journals (Sweden)

    Ronaldo Costa Argôlo-Filho

    2014-05-01

    Full Text Available Bioinsecticides with lower concentrations of endospores/crystals and without loss of efficiency are economically advantageous for pest biocontrol. In addition to Cry proteins, other Bacillus thuringiensis (Bt toxins in culture supernatants (SN have biocontrol potential (e.g., Vip3A, Cry1I, Sip1, whereas others are unwanted (β-exotoxins, as they display widespread toxicity across taxa. A strain simultaneously providing distinct toxin activities in crystals and SN would be desirable for bioinsecticides development; however, strains secreting β-exotoxins should be discarded, independently of other useful entomotoxins. Entomotoxicity of crystals and SN from a Brazilian Bt tolworthi strain (Btt01 was tested against Spodoptera frugiperda to assess the potential for biocontrol-product development based on more than one type of toxin/activity. Tests showed that 107 endospores mL−1 caused >80% of larvae mortality, suggesting Btt01 may be used in similar concentrations as those of other Bt-based biopesticides. When it was applied to cornfields, a significant 60% reduction of larvae infestation was observed. However, bioassays with Btt01 SN revealed a thermostable toxic activity. Physicochemical characterization strongly suggests the presence of unwanted β-exotoxins, with isolate-specific temporal variation in its secretion. Knowledge of the temporal pattern of secretion/activity in culture for all forms of toxins produced by a single strain is required to both detect useful activities and avoid the potential lack of identification of undesirable toxins. These findings are discussed in the contexts of commercial Bt product development, advantages of multiple-activity strains, and care and handling recommended for large-scale fermentation systems.

  11. Cloning and characterization of an insecticidal crystal protein gene from Bacillus thuringiensis subspecies kenyae

    Indian Academy of Sciences (India)

    Hari S. Misra; Nivedita P. Khairnar; Manjula Mathur; N. Vijayalakshmi; Remesh S. Hire; T. K. Dongre; S. K. Mahajan

    2002-04-01

    A sporulating culture of Bacillus thuringiensis subsp. kenyae strain HD549 is toxic to larvae of lepidopteran insect species such as Spodoptera litura, Helicoverpa armigera and Phthorimaea operculella, and a dipteran insect, Culex fatigans. A 1.9-kb DNA fragment, PCR-amplified from HD549 using cryII-gene-specific primers, was cloned and expressed in E. coli. The recombinant protein produced 92% mortality in first-instar larvae of Spodoptera litura and 86% inhibition of adult emergence in Phthorimaea operculella, but showed very low toxicity against Helicoverpa armigera, and lower mortality against third-instar larvae of dipteran insects Culex fatigans, Anopheles stephensi and Aedes aegypti. The sequence of the cloned crystal protein gene showed almost complete homology with a mosquitocidal toxin gene from Bacillus thuringiensis var. kurstaki, with only five mutations scattered in different regions. Amino acid alignment with different insecticidal crystal proteins using the MUTALIN program suggested presence of the conserved block 3 region in the sequence of this protein. A mutation in codon 409 of this gene that changes a highly conserved phenylalanine residue to serine lies in this block.

  12. Cloning and characterization of an insecticidal crystal protein gene from Bacillus thuringiensis subspecies kenyae.

    Science.gov (United States)

    Misra, Hari S; Khairnar, Nivedita P; Mathur, Manjula; Vijayalakshmi, N; Hire, Ramesh S; Dongre, T K; Mahajan, S K

    2002-04-01

    A sporulating culture of Bacillus thuringiensis subsp. kenyae strain HD549 is toxic to larvae of lepidopteran insect species such as Spodoptera litura, Helicoverpa armigera and Phthorimaea operculella, and a dipteran insect, Culex fatigans. A 1.9-kb DNA fragment, PCR-amplified from HD549 using cryII-gene-specific primers, was cloned and expressed in E. coli. The recombinant protein produced 92% mortality in first-instar larvae of Spodoptera litura and 86% inhibition of adult emergence in Phthorimaea operculella, but showed very low toxicity against Helicoverpa armigera, and lower mortality against third-instar larvae of dipteran insects Culex fatigans, Anopheles stephensi and Aedes aegypti. The sequence of the cloned crystal protein gene showed almost complete homology with a mosquitocidal toxin gene from Bacillus thuringiensis var. kurstaki, with only five mutations scattered in different regions. Amino acid alignment with different insecticidal crystal proteins using the MUTALIN program suggested presence of the conserved block 3 region in the sequence of this protein. A mutation in codon 409 of this gene that changes a highly conserved phenylalanine residue to serine lies in this block. PMID:12357073

  13. Characterization of a Chitin-Binding Protein from Bacillus thuringiensis HD-1.

    Directory of Open Access Journals (Sweden)

    Naresh Arora

    Full Text Available Strains of Bacillus thuringiensis produce insecticidal proteins. These strains have been isolated from diverse ecological niches, such as soil, phylloplane, insect cadavers and grain dust. To effectively propagate, these strains produce a range of molecules that facilitate its multiplication in a competing environment. In this report, we have examined synthesis of a chitin-binding protein and evaluated its effect on fungi encountered in environment and its interaction with insecticidal proteins synthesized by B. thuringiensis. The gene encoding chitin-binding protein has been cloned and expressed. The purified protein has been demonstrated to interact with Cry insecticidal protein, Cry1Ac by Circular Dichrosim spectroscopy (CD and in vitro pull down assays. The chitin-binding protein potentiates insecticidal activity of bacillar insecticidal protein, Cry1Ac. Further, chitin-binding protein was fungistatic against several soil fungi. The chitin binding protein is expressed in spore mother cell and deposited along with insecticidal protein, Cry1Ac. It interacts with Cry1Ac to potentiate its insecticidal activity and facilitate propagation of Bacillus strain in environment by inhibiting growth of certain fungi.

  14. Optimization of process parameters for enhanced biodegradation of acid red 119 by Bacillus thuringiensis SRDD

    Directory of Open Access Journals (Sweden)

    Riddhi H. Dave

    2012-02-01

    Full Text Available Developed Bacillus thuringiensis SRDD showed degradation of C.I. Acid red 119 and growth under the extremecondition of temperature 70°C, pH 3-8, heavy metals concentration of 0.8 mM, NaCl up to 900 mM and 1000 ppm dye. Cottonseed, caster cake and corn cake powders were found to be better and cheaper nutrient supplements for the Bacillus thuringiensisSRDD for biodegradation as compared to molasses. After development of the culture and the process, more than99% degradation was achieved in less than 2 hrs of contact time even on 18th cycles of addition of 100 ppm AR-119 dye. Thedeveloped process showed AR-119 biodegradation rate as high as 220 mg L-1 h-1, which is found to be 130 times more ascompared to the reported data. U.V., FTIR, TLC and HPLC analysis data confirmed biodegradation ability of the Bacillusthuringiensis for AR-119.

  15. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins.

    Science.gov (United States)

    Crickmore, N; Zeigler, D R; Feitelson, J; Schnepf, E; Van Rie, J; Lereclus, D; Baum, J; Dean, D H

    1998-09-01

    The crystal proteins of Bacillus thuringiensis have been extensively studied because of their pesticidal properties and their high natural levels of production. The increasingly rapid characterization of new crystal protein genes, triggered by an effort to discover proteins with new pesticidal properties, has resulted in a variety of sequences and activities that no longer fit the original nomenclature system proposed in 1989. Bacillus thuringiensis pesticidal crystal protein (Cry and Cyt) nomenclature was initially based on insecticidal activity for the primary ranking criterion. Many exceptions to this systematic arrangement have become apparent, however, making the nomenclature system inconsistent. Additionally, the original nomenclature, with four activity-based primary ranks for 13 genes, did not anticipate the current 73 holotype sequences that form many more than the original four subgroups. A new nomenclature, based on hierarchical clustering using amino acid sequence identity, is proposed. Roman numerals have been exchanged for Arabic numerals in the primary rank (e.g., Cry1Aa) to better accommodate the large number of expected new sequences. In this proposal, 133 crystal proteins comprising 24 primary ranks are systematically arranged. PMID:9729610

  16. Analysis of Bacillus without Protein Crystals during Isolation of Bacillus thuringiensis%苏云金芽胞杆菌分离过程中无晶体芽胞杆菌的分析

    Institute of Scientific and Technical Information of China (English)

    周建桥; 束长龙; 邵高祥; 李海涛; 宋福平; 张杰

    2011-01-01

    本研究选择了在苏云金芽胞杆菌Bacillus thuringiensis(Bt)分离过程中发现的与Bt芽胞相似、没有伴胞晶体的8株芽胞杆菌,对其种属、质粒等生物学特性和杀虫活性进行了初步研究.对分离菌株所产芽胞进行形态观察及质粒图谱分析,发现其与Bt相似;但肽指纹图谱分析和16S rDNA聚类研究表明所分离菌株与蜡样芽胞杆菌B.cereus(Bc)匹配最高;杀虫活性测定表明这8株菌对猿叶甲Colaphellus bowringi幼虫均无毒杀作用,而15-3、W23-1和W25-3 3个菌株及其培养上清液对小菜蛾Plutella xylostella幼虫有一定的杀虫活性,说明它们能产生活性物质.这些结果说明在Bt菌株的分离过程中要对无晶体菌株加以重视,其含有的活性物质具有潜在的研究和利用价值.%Three aspects including species, biological characteristic and insecticidal activity of eight strains of Bacillus spp. with spores similar to B. thuringiensis and without protein crystals were analyzed. Both spores morphology and plasmid pattern of these Bacillus spp. showed similarity with those of B. thuringiensis, however, assay of Peptide Mass Fingerprinting and species identification by 16S rDNA indicated they shared the highest homology with B. cereus. Bioassay results of the eight strains against larvae of Colaphellus bowringi and Plutella xylostella showed that all the strains were not toxic to C. bowringi, while both bacterial cell and supematant of strains 15-3, W23-1 and W25-3 were insecticidal to P. xylostella. These bioassay results suggested insecticidal substance was produced in these strains. The results indicated that the strains without protein crystals should not be neglected and abandoned during isolation of B.thuringiensis. Insecticidal substances produced by these strains are potential to be exploited.

  17. Genetic Variation for Resistance to Bacillus thuringiensis Toxins in Helicoverpa zea (Lepidoptera: Noctuidae) in Eastern North Carolina

    Science.gov (United States)

    In order to evaluate resistance to Bacillus thuringiensis Berliner toxins, female bollworm moths, Helicoverpa zea (Boddie), were collected from four light trap locations in two eastern North Carolina counties from August-October during 2001 and 2002. Moths were allowed to oviposit, and upon hatch, ...

  18. A hybrid Bacillus thuringiensis delta-endotoxin gene gives resistance against a coleopteran and a lepidopteran pest in transgenic potato

    NARCIS (Netherlands)

    Naimov, S.; Dukiandjiev, S.; Maagd, de R.A.

    2003-01-01

    Expression of Bacillus thuringiensis delta-endotoxins has proven to be a successful strategy for obtaining insect resistance in transgenic plants. Drawbacks of expression of a single resistance gene are the limited target spectrum and the potential for rapid adaptation of the pest. Hybrid toxins wit

  19. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes

    NARCIS (Netherlands)

    Herrero, S.; Gechev, T.; Bakker, P.L.; Moar, W.; Maagd, de R.A.

    2005-01-01

    BACKGROUND: Insecticidal toxins from Bacillus thuringiensis bind to receptors on midgut epithelial cells of susceptible insect larvae. Aminopeptidases N (APNs) from several insect species have been shown to be putative receptors for these toxins. Here we report the cloning and expression analysis of

  20. 40 CFR 174.504 - Bacillus thuringiensis Cry1F protein in cotton; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1F protein in cotton; exemption from the requirement of a tolerance. 174.504 Section 174.504 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances...

  1. 40 CFR 174.517 - Bacillus thuringiensis Cry9C protein in corn; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry9C protein in corn; exemption from the requirement of a tolerance. 174.517 Section 174.517 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances...

  2. 40 CFR 174.502 - Bacillus thuringiensis Cry1A.105 protein; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1A.105 protein; exemption from the requirement of a tolerance. 174.502 Section 174.502 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances...

  3. 40 CFR 174.520 - Bacillus thuringiensis Cry1F protein in corn; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1F protein in corn; exemption from the requirement of a tolerance. 174.520 Section 174.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances...

  4. Expression of Bacillus thuringiensis Cytolytic Toxin (Cyt2Ca1) in citrus roots to control Diaprepes abbreviatus larvae

    Science.gov (United States)

    Diaprepes abbreviatus (L.) is an important pest of citrus in the USA. Currently, no effective management strategies of Diaprepes abbreviatus exist in citriculture. To protect citrus against Diaprepes abbreviatus a transgenic citrus rootstock expressing Bacillus thuringiensis Cyt2Ca1, an insect toxin...

  5. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. 174.529 Section 174.529 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES...

  6. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. 180.1108 Section 180.1108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES...

  7. 40 CFR 174.530 - Bacillus thuringiensis Cry2Ae protein in cotton; temporary exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry2Ae protein in cotton; temporary exemption from the requirement of a tolerance. 174.530 Section 174.530 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED...

  8. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. 174.509 Section 174.509 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and...

  9. The Cultivation of Bt Corn Producing Cry1Ac Toxins Does Not Adversely Affect Non-Target Arthropods

    OpenAIRE

    Yanyan Guo; Yanjie Feng; Yang Ge; Guillaume Tetreau; Xiaowen Chen; Xuehui Dong; Wangpeng Shi

    2014-01-01

    Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt) provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée), and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs) is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure o...

  10. Distribuição de genes cry de Bacillus thuringiensis isolados de solos do Estado do Rio Grande do Sul, Brasil Distribution of cry genes of Bacillus thuringiensis isolated from soils of the State of Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Laura Massochin Nunes Pinto

    2003-08-01

    Full Text Available A bactéria Bacillus thuringiensis (Bt caracteriza-se pela produção de proteínas tóxicas a representantes de diversas ordens de insetos, as quais são codificadas por genes cry. Devido a esta característica, mais de 40.000 cepas de Bt foram isoladas e cerca de 190 genes cry, caracterizados. Como os dados sobre Bt são limitados no Rio Grande do Sul, essa pesquisa objetivou avaliar a distribuição de seis famílias de genes cry de Bt, desse estado, que codificam proteínas ativas contra insetos-praga. O perfil dos 46 isolados de solos do Rio Grande do Sul foi avaliado, por PCR com os primers que detectam os genes cry1, cry2, cry3, cry7 cry8 e cry9 e suas respectivas proteínas foram analisadas por SDS-PAGE a 10%. A presença de genes cry9 foi detectada em 47,82% dos isolados, seguido de cry3 (15,21%, cry1 e cry7 (ambos com 6,52% e cry2 (2,17%. Oito perfis genéticos foram identificados, sendo o perfil cry9 (39,13% o mais freqüente. A análise protéica de Bt identificou 14 famílias de proteínas Cry possivelmente codificadas por genes presentes nos isolados, além de proteínas desconhecidas que podem caracterizar novos genes cry. Esses isolados revelam a presença de genes que codificam proteínas específicas contra lepidópteros e coleópteros, as quais poderão ser avaliadas quanto à toxicidade in vivo contra insetos-praga das plantas cultivadas.The Bacillus thuringiensis (Bt bacterium is characterized by the production of toxic protein to representatives of several insect orders, which are coded by cry genes. Due to this characteristic, more than 40.000 Bt strains were isolated and around 190 cry genes characterized. As the data on Bt are limited in Rio Grande do Sul, this research aimed the evaluation of the distribution of six Bt families of cry genes, in this state, that codify active proteins against insect-pest. The 46 isolates profiles of soil samples from Rio Grande do Sul were evaluated, by PCR with primers that detect cry1

  11. [Interspecific protoplast fusion between Bacillus thuringensis Bt-3701 and Bacillus megaterium Bm-107].

