WorldWideScience

Sample records for bacillus subtilis spores

  1. Triple fixation of Bacillus subtilis dormant spores.

    OpenAIRE

    Kozuka, S; Tochikubo, K

    1983-01-01

    A triple-fixation method with a sequential application of 5% glutaraldehyde, 1% osmium tetroxide, and 2% potassium permanganate gave superior preservation of the ultrastructure of Bacillus subtilis dormant spores with a thick spore coat.

  2. Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores

    Science.gov (United States)

    Wood, Joseph P.; Meyer, Kathryn M.; Kelly, Thomas J.; Choi, Young W.; Rogers, James V.; Riggs, Karen B.; Willenberg, Zachary J.

    2015-01-01

    There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially. PMID:26372011

  3. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    Science.gov (United States)

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  4. DECONTAMINATION ASSESSMENT OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS, AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACTS USING A HYDROGEN PERIOXIDE GAS GENERATOR

    Science.gov (United States)

    Aims: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Methods and Results: B. anthracis, B. subtilis, and G. Stearothermophilus spores were dried on seven...

  5. Application of gaseous ozone for inactivation of Bacillus subtilis spores.

    Science.gov (United States)

    Aydogan, Ahmet; Gurol, Mirat D

    2006-02-01

    The effectiveness of gaseous ozone (O3) as a disinfectant was tested on Bacillus subtilis spores, which share the same physiological characteristics as Bacillus anthracis spores that cause the anthrax disease. Spores dried on surfaces of different carrier material were exposed to O3 gas in the range of 500-5000 ppm and at relative humidity (RH) of 70-95%. Gaseous O3 was found to be very effective against the B. subtilis spores, and at O3 concentrations as low as 3 mg/L (1500 ppm), approximately 3-log inactivation was obtained within 4 hr of exposure. The inactivation curves consisted of a short lag phase followed by an exponential decrease in the number of surviving spores. Prehydration of the bacterial spores has eliminated the initial lag phase. The inactivation rate increased with increasing O3 concentration but not >3 mg/L. The inactivation rate also increased with increase in RH. Different survival curves were obtained for various surfaces used to carry spores. Inactivation rates of spores on glass, a vinyl floor tile, and office paper were nearly the same. Whereas cut pile carpet and hardwood flooring surfaces resulted in much lower inactivation rates, another type of carpet (loop pile) showed significant enhancement in the inactivation of the spores. PMID:16568801

  6. Vacuum-induced Mutations In Bacillus Subtilis Spores

    Science.gov (United States)

    Munakata, N.; Maeda, M.; Hieda, K.

    During irradiation experiments with vacuum-UV radiation using synchrotron sources, we made unexpected observation that Bacillus subtilis spores of several recombination-deficient strains lost colony-forming ability by the exposure to high vacuum alone. Since this suggested the possible injury in spore DNA, we looked for mutation induction using the spores of strains HA101 (wild-type repair capability) and TKJ6312 (excision and spore repair deficient) that did not lose survivability. It was found that the frequency of nalidixic-acid resistant mutation increased several times in both of these strains by the exposure to high vacuum (10e-4 Pa after 24 hours). The analysis of sequence changes in gyrA gene showed that the majority of mutations carried a unique allele (gyrA12) of tandem double-base substitutions from CA to TT. The observation has been extended to rifampicin resistant mutations, the majority of that carried substitutions from CA to TT or AT in rpoB gene. On the other hand, when the spores of strains PS578 and PS2319 (obtained from P. Setlow) that are defective in a group of small acidic proteins (alpha/beta-type SASP) were similarly treated, none of the mutants analyzed carried such changes. This suggests that the unique mutations might be induced by the interaction of small acidic proteins with spore DNA under forced dehydration. The results indicate that extreme vacuum causes severe damage in spore DNA, and provide additional constraint to the long-term survival of bacterial spores in the space environment.

  7. Mutagenesis of Bacillus subtilis spores exposed to simulated space environment

    Science.gov (United States)

    Munakata, N.; Natsume, T.; Takahashi, K.; Hieda, K.; Panitz, C.; Horneck, G.

    Bacterial spores can endure in a variety of extreme earthly environments. However, some conditions encountered during the space flight could be detrimental to DNA in the spore, delimiting the possibility of transpermia. We investigate the genetic consequences of the exposure to space environments in a series of preflight simulation project of EXPOSE. Using Bacillus subtilis spores of repair-proficient HA101 and repair-deficient TKJ6312 strains, the mutations conferring resistance to rifampicin were detected, isolated and sequenced. Most of the mutations were located in a N-terminal region of the rpoB gene encoding RNA polymerase beta-subunit. Among several potentially mutagenic factors, high vacuum, UV radiation, heat, and accelerated heavy ions induced mutations with varying efficiencies. A majority of mutations induced by vacuum exposure carried a tandem double-base change (CA to TT) at a unique sequence context of TCAGC. Results indicate that the vacuum and high temperature may act synergistically for the induction of mutations.

  8. Protective Role of Spore Structural Components in Determining Bacillus subtilis Spore Resistance to Simulated Mars Surface Conditions

    OpenAIRE

    Moeller, Ralf; Schuerger, Andrew C.; Reitz, Günther; Nicholson, Wayne L.

    2012-01-01

    Spores of wild-type and mutant Bacillus subtilis strains lacking various structural components were exposed to simulated Martian atmospheric and UV irradiation conditions. Spore survival and mutagenesis were strongly dependent on the functionality of all of the structural components, with small acid-soluble spore proteins, coat layers, and dipicolinic acid as key protectants.

  9. Detection of Anthrax Simulants with Microcalorimetric Spectroscopy: Bacillus subtilis and Bacillus cereus Spores

    Science.gov (United States)

    Arakawa, Edward T.; Lavrik, Nickolay V.; Datskos, Panos G.

    2003-04-01

    Recent advances in the development of ultrasensitive micromechanical thermal detectors have led to the advent of novel subfemtojoule microcalorimetric spectroscopy (CalSpec). On the basis of principles of photothermal IR spectroscopy combined with efficient thermomechanical transduction, CalSpec provides acquisition of vibrational spectra of microscopic samples and absorbates. We use CalSpec as a method of identifying nanogram quantities of biological micro-organisms. Our studies focus on Bacillus subtilis and Bacillus cereus spores as simulants for Bacillus anthracis spores. Using CalSpec, we measured IR spectra of B. subtilis and B. cereus spores present on surfaces in nanogram quantities (approximately 100 -1000 spores). The spectra acquired in the wavelength range of 690 -4000 cm-1 (2.5 -14.5 μm) contain information-rich vibrational signatures that reflect the different ratios of biochemical makeup of the micro-organisms. The distinctive features in the spectra obtained for the two types of micro-organism can be used to distinguish between the spores of the Bacillus family. As compared with conventional IR and Fourier-transform IR microscopic spectroscopy techniques, the advantages of the present technique include significantly improved sensitivity (at least a full order of magnitude), absence of expensive IR detectors, and excellent potential for miniaturization.

  10. Live-imaging of Bacillus subtilis spore germination and outgrowth

    NARCIS (Netherlands)

    R. Pandey

    2014-01-01

    Spores of Gram-positive bacteria such as Bacillus and Clostridium cause huge economic losses to the food industry. In food products, spores survive under food preservation conditions and subsequent germination and outgrowth eventually causes food spoilage. Therefore efforts are being made to elimina

  11. Live-imaging of Bacillus subtilis spore germination and outgrowth

    OpenAIRE

    Pandey, R

    2014-01-01

    Spores of Gram-positive bacteria such as Bacillus and Clostridium cause huge economic losses to the food industry. In food products, spores survive under food preservation conditions and subsequent germination and outgrowth eventually causes food spoilage. Therefore efforts are being made to eliminate or inactivate these bacterial spores in foods. In this regard food industry uses different preservation methods such as thermal-treatment, weak acids, antimicrobial compounds etc. Complete therm...

  12. Investigating the Inactivation Mechanism of Bacillus subtilis Spores by High Pressure CO2.

    Science.gov (United States)

    Rao, Lei; Zhao, Feng; Wang, Yongtao; Chen, Fang; Hu, Xiaosong; Liao, Xiaojun

    2016-01-01

    The objective of this study was to investigate the inactivation mechanism of Bacillus subtilis spores by high pressure CO2 (HPCD) processing. The spores of B. subtilis were subjected to heat at 0.1 MPa or HPCD at 6.5-20 MPa, and 64-86°C for 0-120 min. The germination, the permeability of inner membrane (IM) and cortex, the release of pyridine-2, 6-dicarboxylic acid (DPA), and changes in the morphological and internal structures of spores were investigated. The HPCD-treated spores did not lose heat resistance and their DPA release was lower than the inactivation, suggesting that spores did not germinate during HPCD. The flow cytometry analysis suggested that the permeability of the IM and cortex of HPCD-treated spores was increased. Furthermore, the DPA of the HPCD-treated spores were released in parallel with their inactivation and the fluorescence photomicrographs showed that these treated spores were stained by propidium iodide, ensuring that the permeability of IM of spores was increased by HPCD. The scanning electron microscopy photomicrographs showed that spores were crushed into debris or exhibited a hollowness on the surface, and the transmission electron microscopy photomicrographs exhibited an enlarged core, ruptured and indistinguishable IM and a loss of core materials in the HPCD-treated spores, indicating that HPCD damaged the structures of the spores. These findings suggested that HPCD inactivated B. subtilis spores by directly damaging the structure of the spores, rather than inducing germination of the spores. PMID:27656175

  13. Comparative Study of Pressure-Induced Germination of Bacillus subtilis Spores at Low and High Pressures

    OpenAIRE

    Wuytack, Elke Y.; Boven, Steven; Michiels, Chris W.

    1998-01-01

    We have studied pressure-induced germination of Bacillus subtilis spores at moderate (100 MPa) and high (500 to 600 MPa) pressures. Although we found comparable germination efficiencies under both conditions by using heat sensitivity as a criterion for germination, the sensitivity of pressure-germinated spores to some other agents was found to depend on the pressure used. Spores germinated at 100 MPa were more sensitive to pressure (>200 MPa), UV light, and hydrogen peroxide than were those g...

  14. Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments

    OpenAIRE

    Nagler, Katja; Setlow, Peter; Reineke, Kai; Driks, Adam; Moeller, Ralf

    2015-01-01

    The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the...

  15. Effects of Electrolyzed Oxidizing Water on Inactivation of Bacillus subtilis and Bacillus cereus Spores in Suspension and on Carriers.

    Science.gov (United States)

    Zhang, Chunling; Li, Baoming; Jadeja, Ravirajsinh; Hung, Yen-Con

    2016-01-01

    Spores of some Bacillus species are responsible for food spoilage and foodborne disease. These spores are highly resistant to various interventions and cooking processes. In this study, the sporicidal efficacy of acidic electrolyzed oxidizing (EO) water (AEW) and slightly acidic EO water (SAEW) with available chlorine concentration (ACC) of 40, 60, 80, 100, and 120 mg/L and treatment time for 1, 2, 3, 4, 5, and 6 min were tested on Bacillus subtilis and Bacillus cereus spores in suspension and on carrier with or without organics. The reduction of spore significantly increased with increasing ACC and treatment time (P waters containing 120 mg/L ACC, while only SAEW at 120 mg/L and 2 min treatment achieved >6 log reductions of B. subtilis spore. Both types of EO water with ACC of 60 mg/L and 6 min treatment achieved a reduction of B. subtilis and B. cereus spores to nondetectable level. EO water with ACC of 80 mg/L and treatment time of 3 min on carrier test without organics addition resulted in reductions of B. subtilis spore to nondetectable level. But, addition of 0.3% organics on carrier decreased the inactivation effect of EO water. This study indicated that EO water was highly effective in inactivation of B. subtilis and B. cereus spores in suspension or on carrier, and therefore, rendered it as a promising disinfectant to be applied in food industry.

  16. Bacillus subtilis spores as vaccine adjuvants: further insights into the mechanisms of action.

    Directory of Open Access Journals (Sweden)

    Renata Damásio de Souza

    Full Text Available Bacillus subtilis spores have received growing attention regarding potential biotechnological applications, including the use as probiotics and in vaccine formulations. B. subtilis spores have also been shown to behave as particulate vaccine adjuvants, promoting the increase of antibody responses after co-administration with antigens either admixed or adsorbed on the spore surface. In this study, we further evaluated the immune modulatory properties of B. subtilis spores using a recombinant HIV gag p24 protein as a model antigen. The adjuvant effects of B. subtilis spores were not affected by the genetic background of the mouse lineage and did not induce significant inflammatory or deleterious effects after parenteral administration. Our results demonstrated that co-administration, but not adsorption to the spore surface, enhanced the immunogenicity of that target antigen after subcutaneous administration to BALB/c and C57BL/6 mice. Spores promoted activation of antigen presenting cells as demonstrated by the upregulation of MHC and CD40 molecules and enhanced secretion of pro-inflammatory cytokines by murine dendritic cells. In addition, in vivo studies indicated a direct role of the innate immunity on the immunomodulatory properties of B. subtilis spores, as demonstrated by the lack of adjuvant effects on MyD88 and TLR2 knockout mouse strains.

  17. CotC-CotU Heterodimerization during Assembly of the Bacillus subtilis Spore Coat▿

    OpenAIRE

    Isticato, Rachele; Pelosi, Assunta; Zilhão, Rita, 1959-; Baccigalupi, Loredana; Henriques, Adriano O.; De Felice, Maurilio; Ricca, Ezio

    2007-01-01

    We report evidence that CotC and CotU, two previously identified components of the Bacillus subtilis spore coat, are produced concurrently in the mother cell chamber of the sporulating cell under the control of σK and GerE and immediately assembled around the forming spore. In the coat, the two proteins interact to form a coat component of 23 kDa. The CotU-CotC interaction was not detected in two heterologous hosts, suggesting that it occurs only in B. subtilis. Monomeric forms of both CotU a...

  18. [Comparison of susceptibility of spores of Bacillus subtilis and Czech strains of Clostridium difficile to disinfectants].

    Science.gov (United States)

    Votava, M; Slitrová, B

    2009-02-01

    An important factor in the prevention of nosocomial outbreaks caused by Clostridium difficile ribotype 027 is the disinfection of a patient environment by reliable sporicidal disinfectants. Sporicidal activity of particular agents is tested on spores of Bacillus subtilis. Questions are brought up if the disinfectant which works on B. subtilis spores will be equally effective on the spores of C. difficile. Therefore we have compared the effects of five disinfectants available on the Czech market on the spores of collection strains of both microbes and on the spores of ten C. difficile field strains isolated from feces of hospitalized patients. The effective substances were: disinfectant No. 1 chloramine B, No. 2 chlorine dioxide, No. 3 formaldehyde and ethan-2-dion, No. 4 peracetic and acetic acids and hydrogen peroxide, No. 5 ethanol and propan-2-ol. The testing was performed using the dilution neutralization method according to (SN EN 13704, the agent reducing the number of spores by more than 3 orders was considered sporicidal. In addition to the standard time 60 min a 15-minutes exposition was used and the effect was tested also under the protein burden. Disinfectant No. 1 showed better effect on the C. difficile than B. subtilis spores, even in lower (1%) concentration. Similarly, the sensitivity of the C. difficile spores to disinfectants No. 2 and 3 was somewhat higher. The sporicidity of the disinfectant No. 4 was so high that it reduced the number of spores of all strains within 15 minutes by more than 4 orders; possible difference in the susceptibility of spores was not observed. Whereas the disinfectant No. 5 was not reliably effective on the spores of B. subtilis, surprisingly it showed the sporicidal effect on the spores of field C. difficile strains. We conclude that spores of field C. difficile strains in particular turned out to be more sensitive to disinfectants than the spores of the collection strain ofB. subtilis. Therefore B. subtilis remains

  19. Effect of ethanol perturbation on viscosity and permeability of an inner membrane in Bacillus subtilis spores.

    Science.gov (United States)

    Loison, Pauline; Gervais, Patrick; Perrier-Cornet, Jean-Marie; Kuimova, Marina K

    2016-09-01

    In this work, we investigated how a combination of ethanol and high temperature (70°C), affect the properties of the inner membrane of Bacillus subtilis spores. We observed membrane permeabilization for ethanol concentrations ≥50%, as indicated by the staining of the spores' DNA by the cell impermeable dye Propidium Iodide. The loss of membrane integrity was also confirmed by a decrease in the peak corresponding to dipicolinic acid using infrared spectroscopy. Finally, the spore refractivity (as measured by phase contrast microscopy) was decreased after the ethanol-heat treatment, suggesting a partial rehydration of the protoplast. Previously we have used fluorescent lifetime imaging microscopy (FLIM) combined with the fluorescent molecular rotor Bodipy-C12 to study the microscopic viscosity in the inner membrane of B. subtilis spores, and showed that at normal conditions it is characterized by a very high viscosity. Here we demonstrate that the ethanol/high temperature treatment led to a decrease of the viscosity of the inner membrane, from 1000cP to 860cP for wild type spores at 50% of ethanol. Altogether, our present work confirms the deleterious effect of ethanol on the structure of B. subtilis spores, as well as demonstrates the ability of FLIM - Bodipy-C12 to measure changes in the microviscosity of the spores upon perturbation. PMID:27267704

  20. Improvement of Biological Indicators by Uniformly Distributing Bacillus subtilis Spores in Monolayers To Evaluate Enhanced Spore Decontamination Technologies.

    Science.gov (United States)

    Raguse, Marina; Fiebrandt, Marcel; Stapelmann, Katharina; Madela, Kazimierz; Laue, Michael; Lackmann, Jan-Wilm; Thwaite, Joanne E; Setlow, Peter; Awakowicz, Peter; Moeller, Ralf

    2016-04-01

    Novel decontamination technologies, including cold low-pressure plasma and blue light (400 nm), are promising alternatives to conventional surface decontamination methods. However, the standardization of the assessment of such sterilization processes remains to be accomplished. Bacterial endospores of the genera Bacillus and Geobacillus are frequently used as biological indicators (BIs) of sterility. Ensuring standardized and reproducible BIs for reliable testing procedures is a significant problem in industrial settings. In this study, an electrically driven spray deposition device was developed, allowing fast, reproducible, and homogeneous preparation of Bacillus subtilis 168 spore monolayers on glass surfaces. A detailed description of the structural design as well as the operating principle of the spraying device is given. The reproducible formation of spore monolayers of up to 5 × 10(7) spores per sample was verified by scanning electron microscopy. Surface inactivation studies revealed that monolayered spores were inactivated by UV-C (254 nm), low-pressure argon plasma (500 W, 10 Pa, 100 standard cubic cm per min), and blue light (400 nm) significantly faster than multilayered spores were. We have thus succeeded in the uniform preparation of reproducible, highly concentrated spore monolayers with the potential to generate BIs for a variety of nonpenetrating surface decontamination techniques. PMID:26801572

  1. Decrease in spermidine content during logarithmic phase of cell growth delays spore formation of Bacillus subtilis.

    Science.gov (United States)

    Ishii, I; Takada, H; Terao, K; Kakegawa, T; Igarashi, K; Hirose, S

    1994-11-01

    Bacillus subtilis 168M contained a large amount of spermidine during the logarithmic phase of growth, but the amount decreased drastically during the stationary phase. The extracts, prepared from B. subtilis cells harvested in the logarithmic phase, contained activity of arginine decarboxylase (ADC) rather than the activity of ornithine decarboxylase. In the presence of alpha-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of ADC, the amount of spermidine in B. subtilis during the logarithmic phase decreased to about 25% of the control cells. Under these conditions, spore formation of B. subtilis 168M delayed greatly without significant inhibition of cell growth. The decrease in spermidine content in the logarithmic phase rather than in the stationary phase was involved in the delay of sporulation. Electron microscopy of cells at 24 hrs. of culture confirmed the delay of spore formation by the decrease of spermidine content. Furthermore, the delay of sporulation was negated by the addition of spermidine. These data suggest that a large amount of spermidine existing during the logarithmic phase plays an important role in the sporulation of B. subtilis.

  2. Disinfection and regrowth potential of bacillus subtilis spores by ozone, ultraviolet rays and gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Yeon; Lee, O Mi; Kim, Tae Hun; Lee, Myun Joo; Yu, Seung Ho [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-06-15

    Chlorination has been the most commonly adopted disinfection process for the treatment of drinking water. However, Cryptosporidium parvum oocysts and Giardia lamblia cysts were not treated effectively by the common chlorine-based disinfectants. Additionally the regrowth of pathogenic microorganisms is associated with hygienic and aesthetic problems for the consumers of drinking water. Study on alternative disinfection processes such as ozone, UV-C, VUV and gamma irradiation were conducted. Bacillus subtilis spores have been used as a surrogate microorganism for Cryptosporidium parvum oocysts and Giardia lamblia cyst. Inactivation efficiency by ozone was from 30% to 96% within the range of 5 min to 120 min exposures. Inactivation efficiencies by UV-C and VUV were 95.18%, 95.07% at 30 sec, respectively. Inactivation efficiency at gamma irradiation dose of 2 kGy was 99.4%. Microbial regrowths after ozone, UV-C, VUV and gamma irradiation disinfections were also evaluated for 4 days. Bacillus subtilis spores after ozone treatment for 120 min exposure at the rate of 1.68 mg {center_dot} min{sup -1} showed 96.02% disinfection efficiency and significant microbial regrowth. Bacillus subtilis spores after UV-C (99.25% disinfection efficiency) and VUV (99.67% disinfection efficiency) treatments for 5 min showed gradual regrowth. However, inactivation efficiency of gamma irradiation at dose of 1 kGy was 98.8% and the disinfected sample showed no microbial regrowth for 4 days. Therefore, gamma irradiation is the most effective process for the disinfection of pathogenic microorganisms such as oocysts of protozoan parasites among four disinfection process.

  3. Roles of Small, Acid-Soluble Spore Proteins and Core Water Content in Survival of Bacillus subtilis Spores Exposed to Environmental Solar UV Radiation▿

    OpenAIRE

    Moeller, Ralf; Setlow, Peter; Reitz, Günther; Nicholson, Wayne L.

    2009-01-01

    Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water conte...

  4. Investigating synergism during sequential inactivation of Bacillus subtilis spores with several disinfectants.

    Science.gov (United States)

    Cho, Min; Kim, Jae-Hong; Yoon, Jeyong

    2006-08-01

    The sequential application of ozone, chlorine dioxide, or UV followed by free chlorine was performed to investigate the synergistic inactivation of Bacillus subtilis spores. The greatest synergism was observed when chlorine dioxide was used as a primary disinfectant followed by secondary disinfection with free chlorine. A lesser synergistic effect was observed when ozone was used as the primary disinfectant, but no synergism was observed when UV was used as the primary disinfectant. When free chlorine was used as the primary disinfectant (i.e., sequential application in the reverse order), the synergistic effect was shown only when chlorine dioxide was applied as the secondary disinfectant. The synergistic effect observed could be related to damage to the spore coat during primary disinfection, suggested by the loss of proteins from spores during disinfectant treatment. The greatest synergism observed by the chlorine dioxide/free chlorine pair suggested that common reaction sites might exist for these disinfectants. The concept of percent synergistic effect was introduced to quantitatively compare the extent of synergistic effects in the sequential disinfection processes.

  5. Inactivation, mutation induction and repair in Bacillus subtilis spores irradiated with heavy ions

    Science.gov (United States)

    Horneck, G.; Bücker, H.

    Studies on the response of bacterial spores to accelerated heavy ions (HZE particles) help in understanding problems of space radiobiology and exobiology. Layers of spores of Bacillus subtilis strains, differing in repair capabilities, were irradiated with accelerated boron, carbon and neon ions of linear energy transfer (LET) values up to 14000 MeV cm2/g. Inactivation as measured by loss of colony forming ability and induction of mutations as measured by reversion to histidine prototrophy and resistance to 150 μg/ml sodium azide were tested, as well as the influence of repair processes on these effects. For inactivation, the cross-sectional values σ plotted as a function of LET follow a saturation curve. The plateau, which is reached around a LET of 2000 MeV cm2/g, occurs at 2.5 × 10-9 cm2, a value in good agreement with the dimensions of the spore protoplast. Lethal damage produced at LET values < 2000 MeV cm2/g is reparable. Recombination repair is more effective than excision repair. At higher LET values, lethal damage could not be reconstituted by the repair mechanisms studied. In addition, at these high LET values, the frequency of induced mutations was drastically decreased. The data support the assumption of at least two qualitatively different types of lesion, depending on the LET of the affecting heavy ion.

  6. Decontamination of Bacillus subtilis var.niger spores on selected surfaces by chlorine dioxide gas

    Institute of Scientific and Technical Information of China (English)

    Yan-ju LI; Neng ZHU; Hai-quan JIA; Jin-hui WU; Ying YI; Jian-cheng QI

    2012-01-01

    Objective:Chlorine dioxide (CD) gas has been used as a fumigant in the disinfection of biosafety laboratories.In this study,some experiments were conducted to assess the inactivation of spores inoculated on six materials [stainless steel (SS),painted steel (PS),polyvinyl chlorid (PVC),polyurethane (PU),glass (GS),and cotton cloth (CC)] by CD gas.The main aims of the study were to determine the sporicidal efficacy of CD gas and the effect of prehumidification before decontamination on sporicidal efficacy.Methods:Material coupons (1.2 cm diameter of SS,PS,and PU; 1.0 cm×1.0 cm for PVC,GS,and CC) were contaminated with 10 μl of Bacillus subtilis var.niger(ATCC 9372) spore suspension in mixed organic burden and then dried in a biosafety cabinet for 12 h.The spores were recovered by soaking the coupons in 5 ml of extraction liquid for 1 h and then vortexing the liquid for 1 min.Results:The log reductions in spore numbers on inoculated test materials exposed to CD gas [0.080% (volume ratio,v/v) for 3 h]were in the range of from 1.80 to 6.64.Statistically significant differences were found in decontamination efficacies on test material coupons of SS,PS,PU,and CC between with and without a 1-h prehumidification treatment.With the extraction method,there were no statistically significant differences in the recovery ratios between the porous and non-porous materials.Conclusions:The results reported from this study could provide information for developing decontamination technology based on CD gas for targeting surface microbial contamination.

  7. Greater enhancement of Bacillus subtilis spore yields in submerged cultures by optimization of medium composition through statistical experimental designs.

    Science.gov (United States)

    Chen, Zhen-Min; Li, Qing; Liu, Hua-Mei; Yu, Na; Xie, Tian-Jian; Yang, Ming-Yuan; Shen, Ping; Chen, Xiang-Dong

    2010-02-01

    Bacillus subtilis spore preparations are promising probiotics and biocontrol agents, which can be used in plants, animals, and humans. The aim of this work was to optimize the nutritional conditions using a statistical approach for the production of B. subtilis (WHK-Z12) spores. Our preliminary experiments show that corn starch, corn flour, and wheat bran were the best carbon sources. Using Plackett-Burman design, corn steep liquor, soybean flour, and yeast extract were found to be the best nitrogen source ingredients for enhancing spore production and were studied for further optimization using central composite design. The key medium components in our optimization medium were 16.18 g/l of corn steep liquor, 17.53 g/l of soybean flour, and 8.14 g/l of yeast extract. The improved medium produced spores as high as 1.52 +/- 0.06 x 10(10) spores/ml under flask cultivation conditions, and 1.56 +/- 0.07 x 10(10) spores/ml could be achieved in a 30-l fermenter after 40 h of cultivation. To the best of our knowledge, these results compared favorably to the documented spore yields produced by B. subtilis strains. PMID:19697022

  8. Adsorption of β-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutants spores of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Sirec Teja

    2012-08-01

    Full Text Available Abstract Background The Bacillus subtilis spore has long been used as a surface display system with potential applications in a variety of fields ranging from mucosal vaccine delivery, bioremediation and biocatalyst development. More recently, a non-recombinant approach of spore display has been proposed and heterologous proteins adsorbed on the spore surface. We used the well-characterized β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius as a model to study enzyme adsorption, to analyze whether and how spore-adsorption affects the properties of the enzyme and to improve the efficiency of the process. Results We report that purified β-galactosidase molecules were adsorbed to purified spores of a wild type strain of B. subtilis retaining ca. 50% of their enzymatic activity. Optimal pH and temperature of the enzyme were not altered by the presence of the spore, that protected the adsorbed β-galactosidase from exposure to acidic pH conditions. A collection of mutant strains of B. subtilis lacking a single or several spore coat proteins was compared to the isogenic parental strain for the adsorption efficiency. Mutants with an altered outermost spore layer (crust were able to adsorb 60-80% of the enzyme, while mutants with a severely altered or totally lacking outer coat adsorbed 100% of the β-galactosidase molecules present in the adsorption reaction. Conclusion Our results indicate that the spore surface structures, the crust and the outer coat layer, have an negative effect on the adhesion of the β-galactosidase. Electrostatic forces, previously suggested as main determinants of spore adsorption, do not seem to play an essential role in the spore-β-galactosidase interaction. The analysis of mutants with altered spore surface has shown that the process of spore adsorption can be improved and has suggested that such improvement has to be based on a better understanding of the spore surface structure

  9. Novel Secretion Apparatus Maintains Spore Integrity and Developmental Gene Expression in Bacillus subtilis

    Science.gov (United States)

    Meisner, Jeffrey; Serrano, Monica; Henriques, Adriano O.; Moran, Charles P.; Rudner, David Z.

    2009-01-01

    Sporulation in Bacillus subtilis involves two cells that follow separate but coordinately regulated developmental programs. Late in sporulation, the developing spore (the forespore) resides within a mother cell. The regulation of the forespore transcription factor σG that acts at this stage has remained enigmatic. σG activity requires eight mother-cell proteins encoded in the spoIIIA operon and the forespore protein SpoIIQ. Several of the SpoIIIA proteins share similarity with components of specialized secretion systems. One of them resembles a secretion ATPase and we demonstrate that the ATPase motifs are required for σG activity. We further show that the SpoIIIA proteins and SpoIIQ reside in a multimeric complex that spans the two membranes surrounding the forespore. Finally, we have discovered that these proteins are all required to maintain forespore integrity. In their absence, the forespore develops large invaginations and collapses. Importantly, maintenance of forespore integrity does not require σG. These results support a model in which the SpoIIIA-SpoIIQ proteins form a novel secretion apparatus that allows the mother cell to nurture the forespore, thereby maintaining forespore physiology and σG activity during spore maturation. PMID:19609349

  10. Dna stability and survival of bacillus subtilis spores in extreme dryness

    Science.gov (United States)

    Dose, Klaus; Gill, Markus

    1995-06-01

    The inactivation of Bacillus subtilis spores during long-term exposure (up to several months) to extreme dryness (especially vacuum) is strain-dependent, through only to a small degree. During a first phase (lasting about four days) monolayers of spores lose about 20% of their viability, regardless of the strain studied. During this phase loss in viability can be equally attributed both to damages of hydrophobic structures (membranes and proteins) and DNA. During a second phase lasting for the remaining time of experimental observation (weeks, months and years) the loss in viability is slowed. A viability of 55% to 75% (depending on the strain) is attained after a total exposure of 36 days. The loss in viability during the second phase can be correlated with the occurrence of DNA double strand breaks. Also covalent DNA-protein cross-links are formed by vacuum exposure. If the protein moiety of these cross-links is degraded by proteinase K-treatment in vitro additional DNA double strand breaks result. The data are also discussed with respect to survival on Mars and in near Earth orbits.

  11. Evaluating the transport of bacillus subtilis spores as a potential surrogate for Cryptosporidium parvum Oocysts

    Science.gov (United States)

    The USEPA has recommended the use of aerobic spores as an indicator for Cryptosporidium oocysts when determining groundwater under the direct influence of surface water. Surface properties, interaction energies, transport, retention, and release behavior of B. subtilis spores were measured over a r...

  12. Modelling the effect of sub(lethal) heat treatment of Bacillus subtilis spores on germination rate and outgrowth to exponentially growing vegetative cells

    NARCIS (Netherlands)

    Smelt, J.P.P.M.; Bos, A.P.; Kort, R.; Brul, S.

    2008-01-01

    Spores of Bacillus subtilis were subjected to relatively mild heat treatments in distilled water and properties of these spores were studied. These spores had lost all or part of their dipicolinic acid (DPA) depending on the severity of the heat treatment. Even after relatively mild heat treatments

  13. Effect of Bacillus subtilis spore (GalliPro® nutrients equivalency value on broiler chicken performance

    Directory of Open Access Journals (Sweden)

    Mojtaba Zaghari

    2015-02-01

    Full Text Available The experiment was conducted to evaluate the nutrients equivalency value of Bacillus subtilis spore (GalliPro® for broiler chickens and its potential for decreasing feed nutrients concentration and cost. A total of 720 day old Ross 308 broiler chicks was allocated in 6 treatments (2 sexes×3 diets with 6 replication for 7 weeks. Dietary treatments: main treatment (MT was routine broiler diet added 0.2 g/kg GalliPro® (Bacillus subtilis 4×109 CFU/g DSM 17299 and using nutrients equivalency of GalliPro® for feed formulation; negative control (NC was the same as main treatment without GalliPro® (subtracted the nutrients equivalent value of GalliPro®; positive control (PC was the same as MT diet in nutrients content but without GalliPro®. Effect of dietary treatments on body weight (BW was not significant. However, the average BW of male and female chicks receiving negative control diet was 2.0% (68 g lower than PC and MT groups (P>0.05. Dietary treatments had no significant effect on average daily feed intake. Feed conversion ratio of chicks receiving PC and MT diets were 2.7% better than NC chicks (P<0.01. Male chicks were superior to female in all measured traits (P<0.01. Effect of treatments on carcass characteristics was not significant. There was no interaction between factors on measured parameters. Performance of chicks receiving diet with GalliPro® compared with PC showed that GalliPro® liberated 0.4 crude protein from MT diet and consequently decreased the broiler feeding cost.

  14. The Synergistic Effect of High Pressure CO2 and Nisin on Inactivation of Bacillus subtilis Spores in Aqueous Solutions

    Science.gov (United States)

    Rao, Lei; Wang, Yongtao; Chen, Fang; Liao, Xiaojun

    2016-01-01

    The inactivation effects of high pressure CO2 + nisin (simultaneous treatment of HPCD and nisin, HPCD + nisin), HPCD→nisin (HPCD was followed by nisin), and nisin→HPCD (nisin was followed by HPCD) treatments on Bacillus subtilis spores in aqueous solutions were compared. The spores were treated by HPCD at 6.5 or 20 MPa, 84–86°C and 0–30 min, and the concentration of nisin was 0.02%. Treated spores were examined for the viability, the permeability of inner membrane (IM) using flow cytometry method and pyridine-2, 6-dicarboxylic acid (DPA) release, and structural damage by transmission electron microscopy. A synergistic effect of HPCD + nisin treatment on inactivation of the spores was found, and the inactivation efficiency of the spores was HPCD + nisin > HPCD→nisin or nisin→HPCD. Moreover, HPCD + nisin caused higher IM permeability and DPA release of the spores than HPCD. A possible action mode of nisin-enhanced inactivation of the spores was suggested as that HPCD firstly damaged the coat and cortex of spores, and nisin penetrated into and acted on the IM of spores, which increased the damage to the IM of spores, and resulted in higher inactivation of the spores. PMID:27708639

  15. Understanding of the importance of the spore coat structure and pigmentation in the Bacillus subtilis spore resistance to low-pressure plasma sterilization

    Science.gov (United States)

    Raguse, Marina; Fiebrandt, Marcel; Denis, Benjamin; Stapelmann, Katharina; Eichenberger, Patrick; Driks, Adam; Eaton, Peter; Awakowicz, Peter; Moeller, Ralf

    2016-07-01

    Low-pressure plasmas have been evaluated for their potential in biomedical and defense purposes. The sterilizing effect of plasma can be attributed to several active agents, including (V)UV radiation, charged particles, radical species, neutral and excited atoms and molecules, and the electric field. Spores of Bacillus subtilis were used as a bioindicator and a genetic model system to study the sporicidal effects of low-pressure plasma decontamination. Wild-type spores, spores lacking the major protective coat layers (inner, outer, and crust), pigmentation-deficient spores or spore impaired in encasement (a late step in coat assembly) were systematically tested for their resistance to low-pressure argon, hydrogen, and oxygen plasmas with and without admixtures. We demonstrate that low-pressure plasma discharges of argon and oxygen discharges cause significant physical damage to spore surface structures as visualized by atomic force microscopy. Spore resistance to low-pressure plasma was primarily dependent on the presence of the inner, and outer spore coat layers as well as spore encasement, with minor or less importance of the crust and spore pigmentation, whereas spore inactivation itself was strongly influenced by the gas composition and operational settings.

  16. Survival and Germinability of Bacillus subtilis Spores Exposed to Simulated Mars Solar Radiation: Implications for Life Detection and Planetary Protection

    Science.gov (United States)

    Tauscher, Courtney; Schuerger, Andrew C.; Nicholson, Wayne L.

    2006-08-01

    Bacterial spores have been considered as microbial life that could survive interplanetary transport by natural impact processes or human spaceflight activity. Deposition of terrestrial microbes or their biosignature molecules onto the surface of Mars could negatively impact life detection experiments and planetary protection measures. Simulated Mars solar radiation, particularly the ultraviolet component, has been shown to reduce spore viability, but its effect on spore germination and resulting production of biosignature molecules has not been explored. We examined the survival and germinability of Bacillus subtilis spores exposed to simulated martian conditions that include solar radiation. Spores of B. subtilis that contain luciferase resulting from expression of an sspB-luxAB gene fusion were deposited on aluminum coupons to simulate deposition on spacecraft surfaces and exposed to simulated Mars atmosphere and solar radiation. The equivalent of 42 min of simulated Mars solar radiation exposure reduced spore viability by nearly 3 logs, while germination-induced bioluminescence, a measure of germination metabolism, was reduced by less than 1 log. The data indicate that spores can retain the potential to initiate germination-associated metabolic processes and produce biological signature molecules after being rendered nonviable by exposure to Mars solar radiation.

  17. Quantifying the effect of sorbic acid, heat and combination of both on germination and outgrowth of Bacillus subtilis spores at single cell resolution

    NARCIS (Netherlands)

    R. Pandey; G.H. Pieper; A. ter Beek; N.O.E. Vischer; J.P.P.M. Smelt; E.M.M. Manders; S. Brul

    2015-01-01

    Bacillus subtilis spores are a problem for the food industry as they are able to survive preservation processes. The spores often reside in food products, where their inherent protection against various stress treatments causes food spoilage. Sorbic acid is widely used as a weak acid preservative in

  18. Effects of space vacuum and solar ultraviolet irradiation (254 nanometers) on the colony forming ability of Bacillus subtilis spores

    Science.gov (United States)

    Buecker, H.; Horneck, G.; Wollenhaupt, H.

    1973-01-01

    Bacillus subtilis spores are highly resistant to harsh environments. Therefore, in the Apollo 16 Microbial Response to Space Environment Experiment (M191), these spores were exposed to space vacuum or solar ultraviolet irradiation, or both, to estimate the change of survival for terrestrial organisms in space. The survival of the spores was determined in terms of colony-forming ability. Comparison of the flight results with results of simulation experiments on earth applying high vacuum or ultraviolet irradiation, or both, revealed no remarkable difference. Simultaneous exposure to both these space factors resulted in a synergistic effect (that is, an ultraviolet supersensitivity). Therefore, the change of survival in space is assumed to depend on the degree of protection against solar ultraviolet irradiation.

  19. Survivability of bare, individual Bacillus subtilis spores to high-velocity surface impact: Implications for microbial transfer through space

    Science.gov (United States)

    Barney, Brandon L.; Pratt, Sara N.; Austin, Daniel E.

    2016-06-01

    Laboratory experiments show that endospores of Bacillus subtilis survive impact against a solid surface at velocities as high as 299 ±28 m/s. During impact, spores experience and survive accelerations of at least 1010 m/s2. The spores were introduced into a vacuum chamber using an electrospray source and accelerated to a narrow velocity distribution by entrainment in a differentially pumped gas flow. Different velocity ranges were studied by modifying the gas flow parameters. The spores were electrically charged, allowing direct measurement of the velocity of each spore as it passed through an image charge detector prior to surface impact. Spores impacted a glass surface and were collected for subsequent analysis by culturing. Most spores survived impact at all measured velocities. These experiments differ fundamentally from other studies that show either shock or impact survivability of bacteria embedded within or on the surface of a projectile. Bacteria in the present experiments undergo a single interaction with a solid surface at the full impact velocity, in the absence of any other effects such as cushioning due to microbe agglomerations, deceleration due to air or vapor, or transfer of impact shock through solid or liquid media. During these full-velocity impact events, the spores experience extremely high decelerations. This study is the first reported instance of accelerations of this magnitude experienced during a bacteria impact event. These results are discussed in the context of potential transfer of viable microbes in space and other scenarios involving surface impacts at high velocities.

  20. Challenges and advances in systems biology analysis of Bacillus spore physiology; molecular differences between an extreme heat resistant spore forming Bacillus subtilis food isolate and a laboratory strain

    NARCIS (Netherlands)

    Brul, S.; Beilen, J.van; Caspers, M.; O'Brien, A.; Koster, C.de; Oomes, S.; Smelt, J.; Kort, R.; Beek, A.ter

    2011-01-01

    Bacterial spore formers are prime organisms of concern in the food industry. Spores from the genus Bacillus are extremely stress resistant, most notably exemplified by high thermotolerance. This sometimes allows surviving spores to germinate and grow out to vegetative cells causing food spoilage and

  1. Application of gaseous disinfectants ozone and chlorine dioxide for inactivation of Bacillus subtilis spores

    OpenAIRE

    Aydogan, Ahmet

    2006-01-01

    A terrorist attack involving chemical and/or biological warfare agents is a growing possibility. Since anthrax is considered as an immediate public-health threat that can be created by a warfare agent, it is imperative to investigate the potential remediation technologies effective against this threat. In this study, the effectiveness of two gaseous disinfectants, ozone and chlorine dioxide, to inactivate B.subtilis spores - as surrogate to B.anthracis that can cause the infectious anthrax di...

  2. Gel-free proteomic identification of the Bacillus subtilis insoluble spore coat protein fraction

    NARCIS (Netherlands)

    W. Abhyankar; A. ter Beek; H. Dekker; R. Kort; S. Brul; C.G. de Koster

    2011-01-01

    Species from the genus Bacillus have the ability to form endospores, dormant cellular forms that are able to survive heat and acid preservation techniques commonly used in the food industry. Resistance characteristics of spores towards various environmental stresses are in part attributed to their c

  3. Comparative Study of Pressure- and Nutrient-Induced Germination of Bacillus subtilis Spores

    OpenAIRE

    Wuytack, Elke Y.; Soons, Johan; Poschet, Filip; Michiels, Chris W.

    2000-01-01

    Germination experiments with specific germination mutants of Bacillus subtilis, including a newly isolated mutant affected in pressure-induced germination, suggest that a pressure of 100 MPa triggers the germination cascades that are induced by the nutrient germinant alanine (Ala) and by a mixture of asparagine, glucose, fructose, and potassium ions (AGFK), by activating the receptors for alanine and asparagine, GerA and GerB, respectively. As opposed to germination at 100 MPa, germination at...

  4. Bacillus subtilis spore survival and expression of germination-induced bioluminescence after prolonged incubation under simulated Mars atmospheric pressure and composition: implications for planetary protection and lithopanspermia

    Science.gov (United States)

    Nicholson, Wayne L.; Schuerger, Andrew C.

    2005-01-01

    Bacterial endospores in the genus Bacillus are considered good models for studying interplanetary transfer of microbes by natural or human processes. Although spore survival during transfer itself has been the subject of considerable study, the fate of spores in extraterrestrial environments has received less attention. In this report we subjected spores of a strain of Bacillus subtilis, containing luciferase resulting from expression of an sspB-luxAB gene fusion, to simulated martian atmospheric pressure (7-18 mbar) and composition (100% CO(2)) for up to 19 days in a Mars simulation chamber. We report here that survival was similar between spores exposed to Earth conditions and spores exposed up to 19 days to simulated martian conditions. However, germination-induced bioluminescence was lower in spores exposed to simulated martian atmosphere, which suggests sublethal impairment of some endogenous spore germination processes.

  5. Multifactorial Resistance of Bacillus subtilis Spores to High-Energy Proton Radiation: Role of Spore Structural Components and the Homologous Recombination and Non-Homologous End Joining DNA Repair Pathways

    OpenAIRE

    Moeller, Ralf; Reitz, Günther; Li, Zuofeng; Klein, Stuart; Nicholson, Wayne L.

    2012-01-01

    The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiati...

  6. A Cumulative Spore Killing Approach: Synergistic Sporicidal Activity of Dilute Peracetic Acid and Ethanol at Low pH Against Clostridium difficile and Bacillus subtilis Spores.

    Science.gov (United States)

    Nerandzic, Michelle M; Sankar C, Thriveen; Setlow, Peter; Donskey, Curtis J

    2016-01-01

    Background.  Alcohol-based hand sanitizers are the primary method of hand hygiene in healthcare settings, but they lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We previously demonstrated that acidification of ethanol induced rapid sporicidal activity, resulting in ethanol formulations with pH 1.5-2 that were as effective as soap and water washing in reducing levels of C difficile spores on hands. We hypothesized that the addition of dilute peracetic acid (PAA) to acidified ethanol would enhance sporicidal activity while allowing elevation of the pH to a level likely to be well tolerated on skin (ie, >3). Methods.  We tested the efficacy of acidified ethanol solutions alone or in combination with PAA against C difficile and Bacillus subtilis spores in vitro and against nontoxigenic C difficile spores on hands of volunteers. Results.  Acidification of ethanol induced rapid sporicidal activity against C difficile and to a lesser extent B subtilis. The addition of dilute PAA to acidified ethanol resulted in synergistic enhancement of sporicidal activity in a dose-dependent fashion in vitro. On hands, the addition of 1200-2000 ppm PAA enhanced the effectiveness of acidified ethanol formulations, resulting in formulations with pH >3 that were as effective as soap and water washing. Conclusions.  Acidification and the addition of dilute PAA induced rapid sporicidal activity in ethanol. Our findings suggest that it may be feasible to develop effective sporicidal ethanol formulations that are safe and tolerable on skin. PMID:26885539

  7. A Cumulative Spore Killing Approach: Synergistic Sporicidal Activity of Dilute Peracetic Acid and Ethanol at Low pH Against Clostridium difficile and Bacillus subtilis Spores

    Science.gov (United States)

    Nerandzic, Michelle M.; Sankar C, Thriveen; Setlow, Peter; Donskey, Curtis J.

    2016-01-01

    Background. Alcohol-based hand sanitizers are the primary method of hand hygiene in healthcare settings, but they lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We previously demonstrated that acidification of ethanol induced rapid sporicidal activity, resulting in ethanol formulations with pH 1.5–2 that were as effective as soap and water washing in reducing levels of C difficile spores on hands. We hypothesized that the addition of dilute peracetic acid (PAA) to acidified ethanol would enhance sporicidal activity while allowing elevation of the pH to a level likely to be well tolerated on skin (ie, >3). Methods. We tested the efficacy of acidified ethanol solutions alone or in combination with PAA against C difficile and Bacillus subtilis spores in vitro and against nontoxigenic C difficile spores on hands of volunteers. Results. Acidification of ethanol induced rapid sporicidal activity against C difficile and to a lesser extent B subtilis. The addition of dilute PAA to acidified ethanol resulted in synergistic enhancement of sporicidal activity in a dose-dependent fashion in vitro. On hands, the addition of 1200–2000 ppm PAA enhanced the effectiveness of acidified ethanol formulations, resulting in formulations with pH >3 that were as effective as soap and water washing. Conclusions. Acidification and the addition of dilute PAA induced rapid sporicidal activity in ethanol. Our findings suggest that it may be feasible to develop effective sporicidal ethanol formulations that are safe and tolerable on skin. PMID:26885539

  8. Role of DNA Repair by Nonhomologous-End Joining in Bacillus subtilis Spore Resistance to Extreme Dryness, Mono- and Polychromatic UV, and Ionizing Radiation▿

    OpenAIRE

    Moeller, Ralf; Stackebrandt, Erko; Reitz, Günther; Berger, Thomas; Rettberg, Petra; Doherty, Aidan J; Horneck, Gerda; Nicholson, Wayne L.

    2007-01-01

    The role of DNA repair by nonhomologous-end joining (NHEJ) in spore resistance to UV, ionizing radiation, and ultrahigh vacuum was studied in wild-type and DNA repair mutants (recA, splB, ykoU, ykoV, and ykoU ykoV mutants) of Bacillus subtilis. NHEJ-defective spores with mutations in ykoU, ykoV, and ykoU ykoV were significantly more sensitive to UV, ionizing radiation, and ultrahigh vacuum than wild-type spores, indicating that NHEJ provides an important pathway during spore germination for r...

  9. Synergistic effect of sequential or combined use of ozone and UV radiation for the disinfection of Bacillus subtilis spores.

    Science.gov (United States)

    Jung, Yeon Jung; Oh, Byung Soo; Kang, Joon-Wun

    2008-03-01

    This study was performed to evaluate the inactivation efficiency or synergy of combined ozone and UV processes (combined ozone/UV process) or sequential processes (ozone-UV, UV-ozone) compared with individual unit processes and to investigate the specific roles of ozone, UV and the hydroxyl radical, which is formed as an intermediate in the combined ozone/UV process. The Bacillus subtilis spore, which has often been used as a surrogate microorganism for Cryptosporidium parvum oocysts, was used as a target microorganism. Compared to individual unit processes with ozone or UV, the inactivation of B. subtilis spores by the combined ozone/UV process was enhanced under identical conditions. To investigate the specific roles of ozone and UV in the combined ozone/UV process, sequential ozone-UV and UV-ozone processes were tested for degrees of inactivation. Additionally, the experiment was performed in the presence and absence of tert-butyl alcohol, which acted as a hydroxyl radical scavenger to assess the role of inactivation by the hydroxyl radical in the combined ozone/UV process. Among the five candidate processes, the greatest synergistic effect was observed in the combined ozone/UV process. From the comparison of five candidate processes, the hydroxyl radical and ozone were each determined to significantly enhance the overall inactivation efficiency in the combined ozone/UV process.

  10. Multifactorial and microdosimetrical analysis of the biological influence of galactic cosmic rays on Bacillus subtilis spores in the biostack experiment

    International Nuclear Information System (INIS)

    In this paper a partial experiment is presented which has been performed during several years and several space flight missions. This experiment is part of a research program to study the radiation biological - and in particular the medical relevance of the 'hard' cosmic ray component. The identification of particles (Z, LET, E) was not hindered by the combination with biological objects and could be performed with sufficient accuracy. Refering to semi-empirical findings the distribution of LET values in the bacillus subtilis could be determined in agreement with other experimental results. The localisation and correlation of particle tracks with the individual cells of the target regions is significant. As a result the LET does not seem to be an important parameter for the biological activity within the parameter range studied here. The energy deposition in the spores by delta-electrons could be calculated on the basis of a microdosimetrical analysis. A more detailed analysis was essentially hampered by an insufficient accuracy for the measurement of the distance between particle tracks and the spores. Thus a dose-survival-curve could not be established. In spite of that the relative biological activity (RBW) has been estimated on the basis of density distributions. The failure of these experiments, a review of the relevant literature, and a detailed discussion contribute essentially to the problem of the existence of specific mechanisms for heavy ions and their radiation biological activity. According to the actual knowledge the existence of such a mechanism in addition to delta-electrons has to be considered as most probable. (orig./MG)

  11. Germination properties as marker events characterizing later stages of Bacillus subtilis spore formation.

    OpenAIRE

    Dion, P; Mandelstam, J

    1980-01-01

    At various stages during spore formation sporangia were shocked by cold treatment or with toluene, and the germination requirements of the prespores were examined. Up to 5 h after induction of sporulation (t5) germination was spontaneous; i.e., it occurred without any added germinants. After t5, during stages V and VI, the capacity for spontaneous germination diminished progressively, and the spores acquired a need for externally added germinants. At t6 this need was satisfied by either L-ala...

  12. Uracil incorporation in the forespore and the mother cell during spore development in Bacillus subtilis

    International Nuclear Information System (INIS)

    The transcriptional activity of the two genomes of the sporangium during spore formation was determined by pulse-labeling bacteria with 3H-uracil at different times of sporulation and preparing them for high resolution autoradiography. The quantitative analysis of autoradiographs shows that uracile incorporation in the whole sporangium decreases considerably between stages II and IV. However, the variations of the transpcriptional activity are not identical in the mother cell and in the forespore. The one of the mother cell decreases rapidly between stages II and III and then remains stable until the end of stage IV, whereas that of the forespore which is low at stage II increases as the forespore grows ovoid and then quickly diminishes. It is very weak at the beginning of stage IV and negligible at the end of this stage. (orig.)