    Science.gov (United States)

    Mu, G; Dong, Y; Huang, G

    1995-10-01

    The results of the interspecific protoplast fusion between B. thuringensis sub. kurstaki Bt-3701 which has pesticide ability, and B. megaterium var. phosphaticum Bm-107 which has decomposing phosphate activity, were reported. High frequency of protoplast formation and regeneration was obtained with 4h activated Bm-107 treated by 100 micrograms/ml lysozyme, and with 2h activated Bt-3701 treated by 3% glycin and mild temperature. Using 40% PEG and 5% nascent Ca2+ to treat the parential protoplast mixture for 3 min at 37 degrees C, 4 stable fusants were obtained. Biological tests show that they have both pesticide ability and decomposing phosphate activity, but which are weaker than that of parential strains. PMID:8701582

  12. Hematotoxicity and genotoxicity evaluations in Swiss mice intraperitoneally exposed to Bacillus thuringiensis (var kurstaki) spore crystals genetically modified to express individually Cry1Aa, Cry1Ab, Cry1Ac, or Cry2Aa.

    Science.gov (United States)

    Mezzomo, Bélin Poletto; Miranda-Vilela, Ana Luisa; Barbosa, Lilian Carla Pereira; Albernaz, Vanessa Lima; Grisolia, Cesar Koppe

    2016-08-01

    Bacillus thuringiensis (Bt) has been widely used in foliar sprays as part of integrated pest management strategies against insect pests of agricultural crops. Since the advent of genetically modified plants expressing Bt δ-endotoxins, the bioavailability of Cry proteins has increased, and therefore for biosafety reasons their adverse effects should be studied, mainly for nontarget organisms. We evaluated, in Swiss mice, the hematotoxicity and genotoxicity of the genetically modified strains of Bt spore crystals Cry1Aa, 1Ab, 1Ac, or 2Aa at 27 mg/kg, and Cry1Aa, 1Ab and 2Aa also at 136 and 270 mg/kg, administered with a single intraperitoneal injection 24 h before euthanasia. Controls received filtered water or cyclophosphamide. Blood samples collected by cardiac puncture were used to perform hemogram, and bone marrow was extracted for the micronucleus test. Bt spore crystals presented toxicity for lymphocytes when in higher doses, which varied according to the type of spore crystal studied, besides promoting cytotoxic and genotoxic effects for the erythroid lineage of bone marrow, mainly at highest doses. Although the profile of such adverse side effects can be related to their high level of exposure, which is not commonly found in the environment, results indicated that these Bt spore crystals were not harmless to mice. This suggests that a more specific approach should be taken to increase knowledge about their toxicological properties and to establish the toxicological risks to nontarget organisms. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 970-978, 2016.

  13. Sox transcription in sarcosine utilization is controlled by Sigma(54) and SoxR in Bacillus thuringiensis HD73.

    Science.gov (United States)

    Peng, Qi; Liu, Chunxia; Wang, Bo; Yang, Min; Wu, Jianbo; Zhang, Jie; Song, Fuping

    2016-01-01

    Sarcosine oxidase catalyzes the oxidative demethylation of sarcosine to yield glycine, formaldehyde, and hydrogen peroxide. In this study, we analyzed the transcription and regulation of the sox locus, including the sarcosine oxidase-encoding genes in Bacillus thuringiensis (Bt). RT-PCR analysis revealed that the sox locus forms two opposing transcriptional units: soxB (soxB/E/F/G/H/I) and soxR (soxR/C/D/A). The typical -12/-24 consensus sequence was located 15 bp and 12 bp from the transcriptional start site (TSS) of soxB and soxC, respectively. Promoter-lacZ fusion assays showed that the soxB promoter is controlled by the Sigma(54) factor and is activated by the Sigma(54)-dependent transcriptional regulator SoxR. SoxR also inhibits its own expression. Expression from the PsoxCR promoter, which is responsible for the transcription of soxC, soxD, and soxA, is Sigma(54)-dependent and requires SoxR. An 11-bp inverted repeat sequence was identified as SoxR binding site upstream of the soxB TSS. Purified SoxR specifically bound a DNA fragment containing this region. Mutation or deletion of this sequence abolished the transcriptional activities of soxB and soxC. Thus, SoxR binds to the same sequence to activate the transcription of soxB and soxC. Sarcosine utilization was abolished in soxB and soxR mutants, suggesting that the sox locus is essential for sarcosine utilization. PMID:27404799

  14. Sox transcription in sarcosine utilization is controlled by Sigma54 and SoxR in Bacillus thuringiensis HD73

    Science.gov (United States)

    Peng, Qi; Liu, Chunxia; Wang, Bo; Yang, Min; Wu, Jianbo; Zhang, Jie; Song, Fuping

    2016-01-01

    Sarcosine oxidase catalyzes the oxidative demethylation of sarcosine to yield glycine, formaldehyde, and hydrogen peroxide. In this study, we analyzed the transcription and regulation of the sox locus, including the sarcosine oxidase-encoding genes in Bacillus thuringiensis (Bt). RT-PCR analysis revealed that the sox locus forms two opposing transcriptional units: soxB (soxB/E/F/G/H/I) and soxR (soxR/C/D/A). The typical −12/−24 consensus sequence was located 15 bp and 12 bp from the transcriptional start site (TSS) of soxB and soxC, respectively. Promoter-lacZ fusion assays showed that the soxB promoter is controlled by the Sigma54 factor and is activated by the Sigma54-dependent transcriptional regulator SoxR. SoxR also inhibits its own expression. Expression from the PsoxCR promoter, which is responsible for the transcription of soxC, soxD, and soxA, is Sigma54-dependent and requires SoxR. An 11-bp inverted repeat sequence was identified as SoxR binding site upstream of the soxB TSS. Purified SoxR specifically bound a DNA fragment containing this region. Mutation or deletion of this sequence abolished the transcriptional activities of soxB and soxC. Thus, SoxR binds to the same sequence to activate the transcription of soxB and soxC. Sarcosine utilization was abolished in soxB and soxR mutants, suggesting that the sox locus is essential for sarcosine utilization. PMID:27404799

  15. Sox transcription in sarcosine utilization is controlled by Sigma(54) and SoxR in Bacillus thuringiensis HD73.

    Science.gov (United States)

    Peng, Qi; Liu, Chunxia; Wang, Bo; Yang, Min; Wu, Jianbo; Zhang, Jie; Song, Fuping

    2016-07-12

    Sarcosine oxidase catalyzes the oxidative demethylation of sarcosine to yield glycine, formaldehyde, and hydrogen peroxide. In this study, we analyzed the transcription and regulation of the sox locus, including the sarcosine oxidase-encoding genes in Bacillus thuringiensis (Bt). RT-PCR analysis revealed that the sox locus forms two opposing transcriptional units: soxB (soxB/E/F/G/H/I) and soxR (soxR/C/D/A). The typical -12/-24 consensus sequence was located 15 bp and 12 bp from the transcriptional start site (TSS) of soxB and soxC, respectively. Promoter-lacZ fusion assays showed that the soxB promoter is controlled by the Sigma(54) factor and is activated by the Sigma(54)-dependent transcriptional regulator SoxR. SoxR also inhibits its own expression. Expression from the PsoxCR promoter, which is responsible for the transcription of soxC, soxD, and soxA, is Sigma(54)-dependent and requires SoxR. An 11-bp inverted repeat sequence was identified as SoxR binding site upstream of the soxB TSS. Purified SoxR specifically bound a DNA fragment containing this region. Mutation or deletion of this sequence abolished the transcriptional activities of soxB and soxC. Thus, SoxR binds to the same sequence to activate the transcription of soxB and soxC. Sarcosine utilization was abolished in soxB and soxR mutants, suggesting that the sox locus is essential for sarcosine utilization.

  16. Spore prevalence and toxigenicity of Bacillus cereus and Bacillus thuringiensis isolates from U.S. retail spices.

    Science.gov (United States)

    Hariram, Upasana; Labbé, Ronald

    2015-03-01

    Recent incidents of foodborne illness associated with spices as the vehicle of transmission prompted this examination of U.S. retail spices with regard to Bacillus cereus. This study focused on the levels of aerobic-mesophilic spore-forming bacteria and B cereus spores associated with 247 retail spices purchased from five states in the United States. Samples contained a wide range of aerobic-mesophilic bacterial spore counts (spices had high levels of aerobic spores (> 10(7) CFU/g). Using a novel chromogenic agar, B. cereus and B. thuringiensis spores were isolated from 77 (31%) and 11 (4%) samples, respectively. Levels of B. cereus were spice isolates to form spores, produce diarrheal toxins, and grow at moderately abusive temperatures makes retail spices an important potential vehicle for foodborne illness caused by B. cereus strains, in particular those that produce diarrheal toxins.

  17. Laboratory and field tests of spray-dried and granular formulations of a Bacillus thuringiensis strain with insecticidal activity against the sugarcane borer.

    Science.gov (United States)

    Rosas-García, Ninfa M

    2006-09-01

    Formulations of Bacillus thuringiensis Berliner (Bt) with insecticidal activity against the sugarcane borer, Diatraea saccharalis Fabricius (Lepidoptera: Pyralidae), were developed and tested under laboratory and field conditions. The formulations were prepared using biodegradable polymers such as modified corn starch as an encapsulating agent, gelatin as an adherent, powdered sugarcane as a feeding stimulant and a Bt var. kurstaki GM-34 strain from a non-sugarcane region as the active ingredient. The spore-crystal complex of this strain was mixed at three different concentrations (30, 70 and 100 g kg(-1)) with the other ingredients. The blends were prepared as spray-dried and granular formulations, and then submitted to laboratory tests with two day old larvae of D. saccharalis and field tests in sugarcane crops with natural sugarcane borer infestation. Spray-dried formulations in laboratory bioassays caused mortality near 100% with all three concentrations, and granular formulations caused mortality around 84%. The field tests showed that spray-dried formulations at 70 and 100 g kg(-1) concentrations were as effective as a commercial bioinsectide (Lepinox), while granular formulations were ineffective. PMID:16786544

  18. Case history of population change in a `bacillus thuringiensis`-treated versus an untreated outbreak of the western spruce budworm. Forest Service research note

    Energy Technology Data Exchange (ETDEWEB)

    Mason, R.R.; Paul, H.G.

    1996-09-01

    Larval densities of the western spruce budworm (Choristoneura occidentalis Freeman) were monitored for 12 years (1984-95) on permanent sample plots in northeastern Oregon. The time series spanned a period of general budworm infestations when populations increased rapidly from low densities, plateaued for a time at high-outbreak densities, and then declind suddenly. Midway through the period (1988), an area with half of the sample plots was sprayed with the microbial insecticide Bacillus thuringiensis (B.t.) in an operational suppression project. The other sample plots were part of an untreated area. In the treated area, B.t. spray reduced numbers of larvae by more than 90 percent; however, populations returned to an outbreak density within 3 years. In the untreated area, populations remained at outbreak densities and continued to fluctuate due to natural feedback processes. Natural decline of the population (1992-95) in the monitored area was largely unexplained and coincided with an overall collapse of the budworm outbreak in the Blue Mountains.

  19. Actividad biológica de Bacillus thuringiensis sobre la polilla guatemalteca de la papa, Tecia solanivora Povolny (Lepidoptera: Gelechiidae

    Directory of Open Access Journals (Sweden)

    Adriana Carolina Rojas Arias

    2013-12-01

    Full Text Available La papa (Solanum tuberosum es uno de los cultivos más importantes de Colombia. Las larvas de la polilla guatemalteca de la papa, Tecia solanivora Povolny (Lepidoptera: Gelechiidae, causan daños directos a los tubérculos, produciendo pérdidas económicas e incremento en el uso de agroquímicos. Bacillus thuringiensis (Bt es una alternativa en el manejo de insectos plaga gracias a su especificidad. Su actividad depende de proteínas denominadas Cry, que cuando son ingeridas por un insecto susceptible forman poros en sus células intestinales que producen la muerte del insecto. Esta revisión presenta los estudios sobre el efecto de Bt hacia T. solanivora. Se ha encontrado que las toxinas Cry1Ac (base para variedades transgénicas y Cry1B tienen importante actividad tóxica. Igualmente se destaca la experiencia del diseño y evaluación de una toxina híbrida (Cry1B-Cry1I que resultó en una importante letalidad hacia T. solanivora.

  20. Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase.

    OpenAIRE

    Lereclus, D.; Agaisse, H; Gominet, M; Salamitou, S; Sanchis, V

    1996-01-01

    A transcriptional analysis of the phosphatidylinositol-specific phospholipase C (plcA) gene of Bacillus thuringiensis indicated that its transcription was activated at the onset of the stationary phase in B. thuringiensis but was not activated in B. subtilis. The B. thuringiensis gene encoding a transcriptional activator required for plcA expression was cloned by using a B. subtilis strain carrying a chromosomal plcA'-'lacZ fusion as a heterologous host for selection. This trans activator (de...

  1. Natural phytosanitary products effects on Bacillus Thuringiensis SUBSP. Kurstaki (BerlinerEfeito de produtos fitossanitários naturais sobre Bacillus Thuringiensis subesp. Kurstaki (Berliner

    Directory of Open Access Journals (Sweden)

    Everton Ricardi Lozano da Silva

    2012-12-01

    Full Text Available This work aimed to evaluate the effect of natural phytossanitary products (NPP on spores and crystal toxicity of Bacillus thuringiensis subsp. kurstaki – HD1 (Btk. For this commercial products (Agromos, Biogermex, Bovemax, Bordeaux mixture, Ecolife®, Dalneen, Matan Plus, Pyronin and Stüble-Aid® were used at three different concentrations. The effect of NPP on spores was assessed by comparing a suspension of Btk + NPP with sterile distilled water (SDW and another suspension with nutrient broth (NB, inoculated on nutrient agar (NA in Petri dishes to quantify the number of CFU/mL, 18 h after inoculation and incubation. The effect of NPP on crystals was evaluated with a suspension of Btk+SDW+NPP added to the artificial diet supplied for Anticarsia gemmatalis Hub. (Lepidoptera: Noctuidae quantifying the number of dead larvae at 12, 24, 48 and 72 h. Matan Plus was the only natural product that did not present effect on spores. All other products, regardless of concentration, decreased significantly CFU/mL Regarding crystals, Bordeaux mixture was the only one that reduced significantly Btk insecticidal activity at three concentrations. Este trabalho objetivou avaliar o efeito dos produtos fitossanitários naturais (PFN sobre esporos e sobre a toxicidade dos cristais de Bacillus thuringiensis subespécie kurstaki – HD1 (Btk. Para tal foram usados os produtos comerciais (Agromos, Biogermex, Bovemax, Calda Bordalesa, Ecolife®, Dalneen, Matan Plus, Pironin e Stüble –Aid® em três diferentes concentrações. O efeito dos PFN sobre esporos foi avaliado comparando-se suspensões de Btk + PFN com água destilada esterelizada (ADE e suspensões com caldo nutriente (CB, inoculadas em agar nutriente (AN, em placas de Petri quantificando-se o número de unidades formadoras de colônias (UFC / mL, 18 h após a inoculação e incubação. O efeito dos PFN sobre cristais foi avaliado com suspensões de Btk + ADE + PFN adicionados à dieta artificial

  2. Efeito fungistático de Bacillus thuringiensis e de outras bactérias sobre alguns fungos fitopatogênicos Fungistatic effect of Bacillus thuringiensis and of other bacteria on some plant pathogenic fungi

    OpenAIRE

    Carlos Brasil Batista Junior; Ulisses Brigatto Albino; Alexandre Martin Martines; Dennis Panayotes Saridakis; Leopoldo Sussumu Matsumoto; Marco Antonio Avanzi; Galdino Andrade

    2002-01-01

    Quatro isolados bacterianos da rizosfera de Drosera villosa var. villosa (B1, B2, B3, B4) e dois isolados de Bacillus thuringiensis (B5 e B6), sendo B6 produtor da toxina bioinseticida Cry1Ab, foram avaliados quanto à capacidade de inibir os fungos fitopatogênicos Fusarium solani f. sp. phaseoli, Fusarium solani f. sp. glycines, Fusarium oxysporum e Colletotrichum sp. A cepa mais efetiva foi B1 que inibiu o crescimento dos quatro fungos até o 26º dia. B. thuringiensis inibiu o crescimento de ...