  13. Essential Bacillus subtilis genes

    DEFF Research Database (Denmark)

    Kobayashi, K.; Ehrlich, S.D.; Albertini, A.;

    2003-01-01

    To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes we...

  14. Taxonomy Icon Data: Bacillus subtilis [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g Bacillus_subtilis_S.png Bacillus_subtilis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus...+subtilis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus+subtilis&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Bacillus+subtilis&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Bacillus+subtilis&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=214 ...

  15. Spore UV and acceleration resistance of endolithic Bacillus pumilus and Bacillus subtilis isolates obtained from Sonoran desert basalt: implications for lithopanspermia.

    Science.gov (United States)

    Benardini, James N; Sawyer, John; Venkateswaran, Kasthuri; Nicholson, Wayne L

    2003-01-01

    Bacterial spores have been used as model systems for studying the theory of interplanetary transport of life by natural processes such as asteroidal or cometary impacts (i.e., lithopanspermia). Because current spallation theory predicts that near-surface rocks are ideal candidates for planetary ejection and surface basalts are widely distributed throughout the rocky planets, we isolated spore-forming bacteria from the interior of near-subsurface basalt rocks collected in the Sonoran desert near Tucson, Arizona. Spores were found to inhabit basalt at very low concentrations (basalt samples. Populations of purified spores prepared from the isolated strains were subjected to 254-nm UV and ballistics tests in order to assess their resistance to UV radiation and to extreme acceleration shock, two proposed lethal factors for spores during interplanetary transfer. Specific natural isolates of B. pumilus were found to be substantially more resistant to UV and extreme acceleration than were reference laboratory strains of B. subtilis, the benchmark organism, suggesting that spores of environmental B. pumilus isolates may be more likely to survive the rigors of interplanetary transfer.

  16. Resistance of Bacillus subtilis spores to 12C ion beams, stimulation of high-energy charged particles in space

    Science.gov (United States)

    Zhang, Li; Dang, Bingrong; Li, Junxiong; Chen, Jinsong; Liu, Mei; Liu, Zhiheng; Zhang, Lixin

    To monitor the response of live microbes in space radiation environment with high-energy charged particles, we carry out ground stimulation radiation experiments. Spores of Bacillus (CGMCC 1.1849) species are one of the model systems used for astro- and radiobiological studies. (12) C ion beams served as stimulated space radiation from 5gry, 10gry, 20gry, 40gry, to 80gry at a rate of 15gry/min Death rates are measured and mutant strains are isolated. Five representative strains are analyzed for their corresponding gene sequences, protein sequences and gene expression index of DNA repair system gene recA and recO. The statistic results showed the strains resistance to (12) C ion beams radiation is partially due to the increase of gene expression index of recA and recO. In conclusion, our research provide a surrogate system to monitor the live microbial response in resistant to space radiation environment.

  17. Physical interaction and assembly of Bacillus subtilis spore coat proteins CotE and CotZ studied by atomic force microscopy.

    Science.gov (United States)

    Liu, Huiqing; Qiao, Haiyan; Krajcikova, Daniela; Zhang, Zhe; Wang, Hongda; Barak, Imrich; Tang, Jilin

    2016-08-01

    The spore of Bacillus subtilis, a dormant type of cell, is surrounded by a complex multilayered protein structure known as the coat. It is composed of over 70 proteins and essential for the spore to withstand extreme environmental conditions and allow germination under favorable conditions. However, understanding how the properties of the coat arise from the interactions among all these proteins is an important challenge. Moreover, many specific protein-protein interactions among the coat proteins are crucial for coat assembly. In this study, atomic force microscopy (AFM) based single molecule force spectroscopy (SMFS) was applied to investigate the interaction as a dynamic process between two morphogenetic coat proteins, CotE and CotZ. The unbinding force and kinetic parameters characterizing the interaction between CotE and CotZ were obtained. It is found that there is a strong affinity between CotE and CotZ. Furthermore, the assembly behaviors of CotE and CotZ, individually or in combination, were studied by AFM at solid-liquid interfaces. Our results revealed that CotE-CotZ assembly is dependent on their molar ratios and the interaction between CotE and CotZ involves in the CotE-CotZ assembly. PMID:27320701

  18. Determining the efficacy of liquid sporicides against spores of Bacillus subtilis on a hard nonporous surface using the quantitative three step method: collaborative study.

    Science.gov (United States)

    Tomasino, Stephen F; Pines, Rebecca M; Cottrill, Michele P; Hamilton, Martin A

    2008-01-01

    A collaborative study was conducted to validate the quantitative Three Step Method (TSM), a method designed to measure the performance of liquid sporicides on a hard nonporous surface. Ten laboratories agreed to participate in the collaborative study; data from 8 of 10 participating laboratories were used in the final statistical analysis. The TSM uses 5 x 5 x 1 mm glass coupons (carriers) upon which spores have been inoculated and which are introduced into liquid sporicidal agent contained in a microcentrifuge tube. Following exposure to a test chemical and a neutralization agent, spores are removed from carriers in 3 fractions: passive removal (Fraction A), sonication (Fraction B), and gentle agitation (Fraction C). Liquid from each fraction is serially diluted and plated on a recovery medium for spore enumeration. Control counts are compared to the treated counts, and the level of efficacy is determined by calculating the log10 reduction (LR) of spores. The main statistical goals were to evaluate the repeatability and reproducibility of the LR values, to estimate the components of variance for LR, and to assess method responsiveness. AOAC Method 966.04-Method II was used as a reference method. The scope of the validation was limited to testing liquid formulations against spores of Bacillus subtilis, a surrogate for virulent strains of B. anthracis, on a hard nonporous surface (glass). The test chemicals used in the study were sodium hypochlorite, a combination of peracetic acid and hydrogen peroxide, and glutaraldehyde. Each test chemical was evaluated at 3 levels of presumed efficacy: high, medium, and low. Three replications were required. The TSM was validated as it successfully met the statistical parameters for quantitative test methods. Satisfactory validation parameters, such as the repeatability standard deviation (Sr) and reproducibility standard deviation (SR), were obtained for control carrier counts and LR values. Both the TSM and the reference

  19. Inactivation kinetics of Bacillus subtilis spores with ozone%臭氧灭活水中枯草芽孢杆菌的动力学

    Institute of Scientific and Technical Information of China (English)

    刘枫; 昌盛; 陈忠林

    2016-01-01

    以枯草芽孢杆菌(ATCC6633)的孢子作为难灭活微生物的代表,研究了消毒剂浓度和反应时间的乘积值(CT值)、pH值、温度对臭氧灭活水中芽孢效果的影响,并探讨了相关灭活反应的动力学特征.结果表明,臭氧灭活芽孢的过程可分为延滞期和灭活期,其灭活反应符合Chick-Watson延迟反应动力学模型.在半连续流反应模式下,当臭氧浓度在0.42-4.00 mg· L-1,反应时间0-20 min,pH值6-8,温度1-30℃范围内时,臭氧对芽孢的灭活效果与臭氧的CT值显著相关,与单独的臭氧浓度无关,CT值越高,所能达到的灭活率也越高.同时,温度对反应速率常数k影响较大,即随着温度的升高,灭活反应的延滞期CT1ag显著减小,反应速率常数k增大,臭氧对芽孢的灭活能力增强;而反应速率常数k在各pH值下基本不变,pH值对芽孢的灭活影响甚微.%In general,spores of Bacillus subtilis (ATCC6633) would be used as potential model for the resistant microorganisms.In this study,the inactivation kinetics of spores in drinking water by ozone was investigated,and the factors such as ozone such as the numerical value of the product of the concentration of ozone and the reaction time (CT) values,pH,and temperature which could influence the inactivation process were evaluated.Results showed that the inactivation process of spores with ozone was characterized by a lag phase followed by a logarithmic inactivation phase,and the delayed Chick-Watson model could well describe the inactivation process.In this study,the disinfection of Bacillus subtilis spores was performed in a semi-batch reactor under the conditions with the ozone concentration,reaction time,pH,and temperature ranged in 0.42-4.00 mg·L-1,0-20 min,6-8,and 1-30 ℃,respectively.It showed that the inactivation is independent of ozone dose and is obvious relative to the ozone CT values.A higher inactivation level of spores wou ld be achieved at higher CT values.In addition

  20. Effect of individual or combined treatment by γ-irradiation or temperature (high or low) on bacillus subtilis spores and its application for sterilization of ground beef

    International Nuclear Information System (INIS)

    The combination of two lethal agents such as irradiation and temperature (high or sub zero) resulted in synergistic death or B. subtilis spores (as indicated by decrease in the thermal D-value). The extent of this synergism in killing a spore population depended mainly on the sequence on application of the two physical agents. Irradiation-temperature (high or sub zero) sequence killed more but injured less B. subtilis spores than temperature irradiation sequence or irradiation and temperature applied separately. Storage at -200C killed more spores than storage at -20C if carried after irradiation, while the reverse was true of storage was prior irradiation. An irradiation dose of 8 KGY followed by thermal exposure to 700C for 1 hr is suggested for the sterilization of ground beef. Irradiation induced certain quantitative changes on the amino-N, protein-N, RNA and DNA of the first subcultures of irradiated spores with stimulatory effect at low irradiation doses and inhibitory effect at the high irradiation doses. This might explain the increased sensitivity of irradiated spores to subsequent exposure to unfavourable temperature (high or sub zero). Exposure of B. subtilis spore to 700C induced a stimulation in the amino- and protein-N of the resulting cells while exposure to 800C resulted in a significant decrease in the amino-N. The protein-N remained more or less the same

  1. Fast Neutron Radiation Effects on Bacillus Subtili

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiaoming; REN Zhenglong; ZHANG Jianguo; ZHENG Chun; TAN Bisheng; YANG Chengde; CHU Shijin

    2009-01-01

    To examine the sterilizing effect and mechanism of neutron radiation, Bacillus sub-tilis vat. niger, strain (ATCC 9372) spores were irradiated with the fast neutron from the Chinese fast burst reactor Ⅱ(CFBR-Ⅱ). The plate-count results indicated that the D10 value was 384.6 Gy with a neutron radiation dose rate of 7.4 Gy/min. The rudimental catalase activity of the spores declined obviously with the increase in the radiation dose. Meanwhile, under the scanning electron microscope, no visible influence of the neutron radiation on the spore configuration was detected even if the dose was increased to 4 kGy. The content and distribution of DNA double-strand breaks induced by neutron radiation at different doses were measured and quantified by pulsed-field gel electrophoresis (PFGE). Further analysis of the DNA release percentage (PR), the DNA breakage level (L), and the average molecular weight, indicated that DNA fragments were obvi-ously distributed around the 5 kb regions at different radiation doses, which suggests that some points in the DNA molecule were sensitive to neutron radiation. Both PR and L varied regularly to some extent with the increase in radiation dose. Thus neutron radiation has a high sterilization power, and can induce falling enzyme activity and DNA breakage in Bacillus subtilis spores

  2. A method for the determination of bacterial spore DNA content based on isotopic labelling, spore germination and diphenylamine assay; ploidy of spores of several Bacillus species

    International Nuclear Information System (INIS)

    A reliable method for measuring the spore DNA content, based on radioactive DNA labelling, spore germination in absence of DNA replication and diphenylamine assay, was developed. The accuracy of the method, within 10 - 15%, is adequate for determining the number of chromosomes per spore, provided that the genome size is known. B subtilis spores were shown to be invariably monogenomic, while those of larger bacilli Bacillus megaterium, Bacillus cereus and Bacillus thuringiensis, often, if not invariably, contain two genomes. Attempts to modify the spore DNA content of B subtilis by altering the richness of the sporulation medium, the sporulation conditions (liquid or solid medium), or by mutation, were apparently unsuccessful. An increase of spore size with medium richness, not accompanied by an increase in DNA content, was observed. The implication of the apparently species-specific spore ploidy and the influence of the sporulation conditions on spore size and shape are discussed

  3. 傅里叶变换红外光谱对枯草芽孢杆菌的光学特性研究%Optical Properties Research of Bacillus Subtilis Spores by Fourier Transform Infrared Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    冯明春; 徐亮; 高闽光; 焦洋; 魏秀丽; 金岭; 程巳阳; 李相贤; 冯书香

    2012-01-01

    使用傅里叶变换红外光谱(FTIR)技术,测量了两种不同浓度的枯草芽孢杆菌的红外透过率谱,根据朗伯-比尔定律计算出它们的质量消光截面,通过算出复折射率的虚部,再使用KK(Kramers-Kronig)关系,导出复折射率的实部,并对实验结果作了分析和讨论.通过研究枯草芽孢杆菌复折射率的测量和分析方法,对于进一步研究生物气溶胶的吸收和散射特性、拓宽生物气溶胶的测量和遥测技术方法,具有重要的意义.%The authors measured IR transmission spectra of two different concentrations of bacillus subtilis spores by using Fourier transform infrared spectroscopy (FTIR) technology. The mass extinction cross section k of bacillus subtilis spores was calculated according to Lambert-Beer law and the imaginary part n, of the complex refractive index was also calculated through k. The real part nr of the complex refractive index was derived from the KK (Kramers-Kronig) relationship and the experimental results were also analyzed and discussed with the study of measurement and analysis method of the complex refractive index on bacillus subtilis spores, it is of great significance to further research the absorption and scattering characteristics, and to broaden the measurement and remote sensing technology method of the biological aerosols.

  4. Esterilização por óxido de etileno: I. Influência do meio de esporulação na resistência dos esporos de Bacillus subtilis var. niger Ethylene oxide sterilization: I. The influence of sporulation medium in the resistance of the spores of Bacillus subtilis var. niger

    Directory of Open Access Journals (Sweden)

    Terezinha de Jesus A. Pinto

    1992-12-01

    Full Text Available Tendo por meta a padronização das variáveis influenciando a resistência de esporos empregados no controle do processo esterilizante por óxido de etileno, foram obtidos esporos de Bacillus subtilis var. niger, em meio sólido e líquido sintético de esporulação. Tais esporos, após padronização quantitativa dos 12 lotes obtidos, foram submetidos a exposições subletais como bioindicadores, tendo o papel como suporte. Construiu-se, então, a curva de letalidade característica de cada lote. A análise estatística empregada não evidenciou diferenças entre resistência dos 10 lotes obtidos em meio sólido e os 2 em meio líquido sintético, ressaltando-se a vantagem quanto ao rendimento que caracterizou a primeira metodologia.Some elements influencing the resistance of spores used in ethylene oxide sterilization process control are standardized. Spores of Bacillus subtilis var. niger were produced in chemically defined liquid and solid sporulation media to a total of 12 lots; after standardization of the number of spores, they were challenged by sub-lethal cycles, followed by a lethality study. According to the statistical model applied, there were no differences between the resistance of spores produced in chemically defined liquid and those produced in solid sporulation media. The advantage of the solid sporulation media consists in the larger production of spores.

  5. Flow-cytometric Analysis of Bacillus anthracis Spores

    Directory of Open Access Journals (Sweden)

    D. V. Kamboj

    2006-11-01

    Full Text Available Flow-cytometric technique has been established as a powerful tool for detection andidentification of microbiological agents. Unambiguous and rapid detection of Bacillus anthracisspores has been reported using immunoglobulin G-fluorescein isothiocyanate conjugate againstlive spores. In addition to the high sensitivity, the present technique could differentiate betweenspores of closely related species, eg, Bacillus cereus and Bacillus subtilis using fluorescenceintensity. The technique can be used for detection of live as well as inactivated spores makingit more congenial for screening of suspected samples of bioterrorism.

  6. Molecular physiology of weak organic acid stress in Bacillus subtilis

    OpenAIRE

    Brul, S.; Beilen, van, J.W.A.

    2013-01-01

    The mechanism by which weak organic acid (WOA) preservatives inhibit growth of microorganisms may differ between different WOAs and these differences are not well understood. The aim of this thesis has been to obtain a better understanding of the mode of action of these preservatives by which they inhibit the growth of spore-forming bacteria (more specifically Bacillus subtilis).

  7. Hydrazine vapor inactivates Bacillus spores

    Science.gov (United States)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  8. Bacillus subtilis RecA and its accessory factors, RecF, RecO, RecR and RecX, are required for spore resistance to DNA double-strand break.

    Science.gov (United States)

    Vlašić, Ignacija; Mertens, Ramona; Seco, Elena M; Carrasco, Begoña; Ayora, Silvia; Reitz, Günther; Commichau, Fabian M; Alonso, Juan C; Moeller, Ralf

    2014-02-01

    Bacillus subtilis RecA is important for spore resistance to DNA damage, even though spores contain a single non-replicating genome. We report that inactivation of RecA or its accessory factors, RecF, RecO, RecR and RecX, drastically reduce survival of mature dormant spores to ultrahigh vacuum desiccation and ionizing radiation that induce single strand (ss) DNA nicks and double-strand breaks (DSBs). The presence of non-cleavable LexA renders spores less sensitive to DSBs, and spores impaired in DSB recognition or end-processing show sensitivities to X-rays similar to wild-type. In vitro RecA cannot compete with SsbA for nucleation onto ssDNA in the presence of ATP. RecO is sufficient, at least in vitro, to overcome SsbA inhibition and stimulate RecA polymerization on SsbA-coated ssDNA. In the presence of SsbA, RecA slightly affects DNA replication in vitro, but addition of RecO facilitates RecA-mediated inhibition of DNA synthesis. We propose that repairing of the DNA lesions generates a replication stress to germinating spores, and the RecA·ssDNA filament might act by preventing potentially dangerous forms of DNA repair occurring during replication. RecA might stabilize a stalled fork or prevent or promote dissolution of reversed forks rather than its cleavage that should require end-processing. PMID:24285298

  9. Research on Ozone Inactivation of Bacillus subtilis Spores%臭氧对枯草芽孢杆菌孢子的灭活研究

    Institute of Scientific and Technical Information of China (English)

    齐爱玲; 李继; 纪家林; 邹俐; 郭路路

    2011-01-01

    Cryptosporidium parvum oocysts bring challenges to drinking water safety due to their high resistance to the disinfectants, resulting in great potential harm to public health. This research rehtes to B. Subtilis spores(ATCC 6633)used as a surrogate microorganism to study the impact of turbidity and other water parameters as well as ozone concentration on the inactivation effect. The result showed that ozone inactivation of B. Subtilis spores was mainly associated with CT value rather than the concentration of ozone per se, and reduction of turbidity and organic matter in water increased inactivation efficiency. In addition, when water temperature became low it was necessary to increase CT value to ensure the disinfection.%隐孢子虫灭活困难,给饮用水安全带来了挑战.实验以枯草芽孢杆菌孢子(ATCC6633)作为隐孢子虫的指示菌,研究了臭氧浓度、浊度、有机物、温度等因素对臭氧灭活枯草芽孢杆菌孢子的影响.研究表明,臭氧对枯草芽孢杆菌孢子的灭活与CT值相关,臭氧浓度对消毒效果影响较小;降低浊度、有机物含量,能提高臭氧对枯草芽孢杆菌孢子的灭活效率;温度降低,为保证一定的消毒效率,所需的CT值越大.研究结果为水厂合理控制运行参数提供了借鉴.

  10. Use of alternative carrier materials in AOAC Official Method 2008.05, efficacy of liquid sporicides against spores of Bacillus subtilis on a hard, nonporous surface, quantitative three-step method.

    Science.gov (United States)

    Tomasino, Stephen F; Rastogi, Vipin K; Wallace, Lalena; Smith, Lisa S; Hamilton, Martin A; Pines, Rebecca M

    2010-01-01

    The quantitative Three-Step Method (TSM) for testing the efficacy of liquid sporicides against spores of Bacillus subtilis on a hard, nonporous surface (glass) was adopted as AOAC Official Method 2008.05 in May 2008. The TSM uses 5 x 5 x 1 mm coupons (carriers) upon which spores have been inoculated and which are introduced into liquid sporicidal agent contained in a microcentrifuge tube. Following exposure of inoculated carriers and neutralization, spores are removed from carriers in three fractions (gentle washing, fraction A; sonication, fraction B; and gentle agitation, fraction C). Liquid from each fraction is serially diluted and plated on a recovery medium for spore enumeration. The counts are summed over the three fractions to provide the density (viable spores per carrier), which is log10-transformed to arrive at the log density. The log reduction is calculated by subtracting the mean log density for treated carriers from the mean log density for control carriers. This paper presents a single-laboratory investigation conducted to evaluate the applicability of using two porous carrier materials (ceramic tile and untreated pine wood) and one alternative nonporous material (stainless steel). Glass carriers were included in the study as the reference material. Inoculated carriers were evaluated against three commercially available liquid sporicides (sodium hypochlorite, a combination of peracetic acid and hydrogen peroxide, and glutaraldehyde), each at two levels of presumed efficacy (medium and high) to provide data for assessing the responsiveness of the TSM. Three coupons of each material were evaluated across three replications at each level; three replications of a control were required. Even though all carriers were inoculated with approximately the same number of spores, the observed counts of recovered spores were consistently higher for the nonporous carriers. For control carriers, the mean log densities for the four materials ranged from 6.63 for

  11. Bacillus subtilis FZB24® Affects Flower Quantity and Quality of Saffron (Crocus sativus)

    OpenAIRE

    Sharaf-Eldin, Mahmoud; Elkholy, Shereen; Fernández, José-Antonio; Junge, Helmut; Cheetham, Ronald; Guardiola, José; Weathers, Pamela

    2008-01-01

    The effect of Bacillus subtilis FZB24® on saffron (Crocus sativus L.) was studied using saffron corms from Spain and the powdered form of B. subtilis FZB24®. Corms were soaked in water or in B. subtilis FZB24 spore solution for 15min before sowing. Some corms were further soil drenched with the spore solution 6, 10 or 14 weeks after sowing. Growth and saffron stigma chemical composition were measured. Compared to untreated controls, application of B. subtilis FZB24 significantly increased lea...

  12. Regulation of Growth of the Mother Cell and Chromosome Replication during Sporulation of Bacillus subtilis

    OpenAIRE

    Xenopoulos, Panagiotis; Piggot, Patrick J.

    2011-01-01

    During spore formation, Bacillus subtilis divides asymmetrically, resulting in two cells with different fates. Immediately after division, the transcription factor σF becomes active in the smaller prespore, followed by activation of σE in the larger mother cell. We recently showed that a delay in σE activation resulted in the novel phenotype of two spores (twins) forming within the same mother cell. Mother cells bearing twins are substantially longer than mother cells with single spores. Here...

  13. Role of GerD in Germination of Bacillus subtilis Spores▿

    OpenAIRE

    Pelczar, Patricia L.; Igarashi, Takao; Setlow, Barbara; Setlow, Peter

    2006-01-01

    Spores of a Bacillus subtilis strain with a gerD deletion mutation (ΔgerD) responded much slower than wild-type spores to nutrient germinants, although they did ultimately germinate, outgrow, and form colonies. Spores lacking GerD and nutrient germinant receptors also germinated slowly with nutrients, as did ΔgerD spores in which nutrient receptors were overexpressed. The germination defect of ΔgerD spores was not suppressed by many changes in the sporulation or germination conditions. Germin...

  14. Exposure of DNA and Bacillus subtilis spores to simulated martian environments: use of quantitative PCR (qPCR) to measure inactivation rates of DNA to function as a template molecule.

    Science.gov (United States)

    Fajardo-Cavazos, Patricia; Schuerger, Andrew C; Nicholson, Wayne L

    2010-05-01

    Several NASA and ESA missions are planned for the next decade to investigate the possibility of present or past life on Mars. Evidence of extraterrestrial life will likely rely on the detection of biomolecules, which highlights the importance of preventing forward contamination not only with viable microorganisms but also with biomolecules that could compromise the validity of life-detection experiments. The designation of DNA as a high-priority biosignature makes it necessary to evaluate its persistence in extraterrestrial environments and the effects of those conditions on its biological activity. We exposed DNA deposited on spacecraft-qualified aluminum coupons to a simulated martian environment for periods ranging from 1 minute to 1 hour and measured its ability to function as a template for replication in a quantitative polymerase chain reaction (qPCR) assay. We found that inactivation of naked DNA or DNA extracted from exposed spores of Bacillus subtilis followed a multiphasic UV-dose response and that a fraction of DNA molecules retained functionality after 60 minutes of exposure to simulated full-spectrum solar radiation in martian atmospheric conditions. The results indicate that forward-contaminant DNA could persist for considerable periods of time at the martian surface. PMID:20528195

  15. Comparative genome analysis of Bacillus cereus group genomes withBacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D' Souza, Mark; Larsen, Niels; Pusch,Gordon; Liolios, Konstantinos; Grechkin, Yuri; Lapidus, Alla; Goltsman,Eugene; Chu, Lien; Fonstein, Michael; Ehrlich, S. Dusko; Overbeek, Ross; Kyrpides, Nikos; Ivanova, Natalia

    2005-09-14

    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.

  16. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores.

    Science.gov (United States)

    Tseng, Shawn; Abramzon, Nina; Jackson, James O; Lin, Wei-Jen

    2012-03-01

    Bacterial spores are the most resistant form of life and have been a major threat to public health and food safety. Nonthermal atmospheric gas discharge plasma is a novel sterilization method that leaves no chemical residue. In our study, a helium radio-frequency cold plasma jet was used to examine its sporicidal effect on selected strains of Bacillus and Clostridium. The species tested included Bacillus subtilis, Bacillus stearothermophilus, Clostridium sporogenes, Clostridium perfringens, Clostridium difficile, and Clostridium botulinum type A and type E. The plasmas were effective in inactivating selected Bacillus and Clostridia spores with D values (decimal reduction time) ranging from 2 to 8 min. Among all spores tested, C. botulinum type A and C. sporogenes were significantly more resistant to plasma inactivation than other species. Observations by phase contrast microscopy showed that B. subtilis spores were severely damaged by plasmas and the majority of the treated spores were unable to initiate the germination process. There was no detectable fragmentation of the DNA when the spores were treated for up to 20 min. The release of dipicolinic acid was observed almost immediately after the plasma treatment, indicating the spore envelope damage could occur quickly resulting in dipicolinic acid release and the reduction of spore resistance.

  17. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores.

    Science.gov (United States)

    Tseng, Shawn; Abramzon, Nina; Jackson, James O; Lin, Wei-Jen

    2012-03-01

    Bacterial spores are the most resistant form of life and have been a major threat to public health and food safety. Nonthermal atmospheric gas discharge plasma is a novel sterilization method that leaves no chemical residue. In our study, a helium radio-frequency cold plasma jet was used to examine its sporicidal effect on selected strains of Bacillus and Clostridium. The species tested included Bacillus subtilis, Bacillus stearothermophilus, Clostridium sporogenes, Clostridium perfringens, Clostridium difficile, and Clostridium botulinum type A and type E. The plasmas were effective in inactivating selected Bacillus and Clostridia spores with D values (decimal reduction time) ranging from 2 to 8 min. Among all spores tested, C. botulinum type A and C. sporogenes were significantly more resistant to plasma inactivation than other species. Observations by phase contrast microscopy showed that B. subtilis spores were severely damaged by plasmas and the majority of the treated spores were unable to initiate the germination process. There was no detectable fragmentation of the DNA when the spores were treated for up to 20 min. The release of dipicolinic acid was observed almost immediately after the plasma treatment, indicating the spore envelope damage could occur quickly resulting in dipicolinic acid release and the reduction of spore resistance. PMID:22075631

  18. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.;

    2005-01-01

    phosphorylation, indicating that this post-translational modifi cation could regulate physiological processes ranging from stress response and exopolysaccharide synthesis to DNA metabolism. Some interesting work in this fi eld was done in Bacillus subtilis , and we here present the current state of knowledge...

  19. Localization of the Germination Protein GerD to the Inner Membrane in Bacillus subtilis Spores▿

    OpenAIRE

    Pelczar, Patricia L.; Setlow, Peter

    2008-01-01

    GerD of Bacillus subtilis is a protein essential for normal spore germination with either l-alanine or a mixture of l-asparagine, d-glucose, d-fructose, and potassium ions. GerD's amino acid sequence suggests that it may be a lipoprotein, indicating a likely location in a membrane. Location in the spore's outer membrane seems unlikely, since removal of this membrane does not result in a gerD spore germination phenotype, suggesting that GerD is likely in the spore's inner membrane. In order to...

  20. 利用枯草芽孢衣壳蛋白表面展示β-半乳糖苷酶%Functional Display of β-galactosidase on the Spore Surface of Bacillus subtilis Using Spore Coat Protein as Anchor Motif

    Institute of Scientific and Technical Information of China (English)

    王贺; 杨瑞金; 华霄; 赵伟; 张文斌

    2012-01-01

    分别将枯草芽孢杆菌(Bacillussubtilis 168)芽孢衣壳蛋白CotB、CotC、CotG和CotX的启动子和编码序列与来自嗜热脂肪芽孢杆菌(BacillusstearothermophilusIAMll001)的β-半乳糖苷酶基因bgaB进行重组,构建融合表达cotB—bgaB、eotC—bgaB、eotG—bgaB和eotX—bgaB的整合型重组质粒。将4种重组质粒分别转入枯草芽孢杆菌Bacillussubtilis168(trp。),获得了能在芽孢表面展示的重组菌株PB701、PB702、PB703和PB704。经Westernblot检测,4种重组菌株均表达了预期分子量的融合蛋白,初步表明β-半乳糖苷酶被锚定在重组菌株的芽孢表面。以oNPG为底物测定4种重组菌株芽孢表面展示β-半乳糖苷酶的水解能力,得到的酶活分别为0.14、0.06、0.22和0.20U/mL。%In this work, we developed an efficient spore display system that a model protein β-galactosidase was anchored on the spore surface of Bacillus subtilis 168 based on the use of spore coat proteins. The PCR-amplifying cotB, cotC, cotG and cotX were ligated with pMD-19T and digested with XbaI and KpnI, and then subcloned into vector pJS700a previously digested with the same two restriction enzymes, finally resulted in the plasmids pJSB, pJSC, pJSG and pJSX. To construct the gene fusions, the bgaB from Bacillus stearothermophilus IAMll001 was cloned into the KpnI and EcoRI sites of plasmid pJSB, pJSC, pJS G and pJSX to generate generating the plasmids pJSBB, pJSCB, pJSGB and pJSXB,respectively After linearization with BgllI restriction endonuclease, the four re- combinant integrative plasmids were transformed into B. subtilis 168 to yield the recombinant strain PB701, PB702, PB703 and PB704,respectively. Results from Western blot analysis showed that the fusion protein was immobilized on the spore surface. Using oNPG as substrate, the enzyme activity of spore-displaying β-galactosidase was assayed and they were 0.14, 0.06, 0.22 and 0.20 U/mL for PB701, PB702, PB

  1. Quantitative immunofluorescence studies of the serology of Bacillus anthracis spores.

    OpenAIRE

    Phillips, A. P.; Martin, K L

    1983-01-01

    A fluorescein-conjugated antibody against formalin-inactivated spores of Bacillus anthracis Vollum reacted only weakly with a variety of Bacillus species in microfluorometric immunofluorescence assays. A conjugated antibody against spores of B. anthracis Sterne showed little affinity for spores of several B. anthracis isolates including B. anthracis Vollum, indicating that more than one anthrax spore serotype exists.

  2. Inactivation of Spores of Bacillus anthracis Sterne, Bacillus cereus, and Bacillus thuringiensis subsp. israelensis by Chlorination

    OpenAIRE

    Rice, E W; Adcock, N. J.; Sivaganesan, M; Rose, L. J.

    2005-01-01

    Three species of Bacillus were evaluated as potential surrogates for Bacillus anthracis for determining the sporicidal activity of chlorination as commonly used in drinking water treatment. Spores of Bacillus thuringiensis subsp. israelensis were found to be an appropriate surrogate for spores of B. anthracis for use in chlorine inactivation studies.

  3. Scientific Opinion on the safety and efficacy of Bacillus subtilis PB6 (Bacillus subtilis) as a feed additive for laying hens and minor poultry species for laying

    OpenAIRE

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)

    2015-01-01

    Bacillus subtilis PB6 is the trade name for a feed additive based on viable spores of a strain of Bacillus subtilis. This species is considered by EFSA to be suitable for the qualified presumption of safety approach to safety assessment. This approach requires the identity of the active agent to be established and the absence of toxigenic potential and resistance to antibiotics of human or veterinary clinical significance to be demonstrated. No evidence of toxigenic potential or of resistance...

  4. Cannibalism stress response in Bacillus subtilis.

    Science.gov (United States)

    Höfler, Carolin; Heckmann, Judith; Fritsch, Anne; Popp, Philipp; Gebhard, Susanne; Fritz, Georg; Mascher, Thorsten

    2016-01-01

    When faced with carbon source limitation, the Gram-positive soil organism Bacillus subtilis initiates a survival strategy called sporulation, which leads to the formation of highly resistant endospores that allow B. subtilis to survive even long periods of starvation. In order to avoid commitment to this energy-demanding and irreversible process, B. subtilis employs another strategy called 'cannibalism' to delay sporulation as long as possible. Cannibalism involves the production and secretion of two cannibalism toxins, sporulation delaying protein (SDP) and sporulation killing factor (SKF), which are able to lyse sensitive siblings. The lysed cells are thought to then provide nutrients for the cannibals to slow down or even prevent them from entering sporulation. In this study, we uncovered the role of the cell envelope stress response (CESR), especially the Bce-like antimicrobial peptide detoxification modules, in the cannibalism stress response during the stationary phase. SDP and SKF specifically induce Bce-like systems and some extracytoplasmic function σ factors in stationary-phase cultures, but only the latter provide some degree of protection. A full Bce response is only triggered by mature toxins, and not by toxin precursors. Our study provides insights into the close relationship between stationary-phase survival and the CESR of B. subtilis. PMID:26364265

  5. Comparison of different Bacillus subtilis expression systems.

    Science.gov (United States)

    Vavrová, Ludmila; Muchová, Katarína; Barák, Imrich

    2010-11-01

    Bacillus subtilis is considered to have great potential as a host for the production and secretion of recombinant proteins. Many different expression systems have been developed for B. subtilis. Here we compare two widely used expression systems, the IPTG-inducible derivative of spac system (hyper-spank) and the xylose-inducible (xyl) to the SURE (subtilin-regulated gene expression) system. Western blot analysis of the membrane protein SpoIISA together with its protein partner SpoIISB showed that the highest expression level of this complex is obtained using the SURE system. Measurement of β-galactosidase activities of the promoter-lacZ fusions in individual expression systems confirmed that the P(spaS) promoter of the SURE system is the strongest of those compared, although the induction/repression ratio reached only 1.84. Based on these results, we conclude that the SURE system is the most efficient of these three B. subtilis expression systems in terms of the amount of expressed product. Remarkably, the yield of the SpoIISA-SpoIISB complex obtained from B. subtilis was comparable to that normally obtained from the Escherichia coli arabinose-inducible expression system. PMID:20863884

  6. Bacillus subtilis regulatory protein GerE

    OpenAIRE

    Ducros, V M A; Brannigan, J.A.; Lewis, R J; Wilkinson, A.J.

    1998-01-01

    GerE is the latest-acting of a series of factors which regulate gene expression in the mother cell during sporulation in Bacillus. The gene encoding GerE has been cloned from B. subtilis and overexpressed in Escherichia coli. Purified GerE has been crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol as a precipitant. The small plate-like crystals belong to the monoclinic space group C2 and diffract beyond 2.2 Angstrom resolution with a synchrotron radiation X-ra...

  7. Bacillus subtilis as potential producer for polyhydroxyalkanoates

    Directory of Open Access Journals (Sweden)

    Patel Sanjay KS

    2009-07-01

    Full Text Available Abstract Polyhydroxyalkanoates (PHAs are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB, the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process – for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA.

  8. Isolation and Characterization of Phages Infecting Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Anna Krasowska

    2015-01-01

    Full Text Available Bacteriophages have been suggested as an alternative approach to reduce the amount of pathogens in various applications. Bacteriophages of various specificity and virulence were isolated as a means of controlling food-borne pathogens. We studied the interaction of bacteriophages with Bacillus species, which are very often persistent in industrial applications such as food production due to their antibiotic resistance and spore formation. A comparative study using electron microscopy, PFGE, and SDS-PAGE as well as determination of host range, pH and temperature resistance, adsorption rate, latent time, and phage burst size was performed on three phages of the Myoviridae family and one phage of the Siphoviridae family which infected Bacillus subtilis strains. The phages are morphologically different and characterized by icosahedral heads and contractile (SIOΦ, SUBω, and SPOσ phages or noncontractile (ARπ phage tails. The genomes of SIOΦ and SUBω are composed of 154 kb. The capsid of SIOΦ is composed of four proteins. Bacteriophages SPOσ and ARπ have genome sizes of 25 kbp and 40 kbp, respectively. Both phages as well as SUBω phage have 14 proteins in their capsids. Phages SIOΦ and SPOσ are resistant to high temperatures and to the acid (4.0 and alkaline (9.0 and 10.0 pH.

  9. Two Genes Encoding Uracil Phosphoribosyltransferase Are Present in Bacillus subtilis

    DEFF Research Database (Denmark)

    Martinussen, Jan; Glaser, Philippe; Andersen, Paal S.;

    1995-01-01

    Uracil phosphoribosyltransferase (UPRTase) catalyzes the key reaction in the salvage of uracil in many microorganisms. Surprisingly, two genes encoding UPRTase activity were cloned from Bacillus subtilis by complementation of an Escherichia coli mutant. The genes were sequenced, and the putative...

  10. Selection of Bacillus subtilis mutants impaired in ammonia assimilation.

    OpenAIRE

    Dean, D R; Aronson, A I

    1980-01-01

    The selection of Bacillus subtilis mutants capable of using D-histidine to fulfill a requirement for L-histidine resulted in mutants with either no glutamate synthase activity or increased amounts of an altered glutamine synthetase.

  11. Water surface tension modulates the swarming mechanics of Bacillus subtilis

    OpenAIRE

    Ke, Wan-Ju; Hsueh, Yi-Huang; Cheng, Yu-Chieh; Wu, Chih-Ching; Liu, Shih-Tung

    2015-01-01

    Many Bacillus subtilis strains swarm, often forming colonies with tendrils on agar medium. It is known that B. subtilis swarming requires flagella and a biosurfactant, surfactin. In this study, we find that water surface tension plays a role in swarming dynamics. B. subtilis colonies were found to contain water, and when a low amount of surfactin is produced, the water surface tension of the colony restricts expansion, causing bacterial density to rise. The increased density induces a quorum ...

  12. Expression of UGA-Containing Mycoplasma Genes in Bacillus subtilis

    OpenAIRE

    Kannan, T. R.; Baseman, Joel B.

    2000-01-01

    We used Bacillus subtilis to express UGA-containing Mycoplasma genes encoding the P30 adhesin (one UGA) of Mycoplasma pneumoniae and methionine sulfoxide reductase (two UGAs) of Mycoplasma genitalium. Due to natural UGA suppression, these Mycoplasma genes were expressed as full-length protein products, but at relatively low efficiency, in recombinant wild-type Bacillus. The B. subtilis-expressed Mycoplasma proteins appeared as single bands and not as multiple bands compared to expression in r...

  13. Bacillus subtilis Vegetative Catalase Is an Extracellular Enzyme

    OpenAIRE

    Naclerio, G; Baccigalupi, L; Caruso, C; De Felice, M; Ricca, E

    1995-01-01

    Strong catalase activity was secreted by Bacillus subtilis cells during stationary growth phase in rich medium but not in sporulation-inducing medium. N-terminal sequencing indicated that the secreted activity was due to the vegetative catalase KatA, previously considered an endocellular enzyme. Extracellular catalase protected B. subtilis cells from oxidative assault.

  14. Draft Genome Sequence of Bacillus subtilis strain KATMIRA1933

    OpenAIRE

    Karlyshev, Andrey V.; Melnikov, Vyacheslav G.; Chikindas, Michael L.

    2014-01-01

    In this report, we present a draft sequence of Bacillus subtilis KATMIRA1933. Previous studies demonstrated probiotic properties of this strain partially attributed to production of an antibacterial compound, subtilosin. Comparative analysis of this strain’s genome with that of a commercial probiotic strain, B. subtilis Natto, is presented.

  15. Genome sequence of Bacillus subtilis subsp. spizizenii gtP20b, isolated from the Indian ocean.

    Science.gov (United States)

    Fan, Longjiang; Bo, Shiping; Chen, Huan; Ye, Wanzhi; Kleinschmidt, Katrin; Baumann, Heike I; Imhoff, Johannes F; Kleine, Michael; Cai, Daguang

    2011-03-01

    Bacillus subtilis is an aerobic spore-forming Gram-positive bacterium that is a model organism and of great industrial significance as the source of diverse novel functional molecules. Here we present, to our knowledge, the first genome sequence of Bacillus subtilis strain gtP20b isolated from the marine environment. A subset of candidate genes and gene clusters were identified, which are potentially involved in production of diverse functional molecules, like novel ribosomal and nonribosomal antimicrobial peptides. The genome sequence described in this paper is due to its high strain specificity of great importance for basic as well as applied researches on marine organisms. PMID:21183663

  16. Application of nisin and pediocin against resistance and germination of Bacillus spores in sous vide products.

    Science.gov (United States)

    Cabo, M L; Torres, B; Herrera, J J R; Bernárdez, M; Pastoriza, L

    2009-03-01

    Sous vide and other mild preservation techniques are increasingly demanded by consumers. However, spores often will survive in minimally processed foods, causing both spoilage and safety problems. The main objective of the present work was to solve an industrial spoilage problem associated with two sous vide products: mushrooms and shellfish salad. Bacillus subtilis and Bacillus licheniformis predominated as the most heat-resistant organisms isolated from mushrooms and shellfish salad, respectively. The combined effects of nisin and pediocin against resistance and germination of both Bacillus species were described by empirical equations. Whereas nisin was more effective for decreasing thermal resistance of B. subtilis spores, pediocin was more effective against B. licheniformis. However, a significant positive interaction between both biopeptides for decreasing the proportion of vegetative cells resulting from thermoresistant spores was demonstrated in later experiments, thus indicating the increased efficacy of applying high concentrations of both bacteriocins. This efficacy was further demonstrated in additional challenge studies carried out at 15 degrees C in the two sous vide products: mushrooms and shellfish salad. Whereas no vegetative cells were detected after 90 days in the presence of bacteriocins, almost 100% of the population in nontreated samples of mushrooms and shellfish salad was in the vegetative state after 17 and 43 days of storage at 15 degrees C, respectively. PMID:19343939

  17. Natural Dissemination of Bacillus anthracis Spores in Northern Canada

    OpenAIRE

    Dragon, D C; Bader, D. E.; Mitchell, J.; Woollen, N.

    2005-01-01

    Soil samples were collected from around fresh and year-old bison carcasses and areas not associated with known carcasses in Wood Buffalo National Park during an active anthrax outbreak in the summer of 2001. Sample selection with a grid provided the most complete coverage of a site. Soil samples were screened for viable Bacillus anthracis spores via selective culture, phenotypic analysis, and PCR. Bacillus anthracis spores were isolated from 28.4% of the samples. The highest concentrations of...

  18. Electron Beam Irradiation Dose Dependently Damages the Bacillus Spore Coat and Spore Membrane

    Directory of Open Access Journals (Sweden)

    S. E. Fiester

    2012-01-01

    Full Text Available Effective control of spore-forming bacilli begs suitable physical or chemical methods. While many spore inactivation techniques have been proven effective, electron beam (EB irradiation has been frequently chosen to eradicate Bacillus spores. Despite its widespread use, there are limited data evaluating the effects of EB irradiation on Bacillus spores. To study this, B. atrophaeus spores were purified, suspended in sterile, distilled water, and irradiated with EB (up to 20 kGy. Irradiated spores were found (1 to contain structural damage as observed by electron microscopy, (2 to have spilled cytoplasmic contents as measured by spectroscopy, (3 to have reduced membrane integrity as determined by fluorescence cytometry, and (4 to have fragmented genomic DNA as measured by gel electrophoresis, all in a dose-dependent manner. Additionally, cytometry data reveal decreased spore size, increased surface alterations, and increased uptake of propidium iodide, with increasing EB dose, suggesting spore coat alterations with membrane damage, prior to loss of spore viability. The present study suggests that EB irradiation of spores in water results in substantial structural damage of the spore coat and inner membrane, and that, along with DNA fragmentation, results in dose-dependent spore inactivation.

  19. Binding Affinity of Glycoconjugates to BACILLUS Spores and Toxins

    Science.gov (United States)

    Rasol, Aveen; Eassa, Souzan; Tarasenko, Olga

    2010-04-01

    Early recognition of Bacillus cereus group species is important since they can cause food-borne illnesses and deadly diseases in humans. Glycoconjugates (GCs) are carbohydrates covalently linked to non-sugar moieties including lipids, proteins or other entities. GCs are involved in recognition and signaling processes intrinsic to biochemical functions in cells. They also stimulate cell-cell adhesion and subsequent recognition and activation of receptors. We have demonstrated that GCs are involved in Bacillus cereus spore recognition. In the present study, we have investigated whether GCs possess the ability to bind and recognize B. cereus spores and Bacillus anthracis recombinant single toxins (sTX) and complex toxins (cTX). The affinity of GCs to spores + sTX and spores + cTX toxins was studied in the binding essay. Our results demonstrated that GC9 and GC10 were able to selectively bind to B. cereus spores and B. anthracis toxins. Different binding affinities for GCs were found toward Bacillus cereus spores + sTX and spores + cTX. Dilution of GCs does not impede the recognition and binding. Developed method provides a tool for simultaneous recognition and targeting of spores, bacteria toxins, and/or other entities.

  20. Dynamics of Aerial Tower Formation in Bacillus subtilis Biofilms

    Science.gov (United States)

    Sinha, Naveen; Seminara, Agnese; Wilking, James; Brenner, Michael; Weitz, Dave

    2012-02-01

    Biofilms are highly-organized colonies of bacteria that form on surfaces. These colonies form sophisticated structures which make them robust and difficult to remove from environments such as catheters, where they pose serious infection problems. Previous work has shown that sub-mm sized aerial towers form on the surface of Bacillus subtilis colony biofilms. Spore-formation is located preferentially at the tops of these towers, known as fruiting bodies, which aid in the dispersal and propagation of the colony to new sites. The formation of towers is strongly affected by the quorum-sensing molecule surfactin and the cannibalism pathway of the bacteria. In the present work, we use confocal fluorescence microscopy to study the development of individual fruiting bodies, allowing us to visualize the time-dependent spatial distribution of matrix-forming and sporulating bacteria within the towers. With this information, we investigate the physical mechanisms, such as surface tension and polymer concentration gradients, that drive the formation of these structures.

  1. A novel antifungal protein of Bacillus subtilis B25.

    Science.gov (United States)

    Tan, Zhiqiong; Lin, Baoying; Zhang, Rongyi

    2013-01-01

    Bacillus subtilis B25 was isolated from banana rhizosphere soil. It has been confirmed for B25 to have stronger antagonism against Fusarium oxysporum f.sp.cubense, Additionally B25 has good inhibitory to plant pathogens, including Corynespora cassiicola, Alternaria solani, Botrytis cinerea and Colletotrichum gloeosporioides on potato dextrose agar (PDA) plates. The antagonistic substance can be extracted from cell-free culture broth supernatants by 70% (w/v) (NH4)2 SO4 saturation. Clear blank band was observed between the protein and a pathogen. The examination of antagonistic mechanism under light microscope showed that the antifungal protein of B25 appeared to inhibit pathogens by leading to mycelium and spores tumescence, distortion, abnormality. The isolation procedure comprised ion exchange chromatography on DEAE-Sephadex Fast Flow and gel filtration chromatography on SephadexG-100. The purified antifungal fraction showed a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The active fraction was identified by NanoLC-ESI-MS/MS The amino acid sequences of 17 peptides segments were obtained. The analysis of the protein suggested that it was a hypothetical protein (gi154685475), with a relative molecular mass of 38708.67 Da and isoelectric point (pI) of 5.63. PMID:24255843

  2. Adhesion of B. subtilis spores and vegetative cells onto stainless steel--DLVO theories and AFM spectroscopy.

    Science.gov (United States)

    Harimawan, Ardiyan; Zhong, Shaoping; Lim, Chwee-Teck; Ting, Yen-Peng

    2013-09-01

    Interactions between the bacterium Bacillus subtilis (either as vegetative cells or as spores) and stainless steel 316 (SS-316) surfaces were quantified using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and extended DLVO (xDLVO) approach in conjunction with live force spectroscopy using an Atomic Force Microscope (AFM). The xDLVO approach accounts for acid-base (polar) interactions that are not considered in the classical DLVO theory. AFM results revealed that spores manifested stronger attraction interactions to stainless steel compared to their vegetative cells counterparts due to lower energy barrier as predicted by both the theoretical approaches as well as the higher hydrophobicity on the spore surfaces. Both DLVO and xDLVO theories predict that vegetative cells manifest weaker attachment on the surfaces compared to spores. Results of AFM force measurement corroborate these findings; spores recorded significantly higher adhesion force (2.92±0.4 nN) compared to vegetative cells (0.65±0.2 nN). The adhesion of spores presents greater challenges in biofilm control owing to its stronger attachment and persistence when the spores are formed under adverse environmental conditions. PMID:23777862

  3. 40 CFR 180.1128 - Bacillus subtilis MBI 600; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis MBI 600; exemption... FOOD Exemptions From Tolerances § 180.1128 Bacillus subtilis MBI 600; exemption from the requirement of... biofungicide Bacillus subtilis MBI 600 in or on all food commodities, including residues resulting from...

  4. Evaluation of in situ valine production by Bacillus subtilis in young pigs

    DEFF Research Database (Denmark)

    Nørgaard, Jan Værum; Canibe, Nuria; Assadi Soumeh, Elham;

    2016-01-01

    Mutants of Bacillus subtilis can be developed to overproduce Val in vitro. It was hypothesized that addition of Bacillus subtilis mutants to pig diets can be a strategy to supply the animal with Val. The objective was to investigate the effect of Bacillus subtilis mutants on growth performance an...

  5. Sigma A recognition sites in the Bacillus subtilis genome

    DEFF Research Database (Denmark)

    Jarmer, Hanne Østergaard; Larsen, Thomas Schou; Krogh, Anders Stærmose;

    2001-01-01

    A hidden Markov model of sigma (A) RNA polymerase cofactor recognition sites in Bacillus subtilis, containing either the common or the extended -10 motifs, has been constructed based on experimentally verified sigma (A) recognition sites. This work suggests that more information exists at the ini......A hidden Markov model of sigma (A) RNA polymerase cofactor recognition sites in Bacillus subtilis, containing either the common or the extended -10 motifs, has been constructed based on experimentally verified sigma (A) recognition sites. This work suggests that more information exists...

  6. Characterization of an L-arabinose isomerase from Bacillus subtilis

    DEFF Research Database (Denmark)

    Kim, Jin-Ha; Prabhu, Ponnandy; Jeya, Marimuthu;

    2010-01-01

    An isolated gene from Bacillus subtilis str. 168 encoding a putative isomerase was proposed as an L-arabinose isomerase (L-AI), cloned into Escherichia coli, and its nucleotide sequence was determined. DNA sequence analysis revealed an open reading frame of 1,491 bp, capable of encoding a polypep......An isolated gene from Bacillus subtilis str. 168 encoding a putative isomerase was proposed as an L-arabinose isomerase (L-AI), cloned into Escherichia coli, and its nucleotide sequence was determined. DNA sequence analysis revealed an open reading frame of 1,491 bp, capable of encoding...

  7. Transformation of Bacillus Subtilis with cloned thymidylate synthetases

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Edward M.

    1980-01-01

    Bacillus subtilis carries two genes, thyA and thyB, each encoding different protein products, with thymidylate synthetase (TSase) activity. Either of these genes alone is sufficient for thymidine independence in B. subtilis. In addition there exist two B. subtilis temperate bacteriophages which upon infection of thymine requiring auxotrophs results in conversion of the organism to thymine independence. Chimeric plasmids selected for Thy/sup +/ transforming activity in E. coli were constructed and then used as a source of defined highly enriched DNA with which to transform competent B. subtilis. These plasmids were studied for their: (1) abiility to transform B. subtilis to thymine independence; (2) site of integration within the B. subtilis chromosome upon transformation; (3) phenotype of Thy/sup +/ plasmid generated transformants; and (4) nucleotide sequence homology among the cloned DNA fragments conferring thymine independence. Plasmids containing the two bacteriophage thy genes displayed the phenotype associated with thyA, whereas the plasmids containing the cloned B. subtilis chromosomal genes displayed the phenotype associated with thyB. Utilizing similar technology, the ability of an entirely foreign hybred bacterial plasmiid to transform B. subtilis was examined. In this case the gene from E. coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid was effective in transforming both E. coli and B. subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine requiring strains of B. subtilis to thymine independence. Although the Thy/sup +/ transformants of E. coli contained plasmid DNA, the Thy/sup +/ transformants derived from the transformation of B. subtilis did not contain detectable extrachromosomal DNA. Instead the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis. (ERB)

  8. N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes.

    OpenAIRE

    Kuhn, H; Fietzek, P P; Lampen, J. O.