  3. Influence of multi-year Bacillus thuringiensis subsp. israelensis on the abundance of B. cereus group populations in Swedish riparian wetland soils

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Schneider, Salome; Tajrin, Tania;

    Bacillus thuringiensis subsp. israelensis (Bti) is a soil-born bacterium affiliated to the B. cereus group (Bcg, a group including the pathogens B. cereus, B. thuringiensis, and B. anthracis) and used in biocontrol products against nematoceran larvae. However, knowledge is limited on how long...

  4. Monitoring Bacillus thuringiensis-Susceptibility in Insect Pests That Occur in Large Geographies: How to Get the Best Information When Two Countries are Involved

    Science.gov (United States)

    The adoption of Bacillus thuringiensis-expressing cotton around the world has been proven to be beneficial for growers and the environment. The effectiveness of this important genetically-modified crop can be jeopardized by the development of B. thuringiensis-resistance in pests, with the possibilit...

  5. Transcriptome profiling of the intoxication response of Tenebrio molitor larvae to Bacillus thuringiensis Cry3Aa protoxin.

    Directory of Open Access Journals (Sweden)

    Brenda Oppert

    Full Text Available Bacillus thuringiensis (Bt crystal (Cry proteins are effective against a select number of insect pests, but improvements are needed to increase efficacy and decrease time to mortality for coleopteran pests. To gain insight into the Bt intoxication process in Coleoptera, we performed RNA-Seq on cDNA generated from the guts of Tenebrio molitor larvae that consumed either a control diet or a diet containing Cry3Aa protoxin. Approximately 134,090 and 124,287 sequence reads from the control and Cry3Aa-treated groups were assembled into 1,318 and 1,140 contigs, respectively. Enrichment analyses indicated that functions associated with mitochondrial respiration, signalling, maintenance of cell structure, membrane integrity, protein recycling/synthesis, and glycosyl hydrolases were significantly increased in Cry3Aa-treated larvae, whereas functions associated with many metabolic processes were reduced, especially glycolysis, tricarboxylic acid cycle, and fatty acid synthesis. Microarray analysis was used to evaluate temporal changes in gene expression after 6, 12 or 24 h of Cry3Aa exposure. Overall, microarray analysis indicated that transcripts related to allergens, chitin-binding proteins, glycosyl hydrolases, and tubulins were induced, and those related to immunity and metabolism were repressed in Cry3Aa-intoxicated larvae. The 24 h microarray data validated most of the RNA-Seq data. Of the three intoxication intervals, larvae demonstrated more differential expression of transcripts after 12 h exposure to Cry3Aa. Gene expression examined by three different methods in control vs. Cry3Aa-treated larvae at the 24 h time point indicated that transcripts encoding proteins with chitin-binding domain 3 were the most differentially expressed in Cry3Aa-intoxicated larvae. Overall, the data suggest that T. molitor larvae mount a complex response to Cry3Aa during the initial 24 h of intoxication. Data from this study represent the largest genetic sequence

  6. Bases de la resistencia a preparados bioinsecticidas basados en "Bacillus thuringiensis" en diferentes especies de insectos

    OpenAIRE

    Ibiza Palacios, María de Sales

    2015-01-01

    El empleo de insecticidas en la agricultura moderna resulta fundamental para obtener unos niveles óptimos de productividad. Actualmente se tiende al empleo de bioinsecticidas dados los efectos perniciosos de la mayor parte de los insecticidas convencionales. Los preparados bioinsecticidas basados en las proteínas cristalinas insecticidas (toxinas Cry) de “Bacillus thuringiensis” (Bt) son los de mayor venta del mercado y las plantas transgénicas protegidas por estas proteínas, están siendo cul...

  7. Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis

    NARCIS (Netherlands)

    Rodrigo-Simón, A.; Maagd, de R.A.; Avilla, C.; Bakker, P.L.; Molthoff, J.W.; González-Zamora, J.; Ferré, J.

    2006-01-01

    The effect of Cry proteins of Bacillus thuringiensis on the green lacewing (Chrysoperla carnea) was studied by using a holistic approach which consisted of independent, complementary experimental strategies. Tritrophic experiments were performed, in which lacewing larvae were fed Helicoverpa armiger

  8. Produccion por tecnologia de fermentacion de bacillus thuringiensis utilizando medios alternativos

    Directory of Open Access Journals (Sweden)

    Yaneth Amparo Muñoz-Peñalosa

    2000-01-01

    Full Text Available In the production by fermentation technology Bacillus thuringiensis of five alternative methods they were studied. The results of cell growth, working-level 100ml in static culture and temperature of 28 ° C, mostraronque the optimal substrate corresponded to the environment in which molasses and rice powder was added (alternative Medium No. 1] The cell development using 100 ml of substrate was studied with reciprocating shaking 110 rpm. in this test was determined filter curve creciemiento medio.The inoculum, allowed tiempode set the process in 6 hours. For the development of fermentations, are counted with the experimental equipment, glass bioreactor in two liters of capacity and aeration devices, mechanical stirring, sampling and output gases.The fermentation in the production of Bacillus thuringiensis is the type discontinuous submerged aerobic process and growth into account .Teniendo bibliographic information and preliminary results of the study, fixed working parameters were determined for production by fermentation of Bacillus thuringiensis, being alternative means No. 1, volume 1 liter temperature 28 ° C and cell concentration of the inoculum. To determine the optimum parameters of fermantacion was used a factorial design of experiments of the type 22, (two variables at two levels, with aeration (3.2-0.5 VVM and agitation (110-210 rpm .The fermentations performed 7, 4 design and 3 the average level of the variables. For monitoring fermentation sample was taken every 12 hours and cell concentration (Chamber of Neuvauer and pH was analyzed. The results of cell concentration measurement for fermentations at 60 hours shows that optimum working conditions and limitations correspond to the values ​​of the variable, 3.2 VVM aeration and agitation 210 Variable rpm.Significant was the aeration of pH in the fermentation media change neutral to acid and ended as a staple. A fermentations I were efectuo controlde microbiological quality, Gram

  9. Experimental evolution in silico: a custom-designed mathematical model for virulence evolution of Bacillus thuringiensis.

    Science.gov (United States)

    Strauß, Jakob Friedrich; Crain, Philip; Schulenburg, Hinrich; Telschow, Arndt

    2016-08-01

    Most mathematical models on the evolution of virulence are based on epidemiological models that assume parasite transmission follows the mass action principle. In experimental evolution, however, mass action is often violated due to controlled infection protocols. This "theory-experiment mismatch" raises the question whether there is a need for new mathematical models to accommodate the particular characteristics of experimental evolution. Here, we explore the experimental evolution model system of Bacillus thuringiensis as a parasite and Caenorhabditis elegans as a host. Recent experimental studies with strict control of parasite transmission revealed that one-sided adaptation of B. thuringiensis with non-evolving hosts selects for intermediate or no virulence, sometimes coupled with parasite extinction. In contrast, host-parasite coevolution selects for high virulence and for hosts with strong resistance against B. thuringiensis. In order to explain the empirical results, we propose a new mathematical model that mimics the basic experimental set-up. The key assumptions are: (i) controlled parasite transmission (no mass action), (ii) discrete host generations, and (iii) context-dependent cost of toxin production. Our model analysis revealed the same basic trends as found in the experiments. Especially, we could show that resistant hosts select for highly virulent bacterial strains. Moreover, we found (i) that the evolved level of virulence is independent of the initial level of virulence, and (ii) that the average amount of bacteria ingested significantly affects the evolution of virulence with fewer bacteria ingested selecting for highly virulent strains. These predictions can be tested in future experiments. This study highlights the usefulness of custom-designed mathematical models in the analysis and interpretation of empirical results from experimental evolution.

  10. Isolation and characterization of a new Bacillus thuringiensis strain with a promising toxicity against Lepidopteran pests.

    Science.gov (United States)

    Boukedi, Hanen; Sellami, Sameh; Ktari, Sonia; Belguith-Ben Hassan, Najeh; Sellami-Boudawara, Tahya; Tounsi, Slim; Abdelkefi-Mesrati, Lobna

    2016-01-01

    Insecticides derived from Bacillus thuringiensis are gaining worldwide importance as environmentally desirable alternatives to chemicals for the control of pests in public health and agriculture. Isolation and characterization of new strains with higher and broader spectrum of activity is an ever growing field. In the present work, a novel Tunisian B. thuringiensis isolate named BLB459 was characterized and electrophoresis assay showed that among a collection of 200 B. thuringiensis strains, the plasmid profile of BLB459 was distinctive. SmaI-PFGE typing confirmed the uniqueness of the DNA pattern of this strain, compared with BUPM95 and HD1 reference strains. PCR and sequencing assays revealed that BLB459 harbored three cry genes (cry30, cry40 and cry54) corresponding to the obtained molecular sizes in the protein pattern. Interestingly, PCR-RFLP assay demonstrated the originality of the BLB459 cry30-type gene compared to the other published cry30 genes. Insecticidal bioassays showed that BLB459 spore-crystal suspension was highly toxic to both Ephestia kuehniella and Spodoptera littoralis with LC50 values of about 64 (53-75) and 80 (69-91) μg of toxin cm(-2), respectively, comparing with that of the commercial strain HD1 used as reference. Important histopathological effects of BLB459 δ-endotoxins on the two tested larvae midguts were detected, traduced by the vacuolization of the apical cells, the damage of microvilli, and the disruption of epithelial cells. These results proved that BLB459 strain could be of a great interest for lepidopteran biocontrol. PMID:27242138

  11. Synthetic cryIIIA gene from Bacillus thuringiensis improved for high expression in plants.

    Science.gov (United States)

    Sutton, D W; Havstad, P K; Kemp, J D

    1992-09-01

    A 1974 bp synthetic gene was constructed from chemically synthesized oligonucleotides in order to improve transgenic protein expression of the cryIIIA gene from Bacillus thuringiensis var. tenebrionis in transgenic tobacco. The crystal toxin genes (cry) from B. thuringiensis are difficult to express in plants even when under the control of efficient plant regulatory sequences. We identified and eliminated five classes of sequence found throughout the cryIIIA gene that mimic eukaryotic processing signals and which may be responsible for the low levels of transcription and translation. Furthermore, the GC content of the gene was raised from 36% to 49% and the codon usage was changed to be more plant-like. When the synthetic gene was placed behind the cauliflower mosaic virus 35S promoter and the alfalfa mosaic virus translational enhancer, up to 0.6% of the total protein in transgenic tobacco plants was cryIIIA as measured from immunoblot analysis. Bioassay data using potato beetle larvae confirmed this estimate. PMID:1301214

  12. Beta-glucosidase enzymatic activity of crystal polypeptide of the Bacillus thuringiensis strain 1.1.

    Science.gov (United States)

    Papalazaridou, A; Charitidou, L; Sivropoulou, A

    2003-01-01

    The crystals of Bacillus thuringiensis strain 1.1 consist of the 140 kDa delta-endotoxin, which exhibits beta-glucosidase enzymatic activity, based on the following data. (i) Purified crystals exhibit beta-glucosidase enzymatic activity. When the crystals are reacted with specific antibodies directed either against the commercial (almond purified) beta-glucosidase or against the 140 kDa polypeptide, then considerable reduction of enzymatic activity is observed almost at the same level with both antibodies. (ii) Commercial beta-glucosidase and the 140 kDa crystal polypeptide share antigenic similarities; in Western immunoblots, the 140 kDa crystal polypeptide is recognized by anti-beta-glucosidase antibodies, and commercial beta-glucosidase is recognized by anti-140-kDa antibodies. (iii) The enzymatic properties of commercial beta-glucosidase and that resident in the crystals of B. thuringiensis strain 1.1 are very similar. Thus, both enzymes hydrolyze a wide range of substrates (aryl-beta-glucosides, disaccharides with alpha- or beta-linkage polysaccharides) and have an optimum activity at 40 degrees C and pH 5. Both enzymes are relatively thermostable and are resistant to end-product inhibition by glucose. Additionally, they show the same pattern of inhibition or activation by several chemical compounds. (iv) The crystals and commercial beta-glucosidase show almost equivalent levels of insecticidal activity against Drosophila melanogaster larvae and, furthermore, cause reduction in adult flies that emerge from larvae surviving treatment.

  13. Intravital imaging of Bacillus thuringiensis Cry1A toxin binding sites in the midgut of silkworm.

    Science.gov (United States)

    Li, Na; Wang, Jing; Han, Heyou; Huang, Liang; Shao, Feng; Li, Xuepu

    2014-02-15

    Identification of the resistance mechanism of insects against Bacillus thuringiensis Cry1A toxin is becoming an increasingly challenging task. This fact highlights the need for establishing new methods to further explore the molecular interactions of Cry1A toxin with insects and the receptor-binding region of Cry1A toxins for their wider application as biopesticides and a gene source for gene-modified crops. In this contribution, a quantum dot-based near-infrared fluorescence imaging method has been applied for direct dynamic tracking of the specific binding of Cry1A toxins, CrylAa and CrylAc, to the midgut tissue of silkworm. The in vitro fluorescence imaging displayed the higher binding specificity of CrylAa-QD probes compared to CrylAc-QD to the brush border membrane vesicles of midgut from silkworm. The in vivo imaging demonstrated that more CrylAa-QDs binding to silkworm midgut could be effectively and distinctly monitored in living silkworms. Furthermore, frozen section analysis clearly indicated the broader receptor-binding region of Cry1Aa compared to that of Cry1Ac in the midgut part. These observations suggest that the insecticidal activity of Cry toxins may depend on the receptor-binding sites, and this scatheless and visual near-infrared fluorescence imaging could provide a new avenue to study the resistance mechanism to maintain the insecticidal activity of B. thuringiensis toxins. PMID:24252542

  14. Anthelmintic Effect of Bacillus thuringiensis Strains against the Gill Fish Trematode Centrocestus formosanus

    Science.gov (United States)

    Mendoza-Estrada, Luis Javier; Hernández-Velázquez, Víctor Manuel; Arenas-Sosa, Iván; Flores-Pérez, Fernando Iván; Morales-Montor, Jorge; Peña-Chora, Guadalupe

    2016-01-01

    Parasitic agents, such as helminths, are the most important biotic factors affecting aquaculture, and the fluke Centrocestus formosanus is considered to be highly pathogenic in various fish species. There have been efforts to control this parasite with chemical helminthicides, but these efforts have had unsuccessful results. We evaluated the anthelmintic effect of 37 strains of Bacillus thuringiensis against C. formosanus metacercariae in vitro using two concentrations of total protein, and only six strains produced high mortality. The virulence (CL50) on matacercariae of three strains was obtained: the GP308, GP526, and ME1 strains exhibited a LC50 of 146.2 μg/mL, 289.2 μg/mL, and 1721.9 μg/mL, respectively. Additionally, these six B. thuringiensis strains were evaluated against the cercariae of C. formosanus; the LC50 obtained from the GP526 strain with solubilized protein was 83.8 μg/mL, and it could be considered as an alternative control of the metacercariae and cercariae of this parasite in the productivity systems of ornamental fishes. PMID:27294137

  15. Anthelmintic Effect of Bacillus thuringiensis Strains against the Gill Fish Trematode Centrocestus formosanus

    Directory of Open Access Journals (Sweden)

    Luis Javier Mendoza-Estrada

    2016-01-01

    Full Text Available Parasitic agents, such as helminths, are the most important biotic factors affecting aquaculture, and the fluke Centrocestus formosanus is considered to be highly pathogenic in various fish species. There have been efforts to control this parasite with chemical helminthicides, but these efforts have had unsuccessful results. We evaluated the anthelmintic effect of 37 strains of Bacillus thuringiensis against C. formosanus metacercariae in vitro using two concentrations of total protein, and only six strains produced high mortality. The virulence (CL50 on matacercariae of three strains was obtained: the GP308, GP526, and ME1 strains exhibited a LC50 of 146.2 μg/mL, 289.2 μg/mL, and 1721.9 μg/mL, respectively. Additionally, these six B. thuringiensis strains were evaluated against the cercariae of C. formosanus; the LC50 obtained from the GP526 strain with solubilized protein was 83.8 μg/mL, and it could be considered as an alternative control of the metacercariae and cercariae of this parasite in the productivity systems of ornamental fishes.