    1982-01-01

    The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis.

  9. Field-scale evaluation of the co-transport impacts of Bacillus subtilis endospores on other pathogen surrogates

    Science.gov (United States)

    Stimson, J. R.; Chik, A. H.; Mesquita, M. M.; McLellan, N. L.; Emelko, M.

    2009-12-01

    Bacillus subtilis spores are increasingly used as a surrogate in pathogen fate and transport studies, in particular as a conservative indicator of Cryptosporidium parvum transport in engineered and riverbank filtration systems. As part of the Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR), riverbank filtration systems can obtain additional log credits for pathogen removal through conducting a demonstration of performance study. Several studies have shown that the removal of total aerobic endospores (and often B. subtilis specifically) provide a conservative estimate of Crytosporidium oocyst removal during during conventional granular media and slow sand filtration processes used for drinking water treatment. Spores are persistent in groundwater settings, but readily attach to geological media due to high zeta potential and hydrophobic properties of the spore coat. “Demonstration” or “performance studies” are often conducted using more than one pathogen surrogate to provide regulators with greater confidence in projected pathogen removals during subsurface “treatment” of surface water. Column studies conducted at the University of Waterloo reproducibly indicated that the presence of Bacillus spores resulted in increased removal of other pathogen surrogates such as bacteria- and protozoan-sized carboxylated microspheres. A field study was subsequently conducted to determine if the same increase in removal occurs when B. subtilis spores are present during a field-scale injection experiment. Colloid suspensions were injected into a shallow well and extracted from another well at a distance of 0.4 m. These wells were installed in unconsolidated silty, sandy, gravel and boulder riverbank sediments along the Grand River in Kitchener, Ontario. Two initial injection experiments were conducted, one with 1.5 µm microspheres (a non-biological surrogate) alone and a second with B. subtilis spores and 1.5 µm fluorescent microspheres. Total aerobic

  10. Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism

    DEFF Research Database (Denmark)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu;

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and...

  11. Transformation of undomesticated strains of Bacillus subtilis by protoplast electroporation

    NARCIS (Netherlands)

    Romero, Diego; Perez-Garcia, Alejandro; Veening, Jan-Willem; de Vicente, Antonio; Kuipers, Oscar P.; de, Vicente A.

    2006-01-01

    A rapid method combining the use of protoplasts and electroporation was developed to transform recalcitrant wild strains of Bacillus subtilis. The method described here allows transformation with both replicative and integrative plasmids, as well as with chromosomal DNA, and provides a valuable tool

  12. The transcriptionally active regions in the genome of Bacillus subtilis

    DEFF Research Database (Denmark)

    Rasmussen, Simon; Nielsen, Henrik Bjørn; Jarmer, Hanne Østergaard

    2009-01-01

    The majority of all genes have so far been identified and annotated systematically through in silico gene finding. Here we report the finding of 3662 strand-specific transcriptionally active regions (TARs) in the genome of Bacillus subtilis by the use of tiling arrays. We have measured the genome...

  13. A New Saponin Transformed from Ginsenoside Rhl by Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Guo Hong LI; Yue Mao SHEN; Ke Qin ZHANG

    2005-01-01

    A novel saponin was isolated from the transformed products of ginsenoside Rh1 by Bacillus subtilis. It's structure was determined to be 3-O-β-D-glucopyranosyl-6-O-β-D-glucopyranosyl-20 (S)-protopanaxatriol on the basis of the spectral data.

  14. The impact of manganese on biofilm development of Bacillus subtilis

    NARCIS (Netherlands)

    Mhatre, Eisha; Troszok, Agnieszka; Gallegos-Monterrosa, Ramses; Lindstädt, Stefanie; Hölscher, Theresa; Kuipers, Oscar P.; Kovács, Ákos T.

    2016-01-01

    Bacterial biofilms are dynamic and structurally complex communities, involving cell-to-cell interactions. In recent years, various environmental signals were identified that induce the complex biofilm development of the Gram-positive bacterium Bacillus subtilis. These signaling molecules are often m

  15. Molecular Cloning and Nucleotide Sequence of the Superoxide Dismutase Gene and Characterization of Its Product from Bacillus subtilis

    OpenAIRE

    Inaoka, Takashi; MATSUMURA, Yoshinobu; TSUCHIDO, Tetsuaki

    1998-01-01

    Bacillus subtilis was found to possess one detectable superoxide dismutase (Sod) in both vegetative cells and spores. The Sod activity in vegetative cells was maximal at stationary phase. Manganese was necessary to sustain Sod activity at stationary phase, but paraquat, a superoxide generator, did not induce the expression of Sod. The specific activity of purified Sod was approximately 2,600 U/mg of protein, and the enzyme was a homodimer protein with a molecular mass of approximately 25,000 ...

  16. Engineering of Bacillus subtilis 168 for increased nisin resistance

    DEFF Research Database (Denmark)

    Hansen, Mette; Wangari, Romilda; Hansen, Egon Bech;

    2009-01-01

    Nisin is a natural bacteriocin produced commercially by Lactococcus lactis and widely used in the food industry as a preservative because of its broad host spectrum. Despite the low productivity and troublesome fermentation of L. lactis, no alternative cost-effective host has yet been found....... Bacillus subtilis had been suggested as a potential host for the biosynthesis of nisin but was discarded due to its sensitivity to the lethal action of nisin. In this study, we have reevaluated the potential of B. subtilis as a host organism for the heterologous production of nisin. We applied...... transcriptome and proteome analyses of B. subtilis and identified eight genes upregulated in the presence of nisin. We demonstrated that the overexpression of some of these genes boosts the natural defenses of B. subtilis, which allows it to sustain higher levels of nisin in the medium. We also attempted...

  17. [Asymmetric biosynthesis of d-pseudoephedrine by recombinant Bacillus subtilis].

    Science.gov (United States)

    Peng, Yanhong; Zhang, Liang; Ding, Zhongyang; Wang, Zhengxiang; Shi, Guiyang

    2011-07-01

    In order to successfully express the carbonyl reductase gene mldh in Bacillus subtilis and complete coenzyme regeneration by B. subtilis glucose dehydrogenase, the promoter PrpsD and the terminator TrpsD from B. subtilis rpsD gene were used as the expression cassette to be a recombinant plasmid pHY300plk-PrpsD-TrpsD. After that, the carbonyl reductase gene mldh was inserted into the previous plasmid and a plasmid pHY300plk-PrpsD-mldh-TrpsD was achieved, followed by transformed into B. subtilis Wb600 to obtain a recombinant B. subtilis Wb600 (pHY300plk-PrpsD-mldh-TrpsD). Subsequently, the results for whole-cell biotransformation from recombinant B. subtilis showed that it could be used to catalyze MAK (1-phenyl- 1-keto-2-methylaminopropane) to d-pseudoephedrine in the presence of glucose. The yield of d-pseudoephedrine could be up to 97.5 mg/L and the conversion rate of MAK was 24.1%. This study indicates the possibility of biotransformation production of d-pseudoephedrine from recombinant B. subtilis.

  18. Phylogeny and Molecular Taxonomy of the Bacillus subtilis species Complex and the Description of Bacillus subtilis subsp. inaquosorum subsp. nov

    Science.gov (United States)

    The Bacillus subtilis species complex is a tight assemblage of closely related species. For many years, it has been recognized that these species cannot be differentiated on the basis of phenotypic characteristics. Recently, it has been shown that phylogenetic analysis of the 16S ribosomal RNA gen...

  19. Decontamination Options for Drinking Water Contaminated with Bacillus anthracis Spores

    Energy Technology Data Exchange (ETDEWEB)

    Raber, E; Burklund, A

    2010-02-16

    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination options for use in a contaminated drinking water supply. The parameters were: (1) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus); (2) spore concentration in suspension (10{sup 2} to 10{sup 6} spores/ml); (3) chemical characteristics of decontaminant [sodium dicholor-s-triazinetrione dihydrate (Dichlor), hydrogen peroxide, potassium peroxymonosulfate (Oxone), sodium hypochlorite, and VirkonS{reg_sign}]; (4) decontaminant concentration (0.01% to 5%); and (5) decontaminant exposure time (10 min to 24 hr). Results from 162 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5%, and Dichlor and sodium hypochlorite at a concentration of 2%, were effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting EPA's biocide standard of greater than a 6 log kill after a 10-minute exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS{reg_sign} and Oxone were less effective decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for biocides. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.

  20. Architecture and High-Resolution Structure of Bacillus thuringiensis and Bacillus cereus Spore Coat Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Leighton, T; Wheeler, K; Malkin, A

    2005-02-18

    We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereus was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.

  1. An Optical Biosensor for Bacillus Cereus Spore Detection

    Science.gov (United States)

    Li, Chengquan; Tom, Harry W. K.

    2005-03-01

    We demonstrate a new transduction scheme for optical biosensing. Bacillus cereus is a pathogen that may be found in food and dairy products and is able to produce toxins and cause food poisoning. It is related to Bacillus anthracis (anthrax). A CCD array covered with micro-structured glass coverslip is used to detect the optical resonant shift due to the binding of the antigen (bacillus cereus spore) to the antibody (polyclonal antibody). This novel optical biosensor scheme has the potential for detecting 10˜100 bioagents in a single device as well as the potential to test for antigens with multiple antibody tests to avoid ``false positives.''

  2. Detection of Bacillus anthracis Spores Using Peptide Functionalized SERS-Active Substrates

    Directory of Open Access Journals (Sweden)

    Atanu Sengupta

    2012-01-01

    Full Text Available The need for portable technologies that can rapidly identify biological warfare agents (BWAs in the field remains an international priority as expressed at the 2011 Biological Weapons Convention. In recent years, the ability of surface-enhanced Raman spectroscopy (SERS to rapidly detect various BWAs at very low concentrations has been demonstrated. However, in the specific case of Bacillus anthracis, differentiation at the species level is required since other bacilli are common in the environment, representing potential false-positive responses. To overcome this limitation, we describe the use of a peptide attached to the SERS-active metal that selectively binds Bacillus anthracis-Sterne as the target analyte. Using this approach, 109  B. anthracis-Sterne spores/mL produced an intense dipicolinic acid spectrum upon the addition of acetic acid, while the same concentration and treatment of B. cereus and B. subtilis did not.

  3. Comparison of hand hygiene procedures for removing Bacillus cereus spores.

    Science.gov (United States)

    Sasahara, Teppei; Hayashi, Shunji; Hosoda, Kouichi; Morisawa, Yuji; Hirai, Yoshikazu

    2014-01-01

    Bacillus cereus is a spore-forming bacterium. B. cereus occasionally causes nosocomial infections, in which hand contamination with the spores plays an important role. Therefore, hand hygiene is the most important practice for controlling nosocomial B. cereus infections. This study aimed to determine the appropriate hand hygiene procedure for removing B. cereus spores. Thirty volunteers' hands were experimentally contaminated with B. cereus spores, after which they performed 6 different hand hygiene procedures. We compared the efficacy of the procedures in removing the spores from hands. The alcohol-based hand-rubbing procedures scarcely removed them. The soap washing procedures reduced the number of spores by more than 2 log10. Extending the washing time increased the spore-removing efficacy of the washing procedures. There was no significant difference in efficacy between the use of plain soap and antiseptic soap. Handwashing with soap is appropriate for removing B. cereus spores from hands. Alcohol-based hand-rubbing is not effective. PMID:25252644

  4. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system

    Science.gov (United States)

    Zhang, Kang; Duan, Xuguo; Wu, Jing

    2016-01-01

    Bacillus subtilis ATCC 6051a is an undomesticated strain used in the industrial production of enzymes. Because it is poorly transformable, genetic manipulation in this strain requires a highly efficient genome editing method. In this study, a Streptococcus pyogenes CRISPR/Cas9 system consisting of an all-in-one knockout plasmid containing a target-specific guide RNA, cas9, and a homologous repair template was established for highly efficient gene disruption in B. subtilis ATCC 6051a. With an efficiency of 33% to 53%, this system was used to disrupt the srfC, spoIIAC, nprE, aprE and amyE genes of B. subtilis ATCC 6051a, which hamper its use in industrial fermentation. Compared with B. subtilis ATCC 6051a, the final mutant, BS5 (ΔsrfC, ΔspoIIAC, ΔnprE, ΔaprE, ΔamyE), produces much less foam during fermentation, displays greater resistant to spore formation, and secretes 2.5-fold more β-cyclodextrin glycosyltransferase into the fermentation medium. Thus, the CRISPR/Cas9 system proved to be a powerful tool for targeted genome editing in an industrially relevant, poorly transformable strain. PMID:27305971

  5. Weak organic acid stress in Bacillus subtilis

    NARCIS (Netherlands)

    A.S. ter Beek

    2009-01-01

    Weak organic acids are commonly used food preservatives that protect food products from bacterial contamination. A variety of spore-forming bacterial species pose a serious problem to the food industry by causing extensive food spoilage or even food poisoning. Understanding the mechanisms of bacteri

  6. Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence.

    Science.gov (United States)

    Wang, Yanyu; Jenkins, Sarah A; Gu, Chunfang; Shree, Ankita; Martinez-Moczygemba, Margarita; Herold, Jennifer; Botto, Marina; Wetsel, Rick A; Xu, Yi

    2016-06-01

    Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications. PMID:27304426

  7. Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence.

    Directory of Open Access Journals (Sweden)

    Yanyu Wang

    2016-06-01

    Full Text Available Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications.

  8. Bacillus subtilis Hfq: A role in chemotaxis and motility

    Indian Academy of Sciences (India)

    CHANDRAKANT B JAGTAP; PRADEEP KUMAR; K KRISHNAMURTHY RAO

    2016-09-01

    Hfq is a global post-transcriptional regulator that modulates the translation and stability of target mRNAs and therebyregulates pleiotropic functions, such as growth, stress, virulence and motility, in many Gram-negative bacteria.However, comparatively little is known about the regulation and function(s) of Hfq in Gram-positive bacteria.Recently, in Bacillus subtilis, a role for Hfq in stationary phase survival has been suggested, although the possibilityof Hfq having an additional role(s) cannot be ruled out. In this study we show that an ortholog of Hfq in B. subtilis isregulated by the stress sigma factor, σB, in addition to the stationary phase sigma factor, σH. We further demonstratethat Hfq positively regulates the expression of flagellum and chemotaxis genes (fla/che) that control chemotaxis andmotility, thus assigning a new function for Hfq in B. subtilis.

  9. Bacillus subtilis Hfq: A role in chemotaxis and motility.

    Science.gov (United States)

    Jagtap, Chandrakant B; Kumar, Pradeep; Rao, Krishnamurthy K

    2016-09-01

    Hfq is a global post-transcriptional regulator that modulates the translation and stability of target mRNAs and thereby regulates pleiotropic functions, such as growth, stress, virulence and motility, in many Gram-negative bacteria. However, comparatively little is known about the regulation and function(s) of Hfq in Gram-positive bacteria. Recently, in Bacillus subtilis, a role for Hfq in stationary phase survival has been suggested, although the possibility of Hfq having an additional role(s) cannot be ruled out. In this study we show that an ortholog of Hfq in B. subtilis is regulated by the stress sigma factor, sigma^B, in addition to the stationary phase sigma factor, sigma^H. We further demonstrate that Hfq positively regulates the expression of flagellum and chemotaxis genes (fla/che) that control chemotaxis and motility, thus assigning a new function for Hfq in B. subtilis. PMID:27581927

  10. Biodegradation of furfural by Bacillus subtilis strain DS3.

    Science.gov (United States)

    Zheng, Dan; Bao, Jianguo; Lu, Jueming; Lv, Quanxi

    2015-07-01

    An aerobic bacterial strain DS3, capable of growing on furfural as sole carbon source, was isolated from actived sludge of wastewater treatment plant in a diosgenin factory after enrichment. Based on morphological physiological tests as well as 16SrDNA sequence and Biolog analyses it was identified as Bacillus subtilis. The study revealed that strain DS3 utilized furfural, as analyzed by high-performance liquid chromatography (HPLC). Under following conditions: pH 8.0, temperature 35 degrees C, 150 rpm and 10% inoculum, strain DS3 showed 31.2% furfural degradation. Furthermore, DS3 strain was found to tolerate furfural concentration as high as 6000 mg(-1). The ability of Bacillus subtilis strain DS3 to degrade furfural has been demonstrated for the first time in the present study.

  11. Multigeneration Cross-Contamination of Mail with Bacillus anthracis Spores.

    Science.gov (United States)

    Edmonds, Jason; Lindquist, H D Alan; Sabol, Jonathan; Martinez, Kenneth; Shadomy, Sean; Cymet, Tyler; Emanuel, Peter

    2016-01-01

    The release of biological agents, including those which could be used in biowarfare or bioterrorism in large urban areas, has been a concern for governments for nearly three decades. Previous incidents from Sverdlosk and the postal anthrax attack of 2001 have raised questions on the mechanism of spread of Bacillus anthracis spores as an aerosol or contaminant. Prior studies have demonstrated that Bacillus atrophaeus is easily transferred through simulated mail handing, but no reports have demonstrated this ability with Bacillus anthracis spores, which have morphological differences that may affect adhesion properties between spore and formite. In this study, equipment developed to simulate interactions across three generations of envelopes subjected to tumbling and mixing was used to evaluate the potential for cross-contamination of B. anthracis spores in simulated mail handling. In these experiments, we found that the potential for cross-contamination through letter tumbling from one generation to the next varied between generations while the presence of a fluidizer had no statistical impact on the transfer of material. Likewise, the presence or absence of a fluidizer had no statistically significant impact on cross-contamination levels or reaerosolization from letter opening. PMID:27123934

  12. Multigeneration Cross-Contamination of Mail with Bacillus anthracis Spores.

    Directory of Open Access Journals (Sweden)

    Jason Edmonds

    Full Text Available The release of biological agents, including those which could be used in biowarfare or bioterrorism in large urban areas, has been a concern for governments for nearly three decades. Previous incidents from Sverdlosk and the postal anthrax attack of 2001 have raised questions on the mechanism of spread of Bacillus anthracis spores as an aerosol or contaminant. Prior studies have demonstrated that Bacillus atrophaeus is easily transferred through simulated mail handing, but no reports have demonstrated this ability with Bacillus anthracis spores, which have morphological differences that may affect adhesion properties between spore and formite. In this study, equipment developed to simulate interactions across three generations of envelopes subjected to tumbling and mixing was used to evaluate the potential for cross-contamination of B. anthracis spores in simulated mail handling. In these experiments, we found that the potential for cross-contamination through letter tumbling from one generation to the next varied between generations while the presence of a fluidizer had no statistical impact on the transfer of material. Likewise, the presence or absence of a fluidizer had no statistically significant impact on cross-contamination levels or reaerosolization from letter opening.

  13. Multigeneration Cross-Contamination of Mail with Bacillus anthracis Spores

    Science.gov (United States)

    Edmonds, Jason; Lindquist, H. D. Alan; Sabol, Jonathan; Martinez, Kenneth; Shadomy, Sean; Cymet, Tyler; Emanuel, Peter

    2016-01-01

    The release of biological agents, including those which could be used in biowarfare or bioterrorism in large urban areas, has been a concern for governments for nearly three decades. Previous incidents from Sverdlosk and the postal anthrax attack of 2001 have raised questions on the mechanism of spread of Bacillus anthracis spores as an aerosol or contaminant. Prior studies have demonstrated that Bacillus atrophaeus is easily transferred through simulated mail handing, but no reports have demonstrated this ability with Bacillus anthracis spores, which have morphological differences that may affect adhesion properties between spore and formite. In this study, equipment developed to simulate interactions across three generations of envelopes subjected to tumbling and mixing was used to evaluate the potential for cross-contamination of B. anthracis spores in simulated mail handling. In these experiments, we found that the potential for cross-contamination through letter tumbling from one generation to the next varied between generations while the presence of a fluidizer had no statistical impact on the transfer of material. Likewise, the presence or absence of a fluidizer had no statistically significant impact on cross-contamination levels or reaerosolization from letter opening. PMID:27123934

  14. Metabolic engineering of Bacillus subtilis for terpenoid production.

    Science.gov (United States)

    Guan, Zheng; Xue, Dan; Abdallah, Ingy I; Dijkshoorn, Linda; Setroikromo, Rita; Lv, Guiyuan; Quax, Wim J

    2015-11-01

    Terpenoids are the largest group of small-molecule natural products, with more than 60,000 compounds made from isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). As the most diverse group of small-molecule natural products, terpenoids play an important role in the pharmaceutical, food, and cosmetic industries. For decades, Escherichia coli (E. coli) and Saccharomyces cerevisiae (S. cerevisiae) were extensively studied to biosynthesize terpenoids, because they are both fully amenable to genetic modifications and have vast molecular resources. On the other hand, our literature survey (20 years) revealed that terpenoids are naturally more widespread in Bacillales. In the mid-1990s, an inherent methylerythritol phosphate (MEP) pathway was discovered in Bacillus subtilis (B. subtilis). Since B. subtilis is a generally recognized as safe (GRAS) organism and has long been used for the industrial production of proteins, attempts to biosynthesize terpenoids in this bacterium have aroused much interest in the scientific community. This review discusses metabolic engineering of B. subtilis for terpenoid production, and encountered challenges will be discussed. We will summarize some major advances and outline future directions for exploiting the potential of B. subtilis as a desired "cell factory" to produce terpenoids.

  15. Production of Bioactive Compounds by Bacillus subtilis against Sclerotium rolfsii

    Directory of Open Access Journals (Sweden)

    Nalisha, I.

    2006-01-01

    Full Text Available This study aims to investigate the characteristic of bioactive compound produced by Bacillus subtilis against Sclerotium rolfsii and the influence of additive supplements on the antagonistic activity of B. subtilis. The fact that B. subtilis produced an antifungal substance which has inhibitory effect on wide range of fungi, including S. rolfsii, is well known. To learn the effect of pH, temperature and light condition on the production of antifungal compound, B. subtilis was inoculated in Potato Dextrose Broth at various initial pH, temperatures and light conditions, respectively. This antagonist was found to produce antifungal compound that stable at 80C with 58.3 % inhibition on S. rolfsii. The activity was constant within a wide range of pH (3–11. However, treatment with pH11 lead to higher antifungal activity (31.57 % inhibition and it was also found to produce substance that can endure dark condition (46.24 % inhibition with fungicidal effect on S. rolfsii. A series of experiments also been carried out to enhance the antifungal production by supplementing different carbon source preparation into bacterial liquid culture. B. subtilis were grown in minimal medium containing 1 % of oil palm root, Ganoderma lucidum or chitin, respectively prior to bioassay. Crude culture from oil palm root supplemented culture shown significantly reduction in S. rolfsii growth compared to other carbon source crude culture or the antagonism alone, suggesting that this approach may provide improved biocontrol efficiency.

  16. Tracking the Elusive Function of Bacillus subtilis Hfq.

    Science.gov (United States)

    Rochat, Tatiana; Delumeau, Olivier; Figueroa-Bossi, Nara; Noirot, Philippe; Bossi, Lionello; Dervyn, Etienne; Bouloc, Philippe

    2015-01-01

    RNA-binding protein Hfq is a key component of the adaptive responses of many proteobacterial species including Escherichia coli, Salmonella enterica and Vibrio cholera. In these organisms, the importance of Hfq largely stems from its participation to regulatory mechanisms involving small non-coding RNAs. In contrast, the function of Hfq in Gram-positive bacteria has remained elusive and somewhat controversial. In the present study, we have further addressed this point by comparing growth phenotypes and transcription profiles between wild-type and an hfq deletion mutant of the model Gram-positive bacterium, Bacillus subtilis. The absence of Hfq had no significant consequences on growth rates under nearly two thousand metabolic conditions and chemical treatments. The only phenotypic difference was a survival defect of B. subtilis hfq mutant in rich medium in stationary phase. Transcriptomic analysis correlated this phenotype with a change in the levels of nearly one hundred transcripts. Albeit a significant fraction of these RNAs (36%) encoded sporulation-related functions, analyses in a strain unable to sporulate ruled out sporulation per se as the basis of the hfq mutant's stationary phase fitness defect. When expressed in Salmonella, B. subtilis hfq complemented the sharp loss of viability of a degP hfq double mutant, attenuating the chronic σE-activated phenotype of this strain. However, B. subtilis hfq did not complement other regulatory deficiencies resulting from loss of Hfq-dependent small RNA activity in Salmonella indicating a limited functional overlap between Salmonella and B. subtilis Hfqs. Overall, this study confirmed that, despite structural similarities with other Hfq proteins, B. subtilis Hfq does not play a central role in post-transcriptional regulation but might have a more specialized function connected with stationary phase physiology. This would account for the high degree of conservation of Hfq proteins in all 17 B. subtilis strains whose

  17. [The flotation characteristics of Bacillus cells and spores].

    Science.gov (United States)

    Stabnikova, E V; Gregirchak, N N; Taranenko, T O

    1991-01-01

    Variations in hydrophobicity of the surface of bacillary cells and their capacity to flotation in the process of batch cultivation have been studied. It is shown that hydrophobicity of the cell surface increases in the course of batch cultivation of Bacillus thuringiensis, B. licheniformis and B. megaterium. Hydrophobicity of spores of the mentioned cultures is considerably higher than that of the vegetative cells. The increase of hydrophobicity of bacillary cells positively correlated with their capacity to flotation. That is why the use of flotation for the age fractionation of bacillary cells is possible: spores are concentrated in the foam while vegetative cells remain in the culture liquid. PMID:1779906

  18. High-Resolution Spore Coat Architecture and Assembly of Bacillus Spores

    Energy Technology Data Exchange (ETDEWEB)

    Malkin, A J; Elhadj, S; Plomp, M

    2011-03-14

    Elucidating the molecular architecture of bacterial and cellular surfaces and its structural dynamics is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance, and provide the means for identifying spore formulation and processing attributes. I will discuss the application of in vitro atomic force microscopy (AFM) for studies of high-resolution coat architecture and assembly of several Bacillus spore species. We have demonstrated that bacterial spore coat structures are phylogenetically and growth medium determined. We have proposed that strikingly different species-dependent coat structures of bacterial spore species are a consequence of sporulation media-dependent nucleation and crystallization mechanisms that regulate the assembly of the outer spore coat. Spore coat layers were found to exhibit screw dislocations and two-dimensional nuclei typically observed on inorganic and macromolecular crystals. This presents the first case of non-mineral crystal growth patterns being revealed for a biological organism, which provides an unexpected example of nature exploiting fundamental materials science mechanisms for the morphogenetic control of biological ultrastructures. We have discovered and validated, distinctive formulation-specific high-resolution structural spore coat and dimensional signatures of B. anthracis spores (Sterne strain) grown in different formulation condition. We further demonstrated that measurement of the dimensional characteristics of B. anthracis spores provides formulation classification and sample matching with high sensitivity and specificity. I will present data on the development of an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures on the B. anthracis surfaces. These studies demonstrate that AFM can probe microbial surface architecture, environmental dynamics and the life cycle of bacterial and cellular systems at near

  19. Cytokine Response to Infection with Bacillus anthracis Spores

    OpenAIRE

    Pickering, Alison K.; Osorio, Manuel; Lee, Gloria M.; Grippe, Vanessa K.; Bray, Mechelle; Merkel, Tod J.

    2004-01-01

    Bacillus anthracis, the etiological agent of anthrax, is a gram-positive, spore-forming bacterium. The inhalational form of anthrax is the most severe and is associated with rapid progression of the disease and the outcome is frequently fatal. Transfer from the respiratory epithelium to regional lymph nodes appears to be an essential early step in the establishment of infection. This transfer is believed to occur by means of carriage within alveolar macrophages following phagocytosis. Therefo...

  20. Homolactic fermentation from glucose and cellobiose using Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Martinez Alfredo

    2009-04-01

    Full Text Available Abstract Backgroung Biodegradable plastics can be made from polylactate, which is a polymer made from lactic acid. This compound can be produced from renewable resources as substrates using microorganisms. Bacillus subtilis is a Gram-positive bacterium recognized as a GRAS microorganism (generally regarded as safe by the FDA. B. subtilis produces and secretes different kind of enzymes, such as proteases, cellulases, xylanases and amylases to utilize carbon sources more complex than the monosaccharides present in the environment. Thus, B. subtilis could be potentially used to hydrolyze carbohydrate polymers contained in lignocellulosic biomass to produce chemical commodities. Enzymatic hydrolysis of the cellulosic fraction of agroindustrial wastes produces cellobiose and a lower amount of glucose. Under aerobic conditions, B. subtilis grows using cellobiose as substrate. Results In this study, we proved that under non-aerated conditions, B. subtilis ferments cellobiose to produce L-lactate with 82% of the theoretical yield, and with a specific rate of L-lactate production similar to that one obtained fermenting glucose. Under fermentative conditions in a complex media supplemented with glucose, B. subtilis produces L-lactate and a low amount of 2,3-butanediol. To increase the L-lactate production of this organism, we generated the B subtilis CH1 alsS- strain that lacks the ability to synthesize 2,3-butanediol. Inactivation of this pathway, that competed for pyruvate availability, let a 15% increase in L-lactate yield from glucose compared with the parental strain. CH1 alsS- fermented 5 and 10% of glucose to completion in mineral medium supplemented with yeast extract in four and nine days, respectively. CH1 alsS- produced 105 g/L of L-lactate in this last medium supplemented with 10% of glucose. The L-lactate yield was up to 95% using mineral media, and the optical purity of L-lactate was of 99.5% since B. subtilis has only one gene (lctE that

  1. Investigation of biosurfactant production by Bacillus pumilus 1529 and Bacillus subtilis WPI

    Directory of Open Access Journals (Sweden)

    shila khajavi shojaei

    2016-06-01

    Full Text Available Introduction: Biosurfactants are unique amphipathic molecules with extensive application in removing organic and metal contaminants. The purpose of this study was to investigate production of biosurfactant and determine optimal conditions to produce biosurfactant by Bacillus pumilus 1529 and Bacillus subtilis WPI. Materials and methods: In this study, effect of carbon source, temperature and incubation time on biosurfactant production was evaluated. Hemolytic activity, emulsification activity, oil spreading, drop collapse, cell hydrophobicity and measurement of surface tension were used to detect biosurfactant production. Then, according to the results, the optimal conditions for biosurfactant production by and Bacillus subtilis WPI was determined. Results: In this study, both bacteria were able to produce biosurfactant at an acceptable level. Glucose, kerosene, sugarcane molasses and phenanthrene used as a sole carbon source and energy for the mentioned bacteria. Bacillus subtilis WPI produced maximum biosurfactant in the medium containing kerosene and reduced surface tension of the medium to 33.1 mN/m after 156 hours of the cultivation at 37°C. Also, the highest surface tension reduction by Bacillus pumilus 1529 occurred in the medium containing sugarcane molasses and reduce the surface tension of culture medium after 156 hours at 37°C from 50.4 to 28.83 mN/m. Discussion and conclusion: Bacillus pumilus 1529 and Bacillus subtilis WPI had high potential in production of biosurfactant and degradation of petroleum hydrocarbons and Phenanthrene. Therefore, it could be said that these bacteria had a great potential for applications in bioremediation and other environmental process.

  2. MstX and a putative potassium channel facilitate biofilm formation in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Matthew E Lundberg

    Full Text Available Biofilms constitute the predominant form of microbial life and a potent reservoir for innate antibiotic resistance in systemic infections. In the spore-forming bacterium Bacillus subtilis, the transition from a planktonic to sessile state is mediated by mutually exclusive regulatory pathways controlling the expression of genes required for flagellum or biofilm formation. Here, we identify mstX and yugO as novel regulators of biofilm formation in B. subtilis. We show that expression of mstX and the downstream putative K+ efflux channel, yugO, is necessary for biofilm development in B. subtilis, and that overexpression of mstX induces biofilm assembly. Transcription of the mstX-yugO operon is under the negative regulation of SinR, a transcription factor that governs the switch between planktonic and sessile states. Furthermore, mstX regulates the activity of Spo0A through a positive autoregulatory loop involving KinC, a histidine kinase that is activated by potassium leakage. The addition of potassium abrogated mstX-mediated biofilm formation. Our findings expand the role of Spo0A and potassium homeostasis in the regulation of bacterial development.

  3. A part toolbox to tune genetic expression in Bacillus subtilis.

    Science.gov (United States)

    Guiziou, Sarah; Sauveplane, Vincent; Chang, Hung-Ju; Clerté, Caroline; Declerck, Nathalie; Jules, Matthieu; Bonnet, Jerome

    2016-09-01

    Libraries of well-characterised components regulating gene expression levels are essential to many synthetic biology applications. While widely available for the Gram-negative model bacterium Escherichia coli, such libraries are lacking for the Gram-positive model Bacillus subtilis, a key organism for basic research and biotechnological applications. Here, we engineered a genetic toolbox comprising libraries of promoters, Ribosome Binding Sites (RBS), and protein degradation tags to precisely tune gene expression in B. subtilis We first designed a modular Expression Operating Unit (EOU) facilitating parts assembly and modifications and providing a standard genetic context for gene circuits implementation. We then selected native, constitutive promoters of B. subtilis and efficient RBS sequences from which we engineered three promoters and three RBS sequence libraries exhibiting ∼14 000-fold dynamic range in gene expression levels. We also designed a collection of SsrA proteolysis tags of variable strength. Finally, by using fluorescence fluctuation methods coupled with two-photon microscopy, we quantified the absolute concentration of GFP in a subset of strains from the library. Our complete promoters and RBS sequences library comprising over 135 constructs enables tuning of GFP concentration over five orders of magnitude, from 0.05 to 700 μM. This toolbox of regulatory components will support many research and engineering applications in B. subtilis. PMID:27402159

  4. Complexity in regulation of tryptophan biosynthesis in Bacillus subtilis.

    Science.gov (United States)

    Gollnick, Paul; Babitzke, Paul; Antson, Alfred; Yanofsky, Charles

    2005-01-01

    Bacillus subtilis uses novel regulatory mechanisms in controlling expression of its genes of tryptophan synthesis and transport. These mechanisms respond to changes in the intracellular concentrations of free tryptophan and uncharged tRNA(Trp). The major B. subtilis protein that regulates tryptophan biosynthesis is the tryptophan-activated RNA-binding attenuation protein, TRAP. TRAP is a ring-shaped molecule composed of 11 identical subunits. Active TRAP binds to unique RNA segments containing multiple trinucleotide (NAG) repeats. Binding regulates both transcription termination and translation in the trp operon, and translation of other coding regions relevant to tryptophan metabolism. When there is a deficiency of charged tRNA(Trp), B. subtilis forms an anti-TRAP protein, AT. AT antagonizes TRAP function, thereby increasing expression of all the genes regulated by TRAP. Thus B. subtilis and Escherichia coli respond to identical regulatory signals, tryptophan and uncharged tRNA(Trp), yet they employ different mechanisms in regulating trp gene expression. PMID:16285852

  5. Suppression of Magnaporthe oryzae and interaction between Bacillus subtilis and rice plants in the control of rice blast.

    Science.gov (United States)

    Sha, Yuexia; Wang, Qi; Li, Yan

    2016-01-01

    Magnaporthe oryzae, the causative pathogen of rice blast, has caused extensive losses to rice cultivation worldwide. Strains of the bacterium Bacillus subtilis have been used as biocontrol agents against rice blast. However, little has been reported about the interaction between B. subtilis and the rice plant and its mechanism of action. Here, the colonization process and induced disease resistance by B. subtilis SYX04 and SYX20 in rice plants was examined. Strains of B. subtilis labeled with green fluorescent protein reached population of more than 5 × 10(6) CFU/g after 20 days on mature rice leaves and were detected after 3 days on newly grown leaves. Results showed that SYX04 and SYX20 not only inhibited spore germination, germ tube length, and appressorial formation but also caused a series of alterations in the structures of hyphae and conidia. The cell walls and membrane structures of the fungus showed ultrastructural abnormalities, which became severely degraded as observed through scanning electron microscopy and transmission electron microscopy. The mixture of both B. subtilis and M. oryzae resulted in enhanced activity of peroxidase, and polyphenol oxidase while there was significantly more superoxide dismutase activity in plants that had been sprayed with B. subtilis alone. The present study suggests that colonized SYX04 and SYX20 strains protected rice plants and exhibited antifungal activity and induced systemic resistance, thus indicating their potential biological control agents. PMID:27536521

  6. Stoichiometric growth model for riboflavin-producing Bacillus subtilis.

    Science.gov (United States)

    Dauner, M; Sauer, U

    2001-09-01

    Rate equations for measured extracellular rates and macromolecular composition data were combined with a stoichiometric model to describe riboflavin production with an industrial Bacillus subtilis strain using errors in variables regression analysis. On the basis of this combined stoichiometric growth model, we explored the topological features of the B. subtilis metabolic reaction network that was assembled from a large amount of literature. More specifically, we simulated maximum theoretical yields of biomass and riboflavin, including the associated flux regimes. Based on the developed model, the importance of experimental data on building block requirements for maximum yield and flux calculations were investigated. These analyses clearly show that verification of macromolecular composition data is important for optimum flux calculations. PMID:11505383

  7. Regulation of the anaerobic metabolism in Bacillus subtilis.

    Science.gov (United States)

    Härtig, Elisabeth; Jahn, Dieter

    2012-01-01

    The Gram-positive soil bacterium Bacillus subtilis encounters changing environmental conditions in its habitat. The access to oxygen determines the mode of energy generation. A complex regulatory network is employed to switch from oxygen respiration to nitrate respiration and various fermentative processes. During adaptation, oxygen depletion is sensed by the [4Fe-4S](2+) cluster containing Fnr and the two-component regulatory system ResDE consisting of the membrane-bound histidine kinase ResE and the cytoplasmic ResD regulator. Nitric oxide is the signal recognized by NsrR. Acetate formation and decreasing pH are measured via AlsR. Finally, Rex is responding to changes in the cellular NAD(+)/NADH ration. The fine-tuned interplay of these regulators at approximately 400 target gene promoters ensures efficient adaptation of the B. subtilis physiology. PMID:23046954

  8. Biocontrol Activity of Bacillus subtilis Isolated from Agaricus bisporus Mushroom Compost Against Pathogenic Fungi.

    Science.gov (United States)

    Liu, Can; Sheng, Jiping; Chen, Lin; Zheng, Yanyan; Lee, David Yue Wei; Yang, Yang; Xu, Mingshuang; Shen, Lin

    2015-07-01

    Bacillus subtilis strain B154, isolated from Agaricus bisporus mushroom compost infected by red bread mold, exhibited antagonistic activities against Neurospora sitophila. Antifungal activity against phytopathogenic fungi was also observed. The maximum antifungal activity was reached during the stationary phase. This antifungal activity was stable over a wide pH and temperature range and was not affected by proteases. Assay of antifungal activity in vitro indicated that a purified antifungal substance could strongly inhibit mycelia growth and spore germination of N. sitophila. In addition, treatment with strain B154 in A. bisporus mushroom compost infected with N. sitophila significantly increased the yield of bisporus mushrooms. Ultraviolet scan spectroscopy, tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis, matrix-associated laser desorption ionization time-of-flight mass spectrometry, and electrospray ionization tandem mass spectrometry analyses revealed a molecular weight consistent with 1498.7633 Da. The antifungal compound might belong to a new type of lipopeptide fengycin. PMID:26050784

  9. Cosegregation of cell wall and DNA in Bacillus subtilis.

    OpenAIRE

    Schlaeppi, J M; Karamata, D

    1982-01-01

    Cosegregation of cell wall and DNA of a lysis-negative mutant of Bacillus subtilis was examined by continuously labeling (i) cell wall, (ii) DNA, and (iii) both cell wall and DNA. After four to five generations of chase in liquid media it was found by light microscope autoradiography that the numbers of wall segregation units per cell are 29 and 9 in rich and minimal medium, respectively. Under the same conditions the numbers of segregation units of DNA were almost 50% lower: 15 and 5, respec...

  10. Unhairing animal hides using probiotic Bacteria bacillus subtilis

    OpenAIRE

    Данилкович, Анатолій Григорович; Гвоздяк, Петро Ілліч; Романюк, Оксана Олександрівна; Ковтуненко, Ольга Василівна

    2013-01-01

    The most efficient technology of processing natural raw materials into skin and fur is the use of enzyme products for soaking and liming processes. Therefore, the use of bacterial products, which produce enzymes of various functional effects, is considered to be very promising for the above mentioned processes.Soaking and liming of flint-dried rabbit hides were carried out using probiotic bacreria Bacillus subtilis on 4 samples in a laboratory centrifuge at soaking temperature 36-38°С and wor...

  11. Unlocking the Sporicidal Potential of Ethanol: Induced Sporicidal Activity of Ethanol against Clostridium difficile and Bacillus Spores under Altered Physical and Chemical Conditions.

    Directory of Open Access Journals (Sweden)

    Michelle M Nerandzic

    Full Text Available Due to their efficacy and convenience, alcohol-based hand sanitizers have been widely adopted as the primary method of hand hygiene in healthcare settings. However, alcohols lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We hypothesized that sporicidal activity could be induced in alcohols through alteration of physical or chemical conditions that have been shown to degrade or allow penetration of spore coats.Acidification, alkalinization, and heating of ethanol induced rapid sporicidal activity against C. difficile, and to a lesser extent Bacillus thuringiensis and Bacillus subtilis. The sporicidal activity of acidified ethanol was enhanced by increasing ionic strength and mild elevations in temperature. On skin, sporicidal ethanol formulations were as effective as soap and water hand washing in reducing levels of C. difficile spores.These findings demonstrate that novel ethanol-based sporicidal hand hygiene formulations can be developed through alteration of physical and chemical conditions.

  12. MOLECULAR PROFILING AND ANTIMICROBIAL ACTIVITY OF BACTERIOCIN FROM BACILLUS SUBTILIS

    Directory of Open Access Journals (Sweden)

    Berlina Dhas S

    2012-12-01

    Full Text Available Development of multi drug resistant organism has been high due to improper use of antibiotics. That made the necessity to develop new drug molecules. In this study an effort was made to find a new alternative. A wild type microorganism was isolated from soil and was identified as Bacillus and confirmed as Bacillus subtilis species by 16S r RNA sequencing. The strain was identified to have the ability to produce bacteriocin by stab overlay assay. Bacteriocin was produced in nutrient broth and that was extracted by organic solvent extraction using chloroform and further purification was carried out by HPLC and the molecular weight of the bacteriocin was analysed by SDSPAGE. Antimicrobial activity was analysed on four strains Pseudomonas sp, Staphylococcus sp, Klebsiella sp and Proteus sp. and was found to be sensitive towards the analyzed strains.

  13. Isolation and characterization of protease from Bacillus subtilis 1012M15

    Directory of Open Access Journals (Sweden)

    ELFI SUSANTI

    2003-01-01

    Full Text Available A local strain of Bacillus sp. BAC4, is known to produce penicillin G acylase (PGA enzyme with relatively high activity. This strain secretes the PGA into the culture medium. However, it has been reported that PGA activity fall and rise during culture, and the activity plummets during storege at –200C, which probably due to usage protease activity of Bacillus sp. BAC4. To study the possible use of Bacillus subtilis 1012M15 as a host cell for cloning the pga gene from Bacillus sp. BAC4, the protease activity of Bacillus subtilis 1012M15 were studied. Protease activity was determined by Horikoshi method. In this experiment, maximum protease activity in Bacillus subtilis 1012M15 culture was obsereved after 8 hours. At this optimum condition, protease activity of Bacillus sp. BAC4 is five time higher than that of Bacillus subtilis 1012M15. This situation promised the possible usage of Bacillus subtilis 1012M15 as a host cell for pga expression. For protease characterization, the bacterial culture had been separated from the cell debris by centrifugation. The filtrate was concentrated by freeze drying, fractionated by ammonium sulphate, dialyzed in selovan tube, and then fractionated by ion exchance chromatography employing DEAE-cellulose. The five peaks resulted indicated the presence of five protease. Based on inhibitor and activator influence analysis, it could be concluded that proteases from Bacillus subtilis 1012M15 contained of serin protease as well as metalloprotease and serin protease mixture.

  14. Isolation of a New Mexican Strain of Bacillus subtilis with Antifungal and Antibacterial Activities

    OpenAIRE

    M. G. L. Basurto-Cadena; M. Vázquez-Arista; García-Jiménez, J.; Salcedo-Hernández, R.; Bideshi, D. K.; Barboza-Corona, J. E.

    2012-01-01

    Although several strains of B. subtilis with antifungal activity have been isolated worldwide, to date there are no published reports regarding the isolation of a native B. subtilis strain from strawberry plants in Mexico. A native bacterium (Bacillus subtilis 21) demonstrated in vitro antagonistic activity against different plant pathogenic fungi. Under greenhouse conditions, it was shown that plants infected with Rhizoctonia solani and Fusarium verticillioides and treated with B. subtilis 2...

  15. Peptidoglycan hydrolysis is required for assembly and activity of the transenvelope secretion complex during sporulation in Bacillus subtilis

    OpenAIRE

    Rodrigues, Christopher D. A.; Marquis, Kathleen A.; Meisner, Jeffrey; Rudner, David Z.

    2013-01-01

    Sporulating Bacillus subtilis cells assemble a transenvelope secretion complex that connects the mother cell and developing spore. The forespore protein SpoIIQ and the mother-cell protein SpoIIIAH interact across the double membrane septum and are thought to assemble into a channel that serves as the basement layer of this specialized secretion system. SpoIIQ is absolutely required to recruit SpoIIIAH to the sporulation septum on the mother-cell side, however the mechanism by which SpoIIQ is ...

  16. SpoIIB Localizes to Active Sites of Septal Biogenesis and Spatially Regulates Septal Thinning during Engulfment in Bacillus subtilis

    OpenAIRE

    Perez, Ana R.; Abanes-De Mello, Angelica; Pogliano, Kit

    2000-01-01

    A key step in the Bacillus subtilis spore formation pathway is the engulfment of the forespore by the mother cell, a phagocytosis-like process normally accompanied by the loss of peptidoglycan within the sporulation septum. We have reinvestigated the role of SpoIIB in engulfment by using the fluorescent membrane stain FM 4-64 and deconvolution microscopy. We have found that spoIIB mutant sporangia display a transient engulfment defect in which the forespore pushes through the septum and bulge...

  17. Characterization of dacC, which encodes a new low-molecular-weight penicillin-binding protein in Bacillus subtilis

    DEFF Research Database (Denmark)

    Pedersen, Lotte Bang; Murray, T; Popham, D L;

    1998-01-01

    The pbp gene (renamed dacC), identified by the Bacillus subtilis genome sequencing project, encodes a putative 491-residue protein with sequence homology to low-molecular-weight penicillin-binding proteins. Use of a transcriptional dacC-lacZ fusion revealed that dacC expression (i) is initiated at...... sporulated identically to wild-type cells, and dacC and wild-type spores had the same heat resistance, cortex structure, and germination and outgrowth kinetics. Expression of dacC in Escherichia coli showed that this gene encodes an approximately 59-kDa membrane-associated penicillin-binding protein which is...

  18. Initiation of decay of Bacillus subtilis trp leader RNA.

    Science.gov (United States)

    Deikus, Gintaras; Bechhofer, David H

    2007-07-13

    Transcription termination in the leader region of the Bacillus subtilis trp operon is regulated by binding of the 11-mer TRAP complex to nascent trp RNA, which results in formation of a terminator structure. Rapid decay of trp leader RNA, which is required to release the TRAP complex and maintain a sufficient supply of free TRAP, is mediated by polynucleotide phosphorylase (PNPase). Using purified B. subtilis PNPase, we showed that, when TRAP was present, PNPase binding to the 3' end of trp leader RNA and PNPase digestion of trp leader RNA from the 3' end were inefficient. These results suggested that initiation of trp leader RNA may begin with an endonuclease cleavage upstream of the transcription terminator structure. Such cleavage was observed in vivo. Mutagenesis of nucleotides at the cleavage site abolished processing and resulted in a 4-fold increase in trp leader RNA half-life. This is the first mapping of a decay-initiating endonuclease cleavage site on a native B. subtilis RNA. PMID:17507374

  19. Adhesion of Spores of Bacillus thuringiensis on a Planar Surface

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Joy, David Charles [ORNL; Palumbo, Anthony Vito [ORNL; Tsouris, Costas [ORNL

    2010-01-01

    Adhesion of spores of Bacillus thuringiensis (Bt) and spherical silica particles on surfaces was experimentally and theoretically investigated in this study. Topography analysis via atomic force microscopy (AFM) and electron microscopy indicates that Bt spores are rod shaped, {approx}1.3 {mu}m in length and {approx}0.8 {mu}m in diameter. The adhesion force of Bt spores and silica particles on gold-coated glass was measured at various relative humidity (RH) levels by AFM. It was expected that the adhesion force would vary with RH because the individual force components contributing to the adhesion force depend on RH. The adhesion force between a particle and a planar surface in atmospheric environments was modeled as the contribution of three major force components: capillary, van der Waals, and electrostatic interaction forces. Adhesion force measurements for Bt spore (silica particle) and the gold surface system were comparable with calculations. Modeling results show that there is a critical RH value, which depends on the hydrophobicity of the materials involved, below which the water meniscus does not form and the contribution of the capillary force is zero. As RH increases, the van der Waals force decreases while the capillary force increases to a maximum value.

  20. Quantitative Analysis of Spatial-Temporal Correlations during Germination of Spores of Bacillus Species ▿

    OpenAIRE

    Zhang, JinQiao; Garner, Will; Setlow, Peter; Yu, Ji

    2011-01-01

    Bacteria of Bacillus species sporulate upon starvation, and the resultant dormant spores germinate when the environment appears likely to allow the resumption of vegetative growth. Normally, the rates of germination of individual spores in populations are very heterogeneous, and the current work has investigated whether spore-to-spore communication enhances the synchronicity of germination. In order to do this work, time-lapse optical images of thousands of individual spores were captured dur...

  1. PRODUKSI ANTIBIOTIKA OLEH Bacillus subtilis M10 DALAM MEDIA UREA-SORBITOL

    Directory of Open Access Journals (Sweden)

    Supartono Supartono

    2012-04-01

    Full Text Available PRODUCTION OF ANTIBIOTICS BY Bacillus subtilis M10 IN UREA-SORBITOL MEDIUM. Infection diseases still become the main health problems that suffered by people in Indonesia. Besides, there were many pathogen bacteria found to be resistant to the some antibiotics. Therefore, the efforts to get a new antibiotic require to be done continuously. A new local strain of Bacillus subtilis BAC4 has been known producing an antibiotic that inhibit Serratia marcescens ATCC 27117 growth. To make efficient the local strain, mutation on Bacillus subtilis BAC4 was done by using acridine orange and a mutant cell of Bacillus subtilis M10 that overproduction for producing antibiotic was obtained. Nevertheless, the production kinetics of antibiotic by this mutant has not been reported. The objective of this research was to study the production kinetics of antibiotic by Bacillus subtilis M10 mutant. The production of antibiotic was conducted using batch fermentation and antibiotic assay was performed with agar absorption method using Serratia marcescens ATCC 27117 as bacteria assay. Research result provided that Bacillus subtilis M10 mutant with overproduction of antibiotic produced an antibiotic since 8th hour’s fermentation and optimum of it production was at 14th hours after inoculation.  Penyakit infeksi masih menjadi masalah yang utama diderita oleh masyarakat Indonesia. Di samping itu, banyak bakteri patogen yang ditemukan resisten terhadap beberapa antibiotika. Oleh karena itu, upaya-upaya untuk mendapatkan antibiotika baru perlu dilakukan secara terus-menerus. Suatu galur lokal baru Bacillus subtilis BAC4 teridentifikasi memproduksi senyawa antibiotika yang menghambat pertumbuhan Serratia marcescens ATCC27117. Untuk memberdayakan galur tersebut, terhadap Bacillus subtilis BAC4 dilakukan mutasi dengan larutan akridin oranye dan diperoleh mutan Bacillus subtilis M10 yang memproduksi antibiotika berlebihan. Namun, kinetika produksi antibiotika oleh Bacillus

  2. Isolation and Identification of the Antimicrobial Substance Produced by Bacillus subtilis fmbR%Bacillus subtilis fmbR抗菌物质的分离和鉴定

    Institute of Scientific and Technical Information of China (English)

    别小妹; 陆兆新; 吕凤霞; 赵海珍; 杨胜远; 孙力军

    2006-01-01

    [目的]对Bacillus subtilis fmbR产生的抗菌物质进行分离和鉴定研究,以确定抗菌物质的组成和结构.[方法]采用HPLC和TLC层析对Bacillus subtilis fmbR抗菌物质进行分离纯化,通过ESI-MS和MALDI-MS分析对抗菌物质的组成和结构进行初步鉴定.[结果]HPLC层析表明了Bacillus subtilis fmbR抗菌物质含有保留时间与surfactin相似的成分.TLC层析和原位酸解证明了Bacillus subtilis fmbR抗菌物质含有闭合肽键类的物质,其中之一为相对迁移率Rf与标样surfactin相近的组分.采用ESI-MS分析检测到Bacillus subtilis fmbR抗菌物质含有分子量与surfactinA相同的m/z1009.1、m/z1023.2 和m/z1037.0等3种同系物;通过MALDI-MS分析获得[M+H]+为m/z 3403.95抗菌物质,该物质分子量与Bacillus subtilis 168产生的细菌素subtilosin的m/z3403.3 相同.[结论]Bacillus subtilis fmbR抗菌物质由C13~C15的3种surfactinA同系物和一种羊毛硫抗生素subtilosin组成.

  3. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid

    OpenAIRE

    Peng Chen; Lei Yan; Zhengrong Wu; Suyue Li; Zhongtian Bai; Xiaojuan Yan; Ningbo Wang; Ning Liang; Hongyu Li

    2016-01-01

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume...

  4. Isolation and characterization of radioresistant mutants in Bacillus subtilis and Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Vegetative cells of Bac. thuringiensis var. galleriae (the wild-type strain 351) are much more sensitive to lethal effects of UV light and 60Co-γ-rays than those of Bac. subtilis (the wild-type strain 168). This difference is less pronounced for spores of these strains. By means of repeated γ-irradiation-regrowth cycles radioresistant mutants Bac. thuringiensis Gamsup(r) 14 and Bac. subtilis Gamsup(r) 9 were selected. The vegetative cells of these mutants are correspondingly 19 times and 3.9 times more resistant to lethal effects of γ-radiation than the cells of the parental strains. The resistance of the Gamsup(r) mutant cells to lethal effects of UV light and H2O2 is also increased. The spores of the Gamsup(r) 14 mutant are 1.5-1.7 times more resistant to γ-radiation and UV light than the wild-type spores. The radioresistant mutants and the parental strains do not vary in their capacity for host-cell reactivation of UV- or γ-irradiated phages Tg13 and 105

  5. Isolation and characterization of radioresistant mutants in Bacillus subtilis and Bacillus thuringiensis

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, V.L.; Petrov, V.N.; Petrova, T.M. (AN SSSR, Leningrad. Inst. Yadernoj Fiziki)

    Vegetative cells of Bac. thuringiensis var. galleriae (the wild-type strain 351) are much more sensitive to lethal effects of UV light and /sup 60/Co-..gamma..-rays than those of Bac. subtilis (the wild-type strain 168). This difference is less pronounced for spores of these strains. By means of repeated ..gamma..-irradiation-regrowth cycles radioresistant mutants of Bac. thuringiensis Gamsup(r) 14 and Bac. subtilis Gamsup(r) 9 were selected. The vegetative cells of these mutants are correspondingly 19 times and 3.9 times more resistant to lethal effects of ..gamma..-radiation than the cells of the parental strains. The resistance of the Gamsup(r) mutant cells to lethal effects of UV light and H/sub 2/O/sub 2/ is also increased. The spores of the Gamsup(r) 14 mutant are 1.5-1.7 times more resistant to ..gamma..-radiation and UV light than the wild-type spores. The radioresistant mutants and the parental strains do not vary in their capacity for host-cell reactivation of UV- or ..gamma..-irradiated phages Tg13 and 105.

  6. Setting risk-informed environmental standards for Bacillus anthracis spores.

    Science.gov (United States)

    Hong, Tao; Gurian, Patrick L; Ward, Nicholas F Dudley

    2010-10-01

    In many cases, human health risk from biological agents is associated with aerosol exposures. Because air concentrations decline rapidly after a release, it may be necessary to use concentrations found in other environmental media to infer future or past aerosol exposures. This article presents an approach for linking environmental concentrations of Bacillus. anthracis (B. anthracis) spores on walls, floors, ventilation system filters, and in human nasal passages with human health risk from exposure to B. anthracis spores. This approach is then used to calculate example values of risk-informed concentration standards for both retrospective risk mitigation (e.g., prophylactic antibiotics) and prospective risk mitigation (e.g., environmental clean up and reoccupancy). A large number of assumptions are required to calculate these values, and the resulting values have large uncertainties associated with them. The values calculated here suggest that documenting compliance with risks in the range of 10(-4) to 10(-6) would be challenging for small diameter (respirable) spore particles. For less stringent risk targets and for releases of larger diameter particles (which are less respirable and hence less hazardous), environmental sampling would be more promising.

  7. Quantum dot incorporated Bacillus spore as nanosensor for viral infection.

    Science.gov (United States)

    Zhang, Xinya; Zhou, Qian; Shen, Zhongfeng; Li, Zheng; Fei, Ruihua; Ji, Eoon Hye; Hu, Shen; Hu, Yonggang

    2015-12-15

    In this paper, we report a high-throughput biological method to prepare spore-based monodisperse microparticles (SMMs) and then form the nanocomposites of CdTe quantum dot (QD)-loaded SMMs by utilizing the endogenous functional groups from Bacillus spores. The SMMs and QD-incorporated spore microspheres (QDSMs) were characterized by using transmission electron microscopy, high-resolution transmission electron microscopy, fluorescence microscopy, fluorescence and UV-visible absorption spectroscopy, zeta potential analysis, Fourier-transform infrared spectroscopy, potentiometric titrations, X-ray photo-electron spectroscopy. The thermodynamics of QD/SMM interaction and antigen/QDSM interaction was also investigated by isothermal titration microcalorimetry (ITC). Fluorescent QDSMs coded either with a single luminescence color or with multiple colors of controlled emission intensity ratios were obtained. Green QDSMs were used as a model system to detect porcine parvovirus antibody in swine sera via flow cytometry, and the results demonstrated a great potential of QDSMs in high-throughput immunoassays. Due to the advantages such as simplicity, low cost, high throughput and eco-friendliness, our developed platform may find wide applications in disease detection, food safety evaluation and environmental assessment.

  8. Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29"

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Qian YANG; Li-hua ZHAO; Shu-mei ZHANG; Yu-xia WANG; Xiao-yu ZHAO

    2009-01-01

    An antifungal protein was isolated from a culture of Bacillus subtilis strain B29. The isolation procedure comprised ion exchange chromatography on diethylaminoethyl (DEAE)-52 cellulose and gel filtration chromatography on Bio-Gel P-100.The protein was absorbed on DEAE-cellulose and Bio-Gel P-100. The purified antifungal fraction was designated as B29I, with a molecular mass of 42.3 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), pl value 5.69 by isoelectric focusing (IEF)-PAGE, and 97.81% purity by high performance liquid chromatography (HPLC). B29I exhibited in-hibitory activity on mycelial growth in Fusarium oxysporum, Rhizoctonia solani, Fusarium moniliforme, and Sclerotinia scle-rotiorum. The 50% inhibitory concentrations (IC50) of its antifungal activity toward Fusarium oxysporum and Rhizoctonia solani were 45 and 112 μmol/L, respectively. B291 also demonstrated an inhibitory effect on conidial spore germination of Fusarium oxysporum and suppression of germ-tube elongation, and induced distortion, tumescence, and rupture of a portion of the germi-nated spores.

  9. NanoSIMS analysis of Bacillus spores for forensics

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P K; Davisson, M L; Velsko, S P

    2010-02-23

    The threat associated with the potential use of radiological, nuclear, chemical and biological materials in terrorist acts has resulted in new fields of forensic science requiring the application of state-of-the-science analytical techniques. Since the anthrax letter attacks in the United States in the fall of 2001, there has been increased interest in physical and chemical characterization of bacterial spores. While molecular methods are powerful tools for identifying genetic differences, other methods may be able to differentiate genetically identical samples based on physical and chemical properties, as well as provide complimentary information, such as methods of production and approximate date of production. Microanalysis has the potential to contribute significantly to microbial forensics. Bacillus spores are highly structured, consisting of a core, cortex, coat, and in some species, an exosporium. This structure provides a template for constraining elemental abundance differences at the nanometer scale. The primary controls on the distribution of major elements in spores are likely structural and physiological. For example, P and Ca are known to be abundant in the spore core because that is where P-rich nucleic acids and Cadipicolinic acid are located, respectively. Trace elements are known to bind to the spore coat but the controls on these elements are less well understood. Elemental distributions and abundances may be directly related to spore production, purification and stabilization methodologies, which are of particular interest for forensic investigation. To this end, we are developing a high-resolution secondary ion mass spectrometry method using a Cameca NanoSIMS 50 to study the distribution and abundance of trace elements in bacterial spores. In this presentation we will review and compare methods for preparing and analyzing samples, as well as review results on the distribution and abundance of elements in bacterial spores. We use NanoSIMS to

  10. Inhibition of Bacillus subtilis growth and sporulation by threonine.

    Science.gov (United States)

    Lamb, D H; Bott, K F

    1979-01-01

    A 1-mg/ml amount of threonine (8.4 mM) inhibited growth and sporulation of Bacillus subtilis 168. Inhibition of sporulation was efficiently reversed by valine and less efficiently by pyruvate, arginine, glutamine, and isoleucine. Inhibition of vegetative growth was reversed by asparate and glutamate as well as by valine, arginine, or glutamine. Cells in minimal growth medium were inhibited only transiently by very high concentrations of threonine, whereas inhibition of sporulation was permanent. Addition of threonine prevented the normal increase in alkaline phosphatase and reduced the production of extracellular protease by about 50%, suggesting that threonine blocked the sporulation process relatively early. 2-Ketobutyrate was able to mimic the effect of threonine on sporulation. Sporulation in a strain selected for resistance to azaleucine was partially resistant. Seventy-five percent of the mutants selected for the ability to grow vegetatively in the presence of high threonine concentrations were found to be simultaneously isoleucine auxotrophs. In at least one of these mutants, the threonine resistance phenotpye could not be dissociated from the isoleucine requirement by transformation. This mutation was closely linked to a known ilvA mutation (recombination index, 0.16). This strain also had reduced intracellular threonine deaminase activity. These results suggest that threonine inhibits B. subtilis by causing valine starvation.

  11. Fitness Trade-Offs in Competence Differentiation of Bacillus subtilis

    Science.gov (United States)

    Yüksel, Melih; Power, Jeffrey J.; Ribbe, Jan; Volkmann, Thorsten; Maier, Berenike

    2016-01-01

    In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state). The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off. PMID:27375604

  12. Inactivation of Bacillus Subtilis by Atomic Oxygen Radical Anion

    Institute of Scientific and Technical Information of China (English)

    LI Longchun; WANG Lian; YU Zhou; LV Xuanzhong; LI Quanxin

    2007-01-01

    UAtomic oxygen radical anion (O- ) is one of the most active oxygen species, and has extremely high oxidation ability toward small-molecules of hydrocarbons. However, to our knowledge, little is known about the effects of O- on cells of micro-organisms. This work showed that O- could quickly react with the Bacillus subtilis cells and seriously damage the cell walls a s well as their other contents, leading to a fast and irreversible inactivation. SEM micrographs revealed that the cell structures were dramatically destroyed by their exposure to O-. The inactivation efficiencies of B. subtilis depend on the O-- intensity, the initial population of cells and the treatment temperature, but not on the pH in the range of our investigation. For a cell concentration of 106 cfu/ml, the number of survived cells dropped from 106 cfu/ml to 103 cfu/ml after about five-minute irradiation by an O- flux in an intensity of 233 nA/cm2 under a dry argon environment (30 ℃, 1 atm, exposed size: 1.8 cm2). The inactivation mechanism of micro-organisms induced by O- is also discussed.

  13. Fitness Trade-Offs in Competence Differentiation of Bacillus subtilis.

    Science.gov (United States)

    Yüksel, Melih; Power, Jeffrey J; Ribbe, Jan; Volkmann, Thorsten; Maier, Berenike

    2016-01-01

    In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state). The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off. PMID:27375604

  14. Fitness trade-offs in competence differentiation of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Melih Yüksel

    2016-06-01

    Full Text Available In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state. The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off.

  15. Regiospecific Addition of Uracil to Acrylates Catalyzed by Alkaline Protease from Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Ying CAI; Jian Yi WU; Na WANG; Xiao Feng SUN; Xian Fu LIN

    2004-01-01

    Michael addition reactions of uracil to acrylates were catalyzed by an alkaline protease from Bacillus subtilis in dimethyl sulfoxide at 55 ℃ for 72 h. The adducts were determined by TLC, IR and 1H NMR.

  16. Bacillus subtilis HJ18-4 from traditional fermented soybean food inhibits Bacillus cereus growth and toxin-related genes.

    Science.gov (United States)

    Eom, Jeong Seon; Lee, Sun Young; Choi, Hye Sun

    2014-11-01

    Bacillus subtilis HJ18-4 isolated from buckwheat sokseongjang, a traditional Korean fermented soybean food, exhibits broad-spectrum antimicrobial activity against foodborne pathogens, including Bacillus cereus. In this study, we investigated the antibacterial efficacy and regulation of toxin gene expression in B. cereus by B. subtilis HJ18-4. Expression of B. cereus toxin-related genes (groEL, nheA, nheC, and entFM) was downregulated by B. subtilis HJ18-4, which also exhibited strong antibacterial activity against B. cereus. We also found that water extracts of soy product fermented with B. subtilis HJ18-4 significantly inhibited the growth of B. cereus and toxin expression. These results indicate that B. subtilis HJ18-4 could be used as an antimicrobial agent to control B. cereus in the fermented soybean food industry. Our findings also provide an opportunity to develop an efficient biological control agent against B. cereus.

  17. Effect of decoyinine on the regulation of alpha-amylase synthesis in Bacillus subtilis.

    OpenAIRE

    Nicholson, W L; Chambliss, G H

    1987-01-01

    Decoyinine, an inhibitor of GMP synthetase, allows sporulation in Bacillus subtilis to initiate and proceed under otherwise catabolite-repressing conditions. The effect of decoyinine on alpha-amylase synthesis in B. subtilis, an event which exhibits regulatory features resembling sporulation initiation, was examined. Decoyinine did not overcome catabolite repression of alpha-amylase synthesis in a wild-type strain of B. subtilis but did cause premature and enhanced synthesis in a mutant strai...

  18. Production and applications of biosurfactant from Bacillus subtilis MUV4

    Directory of Open Access Journals (Sweden)

    Aran H-Kittikun

    2008-04-01

    Full Text Available Bacillus subtilis MUV4 produced biosurfactant in shake-flask culture (200 rpm at 30oC with modified Mckeen medium containing 1% glucose as a carbon source, 1% monosodium glutamate and 0.3% yeast extract as nitrogen sources. The supernatant of B. subtilis MUV4 reduced the surface tension of the medium from 53.50 mN/m to 33.50 mN/m after 48 h of cultivation. The yield of crude biosurfactant from B. subtilis MUV4 after precipitating the supernatant with 6N HCl was 0.652 g/L. Growth kinetics studies showed the specific growth rate (μ of 0.14 h-1, yield of biomass to substrate (Yx/s of 0.713, yield of product to substrate (Yp/s of 0.072 and yield of product to biomass (Yp/x of 0.101. Moreover, B. subtilis MUV4 produced 0.30 g/L crude biosurfactant after 96 h of cultivation in the fermentor with agitation rate of 200 rpm without aeration and uncontrolled pH condition. The crude biosurfactant was dissolved in methanol and dried by vacuum evaporator (crude methanol. The supernatant, the crude biosurfactant and the crude methanol retained the biosurfactant activity over the pH range of 1-6, 7-10 and 4-10, respectively and the emulsion stability at 24 h (E24 at pH 7 were 66.67%, 33.33% and 33.33%, respectively. The supernatant and the crude biosurfactant showed surface tension activity at 4oC, room temperature (30±2oC and 50oC after incubation for 5 h. However, only crude methanol still retained surface tension activity after 100oC for 5 h. The surface tension activity of the supernatant and the crude biosurfactant was stable in 3-10% (w/v NaCl while crude methanol showed stability in 3-20% (w/v NaCl. However, all samples lost emulsion stability when NaCl concentration was higher than 5% (w/v. With sand pack column technique, crude methanol enhanced the recovery of crude oil and kerosene oil by 41.85% and 75.00%, respectively. In hydrocarbon degradation application study, the crude biosurfactant was added to the culture medium containing 0.3% crude oil

  19. High-Salinity Growth Conditions Promote Tat-Independent Secretion of Tat Substrates in Bacillus subtilis

    NARCIS (Netherlands)

    van der Ploeg, Rene; Monteferrante, Carmine G.; Piersma, Sjouke; Barnett, James P.; Kouwen, Thijs R. H. M.; Robinson, Colin; van Dijl, Jan Maarten

    2012-01-01

    The Gram-positive bacterium Bacillus subtilis contains two Tat translocases, which can facilitate transport of folded proteins across the plasma membrane. Previous research has shown that Tat-dependent protein secretion in B. subtilis is a highly selective process and that heterologous proteins, suc

  20. Complete genome sequence of Bacillus subtilis SG6 antagonistic against Fusarium graminearum.

    Science.gov (United States)

    Zhao, Yueju; Sangare, Lancine; Wang, Yao; Folly, Yawa Minnie Elodie; Selvaraj, Jonathan Nimal; Xing, Fuguo; Zhou, Lu; Wang, Yan; Liu, Yang

    2015-01-20

    Bacillus subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum and significantly reduced disease incidence, Fusarium head blight (FHB) index and DON in the field. Here, we present the complete genome sequence of B. subtilis SG6, providing insights into the genomic basis of its effects and facilitating its application in FHB control.

  1. Transfection of Bacillus subtilis protoplasts by bacteriophage phi do7 DNA.

    OpenAIRE

    Perkins, J B; Dean, D H

    1983-01-01

    DNA from the Bacillus subtilis temperate bacteriophage phi do7 was found to efficiently transfect B. subtilis protoplasts; protoplast transfection was more efficient than competent cell transfection by a magnitude of 10(3). Unlike competent cell transfection, protoplast transfection did not require primary recombination, suggesting that phi do7 DNA enters the protoplast as double-stranded molecules.

  2. NONFUNCTIONAL EXPRESSION OF ESCHERICHIA-COLI SIGNAL PEPTIDASE-I IN BACILLUS-SUBTILIS

    NARCIS (Netherlands)

    VANDIJL, JM; DEJONG, A; SMITH, H; BRON, S; VENEMA, G; van Dijl, Jan Maarten

    1991-01-01

    The Escherichia coli lep gene, encoding signal peptidase I (SPase I) was provided with Bacillus subtilis transcription/translation signals and expressed in this organism. When present on a low-copy-number plasmid, the amount of E. coli SPase I produced (per mg cell protein) in B. subtilis was half t

  3. Non-functional expression of Escherichia coli signal peptidase I in Bacillus subtilis

    NARCIS (Netherlands)

    van Dijl, J M; de Jong, A; Smith, H; Bron, S; Venema, G

    1991-01-01

    The Escherichia coli lep gene, encoding signal peptidase I (SPase I) was provided with Bacillus subtilis transcription/translation signals and expressed in this organism. When present on a low-copy-number plasmid, the amount of E. coli SPase I produced (per mg cell protein) in B. subtilis was half t

  4. Metabolic protein interactions in Bacillus subtilis studied at the single cell level

    NARCIS (Netherlands)

    Detert Oude Weme, Ruud Gerardus Johannes

    2015-01-01

    We have investigated protein-protein interactions in live Bacillus subtilis cells (a bacterium). B. subtilis’ natural habitat is the soil and the roots of plants, but also the human microbiota. B. subtilis is used worldwide as a model organism. Unlike eukaryotic cells, bacteria do not have organelle

  5. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus

    Science.gov (United States)

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060

  6. The studies on radiation mutation breeding of Bacillus subtilis with high-yield of amylase

    International Nuclear Information System (INIS)

    The mutagenesis effects on the yield of amylase have been investigated with Bacillus subtilis irradiated by γ-rays and fast neutrons in once or twice irradiation at various dose rates and total irradiation doses. Several parameters such as flat transparent circle, colony diameter, transparent circle diameter and the ratio of flat transparent circle to colony diameter (HC) are used to estimate the radiation mutation of Bacillus subtilis. A series of results has been obtained as (1) Irradiation both with neutrons and γ-rays could make Bacillus subtilis mutationed to produce high-yield amylase effectively. (2) The average colony diameter of Bacillus subtilis irradiated by γ-rays or fast neutrons is smaller than that of control group at various total doses and dose rates. And their colony diameter becomes smaller slightly with the increment of γ-rays irradiation dose. (3) After the second neutrons irradiation, the values of average colony diameter, the biggest colony diameter, average transparent circle diameter and the biggest transparent circle diameter of all mutationed Bacillus subtilis exceed that of original strains greatly. (4) Three kinds of mutationed Bacillus subtilis strains with high-yield amylase have been screened out, in which two strains can produce high-yield amylase steadily after 15 times breeding. Their biggest colony diameter, the biggest transparent circle diameter and the biggest HC value are up to 8.32 mm, 22.38 mm and 5.39 respectively. (authors)

  7. Complete Genome Sequences of Bacillus subtilis subsp. subtilis Laboratory Strains JH642 (AG174) and AG1839

    OpenAIRE

    Smith, Janet L.; Goldberg, Jonathan M.; Grossman, Alan D.

    2014-01-01

    The Gram-positive bacterium Bacillus subtilis is widely used for studies of cellular and molecular processes. We announce the complete genomic sequences of strain AG174, our stock of the commonly used strain JH642, and strain AG1839, a derivative that contains a mutation in the replication initiation gene dnaB and a linked Tn917.

  8. Expression, purification, and characterization of a thermophilic neutral protease from Bacillus stearothermophilus in Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The gene coding for a thermophilic neutral protease from Bacillus stearothermophilus was expressed in Bacillus subtilis DB104, under the control of the sacB gene promoter. This was followed by either the native signal peptide sequence of this protease or the signal peptide sequence of the sacB gene. The protease was purified 3.8-fold, with a specific activity of 16530 U mg-1. As analyzed by SDS-PAGE, the molecular mass of the expressed protease was about 35 kDa, and the optimal temperature and pH of the protease were 65℃ and 7.5, respectively. Moreover, it still had about 80% activity after 1 h reaction at 65℃.

  9. Expression, purification, and characterization of a thermophilic neutral protease from Bacillus stearothermophilus in Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The gene coding for a thermophilic neutral protease from Bacillus stearothermophilus was expressed in Bacillus subtilis DB104, under the control of the sacB gene promoter. This was followed by either the native signal peptide sequence of this protease or the signal peptide sequence of the sacB gene. The protease was purified 3.8-fold, with a specific activity of 16530 U mg-1. As analyzed by SDS-PAGE, the molecular mass of the expressed protease was about 35 kDa, and the optimal temperature and pH of the protease were 65℃ and 7.5, respectively. Moreover, it still had about 80% activity after 1 h reaction at 65 ℃ .

  10. The structure-function relationship of the lipases from Pseudomonas aeruginosa and Bacillus subtilis

    NARCIS (Netherlands)

    Misset, Onno; Gerritse, Gijs; Jaeger, Karl-Erich; Winkler, Ulrich; Colson, Charles; Schanck, Karin; Lesuisse, Emmanuel; Dartois, Véronique; Blaauw, Mieke; Ransac, Stéphane; Dijkstra, Bauke W.

    1994-01-01

    Within the BRIDGE T-project on lipases we investigate the structure-function relationships of the lipases from Bacillus subtilis and Pseudomonas aeruginosa. Construction of an overproducing Bacillus strain allowed the purification of > 100 mg lipase from 30 I culture supernatant. After testing a lar

  11. Evaluation of bottlenecks in the late stages of protein secretion in Bacillus subtilis

    NARCIS (Netherlands)

    Bolhuis, A; Tjalsma, H; Smith, H.E; Meima, R.; Venema, G; Bron, S; van Dijl, J.M

    1999-01-01

    Despite a high capacity for secretion of homologous proteins, the secretion of heterologous proteins by Bacillus subtilis is frequently inefficient. In the present studies, we have investigated and compared bottlenecks in the secretion of four heterologous proteins: Bacillus lichenifomis alpha-amyla

  12. Role of enzymes of homologous recombination in illegitimate plasmid recombination in Bacillus subtilis

    NARCIS (Netherlands)

    Meima, R; Haijema, BJ; Haan, GJ; Venema, G; Bron, S

    1997-01-01

    The structural stability of plasmid pGP1, which encodes a fusion between the penicillinase gene (penP) of Bacillus licheniformis and the Escherichia coli lacZ gene, was investigated in Bacillus subtilis strains expressing mutated subunits of the ATP-dependent nuclease, AddAB, and strains lacking the

  13. The expression of a plasmid-specified exported protein causes structural plasmid instability in Bacillus subtilis

    NARCIS (Netherlands)

    Cordes, C.; Meima, R; Twiest, B; Kazemier, B; Venema, G; vanDijl, JM; Bron, S

    1996-01-01

    The rolling-circle plasmid pGP1 was used to study the effects of the expression of a plasmid-specified exported protein on structural plasmid stability in Bacillus subtilis. pGP1 contains a fusion between the Bacillus licheniformis penP gene, encoding a C-terminally truncated penicillinase, and the

  14. The Adsorption Properties of Bacillus atrophaeus Spore on Functionalized Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    P. Cortes

    2010-01-01

    Full Text Available An equilibrium study of Bacillus atrophaeus (B.a spores on functionalized Single-Wall Carbon Nanotubes (SWCNTs has been performed in order to characterize the adsorption properties of the spores/nanotubes complex. The carbon nanotubes here investigated were subjected to a two-step purification and functionalization treatment in order to introduce chemical groups on their basal planes. The inclusion of carboxyl functional groups on the nanotubes was corroborated by Raman and infrared spectroscopy. These carboxyl groups appear to enhance the nanotube-B.a. interaction by reacting with the proteinaceous pili appendages present on the spore surface. The adsorption data demonstrate that bacillus spores diffuse faster on functionalized carbon nanotubes than on as-received and purified nanomaterials. Transmission Electron Microscopy also shows that the chemically treated nanotubes resulted in a swollen nano-network which seems to further enhance the bacillus adsorption due to a more extensive spore-nanotube contact area.

  15. Probing phenotypic growth in expanding Bacillus subtilis biofilms.

    Science.gov (United States)

    Wang, Xiaoling; Koehler, Stephan A; Wilking, James N; Sinha, Naveen N; Cabeen, Matthew T; Srinivasan, Siddarth; Seminara, Agnese; Rubinstein, Shmuel; Sun, Qingping; Brenner, Michael P; Weitz, David A

    2016-05-01

    We develop an optical imaging technique for spatially and temporally tracking biofilm growth and the distribution of the main phenotypes of a Bacillus subtilis strain with a triple-fluorescent reporter for motility, matrix production, and sporulation. We develop a calibration procedure for determining the biofilm thickness from the transmission images, which is based on Beer-Lambert's law and involves cross-sectioning of biofilms. To obtain the phenotype distribution, we assume a linear relationship between the number of cells and their fluorescence and determine the best combination of calibration coefficients that matches the total number of cells for all three phenotypes and with the total number of cells from the transmission images. Based on this analysis, we resolve the composition of the biofilm in terms of motile, matrix-producing, sporulating cells and low-fluorescent materials which includes matrix and cells that are dead or have low fluorescent gene expression. We take advantage of the circular growth to make kymograph plots of all three phenotypes and the dominant phenotype in terms of radial distance and time. To visualize the nonlocal character of biofilm growth, we also make kymographs using the local colonization time. Our technique is suitable for real-time, noninvasive, quantitative studies of the growth and phenotype distribution of biofilms which are either exposed to different conditions such as biocides, nutrient depletion, dehydration, or waste accumulation. PMID:27003268

  16. Screening of Bacillus subtilis transposon mutants with altered riboflavin production.

    Science.gov (United States)

    Tännler, Simon; Zamboni, Nicola; Kiraly, Csilla; Aymerich, Stéphane; Sauer, Uwe

    2008-09-01

    To identify novel targets for metabolic engineering of riboflavin production, we generated about 10,000 random, transposon-tagged mutants of an industrial, riboflavin-producing strain of Bacillus subtilis. Process-relevant screening conditions were established by developing a 96-deep-well plate method with raffinose as the carbon source, which mimics, to some extent, carbon limitation in fed batch cultures. Screening in raffinose and complex LB medium identified more efficiently riboflavin overproducing and underproducing mutants, respectively. As expected for a "loss of function" analysis, most identified mutants were underproducers. Insertion mutants in two genes with yet unknown function, however, were found to attain significantly improved riboflavin titers and yields. These genes and possibly further ones that are related to them are promising candidates for metabolic engineering. While causal links to riboflavin production were not obvious for most underproducers, we demonstrated for the gluconeogenic glyceraldehyde-3-phosphate dehydrogenase GapB how a novel, non-obvious metabolic engineering strategy can be derived from such underproduction mutations. Specifically, we improved riboflavin production on various substrates significantly by deregulating expression of the gluconeogenic genes gapB and pckA through knockout of their genetic repressor CcpN. This improvement was also verified under the more process-relevant conditions of a glucose-limited fed-batch culture. PMID:18582593

  17. Nutrient depletion in Bacillus subtilis biofilms triggers matrix production

    International Nuclear Information System (INIS)

    Many types of bacteria form colonies that grow into physically robust and strongly adhesive aggregates known as biofilms. A distinguishing characteristic of bacterial biofilms is an extracellular polymeric substance (EPS) matrix that encases the cells and provides physical integrity to the colony. The EPS matrix consists of a large amount of polysaccharide, as well as protein filaments, DNA and degraded cellular materials. The genetic pathways that control the transformation of a colony into a biofilm have been widely studied, and yield a spatiotemporal heterogeneity in EPS production. Spatial gradients in metabolites parallel this heterogeneity in EPS, but nutrient concentration as an underlying physiological initiator of EPS production has not been explored. Here, we study the role of nutrient depletion in EPS production in Bacillus subtilis biofilms. By monitoring simultaneously biofilm size and matrix production, we find that EPS production increases at a critical colony thickness that depends on the initial amount of carbon sources in the medium. Through studies of individual cells in liquid culture we find that EPS production can be triggered at the single-cell level by reducing nutrient concentration. To connect the single-cell assays with conditions in the biofilm, we calculate carbon concentration with a model for the reaction and diffusion of nutrients in the biofilm. This model predicts the relationship between the initial concentration of carbon and the thickness of the colony at the point of internal nutrient deprivation. (paper)

  18. Biocalcifying Bacillus subtilis cells effectively consolidate deteriorated Globigerina limestone.

    Science.gov (United States)

    Micallef, Roderick; Vella, Daniel; Sinagra, Emmanuel; Zammit, Gabrielle

    2016-07-01

    Microbially induced calcite precipitation occurs naturally on ancient limestone surfaces in Maltese hypogea. We exploited this phenomenon and treated deteriorated limestone with biocalcifying bacteria. The limestone was subjected to various mechanical and physical tests to present a statistically robust data set to prove that treatment was indeed effective. Bacillus subtilis conferred uniform bioconsolidation to a depth of 30 mm. Drilling resistance values were similar to those obtained for freshly quarried limestone (9 N) and increased up to 15 N. Treatment resulted in a high resistance to salt deterioration and a slow rate of water absorption. The overall percentage porosity of treated limestone varied by ±6 %, thus the pore network was preserved. We report an eco-friendly treatment that closely resembles the mineral composition of limestone and that penetrates into the porous structure without affecting the limestones' natural properties. The treatment is of industrial relevance since it compares well with stone consolidants available commercially. PMID:27072564

  19. Loop grafting of Bacillus subtilis lipase A: inversion of enantioselectivity.

    Science.gov (United States)

    Boersma, Ykelien L; Pijning, Tjaard; Bosma, Margriet S; van der Sloot, Almer M; Godinho, Luís F; Dröge, Melloney J; Winter, Remko T; van Pouderoyen, Gertie; Dijkstra, Bauke W; Quax, Wim J

    2008-08-25

    Lipases are successfully applied in enantioselective biocatalysis. Most lipases contain a lid domain controlling access to the active site, but Bacillus subtilis Lipase A (LipA) is a notable exception: its active site is solvent exposed. To improve the enantioselectivity of LipA in the kinetic resolution of 1,2-O-isopropylidene-sn-glycerol (IPG) esters, we replaced a loop near the active-site entrance by longer loops originating from Fusarium solani cutinase and Penicillium purpurogenum acetylxylan esterase, thereby aiming to increase the interaction surface for the substrate. The resulting loop hybrids showed enantioselectivities inverted toward the desired enantiomer of IPG. The acetylxylan esterase-derived variant showed an inversion in enantiomeric excess (ee) from -12.9% to +6.0%, whereas the cutinase-derived variant was improved to an ee of +26.5%. The enantioselectivity of the cutinase-derived variant was further improved by directed evolution to an ee of +57.4%. PMID:18721749

  20. A Low Dimensional Approximation For Competence In Bacillus Subtilis.

    Science.gov (United States)

    Nguyen, An; Prugel-Bennett, Adam; Dasmahapatra, Srinandan

    2016-01-01

    The behaviour of a high dimensional stochastic system described by a chemical master equation (CME) depends on many parameters, rendering explicit simulation an inefficient method for exploring the properties of such models. Capturing their behaviour by low-dimensional models makes analysis of system behaviour tractable. In this paper, we present low dimensional models for the noise-induced excitable dynamics in Bacillus subtilis, whereby a key protein ComK, which drives a complex chain of reactions leading to bacterial competence, gets expressed rapidly in large quantities (competent state) before subsiding to low levels of expression (vegetative state). These rapid reactions suggest the application of an adiabatic approximation of the dynamics of the regulatory model that, however, lead to competence durations that are incorrect by a factor of 2. We apply a modified version of an iterative functional procedure that faithfully approximates the time-course of the trajectories in terms of a two-dimensional model involving proteins ComK and ComS. Furthermore, in order to describe the bimodal bivariate marginal probability distribution obtained from the Gillespie simulations of the CME, we introduce a tunable multiplicative noise term in a two-dimensional Langevin model whose stationary state is described by the time-independent solution of the corresponding Fokker-Planck equation. PMID:27045827

  1. Two purine nucleoside phosphorylases in Bacillus subtilis. Purification and some properties of the adenosine-specific phosphorylase

    DEFF Research Database (Denmark)

    Jensen, Kaj Frank

    1978-01-01

    Two purine nucleoside phosphorylases (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1) were purified from vegetative Bacillus subtilis cells. One enzyme, inosine-guanosine phosphorylase, showed great similarity to the homologous enzyme of Bacillus cereus. It appeared...

  2. Regulation of the tryptophan biosynthetic genes in Bacillus halodurans: common elements but different strategies than those used by Bacillus subtilis.

    Science.gov (United States)

    Szigeti, Reka; Milescu, Mirela; Gollnick, Paul

    2004-02-01

    In Bacillus subtilis, an RNA binding protein called TRAP regulates both transcription and translation of the tryptophan biosynthetic genes. Bacillus halodurans is an alkaliphilic Bacillus species that grows at high pHs. Previous studies of this bacterium have focused on mechanisms of adaptation for growth in alkaline environments. We have characterized the regulation of the tryptophan biosynthetic genes in B. halodurans and compared it to that in B. subtilis. B. halodurans encodes a TRAP protein with 71% sequence identity to the B. subtilis protein. Expression of anthranilate synthetase, the first enzyme in the pathway to tryptophan, is regulated significantly less in B. halodurans than in B. subtilis. Examination of the control of the B. halodurans trpEDCFBA operon both in vivo and in vitro shows that only transcription is regulated, whereas in B. subtilis both transcription of the operon and translation of trpE are controlled. The attenuation mechanism that controls transcription in B. halodurans is similar to that in B. subtilis, but there are some differences in the predicted RNA secondary structures in the B. halodurans trp leader region, including the presence of a potential anti-antiterminator structure. Translation of trpG, which is within the folate operon in both bacilli, is regulated similarly in the two species. PMID:14729709

  3. Tryptophan provision by dietary supplementation of a Bacillus subtilis mutant strain in piglets

    DEFF Research Database (Denmark)

    Torres-Pitarch, A; Nielsen, B.; Canibe, Nuria;

    2015-01-01

    Supplementing Bacillus (B.) subtilis mutants selected to overproduce a specific amino acid (AA) may be an alternative method to provide essential AA in pig diets. Two experiments on a B. subtilis strain selected to overproduce Trp were conducted using 8-kg pigs fed Trp-deficient diets for 20 d. B....... subtilis were supplied in a low or high dose in Experiments 1 and 2, respectively. The Trp-deficient diet (0.15 SID Trp:Lys) reduced (p < .05) both gain and feed intake of piglets compared to the positive control diet (0.17 SID Trp:Lys). Supplementation of the B. subtilis strain was not able to...... counterbalance the Trp deficiency in any of the two experiments. No effect of B. subtilis supplementation to piglet diets was observed on the plasma AA profile. In conclusion, this mutant strain of B. subtilis was not able to compensate a Trp deficiency in the tested doses....

  4. The search and identification of the new immunodiagnostic targets of bacillus anthracis spore

    International Nuclear Information System (INIS)

    Spores of Bacillus anthracis have been used as bio warfare agent to bio terrorize purposes. As efficiency of anti-epidemic measures included urgent prevention and treatment is determined by terms within which the bio agent is identified. Direct and rapid spore detection by antibodies based detection system is very attractive alternative to current PCR-based assays or routine phenotyping which are the most accurate but are also complex, time-consumption and expensive. The main difficulty with respect to such kind of anthrax spores detection is a cross-reaction with spores of closely related bacteria. For development of species-specific antibodies to anthrax spores recombinant scFvs or hybridoma technique were used. In both case surface spore antigens contained species-specific epitopes are need. Among exosporium proteins only ExsF(BxpB), ExsK and SoaA are specific to B.cereus group. On the surface of B. anthracis spores, a unique tetrasaccharides containing an novel monosaccharide - anthrose, was discovered. It was shown that anthrose can be serving as species-specific target for B. anthracis spores detection. We have revealed that EA1 isolated from spore of Russians strain STI-1 contain carbohydrate which formed species-specific epitopes and determine immunogenicity of this antigen. Antibodies to this antigen specifically recognized the surface target of B. anthracis spores and do not reacted with others Bacillus spore. Based on these antibodies we developed the test-systems in different formats for rapid direct detection and identification of B. anthracis spores. The results of trial these test-systems with using more than 50 different Bacillus strains were indicated that carbohydrate of EA1 isolated from spore is effective immunodiagnostic target for anthrax spores bio detection.(author)

  5. Fate of pathogenic Bacillus cereus spores after ingestion by protist grazers

    DEFF Research Database (Denmark)

    Winding, Anne; Santos, Susana; Hendriksen, Niels Bohse;

    to the evolution of Bacillus cereus group bacteria (e.g. B. cereus, B. anthracis, B. thuringiensis) as a pathogen. It has been hypothesized that the spore stage protects against digestion by predating protists. Indeed, B. thuringiensis spores have been shown to be readily ingested by ciliated protists but failed...

  6. PCR Assay To Detect Bacillus anthracis Spores in Heat-Treated Specimens

    OpenAIRE

    Fasanella, A.; Losito, S.; Adone, R.; Ciuchini, F.; Trotta, T.; Altamura, S. A.; D. Chiocco; Ippolito, G

    2003-01-01

    Recent interest in anthrax is due to its potential use in bioterrorism and as a biowarfare agent against civilian populations. The development of rapid and sensitive techniques to detect anthrax spores in suspicious specimens is the most important aim for public health. With a view to preventing exposure of laboratory workers to viable Bacillus anthracis spores, this study evaluated the suitability of PCR assays for detecting anthrax spores previously inactivated at 121°C for 45 min. The resu...

  7. Structural and Functional Analysis of the GerD Spore Germination Protein of Bacillus Species

    OpenAIRE

    Li, Yunfeng; Jin, Kai; Ghosh, Sonali; Devarakonda, Parvathimadhavi; Carlson, Kristina; Davis, Andrew; Stewart, Kerry-Ann V.; Cammett, Elizabeth; Rossi, Patricia Pelczar; Setlow, Barbara; Lu, Min; Setlow, Peter; Hao, Bing

    2014-01-01

    Spore germination in Bacillus species represents an excellent model system with which to study the molecular mechanisms underlying the nutritional control of growth and development. Binding of specific chemical nutrients to their cognate receptors located in the spore inner membrane triggers the germination process that leads to a resumption of metabolism in spore outgrowth. Recent studies suggest that the inner membrane GerD lipoprotein plays a critical role in the receptor-mediated activati...

  8. Antifungal activity of Bacillus subtilis 355 against wood-surface contaminant fungi.

    Science.gov (United States)

    Feio, Sonia Savluchinske; Barbosa, Ana; Cabrita, Manuela; Nunes, Lina; Esteves, Alexandra; Roseiro, José Carlos; Curto, Maria João Marcelo

    2004-06-01

    A strain of Bacillus subtilis was examined for antifungal activity against phytopathogenic and wood-surface contaminant fungi. The bacterium was grown in five culture media with different incubation times in order to study cell development, sporulation, and the production of metabolites with antifungal activity. The anti-sapstain and anti-mould activity of the bacterium grown in yeast extract glucose broth (YGB) medium in wood was also evaluated. In YGB, the bacterium inhibited the growth of several fungi and displayed a broader spectrum of activity than in the other media tested. A relationship between bacterial spore production and the formation of metabolites with antifungal activity was detected. YGB medium displayed effective control in wood block tests. YGB medium was extracted with solvents of increasing polarity and the dry residues were applied to silicagel plates, resolved with the appropriate solvent and sprayed with different solutions, detecting the presence, of amines, and higher alcohols. The bioautographic method revealed the presence of at least two active compounds against the blue-stain fungus Cladosporium cucumerinum. PMID:15197600

  9. An exogenous surfactant-producing Bacillus subtilis facilitates indigenous microbial enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Peike eGao

    2016-02-01

    Full Text Available This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous Bacillus subtilis and indigenous microbial populations. The exogenous Bacillus subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The Bacillus subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous Bacillus subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.

  10. Inactivation of E. coli, B. subtilis spores, and MS2, T4, and T7 phage using UV/H{sub 2}O{sub 2} advanced oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Mamane, Hadas [School of Mechanical Engineering and Porter School of Environmental Studies, Tel-Aviv University, Tel-Aviv 69978 (Israel)]. E-mail: hadasmg@post.tau.ac.il; Shemer, Hilla [Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708-0287 (United States); Linden, Karl G. [Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708-0287 (United States)

    2007-07-31

    The goal of this study was to evaluate the potential of an advanced oxidation process (AOP) for microbiocidal and virucidal inactivation. The viruses chosen for this study were bacteriophage MS2, T4, and T7. In addition, Bacillus subtilis spores and Escherichia coli were studied. By using H{sub 2}O{sub 2} in the presence of filtered ultraviolet (UV) irradiation (UV/H{sub 2}O{sub 2}) to generate wavelengths above 295 nm, the direct UV photolysis disinfection mechanism was minimized, while disinfection by H{sub 2}O{sub 2} was also negligible. Virus T4 and E. coli in phosphate buffered saline (PBS) were sensitive to >295 nm filtered UV irradiation (without H{sub 2}O{sub 2}), while MS2 was very resistant. Addition of H{sub 2}O{sub 2} at 25 mg/l in the presence of filtered UV irradiation over a 15 min reaction time did not result in any additional disinfection of virus T4, while an additional one log inactivation for T7 and 2.5 logs for MS2 were obtained. With E. coli, only a slight additional effect was observed when H{sub 2}O{sub 2} was added. B. subtilis spores did not show any inactivation at any of the conditions used in this study. The OH radical exposure (CT value) was calculated to present the relationship between the hydroxyl radical dose and microbial inactivation.

  11. Inactivation of E. coli, B. subtilis spores, and MS2, T4, and T7 phage using UV/H2O2 advanced oxidation

    International Nuclear Information System (INIS)

    The goal of this study was to evaluate the potential of an advanced oxidation process (AOP) for microbiocidal and virucidal inactivation. The viruses chosen for this study were bacteriophage MS2, T4, and T7. In addition, Bacillus subtilis spores and Escherichia coli were studied. By using H2O2 in the presence of filtered ultraviolet (UV) irradiation (UV/H2O2) to generate wavelengths above 295 nm, the direct UV photolysis disinfection mechanism was minimized, while disinfection by H2O2 was also negligible. Virus T4 and E. coli in phosphate buffered saline (PBS) were sensitive to >295 nm filtered UV irradiation (without H2O2), while MS2 was very resistant. Addition of H2O2 at 25 mg/l in the presence of filtered UV irradiation over a 15 min reaction time did not result in any additional disinfection of virus T4, while an additional one log inactivation for T7 and 2.5 logs for MS2 were obtained. With E. coli, only a slight additional effect was observed when H2O2 was added. B. subtilis spores did not show any inactivation at any of the conditions used in this study. The OH radical exposure (CT value) was calculated to present the relationship between the hydroxyl radical dose and microbial inactivation

  12. Spore prevalence and toxigenicity of Bacillus cereus and Bacillus thuringiensis isolates from U.S. retail spices.

    Science.gov (United States)

    Hariram, Upasana; Labbé, Ronald

    2015-03-01

    Recent incidents of foodborne illness associated with spices as the vehicle of transmission prompted this examination of U.S. retail spices with regard to Bacillus cereus. This study focused on the levels of aerobic-mesophilic spore-forming bacteria and B cereus spores associated with 247 retail spices purchased from five states in the United States. Samples contained a wide range of aerobic-mesophilic bacterial spore counts (spices had high levels of aerobic spores (> 10(7) CFU/g). Using a novel chromogenic agar, B. cereus and B. thuringiensis spores were isolated from 77 (31%) and 11 (4%) samples, respectively. Levels of B. cereus were spice isolates to form spores, produce diarrheal toxins, and grow at moderately abusive temperatures makes retail spices an important potential vehicle for foodborne illness caused by B. cereus strains, in particular those that produce diarrheal toxins.

  13. Effect of Riboflavin Operon Dosage on Riboflavin Productivity in Bacillus Subtilis

    Institute of Scientific and Technical Information of China (English)

    CHEN Tao; CHEN Xun; WANG Jingyu; ZHAO Xueming

    2005-01-01

    After deregulating the purine and riboflavin synthesis in the Gram-positive bacterium Bacillus subtilis,it is critical to amplify riboflavin operon with appropriate dosage in the host strain for remarkable increase of riboflavin production.Bacillus subtilis RH13, a riboflavin-producing strain, was selected as host strain in the construction of engineering strains by protoplast fusion. The integrative plasmid pRB63 and autonomous plasmid pRB49, pRB62 containing riboflavin operon of B.subtilis 24 were constructed and transformed into the host strain respectively. Increasing one operon copy in B.subtilis RH13 results in about 0.4 g/L improvement in riboflavin yield and the appropriate number of operon copies was about 7-8. Amplifying more riboflavin operons is of no use for further improvement of yield of riboflavin. Furthermore, excessive operon dosage results in metabolic unbalance and is fatal to the host cells producing riboflavin.

  14. GLYCOGEN IN BACILLUS-SUBTILIS - MOLECULAR CHARACTERIZATION OF AN OPERON ENCODING ENZYMES INVOLVED IN GLYCOGEN BIOSYNTHESIS AND DEGRADATION

    NARCIS (Netherlands)

    KIEL, JAKW; BOELS, JM; BELDMAN, G; VENEMA, G

    1994-01-01

    Although it has never been reported that Bacillus subtilis is capable of accumulating glycogen, we have isolated a region from the chromosome of B. subtilis containing a glycogen operon. The operon is located directly downstream from trnB, which maps at 275 degrees on the B. subtilis chromosome. It

  15. More than a transcription factor : SpoOA mediates phenotypic heterogeneity and controls replication in Bacillus subtilis

    NARCIS (Netherlands)

    de Jong, Imke Greet

    2011-01-01

    Bacillus subtilis, een belangrijke bacterie Bacillus subtilis is een niet-pathogene bacterie die algemeen kan worden aangetroffen in de bodem. Deze bacterie wordt zeer veel gebruikt als modelorganisme om biologische processen te bestuderen die klinisch relevant zijn. Nauw verwante leden van het gesl

  16. Enhancement of extracellular expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis: Effects of promoter and host.

    Science.gov (United States)

    Song, Wan; Nie, Yao; Mu, Xiao Qing; Xu, Yan

    2016-08-01

    Pullulanase plays an important role in industrial applications of starch processing. However, extracellular production of pullulanase from recombinant Bacillus subtilis is yet limited due to the issues on regulatory elements of B. subtilis expression system. In this study, the gene encoding B. naganoensis pullulanase (PUL) was expressed in B. subtilis WB800 under the promoter PHpaII in the shuttle vector pMA0911. The extracellular activity of expressed pullulanase was 3.9 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-PHpaII-pul. To further enhance the yield of PUL, the promoter PHpaII in pMA0911 was replaced by a stronger constitutive promoter P43. Then the activity was increased to 8.7 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-P43-pul. Effect of host on pullulanase expression was further investigated by comparison between B. subtilis WB600 and B. subtilis WB800. In addition to the available B. subtilis WB800 recombinants, the constructed plasmids pMA0911-PHpaII-pul and pMA0911-P43-pul were transformed into B. subtilis WB600, respectively. Consequently, the extracellular production of PUL was significantly enhanced by B. subtilis WB600/pMA0911-P43-pul, resulting in the extracellular pullulanase activity of 24.5 U ml(-1). Therefore, promoter and host had an impact on pullulanase expression and their optimization would be useful to improve heterologous protein expression in B. subtilis. PMID:27109467

  17. Nanoscale structural and mechanical analysis of Bacillus anthracis spores inactivated with rapid dry heating.

    Science.gov (United States)

    Xing, Yun; Li, Alex; Felker, Daniel L; Burggraf, Larry W

    2014-03-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating.

  18. Amino acid efflux in response to chemotactic and osmotic signals in Bacillus subtilis.

    OpenAIRE

    Wong, L S; Johnson, M. S.; Sandberg, L. B.; Taylor, B L

    1995-01-01

    We observed a large efflux of nonvolatile radioactivity from Bacillus subtilis in response to the addition of 31 mM butyrate or the withdrawal of 0.1 M aspartate in a flow assay. The major nonvolatile components effluxed were methionine, proline, histidine, and lysine. In studies of the release of volatile radioactivity in chemotaxis by B. subtilis cells that had been labeled with [3H]methionine, the breakdown of methionine to methanethiol can contribute substantially to the volatile radioact...

  19. Levan from Bacillus subtilis Natto: its effects in normal and in streptozotocin-diabetic rats

    OpenAIRE

    Fernando Cesar Bazani Cabral de Melo; Cássia Thaïs Bussamra Viera Zaia; Maria Antonia Pedrine Colabone Celligoi

    2012-01-01

    Levan is an exopolysaccharide of fructose primarily linked by β-(2→6) glycosidic bonds with some β-(2→1) branched chains. Due to its chemical properties, levan has possible applications in both the food and pharmaceutical industries. Bacillus subtilis is a promising industrial levan producer, as it ferments sucrose and has a high levan-formation capacity. A new strain of B. subtilis was recently isolated from Japanese food natto, and it has produced levan in large quanti...

  20. Intrinsic Levanase Activity of Bacillus subtilis 168 Levansucrase (SacB)

    OpenAIRE

    Méndez-Lorenzo, Luz; Jaime R Porras-Domínguez; Raga-Carbajal, Enrique; Olvera, Clarita; Rodríguez-Alegría, Maria Elena; Carrillo-Nava, Ernesto; Costas, Miguel; López Munguía, Agustín

    2015-01-01

    Levansucrase catalyzes the synthesis of fructose polymers through the transfer of fructosyl units from sucrose to a growing fructan chain. Levanase activity of Bacillus subtilis levansucrase has been described since the very first publications dealing with the mechanism of levan synthesis. However, there is a lack of qualitative and quantitative evidence regarding the importance of the intrinsic levan hydrolysis of B. subtilis levansucrase and its role in the levan synthesis process. Particul...

  1. SubtiList: the reference database for the Bacillus subtilis genome

    OpenAIRE

    Moszer, Ivan; Jones, Louis M.; Moreira, Sandrine; Fabry, Cécilia; Danchin, Antoine

    2002-01-01

    SubtiList is the reference database dedicated to the genome of Bacillus subtilis 168, the paradigm of Gram-positive endospore-forming bacteria. Developed in the framework of the B.subtilis genome project, SubtiList provides a curated dataset of DNA and protein sequences, combined with the relevant annotations and functional assignments. Information about gene functions and products is continuously updated by linking relevant bibliographic references. Recently, sequence corrections arising fro...