  16. Anthelmintic Effect of Bacillus thuringiensis Strains against the Gill Fish Trematode Centrocestus formosanus.

    Science.gov (United States)

    Mendoza-Estrada, Luis Javier; Hernández-Velázquez, Víctor Manuel; Arenas-Sosa, Iván; Flores-Pérez, Fernando Iván; Morales-Montor, Jorge; Peña-Chora, Guadalupe

    2016-01-01

    Parasitic agents, such as helminths, are the most important biotic factors affecting aquaculture, and the fluke Centrocestus formosanus is considered to be highly pathogenic in various fish species. There have been efforts to control this parasite with chemical helminthicides, but these efforts have had unsuccessful results. We evaluated the anthelmintic effect of 37 strains of Bacillus thuringiensis against C. formosanus metacercariae in vitro using two concentrations of total protein, and only six strains produced high mortality. The virulence (CL50) on matacercariae of three strains was obtained: the GP308, GP526, and ME1 strains exhibited a LC50 of 146.2 μg/mL, 289.2 μg/mL, and 1721.9 μg/mL, respectively. Additionally, these six B. thuringiensis strains were evaluated against the cercariae of C. formosanus; the LC50 obtained from the GP526 strain with solubilized protein was 83.8 μg/mL, and it could be considered as an alternative control of the metacercariae and cercariae of this parasite in the productivity systems of ornamental fishes. PMID:27294137

  17. High instability of a nematicidal Cry toxin plasmid in Bacillus thuringiensis.

    Science.gov (United States)

    Sheppard, Anna E; Nakad, Rania; Saebelfeld, Manja; Masche, Anna C; Dierking, Katja; Schulenburg, Hinrich

    2016-01-01

    In bacterial pathogens, virulence factors are often carried on plasmids and other mobile genetic elements, and as such, plasmid evolution is central in understanding pathogenicity. Bacillus thuringiensis is an invertebrate pathogen that uses plasmid-encoded crystal (Cry) toxins to establish infections inside the host. Our study aimed to quantify stability of two Cry toxin-encoding plasmids, BTI_23p and BTI_16p, under standard laboratory culturing conditions. These two plasmids are part of the genome of the B. thuringiensis strain MYBT18679, which is of particular interest because of its high pathogenicity towards nematodes. One of the plasmids, BTI_23p, was found to be highly unstable, with substantial loss occurring within a single growth cycle. Nevertheless, longer term experimental evolution in the absence of a host revealed maintenance of the plasmid at low levels in the bacterial populations. BTI_23p encodes two nematicidal Cry toxins, Cry21Aa2 and Cry14Aa1. Consistent with previous findings, loss of the plasmid abolished pathogenicity towards the nematode Caenorhabditis elegans, which could be rescued by addition of Cry21Aa2-expressing Escherichia coli. These results implicate BTI_23p as a plasmid that is required for successful infection, yet unstable when present at high frequency in the population, consistent with the role of Cry toxins as public goods. PMID:26592941

  18. Decolorization of dyehouse effluent and biodegradation of Congo red by Bacillus thuringiensis RUN1.

    Science.gov (United States)

    Olukanni, Olumide David; Osuntoki, Akinniyi A; Awotula, Ayodeji Olushola; Kalyani, Dayanand C; Gbenle, George Olabode; Govindwar, Sanjay P

    2013-06-28

    A dye-decolorizing bacterium was isolated from a soil sample and identified as Bacillus thuringiensis using 16S rRNA sequencing. The bacterium was able to decolorize three different textile dyes, namely, Reactive blue 13, Reactive red 58, and Reactive yellow 42, and a real dyehouse effluent up to 80-95% within 6 h. Some non-textile industrially important dyes were also decolorized to different extents. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometer analysis of the ethyl acetate extract of Congo red dye and its metabolites showed that the bacterium could degrade it by the asymmetric cleavage of the azo bonds to yield sodium (4- amino-3-diazenylnaphthalene-1-sulfonate) and phenylbenzene. Sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) was further oxidized by the ortho-cleavage pathway to yield 2- (1-amino-2-diazenyl-2-formylvinyl) benzoic acid. There was induction of the activities of laccase and azoreductase during the decolorization of Congo red, which suggests their probable role in the biodegradation. B. thuringiensis was found to be versatile and could be used for industrial effluent biodegradation.

  19. Shared binding sites in Lepidoptera for Bacillus thuringiensis Cry1Ja and Cry1A toxins.

    Science.gov (United States)

    Herrero, S; González-Cabrera, J; Tabashnik, B E; Ferré, J

    2001-12-01

    Bacillus thuringiensis toxins act by binding to specific target sites in the insect midgut epithelial membrane. The best-known mechanism of resistance to B. thuringiensis toxins is reduced binding to target sites. Because alteration of a binding site shared by several toxins may cause resistance to all of them, knowledge of which toxins share binding sites is useful for predicting cross-resistance. Conversely, cross-resistance among toxins suggests that the toxins share a binding site. At least two strains of diamondback moth (Plutella xylostella) with resistance to Cry1A toxins and reduced binding of Cry1A toxins have strong cross-resistance to Cry1Ja. Thus, we hypothesized that Cry1Ja shares binding sites with Cry1A toxins. We tested this hypothesis in six moth and butterfly species, each from a different family: Cacyreus marshalli (Lycaenidae), Lobesia botrana (Tortricidae), Manduca sexta (Sphingidae), Pectinophora gossypiella (Gelechiidae), P. xylostella (Plutellidae), and Spodoptera exigua (Noctuidae). Although the extent of competition varied among species, experiments with biotinylated Cry1Ja and radiolabeled Cry1Ac showed that Cry1Ja and Cry1Ac competed for binding sites in all six species. A recent report also indicates shared binding sites for Cry1Ja and Cry1A toxins in Heliothis virescens (Noctuidae). Thus, shared binding sites for Cry1Ja and Cry1A occur in all lepidopteran species tested so far. PMID:11722929

  20. Combining Hexanoic Acid Plant Priming with Bacillus thuringiensis Insecticidal Activity against Colorado Potato Beetle

    Directory of Open Access Journals (Sweden)

    Carolina Rausell

    2013-06-01

    Full Text Available Interaction between insect herbivores and host plants can be modulated by endogenous and exogenous compounds present in the source of food and might be successfully exploited in Colorado potato beetle (CPB pest management. Feeding tests with CPB larvae reared on three solanaceous plants (potato, eggplant and tomato resulted in variable larval growth rates and differential susceptibility to Bacillus thuringiensis Cry3Aa toxin as a function of the host plant. An inverse correlation with toxicity was observed in Cry3Aa proteolytic patterns generated by CPB midgut brush-border membrane vesicles (BBMV from Solanaceae-fed larvae, being the toxin most extensively proteolyzed on potato, followed by eggplant and tomato. We found that CPB cysteine proteases intestains may interact with Cry3Aa toxin and, in CPB BBMV from larvae fed all three Solanaceae, the toxin was able to compete for the hydrolysis of a papain substrate. In response to treatment with the JA-dependent plant inducer Hexanoic acid (Hx, we showed that eggplant reduced OPDA basal levels and both, potato and eggplant induced JA-Ile. CPB larvae feeding on Hx-induced plants exhibited enhanced Cry3Aa toxicity, which correlated with altered papain activity. Results indicated host-mediated effects on B. thuringiensis efficacy against CPB that can be enhanced in combination with Hx plant induction.

  1. Study on radioimmunoassay of Bt Cry1Ac protein

    International Nuclear Information System (INIS)

    Bt Cry1Ac protein was extracted from incubation of Bacillus thuringiensis HD-73, and cutting into more specific protein segment with high insect-resistance. High-affinity multi-colonial antibodies of Bt Cry1 Ac protein were obtained after injected it into New Zealand rabbits. By 125I labeling of Bt Cry1 Ac protein, a RIA kit was established. In this method, centrifuge for separation was not necessary due to the use of magnetic micro-particle and the specifications of the kit were found equal to those of imported ELISA. (authors)

  2. Structure and distribution of the Bacillus thuringiensis Cry4Ba toxin in lipid membranes

    International Nuclear Information System (INIS)

    Bacillus thuringiensis Cry δ-endotoxins cause death of susceptible insect larvae by forming lytic pores in the midgut epithelial cell membranes. The 65 kDa trypsin activated Cry4Ba toxin was previously shown to be capable of permeabilizing liposomes and forming ionic channels in receptor-free planar lipid bilayers. Here, magnetic ACmode (MACmode) atomic force microscopy (AFM) was used to characterize the lateral distribution and the native molecular structure of the Cry4Ba toxin in the membrane. Liposome fusion and the Langmuir-Blodgett technique were employed for supported lipid bilayer preparations. The toxin preferentially inserted in a self-assembled structure, rather than as a single monomeric molecule. In addition, the spontaneous insertion into receptor-free lipid bilayers lead to formation of characteristic pore-like structures with four-fold symmetry, suggesting that tetramers are the preferred oligomerization state of this toxin

  3. Toxicity of radiation-resistant strains of Bacillus thuringiensis (Berl.) to larval Plutella xylostella (L.)

    International Nuclear Information System (INIS)

    A total of 24 isolates of Bacillus thuringiensis (Berliner), resistant to a γ-radiation dose of 100 krad, were screened for their toxicity to larval silkworms, Bombyxmori(L.), and 15 of them were subsequently tested for their toxicity to larval diamond-back moth, Plutella xylostella(L.). The LC50's of these isolates to B. mori ranged from 1.6 X 105 to 6.0 X 103 spores/mL or from 5.9 to 0.3 μg cellular protein/mL. The irradiation treatment produced isolates which were significantly more toxic to P. xylostella (LC50 4 spores/mL or 3.7 μg cellular protein/mL) and/ or less toxic to B. mori (LC50 > 2.3 X 104 spores/mL or 1.0 μg cellular protein/mL) than the parent commercial strain

  4. Diversity among Bacillus thuringiensis active against the Mediterranean fruit fly, Ceratitis capitata

    International Nuclear Information System (INIS)

    Procedures were developed to screen rapidly isolates of the entomopathogen Bacillus thuringiensis against adults of the Mediterranean fruit fly, Ceratitis capitata, and simultaneously characterize its active agents on the basis of their water solubility and heat stability. Fermentation products in solution, in suspension or dried were bioassayed. Heat stable, soluble exotoxins were the most frequently found active agents; some strains produced exotoxins that precipitated and their activity was found in the sediment fraction of fermentation beers. Insoluble heat labile agents were found that upon subsequent preparation were identified as active spores. The activity of spores from different isolates was different. One isolate produced endotoxin that, although inactive when bioassayed alone, had synergistic activity when combined with spores. (author). 6 refs, 5 figs, 3 tabs

  5. Friction and Adhesion Forces of Bacillus thuringiensis Spores on Planar Surfaces in Atmospheric Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2011-01-01

    The kinetic friction force and the adhesion force of Bacillus thuringiensis spores on planar surfaces in atmospheric systems were studied using atomic force microscopy. The influence of relative humidity (RH) on these forces varied for different surface properties including hydrophobicity, roughness, and surface charge. The friction force of the spore was greater on a rougher surface than on mica, which is atomically flat. As RH increases, the friction force of the spores decreases on mica whereas it increases on rough surfaces. The influence of RH on the interaction forces between hydrophobic surfaces is not as strong as for hydrophilic surfaces. The friction force of the spore is linear to the sum of the adhesion force and normal load on the hydrophobic surface. The poorly defined surface structure of the spore and the adsorption of contaminants from the surrounding atmosphere are believed to cause a discrepancy between the calculated and measured adhesion forces.

  6. A structured model for vegetative growth and sporulation in Bacillus thuringiensis

    Energy Technology Data Exchange (ETDEWEB)

    Starzak, M.; Bajpai, R.K. [Univ. of Missouri, Columbia, MO (United States)

    1991-12-31

    A mathematical model has been developed for the 6-endotoxin producing Bacillus thuringiensis. The structure of the model involves the processes taking place during vegetative growth, those leading to the initiation of sporulation under conditions of carbon and/or nitrogen limitation, and the sporulation events. The key features in the model are the pools of compounds, such as PRPP, IMP, ADP/ATP, GDP/GTP, pyrimidine nucleotides, NAD/NADH{sub 2}, amino acids, nucleic acids, cell wall, and vegetative and sporulation proteins. These, along with a-factors that control the nature of RNA-polymerase during the different phases, effectively stimulate the vegetative growth and sporulation. The initiation of sporulation is controlled by the intracellular concentration of GTP. Results of simulation of vegetative growth, initiation of sporulation, spore protein formation, and production of {delta}-endotoxin under C- or N-limitation are presented.

  7. Parasporal Proteins from Bacillus thuringiensis and Their Cytotoxicity on Human Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; LV Yuan; YI Yin-sha; YI Shang-hui; LI Lin

    2015-01-01

    Parasporins(PSs) represent a novel functional category of crystal proteins (Cry) produced by non-insecticidal Bacillus thuringiensisA distinct feature for PSs is their specific cytotoxicity against human cancer cells from diverse origins, other than hemolytic or insecticidal activityAs structurally/functionally Cry proteins, parasporins are expressed as protoxins that require protease cleavage for activationCurrently, identified PSs is classified into 6 groups:PS1, PS2, PS3, PS4, PS5 and PS6, which are heterogeneous in cytotoxic spectrum and activity levelSome PSs have been explored for their mode of anticancer activities, reports mainly include pore formation induced by binding to putative receptors on cell membrane and apoptosis by intracellular Ca 2+concentrationFurther work should focus on the identification of new PS or PS homologs and better understanding of their anticancer mechanism before possible application in cancer therapy.

  8. Influence of Formate on Bioactivity Material-thuringiensin Synthesized by Bacillus thuringiensis YBT-032

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi; CHEN Xiong; CHEN Shouwen; SUN Ming; YU Ziniu

    2008-01-01

    The biological method to synthesize thuringiensin and the influence of formate on thuringiensin biosynthesis were investigated. Addition of 1.00 g/L formate to growth medium of bacillus thuringiensis YBT-032 resulted in significant enhancements in productions of citrate, a-ketoglutarate, intracellular adenine and thuringiensin. These results demonstrate that added formate attends metabolism of cell, facilitates carbon metabolic flux in tricarboxylic acid cycle and hexose monophosphate pathway. As a carbon source, formate facilitates cell growth, increases glucose consumption and enhances the ability of cell to synthesis adenine analogues, and subsequently thuringiensin. Thuringiensin production rate significantly enhanced from 6.44 to 8.46 mg·g-1·h-1 and transformation ratio from glucose to thuringiensin increased by 43.30%.

  9. 苏云金杆菌的研究%Study on Bacillus thuringiensis

    Institute of Scientific and Technical Information of China (English)

    黄自云

    2012-01-01

    苏云杆菌(Bacillus thuringiensis)制剂是目前广泛应用的一种微生物杀虫剂.本文介绍了苏云金芽孢杆菌的菌体形态,制剂的理化性质、毒性、作用原理及生产使用方法,不能与有机磷类杀虫、杀菌剂及碱性农药混用,对蚕毒性高,建议与其他作用机制不同的杀虫剂轮换使用,以延缓抗性产生.最后分析了苏云金杆菌在遗传工程上的应用.

  10. Structure and distribution of the Bacillus thuringiensis Cry4Ba toxin in lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Puntheeranurak, Theeraporn [Institute for Biophysics, Johannes Kepler University of Linz, Altenbergerstr. 69, A-4040 Linz (Austria); Laboratory of Molecular Biophysics, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakornpathom 73170 (Thailand); Stroh, Cordula [Institute for Biophysics, Johannes Kepler University of Linz, Altenbergerstr. 69, A-4040 Linz (Austria); Zhu Rong [Institute for Biophysics, Johannes Kepler University of Linz, Altenbergerstr. 69, A-4040 Linz (Austria); Angsuthanasombat, Chanan [Laboratory of Molecular Biophysics, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakornpathom 73170 (Thailand); Hinterdorfer, Peter [Institute for Biophysics, Johannes Kepler University of Linz, Altenbergerstr. 69, A-4040 Linz (Austria)]. E-mail: peter.hinterdorfer@jku.at

    2005-11-15

    Bacillus thuringiensis Cry {delta}-endotoxins cause death of susceptible insect larvae by forming lytic pores in the midgut epithelial cell membranes. The 65 kDa trypsin activated Cry4Ba toxin was previously shown to be capable of permeabilizing liposomes and forming ionic channels in receptor-free planar lipid bilayers. Here, magnetic ACmode (MACmode) atomic force microscopy (AFM) was used to characterize the lateral distribution and the native molecular structure of the Cry4Ba toxin in the membrane. Liposome fusion and the Langmuir-Blodgett technique were employed for supported lipid bilayer preparations. The toxin preferentially inserted in a self-assembled structure, rather than as a single monomeric molecule. In addition, the spontaneous insertion into receptor-free lipid bilayers lead to formation of characteristic pore-like structures with four-fold symmetry, suggesting that tetramers are the preferred oligomerization state of this toxin.

  11. Comparison of biomass estimation techniques for a Bacillus thuringiensis fed-batch culture

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, C.C.F. [University of Newcastle upon Tyne (United Kingdom). Dept. of Chemical and Process Engineering]. E-mail: C.C.F.Cunha@newcastle.ac.uk; Souza Junior, M.B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica]. E-mail: mbsj@h2o.eq.ufrj.br

    2001-03-01

    In this work, the ability of artificial neural nets was investigated for the on-line biomass prediction of the simulated growth of a strain of Bacillus thuringiensis in fed-batch mode. For this purpose, multilayered backpropagation nets with sigmoid nodes were trained. The patterns were composed of input data on current values of biomass concentration, limiting substrate concentration and dilution rate, and output data on prediction of biomass concentration for the following step. The dilution rate was disturbed by a PRBS input, and simulations were conducted using a phenomenological experimentally validated model. The nets were able to predict the biomass concentration for different feeding techniques, and they were also compared with the variable estimation technique using the extended Kalman filter. (author)

  12. Bacillus thuringiensis Cry1Aa toxin-binding region of Bombyx mori aminopeptidase N.

    Science.gov (United States)

    Yaoi, K; Nakanishi, K; Kadotani, T; Imamura, M; Koizumi, N; Iwahana, H; Sato, R

    1999-12-17

    The Bacillus thuringiensis Cry1Aa toxin-binding region of Bombyx mori aminopeptidase N (APN) was analyzed, to better understand the molecular mechanism of susceptibility to the toxin and the development of resistance in insects. APN was digested with lysylendopeptidase and the ability of the resulting fragments to bind to Cry1Aa and 1Ac toxins was examined. The binding abilities of the two toxins to these fragments were different. The Cry1Aa toxin bound to the fragment containing 40-Asp to 313-Lys, suggesting that the Cry1Aa toxin-binding site is located in the region between 40-Asp and 313-Lys, while Cry1Ac toxin bound exclusively to mature APN. Next, recombinant APN of various lengths was expressed in Escherichia coli cells and its ability to bind to Cry1Aa toxin was examined. The results localized the Cry1Aa toxin binding to the region between 135-Ile and 198-Pro. PMID:10606725

  13. Isolation and characterization of radioresistant mutants in Bacillus subtilis and Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Vegetative cells of Bac. thuringiensis var. galleriae (the wild-type strain 351) are much more sensitive to lethal effects of UV light and 60Co-γ-rays than those of Bac. subtilis (the wild-type strain 168). This difference is less pronounced for spores of these strains. By means of repeated γ-irradiation-regrowth cycles radioresistant mutants Bac. thuringiensis Gamsup(r) 14 and Bac. subtilis Gamsup(r) 9 were selected. The vegetative cells of these mutants are correspondingly 19 times and 3.9 times more resistant to lethal effects of γ-radiation than the cells of the parental strains. The resistance of the Gamsup(r) mutant cells to lethal effects of UV light and H2O2 is also increased. The spores of the Gamsup(r) 14 mutant are 1.5-1.7 times more resistant to γ-radiation and UV light than the wild-type spores. The radioresistant mutants and the parental strains do not vary in their capacity for host-cell reactivation of UV- or γ-irradiated phages Tg13 and 105

  14. Isolation and characterization of radioresistant mutants in Bacillus subtilis and Bacillus thuringiensis

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, V.L.; Petrov, V.N.; Petrova, T.M. (AN SSSR, Leningrad. Inst. Yadernoj Fiziki)

    Vegetative cells of Bac. thuringiensis var. galleriae (the wild-type strain 351) are much more sensitive to lethal effects of UV light and /sup 60/Co-..gamma..-rays than those of Bac. subtilis (the wild-type strain 168). This difference is less pronounced for spores of these strains. By means of repeated ..gamma..-irradiation-regrowth cycles radioresistant mutants of Bac. thuringiensis Gamsup(r) 14 and Bac. subtilis Gamsup(r) 9 were selected. The vegetative cells of these mutants are correspondingly 19 times and 3.9 times more resistant to lethal effects of ..gamma..-radiation than the cells of the parental strains. The resistance of the Gamsup(r) mutant cells to lethal effects of UV light and H/sub 2/O/sub 2/ is also increased. The spores of the Gamsup(r) 14 mutant are 1.5-1.7 times more resistant to ..gamma..-radiation and UV light than the wild-type spores. The radioresistant mutants and the parental strains do not vary in their capacity for host-cell reactivation of UV- or ..gamma..-irradiated phages Tg13 and 105.

  15. CodY Regulates the Activity of the Virulence Quorum Sensor PlcR by Controlling the Import of the Signaling Peptide PapR in Bacillus thuringiensis

    Science.gov (United States)

    Slamti, Leyla; Lemy, Christelle; Henry, Céline; Guillot, Alain; Huillet, Eugénie; Lereclus, Didier

    2016-01-01

    In Gram-positive bacteria, cell–cell communication mainly relies on cytoplasmic sensors of the RNPP family. Activity of these regulators depends on their binding to secreted signaling peptides that are imported into the cell. These quorum sensing regulators control important biological functions in bacteria of the Bacillus cereus group, such as virulence and necrotrophism. The RNPP quorum sensor PlcR, in complex with its cognate signaling peptide PapR, is the main regulator of virulence in B. cereus and Bacillus thuringiensis (Bt). Recent reports have shown that the global stationary phase regulator CodY, involved in adaptation to nutritional limitation, is required for the expression of virulence genes belonging to the PlcR regulon. However, the mechanism underlying this regulation was not described. Using genetics and proteomics approaches, we showed that CodY regulates the expression of the virulence genes through the import of PapR. We report that CodY positively controls the production of the proteins that compose the oligopeptide permease OppABCDF, and of several other Opp-like proteins. It was previously shown that the pore components of this oligopeptide permease, OppBCDF, were required for the import of PapR. However, the role of OppA, the substrate-binding protein (SBP), was not investigated. Here, we demonstrated that OppA is not the only SBP involved in the recognition of PapR, and that several other OppA-like proteins can allow the import of this peptide. Altogether, these data complete our model of quorum sensing during the lifecycle of Bt and indicate that RNPPs integrate environmental conditions, as well as cell density, to coordinate the behavior of the bacteria throughout growth. PMID:26779156

  16. The effect of the combination of two biological control agents, Mirabilis jalapa and Bacillus thuringiensis, to Spodoptera litura's immune response and their mortality

    Science.gov (United States)

    Maulina, Dina; Anggraeni, Tjandra

    2014-03-01

    Biological control provides a safer alternative to reduce the population of agricultural pest. Mirabilis jalapa is one of many promising biopesticides which contains chemical substances that have a feeding deterrent property against insects. This biopesticide may not kill insect directly but will weaken their overall physiological condition. In this study, we investigated the immune response of common pestSpodoptera litura after exposure of M. jalapa extract. We also used Bacillus thuringiensis (Bt) delta endotoxin (LC50) on 3 hours after exposure of M. jalapa extract to see the synergism properties of both biopesticide agents. Microscopic observation revealed that at least 5 types of haemocyte were found in S. litura. In control group, plasmatocyte were found at 59.98%, prohaemocyte 20.73%, granullar cell 12.74%, oenocytoid 3.33% and spherule cell 3.20%. These proportion was differ significantly in the treatment group. Exposure to 0.1% and 0.2%(w/v) of M. jalapa extract increased the total number of haemocytes as much as 38.08% and 64.15% respectively. In contrast, exposure to 0.4% and 0.8%(w/v) reduced the number of haemocytes to 37.02% and 51.04% respectively. In term of phagocytic activity, the proportion of phagocytosing cells were 47.62% in control group, and in 0.1% and 0.2% (w/v) M. jalapa treatment group the proportion decreased to 28% and 26.88% respectively. In the concentration of 0.4% and 0.8%, phagocytic activity did not occur. Addition of biological agents Bt (LC50 concentration) to see mortality 3 hours after M. jalapa application did not show significant differences. S. litura mortality rate were found only 50%; this suggests that the combination of M. jalapa and Bt biopesticides in 3-hour intervals within 24 hours showed no increase in mortality.

  17. Bacillus thuringiensis Cry5B protein is highly efficacious as a single-dose therapy against an intestinal roundworm infection in mice.

    Directory of Open Access Journals (Sweden)

    Yan Hu

    Full Text Available Intestinal parasitic nematode diseases are one of the great diseases of our time. Intestinal roundworm parasites, including hookworms, whipworms, and Ascaris, infect well over 1 billion people and cause significant morbidity, especially in children and pregnant women. To date, there is only one drug, albendazole, with adequate efficacy against these parasites to be used in mass drug administration, although tribendimidine may emerge as a second. Given the hundreds of millions of people to be treated, the threat of parasite resistance, and the inadequacy of current treatments, new anthelmintics are urgently needed. Bacillus thuringiensis (Bt crystal (Cry proteins are the most common used biologically produced insecticides in the world and are considered non-toxic to vertebrates.Here we study the ability of a nematicidal Cry protein, Cry5B, to effect a cure in mice of a chronic roundworm infection caused by the natural intestinal parasite, Heligmosomoides bakeri (formerly polygyrus. We show that Cry5B produced from either of two Bt strains can act as an anthelmintic in vivo when administered as a single dose, achieving a approximately 98% reduction in parasite egg production and approximately 70% reduction in worm burdens when delivered per os at approximately 700 nmoles/kg (90-100 mg/kg. Furthermore, our data, combined with the findings of others, suggest that the relative efficacy of Cry5B is either comparable or superior to current anthelmintics. We also demonstrate that Cry5B is likely to be degraded quite rapidly in the stomach, suggesting that the actual dose reaching the parasites is very small.This study indicates that Bt Cry proteins such as Cry5B have excellent anthelmintic properties in vivo and that proper formulation of the protein is likely to reveal a superior anthelmintic.

  18. Genetic Basis of Cry1F-Resistance in a Laboratory Selected Asian Corn Borer Strain and Its Cross-Resistance to Other Bacillus thuringiensis Toxins.

    Science.gov (United States)

    Wang, Yueqin; Wang, Yidong; Wang, Zhenying; Bravo, Alejandra; Soberón, Mario; He, Kanglai

    2016-01-01

    The Asian corn borer (ACB), Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae), is the most destructive insect pest of corn in China. Susceptibility to the Cry1F toxin derived from Bacillus thuringiensis has been demonstrated for ACB, suggesting the potential for Cry1F inclusion as part of an insect pest management program. Insects can develop resistance to Cry toxins, which threatens the development and use of Bt formulations and Bt crops in the field. To determine possible resistance mechanisms to Cry1F, a Cry1F-resistant colony of ACB (ACB-FR) that exhibited more than 1700-fold resistance was established through selection experiments after 49 generations of selection under laboratory conditions. The ACB-FR strain showed moderate cross-resistance to Cry1Ab and Cry1Ac of 22.8- and 26.9-fold, respectively, marginally cross-resistance to Cry1Ah (3.7-fold), and no cross-resistance to Cry1Ie (0.6-fold). The bioassay responses of progeny from reciprocal F1 crosses to different Cry1 toxin concentrations indicated that the resistance trait to Cry1Ab, Cry1Ac and Cry1F has autosomal inheritance with no maternal effect or sex linked. The effective dominance (h) of F1 offspring was calculated at different concentrations of Cry1F, showing that h decreased as concentration of Cry1F increased. Finally, the analysis of actual and expected mortality of the progeny from a backcross (F1 × resistant strain) indicated that the inheritance of the resistance to Cry1F in ACB-FR was due to more than one locus. The present study provides an understanding of the genetic basis of Cry1F resistance in ACB-FR and also shows that pyramiding Cry1F with Cry1Ah or Cry1Ie could be used as a strategy to delay the development of ACB resistance to Bt proteins.

  19. Invertebrate pathogenicity and toxin-producing potential of strains of Bacillus thuringiensis endemic to Antarctica.

    Science.gov (United States)

    Prabhakar, A; Bishop, A H

    2011-06-01

    Several strains of Bacillus thuringiensis were previously isolated from soil in Antarctica and appeared to have physiological adaptations to this cold, nutrient-poor environment. In spite of this they could produce abnormally large, parasporal crystals under laboratory conditions. Here, they have been further characterised for toxin genes and invertebrate pathogenicity. All of the strains were positive in PCR assays for the cry1Aa and cry2 genes. This was confirmed by sequence analysis and the parasporal crystals of all strains contained polypeptides of about 130kDa. This potential for lepidopteran toxicity was borne out in bioassays of purified δ-endotoxins against larvae of Pieris brassicae: the LD(50) values of B2408 (288μg) were comparable to that of the reference strain, HD-12 (201μg). There was no activity against the nematode Caenorhabditis elegans in spite of the fact that all strains appeared to possess the cry6 gene. PCR screening for genes encoding other nematode-toxic classes of toxins (Cry5, 4 and 21) was negative. B. thuringiensis has never previously been shown to be toxic to Collembola (springtails) but the purified δ-endotoxins of one of the Antarctic strains showed some activity against Folsomia candida and Seira domestica (224μg and 238μg, respectively). It seems unlikely that the level of toxicity demonstrated against springtails would support a pathogenic life-style in nature. All of the strains were positive for genes encoding Bacillus cereus-type enterotoxins. In the absence of higher insects and mammals the ecological value of retaining the toxic capability demonstrated here is uncertain. PMID:21457716

  20. Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge.