  2. Effects of Bacillus subtilis natto and Different Components in Culture on Rumen Fermentation and Rumen Functional Bacteria In Vitro.

    Science.gov (United States)

    Sun, Peng; Li, Jinan; Bu, Dengpan; Nan, Xuemei; Du, Hong

    2016-05-01

    This study was to investigate the effects of live or autoclaved Bacillus subtilis natto, their fermented products and media on rumen fermentation and rumen functional bacteria in vitro. Rumen fluid from three multiparous lactating Holstein cows was combined and transferred into serum bottles after diluted. Fifteen serum bottles were divided into five treatments, which were designed as following: CTR (the fermentation of 0.5 g TMR and ruminal fluids from dairy cows), LBS (CTR plus a minimum of 10(11) cfu live Bacillus subtilis natto), ABS (CTR plus a minimum of 10(11) cfu autoclaved Bacillus subtilis natto), BSC (CTR plus 1 ml Bacillus subtilis natto fermentation products without bacteria), and BSM (CTR plus 1 ml liquid fermentation medium). When separated from the culture, live Bacillus subtilis natto individually increased the concentrations of ammonia-N (P production (P probiotic in dairy ration. PMID:26821238

  3. Integrative bacterial artificial chromosomes for DNA integration into the Bacillus subtilis chromosome.

    Science.gov (United States)

    Juhas, Mario; Ajioka, James W

    2016-06-01

    Bacillus subtilis is a well-characterized model bacterium frequently used for a number of biotechnology and synthetic biology applications. Novel strategies combining the advantages of B. subtilis with the DNA assembly and editing tools of Escherichia coli are crucial for B. subtilis engineering efforts. We combined Gibson Assembly and λ red recombineering in E. coli with RecA-mediated homologous recombination in B. subtilis for bacterial artificial chromosome-mediated DNA integration into the well-characterized amyE target locus of the B. subtilis chromosome. The engineered integrative bacterial artificial chromosome iBAC(cav) can accept any DNA fragment for integration into B. subtilis chromosome and allows rapid selection of transformants by B. subtilis-specific antibiotic resistance and the yellow fluorescent protein (mVenus) expression. We used the developed iBAC(cav)-mediated system to integrate 10kb DNA fragment from E. coli K12 MG1655 into B. subtilis chromosome. iBAC(cav)-mediated chromosomal integration approach will facilitate rational design of synthetic biology applications in B. subtilis.

  4. Menaquinone and iron are essential for complex colony development in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Gidi Pelchovich

    Full Text Available Cells of undomesticated species of Bacillus subtilis frequently form complex colonies during spreading on agar surfaces. Given that menaquinone is involved in another form of coordinated behavior, namely, sporulation, we looked for a possible role for menaquinone in complex colony development (CCD in the B. subtilis strain NCIB 3610. Here we show that inhibition of menaquinone biosynthesis in B. subtilis indeed abolished its ability to develop complex colonies. Additionally some mutations of B. subtilis which confer defective CCD could be suppressed by menaquinone derivatives. Several such mutants mapped to the dhb operon encoding the genes responsible for the biosynthesis of the iron siderophore, bacillibactin. Our results demonstrate that both menaquinone and iron are essential for CCD in B. subtilis.

  5. The Bacillus subtilis Acyl Lipid Desaturase Is a Δ5 Desaturase

    Science.gov (United States)

    Altabe, Silvia G.; Aguilar, Pablo; Caballero, Gerardo M.; de Mendoza, Diego

    2003-01-01

    Bacillus subtilis was recently reported to synthesize unsaturated fatty acids (UFAs) with a double bond at positions Δ5, Δ7, and Δ9 (M. H. Weber, W. Klein, L. Muller, U. M. Niess, and M. A. Marahiel, Mol. Microbiol. 39:1321-1329, 2001). Since this finding would have considerable importance in the double-bond positional specificity displayed by the B. subtilis acyl lipid desaturase, we have attempted to confirm this observation. We report that the double bond of UFAs synthesized by B. subtilis is located exclusively at the Δ5 position, regardless of the growth temperature and the length chain of the fatty acids. PMID:12730185

  6. Anthrax Toxins in Context of Bacillus anthracis Spores and Spore Germination

    OpenAIRE

    Cote, Christopher K.; Susan L. Welkos

    2015-01-01

    The interaction of anthrax toxin or toxin components with B. anthracis spores has been demonstrated. Germinating spores can produce significant amounts of toxin components very soon after the initiation of germination. In this review, we will summarize the work performed that has led to our understanding of toxin and spore interactions and discuss the complexities associated with these interactions.

  7. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis Bioacumulação de cobre, zinco, cádmio e chumbo por Bacillus sp., Bacillus cereus, Bacillus sphaericus e Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Augusto da Costa

    2001-03-01

    Full Text Available This work presents some results on the use of microbes from the genus Bacillus for uptake of cadmium, zinc, copper and lead ions. Maximum copper bioaccumulations were 5.6 mol/g biomass for B. sphaericus, 5.9 mol/g biomass for B. cereus and B. subtilis, and 6.4 mol/g biomass for Bacillus sp. Maximum zinc bioaccumulations were 4.3 mol/g biomass for B. sphaericus, 4.6 mol/g biomass for B. cereus, 4.8 mol/g biomass for Bacillus sp. and 5.0 mol/g biomass for B. subtilis. Maximum cadmium bioaccumulations were 8.0 mol/g biomass for B. cereus, 9.5 mol/g biomass for B. subtilis, 10.8 mol/g biomass for Bacillus sp. and 11.8 mol/g biomass for B. sphaericus. Maximum lead biomaccumulations were 0.7 mol/g biomass for B. sphaericus, 1.1 mol/g biomass for B. cereus, 1.4 mol/g biomass for Bacillus sp. and 1.8 mol/g biomass for B. subtilis. The different Bacillus strains tested presented distinct uptake capacities, and the best results were obtained for B. subtilis and B. cereus.Este trabalho apresenta resultados de acumulação dos íons metálicos cádmio, zinco, cobre e chumbo por bactérias do gênero Bacillus. A bioacumulação máxima de cobre foi 5,6 mol/g biomassa para B. sphaericus, 5,9 mol/g biomassa para B. cereus e B. subtilis, e 6,4 mol/g biomassa para Bacillus sp.. A bioacumulação máxima de zinco foi 4,3 mol/g biomassa para B. sphaericus, 4,6 mol/g biomassa para B. cereus, 4,8 mol/g biomassa para Bacillus sp. e 5,0 mol/g biomassa para B. subtilis. A bioacumulação máxima de cádmio foi 8,0 mol/g biomassa para B. cereus, 9,5 mol/g biomassa para B. subtilis, 10,8 mol/g biomassa para Bacillus sp. e 11,8 mol/g biomassa para B. sphaericus. A bioacumulação máxima de chumbo foi 0,7 mol/g biomassa para B. sphaericus, 1,1 mol/g biomassa para B. cereus, 1,4 mol/g biomassa para Bacillus sp. e 1,8 mol/g biomassa para B. subtilis. As distintas linhagens de Bacillus testadas apresentaram variáveis capacidades de carregamento de íons metálicos, sendo os

  8. Biocontrol of Soil Fungi in Tomato with Microencapsulates Containing Bacillus subtilis

    OpenAIRE

    Marcela H. Suarez; Francisco D. Hernandez-Castillo; Gabriel Gallegos-Morales; R. H. Lira-Saldivar; Raul Rodriguez-Herrera; Aguilar, Cristobal N.

    2011-01-01

    Problem statement: An option to reduce pollution by synthetic agro-chemical in root plant disease management is the use of antagonist rhizobacteria belonging to Bacillus genus, because their inhibitory properties, stimulation of plant growth and crop yield increase. Approach: This study was carried out in order to evaluate if Bacillus subtilis strains could play an antagonists role of plant pathogens and if they can be microencapsulated inside a biopolymer matrix. It was adapted an equipment ...

  9. Evaluation of surface sampling method performance for Bacillus Spores on clean and dirty outdoor surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Einfeld, Wayne; Boucher, Raymond M.; Brown, Gary Stephen; Tezak, Matthew Stephen

    2011-06-01

    Recovery of Bacillus atrophaeous spores from grime-treated and clean surfaces was measured in a controlled chamber study to assess sampling method performance. Outdoor surfaces investigated by wipe and vacuum sampling methods included stainless steel, glass, marble and concrete. Bacillus atrophaeous spores were used as a surrogate for Bacillus anthracis spores in this study designed to assess whether grime-coated surfaces significantly affected surface sampling method performance when compared to clean surfaces. A series of chamber tests were carried out in which known amounts of spores were allowed to gravitationally settle onto both clean and dirty surfaces. Reference coupons were co-located with test coupons in all chamber experiments to provide a quantitative measure of initial surface concentrations of spores on all surfaces, thereby allowing sampling recovery calculations. Results from these tests, carried out under both low and high humidity conditions, show that spore recovery from grime-coated surfaces is the same as or better than spore recovery from clean surfaces. Statistically significant differences between method performance for grime-coated and clean surfaces were observed in only about half of the chamber tests conducted.

  10. Construction of Phenol Degradation Genetically Engineered Bacteria Bacillus subtilis dqly-2%苯酚降解工程菌Bacillus subtilis dqly-2的构建

    Institute of Scientific and Technical Information of China (English)

    杨庆丽; 刘宇峰; 姬妍茹; 董艳; 高媛

    2012-01-01

    目的:构建苯酚降解工程菌Bacillus Subtilis dqly-2.方法:选取2株苯酚降解菌,分别为铜绿假单胞菌Pseudomonas aeruginosa zllf4和枯草芽孢杆菌Bacillus Subtilis BHf3-4,体外扩增Pseudomonas aeruginosa zllf4的邻苯二酚2,3双加氧酶基因(SYJ),并将此基因转入Bacillus Subtilis BHf3-4中,构建基因工程菌,并对野生菌和工程菌降解能力进行比较.结果:作用96h后,工程菌苯酚降解率为96.18%,显著高于野生菌的84.78%.结论:成功构建高效苯酚降解基因工程菌.

  11. WprA基因在Bacillus subtilis WB800中的克隆表达%Clonging and Expression of a WprA gene in Bacillus subtilis WB800

    Institute of Scientific and Technical Information of China (English)

    柴海云; 崔堂兵

    2012-01-01

    A fibrinolytic enzyme gene (WprA) was cloned from Bacillus subtilis 168. To efficiently express WprA in Bacillus subtilis WB800, WprA gene was inserted into pBE3 to yield a nove vector pBE-WprA. Then the vector pBE-WprA was transformed and expressed in Bacillus subtilis WB800. Results showed WprA gene was efficiently expressed during the exponential and stationary growth stages, and WprA was secreted into the medium.%对源自Bacillus subtilis 168的具有纤溶活性的基因序列(WprA)进行克隆,然后将WprA基因克隆到大肠杆菌-枯草杆菌穿梭载体pBE3中,构建表达载体pBE-WprA,将重组载体转化到Bacillus subtilis WB800中,实现了WprA基因在Bacillus subtilis WB800中的表达.结果表明,WprA基因在Bacillus subtilis WB800中的对数生长期和平衡期均获得了表达,且产物被分泌到胞外.

  12. Improved subtilisin YaB production in Bacillus subtilis using engineered synthetic expression control sequences.

    Science.gov (United States)

    Wang, Jyh-Perng; Yeh, Chuan-Mei; Tsai, Ying-Chieh

    2006-12-13

    Alkaline elastase YaB, a favorable meat tenderizer, is an extracellular subtilisin-type protease produced by wild strain alkalophilic Bacillus YaB. The gene ale coding for subtilisin YaB with its own expression control sequence has been cloned and expressed in Bacillus subtilis, but at levels much lower than in the parental strain Bacillus YaB. This study investigates the influence of various expression control sequences including expression control sequences of cdd and veg from B. subtilis, a synthetic expression control sequence (SECS), and engineered synthetic expression control sequences (engineered SECSs) on the expression of subtilisin YaB in B. subtilis. The engineered SECSs were generated by using the Polymerase Chain Reaction; their UP element, Shine-Dargarno (SD) sequence, or both were different from those of the native SECS. The expression efficiencies of SECS and engineered SECSs were higher than those of expression control sequences of ale, cdd, and veg. Substitution of the SD sequence of SECS resulted in higher expression of subtilisin YaB than substitution of the UP element, whereas combined substitution of both gave the highest expression. These results demonstrate that engineering of SECSs is an approach for improving subtilisin YaB production in B. subtilis. Moreover, it is suggested that these enginnered SECSs could potentially be used to express homologous and heterologous proteins in B. subtilis at high level. PMID:17147425

  13. Natural products from Bacillus subtilis with antimicrobial properties☆

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; Yafei Liang; Mianbin Wu; Zhengjie Chen; Jianping Lin; Lirong Yang

    2015-01-01

    Bacil us subtilis produces many chemical y-diverse secondary metabolites of interest to chemists and biologists. Based on this, this review gives a detalled overview of the natural components produced by B. subtilis including cyclic lipopeptides, polypeptides, proteins (enzymes), and non-peptide products. Their structures, bioactive ac-tivities and the relevant variants as novel lead structures for drug discovery are also described. The challenging effects of fermentation metabolites, isolation and purification, as wel as the overproduction of bioactive com-pounds from B. subtilis by metabolic engineering, were also highlighted. Systematical y exploring biosynthetic routes and the functions of secondary metabolites from B. subtilis may not only be beneficial in improving yields of the products, but also in helping them to be used in food industry and public medical service on a large-scale.

  14. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid.

    Science.gov (United States)

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-01-01

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV-vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid. PMID:26841717

  15. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid.

    Science.gov (United States)

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-02-04

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV-vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid.

  16. The LuxS based quorum sensing governs lactose induced biofilm formation by Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Danielle eDuanis-Assaf

    2016-01-01

    Full Text Available Bacillus species present a major concern in the dairy industry as they can form biofilms in pipelines and on surfaces of equipment and machinery used in the entire line of production. These biofilms represent a continuous hygienic problem and can lead to serious economic losses due to food spoilage and equipment impairment. Biofilm formation by Bacillus subtilis is apparently dependent on LuxS quorum sensing (QS by Autoinducer-2 (AI-2. However, the link between sensing environmental cues and AI-2 induced biofilm formation remains largely unknown. The aim of this study is to investigate the role of lactose, the primary sugar in milk, on biofilm formation by B. subtilis and its possible link to QS processes. Our phenotypic analysis shows that lactose induces formation of biofilm bundles as well as formation of colony type biofilms. Furthermore, using reporter strain assays, we observed an increase in AI-2 production by B. subtilis in response to lactose in a dose dependent manner. Moreover, we found that expression of eps and tapA operons, responsible for extracellular matrix synthesis in B. subtilis, were notably up-regulated in response to lactose. Importantly, we also observed that LuxS is essential for B. subtilis biofilm formation in the presence of lactose. Overall, our results suggest that lactose may induce biofilm formation by B. subtilis through the LuxS pathway.

  17. Biochemical Characterization of the C-4-Dicarboxylate Transporter DctA from Bacillus subtilis

    NARCIS (Netherlands)

    Groeneveld, Maarten; Weme, Ruud G. J. Detert Oude; Duurkens, Ria H.; Slotboom, Dirk Jan

    2010-01-01

    Bacterial secondary transporters of the DctA family mediate ion-coupled uptake of C-4-dicarboxylates. Here, we have expressed the DctA homologue from Bacillus subtilis in the Gram-positive bacterium Lactococcus lactis. Transport of dicarboxylates in vitro in isolated membrane vesicles was assayed. W

  18. A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of Bacillus subtilis

    NARCIS (Netherlands)

    Grau, Roberto R; de Oña, Paula; Kunert, Maritta; Leñini, Cecilia; Gallegos-Monterrosa, Ramses; Mhatre, Eisha; Vileta, Darío; Donato, Verónica; Hölscher, Theresa; Boland, Wilhelm; Kuipers, Oscar P; Kovács, Ákos T

    2015-01-01

    UNLABELLED: Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcrip

  19. Homogeneity and heterogeneity in amylase production by Bacillus subtilis under different growth conditions

    NARCIS (Netherlands)

    Ploss, Tina N.; Reilman, Ewoud; Monteferrante, Carmine G.; Denham, Emma L.; Piersma, Sjouke; Lingner, Anja; Vehmaanpera, Jari; Lorenz, Patrick; van Dijl, Jan Maarten

    2016-01-01

    Background: Bacillus subtilis is an important cell factory for the biotechnological industry due to its ability to secrete commercially relevant proteins in large amounts directly into the growth medium. However, hyper-secretion of proteins, such as alpha-amylases, leads to induction of the secretio

  20. Clp-dependent proteolysis down-regulates central metabolic pathways in glucose-starved Bacillus subtilis

    NARCIS (Netherlands)

    Gerth, Ulf; Kock, Holger; Kusters, Ilja; Michalik, Stephan; Switzer, Robert L.; Hecker, Michael

    2008-01-01

    Entry into stationary phase in Bacillus subtilis is linked not only to a redirection of the gene expression program but also to posttranslational events such as protein degradation. Using S-35-labeled methionine pulse-chase labeling and two-dimensional polyacrylamide gel electrophoresis we monitored

  1. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis

    NARCIS (Netherlands)

    Kunst, F; Ogasawara, N; Moszer, [No Value; Albertini, AM; Alloni, G; Azevedo, [No Value; Bertero, MG; Bessieres, P; Bolotin, A; Borchert, S; Borriss, R; Boursier, L; Brans, A; Brignell, SC; Bron, S; Brouillet, S; Bruschi, CV; Caldwell, B; Capuano, [No Value; Carter, NM; Choi, SK; Codani, JJ; Connerton, IF; Cummings, NJ; Daniel, RA; Denizot, F; Devine, KM; Dusterhoft, A; Ehrlich, SD; Emmerson, PT; Entian, KD; Errington, J; Fabret, C; Ferrari, E; Foulger, D; Fujita, M; Fujita, Y; Fuma, S; Galizzi, A; Galleron, N; Ghim, SY; Glaser, P; Goffeau, A; Golightly, EJ; Grandi, G; Guiseppi, G; Guy, BJ; Haga, K; Haiech, J; Harwood, CR; Henaut, A; Hilbert, H; Holsappel, S; Hosono, S; Hullo, MF; Itaya, M; Jones, L; Joris, B; Karamata, D; Kasahara, Y; KlaerrBlanchard, M; Klein, C; Kobayashi, Y; Koetter, P; Koningstein, G; Krogh, S; Kumano, M; Kurita, K; Lapidus, A; Lardinois, S; Lauber, J; Lazarevic, [No Value; Lee, SM; Levine, A; Liu, H; Masuda, S; Mauel, C; Medigue, C; Medina, N; Mellado, RP; Mizuno, M; Moestl, D; Nakai, S; Noback, M; Noone, D; OReilly, M; Ogawa, K; Ogiwara, A; Oudega, B; Park, SH; Parro, [No Value; Pohl, TM; Portetelle, D; Porwollik, S; Prescott, AM; Presecan, E; Pujic, P; Purnelle, B; Rapoport, G; Rey, M; Reynolds, S; Rieger, M; Rivolta, C; Rocha, E; Roche, B; Rose, M; Sadaie, Y; Sato, T; Scanlan, E; Schleich, S; Schroeter, R; Scoffone, F; Sekiguchi, J; Sekowska, A; Seror, SJ; Serror, P; Shin, BS; Soldo, B; Sorokin, A; Tacconi, E; Takagi, T; Takahashi, H; Takemaru, K; Takeuchi, M; Tamakoshi, A; Tanaka, T; Terpstra, P; Tognoni, A; Tosato, [No Value; Uchiyama, S; Vandenbol, M; Vannier, F; Vassarotti, A; Viari, A; Wambutt, R; Wedler, E; Wedler, H; Weitzenegger, T; Winters, P; Wipat, A; Yamamoto, H; Yamane, K; Yasumoto, K; Yata, K; Yoshida, K; Yoshikawa, HF; Zumstein, E; Yoshikawa, H; Danchin, A

    1997-01-01

    Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatl

  2. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis

    DEFF Research Database (Denmark)

    Nicolas, Pierre; Mäder, Ulrike; Dervyn, Etienne;

    2012-01-01

    Bacteria adapt to environmental stimuli by adjusting their transcriptomes in a complex manner, the full potential of which has yet to be established for any individual bacterial species. Here, we report the transcriptomes of Bacillus subtilis exposed to a wide range of environmental and nutrition...

  3. Bacillus subtilis SpoIIIJ and YqjG function in membrane protein biogenesis.

    NARCIS (Netherlands)

    Saller, Manfred J.; Fusetti, Fabrizia; Driessen, Arnold J. M.

    2009-01-01

    In all domains of life Oxa1p-like proteins are involved in membrane protein biogenesis. Bacillus subtilis, a model organism for gram-positive bacteria, contains two Oxa1p homologs: SpoIIIJ and YqjG. These molecules appear to be mutually exchangeable, although SpoIIIJ is specifically required for spo

  4. Influence of high-pressure-low-temperature treatment on the inactivation of Bacillus subtilis cells.

    NARCIS (Netherlands)

    T. Shen; G. Urrutia Benet; S. Brul; D. Knorr

    2005-01-01

    High pressure inactivation processes, especially at subzero temperatures, were performed on Bacillus subtilis vegetative cells at various pressure, temperature and time combinations. Whilst atmospheric pressure, lowering the temperature for various periods to as low as 45 -C was found to have minor

  5. Transcriptome analysis documents induced competence of Bacillus subtilis during nitrogen limiting conditions

    DEFF Research Database (Denmark)

    Jarmer, Hanne Østergaard; Berka, R.; Knudsen, Steen;

    2002-01-01

    DNA microarrays were used to analyze the changes in gene expression in Bacillus subtilis strain 168 when nitrogen limiting (glutamate) and nitrogen excess (ammonium plus glutamate) growth conditions were compared. Among more than 100 genes that were significantly induced during nitrogen starvation...

  6. Mutational analysis of the regulatory region of the srfA operon in Bacillus subtilis.

    OpenAIRE

    Nakano, M M; Zuber, P

    1993-01-01

    Transcription of the Bacillus subtilis srfA operon is dependent on the transcriptional activator ComA. Mutational analysis of the srfA regulatory region suggests that two regions of dyad symmetry upstream of the srfA promoter may function in transcriptional activation by facilitating a cooperative interaction between ComA dimers.

  7. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis

    DEFF Research Database (Denmark)

    Bisicchia, Paola; Noone, David; Lioliou, Efthimia;

    2007-01-01

    Adaptation of bacteria to the prevailing environmental and nutritional conditions is often mediated by two-component signal transduction systems (TCS). The Bacillus subtilis YycFG TCS has attracted special attention as it is essential for viability and its regulon is poorly defined. Here we show...

  8. Purification and properties of phosphoribosyl-diphosphate synthetase from Bacillus subtilis

    DEFF Research Database (Denmark)

    Arnvig, Kirsten; Hove-Jensen, Bjarne; Switzer, Robert L.

    1990-01-01

    Phosphoribosyl-diphosphate (PPRibP) synthetase from Bacillus subtiliis has been purified to near homogeneity from an Escherichia coli Δprs strain bearing the cloned B. subtilis prs gene, encoding PPRibP synthentase, on a plasmid. The Mr of the subunit (34,000) and its amino-terminal amino acid...

  9. Complete genome sequence of Bacillus subtilis BSD-2, a microbial germicide isolated from cultivated cotton.

    Science.gov (United States)

    Liu, Hongwei; Yin, Shuli; An, Likang; Zhang, Genwei; Cheng, Huicai; Xi, Yanhua; Cui, Guanhui; Zhang, Feiyan; Zhang, Liping

    2016-07-20

    Bacillus subtilis BSD-2, isolated from cotton (Gossypium spp.), had strong antagonistic activity to Verticillium dahlia Kleb and Botrytis cinerea. We sequenced and annotated the BSD-2 complete genome to help us the better use of this strain, which has surfactin, bacilysin, bacillibactin, subtilosin A, Tas A and a potential class IV lanthipeptide biosynthetic pathways. PMID:27184432

  10. In vitro characterization of the Bacillus subtilis protein tyrosine phosphatase YwqE

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Musumeci, Lucia; Tautz, Lutz;

    2005-01-01

    Both gram-negative and gram-positive bacteria possess protein tyrosine phosphatases (PTPs) with a catalytic Cys residue. In addition, many gram-positive bacteria have acquired a new family of PTPs, whose first characterized member was CpsB from Streptococcus pneumoniae. Bacillus subtilis contains...

  11. Absence of correlation between rates of cell wall turnover and autolysis shown by Bacillus subtilis mutants.

    OpenAIRE

    Vitković, L; Cheung, H. Y.; Freese, E

    1984-01-01

    Bacillus subtilis mutants with reduced rates of cell wall autolysis reached a constant rate of wall turnover after a longer lag than the standard strain but eventually showed the same turnover rate. In reverse, a turnover-deficient mutant autolysed at a slightly higher rate than the standard strain. Consequently, there is no correlation between the rates of cell wall turnover and autolysis.

  12. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    NARCIS (Netherlands)

    Marciniak, Bogumila C.; Trip, Hein; van-der Veek, Patricia J.; Kuipers, Oscar P.; Marciniak, Bogumiła C.

    2012-01-01

    Background: Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe) status, its genetic accessibility and its capacity to grow in large fermentatio

  13. Glutamine synthetase subunit mixing and regulation in Bacillus subtilis partial diploids.

    OpenAIRE

    Gardner, A; Odebralski, J; Zahler, Stefan; Korman, R Z; Aronson, A I

    1982-01-01

    A specialized transducing phage, SP beta c2 dglnA2, of Bacillus subtilis was used to construct partial diploids with various glutamine auxotrophs. The overproduction of manganese-stimulated glutamine synthetase no longer occurred in the diploids. The kinetics of heat inactivation of the enzyme extracted from two diploids suggests that there was subunit mixing.

  14. A positive selection vector for the analysis of structural plasmid instability in Bacillus subtilis

    NARCIS (Netherlands)

    Meima, R; Venema, G; Bron, S

    1996-01-01

    A system for the positive selection of structural plasmid rearrangements in Bacillus subtilis was developed. Random deletions removing a transcription terminator structure in the assay plasmid, designated pGP100, resulted in expression of the cat-86 gene, under control of a constitutive bacteriophag

  15. Bacillus subtilis at near-zero specific growth rates : Adaptations to extreme caloric restriction

    NARCIS (Netherlands)

    Overkamp, Wout

    2015-01-01

    Bacillus subtilis is an important soil-dwelling bacteria species that is used for the production of e.g. vitamins, enzymes and medicines. In both the natural and industrial environment the availability of energy sources can be limited. In contrary to a situation of complete ‘nutrient depletion’, man

  16. Different mechanisms for thermal inactivation of Bacillus subtilis signal peptidase mutants

    NARCIS (Netherlands)

    Bolhuis, A; Tjalsma, H; Stephenson, K; Harwood, C.R; Venema, G; Bron, S; van Dijl, J.M

    1999-01-01

    The type I signal peptidase SipS of Bacillus subtilis is of major importance for the processing of secretory precursor proteins. In the present studies, we have investigated possible mechanisms of thermal inactivation of five temperature-sensitive SipS mutants. The results demonstrate that two of th

  17. ISOLATION AND CHARACTERIZATION OF COML, A TRANSCRIPTION UNIT INVOLVED IN COMPETENCE DEVELOPMENT OF BACILLUS-SUBTILIS

    NARCIS (Netherlands)

    VANSINDEREN, D; WITHOFF, S; BOELS, H; VENEMA, G

    1990-01-01

    Using the transformation-deficient mutant M465, which was previously isolated by means of insertional mutagenesis with plasmid pHV60, a transcription unit comL required for genetic competence of Bacillus subtilis was identified. A chromosomal DNA fragment flanking the inserted pHV60 was isolated and

  18. Genome Sequence of Bacillus subtilis Strain HUK15, Isolated from Hexachlorocyclohexane-Contaminated Soil

    OpenAIRE

    Gasc , Cyrielle; Richard, Jean-Yves; Peyret, Pierre

    2016-01-01

    Bacillus subtilis strain HUK15 has been isolated from hexachlorocyclohexane (HCH)-long-term-contaminated soil. The genome of strain HUK15 was sequenced to investigate its adaptation toward HCH and its potential capability to degrade the pesticide. Here, we report the annotated draft genome sequence (~4.3 Mbp) of this strain.

  19. Regioselective Synthesis of Polymerizable Vinyl Guaifenesin Esters Catalyzed by an Alkaline Protease of Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Na WANG; Qi WU; Jian Ming XU; Xiu Ming JIANG; Xian Fu LIN

    2004-01-01

    Three polymerizable vinyl guaifenesin esters with different acyl donor carbon chain lengths (C4,C6,C10) were regioselectivly synthesized by an alkaline protease from Bacillus subtilis in pyridine at 50°C for 1, 3, 5 days respectively.

  20. Cellular lysis in Bacillus subtilis; the affect of multiple extracellular protease deficiencies

    NARCIS (Netherlands)

    Stephenson, K; Bron, S; Harwood, CR

    1999-01-01

    Cellular lysis properties of strains of Bacillus subtilis deficient in the synthesis of extracellular proteases was investigated. In all cases, extracellular protease deficiency was found to increase the extent of cellular lysis of batch cultured strains following the transition to stationary phase,

  1. Whole genome assembly of a natto production strain Bacillus subtilis natto from very short read data

    Directory of Open Access Journals (Sweden)

    Fujiyama Asao

    2010-04-01

    Full Text Available Abstract Background Bacillus subtilis natto is closely related to the laboratory standard strain B. subtilis Marburg 168, and functions as a starter for the production of the traditional Japanese food "natto" made from soybeans. Although re-sequencing whole genomes of several laboratory domesticated B. subtilis 168 derivatives has already been attempted using short read sequencing data, the assembly of the whole genome sequence of a closely related strain, B. subtilis natto, from very short read data is more challenging, particularly with our aim to assemble one fully connected scaffold from short reads around 35 bp in length. Results We applied a comparative genome assembly method, which combines de novo assembly and reference guided assembly, to one of the B. subtilis natto strains. We successfully assembled 28 scaffolds and managed to avoid substantial fragmentation. Completion of the assembly through long PCR experiments resulted in one connected scaffold for B. subtilis natto. Based on the assembled genome sequence, our orthologous gene analysis between natto BEST195 and Marburg 168 revealed that 82.4% of 4375 predicted genes in BEST195 are one-to-one orthologous to genes in 168, with two genes in-paralog, 3.2% are deleted in 168, 14.3% are inserted in BEST195, and 5.9% of genes present in 168 are deleted in BEST195. The natto genome contains the same alleles in the promoter region of degQ and the coding region of swrAA as the wild strain, RO-FF-1. These are specific for γ-PGA production ability, which is related to natto production. Further, the B. subtilis natto strain completely lacked a polyketide synthesis operon, disrupted the plipastatin production operon, and possesses previously unidentified transposases. Conclusions The determination of the whole genome sequence of Bacillus subtilis natto provided detailed analyses of a set of genes related to natto production, demonstrating the number and locations of insertion sequences that B

  2. Bistable forespore engulfment in Bacillus subtilis by a zipper mechanism in absence of the cell wall.

    Directory of Open Access Journals (Sweden)

    Nikola Ojkic

    2014-10-01

    Full Text Available To survive starvation, the bacterium Bacillus subtilis forms durable spores. The initial step of sporulation is asymmetric cell division, leading to a large mother-cell and a small forespore compartment. After division is completed and the dividing septum is thinned, the mother cell engulfs the forespore in a slow process based on cell-wall degradation and synthesis. However, recently a new cell-wall independent mechanism was shown to significantly contribute, which can even lead to fast engulfment in [Formula: see text] 60 [Formula: see text] of the cases when the cell wall is completely removed. In this backup mechanism, strong ligand-receptor binding between mother-cell protein SpoIIIAH and forespore-protein SpoIIQ leads to zipper-like engulfment, but quantitative understanding is missing. In our work, we combined fluorescence image analysis and stochastic Langevin simulations of the fluctuating membrane to investigate the origin of fast bistable engulfment in absence of the cell wall. Our cell morphologies compare favorably with experimental time-lapse microscopy, with engulfment sensitive to the number of SpoIIQ-SpoIIIAH bonds in a threshold-like manner. By systematic exploration of model parameters, we predict regions of osmotic pressure and membrane-surface tension that produce successful engulfment. Indeed, decreasing the medium osmolarity in experiments prevents engulfment in line with our predictions. Forespore engulfment may thus not only be an ideal model system to study decision-making in single cells, but its biophysical principles are likely applicable to engulfment in other cell types, e.g. during phagocytosis in eukaryotes.

  3. Fluctuations in spo0A transcription control rare developmental transitions in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Nicolas Mirouze

    2011-04-01

    Full Text Available Phosphorylated Spo0A is a master regulator of stationary phase development in the model bacterium Bacillus subtilis, controlling the formation of spores, biofilms, and cells competent for transformation. We have monitored the rate of transcription of the spo0A gene during growth in sporulation medium using promoter fusions to firefly luciferase. This rate increases sharply during transient diauxie-like pauses in growth rate and then declines as growth resumes. In contrast, the rate of transcription of an rRNA gene decreases and increases in parallel with the growth rate, as expected for stable RNA synthesis. The growth pause-dependent bursts of spo0A transcription, which reflect the activity of the spo0A vegetative promoter, are largely independent of all known regulators of spo0A transcription. Evidence is offered in support of a "passive regulation" model in which RNA polymerase stops transcribing rRNA genes during growth pauses, thus becoming available for the transcription of spo0A. We show that the bursts are followed by the production of phosphorylated Spo0A, and we propose that they represent initial responses to stress that bring the average cell closer to the thresholds for transition to bimodally expressed developmental responses. Measurement of the numbers of cells expressing a competence marker before and after the bursts supports this hypothesis. In the absence of ppGpp, the increase in spo0A transcription that accompanies the entrance to stationary phase is delayed and sporulation is markedly diminished. In spite of this, our data contradicts the hypothesis that sporulation is initiated when a ppGpp-induced depression of the GTP pool relieves repression by CodY. We suggest that, while the programmed induction of sporulation that occurs in stationary phase is apparently provoked by increased flux through the phosphorelay, bet-hedging stochastic transitions to at least competence are induced by bursts in transcription.

  4. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores.

    Science.gov (United States)

    van Bokhorst-van de Veen, Hermien; Xie, Houyu; Esveld, Erik; Abee, Tjakko; Mastwijk, Hennie; Nierop Groot, Masja

    2015-02-01

    Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is still not fully understood. In this study, the biocidal effect by nitrogen CAP was determined for chemical (hypochlorite and hydrogen peroxide), physical (UV) and heat-resistant spores. The three different sporeformers used are Bacillus cereus a food-borne pathogen, and Bacillus atrophaeus and Geobacillus stearothermophilus that are used as biological indicators for validation of chemical sterilization and thermal processes, respectively. The different spores showed variation in their degree of inactivation by applied heat, hypochlorite, hydrogen peroxide, and UV treatments, whereas similar inactivation results were obtained with the different spores treated with nitrogen CAP. G. stearothermophilus spores displayed high resistance to heat, hypochlorite, hydrogen peroxide, while for UV treatment B. atrophaeus spores are most tolerant. Scanning electron microscopy analysis revealed distinct morphological changes for nitrogen CAP-treated B. cereus spores including etching effects and the appearance of rough spore surfaces, whereas morphology of spores treated with heat or disinfectants showed no such changes. Moreover, microscopy analysis revealed CAP-exposed B. cereus spores to turn phase grey conceivably because of water influx indicating damage of the spores, a phenomenon that was not observed for non-treated spores. In addition, data are supplied that exclude UV radiation as determinant of antimicrobial activity of nitrogen CAP. Overall, this study shows that nitrogen CAP treatment has a biocidal effect on selected Bacillus and Geobacillus spores associated with alterations in spore surface morphology and loss of spore integrity. PMID:25481059

  5. The RecA-Dependent SOS Response Is Active and Required for Processing of DNA Damage during Bacillus subtilis Sporulation.

    Science.gov (United States)

    Ramírez-Guadiana, Fernando H; Barajas-Ornelas, Rocío Del Carmen; Corona-Bautista, Saúl U; Setlow, Peter; Pedraza-Reyes, Mario

    2016-01-01

    The expression of and role played by RecA in protecting sporulating cells of Bacillus subtilis from DNA damage has been determined. Results showed that the DNA-alkylating agent Mitomycin-C (M-C) activated expression of a PrecA-gfpmut3a fusion in both sporulating cells' mother cell and forespore compartments. The expression levels of a recA-lacZ fusion were significantly lower in sporulating than in growing cells. However, M-C induced levels of ß-galactosidase from a recA-lacZ fusion ~6- and 3-fold in the mother cell and forespore compartments of B. subtilis sporangia, respectively. Disruption of recA slowed sporulation and sensitized sporulating cells to M-C and UV-C radiation, and the M-C and UV-C sensitivity of sporangia lacking the transcriptional repair-coupling factor Mfd was significantly increased by loss of RecA. We postulate that when DNA damage is encountered during sporulation, RecA activates the SOS response thus providing sporangia with the repair machinery to process DNA lesions that may compromise the spatio-temporal expression of genes that are essential for efficient spore formation.

  6. The RecA-Dependent SOS Response Is Active and Required for Processing of DNA Damage during Bacillus subtilis Sporulation.

    Directory of Open Access Journals (Sweden)

    Fernando H Ramírez-Guadiana

    Full Text Available The expression of and role played by RecA in protecting sporulating cells of Bacillus subtilis from DNA damage has been determined. Results showed that the DNA-alkylating agent Mitomycin-C (M-C activated expression of a PrecA-gfpmut3a fusion in both sporulating cells' mother cell and forespore compartments. The expression levels of a recA-lacZ fusion were significantly lower in sporulating than in growing cells. However, M-C induced levels of ß-galactosidase from a recA-lacZ fusion ~6- and 3-fold in the mother cell and forespore compartments of B. subtilis sporangia, respectively. Disruption of recA slowed sporulation and sensitized sporulating cells to M-C and UV-C radiation, and the M-C and UV-C sensitivity of sporangia lacking the transcriptional repair-coupling factor Mfd was significantly increased by loss of RecA. We postulate that when DNA damage is encountered during sporulation, RecA activates the SOS response thus providing sporangia with the repair machinery to process DNA lesions that may compromise the spatio-temporal expression of genes that are essential for efficient spore formation.

  7. The Adsorption Properties of Bacillus atrophaeus Spores on Single-Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    P. Cortes

    2009-01-01

    Full Text Available An adsorption equilibrium and a kinetic study of Bacillus atrophaeus on Single-Wall Carbon Nanotubes (SWCNTs were here performed to provide the basis for developing biosensor devices for detecting threatening micro-organisms in water supply systems. B. atrophaeus spores and carbon nanotubes were subjected to a batch adsorption process to document their equilibria and kinetics. Here, commercial nanotubes were either studied as received or were acid-purified before adsorption experiments. The Bacillus spores appear to show higher affinity towards the purified nanotubes than to the as-received nanomaterial. The effective diffusivity of the spores onto the purified nanotubes was found to be approximately 30 percent higher than onto the as-received nanotubes. It seems that the removal of amorphous carbon from the as-received nanotubes through a purification process yielded an intimate nantoubes-spore interaction as revealed by transmission electron microscopy. Freundlich model successfully correlated the adsorption equilibrium data for the nanotubes-spore interaction. Transmission electron micrographs showed extensive contact between the Bacillus and the purified nanotubes, but the association appeared less intimate between the spores and the as-received nanotubes.

  8. Effect of Bacillus subtilis Natto on Meat Quality and Skatole Content in TOPIGS Pigs.

    Science.gov (United States)

    Sheng, Q K; Zhou, K F; Hu, H M; Zhao, H B; Zhang, Y; Ying, W

    2016-05-01

    This study investigated the effect of Bacillus subtilis (B. subtilis) natto on meat quality and skatole in TOPIGS pigs. Sixty TOPIGS pigs were randomly assigned to 3 groups (including 5 pens per group, with 4 pigs in each pen) and fed with basic diet (control group), basic diet plus 0.1% B. subtilis natto (B group), and basic diet plus 0.1% B. subtilis natto plus 0.1% B. coagulans (BB group), respectively. All pigs were sacrificed at 100 kg. Growth performance, meat quality, serum parameters and oxidation status in the three groups were assessed and compared. Most parameters regarding growth performance and meat quality were not significantly different among the three groups. However, compared with the control group, meat pH24, fat and feces skatole and the content of Escherichia coli (E. Coli), Clostridium, NH3-N were significantly reduced in the B and BB groups, while serum total cholesterol, high density lipoprotein, the levels of liver P450, CYP2A6, and CYP2E1, total antioxidant capability (T-AOC) and glutathione peroxidase and Lactobacilli in feces were significantly increased in the B and BB groups. Further, the combined supplementation of B. subtilis natto and B. coagulans showed more significant effects on the parameters above compared with B. subtilis, and Clostridium, and NH3-N. Our results indicate that the supplementation of pig feed with B. subtilis natto significantly improves meat quality and flavor, while its combination with B. coagulans enhanced these effects. PMID:26954164

  9. Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Francisco Fábio Cavalcante Barros

    2013-01-01

    Full Text Available Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes.

  10. Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis.

    Science.gov (United States)

    Barros, Francisco Fábio Cavalcante; Simiqueli, Ana Paula Resende; de Andrade, Cristiano José; Pastore, Gláucia Maria

    2013-01-01

    Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes. PMID:23533780

  11. Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis.

    Science.gov (United States)

    Barros, Francisco Fábio Cavalcante; Simiqueli, Ana Paula Resende; de Andrade, Cristiano José; Pastore, Gláucia Maria

    2013-01-01

    Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes.

  12. Mechanisms of sorbate inhibition of Bacillus cereus T and Clostridium botulinum 62A spore germination.

    OpenAIRE

    Smoot, L A; Pierson, M. D.

    1981-01-01

    The mechanism by which potassium sorbate inhibits Bacillus cereus T and Clostridium botulinum 62A spore germination was investigated. Spores of B. cereus T were germinated at 35 degrees C in 0.08 M sodium-potassium phosphate buffers (pH 5.7 and 6.7) containing various germinants (L-alanine, L-alpha-NH2-n-butyric acid, and inosine) and potassium sorbate. Spores of C. botulinum 62A were germinated in the same buffers but with 10 mM L-lactic acid, 20 mM sodium bicarbonate, L-alanine or L-cystein...

  13. Friction and Adhesion Forces of Bacillus thuringiensis Spores on Planar Surfaces in Atmospheric Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2011-01-01

    The kinetic friction force and the adhesion force of Bacillus thuringiensis spores on planar surfaces in atmospheric systems were studied using atomic force microscopy. The influence of relative humidity (RH) on these forces varied for different surface properties including hydrophobicity, roughness, and surface charge. The friction force of the spore was greater on a rougher surface than on mica, which is atomically flat. As RH increases, the friction force of the spores decreases on mica whereas it increases on rough surfaces. The influence of RH on the interaction forces between hydrophobic surfaces is not as strong as for hydrophilic surfaces. The friction force of the spore is linear to the sum of the adhesion force and normal load on the hydrophobic surface. The poorly defined surface structure of the spore and the adsorption of contaminants from the surrounding atmosphere are believed to cause a discrepancy between the calculated and measured adhesion forces.

  14. Anthrax vaccine design: strategies to achieve comprehensive protection against spore, bacillus, and toxin

    OpenAIRE

    Roehrl, Michael H.; Wang, Jun-Xia

    2005-01-01

    The successful use of Bacillus anthracis as a lethal biological weapon has prompted renewed research interest in the development of more effective vaccines against anthrax. The disease consists of three critical components: spore, bacillus, and toxin, elimination of any of which confers at least partial protection against anthrax. Current remedies rely on postexposure antibiotics to eliminate bacilli and pre- and postexposure vaccination to target primarily toxins. Vaccines effective against ...

  15. Control of Bacillus licheniformis spores isolated from dairy materials in yogurt production.

    Science.gov (United States)

    Tanaka, Takashi; Ito, Akiko; Kamikado, Hideaki

    2012-01-01

    To determine the effects of sporulation temperature and period on Bacillus licheniformis spore heat resistance, B. licheniformis strain No.25 spores were sporulated at 30, 37, 42, or 50°C for 11 d and at 50°C for 1.7, 4, 7, or 11 d. The heat resistance of B. licheniformis strain No.25 spores at 110°C increased with an increase in the sporulation temperature. Spores sporulated at 50°C were 1.4-fold more heat resistant than those sporulated at 30°C. Furthermore, the heat resistance of B. licheniformis strain No.25 spores at 110°C increased with an increase in the sporulation period. Spores sporulated for 11 d were 5.3-fold more heat resistant than those sporulated for 1.7 d. The heat resistance of B. licheniformis strain No.25 spores at 110°C increased with increases in the sporulation temperature and sporulation period. The results presented in this study can be applied to the pasteurization process to control B. licheniformis spores. Pasteurization at 110°C for about 60sec. is effective in controlling B. licheniformis spores isolated from dairy materials in yogurt production.

  16. Mutagenesis and ultraviolet inactivation of transforming DNA of ``Haemophilus influenzae`` complexed with a ``Bacillus subtilis`` protein that alter DNA conformation

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, Jane K. [Brookhaven National Lab., Upton, NY (United States); Setlow, Barbara C.; Setlow, Peter [Connecticut Univ., Farmington, CT (United States)

    1996-12-31

    The wild-type ``Bacillus subtilis`` spore protein, SspC{sup wt}, binds to DNA ``in vitro`` and ``in vivo`` and changes the conformation of DNA from B to A. Synthesis of the cloned SspC{sup wt} gene in ``Escherichia coli`` also causes large increases in mutation frequency. Binding of SspC{sup wt} to transforming DNA from ``Haemophilus influenzae`` made the DNA resistant to ultraviolet (UV) radiation. The mutant protein, SspC{sup ala}, which does not bind DNA, did not change the UV resistance. The UV sensitivity of the DNA/SspC{sup wt} complex was not increased when the recipients of the DNA were defective in excision of pyrimidine dimers. These data indicate that the ``H. influenzae`` excision mechanism does not operate on the spore photoproduct formed by UV irradiation of the complex. Selection for the streptomycin- or erythromycin-resistance markers on the transforming DNA evidenced significant mutations at loci closely linked to these, but not at other loci. SspC{sup wt} apparently entered the cell attached to the transforming DNA, and caused mutations in adjacent loci. The amount of such mutations decreased when the transforming DNA was UV irradiated, because UV unlinks linked markers. (author). 22 refs, 4 figs, 4 tabs.

  17. Production and antimicrobial activity of 3-hydroxypropionaldehyde from Bacillus subtilis strain CU12.

    Science.gov (United States)

    Wise, C; Novitsky, L; Tsopmo, A; Avis, T J

    2012-12-01

    Bacillus subtilis strains are known to produce a vast array of antimicrobial compounds. However, some compounds remain to be identified. Disk assays performed in vitro with Bacillus subtilis CU12 showed a significant reduction in mycelial growth of Alternaria solani, Botrytis cinerea, Fusarium sambucinum, and Pythium sulcatum. Crude B. subtilis culture filtrates were subsequently extracted with ethyl acetate and butanol. A bioassay guided purification procedure revealed the presence of one major antifungal compound in the butanol extract. Purification of the compound was performed using a reverse-phase C18 solid phase extraction (SPE) cartridge and flash column chromatography. NMR data showed that the main antimicrobial compound was a cyclic dimer of 3-hydroxypropionaldehyde (HPA). This study demonstrated the antimicrobial activity of B. subtilis strain CU12 against phytopathogenic microorganisms is mediated at least in part by the production of HPA. It also suggests that this B. subtilis strain could be effective at controlling pathogens through protection of its ecological niche by antibiosis. PMID:23179100

  18. Biocontrol of Soil Fungi in Tomato with Microencapsulates Containing Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Marcela H. Suarez

    2011-01-01

    Full Text Available Problem statement: An option to reduce pollution by synthetic agro-chemical in root plant disease management is the use of antagonist rhizobacteria belonging to Bacillus genus, because their inhibitory properties, stimulation of plant growth and crop yield increase. Approach: This study was carried out in order to evaluate if Bacillus subtilis strains could play an antagonists role of plant pathogens and if they can be microencapsulated inside a biopolymer matrix. It was adapted an equipment and evaluated a technique for microcapsules elaboration, in order to incorporate B. subtilis strains and to analyze their potential as biocontrol agents by determining their antagonistic effect against pathogenic soil fungi; in addition, it was analyzed their effect on tomato plant growth promotion under greenhouse conditions. B. subtilis strains identified as B1, J1, M2 and their mixture were used; microcapsules containing bacterial strains were inoculated to tomato seeds cv. Floradade. When seedlings emerged, a second application of microcapsules containing B. subtilis was performed on the pots, which previously were inoculated with the fungi Rhizoctonia solani and Fusarium oxysporum. Response variables were: Incidence and disease severity, plant growth, aerial and root dry weight, leaf area and fruit yield. Results: The outcome showed that the equipment designed and adapted for microcapsules elaboration was useful to obtain microcapsules containing the bacterial strains. B. subtilis strains exerted apparent biocontrol, since incidence and disease severity was reduced and for that reason inhibited the infective activity of the inoculated plant pathogens, also microcapsules containing Bacillus strains stimulated tomato growth and fruit yield. Conclusion: Microcapsules containing B. subtilis strains could be effective biocontrol agents against soil fungi plant pathogens and could have a potential biofertilizer effect, since they stimulated growth and yield

  19. Bacillus subtilis genome vector-based complete manipulation and reconstruction of genomic DNA for mouse transgenesis

    OpenAIRE

    Iwata, Tetsuo; Kaneko, Shinya; Shiwa, Yuh; Enomoto, Takayuki; Yoshikawa, Hirofumi; Hirota, Junji

    2013-01-01

    Background The Bacillus subtilis genome (BGM) vector is a novel cloning system for large DNA fragments, in which the entire 4.2 Mb genome of B. subtilis functions as a vector. The BGM vector system has several attractive properties, such as a large cloning capacity of over 3 Mb, stable propagation of cloned DNA and various modification strategies using RecA-mediated homologous recombination. However, genetic modifications using the BGM vector system have not been fully established, and this s...

  20. Conversion of sub-megasized DNA to desired structures using a novel Bacillus subtilis genome vector

    OpenAIRE

    Kaneko, Shinya; Tsuge, Kenji; Takeuchi, Takashi; Itaya, Mitsuhiro

    2003-01-01

    A novel genome vector using the 4215 kb Bacillus subtilis genome provides for precise target cloning and processing of the cloned DNA to the desired structure. Each process highly dependent on homologous recombination in the host B.subtilis is distinguished from the other cloning systems. A 120 kb mouse jumonji (jmj) genomic gene was processed in the genome vector to give a series of truncated sub-megasized DNA. One of these truncated segments containing the first intron was copied in a plasm...

  1. Engineering the Xylan Utilization System in Bacillus subtilis for Production of Acidic Xylooligosaccharides

    OpenAIRE

    Rhee, Mun Su; Wei, Lusha; Sawhney, Neha; Rice, John D.; St John, Franz J.; Hurlbert, Jason C.; Preston, James F.

    2014-01-01

    Xylans are the predominant polysaccharides in hemicelluloses and an important potential source of biofuels and chemicals. The ability of Bacillus subtilis subsp. subtilis strain 168 to utilize xylans has been ascribed to secreted glycoside hydrolase family 11 (GH11) and GH30 endoxylanases, encoded by the xynA and xynC genes, respectively. Both of these enzymes have been defined with respect to structure and function. In this study, the effects of deletion of the xynA and xynC genes, individua...

  2. Identification of a Bacillus subtilis secretion mutant using a beta-galactosidase screening procedure

    DEFF Research Database (Denmark)

    Jacobs, M F; Borchert, T V; Kontinen, V P;

    1995-01-01

    High-level synthesis of exportable beta-galactosidase (LacZ) fusion proteins in Bacillus subtilis results in a lethal phenotype, and has been suggested as a tool for the selection of secretion mutants. We tested a plasmid-based, inducible lacZ fusion gene system for this purpose, but frequent...... mutations in cis, which reduced expression of the fusion gene, forced abandonment of the induction-selection strategy. Instead, after modification of the indicator plasmid, a screening procedure for increased basal LacZ activity levels was adopted. This led to the identification of a conditional B. subtilis...