    Science.gov (United States)

    Kotay, Shireen Meher; Das, Debabrata

    2007-04-01

    Bacillus coagulans strain IIT-BT S1 isolated from anaerobically digested activated sewage sludge was investigated for its ability to produce H(2) from glucose-based medium under the influence of different environmental parameters. At mid-exponential phase of cell growth, H(2) production initiated and reached maximum production rate in the stationary phase. The maximal H(2) yield (2.28 mol H(2)/molglucose) was recorded at an initial glucose concentration of 2% (w/v), pH 6.5, temperature 37 degrees C, inoculum volume of 10% (v/v) and inoculum age of 14 h. Cell growth rate and rate of hydrogen production decreased when glucose concentration was elevated above 2% w/v, indicating substrate inhibition. The ability of the organism to utilize various carbon sources for H(2) fermentation was also determined.

  1. RESIDUAL TOXICITY OF BACILLUS THURINGIENSIS H-14 (VCRC B17 IN SOME TYPES OF BREEDING PLACES OF AEDES AEGYPTI

    Directory of Open Access Journals (Sweden)

    Salamun Salamun

    2012-09-01

    Full Text Available Bacillus thuringiensis H-14, adalah agensia mikrobial yang sangat spesifik terhadap serangga sasaran, aman terhadap golongan mamalia, dan tidak mencemari lingkungan, sehingga dapat dikembangkan sebagai agensia untuk pengendalian vektor, khususnya vektor demam berdarah dengue di Indonesia. Toksisitas residual B. thuringiensis H-14 (VCRC B17 terhadap larva instar III Aedes aegypti pada beberapa tipe tempat penampung air telah dievaluasi di dalam laboratorium. Hasil evaluasi menunjukkan bahwa angka kematian larva uji lebih dari 80% oleh pengaruh B. thuringiensis H-14 (VCRC B17 pada konsentrasi antara 1 sampai 25 mg/l di dalam tipe tempat penampung air dari semen, tanah liat, dan plastik masing-masing adalah 16 sampai 60 hari, 18 sampai 36 hari, dan 12 sampai 42 hari.

  2. Selection of optimum conditions of medium acidity and aeration for submerget cultivation of Bacillus thuringiensis and Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    O. A. Dregval

    2010-06-01

    Full Text Available The paper deals with the influence of medium pH and aeration rate on growth and sporulation of Bacillus thuringiensis and Вeauveria bassiana, which are main constituents of the complex microbial insecticide. It was established optimal medium pH for B. thuringiensis – 6.0 and for В. bassiana – 6.0–7.0. The maximum productivity of the studied microorganisms was observed in the same range of aeration – 7– 14 mmol O2/l/h. The selected conditions of cultivation are necessary for the production of complex biological insecticide based on the association of B. thuringiensis and B. bassiana.

  3. Tribolium castaneum Apolipophorin-III acts as an immune response protein against Bacillus thuringiensis Cry3Ba toxic activity.

    Science.gov (United States)

    Contreras, Estefanía; Rausell, Carolina; Real, M Dolores

    2013-07-01

    In this study, a 2.1-fold Apolipophorin-III mRNA up-regulation was found in Tribolium castaneum larvae challenged with Bacillus thuringiensis Cry3Ba spore-crystal mixture. Knockdown of Apolipophorin-III by RNAi resulted in increased T. castaneum larvae susceptibility following Cry3Ba spore-crystal treatment, demonstrating Apolipophorin-III involvement in insect defense against B. thuringiensis. We showed that Apolipophorin-III participates in T. castaneum immune response to B. thuringiensis activating the prophenoloxidase cascade since: (i) phenoloxidase activity significantly increased after Cry3Ba spore-crystal treatment compared to untreated or Cry1Ac spore-crystal treated larvae and (ii) phenoloxidase activity in Cry3Ba spore-crystal treated Apolipophorin-III silenced larvae was 71±14% lower than that of non-silenced intoxicated larvae.

  4. Expressed sequence tags from larval gut of the European corn borer (Ostrinia nubilalis: Exploring candidate genes potentially involved in Bacillus thuringiensis toxicity and resistance

    Directory of Open Access Journals (Sweden)

    Crespo Andre LB

    2009-06-01

    Full Text Available Abstract Background Lepidoptera represents more than 160,000 insect species which include some of the most devastating pests of crops, forests, and stored products. However, the genomic information on lepidopteran insects is very limited. Only a few studies have focused on developing expressed sequence tag (EST libraries from the guts of lepidopteran larvae. Knowledge of the genes that are expressed in the insect gut are crucial for understanding basic physiology of food digestion, their interactions with Bacillus thuringiensis (Bt toxins, and for discovering new targets for novel toxins for use in pest management. This study analyzed the ESTs generated from the larval gut of the European corn borer (ECB, Ostrinia nubilalis, one of the most destructive pests of corn in North America and the western world. Our goals were to establish an ECB larval gut-specific EST database as a genomic resource for future research and to explore candidate genes potentially involved in insect-Bt interactions and Bt resistance in ECB. Results We constructed two cDNA libraries from the guts of the fifth-instar larvae of ECB and sequenced a total of 15,000 ESTs from these libraries. A total of 12,519 ESTs (83.4% appeared to be high quality with an average length of 656 bp. These ESTs represented 2,895 unique sequences, including 1,738 singletons and 1,157 contigs. Among the unique sequences, 62.7% encoded putative proteins that shared significant sequence similarities (E-value ≤ 10-3with the sequences available in GenBank. Our EST analysis revealed 52 candidate genes that potentially have roles in Bt toxicity and resistance. These genes encode 18 trypsin-like proteases, 18 chymotrypsin-like proteases, 13 aminopeptidases, 2 alkaline phosphatases and 1 cadherin-like protein. Comparisons of expression profiles of 41 selected candidate genes between Cry1Ab-susceptible and resistant strains of ECB by RT-PCR showed apparently decreased expressions in 2 trypsin-like and 2

  5. Susceptibility of Aedes aegypti larvae to temephos and Bacillus thuringiensis var israelensis in integrated control Susceptibilidade de larvas de Aedes aegypti ao tratamento integrado com temephos e Bacillus thuringiensis var israelensis

    OpenAIRE

    Carlos Fernando S. de Andrande; Maurício Modolo

    1991-01-01

    The susceptibility of field collected Aedes aegypti larvae was evaluated in terms of median lethal time (LT50) and final mortality, when treated with temephos, Bacillus thuringiensis var israelensis as well as mixtures of these two agents. Third instar larvae were shown to be more susceptible than early and late fourth instar ones to the entomopathogen. Survival of some individuals when exposed to temephos suggest possible resistance. Temporal synergism in early fourth instar larvae was detec...

  6. Bt Crop Effects on Functional Guilds of Non-target Arthropods: A Meta-Analysis

    Science.gov (United States)

    Uncertainty continues to persist over the potential environmental effects of crops genetically engineered to produce the insecticidal Cry toxins of Bacillus thuringiensis (Bt). Little work has examined broader impacts on ecological function of non-target species within agroecosystems. Here we use me...

  7. Chinese-version Bt Cotton: How to Get the Benefits from IPR

    Institute of Scientific and Technical Information of China (English)

    X.J. Fang

    2007-01-01

    @@ Chinese scientists started to fully synthesize the Bacillus thuringiensis (Bt) Cry1A gene in 1991. By the end of 1992, Biotechnology Research Institute of Chinese Academy of Agricultural Sciences (BRI-CAAS) successfully synthesized the full size of GFM Cry1A gene, which was a fusion gene of Cry1A(b) and Cry1A(c).

  8. Screening for corn rootworm (Coleoptera: Chrysomelidae) resistance to transgenic Bt corn in North Dakota

    Science.gov (United States)

    Western (WCR), Diabrotica virgifera virgifera LeConte, and northern corn rootworms (NCR), D. barberi Smith & Lawrence, are major economic pests of corn in much of the U.S. Corn Belt. Western corn rootworm resistance to transgenic corn expressing Bt (Bacillus thuringiensis) endotoxins has been confi...

  9. Understanding successful resistance management: The European corn borer and Bt corn in the United States

    Science.gov (United States)

    European corn borer, Ostrinia nubilalis Hubner (Lepidoptera: Crambidae) has been a major pest of corn and other crops in North America since its accidental introduction nearly a hundred years ago. Wide adoption of transgenic corn that expresses toxins from Bacillus thuringiensis, referred to as Bt c...

  10. Tritrophic choice experiments with Bt plants, the diamondback moth (Plutella xylostella) and the parasitoid Cotesia plutellae

    NARCIS (Netherlands)

    Schuler, T.H.; Potting, R.P.J.; Denholm, I.; Clark, S.J.; Clark, A.J.; Stewart, C.N.; Poppy, G.M.

    2003-01-01

    Parasitoids are important natural enemies of many pest species and are used extensively in biological and integrated control programmes. Crop plants transformed to express toxin genes derived from Bacillus thuringiensis (Bt) provide high levels of resistance to certain pest species, which is likely

  11. Soil microbes and fauna under Bt maize or an isogenic control, with and without additional insecticide

    DEFF Research Database (Denmark)

    Griffiths, B. S.; Birch, A. N. E.; Caul, S.;

    The experiment described is a component of the EU-funded project entitled 'Soil ecological and economic evaluation of genetically modified crops' (ECOGEN, www.ecogen.dk). The overall project has an emphasis on maize genetically modified to express the Bacillus thuringiensis toxin (Bt maize) and e...

  12. The Reflexive Producer: The Influence of Farmer Knowledge upon the Use of Bt Corn

    Science.gov (United States)

    Kaup, Brent Z.

    2008-01-01

    This paper examines the influence of farmer knowledge upon decision making processes. Drawing upon the sociological debates around the ideas of reflexive modernity and biotechnology as well as from classic adoption and diffusion studies, I explore the influences upon farmers' use of "Bacillus thuringiensis" (Bt) corn. Utilizing survey data…

  13. Impacts of Bt crops on non-target organisms and insecticide use patterns

    Science.gov (United States)

    Bacillus thuringiensis (Bt), a bacterium capable of producing insecticidal proteins is ubiquitous in the environment, and the genes coding for these proteins are now becoming ubiquitous in major crop plants via recombinant DNA technology where they provide host plant resistance to major lepidopteran...

  14. Bacillus cereus and Bacillus thuringiensis spores in Korean rice: prevalence and toxin production as affected by production area and degree of milling.

    Science.gov (United States)

    Kim, Booyoung; Bang, Jihyun; Kim, Hoikyung; Kim, Yoonsook; Kim, Byeong-Sam; Beuchat, Larry R; Ryu, Jee-Hoon

    2014-09-01

    We determined the prevalence of and toxin production by Bacillus cereus and Bacillus thuringiensis in Korean rice as affected by production area and degree of milling. Rough rice was collected from 64 farms in 22 agricultural areas and polished to produce brown and white rice. In total, rice samples were broadly contaminated with B. cereus spores, with no effect of production area. The prevalence and counts of B. cereus spores declined as milling progressed. Frequencies of hemolysin BL (HBL) production by isolates were significantly (P ≤ 0.01) reduced as milling progressed. This pattern corresponded with the presence of genes encoding the diarrheal enterotoxins. The frequency of B. cereus isolates positive for hblC, hblD, or nheB genes decreased as milling progressed. Because most B. cereus isolates from rice samples contained six enterotoxin genes, we concluded that B. cereus in rice produced in Korea is predominantly of the diarrheagenic type. The prevalence of B. thuringiensis in rice was significantly lower than that of B. cereus and not correlated with production area. All B. thuringiensis isolates were of the diarrheagenic type. This study provides information useful for predicting safety risks associated with B. cereus and B. thuringiensis in rough and processed Korean rice.

  15. Comparative genomics of Bacillus thuringiensis phage 0305φ8-36: defining patterns of descent in a novel ancient phage lineage

    Directory of Open Access Journals (Sweden)

    Serwer Philip

    2007-10-01

    Full Text Available Abstract Background The recently sequenced 218 kb genome of morphologically atypical Bacillus thuringiensis phage 0305φ8-36 exhibited only limited detectable homology to known bacteriophages. The only known relative of this phage is a string of phage-like genes called BtI1 in the chromosome of B. thuringiensis israelensis. The high degree of divergence and novelty of phage genomes pose challenges in how to describe the phage from its genomic sequences. Results Phage 0305φ8-36 and BtI1 are estimated to have diverged 2.0 – 2.5 billion years ago. Positionally biased Blast searches aligned 30 homologous structure or morphogenesis genes between 0305φ8-36 and BtI1 that have maintained the same gene order. Functional clustering of the genes helped identify additional gene functions. A conserved long tape measure gene indicates that a long tail is an evolutionarily stable property of this phage lineage. An unusual form of the tail chaperonin system split to two genes was characterized, as was a hyperplastic homologue of the T4gp27 hub gene. Within this region some segments were best described as encoding a conservative array of structure domains fused with a variable component of exchangeable domains. Other segments were best described as multigene units engaged in modular horizontal exchange. The non-structure genes of 0305φ8-36 appear to include the remnants of two replicative systems leading to the hypothesis that the genome plan was created by fusion of two ancestral viruses. The case for a member of the RNAi RNA-directed RNA polymerase family residing in 0305φ8-36 was strengthened by extending the hidden Markov model of this family. Finally, it was noted that prospective transcriptional promoters were distributed in a gradient of small to large transcripts starting from a fixed end of the genome. Conclusion Genomic organization at a level higher than individual gene sequence comparison can be analyzed to aid in understanding large phage

  16. Bt Toxin Modification for Enhanced Efficacy

    Directory of Open Access Journals (Sweden)

    Benjamin R. Deist

    2014-10-01

    Full Text Available Insect-specific toxins derived from Bacillus thuringiensis (Bt provide a valuable resource for pest suppression. Here we review the different strategies that have been employed to enhance toxicity against specific target species including those that have evolved resistance to Bt, or to modify the host range of Bt crystal (Cry and cytolytic (Cyt toxins. These strategies include toxin truncation, modification of protease cleavage sites, domain swapping, site-directed mutagenesis, peptide addition, and phage display screens for mutated toxins with enhanced activity. Toxin optimization provides a useful approach to extend the utility of these proteins for suppression of pests that exhibit low susceptibility to native Bt toxins, and to overcome field resistance.

  17. Advances in developing Bacillus thuringiensis-based insecticde formulations Avances en el desarrollo de formulaciones insecticidas a base de Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Rosas-García Ninfa María

    2008-07-01

    Full Text Available Developing Bacillus thuringiensis-based formulations is an old technology which has been revived during recent decades. The spore-crystal complex (being the main ingredient in these preparations has been the main objective of this research, involving the search for new or improved strains. The type of materials used included a wide variety of completely biodegradable ingredients which could have been leaves, stems or fruit which when dried and ground could serve as feeding stimulants, as well as molasses and sugars. Sticky material such as gum providing adherence or starches working as encapsulating agents can both avoid dispersion by wind and wash-off by rain. Dyes and optical brighteners initially offer active protection against UV radiation and some other agents work as toxic activity enhancers. All of them are environmentally-friendly materials, completely harmless for human beings, other vertebrates, plants and even for beneficial insects so that the formulation is fully acceptable and ingested, thereby ensuring that it is highly effective. The foregoing has led to the manufacturing of a wide variety of commercial products whose effectiveness has positioned them in international markets; however, ongoing research provides specific solutions against new pests or is aimed at already-known ones avoiding resistance. Key words: Biological control; entomopathogen; toxic activity; feeding stimulants; residual activityEl desarrollo de las formulaciones insecticidas elaboradas a base de la bacteria Bacillus thuringiensis es una tecnología centenaria que ha recibido un fuerte impacto en décadas recientes. La mezcla de esporas y cristales, que es el principio activo de estas preparaciones, ha sido objeto de estudio constante y en ello se destaca la búsqueda de cepas cada vez más potentes o mejoradas. Así mismo, los materiales utilizados incluyen una amplia variedad de ingredientes completamente biodegradables como pueden ser partes de las

  18. Resistance of Trichoplusia ni to Bacillus thuringiensis toxin Cry1Ac is independent of alteration of the cadherin-like receptor for Cry toxins.

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    Full Text Available Alteration of binding sites for Bacillus thuringiensis (Bt toxins in insect midgut is the major mechanism of high-level resistance to Bt toxins in insects. The midgut cadherin is known to be a major binding protein for Bt Cry1A toxins and linkage of Bt-resistance to cadherin gene mutations has been identified in lepidopterans. The resistance to Bt toxin Cry1Ac evolved in greenhouse populations of Trichoplusia ni has been identified to be associated with the down-regulation of an aminopeptidase N (APN1 gene by a trans-regulatory mechanism and the resistance gene has been mapped to the locus of an ABC transporter (ABCC2 gene. However, whether cadherin is also involved with Cry1Ac-resistance in T. ni requires to be understood. Here we report that the Cry1Ac-resistance in T. ni is independent of alteration of the cadherin. The T. ni cadherin cDNA was cloned and the cadherin sequence showed characteristic features known to cadherins from Lepidoptera. Various T. ni cadherin gene alleles were identified and genetic linkage analysis of the cadherin alleles with Cry1Ac-resistance showed no association of the cadherin gene with the Cry1Ac-resistance in T. ni. Analysis of cadherin transcripts showed no quantitative difference between the susceptible and Cry1Ac-resistant T. ni larvae. Quantitative proteomic analysis of midgut BBMV proteins by iTRAQ-2D-LC-MS/MS determined that there was no quantitative difference in cadherin content between the susceptible and the resistant larvae and the cadherin only accounted for 0.0014% (mol% of the midgut BBMV proteins, which is 1/300 of APN1 in molar ratio. The cadherin from both the susceptible and resistant larvae showed as a 200-kDa Cry1Ac-binding protein by toxin overlay binding analysis, and nano-LC-MS/MS analysis of the 200-kDa cadherin determined that there is no quantitative difference between the susceptible and resistant larvae. Results from this study indicate that the Cry1Ac-resistance in T. ni is

  19. Resistance of Trichoplusia ni to Bacillus thuringiensis toxin Cry1Ac is independent of alteration of the cadherin-like receptor for Cry toxins.

    Science.gov (United States)

    Zhang, Xin; Tiewsiri, Kasorn; Kain, Wendy; Huang, Lihua; Wang, Ping

    2012-01-01

    Alteration of binding sites for Bacillus thuringiensis (Bt) toxins in insect midgut is the major mechanism of high-level resistance to Bt toxins in insects. The midgut cadherin is known to be a major binding protein for Bt Cry1A toxins and linkage of Bt-resistance to cadherin gene mutations has been identified in lepidopterans. The resistance to Bt toxin Cry1Ac evolved in greenhouse populations of Trichoplusia ni has been identified to be associated with the down-regulation of an aminopeptidase N (APN1) gene by a trans-regulatory mechanism and the resistance gene has been mapped to the locus of an ABC transporter (ABCC2) gene. However, whether cadherin is also involved with Cry1Ac-resistance in T. ni requires to be understood. Here we report that the Cry1Ac-resistance in T. ni is independent of alteration of the cadherin. The T. ni cadherin cDNA was cloned and the cadherin sequence showed characteristic features known to cadherins from Lepidoptera. Various T. ni cadherin gene alleles were identified and genetic linkage analysis of the cadherin alleles with Cry1Ac-resistance showed no association of the cadherin gene with the Cry1Ac-resistance in T. ni. Analysis of cadherin transcripts showed no quantitative difference between the susceptible and Cry1Ac-resistant T. ni larvae. Quantitative proteomic analysis of midgut BBMV proteins by iTRAQ-2D-LC-MS/MS determined that there was no quantitative difference in cadherin content between the susceptible and the resistant larvae and the cadherin only accounted for 0.0014% (mol%) of the midgut BBMV proteins, which is 1/300 of APN1 in molar ratio. The cadherin from both the susceptible and resistant larvae showed as a 200-kDa Cry1Ac-binding protein by toxin overlay binding analysis, and nano-LC-MS/MS analysis of the 200-kDa cadherin determined that there is no quantitative difference between the susceptible and resistant larvae. Results from this study indicate that the Cry1Ac-resistance in T. ni is independent of cadherin

  20. The Pathogenomic Sequence Analysis of B. cereus and B.thuringiensis Isolates Closely Related to Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Cliff S.; Xie, Gary; Challacombe, Jean F.; Altherr, MichaelR.; Smriti, B.; Bruce, David; Campbell, Connie S.; Campbell, Mary L.; Chen, Jin; Chertkov, Olga; Cleland, Cathy; Dimitrijevic-Bussod, M.; Doggett, Norman A.; Fawcett, John J.; Glavina, Tijana; Goodwin, Lynne A.; Hill, Karen K.; Hitchcock, Penny; Jackson, Paul J.; Keim, Paul; Kewalramani, Avinash Ramesh; Longmire, Jon; Lucas, Susan; Malfatti,Stephanie; McMurry, Kim; Meincke, Linda J.; Misra, Monica; Moseman,Bernice L.; Mundt, Mark; Munk, A. Christine; Okinaka, Richard T.; Parson-Quintana, B.; Reilly, Lee P.; Richardson, Paul; Robinson, DonnaL.; Rubin, Eddy; Saunders, Elizabeth; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Ticknor, Lawrence O.; Wills, Patti L.; Gilna, Payl; Brettin, Thomas S.

    2005-08-18

    The sequencing and analysis of two close relatives of Bacillus anthracis are reported. AFLP analysis of over 300 isolates of B.cereus, B. thuringiensis and B. anthracis identified two isolates as being very closely related to B. anthracis. One, a B. cereus, BcE33L, was isolated from a zebra carcass in Nambia; the second, a B. thuringiensis, 97-27, was isolated from a necrotic human wound. The B. cereus appears to be the closest anthracis relative sequenced to date. A core genome of over 3,900 genes was compiled for the Bacillus cereus group, including Banthracis. Comparative analysis of these two genomes with other members of the B. cereus group provides insight into the evolutionary relationships among these organisms. Evidence is presented that differential regulation modulates virulence, rather than simple acquisition of virulence factors. These genome sequences provide insight into the molecular mechanisms contributing to the host range and virulence of this group of organisms.

  1. In Vitro Ovicidal and Cestocidal Effects of Toxins from Bacillus thuringiensis on the Canine and Human Parasite Dipylidium caninum

    Directory of Open Access Journals (Sweden)

    Guadalupe Peña

    2013-01-01

    Full Text Available Bacillus thuringiensis is a gram-positive soil-dwelling bacterium that is commonly used as a biological pesticide. This bacterium may also be used for biological control of helminth parasites in domestic animals. In this study, we evaluated the possible ovicidal and cestocidal effects of a total protein extract of B. thuringiensis native strains on the zoonotic cestode parasite of dogs, Dipylidium caninum (D. caninum. Dose and time response curves were determined by coincubating B. thuringiensis proteins at concentration ranging from 100 to 1000 μg/mL along with 4000 egg capsules of D. caninum. Egg viability was evaluated using the trypan blue exclusion test. The lethal concentration of toxins on eggs was 600 μg/ml, and the best incubation time to produce this effect was 3 h. In the adult stage, the motility and the thickness of the tegument were used as indicators of damage. The motility was inhibited by 100% after 8 hours of culture compared to the control group, while the thickness of the cestode was reduced by 34%. Conclusively, proteins of the strain GP526 of B. thuringiensis directly act upon D. caninum showing ovicidal and cestocidal effects. Thus, B. thuringiensis is proposed as a potential biological control agent against this zoonosis.

  2. Evidence of two mechanisms involved in Bacillus thuringiensis israelensis decreased toxicity against mosquito larvae: Genome dynamic and toxins stability.

    Science.gov (United States)

    Elleuch, Jihen; Zribi Zghal, Raida; Lacoix, Marie Noël; Chandre, Fabrice; Tounsi, Slim; Jaoua, Samir

    2015-07-01

    Biopesticides based on Bacillus thuringiensis israelensis are the most used and most successful around the world. This bacterium is characterized by a dynamic genome able to win or lose genetic materials which leads to a decrease in its effectiveness. The detection of such phenomena is of great importance to monitor the stability of B. thuringiensis strains in industrial production processes of biopesticides. New local B. thuringiensis israelensis isolates were investigated. They present variable levels of delta-endotoxins production and insecticidal activities against Aedes aegypti larvae. Searching on the origin of this variability, molecular and biochemical analyses were performed. The obtained results describe two main reasons of the decrease of B. thuringiensis israelensis insecticidal activity. The first reason was the deletion of cry4Aa and cry10Aa genes from the 128-kb pBtoxis plasmid as evidenced in three strains (BLB124, BLB199 and BLB506) among five. The second was the early degradation of Cry toxins by proteases in larvae midgut mainly due to some amino acids substitutions evidenced in Cry4Ba and Cry11Aa δ-endotoxins detected in BLB356. Before biological treatment based on B. thuringiensis israelensis, the studies of microflore in each ecosystem have a great importance to succeed pest management programs. PMID:26070692

  3. Apparent digestibility coefficients and consumption of corn silage with and without Bt gene in sheep

    OpenAIRE

    Camila Memari Trava; Mauro Sartori Bueno; Geraldo Balieiro

    2012-01-01

    Corn silage is the most important preserved food for ruminants. The transgenic corn was inserted into the genetic code Bt gene (Bacillus thuringiensis) that expresses a toxic protein to caterpillars pests of maize, reducing production costs. To evaluate the varieties of plant corn silage DKB and AG with or without the Bt gene on the voluntary intake of DM (g/day) and apparent digestibility coefficients (CDA) of nutrients in sheep, the experiment was conducted at the Institute of Animal Scienc...

  4. Pest trade-offs in technology: reduced damage by caterpillars in Bt cotton benefits aphids

    OpenAIRE

    Hagenbucher, Steffen; Felix L Wäckers; Wettstein, Felix E.; Olson, Dawn M.; Ruberson, John R.; Romeis, Jörg

    2013-01-01

    The rapid adoption of genetically engineered (GE) plants that express insecticidal Cry proteins derived from Bacillus thuringiensis (Bt) has raised concerns about their potential impact on non-target organisms. This includes the possibility that non-target herbivores develop into pests. Although studies have now reported increased populations of non-target herbivores in Bt cotton, the underlying mechanisms are not fully understood. We propose that lack of herbivore-induced secondary metabolit...

  5. The susceptibility of Aedes aegypti populations displaying temephos resistance to Bacillus thuringiensis israelensis: a basis for management

    OpenAIRE

    Araújo, Ana Paula; Araujo Diniz, Diego Felipe; Helvecio, Elisama; de Barros, Rosineide Arruda; de Oliveira, Cláudia Maria Fontes; Ayres, Constância Flávia Junqueira; de Melo-Santos, Maria Alice Varjal; Regis, Lêda Narcisa; Silva-Filha, Maria Helena Neves Lobo

    2013-01-01

    Background Aedes aegypti is the vector of dengue virus, and its control is essential to prevent disease transmission. Among the agents available to control this species, biolarvicides based on Bacillus thuringiensis serovar israelensis (Bti) are an effective alternative to replace the organophosphate temephos for controlling populations that display resistance to this insecticide. The major goal of this study was to determine the baseline susceptibility of Brazilian Ae. aegypti populations to...

  6. Effect of ultraviolet and gamma rays on the activity of delta-endotoxin protein crystals of Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Sensitive bioassays with larvae of Pieris brassicae revealed no reduction of insecticidal activity as a result of severe gamma or ultraviolet irradiation of crystals of Bacillus thuringiensis (serotype V). The measured response was the inhibition of larval feeding by the crystals over exposure periods short enough for the presence of live spores not to influence feeding. The results were analyzed using a logistic model. (U.S.)

  7. Thuringiensin: A Thermostable Secondary Metabolite from Bacillus thuringiensis with Insecticidal Activity against a Wide Range of Insects

    OpenAIRE

    Xiaoyan Liu; Lifang Ruan; Donghai Peng; Lin Li; Ming Sun; Ziniu Yu

    2014-01-01

    Thuringiensin (Thu), also known as β-exotoxin, is a thermostable secondary metabolite secreted by Bacillus thuringiensis. It has insecticidal activity against a wide range of insects, including species belonging to the orders Diptera, Coleoptera, Lepidoptera, Hymenoptera, Orthoptera, and Isoptera, and several nematode species. The chemical formula of Thu is C22H32O19N5P, and it is composed of adenosine, glucose, phosphoric acid, and gluconic diacid. In contrast to the more frequently studied ...

  8. [The effect of a soil extract on the development of Bacillus thuringiensis and on its synthesis of an insecticidal endotoxin].

    Science.gov (United States)

    Dregval', O A; Cherevach, N V; Andrienko, O E; Vinnikov, A I

    1999-01-01

    Selection of effective and inexpensive nutrient medium for cultivation of entomopathogenic bacteria Bacillus thuringiensis was carried out. The medium with molasses [correction of patoka], corn extract and mineral salts has been chosen. Addition of a soil extract to the medium enhanced growth of microorganisms, increased the rate of culture development, the yield of spore-crystalline material and quantity of synthesized endotoxin. Apparently the strengthening effect belongs to humic substances contained in the soil extract. PMID:10565149

  9. Complete genome sequence of Bacillus thuringiensis CTC-A typical strain with high production of S-layer proteins.

    Science.gov (United States)

    Dong, Zhaoxia; Li, Junhua; Zheng, Jinshui; Geng, Ce; Peng, Donghai; Sun, Ming

    2016-02-20

    Bacillus thuringiensis CTC, which is identified as serotype H2, serovar. finitimus, is high production of S-layer protein. Due to the property of forming isoporous lattices on the whole cell surface, S-layer protein has been widely used in (nano) biotechnology, biomimetics, biomedicine, especially been employed for displaying many important active proteins. Here, we report the complete genome of strain CTC, which contains one circular chromosome and one linear plasmid.

  10. Transcriptional cellular responses in midgut tissue of Aedes aegypti larvae following intoxication with Cry11Aa toxin from Bacillus thuringiensis

    OpenAIRE

    Canton, Pablo Emiliano; Cancino-Rodezno, Angeles; Gill, Sarjeet S.; Soberón, Mario; Bravo, Alejandra

    2015-01-01

    Background Although much is known about the mechanism of action of Bacillus thuringiensis Cry toxins, the target tissue cellular responses to toxin activity is less understood. Previous transcriptomic studies indicated that significant changes in gene expression occurred during intoxication. However, most of these studies were done in organisms without a sequenced and annotated reference genome. A reference genome and transcriptome is available for the mosquito Aedes aegypti, and its importan...

  11. Low translocation of Bacillus thuringiensis israelensis to inner organs in mice after pulmonary exposure to commercial biopesticide

    DEFF Research Database (Denmark)

    Barfod, Kenneth Klingenberg; Ørum-Smidt, Lasse; Krogfelt, Karen A.;

    2010-01-01

    Translocation of viable cells from a Bacillus thuringiensis israelensis-based biopesticide to inner organs in a mouse model was studied. Mice were exposed to the originally formulated product through the lungs and gastrointestinal tract by intratracheal instillation. Colony forming units (CFU) were...... grown from lungs, caecum, spleen and liver on Bacillus cereus-specific agar (BCSA) after 24 h and finally determined to be biopesticide strain B. t. israelensis by large plasmid profile. No CFU were found in spleen or liver of the control mice or in any aerosol background or material. We have shown...