  3. Identification of a Bacillus subtilis secretion mutant using a ß-galactosidase screening procedure

    DEFF Research Database (Denmark)

    Jacobs, Myra F.; Andersen, Jens Bo; Borchert, Torben V.;

    1995-01-01

    High-level synthesis of exportable beta-galactosidase (LacZ) fusion proteins in Bacillus subtilis results in a lethal phenotype, and has been suggested as a tool for the selection of secretion mutants. We tested a plasmid-based, inducible lacZ fusion gene system for this purpose, but frequent...... mutations in cis, which reduced expression of the fusion gene, forced abandonment of the induction-selection strategy. Instead, after modification of the indicator plasmid, a screening procedure for increased basal LacZ activity levels was adopted. This led to the identification of a conditional B. subtilis...

  4. MinCD Proteins Control the Septation Process during Sporulation of Bacillus subtilis

    OpenAIRE

    Barák, Imrich; Prepiak, Peter; Schmeisser, Falko

    1998-01-01

    Mutation of the divIVB locus in Bacillus subtilis causes misplacement of the septum during cell division and allows the formation of anucleate minicells. The divIVB locus contains five open reading frames (ORFs). The last two ORFs (minCD) are homologous to minC and minD of Escherichia coli but a minE homolog is lacking in B. subtilis. There is some similarity between minicell formation and the asymmetric septation that normally occurs during sporulation in terms of polar septum localization. ...

  5. Primary structure of the tms and prs genes of Bacillus subtilis

    DEFF Research Database (Denmark)

    Nilsson, Dan; Hove-Jensen, Bjarne; Arnvig, Kirsten

    1989-01-01

    The nucleotide sequence was determined of a 3211 nucleotide pair EcoRI-PvuII DNA fragment containing the tms and prs genes as well as a part of the ctc gene of Bacillus subtilis. The prs gene encodes phosphoribosylpyrophosphate (PRPP) synthetase, whereas the functioning of the tms and ctc gene...... products remains to be established. The prs gene contains an open reading frame of 317 codons resulting in a subunit Mr of 34828. An open reading frame comprising the tms gene contained 456 codons resulting in a putative translation product with an Mr of 49,554. Comparison of the deduced B. subtilis PRPP...

  6. Soya bean tempe extracts show antibacterial activity against Bacillus cereus cells and spores

    NARCIS (Netherlands)

    Roubos-van den Hil, P.J.; Dalmas, E.; Nout, M.J.R.; Abee, T.

    2010-01-01

    Aims: Tempe, a Rhizopus ssp.-fermented soya bean food product, was investigated for bacteriostatic and/or bactericidal effects against cells and spores of the food-borne pathogen Bacillus cereus. Methods and results: Tempe extract showed a high antibacterial activity against B. cereus ATCC 14579 bas

  7. Comparative analysis of Bacillus weihenstephanensis KBAB4 spores obtained at different temperatures

    NARCIS (Netherlands)

    Garcia, D.; Voort, van der M.; Abee, T.

    2010-01-01

    The impact of Bacillus weihenstephanensis KBAB4 sporulation temperature history was assessed on spore heat resistance, germination and outgrowth capacity at a temperature range from 7 to 30 °C. Sporulation rate and efficiency decreased at low temperature, as cells sporulated at 12, 20 and 30 °C with

  8. 40 CFR 180.1011 - Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the requirement of a tolerance. 180.1011 Section 180.1011 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL...

  9. Characterization of a spore-specific protein of the Bacillus cereus group

    NARCIS (Netherlands)

    From, C.; Voort, van der M.; Abee, T.; Granum, P.E.

    2012-01-01

    Bc1245 is a monocistronic chromosomal gene of Bacillus cereus ATCC 14579 encoding a putative protein of 143 amino acids identified in this study to have a spore-related function in B. cereus. Bc1245 is highly conserved in the genome of members of the B. cereus group, indicating an important function

  10. Process optimization by response surface methodology for extracellular alkaline protease production from bacillus subtilis

    International Nuclear Information System (INIS)

    Three microbial cultures Bacillus subtilis DSM 1970, Bacillus subtilis GCU-8 and Bacillus licheniformis DSM 1969 were screened for protease production by casein agar plate method. Among these Bacillus subtilis GCU-8 was found to be the most potent protease producer in wide pH range (5.0 to 8.0). Fermentation conditions were optimized for the production of alkaline protease using two statistical tools: Placket Burmen Model for linear regression study and Response Surface Model for interactive effects of significant factors on production. The alkaline protease was optimally produced after 48 hours of incubation at 37 degree C in fermentation media containing equal amounts of substrates (soybean meal and wheat bran, 7.5 g), MgSO/sub 4/ 7H/sub 2/O, 0.10 g and yeast extract 0.55 g. The protease was purified to homogeneity by salt precipitation, ion-exchange chromatography and size exclusion chromatography. The homogeneity and molecular weights were checked by SDS-PAGE. The protease was 45 KDa protein, predominantly alkaline and optimally active at pH 8.0. (author)

  11. Bacillus subtilis strain deficient for the protein-tyrosine kinase PtkA exhibits impaired DNA replication

    DEFF Research Database (Denmark)

    Petranovic, Dina; Michelsen, Ole; Zahradka, K;

    2007-01-01

    Bacillus subtilis has recently come into the focus of research on bacterial protein-tyrosine phosphorylation, with several proteins kinases, phosphatases and their substrates identified in this Gram-positive model organism. B. subtilis protein-tyrosine phosphorylation system PtkA/PtpZ was previou...... microscopy. B. subtilis cells lacking the kinase PtkA accumulated extra chromosome equivalents, exhibited aberrant initiation mass for DNA replication and an unusually long D period....

  12. Free and attached cells of Bacillus subtilis as starters for production of a soup flavouring (“ogiri egusi”)

    OpenAIRE

    Peter-Ikechukwu, A. I.; Ahaotu, I.; Owuamanam, C. I.; Ogueke, C. C.

    2013-01-01

    Aims: This Bacillus subtilis has been identified to be the main fermenting bacterium during indigenous production of “ogiri egusi”; a traditional soup flavouring rich in protein. Evaluation of the use of starter and broth cultures of this bacterium in the production of ‘ogiri egusi’ was therefore undertaken with the view to improve the fermentation process and quality of product. Methodology and Results: Cowpea granules in association with Bacillus subtilis cells were developed as starter cul...

  13. Isolation and characterization of Bacillus subtilis genes involved in siderophore biosynthesis: relationship between B. subtilis sfpo and Escherichia coli entD genes.

    OpenAIRE

    Grossman, T H; Tuckman, M; Ellestad, S; Osburne, M S

    1993-01-01

    In response to iron deprivation, Bacillus subtilis secretes a catecholic siderophore, 2,3-dihydroxybenzoyl glycine, which is similar to the precursor of the Escherichia coli siderophore enterobactin. We isolated two sets of B. subtilis DNA sequences that complemented the mutations of several E. coli siderophore-deficient (ent) mutants with defective enterobactin biosynthesis enzymes. One set contained DNA sequences that complemented only an entD mutation. The second set contained DNA sequence...

  14. Radiosensitization of Bacillus cereus spores in minced meat treated with cinnamaldehyde

    International Nuclear Information System (INIS)

    Minced meat beef inoculated with Bacillus cereus spores was treated with four essential oil constituents. The active compounds were sprayed separately onto the meat in order to determine the concentration needed to reduce by 1 log the population of B. cereus spores. Cinnamaldehyde was the best antimicrobial compound selected. It was mixed with ascorbic acid and/or sodium pyrophosphate decahydrate and tested for its efficiency to increase the relative radiation sensitivity (RRS) of B. cereus spores in minced meat packed under air. Results demonstrated that the radiation treatment in presence of the cinnamaldehyde and sodium phosphate decahydrate increased the RRS of B. cereus spores by two fold. The study revealed also that the irradiation of raw beef meat pre-treated with cinnamaldehyde produced an inhibition of the growth of B. cereus count during refrigerated storage. This technology seems to be compatible with industrial meat processing.

  15. Radiosensitization of Bacillus cereus spores in minced meat treated with cinnamaldehyde

    Science.gov (United States)

    Ayari, S.; Dussault, D.; Jerbi, T.; Hamdi, M.; Lacroix, M.

    2012-08-01

    Minced meat beef inoculated with Bacillus cereus spores was treated with four essential oil constituents. The active compounds were sprayed separately onto the meat in order to determine the concentration needed to reduce by 1 log the population of B. cereus spores. Cinnamaldehyde was the best antimicrobial compound selected. It was mixed with ascorbic acid and/or sodium pyrophosphate decahydrate and tested for its efficiency to increase the relative radiation sensitivity (RRS) of B. cereus spores in minced meat packed under air. Results demonstrated that the radiation treatment in presence of the cinnamaldehyde and sodium phosphate decahydrate increased the RRS of B. cereus spores by two fold. The study revealed also that the irradiation of raw beef meat pre-treated with cinnamaldehyde produced an inhibition of the growth of B. cereus count during refrigerated storage. This technology seems to be compatible with industrial meat processing.

  16. Adsorption of Cu2+, Zn2+ and Cd2+ on Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A process of biosorption of Cu2+, Zn2+ and Cd2+ on Bacillus subtilis was investigated.The experiments show that the process of biosorption is quite fast. The maximum adsorption was reached after 5 min and hardly changed with time. The experimental data was analyzed using four sorption kinetic models: the pseudo-first-order, the Ritchie second-order, the modified second-order and the Elovich equations, which helped to determine the best-fit equation for the sorption of metal ions onto biomass. The results show that both the Ritchie second-order and modified secondorder equations can fit the experimental data. The Langmuir model is able to accurately describe adsorption of Cu2+ and Zn2+ on B. subtilis. The experimental data points of adsorption Cd2+ and Zn2+ on B. subtilis are described by Freundlich isotherms model.

  17. Association of Eu(III) and Cm(III) with Bacillus subtilis and Halobacterium salinarum

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Takuo; Kimura, Takaumi; Ohnuki, Toshihiko; Yoshida, Zenko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Gillow, Jeffrey B.; Francis, Arokiasamy J. [Brookhaven National Laboratory, Upton, NY (United States)

    2002-11-01

    Adsorption behavior of Eu(III) and Cm(III) by Bacillus subtilis and Halobacterium salinarum was investigated. Both microorganisms showed almost identical pH dependence on the distribution ratio (K{sub d}) of the metals examined, i.e., K{sub d} of Eu(III) and Cm(III) increased with an increase of pH. The coordination state of Eu(III) adsorbed on the microorganisms was studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). The coordination states of Eu(III) adsorbed on the B. subtilis and H. salinarum was of different characteristics. H. salinarum exhibited more outer-spherical interaction with Eu(III) than B. subtilis. (author)

  18. Study on mutagenic breeding of bacillus subtilis and properties of its antifungal substances

    International Nuclear Information System (INIS)

    Bacillus subtilis JA isolated by our laboratory produced a large amount of antifungal substances, which had strong inhibitory activity against various plant pathogenic fungi, such as Rhizoctonia solani, Fusarium graminearum and so on. Ion beam implantation as a new mutagenic methods was applied in our study. After B. subtilis JA was implanted by N+ ions, a strain designated as B. Subtilis JA-026 was screened and obtained, which had a higher ability to produce those antifungal substances. A series of experiments indicated that the antifungal substances were thermostable and partially sensitive to proteinases K and tryproteinase. When the fermentating broth was fractionated with ammonium sulphate of a final saturation of 70%, the precipitate enhanced inhibitory activity while the supernatant lost this activity. It appeared that the antifungal substances were likely to be protein. (authors)

  19. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores.

    Science.gov (United States)

    Warda, Alicja K; den Besten, Heidy M W; Sha, Na; Abee, Tjakko; Nierop Groot, Masja N

    2015-05-18

    Spoilage of heat treated foods can be caused by the presence of surviving spore-formers. It is virtually impossible to prevent contamination at the primary production level as spores are ubiquitous present in the environment and can contaminate raw products. As a result spore inactivation treatments are widely used by food producing industries to reduce the microbial spore loads. However consumers prefer mildly processed products that have less impact on its quality and this trend steers industry towards milder preservation treatments. Such treatments may result in damaged instead of inactivated spores, and these spores may germinate, repair, and grow out, possibly leading to quality and safety issues. The ability to repair and grow out is influenced by the properties of the food matrix. In the current communication we studied the outgrowth from heat damaged Bacillus cereus ATCC 14579 spores on Anopore membrane, which allowed following outgrowth heterogeneity of individual spores on broccoli and rice-based media as well as standard and mildly acidified (pH 5.5) meat-based BHI. Rice, broccoli and BHI pH 5.5 media resulted in delayed outgrowth from untreated spores, and increased heterogeneity compared to BHI pH 7.4, with the most pronounced effect in rice media. Exposure to wet heat for 1 min at 95 °C caused 2 log inactivation and approximately 95% of the spores in the surviving fraction were damaged resulting in substantial delay in outgrowth based on the time required to reach a maximum microcolony size of 256 cells. The delay was most pronounced for heat-treated spores on broccoli medium followed by spores on rice media (both untreated and treated). Interestingly, the increase in outgrowth heterogeneity of heat treated spores on BHI pH 7.4 was more pronounced than on rice, broccoli and BHI pH 5.5 conceivably reflecting that conditions in BHI pH 7.4 better support spore damage repair. This study compares the effects of three main factors, namely heat treatment, p

  20. Expression, purification and preliminary crystallographic characterization of FlhF from Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Bange, Gert; Petzold, Georg; Wild, Klemens; Sinning, Irmgard, E-mail: irmi.sinning@bzh.uni-heidelberg.de [Heidelberg University Biochemistry Centre (BZH), INF 328, 69120 Heidelberg (Germany)

    2007-05-01

    Preliminary crystallographic data are reported for the third SRP GTPase FlhF from Bacillus subtilis. The Gram-positive bacterium Bacillus subtilis contains three proteins belonging to the signal recognition particle (SRP) type GTPase family. The well characterized signal sequence-binding protein SRP54 and the SRP receptor protein FtsY are universally conserved components of the SRP system of protein transport. The third member, FlhF, has been implicated in the placement and assembly of polar flagella. This article describes the overexpression and preliminary X-ray crystallographic analysis of an FlhF fragment that corresponds to the well characterized GTPase domains in SRP54 and FtsY. Three crystal forms are reported with either GDP or GMPPNP and diffract to a resolution of about 3 Å.

  1. Improved production, characterization and flocculation properties of poly (-glutamic acid produced from Bacillus Subtilis

    Directory of Open Access Journals (Sweden)

    Bhunia B

    2012-04-01

    Full Text Available Bacillus subtilis 2063 produced extracellular biopolymer whichshowed excellent flocculation activity. The biopolymer wasconfirmed as poly (γ-glutamic acid (PGA by using productcharacterization. HPLC profile showed that molecular weight ofPGA was found to be 5.8×106 Da. Improved production,Characterization and flocculation properties of PGA produced byBacillus species were studied. PGA produced by B. subtilis wasdevoid of any polysaccharides. The flocculating activity wasmarkedly stimulated by the addition of cations. The pH of reaction mixture also influenced the flocculating activity. Glycerol and ammonium chloride were found to be most useful carbon and nitrogen sources. An overall 4.24-fold increase in protease production was achieved in the design medium composed with Glycerol and ammonium chloride as a carbon and nitrogen sources as compared with basal media. PGA production increased significantly with optimized medium (21.42 gl-1 when compared with basal medium (5.06 gl-1.

  2. Structural and genetic analyses of a par locus that regulates plasmid partition in Bacillus subtilis.

    OpenAIRE

    Chang, S.; Chang, S Y; Gray, O

    1987-01-01

    The Bacillus plasmid pLS11 partitions faithfully during cell division. Using a partition-deficient plasmid vector, we randomly cloned DNA fragments of plasmid pLS11 and identified the locus that regulates plasmid partition (par) by cis complementation in Bacillus subtilis. The cloned par gene conferred upon the vector plasmid a high degree of segregational stability. The par locus was mapped to a 167-base-pair segment on pLS11, and its nucleotide sequence was determined. The cloned par fragme...

  3. ABILITY OF BACTERIAL CONSORTIUM: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp. and Pseudomonas putida IN BIOREMEDIATION OF WASTE WATER IN CISIRUNG WASTE WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Ratu SAFITRI

    2015-10-01

    Full Text Available This study was conducted in order to determine the ability of bacterial consortium: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp., and Pseudomonas putida in bioremediation of wastewater origin Cisirung WWTP. This study uses an experimental method completely randomized design (CRD, which consists of two treatment factors (8x8 factorial design. The first factor is a consortium of bacteria (K, consisting of 8 level factors (k1, k2, k3, k4, k5, k6, k7, and k8. The second factor is the time (T, consisting of a 7 level factors (t0, t1, t2, t3, t4, t5, t6, and t7. Test parameters consist of BOD (Biochemical Oxygen Demand, COD (Chemical Oxygen Demand, TSS (Total Suspended Solid, Ammonia and Population of Microbes during bioremediation. Data were analyzed by ANOVA, followed by Duncan test. The results of this study showed that the consortium of Bacillus pumilus, Bacillus subtilis, Bacillus coagulans, Nitrosomonas sp., and Pseudomonas putida with inoculum concentration of 5% (k6 is a consortium of the most effective in reducing BOD 71.93%, 64.30% COD, TSS 94.85%, and 88.58% of ammonia.

  4. Sigma factors, asymmetry, and the determination of cell fate in Bacillus subtilis.

    OpenAIRE

    Lewis, P J; Partridge, S R; Errington, J

    1994-01-01

    Soon after the initiation of sporulation, Bacillus subtilis divides asymmetrically to produce sister cells that have very different developmental fates. Recently, it has been proposed that the differential gene expression which begins soon after this division is due to cell-specific activation of the transcription factors sigma F and sigma E in the prespore and the mother cell, respectively. We describe the use of a method for the localization of gene expression in individual sporulating cell...

  5. Five new amicoumacins isolated from a marine-derived Bacterium bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2012-02-03

    Four novel amicoumacins, namely lipoamicoumacins A-D (1-4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature. 2012 by the authors; licensee MDPI.

  6. Ehanced oil recovery under simulated reservoir conditions using an indigenous Bacillus subtilis strain

    OpenAIRE

    Gudiña, Eduardo J.; Pereira, Jorge F. B.; Costa, A R; L. R. Rodrigues; Coutinho, J.A.P.; J.A. Teixeira

    2013-01-01

    Microbial Enhanced Oil Recovery (MEOR) is potentially useful to increment oil recovery from reservoirs beyond primary and secondary recovery operations using microorganisms and their metabolites. In situ stimulation of microorganisms that produce biosurfactants and degrade heavy oil fractions reduces the capillary forces that retain the oil inside the reservoir and decreases oil viscosity, thus promoting its flow and increasing oil production. Bacillus subtilis #573, isolated from crude oil s...

  7. Microbial enhanced oil recovery by Bacillus subtilis strains under simulated reservoir conditions

    OpenAIRE

    Gudiña, Eduardo J.; L. R. Rodrigues; J.A. Teixeira; Pereira, J. F.; Coutinho, J.A.P.; Soares, L. P.; Ribeiro, M. T.

    2012-01-01

    Microbial Enhanced Oil Recovery (MEOR) is a tertiary oil recovery process in which microorganisms and their metabolites are used to retrieve unrecoverable oil from mature reservoirs. Stimulation of microorganisms that produce biosurfactants and degrade heavy oil fractions in situ reduces the capillary forces that retain the oil into the reservoir and decreases oil viscosity, thus promoting its flow. As a result, oil production can be increased. In previous work, Bacillus subtilis strains that...

  8. REMOVAL OF PHOSPHATE FROM RHIZOSPHERE SOIL USING Bacillus subtilis AND Enterobacter aerogenes

    Directory of Open Access Journals (Sweden)

    Andrew J.

    2014-03-01

    Full Text Available The addition of phosphorus is one of the major environmental problems because of its leading contribution to the increased eutrophication process of lakes and other natural waters. The eutrophication is the process where excessive nutrients in a lake or other body of water usually caused by runoff of nutrients (animal waste, fertilizers, and sewage from the land which causes a dense growth of plant life, the decomposition of the plants depletes the supply of oxygen which leads to the death of animal life. Microbial process is widely used for the removal of phosphorus from soil and wastewater to avoid eutrophication. The most efficient phosphate reducers chosen were namely Bacillus subtilis and Enterobacter aerogenes. The Mineral Salt Medium and the carbon sources (glucose, sucrose, lactose and starch at 0.5% and 0.7% were prepared. On the removal of phosphate by Bacillus subtilis and Enterobacter aerogenes it was found that the Bacillus subtilis was giving the maximum bacterial growth and was observed to be in lactose 0.107 OD at 0.7% concentration for 72th hour. In the case of Enterobacter aerogenes the maximum bacterial growth was found to be in sucrose 0.133 OD at 0.7% concentration at 72 hr. The pH change in the medium was found to be in both the isolates with different carbon sources but in overall the constant pH was at 7. Among the two organisms, Bacillus subtilis showed the maximum removal of phosphate 83% as starch as carbon source at 0.5% concentration whereas Enterobacter aerogenes showed 77.4% of phosphate removal at 0.5% concentration as glucose as carbon source. Therefore, these bacterial isolates can be used in the remediation of phosphate contaminated environments.

  9. Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms

    OpenAIRE

    Cairns, Lynne S; Hobley, Laura; Stanley-Wall, Nicola R.

    2014-01-01

    Biofilm formation is a social behaviour that generates favourable conditions for sustained survival in the natural environment. For the Gram-positive bacterium Bacillus subtilis the process involves the differentiation of cell fate within an isogenic population and the production of communal goods that form the biofilm matrix. Here we review recent progress in understanding the regulatory pathways that control biofilm formation and highlight developments in understanding the composition, func...

  10. Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms.

    Science.gov (United States)

    Cairns, Lynne S; Hobley, Laura; Stanley-Wall, Nicola R

    2014-08-01

    Biofilm formation is a social behaviour that generates favourable conditions for sustained survival in the natural environment. For the Gram-positive bacterium Bacillus subtilis the process involves the differentiation of cell fate within an isogenic population and the production of communal goods that form the biofilm matrix. Here we review recent progress in understanding the regulatory pathways that control biofilm formation and highlight developments in understanding the composition, function and structure of the biofilm matrix. PMID:24988880

  11. Cucumber Rhizosphere Microbial Community Response to Biocontrol Agent Bacillus subtilis B068150

    OpenAIRE

    Lihua Li; Jincai Ma; A. Mark Ibekwe; Qi Wang; Ching-Hong Yang

    2015-01-01

    Gram-positive bacteria Bacillus subtilis B068150 has been used as a biocontrol agent against the pathogen Fusarium oxysporum cucumerinum. Cucumber was grown in three soils with strain B068150 inoculated in a greenhouse for 90 days, and the colonization ability of strain B068150 in cucumber rhizosphere and non-rhizosphere soils was determined. Changes in total bacteria and fungi community composition and structures using denaturing gradient gel electrophoresis (DGGE) and sequencing were determ...

  12. Scale-down and parallel operation of a riboflavin production process with Bacillus subtilis

    OpenAIRE

    Knorr, Bettina

    2007-01-01

    Novel parallel bioreactor systems at a milliliter scale were recently developed for the design and improvement of biological cultivations. The objective of this work was to identify the reaction parameters that were necessary for a representative scale-down of an industrial manufacturing process to be carried out with the new technology. The process for the production of riboflavin with Bacillus subtilis, operated in a controlled fed-batch mode, served as an example for investigations in stir...

  13. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm

    OpenAIRE

    Hobley, Laura; Ostrowski, Adam; Rao, Francesco V.; Bromley, Keith M.; Porter, Michael; Prescott, Alan R.; MacPhee, Cait E.; van Aalten, Daan M F; Nicola R. Stanley-Wall

    2013-01-01

    Biofilms represent the predominant mode of microbial growth in the natural environment. Bacillus subtilis is a ubiquitous Gram-positive soil bacterium that functions as an effective plant growth-promoting agent. The biofilm matrix is composed of an exopolysaccharide and an amyloid fiber-forming protein, TasA, and assembles with the aid of a small secreted protein, BslA. Here we show that natively synthesized and secreted BslA forms surface layers around the biofilm. Biophysical analysis demon...

  14. Relationship between cardiolipin metabolism and oxygen availability in Bacillus subtilis

    OpenAIRE

    Lobasso, Simona; Palese, Luigi L.; Angelini, Roberto; Corcelli, Angela

    2013-01-01

    We report changes of the content of anionic phospholipids in Bacillus subtilis in response to hypoxic conditions and inhibition of terminal respiration. Cardiolipin accumulates rapidly when bacteria are suspended in non-growth medium under reduced aeration or exposed to the inhibitor cyanide; the increase of cardiolipin occurs at the expense of its precursor phosphatidylglycerol and is temperature-dependent. Depending on the extent of hypoxic stress, membranes containing different levels of c...

  15. Small Regulatory RNA-Induced Growth Rate Heterogeneity of Bacillus subtilis

    OpenAIRE

    Mars, Ruben A. T.; Nicolas, Pierre; Ciccolini, Mariano; Reilman, Ewoud; Reder, Alexander; Schaffer, Marc; Maeder, Ulrike; Voelker, Uwe; van Dijl, Jan Maarten; Denham, Emma L.

    2015-01-01

    Author Summary Bacterial cells that share the same genetic information can display very different phenotypes, even if they grow under identical conditions. Despite the relevance of this population heterogeneity for processes like drug resistance and development, the molecular players that induce heterogenic phenotypes are often not known. Here we report that in the Gram-positive model bacterium Bacillus subtilis a small regulatory RNA (sRNA) can induce heterogeneity in growth rates by increas...

  16. Influence of Bacillus subtilis and acetic acid on Cobb500 intestinal microflora.

    Directory of Open Access Journals (Sweden)

    Martin Král

    2014-11-01

    Full Text Available The beneficial modes of probiotic action include regulation of intestinal microbial homeostasis, stabilization of the gastrointestinal barrier function expression of bacteriocins and interference with the ability of pathogens to colonize and infect the mucosa. Organic acids as feed additives have been used to reduce or eliminate pathogenic bacteria and fungal contamination, control microbial growth and reduction of microbial metabolites. The aim of this study was to determine the effect of Bacillus subtilis, acetic acid and their combination on the intestinal microflora of broiler chickens (Cobb 500. The experiment was carried out on 4 groups each contains 100 chicks as follows: control (without addition, treatment 1 (acetic acid, treatment 2 (Bacillus subtilis and treatment 3 (acetic acid + Bacillus subtilis. Six samples from each group were selected as a sample (mixed sex. The highest average number of log CFU.g-1 Lactobacillus sp. was in the treatment 3 – 7.11 log CFU.g-1 and the lowest was in the control group – 6.85. The highest average number of log CFU.g-1 Enterococcus sp. was in the treatment 2 – 7.17 log CFU.g-1 and the lowest was in the control group – 5.65. In both observing additions of Bacillus subtilis and acetic acid increase the number of log CFU.g-1 Lactobacillus sp. and Enterococcus sp. compared with control group. The lower average number of log CFU.g-1 coliform bacteria was in the treatment 2 – 5.9 log CFU.g-1 and the higher was in control group – 6.98. The additional supplement decreased the number of log CFU.g-1 coliform bacteria in the treatment groups compared with the control.

  17. Differential Actions of Chlorhexidine on the Cell Wall of Bacillus subtilis and Escherichia coli

    OpenAIRE

    Cheung, Hon-Yeung; Wong, Matthew Man-Kin; Cheung, Sau-Ha; Liang, Longman Yimin; Lam, Yun-Wah; Chiu, Sung-Kay

    2012-01-01

    Chlorhexidine is a chlorinated phenolic disinfectant used commonly in mouthwash for its action against bacteria. However, a comparative study of the action of chlorhexidine on the cell morphology of Gram-positive and Gram-negative bacteria is lacking. In this study, the actions of chlorhexidine on the cell morphology were identified with the aids of electron microscopy. After exposure to chlorhexidine, numerous spots of indentation on the cell wall were found in both Bacillus subtilis and Esc...

  18. Biomechanics of bacterial walls: studies of bacterial thread made from Bacillus subtilis.

    OpenAIRE

    Thwaites, J J; Mendelson, N H

    1985-01-01

    Bacterial threads of up to 1 m in length have been produced from filaments of separation-suppressed mutants of Bacillus subtilis. Individual threads may contain 20,000 cellular filaments in parallel alignment. The tensile properties of bacterial threads have been examined by using conventional textile engineering techniques. The kinetics of elongation at constant load are indicative of a viscoelastic material. Both Young's modulus and breaking stress are highly dependent upon relative humidit...

  19. On the effect of N-methyl-bis (3-mesyloxypropyl) amine hydroxychloride on Bacillus subtilis cells.

    Science.gov (United States)

    Shimi, I R; Shoukry, S

    1975-06-01

    N-Methyl-bis (3-mesyloxypropyl)amine hydrochloride is now in use as an antitumer drug. In view of its activity against some bacteria the present work was conducted to study its mode of action of Bacillus subtilis. The compound was found to induce irreversible damage to bacterial DNA whereas its effect on RNA was temporary and depending on maintenance of effective concentrations of the compound. PMID:168172

  20. Bacillithiol is a major buffer of the labile zinc pool in Bacillus subtilis

    OpenAIRE

    Ma, Zhen; Chandrangsu, Pete; Helmann, Tyler C.; Romsang, Adisak; Gaballa, Ahmed; Helmann, John D.

    2014-01-01

    Intracellular zinc levels are tightly regulated since zinc is an essential cofactor for numerous enzymes, yet can be toxic when present in excess. The majority of intracellular zinc is tightly associated with proteins and is incorporated during synthesis from a poorly defined pool of kinetically labile zinc. In Bacillus subtilis, this labile pool is sensed by equilibration with the metalloregulator Zur, as an indication of zinc sufficiency, and by CzrA, as an indication of zinc excess. Here, ...

  1. Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system.

    OpenAIRE

    Neyfakh, A A; Bidnenko, V E; L. B. CHEN

    1991-01-01

    Bacillus subtilis cells selected for their resistance to rhodamine 6G demonstrated a multidrug-resistance (MDR) phenotype resembling that of mammalian MDR cells. Like MDR in mammalian cells, MDR in bacteria was mediated by the efflux of the drugs from the cells. The bacterial multidrug efflux system transported similar drugs and was sensitive to similar inhibitors as the mammalian multidrug transporter, P-glycoprotein. The gene coding for the bacterial multidrug transporter, like the P-glycop...

  2. Cloning, Sequencing, and Disruption of the Bacillus subtilis psd Gene Coding for Phosphatidylserine Decarboxylase

    OpenAIRE

    Matsumoto, Kouji; Okada, Masahiro; Horikoshi, Yuko; Matsuzaki, Hiroshi; Kishi, Tsutomu; Itaya, Mitsuhiro; Shibuya, Isao

    1998-01-01

    The psd gene of Bacillus subtilis Marburg, encoding phosphatidylserine decarboxylase, has been cloned and sequenced. It encodes a polypeptide of 263 amino acid residues (deduced molecular weight of 29,689) and is located just downstream of pss, the structural gene for phosphatidylserine synthase that catalyzes the preceding reaction in phosphatidylethanolamine synthesis (M. Okada, H. Matsuzaki, I. Shibuya, and K. Matsumoto, J. Bacteriol. 176:7456–7461, 1994). Introduction of a plasmid contain...

  3. The Crystal Structure of Bacillus subtilis Lipase : A Minimal α/β Hydrolase Fold Enzyme

    NARCIS (Netherlands)

    Pouderoyen, Gertie van; Eggert, Thorsten; Jaeger, Karl-Erich; Dijkstra, Bauke W.

    2001-01-01

    The X-ray structure of the lipase LipA from Bacillus subtilis has been determined at 1.5 Å resolution. It is the first structure of a member of homology family I.4 of bacterial lipases. The lipase shows a compact minimal α/β hydrolase fold with a six-stranded parallel β-sheet flanked by five α-helic

  4. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    Science.gov (United States)

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-03-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning ``plug-and-play'' approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  5. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2015-03-24

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning plug-and-playa approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  6. Study of the catalytic properties of bacillus subtilis proteases Estudio de las propiedades catalíticas de las proteasas bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Salcedo L.

    1998-06-01

    Full Text Available The catalytic properties of proteases isolated from the filtrate of submerged fermentation of Bacillus subtilis were investigated. Proteases present in the filtrate were determined to be of the serine protease type based on the use of specific protease inhibitors; ethylenediamintetraacetic acid (EDTA was used as a metalloprotease inhibitor, and phenylmethylsulfonylfluoride (PMSF was used as a serine protease inhibitor. Protease activity was highly stable in alkaline solutions and at high temperatures as well as in the presence of detergents. We propose that this protease preparation be used as biocomponent in detergent production.Se investigaron las propiedades catalíticas de las proteasas obtenidas del filtrado de cultivo de la bacteria Bacillus subtilis. Utilizando inhibidores específicos de proteasas se determinó que las proteasas presentes en el filtrado pertenecían al grupo de las serina proteasas. Se utilizó ácido etilendiaminatetraacético (EDTA como inhibidor de metaloproteasas, y fenilmetilsulfonil fluoruro (FMSF como inhibidor de serina proteasas. La actividad proteolítica fue altamente estable en soluciones alcalinas y a altas temperaturas, además tolero la presencia de detergentes. Se propone que estas proteasas sean utilizadas en calidad de biocomponente para la producción de detergentes.

  7. A Study on Effect of different culture media on amylase enzyme production by a native strain of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    ziba Akbari

    2015-12-01

    Full Text Available Introduction: Amylases are among the most important enzymes and have great significance in present-day biotechnology. Amylase with commercial applications is mainly derived from the genus Bacillus. The main purpose of this study is identification and isolatation amylase enzyme producer Bacillus, determining the amylase enzyme activity and affecting a number of culture medium on amylase enzyme production. Materials and methods: Soil, water and wastewater samples were collected from agricultural area, choghakhor lake in chahar mahal e bakhtiari province and from food factory in Esfahan. Bacillus isolates were screened for amylolytic properties by starch hydrolysis test on starch agar plate. Amylase producing Bacillus were identified biochemical tests and molecular experiments. Amylase enzyme activity of isolates was measured using di-nitro salicylic acid (DNS method. Enzyme production was studied in variose medium culture TSB, NB, Yeast extract, molases and milk medium. Results: The enzyme amylase-producing strains, one sample showed was the highest amylase activity. The Bacillus has been detected as a member of Bacillus subtilis according to Bergey's Manual of Systematic Bacteriology and molecular recognition. The enzyme activity of Bacillus subtilis was measured 7/21 (U/ml in production media. Trough medium culture maximum amylase production for Bacillus subtilis was achieved in molases medium. Discussion and conclusion: In this study, Bacillus subtilis strains isolated from wastewater of a significant amount of enzyme producing 7/21 (U/ml as indicated. Among the medium-amylase from Bacillus subtilis highest enzyme activity was observed in beet molasses. According to this study, the use of Bacillus strains is an efficient way to achieve the amylase enzyme.

  8. Differential actions of chlorhexidine on the cell wall of Bacillus subtilis and Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Hon-Yeung Cheung

    Full Text Available Chlorhexidine is a chlorinated phenolic disinfectant used commonly in mouthwash for its action against bacteria. However, a comparative study of the action of chlorhexidine on the cell morphology of gram-positive and gram-negative bacteria is lacking. In this study, the actions of chlorhexidine on the cell morphology were identified with the aids of electron microscopy. After exposure to chlorhexidine, numerous spots of indentation on the cell wall were found in both Bacillus subtilis and Escherichia coli. The number of indentation spots increased with time of incubation and increasing chlorhexidine concentration. Interestingly, the dented spots found in B. subtilis appeared mainly at the hemispherical caps of the cells, while in E. coli the dented spots were found all over the cells. After being exposed to chlorhexidine for a prolonged period, leakage of cellular contents and subsequent ghost cells were observed, especially from B subtilis. By using 2-D gel/MS-MS analysis, five proteins related to purine nucleoside interconversion and metabolism were preferentially induced in the cell wall of E. coli, while three proteins related to stress response and four others in amino acid biosynthesis were up-regulated in the cell wall materials of B. subtilis. The localized morphological damages together with the biochemical and protein analysis of the chlorhexidine-treated cells suggest that chlorhexidine may act on the differentially distributed lipids in the cell membranes/wall of B. subtilis and E. coli.

  9. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum.

    Science.gov (United States)

    Zhao, Yueju; Selvaraj, Jonathan Nimal; Xing, Fuguo; Zhou, Lu; Wang, Yan; Song, Huimin; Tan, Xinxin; Sun, Lichao; Sangare, Lancine; Folly, Yawa Minnie Elodie; Liu, Yang

    2014-01-01

    Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI), FHB index and DON (P ≤ 0.05). Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins.

  10. Translation Control of Swarming Proficiency in Bacillus subtilis by 5-Amino-pentanolylated Elongation Factor P.

    Science.gov (United States)

    Rajkovic, Andrei; Hummels, Katherine R; Witzky, Anne; Erickson, Sarah; Gafken, Philip R; Whitelegge, Julian P; Faull, Kym F; Kearns, Daniel B; Ibba, Michael

    2016-05-20

    Elongation factor P (EF-P) accelerates diprolyl synthesis and requires a posttranslational modification to maintain proteostasis. Two phylogenetically distinct EF-P modification pathways have been described and are encoded in the majority of Gram-negative bacteria, but neither is present in Gram-positive bacteria. Prior work suggested that the EF-P-encoding gene (efp) primarily supports Bacillus subtilis swarming differentiation, whereas EF-P in Gram-negative bacteria has a more global housekeeping role, prompting our investigation to determine whether EF-P is modified and how it impacts gene expression in motile cells. We identified a 5-aminopentanol moiety attached to Lys(32) of B. subtilis EF-P that is required for swarming motility. A fluorescent in vivo B. subtilis reporter system identified peptide motifs whose efficient synthesis was most dependent on 5-aminopentanol EF-P. Examination of the B. subtilis genome sequence showed that these EF-P-dependent peptide motifs were represented in flagellar genes. Taken together, these data show that, in B. subtilis, a previously uncharacterized posttranslational modification of EF-P can modulate the synthesis of specific diprolyl motifs present in proteins required for swarming motility. PMID:27002156

  11. Characterization of Bacillus subtilis Colony Biofilms via Mass Spectrometry and Fluorescence Imaging.

    Science.gov (United States)

    Si, Tong; Li, Bin; Zhang, Ke; Xu, Yiran; Zhao, Huimin; Sweedler, Jonathan V

    2016-06-01

    Colony biofilms of Bacillus subtilis are a widely used model for studying cellular differentiation. Here, we applied matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to examine cellular and molecular heterogeneity in B. subtilis colony biofilms. From B. subtilis cells cultivated on a biofilm-promoting medium, we detected two cannibalistic factors not found in previous MALDI MSI studies of the same strain under different culturing conditions. Given the importance of cannibalism in matrix formation of B. subtilis biofilms, we employed a transcriptional reporter to monitor matrix-producing cell subpopulations using fluorescence imaging. These two complementary imaging approaches were used to characterize three B. subtilis strains, the wild type isolate NCIB3610, and two mutants, Δspo0A and ΔabrB, with defective and enhanced biofilm phenotypes, respectively. Upon deletion of key transcriptional factors, correlated changes were observed in biofilm morphology, signaling, cannibalistic factor distribution, and matrix-related gene expression, providing new insights on cannibalism in biofilm development. This work underscores the advantages of using multimodal imaging to compare spatial patterns of selected molecules with the associated protein expression patterns, obtaining information on cellular heterogeneity and function not obtainable when using a single method to characterize biofilm formation. PMID:27136705

  12. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Yueju Zhao

    Full Text Available Fusarium graminearum causes Fusarium head blight (FHB, a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI, FHB index and DON (P ≤ 0.05. Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins.

  13. The Use of Germinants to Potentiate the Sensitivity of Bacillus anthracis Spores to Peracetic Acid.

    Science.gov (United States)

    Celebi, Ozgur; Buyuk, Fatih; Pottage, Tom; Crook, Ant; Hawkey, Suzanna; Cooper, Callum; Bennett, Allan; Sahin, Mitat; Baillie, Leslie

    2016-01-01

    Elimination of Bacillus anthracis spores from the environment is a difficult and costly process due in part to the toxicity of current sporicidal agents. For this reason we investigated the ability of the spore germinants L-alanine (100 mM) and inosine (5 mM) to reduce the concentration of peracetic acid (PAA) required to inactivate B. anthracis spores. While L-alanine significantly enhanced (p = 0.0085) the bactericidal activity of 500 ppm PAA the same was not true for inosine suggesting some form of negative interaction. In contrast the germinant combination proved most effective at 100 ppm PAA (p = 0.0009). To determine if we could achieve similar results in soil we treated soil collected from the burial site of an anthrax infected animal which had been supplemented with spores of the Sterne strain of B. anthracis to increase the level of contamination to 10(4) spores/g. Treatment with germinants followed 1 h later by 5000 ppm PAA eliminated all of the spores. In contrast direct treatment of the animal burial site using this approach delivered using a back pack sprayer had no detectable effect on the level of B. anthracis contamination or on total culturable bacterial numbers over the course of the experiment. It did trigger a significant, but temporary, reduction (p < 0.0001) in the total spore count suggesting that germination had been triggered under real world conditions. In conclusion, we have shown that the application of germinants increase the sensitivity of bacterial spores to PAA. While the results of the single field trial were inconclusive, the study highlighted the potential of this approach and the challenges faced when attempting to perform real world studies on B. anthracis spores contaminated sites. PMID:26858699

  14. The Use of Germinants to Potentiate the Sensitivity of Bacillus anthracis Spores to Peracetic Acid

    Science.gov (United States)

    Celebi, Ozgur; Buyuk, Fatih; Pottage, Tom; Crook, Ant; Hawkey, Suzanna; Cooper, Callum; Bennett, Allan; Sahin, Mitat; Baillie, Leslie

    2016-01-01

    Elimination of Bacillus anthracis spores from the environment is a difficult and costly process due in part to the toxicity of current sporicidal agents. For this reason we investigated the ability of the spore germinants L-alanine (100 mM) and inosine (5 mM) to reduce the concentration of peracetic acid (PAA) required to inactivate B. anthracis spores. While L-alanine significantly enhanced (p = 0.0085) the bactericidal activity of 500 ppm PAA the same was not true for inosine suggesting some form of negative interaction. In contrast the germinant combination proved most effective at 100 ppm PAA (p = 0.0009). To determine if we could achieve similar results in soil we treated soil collected from the burial site of an anthrax infected animal which had been supplemented with spores of the Sterne strain of B. anthracis to increase the level of contamination to 104 spores/g. Treatment with germinants followed 1 h later by 5000 ppm PAA eliminated all of the spores. In contrast direct treatment of the animal burial site using this approach delivered using a back pack sprayer had no detectable effect on the level of B. anthracis contamination or on total culturable bacterial numbers over the course of the experiment. It did trigger a significant, but temporary, reduction (p < 0.0001) in the total spore count suggesting that germination had been triggered under real world conditions. In conclusion, we have shown that the application of germinants increase the sensitivity of bacterial spores to PAA. While the results of the single field trial were inconclusive, the study highlighted the potential of this approach and the challenges faced when attempting to perform real world studies on B. anthracis spores contaminated sites. PMID:26858699

  15. Dry heat exposures of surface exposed and embedded Bacillus spores

    Science.gov (United States)

    Schubert, Wayne

    Dry heat microbial reduction (DHMR) is the primary technique used to reduce the microbial load of spacecraft and component parts. Often, manufacturing procedures require heating flight hardware to high temperatures for purposes other than planetary protection DHMR. The existing specifications, however, do not allow for additional planetary protection bioburden reduction credit if the hardware is exposed without controlled relative humidity. The intent of this study was to provide adequate data on the DHMR technique to support modification of four aspects of current requirements; expansion of acceptable time and temperature combinations used for spacecraft dry heat microbial reduction processes above 125° C, determining the effect that humidity has on spore lethality as a function of temperature, understanding the lethality for spores with exceptionally high thermal resistance and to investigate the extended exposure requirement for materials that might contain embedded microorganisms. Spores from two bacterial species were tested, B. atrophaeus ATCC 9372 and B. sp. ATCC 29669, under three conditions encompassing 5 temperature points. Embedded experiments utilized a silicone rubber polymer that is commonly used on robotic spacecraft, and surface exposed experiments were performed under both ambient and vacuum-controlled humidity conditions. The results obtained support the use of DHMR protocols that extend the maximum temperature range from 125° C to 170° C, with either controlled or ambient humidity. If implemented, this will give projects bioburden reduction credit for shorter treatments at extended temperatures, and allow spacecraft to be processed in more readily available and less expensive facilities that do not have humidity control, with significant cost and schedule benefits. The study also demonstrated that the required heating time for materials presumed to have embedded bioburden is conservative.

  16. Resistance of Bacillus amyloliquefaciens spores to melt extrusion process conditions

    OpenAIRE

    Ciera, Lucy Wanjiru; Beladjal, Lynda; Almeras, Xavier; Gheysens, Tom; Nierstrasz, Vincent; Van Langenhove, Lieva; Mertens, Johan

    2014-01-01

    With the increasing demand for functionalised textile materials, industry is focusing on research that will add novel properties to textiles. Bioactive compounds and their benefits have been and are still considered as a possible source of unique functionalities to be explored. However, incorporating bioactive compounds into textiles and their resistance to textile process parameters has not yet been studied. In this study, we developed a system to study the resistance of Bacillus amyloliquef...

  17. Characteristics and antimicrobial activity of Bacillus subtilis strains isolated from soil.

    Science.gov (United States)

    Todorova, Sevdalina; Kozhuharova, Lubka

    2010-07-01

    Antagonistic Bacillus strains were isolated from soil and analyzed for the purpose of determining whether they could be used as natural biological agents. Primary in vitro screening for antagonism of the isolates was performed against five phytopathogenic mould fungi. Strains TS 01 and ZR 02 exhibited the most pronounced inhibitory effects. They were identified as Bacillus subtilis on the basis of their morphological, cultural and physiology-biochemical properties as well as their hierarchical cluster analysis conducted by means of computer program SPSS. The antimicrobial activity of the strains from cultural medium and sterile filtrate were determined in vitro against a great number of predominantly phytopathogenic fungi and bacteria. TS 01 and ZR 02 strains exhibited very broad and at the same time degree varying antibiotic spectra of activities against both Gram-positive and Gram-negative microorganisms. Many of them were tested against sensitivity to the antimicrobial action of B. subtilis for the very first time. B. subtilis TS 01 and ZR 02 showed highest antifungal activity (sterile zone in diameter over 37 mm) against Alternaria solani, Botrytis cinerea, Monilia linhartiana 869, Phytophthora cryptogea 759/1 and Rhizoctonia sp. The most sensitive bacterial species were found to be Pseudomonas syringae pv. tomato Ro and Xanthomonas campestris with sterile zones 48.0 and 50.0 mm in diameter, respectively. The latter draws a conclusion that the isolated and identified Bacillus subtilis strains are promising natural biocontrol agents and should be further studied and tested for control of numerous plant diseases. PMID:24026925

  18. Sporulation environment of emetic toxin-producing Bacillus cereus strains determines spore size, heat resistance and germination capacity

    NARCIS (Netherlands)

    Voort, van der M.; Abee, T.

    2013-01-01

    Aim Heat resistance, germination and outgrowth capacity of Bacillus cereus spores in processed foods are major factors in causing the emetic type of gastrointestinal disease. In this study, we aim to identify the impact of different sporulation conditions on spore properties of emetic toxin-producin

  19. Soya bean tempe extracts show antibacterial activity against Bacillus cereus cells and spores

    OpenAIRE

    Roubos-van den Hil, P.J.; Dalmas, E.; Nout, M.J.R.; Abee, T

    2010-01-01

    Aims: Tempe, a Rhizopus ssp.-fermented soya bean food product, was investigated for bacteriostatic and/or bactericidal effects against cells and spores of the food-borne pathogen Bacillus cereus. Methods and results: Tempe extract showed a high antibacterial activity against B. cereus ATCC 14579 based on optical density and viable count measurements. This growth inhibition was manifested by a 4 log CFU ml-1 reduction, within the first 15 min of exposure. Tempe extracts also rapidly inactivate...

  20. Incorporation of Specific Fatty Acid Precursors During Spore Germination and Outgrowth in Bacillus thuringiensis

    OpenAIRE

    Nickerson, Kenneth W.; Bulla, Lee A

    1980-01-01

    The selective incorporation of precursors specific for individual fatty acids in germinating and outgrowing spores of Bacillus thuringiensis is described. The specific precursors utilized were [14C]butyrate, -isobutyrate, -valerate, and -isovalerate, which were incorporated into even-numbered normal-chain isomers, even-numbered iso-isomers, odd-numbered normal-chain acids, and odd-numbered isohomologs, respectively. This preferential incorporation by B. thuringiensis allows the terminal carbo...

  1. Single mutations introduced in the essential ribosomal proteins L3 and S10 cause a sporulation defect in Bacillus subtilis.

    Science.gov (United States)

    Akanuma, Genki; Suzuki, Shota; Yano, Koichi; Nanamiya, Hideaki; Natori, Yousuke; Namba, Eri; Watanabe, Kazuya; Tagami, Kazumi; Takeda, Takuya; Iizuka, Yuka; Kobayashi, Ako; Ishizuka, Morio; Yoshikawa, Hirofumi; Kawamura, Fujio

    2013-01-01

    We introduced single mutations into the rplC and rpsJ genes, which encode the essential ribosomal proteins L3 (RplC) and S10 (RpsJ), respectively, and are located in the S10 gene cluster of the gram-positive, endospore-forming bacterium Bacillus subtilis, and examined whether these mutations affected their growth rate, sporulation, competence development and 70S ribosome formation. Mutant cells harboring the G52D mutation in the L3 ribosomal protein, which is located at the peptidyl transferase center of 50S, accumulated 30S subunit at 45°C, probably due to a defect in 50S formation, and exhibited a reduction in the sporulation frequency at high temperature. On the other hand, mutant cells harboring the H56R mutation in the S10 protein, which is located near the aminoacyl-tRNA site of 30S, showed severe growth defect and deficiency in spore formation, and also exhibited significant delay in competence development.

  2. Inactivation of Bacillus anthracis Spores during Laboratory-Scale Composting of Feedlot Cattle Manure.

    Science.gov (United States)

    Xu, Shanwei; Harvey, Amanda; Barbieri, Ruth; Reuter, Tim; Stanford, Kim; Amoako, Kingsley K; Selinger, Leonard B; McAllister, Tim A

    2016-01-01

    Anthrax outbreaks in livestock have social, economic and health implications, altering farmer's livelihoods, impacting trade and posing a zoonotic risk. Our study investigated the survival of Bacillus thuringiensis and B. anthracis spores sporulated at 15, 20, or 37°C, over 33 days of composting. Spores (∼7.5 log10 CFU g(-1)) were mixed with manure and composted in laboratory scale composters. After 15 days, the compost was mixed and returned to the composter for a second cycle. Temperatures peaked at 71°C on day 2 and remained ≥55°C for an average of 7 days in the first cycle, but did not exceed 55°C in the second. For B. thuringiensis, spores generated at 15 and 21°C exhibited reduced (P < 0.05) viability of 2.7 and 2.6 log10 CFU g(-1) respectively, as compared to a 0.6 log10 CFU g(-1) reduction for those generated at 37°C. For B. anthracis, sporulation temperature did not impact spore survival as there was a 2.5, 2.2, and 2.8 log10 CFU g(-1) reduction after composting for spores generated at 15, 21, and 37°C, respectively. For both species, spore viability declined more rapidly (P < 0.05) in the first as compared to the second composting cycle. Our findings suggest that the duration of thermophilic exposure (≥55°C) is the main factor influencing survival of B. anthracis spores in compost. As sporulation temperature did not influence survival of B. anthracis, composting may lower the viability of spores associated with carcasses infected with B. anthracis over a range of sporulation temperatures. PMID:27303388

  3. Inactivation of Bacillus anthracis Spores during Laboratory-Scale Composting of Feedlot Cattle Manure

    Science.gov (United States)

    Xu, Shanwei; Harvey, Amanda; Barbieri, Ruth; Reuter, Tim; Stanford, Kim; Amoako, Kingsley K.; Selinger, Leonard B.; McAllister, Tim A.

    2016-01-01

    Anthrax outbreaks in livestock have social, economic and health implications, altering farmer’s livelihoods, impacting trade and posing a zoonotic risk. Our study investigated the survival of Bacillus thuringiensis and B. anthracis spores sporulated at 15, 20, or 37°C, over 33 days of composting. Spores (∼7.5 log10 CFU g-1) were mixed with manure and composted in laboratory scale composters. After 15 days, the compost was mixed and returned to the composter for a second cycle. Temperatures peaked at 71°C on day 2 and remained ≥55°C for an average of 7 days in the first cycle, but did not exceed 55°C in the second. For B. thuringiensis, spores generated at 15 and 21°C exhibited reduced (P < 0.05) viability of 2.7 and 2.6 log10 CFU g-1 respectively, as compared to a 0.6 log10 CFU g-1 reduction for those generated at 37°C. For B. anthracis, sporulation temperature did not impact spore survival as there was a 2.5, 2.2, and 2.8 log10 CFU g-1 reduction after composting for spores generated at 15, 21, and 37°C, respectively. For both species, spore viability declined more rapidly (P < 0.05) in the first as compared to the second composting cycle. Our findings suggest that the duration of thermophilic exposure (≥55°C) is the main factor influencing survival of B. anthracis spores in compost. As sporulation temperature did not influence survival of B. anthracis, composting may lower the viability of spores associated with carcasses infected with B. anthracis over a range of sporulation temperatures. PMID:27303388

  4. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    Directory of Open Access Journals (Sweden)

    Marciniak Bogumiła C

    2012-05-01

    Full Text Available Abstract Background Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe status, its genetic accessibility and its capacity to grow in large fermentations. However, production of heterologous proteins still faces limitations. Results This study aimed at the identification of bottlenecks in secretory protein production by analyzing the response of B. subtilis at the transcriptome level to overproduction of eight secretory proteins of endogenous and heterologous origin and with different subcellular or extracellular destination: secreted proteins (NprE and XynA of B. subtilis, Usp45 of Lactococcus lactis, TEM-1 β-lactamase of Escherichia coli, membrane proteins (LmrA of L. lactis and XylP of Lactobacillus pentosus and lipoproteins (MntA and YcdH of B. subtilis. Responses specific for proteins with a common localization as well as more general stress responses were observed. The latter include upregulation of genes encoding intracellular stress proteins (groES/EL, CtsR regulated genes. Specific responses include upregulation of the liaIHGFSR operon under Usp45 and TEM-1 β-lactamase overproduction; cssRS, htrA and htrB under all secreted proteins overproduction; sigW and SigW-regulated genes mainly under membrane proteins overproduction; and ykrL (encoding an HtpX homologue specifically under membrane proteins overproduction. Conclusions The results give better insights into B. subtilis responses to protein overproduction stress and provide potential targets for genetic engineering in order to further improve B. subtilis as a protein production host.

  5. The two authentic methionine aminopeptidase genes are differentially expressed in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Wang YiPing

    2005-10-01

    Full Text Available Abstract Background Two putative methionine aminopeptidase genes, map (essential and yflG (non-essential, were identified in the genome sequence of Bacillus subtilis. We investigated whether they can function as methionine aminopeptidases and further explored possible reasons for their essentiality or dispensability in B. subtilis. Results In silico analysis of MAP evolution uncovered a coordinated pattern of MAP and deformylase that did not correlate with the pattern of 16S RNA evolution. Biochemical assays showed that both MAP (MAP_Bs and YflG (YflG_Bs from B. subtilis overproduced in Escherichia coli and obtained as pure proteins exhibited a methionine aminopeptidase activity in vitro. Compared with MAP_Bs, YflG_Bs was approximately two orders of magnitude more efficient when assayed on synthetic peptide substrates. Both map and yflG genes expressed in multi-copy plasmids could complement the function of a defective map gene in the chromosomes of both E. coli and B. subtilis. In contrast, lacZ gene transcriptional fusions showed that the promoter activity of map was 50 to 100-fold higher than that of yflG. Primer extension analysis detected the transcription start site of the yflG promoter. Further work identified that YvoA acted as a possible weak repressor of yflG expression in B. subtilis in vivo. Conclusion Both MAP_Bs and YflG_Bs are functional methionine aminopeptidases in vitro and in vivo. The high expression level of map and low expression level of yflG may account for their essentiality and dispensality in B. subtilis, respectively, when cells are grown under laboratory conditions. Their difference in activity on synthetic substrates suggests that they have different protein targets in vivo.

  6. Purification and Characterization of an Extracellular Cholesterol Oxidase of Bacillus subtilis Isolated from Tiger Excreta.

    Science.gov (United States)

    Kumari, Lata; Kanwar, Shamsher S

    2016-01-01

    A mesophilic Bacillus sp. initially isolated from tiger excreta and later identified as a Bacillus subtilis strain was used to produce an extracellular cholesterol oxidase (COX) in cholesterol-enriched broth. This bacterial isolate was studied for the production of COX by manipulation of various physicochemical parameters. The extracellular COX was successfully purified from the cell-free culture broth of B. subtilis by successive salting out with ammonium sulfate, dialysis, and riboflavin-affinity chromatography. The purified COX was characterized for its molecular mass/structure and stability. The enzyme possessed some interesting properties such as high native Mr (105 kDa), multimeric (pentamer of ∼21 kDa protein) nature, organic solvent compatibility, and a half-life of ∼2 h at 37 °C. The bacterial COX exhibited ∼22 % higher activity in potassium phosphate buffer (pH 7.5) in the presence of a nonionic detergent Triton X-100 at 0.05 % (v/v). The K m and V max value of COX of B. subtilis COX were found to be 3.25 mM and 2.17 μmol min ml(-1), respectively. The purified COX showed very little cytotoxicity associated with it. PMID:26453032

  7. D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis.

    Science.gov (United States)

    Leiman, Sara A; May, Janine M; Lebar, Matthew D; Kahne, Daniel; Kolter, Roberto; Losick, Richard

    2013-12-01

    The soil bacterium Bacillus subtilis forms biofilms on surfaces and at air-liquid interfaces. It was previously reported that these biofilms disassemble late in their life cycle and that conditioned medium from late-stage biofilms inhibits biofilm formation. Such medium contained a mixture of D-leucine, D-methionine, D-tryptophan, and D-tyrosine and was reported to inhibit biofilm formation via the incorporation of these D-amino acids into the cell wall. Here, we show that L-amino acids were able to specifically reverse the inhibitory effects of their cognate D-amino acids. We also show that D-amino acids inhibited growth and the expression of biofilm matrix genes at concentrations that inhibit biofilm formation. Finally, we report that the strain routinely used to study biofilm formation has a mutation in the gene (dtd) encoding D-tyrosyl-tRNA deacylase, an enzyme that prevents the misincorporation of D-amino acids into protein in B. subtilis. When we repaired the dtd gene, B. subtilis became resistant to the biofilm-inhibitory effects of D-amino acids without losing the ability to incorporate at least one noncanonical D-amino acid, D-tryptophan, into the peptidoglycan peptide side chain. We conclude that the susceptibility of B. subtilis to the biofilm-inhibitory effects of D-amino acids is largely, if not entirely, due to their toxic effects on protein synthesis. PMID:24097941

  8. Identification and characterization of the vanillin dehydrogenase YfmT in Bacillus subtilis 3NA.

    Science.gov (United States)

    Graf, Nadja; Wenzel, Marian; Altenbuchner, Josef

    2016-04-01

    With vanillin as one of the most important flavoring agents, many efforts have been made to optimize its biotechnological production from natural abundant substrates. However, its toxicity against the hosts results in rather low yields and product concentrations. Bacillus subtilis as a soil-dwelling bacterium is a possible lignin-derived compound-degrading microorganism. Therefore, its vanillin and ferulic acid metabolism was investigated. With a rather high tolerance for vanillin up to 20 mM, it is a promising candidate to produce natural vanillin. In this study, the well-studied phenolic acid decarboxylases PadC and BsdBCD could be ascribed to function as the only enzymes in B. subtilis 3NA converting ferulic acid to 4-vinylguaiacol and vanillic acid to guaiacol, respectively. As vanillin also becomes converted to guaiacol, a previous conversion to vanillic acid was assumed. Usage of bioinformatic tools revealed YfmT, which could be shown to function as the only vanillin dehydrogenase in B. subtilis 3NA. Thus, YfmT was further characterized regarding its temperature and pH optima as well as its substrate range. Vanillin and ferulic acid metabolic routes in the tested B. subtilis strain were revealed, a direct conversion of ferulic acid to vanillin, however, could not be found. PMID:26658822

  9. Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens

    Institute of Scientific and Technical Information of China (English)

    Baby Joseph; Berlina Dhas; Vimalin Hena; Justin Raj

    2013-01-01

    Objective:To isolate and identify Bacillus subtilis (B. subtilis) from soil and to characterize and partially purify the bacteriocin. To evaluate the antimicrobial activity against four diabetic foot ulcer bacterial pathogens. Methods:Genotypic identification was done based on Bergey’s manual of systemic bacteriology. Antimicrobial susceptibility test was done by Kirby-Bauer disc diffusion method. Colonies were identified by colony morphology and biochemical characterization and also compared with MTCC 121 strain. Further identification was done by 16S rRNA sequencing. Inhibitory activities of partially purified bacteriocin on all the DFU isolates were done by agar well diffusion method. The strain was identified to produce bacteriocin by stab overlay assay. Bacteriocin was extracted by organic solvent extraction using chloroform, further purified by HPLC and physical, and chemical characterization was performed. Results: The four isolates showed high level of resistance to amoxyclav and sensitivity to ciprofloxacin. HPLC purification revealed that the extracts are bacteriocin. The phylogenetic tree analysis results showed that the isolate was 99%related to B. subtilis BSF01. The results reveled activity to all the four isolates and high level of activity was seen in case of Klebsiella sp. Conclusions:Partially purified bacteriocin was found to have antimicrobial activity against the four diabetic foot ulcer bacterial pathogens, which can thus be applied as a better drug molecule on further studies. The strain B. subtilis are found to be safe for use and these antimicrobial peptides can be used as an antimicrobial in humans to treat DFU bacterial pathogens.

  10. Identification and characterization of the vanillin dehydrogenase YfmT in Bacillus subtilis 3NA.

    Science.gov (United States)

    Graf, Nadja; Wenzel, Marian; Altenbuchner, Josef

    2016-04-01

    With vanillin as one of the most important flavoring agents, many efforts have been made to optimize its biotechnological production from natural abundant substrates. However, its toxicity against the hosts results in rather low yields and product concentrations. Bacillus subtilis as a soil-dwelling bacterium is a possible lignin-derived compound-degrading microorganism. Therefore, its vanillin and ferulic acid metabolism was investigated. With a rather high tolerance for vanillin up to 20 mM, it is a promising candidate to produce natural vanillin. In this study, the well-studied phenolic acid decarboxylases PadC and BsdBCD could be ascribed to function as the only enzymes in B. subtilis 3NA converting ferulic acid to 4-vinylguaiacol and vanillic acid to guaiacol, respectively. As vanillin also becomes converted to guaiacol, a previous conversion to vanillic acid was assumed. Usage of bioinformatic tools revealed YfmT, which could be shown to function as the only vanillin dehydrogenase in B. subtilis 3NA. Thus, YfmT was further characterized regarding its temperature and pH optima as well as its substrate range. Vanillin and ferulic acid metabolic routes in the tested B. subtilis strain were revealed, a direct conversion of ferulic acid to vanillin, however, could not be found.

  11. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions.

    Directory of Open Access Journals (Sweden)

    Yi-Huang Hsueh

    Full Text Available The superior antimicrobial properties of silver nanoparticles (Ag NPs are well-documented, but the exact mechanisms underlying Ag-NP microbial toxicity remain the subject of intense debate. Here, we show that Ag-NP concentrations as low as 10 ppm exert significant toxicity against Bacillus subtilis, a beneficial bacterium ubiquitous in the soil. Growth arrest and chromosomal DNA degradation were observed, and flow cytometric quantification of propidium iodide (PI staining also revealed that Ag-NP concentrations of 25 ppm and above increased membrane permeability. RedoxSensor content analysis and Phag-GFP expression analysis further indicated that reductase activity and cytosolic protein expression decreased in B. subtilis cells treated with 10-50 ppm of Ag NPs. We conducted X-ray absorption near-edge structure (XANES and extended X-ray absorption fine structure (EXAFS analyses to directly clarify the valence and fine structure of Ag atoms in B. subtilis cells placed in contact with Ag NPs. The results confirmed the Ag species in Ag NP-treated B. subtilis cells as Ag2O, indicating that Ag-NP toxicity is likely mediated by released Ag+ ions from Ag NPs, which penetrate bacterial cells and are subsequently oxidized intracellularly to Ag2O. These findings provide conclusive evidence for the role of Ag+ ions in Ag-NP microbial toxicity, and suggest that the impact of inappropriately disposed Ag NPs to soil and water ecosystems may warrant further investigation.

  12. Use of a Novel Report Protein to Study the Secretion Signal of Flagellin in Bacillus subtilis.

    Science.gov (United States)

    Wang, Guangqiang; Xia, Yongjun; Xiong, Zhiqiang; Zhang, Hui; Ai, Lianzhong

    2016-08-01

    Flagellin (also called Hag) is the main component of bacterial flagellum and is transported across the cytoplasmic membrane by flagellar secretion apparatus. Because flagella play an essential role in the pathogenesis of numerous pathogens, the flagellins of Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, Campylobacter jejuni, and Vibrio cholerae have been intensively studied; however, very few studies have focused on the flagellin of Bacillus subtilis, which is considered to be a model organism with which to study the secretion of bacteria and is used on an industrial scale for the secretion of proteins. The signal of B. subtilis flagellin is still debated. This study was performed to seek the export signals of flagellin from B. subtilis. The naturally nonsecretory, intrinsically disordered domain of nucleoskeletal-like protein (Nsp) was used as the reporter protein. Our results demonstrate that the export signal is contained within the first 50 amino acids of B. subtilis flagellin. Nsp is easily degraded inside the cell and can be exported into culture medium with the aid of the signal of flagellin. This method provides a new potential strategy for the expression of proteins with high proteolytic susceptibility via fusion to export signals. PMID:27154466

  13. Bacillus subtilis ZH168多酚氧化酶分离纯化研究%Purification of polyphenol oxidase from the Bacillus subtilis ZH168

    Institute of Scientific and Technical Information of China (English)

    张丽香

    2015-01-01

    从一株产黑色素Bacillus subtilis ZH168发酵液中提取多酚氧化酶,通过硫酸铵盐析,超滤,阴离子交换层析,活性和变性电泳确定该酶有2条同工酶带,分离纯化到其中分子量较大的同工酶,为101.5 ku,并将纯化同工酶带作基质辅助激光吸附-离子化飞行时间质谱(MALDI-TOF-MS)获得蛋白肽指纹谱,通过一二级质谱检索结果确定该蛋白与枯草茅孢杆菌芽孢衣蛋白有极高相似性.

  14. Duodenal histology and carcass quality of feedlot cattle supplemented with calcium butyrate and Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Thiago Simas de Oliveira Moreira

    2016-01-01

    Full Text Available The experiment was carried out at the Comigo Technology Center, in Rio Verde, State of Goiás, Brazil, with the objective of evaluating the effects of supplementation with calcium butyrate, as a growth promoting agent for the duodenal mucosa and Bacillus subtilis as a probiotic performance enhancer in feedlot cattle. Calcium butyrate (5 and 10 g per animal per day and Bacillus (10 g per animal per day were added to a basal diet. There were used 85 Nelore bulls, with average weight of 315 ± 7 kg. The experiment lasted 118 days, including the adaptation period, until slaughter at 30 months of age. Diets were distributed in a completely randomized design with four treatments, where: T1 = control (basal diet; T2 = basal diet + 5 g calcium butyrate; T3 = basal diet + 10 g calcium butyrate and T4 = basal diet + 10 g calcium butyrate + 10 g probiotic with four replications and five to six animals per replication. It was used a forage: concentrate ratio of 30:70, the roughage used was the corn silage. Height and width measurements of intestinal villi were taken, and carcass and meat quality were evaluated. The supplementation of calcium butyrate and Bacillus subtilis positively influenced (p < 0.05 the carcass marbling level and calcium butyrate increased the villus height in the small intestine.

  15. Kinetics of p-aminoazobenzene degradation by Bacillus subtilis under denitrifying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zissi, U.S.; Kornaros, M.E.; Lyberatos, G.C.

    1999-05-01

    Bacillus subtilis is an organism capable of degrading an azo dye, such as p-aminoazobenzene (pAAB), under both aerobic and anoxic conditions. In both cases, pAAB is co-metabolized with a main carbon source and under anoxic conditions denitrification is observed. Kinetic experiments were carried out with a pure culture of B. subtilis and a mathematical model that accurately describes both biodegradation of pAAB under anoxic conditions and the denitrification process under both carbon- and nitrate- or nitrite-limited conditions is developed. Presence of pAAB in culture medium causes an inhibition of bacterial growth and of nitrite accumulation. Bacterial growth and pAAB degradation rates are found to be slower under anoxic conditions compared to the corresponding rates under aerobic conditions.

  16. Volatile compounds profile and sensory evaluation of Beninese condiments produced by inocula of Bacillus subtilis

    DEFF Research Database (Denmark)

    Azokpota, Paulin; Hounhouigan, Joseph D.; Annan, Nana T.;

    2010-01-01

    BACKGROUND: Three Beninese food condiments (ABS124h, IBS248h and SBS348h) were produced by controlled fermentation of African locust beans using inocula of pure cultures of Bacillus subtilis, BS1, BS2 and BS3, respectively. Quantitative and qualitative assessments of the volatile compounds...... in the condiments produced have been performed using the Likens-Nickerson simultaneous distillation-extraction method and GC-MS analysis, followed by a sensory evaluation in comparison with the spontaneously fermented condiments. RESULTS: A total of 94 volatile compounds have been found including 53 compounds...... was similar.   CONCLUSION: The investigated B. subtilis, BS1, BS2 and BS3 can be considered as potential starter cultures for the fermentation of African locust beans to produce good quality of Beninese food condiments. Copyright © 2009 Society of Chemical Industry...

  17. Influence of Silica Nanoparticles on Antioxidant Potential of Bacillus subtilis IMV B-7023

    Science.gov (United States)

    Skorochod, Iryna O.; Roy, Alla O.; Kurdish, Ivan K.

    2016-03-01

    It was found that if introduced into a nutrient medium of 0.05-1 g/L nano-SiO2, the oxidant activity (OA) of the culture medium (CM) of bacilli increased by 43.2-60.1 % and the antioxidant activity (AA) decreased by 4.5-11.8 %. SiO2 nanoparticles had different effects on antiradical activity (ARA) of the CM of Bacillus subtilis IMV B-7023. In particular, nano-SiO2 had no significant effect on the ability of the CM of bacilli to inactivate the 2.2-diphenyl-1-picrylhydrazyl (DPPH·) free radical. However, for the content of the nanomaterial of 0.01-1 g/L decreased hydroxyl radical scavenging in the CM of B. subtilis IMV B-7023 on 7.2-17.6 % compared with a control. Low doses of silica nanoparticles stimulated the reducing power of the CM of bacteria and then highly suppressed it.

  18. [An Efficient Method for Genetic Certification of Bacillus subtilis strains, Prospective Producers of Biopreparations].

    Science.gov (United States)

    Terletskiy, V P; Tyshenko, V I; Novikova, I I; Boikova, I V; Tyulebaev, S D; Shakhtamirov, I Ya

    2016-01-01

    Genetic certification of commercial strains of bacteria antagonistic to phytopathogenic microorganisms guarantees their unequivocal identification and confirmation of safety. In Russia, unlike EU countries, genetic certification of Bacillus subtilis strains is not used. Based on the previously proposed double digestion selective label (DDSL) fingerprinting, a method for genetic identification and certification of B. subtilis strains was proposed. The method was tested on several strains differing in their physiological and biochemical properties and in the composition of secondary metabolites responsible for the spectrum of antibiotic activity. High resolving power of this approach was shown. Optimal restriction endonucleases (SgsI and Eco32I) were determined and validated. A detailed protocol for genetic certification of this bacterial species was developed. DDSL is a universal method, which may be adapted for genetic identification and certification of other bacterial species. PMID:27301128

  19. Rice Seed Priming with Picomolar Rutin Enhances Rhizospheric Bacillus subtilis CIM Colonization and Plant Growth.

    Directory of Open Access Journals (Sweden)

    Akanksha Singh

    Full Text Available The effect of rutin, a bioflavonoid on the growth and biofilm formation of Bacillus subtilis strain CIM was investigated. In addition to swimming, swarming, and twitching potentials of B. subtilis CIM (BS, one picomolar (1 pM of rutin was also observed to boost the biofilm forming ability of the bacterium. Bio-priming of rice seeds with BS and rutin not only augmented root and shoot lengths but also the photosynthetic pigments like chlorophyll and carotenoid. Similarly, high accumulation of phenolic and flavonoid contents was observed in the leaves. Fluorescent microscopic images revealed that BS plus rutin enhanced callose deposition in the leaves. It was also established that the least formation of reactive oxygen species in BS plus rutin treated rice plants was due to higher free radicals scavenging activity and total antioxidant potential. The results highlight chemo attractant nature of BS towards rutin, which by enhancing biofilm formation and root colonization indirectly strengthened the plants' defensive state.

  20. Engineering of Bacillus subtilis for the Production of 2,3-Butanediol from Sugarcane Molasses.

    Science.gov (United States)

    Deshmukh, Apoorva Nandkumar; Nipanikar-Gokhale, Padmaja; Jain, Rishi

    2016-05-01

    2,3-butanediol is known to be a platform chemical with several potential industrial applications. Sustainable industrial scale production can be attained by using a sugarcane molasses based fermentation process using Bacillus subtilis. However, the accumulation of acetoin needs to be reduced to improve process efficiency. In this work, B. subtilis was genetically modified in order to increase the yield of 2,3-butanediol. Metabolic engineering strategies such as cofactor engineering and overexpression of the key enzyme butanediol dehydrogenase were attempted. Both the strategies individually led to a statistically significant increase in the 2,3-butanediol yields for sugarcane molasses based fermentation. Cofactor engineering led to a 26 % increase in 2,3-butanediol yield and overexpression of bdhA led to a 11 % increase. However, the combination of the two strategies did not lead to a synergistic increase in 2,3-butanediol yield. PMID:26825987

  1. Increased resistance to detachment of adherent microspheres and Bacillus spores subjected to a drying step.

    Science.gov (United States)

    Faille, Christine; Bihi, Ilyesse; Ronse, Annette; Ronse, Gilles; Baudoin, Michael; Zoueshtiagh, Farzam

    2016-07-01

    In various environments, including that of food processing, adherent bacteria are often subjected to drying conditions. These conditions have been shown to result in changes in the ability of biofilms to cross-contaminate food in contact with them. In this study, we investigated the consequences of a drying step on the further ability of adherent bacterial spores to resist detachment. An initial series of experiment was set up with latex microspheres as a model. A microsphere suspension was deposited on a glass slide and incubated at 25, 35 and 50°C for times ranging from 1h to 48h. By subjecting the dried slides to increasing water flow rates, we showed that both time and temperature affected the ease of microsphere detachment. Similar observations were made for three Bacillus spores despite differences in their surface properties, especially regarding their surface physicochemistry. The differences in ease of adherent spore detachment could not be clearly linked to the minor changes in spore morphology, observed after drying in various environmental conditions. In order to explain the increased interaction between spheres or spores and glass slides, the authors made several assumptions regarding the possible underlying mechanisms: the shape of the liquid bridge between the sphere and the substratum, which is greatly influenced by the hydrophilic/hydrophobic characters of both surfaces; the accumulation of soil at the liquid/air interface; the presence of trapped nano-bubbles around and/or under the sphere. PMID:27022869

  2. Computational Fluid Dynamics Modeling of Bacillus anthracis Spore Deposition in Rabbit and Human Respiratory Airways

    Energy Technology Data Exchange (ETDEWEB)

    Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.; Jacob, Rick E.; Einstein, Daniel R.; Kuprat, Andrew P.; Carson, James P.; Colby, Sean M.; Saunders, James H.; Hines, Stephanie; Teeguarden, Justin G.; Straub, Tim M.; Moe, M.; Taft, Sarah; Corley, Richard A.

    2016-09-30

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.

  3. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.

  4. Antagonismo de Trichoderma SPP. E Bacillus subtilis (UFV3918 a Fusarium sambucinum em Pinus elliottii engelm

    Directory of Open Access Journals (Sweden)

    Caciara Gonzatto Maciel

    2014-06-01

    Full Text Available Pinus elliottii é uma espécie de importância no setor florestal e apresenta vulnerabilidade na qualidade sanitária de suas sementes, especialmente pela associação de Fusarium spp., responsável por perdas de plântulas no viveiro. Este trabalho teve como objetivo avaliar a ação antagonista in vitro e in vivo dos agentes Trichoderma spp. e Bacillus subtilis (UFV3918 no controle de Fusarium sambucinum, responsável por danos em plântulas de Pinus elliottii. O controle in vitro foi avaliado através da inibição do crescimento micelial (confronto pareado de culturas, após a incubação a 25±2 ºC e fotoperíodo de 12 h. Para os testes in vivo (desenvolvidos em condições de viveiro, as sementes inicialmente foram inoculadas com o patógeno e, na sequência, microbiolizadas com os agentes antagônicos, para posterior semeadura. Utilizaram-se as técnicas de contato com o biocontrolador em meio BDA por 48 h e peliculização, como formas de microbiolização. Tanto Trichoderma spp. quanto Bacillus subtilis (UFV3918 foram eficientes no controle in vitro de F. sambucinum, e no teste de biocontrole in vivo o produto Bacillus subtilis (UFV3918 destacou-se, reduzindo as perdas de plântulas causadas pelo patógeno, assim como potencializando as variáveis de comprimento de plântula, massa verde e massa seca.

  5. Molecular Cloning and Production of Recombinant Phytase from Bacillus subtilis ASUIA243 in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Nor Soleha Mohd Dali

    2011-12-01

    Full Text Available Phytase gene obtained from Bacillus subtilis ASUIA243 was cloned into a medium vector and transformed into E. coli. Restriction enzyme digestion was conducted to get blunt-ended phytase gene and ligated into the Pichia expression vector, pPICZαA. The recombinant vector, pPICZαA-243HPp was then linearized with PmeI and transformed into P. pastoris strain X33. Screening for multi copy gene number of transformants was done by re-plating the selected colonies on increasing concentration of zeocin. One positive clone, X243HPp#2 was then grown in BMGY media as the starting culture, followed by induction in BMMY media for protein expression study. The supernatant was then analysed by SDS-PAGE and Western blot method to check the protein expression.ABSTRAK: Gen fitase yang didapati daripada Bacillus subtilis ASUIA243 diklonkan sebagai vektor perantara dan berubah menjadi E. coli. Sekatan pencernaan enzim dijalankan untuk mendapatkan gen fitase berhujung tumpul dan diligatkan dengan vektor ekspresi Pichia, pPICZαA. Vektor rekombinan, pPICZαA-243HPp kemudian dilinearkan dengan PmeI dan berubah menjadi P. pastoris strain X33. Penyaringan untuk nombor gen berbilang salinan yang menjalani transformasi genetik dijalankan dengan menyalur semula koloni terpilih dengan penambahan kepekatan zeocin. Satu klon positif, X243HPp#2 kemudian dibiarkan hidup dalam perantara BMGY sebagai kultur permulaan, diikuti dengan aruhan dalam perantara BMMY untuk kajian penglahiran protein. Supernatan kemudian dikaji dengan SDS-PAGE dan kaedah sap Western untuk menyemak penglahiran protein.KEYWORDS:  phytase, Bacillus subtilis, Pichia pastoris, gene cloning.

  6. An inducible recA expression Bacillus subtilis genome vector for stable manipulation of large DNA fragments

    OpenAIRE

    Ogawa, Takafumi; Iwata, Tetsuo; Kaneko, Shinya; Itaya, Mitsuhiro; Hirota, Junji

    2015-01-01

    Background The Bacillus subtilis genome (BGM) vector is a novel cloning system based on the natural competence that enables B. subtilis to import extracellular DNA fragments into the cell and incorporate the recombinogenic DNA into the genome vector by homologous recombination. The BGM vector system has several attractive properties, such as a megabase cloning capacity, stable propagation of cloned DNA inserts, and various modification strategies using RecA-mediated homologous recombination. ...

  7. A community-curated consensual annotation that is continuously updated: the Bacillus subtilis centred wiki SubtiWiki.

    OpenAIRE

    Flórez, Lope A.; Roppel, Sebastian F.; Schmeisky, Arne G.; Lammers, Christoph R.; Stülke, Jörg

    2009-01-01

    Bacillus subtilis is the model organism for Gram-positive bacteria, with a large amount of publications on all aspects of its biology. To facilitate genome annotation and the collection of comprehensive information on B. subtilis, we created SubtiWiki as a community-oriented annotation tool for information retrieval and continuous maintenance. The wiki is focused on the needs and requirements of scientists doing experimental work. This has implications for the design of the interface and for ...

  8. Temporal Expression of the Bacillus subtilis secA Gene, Encoding a Central Component of the Preprotein Translocase

    OpenAIRE

    Herbort, Markus; Klein, Michael; Manting, Erik H.; Driessen, Arnold J. M.; Freudl, Roland

    1999-01-01

    In Bacillus subtilis, the secretion of extracellular proteins strongly increases upon transition from exponential growth to the stationary growth phase. It is not known whether the amounts of some or all components of the protein translocation apparatus are concomitantly increased in relation to the increased export activity. In this study, we analyzed the transcriptional organization and temporal expression of the secA gene, encoding a central component of the B. subtilis preprotein transloc...

  9. Production of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli grown on cane molasses fortified with ethanol

    OpenAIRE

    Eman Zakaria Gomaa

    2014-01-01

    The aim of this work was to study the production of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli isolated from the industrial contaminated soil samples using cane molasses as an inexpensive substrate. The amount of PHA accumulated followed a similar pattern to its growth for each of treatment indicating a growth-related production, yielding maximum PHA production of 54.1 and 47.16% for B. subtilis and E. coli, respectively after 96 h cultivation in the medium contain...

  10. Analysis of Peptidoglycan Structure from Vegetative Cells of Bacillus subtilis 168 and Role of PBP 5 in Peptidoglycan Maturation

    OpenAIRE

    Atrih, Abdelmadjid; Bacher, Gerold; Allmaier, Günter; Williamson, Michael P; Foster, Simon J.

    1999-01-01

    The composition and fine structure of the vegetative cell wall peptidoglycan from Bacillus subtilis were determined by analysis of its constituent muropeptides. The structures of 39 muropeptides, representing 97% of the total peptidoglycan, were elucidated. About 99% analyzed muropeptides in B. subtilis vegetative cell peptidoglycan have the free carboxylic group of diaminopimelic acid amidated. Anhydromuropeptides and products missing a glucosamine at the nonreducing terminus account for 0.4...

  11. Role of the ganSPQAB Operon in Degradation of Galactan by Bacillus subtilis.

    Science.gov (United States)

    Watzlawick, Hildegard; Morabbi Heravi, Kambiz; Altenbuchner, Josef

    2016-10-15

    Bacillus subtilis possesses different enzymes for the utilization of plant cell wall polysaccharides. This includes a gene cluster containing galactan degradation genes (ganA and ganB), two transporter component genes (ganQ and ganP), and the sugar-binding lipoprotein-encoding gene ganS (previously known as cycB). These genes form an operon that is regulated by GanR. The degradation of galactan by B. subtilis begins with the activity of extracellular GanB. GanB is an endo-β-1,4-galactanase and is a member of glycoside hydrolase (GH) family 53. This enzyme was active on high-molecular-weight arabinose-free galactan and mainly produced galactotetraose as well as galactotriose and galactobiose. These galacto-oligosaccharides may enter the cell via the GanQP transmembrane proteins of the galactan ABC transporter. The specificity of the galactan ABC transporter depends on the sugar-binding lipoprotein, GanS. Purified GanS was shown to bind galactotetraose and galactotriose using thermal shift assay. The energy for this transport is provided by MsmX, an ATP-binding protein. The transported galacto-oligosaccharides are further degraded by GanA. GanA is a β-galactosidase that belongs to GH family 42. The GanA enzyme was able to hydrolyze short-chain β-1,4-galacto-oligosaccharides as well as synthetic β-galactopyranosides into galactose. Thermal shift assay as well as electrophoretic mobility shift assay demonstrated that galactobiose is the inducer of the galactan operon regulated by GanR. DNase I footprinting revealed that the GanR protein binds to an operator overlapping the -35 box of the σ(A)-type promoter of Pgan, which is located upstream of ganS IMPORTANCE: Bacillus subtilis is a Gram-positive soil bacterium that utilizes different types of carbohydrates, such as pectin, as carbon sources. So far, most of the pectin degradation systems and enzymes have been thoroughly studied in B. subtilis Nevertheless, the B. subtilis utilization system of galactan, which is

  12. Role of Branched-Chain Amino Acid Transport in Bacillus subtilis CodY Activity

    OpenAIRE

    Belitsky, Boris R.

    2015-01-01

    CodY is a branched-chain amino acid-responsive transcriptional regulator that controls the expression of several dozen transcription units in Bacillus subtilis. The presence of isoleucine, valine, and leucine in the growth medium is essential for achieving high activity of CodY and for efficient regulation of the target genes. We identified three permeases—BcaP, BraB, and BrnQ—that are responsible for the bulk of isoleucine and valine uptake and are also involved in leucine uptake. At least o...

  13. The Bacillus subtilis DnaD and DnaB Proteins Exhibit Different DNA Remodelling Activities

    OpenAIRE

    Zhang, Wenke; Carneiro, Maria J. V. M.; Turner, Ian J.; ALLEN, Stephanie; Roberts, Clive J.; Soultanas, Panos

    2005-01-01

    Primosomal protein cascades load the replicative helicase onto DNA. In Bacillus subtilis a putative primosomal cascade involving the DnaD-DnaB-DnaI proteins has been suggested to participate in both the DnaA and PriA-dependent loading of the replicative helicase DnaC onto the DNA. Recently we discovered that DnaD has a global remodelling DNA activity suggesting a more widespread role in bacterial nucleoid architecture. Here, we show that DnaB forms a “square-like” tetramer with a hole in the ...

  14. Identification and Characterization of Mutations Conferring Resistance to d-Amino Acids in Bacillus subtilis

    OpenAIRE

    Leiman, Sara A.; Richardson, Charles; Foulston, Lucy; Elsholz, Alexander K.W.; First, Eric A.; Losick, Richard

    2015-01-01

    Bacteria produce d-amino acids for incorporation into the peptidoglycan and certain nonribosomally produced peptides. However, d-amino acids are toxic if mischarged on tRNAs or misincorporated into protein. Common strains of the Gram-positive bacterium Bacillus subtilis are particularly sensitive to the growth-inhibitory effects of d-tyrosine due to the absence of d-aminoacyl-tRNA deacylase, an enzyme that prevents misincorporation of d-tyrosine and other d-amino acids into nascent proteins. ...

  15. d-Amino Acids Indirectly Inhibit Biofilm Formation in Bacillus subtilis by Interfering with Protein Synthesis

    OpenAIRE

    Leiman, Sara A.; May, Janine M.; Lebar, Matthew D.; Kahne, Daniel; Kolter, Roberto; Losick, Richard

    2013-01-01

    The soil bacterium Bacillus subtilis forms biofilms on surfaces and at air-liquid interfaces. It was previously reported that these biofilms disassemble late in their life cycle and that conditioned medium from late-stage biofilms inhibits biofilm formation. Such medium contained a mixture of d-leucine, d-methionine, d-tryptophan, and d-tyrosine and was reported to inhibit biofilm formation via the incorporation of these d-amino acids into the cell wall. Here, we show that l-amino acids were ...

  16. Simultaneous and selective production of levan and poly(gamma-glutamic acid) by Bacillus subtilis.

    Science.gov (United States)

    Shih, Ing-Lung; Yu, Yun-Ti

    2005-01-01

    Bacillus subtilis(natto) Takahashi, used to prepare the fermented soybean product natto, was grown in a basal medium containing 5% (w/w) sucrose and 1.5% (w/w) L-glutamate and produced 58% (w/w) poly(gamma-glutamic acid) and 42% (w/w) levan simultaneously. After 21 h, 40-50 mg levan ml-1 had been produced in medium containing 20% (w/w) sucrose but without L-glutamate. In medium containing L-glutamic acid but without sucrose, mainly poly(gamma-glutamic acid) was produced. PMID:15703872

  17. SacY, a Transcriptional Antiterminator from Bacillus subtilis, Is Regulated by Phosphorylation In Vivo†

    OpenAIRE

    Idelson, Maria; Amster-Choder, Orna

    1998-01-01

    SacY antiterminates transcription of the sacB gene in Bacillus subtilis in response to the presence of sucrose in the growth medium. We have found that it can substitute for BglG, a homologous protein, in antiterminating transcription of the bgl operon in Escherichia coli. We therefore sought to determine whether, similarly to BglG, SacY is regulated by reversible phosphorylation in response to the availability of the inducing sugar. We show here that two forms of SacY, phosphorylated and non...

  18. Protease obtention using Bacillus subtilis 3411 and amaranth seed meal medium at different aeration rates

    Directory of Open Access Journals (Sweden)

    Pastor Maria Delia

    2001-01-01

    Full Text Available The influence of the addition of Amaranthus cruenthus seed meal to the medium, as nutrient and growth factor, on protease production by Bacillus subtilis 3411 was studied. Tests were carried out in a rotary shaker and in mechanically stirred fermenters. The influence of aeration was also evaluated. The addition of amaranth in a concentration of 20 g/L resulted in 400% increase in protease production. Aeration up to 750 r.p.m. and 1 L/L.min had a favorable effect.

  19. Molecular Cloning and Production of Recombinant Phytase from Bacillus subtilis ASUIA243 in Pichia pastoris

    OpenAIRE

    Nor Soleha Mohd Dali; Tamrin Nuge; Mohd Hafidz Mahamad Maifiah; Faridah Yusof; Anis Shobirin Meor Hussin; Abd-Elaziem Farouk; and Hamzah Mohd. Salleh

    2011-01-01

    Phytase gene obtained from Bacillus subtilis ASUIA243 was cloned into a medium vector and transformed into E. coli. Restriction enzyme digestion was conducted to get blunt-ended phytase gene and ligated into the Pichia expression vector, pPICZαA. The recombinant vector, pPICZαA-243HPp was then linearized with PmeI and transformed into P. pastoris strain X33. Screening for multi copy gene number of transformants was done by re-plating the selected colonies on increasing concentrati...

  20. Isolation and characterization of topological specificity mutants of minD in Bacillus subtilis

    OpenAIRE

    Karoui, M E; Errington, J

    2001-01-01

    In rod-shaped bacteria such as Bacillus subtilis, division site selection is mediated by MinC and MinD, which together function as a division inhibitor. Topological specificity is imposed by DivIVA, which ensures that MinCD specifically inhibits division close to the cell poles, while allowing division at mid-cell. MinD plays a central role in this process, as it positions and activates MinC and is dependent on DivIVA for its own positioning at the poles. To investigate MinD activities furthe...

  1. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

    OpenAIRE

    Mars, Ruben A. T.; Pierre Nicolas; Mariano Ciccolini; Ewoud Reilman; Alexander Reder; Marc Schaffer; Ulrike Mäder; Uwe Völker; Jan Maarten van Dijl; Denham, Emma L.

    2015-01-01

    Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 inter...

  2. Septation, dephosphorylation, and the activation of σF during sporulation in Bacillus subtilis

    OpenAIRE

    King, Nicole; Dreesen, Oliver; Stragier, Patrick; Pogliano, Kit; Losick, Richard

    1999-01-01

    Cell-specific activation of transcription factor σF during sporulation in Bacillus subtilis requires the formation of the polar septum and the activity of a serine phosphatase (SpoIIE) located in the septum. The SpoIIE phosphatase indirectly activates σF by dephosphorylating a protein (SpoIIAA-P) in the pathway that controls the activity of the transcription factor. By use of a SpoIIE–GFP fusion protein in time-course and time-lapse experiments and by direct visualization of septa in living c...

  3. Structure of the Phosphatase Domain of the Cell Fate Determinant SpoIIE from Bacillus subtilis

    OpenAIRE

    Levdikov, Vladimir M; Blagova, Elena V.; Rawlings, Andrea E.; Jameson, Katie; Tunaley, James; Hart, Darren J.; Barak, Imrich; Wilkinson, Anthony J.

    2012-01-01

    Sporulation in Bacillus subtilis begins with an asymmetric cell division producing two genetically identical cells with different fates. SpoIIE is a membrane protein that localizes to the polar cell division sites where it causes FtsZ to relocate from mid-cell to form polar Z-rings. Following polar septation, SpoIIE establishes compartment-specific gene expression in the smaller forespore cell by dephosphorylating the anti-sigma factor antagonist SpoIIAA, leading to the release of the RNA pol...

  4. Regulation of the Bacillus subtilis ytmI Operon, Involved in Sulfur Metabolism

    OpenAIRE

    Burguière, Pierre; Fert, Juliette; Guillouard, Isabelle; Auger, Sandrine; Danchin, Antoine; Martin-Verstraete, Isabelle

    2005-01-01

    The YtlI regulator of Bacillus subtilis activates the transcription of the ytmI operon encoding an l-cystine ABC transporter, a riboflavin kinase, and proteins of unknown function. The expression of the ytlI gene and the ytmI operon was high with methionine and reduced with sulfate. Using deletions and site-directed mutagenesis, a cis-acting DNA sequence important for YtlI-dependent regulation was identified upstream from the −35 box of ytmI. Gel mobility shift assays confirmed that YtlI spec...

  5. Lipopeptide Antibiotics Produced by the Engineered Strain Bacillus subtilis GEB3 and Detection of Its Bioactivity

    Institute of Scientific and Technical Information of China (English)

    GAO Xue-wen; YAO Shi-yi; Huong Pham; Joachim Vater; WANG Jin-sheng

    2004-01-01

    MALDI-TOF-MS technology was used for identification of lipopeptide antibiotics produced by GEB3 strain,a derivative of Bacillus subtilis 168 which was transformed by lpaB3gene.The result showed GEB3 only produced lipopeptide antibiotic surfactin.The analysis by LC-MS demonstrated that GEB3 produced standard surfactin isoforms with side chain lengths of 13,14 and 15 carbon atoms.The bioactivity detection of surfactin indicated that the surfactin produced by GEB3 had inhibition effect on plant pathogens Rhizoctonia solani and Pyricularia oryzae.

  6. Cell wall mechanical properties as measured with bacterial thread made from Bacillus subtilis.

    OpenAIRE

    Mendelson, N H; Thwaites, J J

    1989-01-01

    Engineering approaches used in the study of textile fibers have been applied to the measurement of mechanical properties of bacterial cell walls by using the Bacillus subtilis bacterial thread system. Improved methods have been developed for the production of thread and for measuring its mechanical properties. The best specimens of thread produced from cultures of strain FJ7 grown in TB medium at 20 degrees C varied in diameter by a factor of 1.09 over a 30-mm thread length. The stress-strain...

  7. Different agroresidues used in solid substrate fermentation for alpha- amylase production by bacillus subtilis-329

    International Nuclear Information System (INIS)

    The best mass ratio for agroresidue fermentation for a-amylase production by locally isolated Bacillus subtilis-239 was found to be wheat bran to rice bran 2:1 with 70% initial moisture content for 60 h incubation time. Among different inorganic nitrogen sources supplemented, sodium nitrate and ammonium chloride (0.5% w/w) increased the enzyme yield upto 178 U/ml and 176 U/ml, respectively, whereas all the organic nitrogen sources decreased the enzyme production. Addition of glucose (1% w/w) as a carbon source enhanced a-amylase synthesis to 185 U/ml as compared to the control (134 U/ml). (author)

  8. The Bacillus subtilis Primosomal Protein DnaD Untwists Supercoiled DNA

    OpenAIRE

    Zhang, Wenke; Allen, Stephanie; Roberts, Clive J.; Soultanas, Panos

    2006-01-01

    The essential Bacillus subtilis DnaD and DnaB proteins have been implicated in the initiation of DNA replication. Recently, DNA remodeling activities associated with both proteins were discovered that could provide a link between global or local nucleoid remodeling and initiation of replication. DnaD forms scaffolds and opens up supercoiled plasmids without nicking to form open circular complexes, while DnaB acts as a lateral compaction protein. Here we show that DnaD-mediated opening of supe...

  9. DNA segregation by the bacterial actin AlfA during Bacillus subtilis growth and development

    OpenAIRE

    Becker, Eric; Herrera, Nick C; Gunderson, Felizza Q.; Derman, Alan I.; Dance, Amber L; Sims, Jennifer; Larsen, Rachel A.; Pogliano, Joe

    2006-01-01

    We here identify a protein (AlfA; actin like filament) that defines a new family of actins that are only distantly related to MreB and ParM. AlfA is required for segregation of Bacillus subtilis plasmid pBET131 (a mini pLS32-derivative) during growth and sporulation. A 3-kb DNA fragment encoding alfA and a downstream gene (alfB) is necessary and sufficient for plasmid stability. AlfA-GFP assembles dynamic cytoskeletal filaments that rapidly turn over (t1/2

  10. PRODUCTION OPTIMIZATION OF EXTRACELLULAR L-ASPARAGINASE THROUGH SOLID- STATE FERMENTATION BY ISOLATED BACILLUS SUBTILIS.

    Directory of Open Access Journals (Sweden)

    Susmita Shukla

    2013-02-01

    Full Text Available L-asparaginase has been used as anti-tumor agent for the treatment of acute lymphoblastic leukemia and food processing aid to reduce the formation of cancer causing acrylamide. Extracellular Lasparaginase production was optimized through solid state fermentation using ground nut cake by isolated Bacillus subtilis. which was not reported in literature.Optimum production of L-asparaginase enzyme (18.4U/ml was obtained after 48h of incubation at 370C moisture content of 70% and at pH 7.

  11. A Catalytic Mechanism Revealed by the Crystal Structures of the Imidazolonepropionase from Bacillus subtilis.

    OpenAIRE

    Yu, Y.; Liang, Y.H.; Brostromer, E.; Quan, J. M.; PANJIKAR, S; Dong, Y. H.; Su, X. D.

    2006-01-01

    Imidazolonepropionase (EC 3.5.2.7) catalyzes the third step in the universal histidine degradation pathway, hydrolyzing the carbon-nitrogen bonds in 4-imidazolone-5-propionic acid to yield N-formimino-l-glutamic acid. Here we report the crystal structures of the Bacillus subtilis imidazolonepropionase and its complex at 2.0-A resolution with substrate analog imidazole-4-acetic acid sodium (I4AA). The structure of the native enzyme contains two domains, a TIM (triose-phosphate isomerase) barre...

  12. Localization of UvrA and Effect of DNA Damage on the Chromosome of Bacillus subtilis

    OpenAIRE

    Smith, Bradley T.; Grossman, Alan D.; Walker, Graham C.

    2002-01-01

    We found that the nucleotide excision repair protein UvrA, which is involved in DNA damage recognition, localizes to the entire chromosome both before and after damage in living Bacillus subtilis cells. We suggest that the UvrA2B damage recognition complex is constantly scanning the genome, searching for lesions in the DNA. We also found that DNA damage induces a dramatic reconfiguration of the chromosome such that it no longer fills the entire cell as it does during normal growth. This recon...

  13. Cloning, sequencing, and expression of Bacillus subtilis genes involved in ATP-dependent nuclease synthesis.

    OpenAIRE

    Kooistra, J; Venema, G

    1991-01-01

    The genes encoding the subunits of the Bacillus subtilis ATP-dependent nuclease (add genes) have been cloned. The genes were located on an 8.8-kb SalI-SmaI chromosomal DNA fragment. Transformants of a recBCD deletion mutant of Escherichia coli with plasmid pGV1 carrying this DNA fragment showed ATP-dependent nuclease activity. Three open reading frames were identified on the 8.8-kb SalI-SmaI fragment, which could encode three proteins with molecular masses of 135 (AddB protein), 141 (AddA pro...

  14. Cloning, nucleotide sequence, and expression of the Bacillus subtilis lon gene.

    OpenAIRE

    Riethdorf, S.; Völker, U; Gerth, U.; Winkler, A; Engelmann, S; Hecker, M.

    1994-01-01

    The lon gene of Escherichia coli encodes the ATP-dependent serine protease La and belongs to the family of sigma 32-dependent heat shock genes. In this paper, we report the cloning and characterization of the lon gene from the gram-positive bacterium Bacillus subtilis. The nucleotide sequence of the lon locus, which is localized upstream of the hemAXCDBL operon, was determined. The lon gene codes for an 87-kDa protein consisting of 774 amino acid residues. A comparison of the deduced amino ac...

  15. Medium optimization for the production of recombinant nattokinase by Bacillus subtilis using response surface methodology.

    Science.gov (United States)

    Chen, Po Ting; Chiang, Chung-Jen; Chao, Yun-Peng

    2007-01-01

    Nattokinase is a potent fibrinolytic enzyme with the potential for fighting cardiovascular diseases. Most recently, a new Bacillus subtilis/Escherichia coli (B. subtilis/E. coli) shuttle vector has been developed to achieve stable production of recombinant nattokinase in B. subtilis (Chen; et al. 2007, 23, 808-813). With this developed B. subtilis strain, the design of an optimum but cost-effective medium for high-level production of recombinant nattokinase was attempted by using response surface methodology. On the basis of the Plackett-Burman design, three critical medium components were selected. Subsequently, the optimum combination of selected factors was investigated by the Box-Behnken design. As a result, it gave the predicted maximum production of recombinant nattokinase with 71 500 CU/mL for shake-flask cultures when the concentrations of soybean hydrolysate, potassium phosphate, and calcium chloride in medium were at 6.100, 0.415, and 0.015%, respectively. This was further verified by a duplicated experiment. Moreover, the production scheme based on the optimum medium was scaled up in a fermenter. The batch fermentation of 3 L was carried out by controlling the condition at 37 degrees C and dissolved oxygen reaching 20% of air saturation level while the fermentation pH was initially set at 8.5. Without the need for controlling the broth pH, recombinant nattokinase production with a yield of 77 400 CU/mL (corresponding to 560 mg/L) could be obtained in the culture broth within 24 h. In particular, the recombinant B. subtilis strain was found fully stable at the end of fermentation when grown on the optimum medium. Overall, it indicates the success of this experimental design approach in formulating a simple and cost-effective medium, which provides the developed strain with sufficient nutrient supplements for stable and high-level production of recombinant nattokinase in a fermenter. PMID:17914859

  16. Draft Genome Sequence of Commercial Textile Dye-Decolorizing and -Degrading Bacillus subtilis Strain C3 Isolated in India

    Science.gov (United States)

    Kunadia, Khushbu; Nathani, Neelam M.; Kothari, Vishal; Kotadia, Rohit J.; Kothari, Charmy R.; Joshi, Anjali; Rank, Jalpa K.; Faldu, Priti R.; Shekar, M. Chandra; Viroja, Mitkumar J.; Patel, Priyank A.; Jadeja, Divyarajsinh; Reddy, Bhaskar; Pal Singh, Ravindra; Koringa, Prakash G.; Joshi, Chaitanya G.

    2016-01-01

    Bacillus subtilis C3, a commercial textile dye-decolorizing and -degrading bacterium, was isolated from the common effluent treatment plant (CEPT) of the Jetpur textile dyeing and printing industrial sector situated in the district of Rajkot, Gujarat, India. Here, we present the annotated 4.18-Mb draft genome sequence of B. subtilis C3, providing information about the metabolic pathways involved in decolorization and degradation of several commercial textile azo dyes. Thus, we confirm B. subtilis C3 as a potential candidate for bioremediation of textile effluents. PMID:26966205

  17. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of Bacillus subtilis

    DEFF Research Database (Denmark)

    Soufi, Boumediene; Kumar, C.; Gnad, F.;

    2010-01-01

    We applied stable isotope labeling by amino acids in cell culture (SILAC) to large-scale quantitative proteomics analyses of the model bacterium Bacillus subtilis in two physiological conditions: growth on succinate and growth under phosphate starvation. Using a B. subtilis strain auxotrophic...... of the most comprehensive quantitative proteomics studies in bacteria, covering more than 75% of the B. subtilis genes expressed in the log phase of growth. Furthermore, we detect and quantify dynamics of 35 Ser/Thr/Tyr phosphorylation sites under growth on succinate, and 10 phosphorylation sites under...

  18. Draft Genome Sequence of Commercial Textile Dye-Decolorizing and -Degrading Bacillus subtilis Strain C3 Isolated in India.

    Science.gov (United States)

    Kunadia, Khushbu; Nathani, Neelam M; Kothari, Vishal; Kotadia, Rohit J; Kothari, Charmy R; Joshi, Anjali; Rank, Jalpa K; Faldu, Priti R; Shekar, M Chandra; Viroja, Mitkumar J; Patel, Priyank A; Jadeja, Divyarajsinh; Reddy, Bhaskar; Pal Singh, Ravindra; Koringa, Prakash G; Joshi, Chaitanya G; Kothari, Ramesh K

    2016-03-10

    Bacillus subtilis C3, a commercial textile dye-decolorizing and -degrading bacterium, was isolated from the common effluent treatment plant (CEPT) of the Jetpur textile dyeing and printing industrial sector situated in the district of Rajkot, Gujarat, India. Here, we present the annotated 4.18-Mb draft genome sequence of B. subtilis C3, providing information about the metabolic pathways involved in decolorization and degradation of several commercial textile azo dyes. Thus, we confirm B. subtilis C3 as a potential candidate for bioremediation of textile effluents.