  12. Application of statistical experimental design for optimisation of bioinsecticides production by sporeless Bacillus thuringiensis strain on cheap medium

    Directory of Open Access Journals (Sweden)

    Saoussen Ben Khedher

    2013-09-01

    Full Text Available In order to overproduce bioinsecticides production by a sporeless Bacillus thuringiensis strain, an optimal composition of a cheap medium was defined using a response surface methodology. In a first step, a Plackett-Burman design used to evaluate the effects of eight medium components on delta-endotoxin production showed that starch, soya bean and sodium chloride exhibited significant effects on bioinsecticides production. In a second step, these parameters were selected for further optimisation by central composite design. The obtained results revealed that the optimum culture medium for delta-endotoxin production consists of 30 g L-1 starch, 30 g L-1 soya bean and 9g L-1 sodium chloride. When compared to the basal production medium, an improvement in delta-endotoxin production up to 50% was noted. Moreover, relative toxin yield of sporeless Bacillus thuringiensis S22 was improved markedly by using optimised cheap medium (148.5 mg delta-endotoxins per g starch when compared to the yield obtained in the basal medium (94.46 mg delta-endotoxins per g starch. Therefore, the use of optimised culture cheap medium appeared to be a good alternative for a low cost production of sporeless Bacillus thuringiensis bioinsecticides at industrial scale which is of great importance in practical point of view.

  13. 工程菌所产黑色素对苏云金芽孢杆菌毒力的保护作用%Protection of Bacillus thuringiensis toxicity by melanin from engineering bacteria

    Institute of Scientific and Technical Information of China (English)

    胡海艳; 黄雅莉; 梁志洲; 周世宁

    2011-01-01

    对基因工程菌Escherichia.Coli fss6所产黑色素进行了紫外保护研究.结果表明:添加黑色素的苏云金芽孢杆菌(Bt)经紫外照射后菌体的存活率是不加黑色素菌体的8倍;黑色素能有效保护Bt的晶体毒素蛋白免受紫外照射的降解;随着被照射菌体中黑色素浓度的增加,其杀虫活性也相应提高.%The protection of the ability of Bacillus thuringiensis against ultraviolet irradiation by melanin produced by engineering bacterium Escherichia coli fss6 was studied.Results showed that the survival ratio of the B.thuringiensis under the protection of melanin was 8 times higher than that of those without melanin after UV irradiation.Melanin could protect the toxin protein from UV degradation significantly, the insecticidal activity of B.thuringiensis was improved as the concentration of melanin increased.

  14. Mutually exclusive distribution of the sap and eag S-layer genes and the lytB/lytA cell wall hydrolase genes in Bacillus thuringiensis.

    Science.gov (United States)

    Soufiane, Brahim; Sirois, Marc; Côté, Jean-Charles

    2011-10-01

    Recently, two Bacillus thuringiensis strains were reported to synthesize parasporal inclusion bodies made not of the expected crystal (Cry) proteins but rather of the surface layer proteins (SLP) Sap (encoded by sap) and EA1 (encoded by eag), respectively. Whether the presence of the sap and eag genes is restricted to these two B. thuringiensis strains or ubiquitous in B. thuringiensis is unknown. We report here the distribution of the sap and eag genes in B. thuringiensis. Strains in the Bacillus cereus group were added for comparison purposes. We show that sap and eag are either present in tandem in 35% of the B. thuringiensis strains analysed and absent in 65% of the strains. When absent, a different tandem, the lytB/lytA cell wall hydrolase genes, is present. The distribution of the sap and eag S-layer and the lytB/lytA cell wall hydrolase genes is not species-specific in B. thuringiensis, B. cereus and Bacillus weihenstephanensis. Bacillus anthracis and Bacillus mycoides harbor sap and eag but not lytB/lytA. The sap, eag and lytB/lytA genes were absent in Bacillus pseudomycoides. Clearly, the distribution of the sap and eag S-layer and the lytB/lytA cell wall hydrolase genes in B. thuringiensis and in the Bacillus cereus group is mutually exclusive. We also showed that two genes involved in cell wall metabolism, csaA and csaB, are present not only upstream of the sap and eag S-layer genes, but also upstream of the lytB/lytA tandem in strains where sap and eag are absent. Bootstrapped neighbor-joining trees were inferred from the translated amino acid sequences of sap, eag and the tandem lytB/lytA, respectively.

  15. Determinación de la presencia de genes cry en cepas nativas de Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Chaparro Giraldo Luis Alejandro

    2004-12-01

    Full Text Available A partir de dos tipos de muestras, suelo asociado a cultivos de papa (Solanum tuberosum y polvo asociado a sitios de almacenamiento de granos (cereales colectado en las centrales de Corabastos y Paloquemao en Bogotá, se aislaron 88 cepas nativas de Bacillus thuringiensis bacilo
    grampositivo patógeno de insectos plaga de cultivos agrícolas. De las 88 cepas obtenidas 57 de ellas se escogieron para separarlas posteriormente mediante subcultivos en virtud a sus características fenotípicas al interior de la colonia llevando esto a obtener un número de 145 cepas nuevas para un total de 176 cepas de B. thuringiensis caracterizadas  morfológicamente y por su patrón de formas de las ICPs mediante microscopía de contraste de fases, y de las proteínas Cry arrojado por los perfiles de SDS-PAGE; en el total de cepas hubo presencia predominante de ICPs con forma romboide acompañadas por al menos otras dos formas distintas, y mostraron perfiles electroforéticos de proteínas de peso molecular entre el rango de 130, 116 y 60 kDa. Del total de cepas B. thuringiensis nativas aisladas en este estudio, 59 (30 de suelos y 29 de polvo fueron analizadas mediante la técnica PCR, encontrando que 100% de ellas son portadoras de alguno de los seis tipos de genes cry1 estudiados cry1Aa5 (71,2%, cry1Ab9 (66,1%, cry1Ac5 (45,8%, cry1Ba1 (39%, cry1Ca3 (49,1%, y cry1Da1 (71,2%; adicionalmente se observó la presencia de productos génicos inespecíficos, posiblemente nuevos, amplificados por la PCR y relacionados con los genes cry1C (55,9%, cry1B (30,5% y otros genes cry1 no estudiados por este método en al menos el 50% de las cepas estudiadas. De acuerdo con estos resultados se estableció un total de 19 genotipos diferentes según los genes cry1 estudiados, presentados por las cepas nativas en estudio determinando que estos son diferentes en composición genética según la fuente de procedencia del aislamiento, permitiendo establecer estrecha correlaci

  16. Structural studies of δ-endotoxin Cry 1 C from Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Full text. The δ-endotoxins are a family of crystal protein by a soil bacterium, Bacillus thuringiensis. The study of these proteins has been of great interest due to their highly specific activity against insects of the orders Lepidoptera, Diptera and Coleoptera. Thus, the δa-endotoxins have been used for more than two decades as biological insecticides to control agricultural pests and, more recently, insects vectors of some diseases. The knowledge of their three-dimensional structures is very important to understand their mechanism of action and their high specificity. To date, the structure of only three proteins of the δ-endotoxins family have been reported: Cry3A, a coleopteran-specific toxin (beetle toxin)1, Cry1Aa, a lepidopteran-specific toxin (butterfly toxin)2 and CytB, a dipteran-specific toxin (mosquito toxin)3 Our work is aimed at the determination of the crystallographic structure by X-ray diffraction of δ-endotoxin Cry1C, also toxic to insects of the Lepidoptera order but towards families other than those affected by Cry1Aa. A comparison between these structures may lead to important conclusions about the reasons for the specificity and would allow the planning of mutants with more efficient activity. The cry1C gene was cloned into an adequate vector and expressed in an acrystalliferous B. thuringiensis strain. After cell culture and sporulation the microcrystals of Cry1C were separated by ultra-centrifugation in sacharose. The protoxin inclusion bodies were activated by commercial trpsin and the protease-resistant core was purified by anion-exchange chromatography. Crystallization experiments are being conducted in order to obtain single crystals suitable for diffraction measurements. We intend to use the Protein Crystallograph Station of the LNLS to collect data as soon as it is available and we have suitable crystals. (author)

  17. Structural studies of {delta}-endotoxin Cry 1 C from Bacillus thuringiensis

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, B.G.; Garratt, R.C.; Oliva, G. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica; Lemos, M.V.F. [UNESP, Jaboticabal, SP (Brazil). Dept. de Biologia Aplicada Agropecuaria; Arantes, O.M.N. [Universidade Estadual de Londrina, PR (Brazil). Dept. de Biologia Geral

    1996-12-31

    Full text. The {delta}-endotoxins are a family of crystal protein by a soil bacterium, Bacillus thuringiensis. The study of these proteins has been of great interest due to their highly specific activity against insects of the orders Lepidoptera, Diptera and Coleoptera. Thus, the {delta}a-endotoxins have been used for more than two decades as biological insecticides to control agricultural pests and, more recently, insects vectors of some diseases. The knowledge of their three-dimensional structures is very important to understand their mechanism of action and their high specificity. To date, the structure of only three proteins of the {delta}-endotoxins family have been reported: Cry3A, a coleopteran-specific toxin (beetle toxin){sup 1}, Cry1Aa, a lepidopteran-specific toxin (butterfly toxin){sup 2} and CytB, a dipteran-specific toxin (mosquito toxin){sup 3} Our work is aimed at the determination of the crystallographic structure by X-ray diffraction of {delta}-endotoxin Cry1C, also toxic to insects of the Lepidoptera order but towards families other than those affected by Cry1Aa. A comparison between these structures may lead to important conclusions about the reasons for the specificity and would allow the planning of mutants with more efficient activity. The cry1C gene was cloned into an adequate vector and expressed in an acrystalliferous B. thuringiensis strain. After cell culture and sporulation the microcrystals of Cry1C were separated by ultra-centrifugation in sacharose. The protoxin inclusion bodies were activated by commercial trpsin and the protease-resistant core was purified by anion-exchange chromatography. Crystallization experiments are being conducted in order to obtain single crystals suitable for diffraction measurements. We intend to use the Protein Crystallograph Station of the LNLS to collect data as soon as it is available and we have suitable crystals. (author) 3 refs.

  18. Long lasting persistence of Bacillus thuringiensis Subsp. israelensis (Bti in mosquito natural habitats.

    Directory of Open Access Journals (Sweden)

    Mathieu Tilquin

    Full Text Available BACKGROUND: The detrimental effects of chemical insecticides on the environment and human health have lead to the call for biological alternatives. Today, one of the most promising solutions is the use of spray formulations based on Bacillus thuringiensis subsp. israelensis (Bti in insect control programs. As a result, the amounts of Bti spread in the environment are expected to increase worldwide, whilst the common belief that commercial Bti is easily cleared from the ecosystem has not yet been clearly established. METHODOLOGY/MAIN FINDINGS: In this study, we aimed to determine the nature and origin of the high toxicity toward mosquito larvae found in decaying leaf litter collected in several natural mosquito breeding sites in the Rhône-Alpes region. From the toxic fraction of the leaf litter, we isolated B. cereus-like bacteria that were further characterized as B. thuringiensis subsp. israelensis using PCR amplification of specific toxin genes. Immunological analysis of these Bti strains showed that they belong to the H14 group. We finally used amplified length polymorphism (AFLP markers to show that the strains isolated from the leaf litter were closely related to those present in the commercial insecticide used for field application, and differed from natural worldwide genotypes. CONCLUSIONS/SIGNIFICANCE: Our results raise the issue of the persistence, potential proliferation and environmental accumulation of human-spread Bti in natural mosquito habitats. Such Bti environmental persistence may lengthen the exposure time of insects to this bio-insecticide, thereby increasing the risk of resistance acquisition in target insects, and of a negative impact on non-target insects.

  19. Bacillus thuringiensis营养期杀虫蛋白Vip3与其转基因植物研究进展%Bacillus thuringiensis Insecticidal Protein Vip3 at Nutrient Stage and Research Progress of Its Transgenic Plants

    Institute of Scientific and Technical Information of China (English)

    张安红; 罗晓丽; 肖娟丽; 王志安; 吴家和

    2012-01-01

    苏云金芽孢杆菌(Bacillus thuringiensis,Bt)是目前应用最多的生物杀虫剂.它能够产生多种杀虫因子,其中,最主要的是杀虫晶体蛋白(Insecticidal Crystal Proteins,ICPs)和营养期杀虫蛋白(Vegetative insecticidal protein,Vip).当前,大部分商业化利用的转基因作物均为杀虫晶体蛋白类,随着这些转基因作物种植面积的扩大,害虫对这些较为单一的杀虫蛋白产生抗性已成为一个严峻的问题.Vip3是Vip杀虫蛋白中的一类,不形成蛋白晶体,和ICPs在进化上没有同源性;其对鳞翅目、鞘翅目和同翅目等害虫具有毒杀作用,抗虫谱较广.目前,已经把Vip3基因导入了水稻、玉米和棉花等多种作物中,为作物抗虫育种、延缓害虫产生抗性和减少作物产量损失等带来新的前景.%Bacillus thuringiensis(Bt)is a bacteria that the most widely used as biological insecticides. It could produce several insecticidal factors, including Insecticidal Crystal Proteins(ICPs), and Vegetative insecticidal proteins (Vip). Most of the insecticidal proteins in current commercial transgenic crops are ICPs. As the transgenic crop area is expanding, the resistance of insect pests to the ICPs has become a serious problem. Vip3. A type of Vip, does not form protein crystals, and shares no sequence homology with the ICPs. Vip3 exhibits a broader insecticidal spectrum,including Lepidopteran, Coleopteran and Homopteran insects. At present, the genetically modified crops with Vip3 gene, such as rice, corn and cotton, have been developed. When the transgenic crops with Vip3 are commercially available, Vip3 would play a vital role in crop insect-resistance breeding, resistance delay of insect to ICPs and reduce crop yield loss.

  20. A Bacillus thuringiensis isolation method utilizing a novel stain, low selection and high throughput produced atypical results

    Directory of Open Access Journals (Sweden)

    Ammons David

    2005-09-01

    Full Text Available Abstract Background Bacillus thuringiensis is a bacterium known for producing protein crystals with insecticidal properties. These toxins are widely sought after for controlling agricultural pests due to both their specificity and their applicability in transgenic plants. There is great interest in isolating strains with improved or novel toxin characteristics, however isolating B. thuringiensis from the environment is time consuming and yields relatively few isolates of interest. New approaches to B. thuringiensis isolation have been, and continue to be sought. In this report, candidate B. thuringiensis isolates were recovered from environmental samples using a combination of a novel stain, high throughput and reduced selection. Isolates were further characterized by SDS-PAGE, light microscopy, PCR, probe hybridization, and with selected isolates, DNA sequencing, bioassay or Electron Microscopy. Results Based on SDS-PAGE patterns and the presence of cry genes or a crystal, 79 candidate, non-clonal isolates of B. thuringiensis were identified from 84 samples and over 10,000 colonies. Although only 16/79 (20% of the isolates showed DNA homology by Probe Hybridization or PCR to common cry genes, initial characterization revealed a surprisingly rich library that included a putative nematocidal gene, a novel filamentous structure associated with a crystal, a spore with spikes originating from a very small parasporal body and isolates with unusually small crystals. When compared to reports of other screens, this screen was also atypical in that only 3/79 isolates (3.8% produced a bipyramidal crystal and 24/79 (30% of the isolates' spores possessed an attached, dark-staining body. Conclusion Results suggest that the screening methodology adopted in this study might deliver a vastly richer and potentially more useful library of B. thuringiensis isolates as compared to that obtained with commonly reported methodologies, and that by extension