  19. Caracterización de cristales de calcita bioprecipitada por un aislamiento nativo de Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Carolina Montoya

    2007-02-01

    Full Text Available Bacillus subtilis es una bacteria útil en algunas aplicaciones biotecnológicas por poseer enzimas como las amilasas, las cuales desempeñan un papel importante en diferentes procesos industriales. Una de sus propiedades, poco estudiada, ha sido su capacidad de inducir bioprecipitación química de carbonato de calcio (Ca2+ + HCO3 3> CaCO3 + H+ mediante un mecanismo similar al observado en la formación de rocas, suelos y estructuras biológicas como huesos, conchas y dientes. En esta investigación se estudiaron los cristales producidos por un aislamiento nativo de B. subtilis, tomado de una mina de oro situada en Segovia (Antioquia. Se determinó su capacidad calcificante utilizando el medio de cultivo B4. La caracterización del cristal producido se realizó con lupa binocular, microscopio petrográfico de luz plana polarizada (MOLP en su modo de luz transmitida, microscopio electrónico de barrido con analizador de estado sólido (ESEM/EDX y espectroscopía infrarroja con transformada de Fourier (FTIR. A partir de los resultados obtenidos por medio de la caracterización utilizando la combinación de las técnicas analíticas que se mencionaron, fue posible determinar que el aislado nativo de B. subtilis generó y por ende es productor de cristales de carbonato de calcio (CaCO3 en su forma polimórfica de baja temperatura (calcite.Palabras clave: Bacillus subtilis, calcita, bioprecipitación, mineralogía aplicada, biomineralogía.ABSTRACTBacillus subtilis, a bacterium useful in some biotechnology applications, contains enzymes such as amylases, which play an important role in several industrial processes. One of its properties, not very well studied, is its capacity to induce the chemical bioprecipitation of CaCO3 (Ca2+ + HCO3 —> CaCO3 + H+, a similar mechanism commonly observed in the formation of rocks, soils and biological structures like bones, shells and teeth. In this work we have studied carbonate crystals produced by a B

  20. Isothermal titration calorimetry and surface plasmon resonance allow quantifying substrate binding to different binding sites of Bacillus subtilis xylanase

    DEFF Research Database (Denmark)

    Cuyvers, Sven; Dornez, Emmie; Abou Hachem, Maher;

    2012-01-01

    Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first was a cat......Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first...

  1. Application of Bacillus subtilis 168 as a multifunctional agent for improvement of the durability of cement mortar.

    Science.gov (United States)

    Park, Sung-Jin; Park, Jong-Myong; Kim, Wha-Jung; Ghim, Sa-Youl

    2012-11-01

    Microbiological calcium carbonate precipitation (MCCP) has been investigated for its ability to improve the durability of cement mortar. However, very few strains have been applied to crack remediation and strengthening of cementitious materials. In this study, we report the biodeposition of Bacillus subtilis 168 and its ability to enhance the durability of cement material. B. subtilis 168 was applied to the surface of cement specimens. The results showed a new layer of deposited organic-inorganic composites on the surface of the cement paste. In addition, the water permeability of the cement paste treated with B. subtilis 168 was lower than that of non-treated specimens. Furthermore, artificial cracks in the cement paste were completely remediated by the biodeposition of B. subtilis 168. The compressive strength of cement mortar treated with B. subtilis 168 increased by about 19.5% when compared with samples completed with only B4 medium. Taken together, these findings suggest that the biodeposition of B. subtilis 168 could be used as a sealing and coating agent to improve the strength and water resistance of concrete. This is the first paper to report the application of Bacillus subtilis 168 for its ability to improve the durability of cement mortar through calcium carbonate precipitation.

  2. Optimization of medium composition for the production of compounds effective against Xanthomonas campestris by bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Rončević Zorana Z.

    2014-01-01

    Full Text Available The biocontrol agents are a very promising alternative to synthetic pesticides that are presently used to control plant diseases caused by phytopathogenic microorganisms. Members of the Bacillus genera are soil bacteria that produce significant quantities of agriculturally important bioactive compounds. Production of these compounds can be improved by changing the nutritional and environmental conditions. The aim of this study was the optimization of medium composition, using response surface methodology, for the production of compounds effective against Xanthomonas campestris ATCC 13951 by Bacillus subtilis ATCC 6633. To study the production of antimicrobial compounds by selected Bacillus strain, the producing microorganisms were cultivated on nutrient broth. The inhibition zone diameter of 18.0 mm obtained by the diffusion-disc method indicated that the used Bacillus subtilis strain produces compounds with antimicrobial activity against Xanthomonas campestris ATCC 13951. To optimize the composition of the cultivation medium in terms of glycerol, sodium nitrite and phosphates content, experiments were carried out in accordance with Box-Behnken design, and optimization of multiple responses was performed using the concept of desirability function. The developed model predicted that the maximum inhibition zone diameter (26.23 mm against tested phytopathogen is achieved when the initial content of glycerol, sodium nitrite and phosphate were 50.00 g/L, 2.85 g/L and 11.00 g/L, respectively. To minimize the consumption of medium components and costs of effluents processing, additional optimization set was made. The techno-economic analysis of the obtained results has to be done to select optimal medium composition for industrial production of antimicrobial compounds.

  3. Heterologous expression, biochemical characterization, and overproduction of alkaline α-amylase from Bacillus alcalophilus in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Li Jianghua

    2011-10-01

    Full Text Available Abstract Background Alkaline α-amylases have potential applications for hydrolyzing starch under high pH conditions in the starch and textile industries and as ingredients in detergents for automatic dishwashers and laundries. While the alkaline α-amylase gains increased industrial interest, the yield of alkaline α-amylases from wild-type microbes is low, and the combination of genetic engineering and process optimization is necessary to achieve the overproduction of alkaline α-amylase. Results The alkaline α-amylase gene from Bacillus alcalophilus JN21 (CCTCC NO. M 2011229 was cloned and expressed in Bacillus subtilis strain WB600 with vector pMA5. The recombinant alkaline α-amylase was stable at pH from 7.0 to 11.0 and temperature below 40°C. The optimum pH and temperature of alkaline α-amylase was 9.0 and 50°C, respectively. Using soluble starch as the substrate, the Km and Vmax of alkaline α-amylase were 9.64 g/L and 0.80 g/(L·min, respectively. The effects of medium compositions (starch, peptone, and soybean meal and temperature on the recombinant production of alkaline α-amylase in B. subtilis were investigated. Under the optimal conditions (starch concentration 0.6% (w/v, peptone concentration 1.45% (w/v, soybean meal concentration 1.3% (w/v, and temperature 37°C, the highest yield of alkaline α-amylase reached 415 U/mL. The yield of alkaline α-amylase in a 3-L fermentor reached 441 U/mL, which was 79 times that of native alkaline α-amylase from B. alcalophilus JN21. Conclusions This is the first report concerning the heterologous expression of alkaline α-amylase in B. subtilis, and the obtained results make it feasible to achieve the industrial production of alkaline α-amylase with the recombinant B. subtilis.

  4. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    Directory of Open Access Journals (Sweden)

    Yi-Huang Hsueh

    Full Text Available Zinc oxide nanoparticles (ZnO NPs are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm, with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles.

  5. IMMUNE-RELATED GENES EXPRESSION AND PHAGOCYTOSIS AGAINST WHITE SPOT SYNDROME VIRUS AFTER ORAL DELIVERY OF VP28 USING BACILLUS SUBTILIS AS VEHICLES IN LITOPENAEUS VANNAMEI%以枯草芽孢杆菌递呈VP28对南美白对虾免疫相关基因表达和细胞特异性吞噬的影响

    Institute of Scientific and Technical Information of China (English)

    丁晶; 王彦波; 傅玲琳

    2013-01-01

    以枯草芽孢杆菌(Bacillus subtilis)为活载体口服递呈对虾白斑综合征病毒(WSSV)囊膜蛋白 VP28,评价其抗病毒感染能力、对南美白对虾免疫相关基因表达以及血淋巴细胞对病毒特异性吞噬的影响。经口服免疫枯草重组菌株B. subtilis-VP28攻毒后,对虾的相对存活率达83.3%。为探讨重组菌株的抗病机理,比较研究了免疫相关基因-proPO(酚氧化酶原)、Peroxinectin(PE)和脂多糖-β-1,3-葡聚糖结合蛋白(LGBP)基因的表达差异,并进一步分析了血淋巴细胞吞噬活性和特异性。结果表明, B. subtilis-VP28菌液能显著提高(P<0.05)对虾proPO、PE和LGBP mRNA的表达水平和血细胞对WSSV的吞噬活性, B. subtilis组对免疫相关基因也有一定的激活作用,而B. subtilis-VP28发酵上清液则能增加血细胞吞噬活性;此外, B. subtilis-VP28菌液组血细胞对WSSV具有特异性吞噬作用。研究为枯草重组菌株B. subtilis-VP28抗WSSV感染作用及其作为特殊功能水产微生态制剂的应用提供了一定的科学依据。%The regulation of immune-related genes expression and phagocytosis of White Spot Syndrome Virus (WSSV) were evaluated by oral delivery of VP28 using Bacillus subtilis as vehicles in Litopenaeus vannamei. In our initial ex-periment, by oral delivery of B. subtilis spores harboring VP28 (B. subtilis-VP28) to L. vannamei, the extremely high survival (Relative Percent Survival:83.3%) upon challenge with WSSV can be observed. The differences of genes ex-pression levels of proPO, Peroxinectin (PE) and lipopolysaccharide-and beta-1, 3-glucan-binding protein (LGBP) were demonstrated among experimental groups of B. subtilis-VP28 bacterial spores, B. subtilis-VP28 supernatants, B. subtilis and control. The result showed that immune-related genes (proPO, PE and LGBP) were significantly (P<0.05) upregu-lated in both B. subtilis-VP28 bacterial spores and B. subtilis feeding groups compared to B. subtilis-VP28

  6. Identification of the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R.

    Directory of Open Access Journals (Sweden)

    Xiankai Liu

    Full Text Available Immunoproteomics was used to screen the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. The spore and vegetative proteins were separated by 2D gel electrophoresis and transferred to polyvinylidene difluoride membranes, and then western blotting was performed with rabbit immune serum against B.anthracis live spores. Immunogenic spots were cut and digested by trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed to identify the proteins. As a result, 11 and 45 immunogenic proteins were identified in the spores and vegetative cells, respectively; 26 of which have not been reported previously. To verify their immunogenicity, 12 of the identified proteins were selected to be expressed, and the immune sera from the mice vaccinated by the 12 expressed proteins, except BA0887, had a specific western blot band with the A16R whole cellular lytic proteins. Some of these immunogenic proteins might be used as novel vaccine candidates themselves or for enhancing the protective efficacy of a protective-antigen-based vaccine.

  7. Levan from Bacillus subtilis Natto: its effects in normal and in streptozotocin-diabetic rats

    Directory of Open Access Journals (Sweden)

    Fernando Cesar Bazani Cabral de Melo

    2012-12-01

    Full Text Available Levan is an exopolysaccharide of fructose primarily linked by β-(2→6 glycosidic bonds with some β-(2→1 branched chains. Due to its chemical properties, levan has possible applications in both the food and pharmaceutical industries. Bacillus subtilis is a promising industrial levan producer, as it ferments sucrose and has a high levan-formation capacity. A new strain of B. subtilis was recently isolated from Japanese food natto, and it has produced levan in large quantities. For future pharmaceutical applications, this study aimed to investigate the effects of levan produced by B. subtilis Natto, mainly as potential hypoglycemic agent, (previously optimized with a molecular weight equal to 72.37 and 4,146 kDa in Wistar male rats with diabetes induced by streptozotocin and non-diabetic rats and to monitor their plasma cholesterol and triacylglycerol levels. After 15 days of experimentation, the animals were sacrificed, and their blood samples were analyzed. The results, compared using analysis of variance, demonstrated that for this type of levan, a hypoglycemic effect was not observed, as there was no improvement of diabetes symptoms during the experiment. However, levan did not affect any studied parameters in normal rats, indicating that the exopolysaccharide can be used for other purposes.

  8. Levan from Bacillus subtilis Natto: its effects in normal and in streptozotocin-diabetic rats.

    Science.gov (United States)

    de Melo, Fernando Cesar Bazani Cabral; Zaia, Cássia Thaïs Bussamra Viera; Celligoi, Maria Antonia Pedrine Colabone

    2012-10-01

    Levan is an exopolysaccharide of fructose primarily linked by β-(2→6) glycosidic bonds with some β-(2→1) branched chains. Due to its chemical properties, levan has possible applications in both the food and pharmaceutical industries. Bacillus subtilis is a promising industrial levan producer, as it ferments sucrose and has a high levan-formation capacity. A new strain of B. subtilis was recently isolated from Japanese food natto, and it has produced levan in large quantities. For future pharmaceutical applications, this study aimed to investigate the effects of levan produced by B. subtilis Natto, mainly as potential hypoglycemic agent, (previously optimized with a molecular weight equal to 72.37 and 4,146 kDa) in Wistar male rats with diabetes induced by streptozotocin and non-diabetic rats and to monitor their plasma cholesterol and triacylglycerol levels. After 15 days of experimentation, the animals were sacrificed, and their blood samples were analyzed. The results, compared using analysis of variance, demonstrated that for this type of levan, a hypoglycemic effect was not observed, as there was no improvement of diabetes symptoms during the experiment. However, levan did not affect any studied parameters in normal rats, indicating that the exopolysaccharide can be used for other purposes. PMID:24031993

  9. selective production and characterization of levan by Bacillus subtilis (Natto) Takahashi.

    Science.gov (United States)

    Shih, Ing-Lung; Yu, Yun-Ti; Shieh, Chwen-Jen; Hsieh, Chien-Yan

    2005-10-19

    To meet the industrial need of an efficient microbial method for increased levan production, Bacillus subtilis (natto) Takahashi, a commercial natto starter for preparing fermented soybeans (natto), was used to produce levan. After cultivation for 21 h, 40-50 mg of levan mL(-1) was produced in medium containing 20% (w/w) sucrose, which was approximately 50% yield on available fructose. The product consisted of two fractions with different molecular masses (1794 and 11 kDa), which were easily separated by fractionation using an ethanol gradient. The products were well characterized by GPC, 13C NMR, and 1H NMR. The various sugars and concentrations, initial pH, fermentation temperature, and agitation speed affected the levan production by B. subtilis (natto) Takahashi. Takahashi strain is the most efficient levan-producing strain among all of the B. subtilis strains tested and, as previously reported, it produced the highest yield of levan in the least time (21 h) under the common cultivation condition. PMID:16218666

  10. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production.

    Science.gov (United States)

    Stahmann, K P; Revuelta, J L; Seulberger, H

    2000-05-01

    Chemical riboflavin production, successfully used for decades, is in the course of being replaced by microbial processes. These promise to save half the costs, reduce waste and energy requirements, and use renewable resources like sugar or plant oil. Three microorganisms are currently in use for industrial riboflavin production. The hemiascomycetes Ashbya gossypii, a filamentous fungus, and Candida famata, a yeast, are naturally occurring overproducers of this vitamin. To obtain riboflavin production with the gram-positive bacterium Bacillus subtilis requires at least the deregulation of purine synthesis and a mutation in a flavokinase/FAD-synthetase. It is common to all three organisms that riboflavin production is recognizable by the yellow color of the colonies. This is an important tool for the screening of improved mutants. Antimetabolites like itaconate, which inhibits the isocitrate lyase in A. gossypii, tubercidin, which inhibits purine biosynthesis in C. famata, or roseoflavin, a structural analog of riboflavin used for B. subtilis, have been applied successfully for mutant selections. The production of riboflavin by the two fungi seems to be limited by precursor supply, as was concluded from feeding and gene-overexpression experiments. Although flux studies in B. subtilis revealed an increase both in maintenance metabolism and in the oxidative part of the pentose phosphate pathway, the major limitation there seems to be the riboflavin pathway. Multiple copies of the rib genes and promoter replacements are necessary to achieve competitive productivity. PMID:10855708

  11. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

    Science.gov (United States)

    Mars, Ruben A T; Nicolas, Pierre; Ciccolini, Mariano; Reilman, Ewoud; Reder, Alexander; Schaffer, Marc; Mäder, Ulrike; Völker, Uwe; van Dijl, Jan Maarten; Denham, Emma L

    2015-03-01

    Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions. PMID:25790031

  12. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Ruben A T Mars

    2015-03-01

    Full Text Available Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions.

  13. Ectopic integration vectors for generating fluorescent promoter fusions in Bacillus subtilis with minimal dark noise.

    Directory of Open Access Journals (Sweden)

    Stephanie Trauth

    Full Text Available Fluorescent protein promoter reporters are important tools that are widely used for diverse purposes in microbiology, systems biology and synthetic biology and considerable engineering efforts are still geared at improving the sensitivity of the reporter systems. Here we focus on dark noise, i.e. the signal that is generated by the empty vector control. We quantitatively characterize the dark noise of a few common bacterial reporter systems by single cell microscopy. All benchmarked reporter systems generated significant amounts of dark noise that exceed the cellular autofluorescence to different extents. We then reengineered a multicolor set of fluorescent ectopic integration vectors for Bacillus subtilis by introducing a terminator immediately upstream of the promoter insertion site, resulting in an up to 2.7-fold reduction of noise levels. The sensitivity and dynamic range of the new high-performance pXFP_Star reporter system is only limited by cellular autofluorescence. Moreover, based on studies of the rapE promoter of B. subtilis we show that the new pXFP_Star reporter system reliably reports on the weak activity of the rapE promoter whereas the original reporter system fails because of transcriptional interference. Since the pXFP_Star reporter system properly isolates the promoter from spurious transcripts, it is a particularly suitable tool for quantitative characterization of weak promoters in B. subtilis.

  14. Second Messenger Signaling in Bacillus subtilis: Accumulation of Cyclic di-AMP Inhibits Biofilm Formation.

    Science.gov (United States)

    Gundlach, Jan; Rath, Hermann; Herzberg, Christina; Mäder, Ulrike; Stülke, Jörg

    2016-01-01

    The Gram-positive model organism Bacillus subtilis produces the essential second messenger signaling nucleotide cyclic di-AMP. In B. subtilis and other bacteria, c-di-AMP has been implicated in diverse functions such as control of metabolism, cell division and cell wall synthesis, and potassium transport. To enhance our understanding of the multiple functions of this second messenger, we have studied the consequences of c-di-AMP accumulation at a global level by a transcriptome analysis. C-di-AMP accumulation affected the expression of about 700 genes, among them the two major operons required for biofilm formation. The expression of both operons was severely reduced both in the laboratory and a non-domesticated strain upon accumulation of c-di-AMP. In excellent agreement, the corresponding strain was unable to form complex colonies. In B. subtilis, the transcription factor SinR controls the expression of biofilm genes by binding to their promoter regions resulting in transcription repression. Inactivation of the sinR gene restored biofilm formation even at high intracellular c-di-AMP concentrations suggesting that the second messenger acts upstream of SinR in the signal transduction pathway. As c-di-AMP accumulation did not affect the intracellular levels of SinR, we conclude that the nucleotide affects the activity of SinR. PMID:27252699

  15. Protein-tyrosine phosphorylation in Bacillus subtilis: a 10-year retrospective

    Directory of Open Access Journals (Sweden)

    Josef eDeutscher

    2015-01-01

    Full Text Available The discovery of tyrosine-phosphorylated proteins in Bacillus subtilis in the year 2003 was followed by a decade of intensive research activity. Here we provide an overview of the lessons learned in that period. While the number of characterized kinases and phosphatases involved in reversible protein-tyrosine phosphorylation in B. subtilis has remained essentially unchanged, the number of proteins known to be targeted by this post-translational modification has increased dramatically. This is mainly due to phosphoproteomics and interactomics studies, which were instrumental in identifying new tyrosine-phosphorylated proteins. Despite their structural similarity, the two B. subtilis protein-tyrosine kinases (BY-kinases, PtkA and PtkB (EpsB, seem to accomplish different functions in the cell. The PtkB is encoded by a large operon involved in exopolysaccharide production, and its main role appears to be the control of this process. The PtkA seems to have a more complex role; it phosphorylates and regulates a large number of proteins involved in the DNA, fatty acid and carbon metabolism and engages in physical interaction with other types of kinases (Ser/Thr kinases, leading to mutual phosphorylation. PtkA also seems to respond to several activator proteins, which direct its activity towards different substrates. In that respect PtkA seems to function as a highly connected signal integration device.

  16. Novel broad host range shuttle vectors for expression in Escherichia coli, Bacillus subtilis and Pseudomonas putida.

    Science.gov (United States)

    Troeschel, Sonja Christina; Thies, Stephan; Link, Olga; Real, Catherine Isabell; Knops, Katja; Wilhelm, Susanne; Rosenau, Frank; Jaeger, Karl-Erich

    2012-10-15

    Novel shuttle vectors named pEBP were constructed to allow the gene expression in different bacterial hosts including Escherichia coli, Bacillus subtilis and Pseudomonas putida. These vectors share the inducible promoters P(T7) and P(Xyl) and a cos site to enable packaging of plasmid DNA into phage, and carry different multiple cloning sites and antibiotic resistance genes. Vector pEBP41 generally replicates episomally while pEBP18 replicates episomally in Gram-negative bacteria only, but integrates into the chromosome of B. subtilis. Plasmid copy numbers determined for E. coli and P. putida were in the range of 5-50 per cell. The functionality of pEBP18 and pEBP41 was confirmed by expression of two lipolytic enzymes, namely lipase A from B. subtilis and cutinase from the eukaryotic fungus Fusarium solani pisi in three different host strains. Additionally, we report here the construction of a T7 RNA polymerase-based expression strain of P. putida. PMID:22440389

  17. Isolation and characterization of atrazine mineralizing Bacillus subtilis strain HB-6.

    Directory of Open Access Journals (Sweden)

    Jinhua Wang

    Full Text Available Atrazine is a widely used herbicide with great environmental concern due to its high potential to contaminate soil and waters. An atrazine-degrading bacterial strain HB-6 was isolated from industrial wastewater and the 16S rRNA gene sequencing identified HB-6 as a Bacillus subtilis. PCR assays indicated that HB-6 contained atrazine-degrading genes trzN, atzB and atzC. The strain HB-6 was capable of utilizing atrazine and cyanuric acid as a sole nitrogen source for growth and even cleaved the s-triazine ring and mineralized atrazine. The strain demonstrated a very high efficiency of atrazine biodegradation with a broad optimum pH and temperature ranges and could be enhanced by cooperating with other bacteria, suggesting its huge potential for remediation of atrazine-contaminated sites. To our knowledge, there are few Bacillus subtilis strains reported that can mineralize atrazine, therefore, the present work might provide some new insights on atrazine remediation.

  18. Isolation and characterization of atrazine mineralizing Bacillus subtilis strain HB-6.

    Science.gov (United States)

    Wang, Jinhua; Zhu, Lusheng; Wang, Qi; Wang, Jun; Xie, Hui

    2014-01-01

    Atrazine is a widely used herbicide with great environmental concern due to its high potential to contaminate soil and waters. An atrazine-degrading bacterial strain HB-6 was isolated from industrial wastewater and the 16S rRNA gene sequencing identified HB-6 as a Bacillus subtilis. PCR assays indicated that HB-6 contained atrazine-degrading genes trzN, atzB and atzC. The strain HB-6 was capable of utilizing atrazine and cyanuric acid as a sole nitrogen source for growth and even cleaved the s-triazine ring and mineralized atrazine. The strain demonstrated a very high efficiency of atrazine biodegradation with a broad optimum pH and temperature ranges and could be enhanced by cooperating with other bacteria, suggesting its huge potential for remediation of atrazine-contaminated sites. To our knowledge, there are few Bacillus subtilis strains reported that can mineralize atrazine, therefore, the present work might provide some new insights on atrazine remediation.

  19. Simulation of Bacillus subtilis biofilm growth on agar plate by diffusion-reaction based continuum model

    Science.gov (United States)

    Zhang, Xianlong; Wang, Xiaoling; Nie, Kai; Li, Mingpeng; Sun, Qingping

    2016-08-01

    Various species of bacteria form highly organized spatially-structured aggregates known as biofilms. To understand how microenvironments impact biofilm growth dynamics, we propose a diffusion-reaction continuum model to simulate the formation of Bacillus subtilis biofilm on an agar plate. The extended finite element method combined with level set method are employed to perform the simulation, numerical results show the quantitative relationship between colony morphologies and nutrient depletion over time. Considering that the production of polysaccharide in wild-type cells may enhance biofilm spreading on the agar plate, we inoculate mutant colony incapable of producing polysaccharide to verify our results. Predictions of the glutamate source biofilm’s shape parameters agree with the experimental mutant colony better than that of glycerol source biofilm, suggesting that glutamate is rate limiting nutrient for Bacillus subtilis biofilm growth on agar plate, and the diffusion-limited is a better description to the experiment. In addition, we find that the diffusion time scale is of the same magnitude as growth process, and the common-employed quasi-steady approximation is not applicable here.

  20. Variable Lymphocyte Receptor Recognition of the Immunodominant Glycoprotein of Bacillus anthracis Spores

    Energy Technology Data Exchange (ETDEWEB)

    Kirchdoerfer, Robert N.; Herrin, Brantley R.; Han, Byung Woo; Turnbough, Jr., Charles L.; Cooper, Max D.; Wilson, Ian A. (SNU); (Scripps); (Emory); (UAB); (Emory Vaccine)

    2012-07-25

    Variable lymphocyte receptors (VLRs) are the adaptive immune receptors of jawless fish, which evolved adaptive immunity independent of other vertebrates. In lieu of the immunoglobulin fold-based T and B cell receptors, lymphocyte-like cells of jawless fish express VLRs (VLRA, VLRB, or VLRC) composed of leucine-rich repeats and are similar to toll-like receptors (TLRs) in structure, but antibodies (VLRB) and T cell receptors (VLRA and VLRC) in function. Here, we present the structural and biochemical characterization of VLR4, a VLRB, in complex with BclA, the immunodominant glycoprotein of Bacillus anthracis spores. Using a combination of crystallography, mutagenesis, and binding studies, we delineate the mode of antigen recognition and binding between VLR4 and BclA, examine commonalities in VLRB recognition of antigens, and demonstrate the potential of VLR4 as a diagnostic tool for the identification of B. anthracis spores.

  1. Growth Inhibition of Colletotrichum gloeosporioides by Trichoderma harzianum, Trichoderma koningii, Bacillus subtilis and Pseudomonas fluorescens

    Directory of Open Access Journals (Sweden)

    Febrilia Nur ‘Aini

    2015-11-01

    Full Text Available Colletotrichum  gloeosporioides is  a  disease  which  can  cause  significant yield  loss  of  cocoa.  The  objective  of  this  research  is  to  investigate  the  abilityof  antagonist  microbes,  Trichoderma  harzianum,  Trichoderma  koningii,  Bacillus subtilis  and Pseudomonas  fluorescens  in  controlling  gloeosporioides  biologically  in  laboratorium  condition.  The  experiment  was  carried  out  in  Crop  Protection  Laboratory,  Indonesian  Coffee  and  Cocoa  Research  Institute.  Results of  this  research  showed  that  antagonist  fungi,  T.  harzianum,  T.  koningii,  had  a stronger  ability  in  inhibiting  growth  of  C.  gloeosporioides about  83%  compared  to  the  ability  of  antagonist  bacteria,  B.  subtilis  and P.  fluorescens,  only about  49%. Key words: Growth  inhibition,  Colletotrichum  gloeosporioides,  Trichoderma  harzianum, Trichoderma koningii,  Bacillus subtilis, Pseudomonas fluorescens.

  2. Isolation of Bacillus subtilis as indicator in the disinfection of residual water by means of gamma radiation; Aislamiento de Bacillus subtilis como indicador en la desinfeccion de aguas residuales mediante radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Mata J, M.; Colin C, A. [Facultad de Quimica, UAEM, Paseo Colon esq. Tollocan s/n, Toluca, 50000 Estado de Mexico (Mexico); Lopez V, H.; Brena V, M.; Carrasco A, H.; Pavon R, S. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In the attempt to get more alternatives of disinfection of residual water, the Bacillus subtilis was isolated by means of gamma radiation as a bio indicator of disinfection since it turned out to be resistant to the 5 KGy dose, comparing this one with other usual microorganisms as biondicators like E. coli and S typhimurium which turn out more sensitive to such dose. (Author)

  3. Isolation and Identification of Lipopeptides Produced by Bacillus subtilis fmbJ%Bacillus subtilis fmbJ脂肽类抗菌物质的分离和鉴定

    Institute of Scientific and Technical Information of China (English)

    别小妹; 吕凤霞; 陆兆新; 黄现青; 沈娟

    2006-01-01

    Bacillus subtilis fmbJ脂肽类抗菌物质的分离和鉴定进行了系统研究.通过HPLC层析确定Bacillus subtilis fmbJ抗菌物质由多种组分构成,其中含有保留时间与surfactin相似的成分.通过TLC层析和原位酸解确定Bacillus subtilis fmbJ抗菌物质含有两个具有闭合肽键类的物质,其中之一为迁移率Rf与标样surfactin非常相近的组分.通过ESI-MS分析检测到Bacillus subtilis fmbJ抗菌物质含有分子量与fengicin相同的m/z1449.9、m/z1463.8、m/z1477.8、m/z1491.9和m/z1505.9五种同系物,和分子量与surfactin相同的m/z1008.8、m/z1022.8和m/z1036.8三种同系物.

  4. Effects of the electrolytic treatment on Bacillus subtilis Efeito do tratamento eletrolítico em Bacillus subtis

    Directory of Open Access Journals (Sweden)

    Rodolfo Tolentino-Bisneto

    2003-11-01

    Full Text Available Conventional processes of water disinfection can generate toxic composites. It is the case of the trihalomethanes (carcinogenic formed in the contact of chlorine with organic substances present in the water. The electrolytic treatment can be a substitute for the chlorination process without the need for addition of chemical substances to the process. The effect of the electrolytic treatment using carbon cathode on the viability of the microorganism Bacillus subtilis was tested to determine the death process. By means of electronic microscopy, it was observed that the main cause of the microorganism's death was the cellular lysis due to the electroporation in the cell membrane.Processos convencionais de desinfecção de águas podem gerar compostos tóxicos. Esse é o caso dos trialometanos formados na reação do cloro com compostos orgânicos presentes na água. O tratamento eletrolítico pode ser um substituto à cloração com vantagem de não requer a adição de nenhum composto na água. O efeito do tratamento eletrolítico, utilizando eletrodos de carbono, na viabilidade de Bacillus subtilis foi testado para se determinar o mecanismo de morte. Através de microscopia eletrônica, foi possível evidenciar que a morte do microrganismo se deu pela lise celular, provavelmente provocada pela eletroporação irreversível da membrana celular.

  5. Degradation of proteins during the fermentation of African locust bean (Parkia biglobosa) by strains of Bacillus subtilis and Bacillus pumilus for production of Soumbala

    DEFF Research Database (Denmark)

    Ouoba, L.I.I.; Rechinger, K.B.; Barkholt, Vibeke;

    2003-01-01

    Aims: To examine isolates of Bacillus subtilis and B. pumilus predominant in Soumbala for their ability to degrade African locust bean proteins (ALBP).Methods and Results: Agar diffusion test in casein and ALBP agar was used for screening of isolates. The profiles of water-soluble proteins and fr...

  6. Transcriptional Stimulation of Anthrax Toxin Receptors by Anthrax Edema Toxin and Bacillus anthracis Sterne Spore

    OpenAIRE

    Xu, Qingfu; Hesek, Eric D.; Zeng, Mingtao

    2007-01-01

    We used quantitative real-time RT-PCR to not only investigate the mRNA levels of anthrax toxin receptor 1 (ANTXR1) and 2 (ANTXR2) in the murine J774A.1 macrophage cells and different tissues of mice, but also evaluate the effect of anthrax edema toxin and Bacillus anthracis Sterne spores on the expression of mRNA of these receptors. The mRNA transcripts of both receptors was detected in J774A.1 cells and mouse tissues such as the lung, heart, kidney, spleen, stomach, jejunum, brain, skeleton ...

  7. Functional Expression of Enterobacterial O-Polysaccharide Biosynthesis Enzymes in Bacillus subtilis

    Science.gov (United States)

    Schäffer, Christina; Wugeditsch, Thomas; Messner, Paul; Whitfield, Chris

    2002-01-01

    The expression of heterologous bacterial glycosyltransferases is of interest for potential application in the emerging field of carbohydrate engineering in gram-positive organisms. To assess the feasibility of using enzymes from gram-negative bacteria, the functional expression of the genes wbaP (formerly rfbP), wecA (formerly rfe), and wbbO (formerly rfbF) from enterobacterial lipopolysaccharide O-polysaccharide biosynthesis pathways was examined in Bacillus subtilis. WbaP and WecA are initiation enzymes for O-polysaccharide formation, catalyzing the transfer of galactosyl 1-phosphate from UDP-galactose and N-acetylglucosaminyl 1-phosphate from UDP-N-acetylglucosamine, respectively, to undecaprenylphosphate. The WecA product (undecaprenylpyrophosphoryl GlcNAc) is used as an acceptor to which the bifunctional wbbO gene product sequentially adds a galactopyranose and a galactofuranose residue from the corresponding UDP sugars to form a lipid-linked trisaccharide. Genes were cloned into the shuttle vectors pRB374 and pAW10. In B. subtilis hosts, the genes were effectively transcribed under the vegII promoter control of pRB374, but the plasmids were susceptible to rearrangements and deletion. In contrast, pAW10-based constructs, in which genes were cloned downstream of the tet resistance cassette, were stable but yielded lower levels of enzyme activity. In vitro glycosyltransferase assays were performed in Escherichia coli and B. subtilis, using membrane preparations as sources of enzymes and endogenous undecaprenylphosphate as an acceptor. Incorporation of radioactivity from UDP-α-d-14C-sugar into reaction products verified the functionality of WbaP, WecA, and WbbO in either host. Enzyme activities in B. subtilis varied between 20 and 75% of those measured in E. coli. PMID:12324313

  8. Kinetics of Mn(II) oxidation by spores of the marine Bacillus sp. SG-1

    Science.gov (United States)

    Toyoda, Kazuhiro; Tebo, Bradley M.

    2016-09-01

    The kinetics of Mn(II) oxidation by spores of the marine Bacillus sp. SG-1 was measured under controlled conditions of the initial Mn(II) concentration, spore concentration, chemical speciation, pH, O2, and temperature. Mn(II) oxidation experiments were performed with spore concentrations ranging from 0.7 to 11 × 109 spores/L, a pH range from 5.8 to 8.1, temperatures between 4 and 58 °C, a range of dissolved oxygen from 2 to 270 μM, and initial Mn(II) concentrations from 1 to 200 μM. The Mn(II) oxidation rates were directly proportional to the spore concentrations over these ranges of concentration. The Mn(II) oxidation rate increased with increasing initial Mn(II) concentration to a critical concentration, as described by the Michaelis-Menten model (Km = ca. 3 μM). Whereas with starting Mn(II) concentrations above the critical concentration, the rate was almost constant in low ionic solution (I = 0.05, 0.08). At high ionic solution (I = 0.53, 0.68), the rate was inversely correlated with Mn(II) concentration. Increase in the Mn(II) oxidation rate with the dissolved oxygen concentration followed the Michaelis-Menten model (Km = 12-19 μM DO) in both a HEPES-buffered commercial drinking (soft) water and in artificial and natural seawater. Overall, our results suggest that the mass transport limitations of Mn(II) ions due to secondary Mn oxide products accumulating on the spores cause a significant decrease of the oxidation rate at higher initial Mn(II) concentration on a spore basis, as well as in more concentrated ionic solutions. The optimum pH for Mn(II) oxidation was approximately 7.0 in low ionic solutions (I = 0.08). The high rates at the alkaline side (pH > 7.5) may suggest a contribution by heterogeneous reactions on manganese bio-oxides. The effect of temperature on the Mn(II) oxidation rate was studied in three solutions (500 mM NaCl, ASW, NSW solutions). Thermal denaturation occurred at 58 °C and spore germination was evident at 40 °C in all three

  9. Propriedades emulsificantes e estabilidade do biossurfactante produzido por Bacillus subtilis em manipueira Studies of emulsifying properties and stability of the biosurfactant produced by Bacillus subtilis in cassava wastewater

    Directory of Open Access Journals (Sweden)

    Francisco Fábio Cavalcante Barros

    2008-12-01

    Full Text Available Devido ao elevado poder tensoativo, baixa toxidez e biodegradabilidade, os lipopeptídios produzidos por bactérias do gênero Bacillus estão entre os biossurfactantes mais conhecidos e estudados. Estes compostos são apontados como potenciais insumos para diversos setores industriais, inclusive o de alimentos. Para que seja possível sua aplicação industrial, no entanto, é necessário que estes compostos apresentem estabilidade e manutenção de suas propriedades em condições extremas, que estão freqüentemente associadas a esses processos. O objetivo deste trabalho foi estudar a estabilidade do biossurfactante produzido pela linhagem LB5a de Bacillus subtilis, cultivado em manipueira (resíduo da industrialização da mandioca em um processo piloto. Os estudos de estabilidade foram realizados em função da variação de temperatura, pH e concentração salina. Foram realizadas avaliações da sua capacidade emulsificante em misturas de água com hidrocarbonetos e óleos vegetais, bem como a estabilidade das emulsões formadas. Os resultados mostraram que o biossurfactante foi estável à temperatura de 100 °C por 140 minutos e a 121 °C por até 60 minutos, à concentração de 2,5 a 20% de NaCl e na faixa de pH de 6 a 10. Em relação ao índice de emulsão com 24 horas (IE24, o biossurfactante mostrou elevados valores para diversos hidrocarbonetos cíclicos e alifáticos, além de óleos vegetais com diferentes perfis de ácidos graxos. Todos os resultados obtidos demonstraram a importância do biossurfactante para potenciais aplicações em diversos ramos industriais.Due to the high surface activity, low toxicity, and biodegradability lipopeptides produced by bacteria of the genus Bacillus are among the best biosurfactants known and studied. These compounds are mentioned as potential inputs for various industrial sectors. However, to allow their implementation in industrial processes, it is necessary stability under extreme

  10. The extraordinary specificity of xanthine phosphoribosyltransferase from Bacillus subtilis elucidated by reaction kinetics, ligand binding, and crystallography

    DEFF Research Database (Denmark)

    Arent, Susan; Kadziola, Anders; Larsen, Sine;

    2006-01-01

    Xanthine phosphoribosyltransferase (XPRTase) from Bacillus subtilis is a representative of the highly xanthine specific XPRTases found in Gram-positive bacteria. These XPRTases constitute a distinct subclass of 6-oxopurine PRTases, which deviate strongly from the major class of H(X)GPRTases with ...

  11. Effect of Mono and Di-rhamnolipids on Biofilms Pre-formed by Bacillus subtilis BBK006.

    Science.gov (United States)

    De Rienzo, Mayri A Díaz; Martin, Peter J

    2016-08-01

    Different microbial inhibition strategies based on the planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilms communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms. In this work, we explore the aspects of Bacillus subtilis BBK006 biofilms and examine the contribution of biologically derived surface-active agents (rhamnolipids) to the disruption or inhibition of microbial biofilms produced by Bacillus subtilis BBK006. The ability of mono-rhamnolipids (Rha-C10-C10) produced by Pseudomonas aeruginosa ATCC 9027 and the di-rhamnolipids (Rha-Rha-C14-C14) produced by Burkholderia thailandensis E264, and phosphate-buffered saline to disrupt biofilm of Bacillus subtilis BBK006 was evaluated. The biofilm produced by Bacillus subtilis BBK006 was more sensitive to the di-rhamnolipids (0.4 g/L) produced by Burkholderia thailandensis than the mono-rhamnolipids (0.4 g/L) produced by Pseudomonas aeruginosa ATCC 9027. Rhamnolipids are biologically produced compounds safe for human use. This makes them ideal candidates for use in new generations of bacterial dispersal agents and useful for use as adjuvants for existing microbial suppression or eradication strategies. PMID:27113589

  12. Autoregulation of subtilin biosynthesis in Bacillus subtilis: the role of the spa-box in subtilin-responsive promoters

    NARCIS (Netherlands)

    Kleerebezem, M.; Bongers, R.; Rutten, G.; Vos, de W.M.; Kuipers, O.P.

    2004-01-01

    The production of the type 1 antimicrobial peptide (AMP) subtilin by Bacillus subtilis is regulated in a cell-density-dependent manner [Kleerebezem M, de Vos WM, Kuipers OP. The lantibiotics nisin and subtilin act as extracellular regulators of their own biosynthesis. In: Dunny GM, Winans SC, editor

  13. Transcriptome analysis of sorbic acid-stressed Bacillus subtilis reveals a nutrient limitation response and indicates plasma membrane remodeling

    NARCIS (Netherlands)

    A. ter Beek; B.J.F. Keijser; A. Boorsma; A. Zakrzewska; R. Orij; G.J. Smits; S. Brul

    2008-01-01

    The weak organic acid sorbic acid is a commonly used food preservative, as it inhibits the growth of bacteria, yeasts, and molds. We have used genome-wide transcriptional profiling of Bacillus subtilis cells during mild sorbic acid stress to reveal the growth-inhibitory activity of this preservative

  14. 77 FR 73934 - Bacillus subtilis Strain QST 713 Variant Soil; Amendment to an Exemption From the Requirement of...

    Science.gov (United States)

    2012-12-12

    ... to move over solid substances, and by a phenotype associated with enhanced biofilm formation, growth..., 2011 (76 FR 55329) (FRL- 8886-7), the EPA issued a notice pursuant to FFDCA section 408(d)(3), 21 U.S.C... toxicological profile of Bacillus subtilis strain QST 713 in the Federal Register of July 5, 2000 (65 FR...

  15. Effect of subinhibitory concentrations of four commonly used biocides on the conjugative transfer of Tn916 in Bacillus subtilis

    DEFF Research Database (Denmark)

    Seier-Petersen, Maria Amalie; Jasni, A.; Aarestrup, Frank Møller;

    2014-01-01

    sodium hypochlorite) on the conjugative transposition of the mobile genetic element Tn916.Methods Conjugation assays were carried out between Bacillus subtilis strains. The donor containing Tn916 was pre-exposed to subinhibitory concentrations of each biocide for a defined length of time, which was...

  16. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca

    NARCIS (Netherlands)

    Romero, Diego; de Vicente, Antonio; Rakotoaly, Rivo H.; Dufour, Samuel E.; Veening, Jan-Willem; Arrebola, Eva; Cazorla, Francisco M.; Kuipers, Oscar P.; Paquot, Michel; Perez-Garcia, Alejandro; Stacey, Gary

    2007-01-01

    Podosphaera fusca is the main causal agent of cucurbit powdery mildew in Spain. Four Bacillus subtilis strains, UMAF6614, UMAF6619, UMAF6639, and UMAF8561, with proven ability to suppress the disease on melon in detached leaf and seedling assays, were subjected to further analyses to elucidate the m

  17. Functional Identification of the Product of the Bacillus subtilis yvaL Gene as a SecG Homologue

    NARCIS (Netherlands)

    Wely, Karel H.M. van; Swaving, Jelto; Broekhuizen, Cees P.; Rose, Matthias; Quax, Wim J.; Driessen, Arnold J.M.

    1999-01-01

    Protein export in Escherichia coli is mediated by translocase, a multisubunit membrane protein complex with SecA as the peripheral subunit and the SecY, SecE, and SecG proteins as the integral membrane domain. In the gram-positive bacterium Bacillus subtilis, SecA, SecY, and SecE have been identifie

  18. Immunity to the Bacteriocin Sublancin 168 Is Determined by the SunI (YolF) Protein of Bacillus subtilis

    NARCIS (Netherlands)

    Dubois, Jean-Yves F.; Kouwen, Thijs R. H. M.; Schurich, Anna K. C.; Reis, Carlos R.; Ensing, Hendrik T.; Trip, Erik N.; Zweers, Jessica C.; van Dijl, Jan Maarten

    2009-01-01

    Bacillus subtilis strain 168 produces the extremely stable lantibiotic sublancin 168, which has a broad spectrum of bactericidal activity. Both sublancin 168 production and producer immunity are determined by the SP beta prophage. While the sunA and sunT genes for sublancin 168 production have been

  19. Heterologous Gene Expression in Lactococcus lactis subsp. lactis : Synthesis, Secretion, and Processing of the Bacillus subtilis Neutral Protease

    NARCIS (Netherlands)

    Guchte, Maarten van de; Kodde, Jan; Vossen, Jos M.B.M. van der; Kok, Jan; Venema, Gerard

    1990-01-01

    The Bacillus subtilis nprE gene lacking its own promoter sequence was inserted in the lactococcal expression vector pMG36e. Upon introduction of the recombinant plasmid into Lactococcus lactis subsp. lactis strain MG1363, neutral protease activity could be visualized by the appearance of large clear

  20. Bacillus subtilis polynucleotide phosphorylase 3′-to-5′ DNase activity is involved in DNA repair

    NARCIS (Netherlands)

    P.P. Cardenas (Paula); B. Carrasco (Begoña); H. Sanchez (Humberto); G. Deikus (Gintaras); D.H. Bechhofer (David); J.C. Alonso (Juan)

    2009-01-01

    textabstractIn the presence of Mn2+, an activity in a preparation of purified Bacillus subtilis RecN degrades single-stranded (ss) DNA with a 3′ → 5′ polarity. This activity is not associated with RecN itself, because RecN purified from cells lacking polynucleotide phosphorylase (PNPase) does not sh

  1. Towards the entire proteome of the model bacterium Bacillus subtilis by gel-based and gel-free approaches

    NARCIS (Netherlands)

    Wolff, Susanne; Antelmann, Haike; Albrecht, Dirk; Becher, Doerte; Bernhardt, Joerg; Bron, Sierd; Buettner, Knut; van Dijl, Jan Maarten; Eymann, Christine; Otto, Andreas; Tam, Le Thi; Hecker, Michael

    2007-01-01

    With the emergence of mass spectrometry in protein science and the availability of complete genome sequences, proteomics has gone through a rapid development. The soil bacterium Bacillus subtilis, as one of the first DNA sequenced species, represents a model for Gram-positive bacteria and its proteo

  2. The ability of the biological control agent Bacillus subtilis, strain BB, to colonise vegetable brassicas endophytically following seed inoculation

    NARCIS (Netherlands)

    Wulff, E.G.; Vuurde, van J.W.L.; Hockenhull, J.

    2003-01-01

    The ability of Bacillus subtilis, strain BB, to colonise cabbage seedlings endophytically was examined following seed inoculation. Strain BB was recovered from different plant parts including leaves (cotyledons), stem (hypocotyl) and roots. While high bacterial populations persisted in the roots and

  3. MOLECULAR-CLONING AND SEQUENCE OF COMK, A GENE REQUIRED FOR GENETIC COMPETENCE IN BACILLUS-SUBTILIS

    NARCIS (Netherlands)

    VANSINDEREN, D; TENBERGE, A; HAYEMA, BJ; HAMOEN, L; VENEMA, G

    1994-01-01

    The transformation-deficient strain E26, isolated as a pHV60 insertion mutant, was used to isolate comK, a novel transcription unit required for genetic competence in Bacillus subtilis. Mutational analysis and sequence determination showed that comK contained one open reading frame (ORF), which coul

  4. Biophysical characterization of mutants of Bacillus subtilis lipase evolved for thermostability : Factors contributing to increased activity retention

    NARCIS (Netherlands)

    Augustyniak, Wojciech; Brzezinska, Agnieszka A.; Pijning, Tjaard; Wienk, Hans; Boelens, Rolf; Dijkstra, Bauke W.; Reetz, Manfred T.

    2012-01-01

    Previously, Lipase A from Bacillus subtilis was subjected to in vitro directed evolution using iterative saturation mutagenesis, with randomization sites chosen on the basis of the highest B-factors available from the crystal structure of the wild-type (WT) enzyme. This provided mutants that, unlike

  5. Biophysical characterization of mutants of Bacillus subtilis lipase evolved for thermostability: Factors contributing to increased activity retention

    NARCIS (Netherlands)

    Augustyniak, W.; Brzezinska, A.A.; Pijning, Tjaard; Wienk, H.L.J.; Boelens, R.; Dijkstra, Bauke W.; Reetz, M.T.

    2012-01-01

    Previously, Lipase A from Bacillus subtilis was subjected to in vitro directed evolution using iterative saturation mutagenesis, with randomization sites chosen on the basis of the highest B-factors available from the crystal structure of the wild-type (WT) enzyme. This provided mutants that, unlike

  6. Draft Genome Sequence of Bacillus subtilis Strain NKYL29, an Antimicrobial-Peptide-Producing Strain from Soil

    OpenAIRE

    Jiang, Yanbin; Xu, Haijin; Ying LI; Liu, Hongbin; Yu, Lei; Qiao, Mingqiang; Liu, Gang

    2014-01-01

    Bacillus subtilis strain NKYL29 is an antimicrobial-peptide-producing strain isolated from the soil of Ranzhuang Tunnel in Hebei Province, China. Here, we present the draft genome of this strain, which provides the genetic basis for application of the antimicrobial peptide.

  7. Biolarvicidal activity of Peanibacillus macerans and Bacillus subtilis isolated from the dead larvae against Aedes aegypti - Vector for Chikungunya

    Directory of Open Access Journals (Sweden)

    A. Ramathilaga

    2012-06-01

    Full Text Available Two bacterial species were isolated from dead mosquito larvae. They were identified as Peanibacillus macerans and Bacillus Subtilis. They were examined for their mosquito larvicidal activity against chikunguya vector Aedes aegypti (Diptera: Culucidae. The LC50 values of P. macerans and B. subtilis were recorded 70.99, 50*10^6 cells /ml and 58.97, 49*10^6 cells /ml for 24h and 48h, respectively. The LC50 value of the procured culture Bacillus thuringiensis subsp israelensis also detected. It was noted as 152.02 and 50*10^6 cells /ml for 24hrs and 48hrs. A. aegypti was the most susceptible to B. subtilis. It has the highest relative susceptibility (RS value.

  8. Rapid Detection of Viable Bacillus anthracis Spores in Environmental Samples by Using Engineered Reporter Phages.

    Science.gov (United States)

    Sharp, Natasha J; Molineux, Ian J; Page, Martin A; Schofield, David A

    2016-04-01

    Bacillus anthracis, the causative agent of anthrax, was utilized as a bioterrorism agent in 2001 when spores were distributed via the U.S. postal system. In responding to this event, the Federal Bureau of Investigation used traditional bacterial culture viability assays to ascertain the extent of contamination of the postal facilities within 24 to 48 h of environmental sample acquisition. Here, we describe a low-complexity, second-generation reporter phage assay for the rapid detection of viableB. anthracis spores in environmental samples. The assay uses an engineered B. anthracis reporter phage (Wβ::luxAB-2) which transduces bioluminescence to infected cells. To facilitate low-level environmental detection and maximize the signal response, expression of luxABin an earlier version of the reporter phage (Wβ::luxAB-1) was optimized. These alterations prolonged signal kinetics, increased light output, and improved assay sensitivity. Using Wβ::luxAB-2, detection of B. anthracis spores was 1 CFU in 8 h from pure cultures and as low as 10 CFU/g in sterile soil but increased to 10(5)CFU/g in unprocessed soil due to an unstable signal and the presence of competing bacteria. Inclusion of semiselective medium, mediated by a phage-expressed antibiotic resistance gene, maintained signal stability and enabled the detection of 10(4)CFU/g in 6 h. The assay does not require spore extraction and relies on the phage infecting germinating cells directly in the soil sample. This reporter phage displays promise for the rapid detection of low levels of spores on clean surfaces and also in grossly contaminated environmental samples from complex matrices such as soils. PMID:26873316

  9. Rapid Detection of Viable Bacillus anthracis Spores in Environmental Samples by Using Engineered Reporter Phages

    Science.gov (United States)

    Sharp, Natasha J.; Molineux, Ian J.; Page, Martin A.

    2016-01-01

    Bacillus anthracis, the causative agent of anthrax, was utilized as a bioterrorism agent in 2001 when spores were distributed via the U.S. postal system. In responding to this event, the Federal Bureau of Investigation used traditional bacterial culture viability assays to ascertain the extent of contamination of the postal facilities within 24 to 48 h of environmental sample acquisition. Here, we describe a low-complexity, second-generation reporter phage assay for the rapid detection of viable B. anthracis spores in environmental samples. The assay uses an engineered B. anthracis reporter phage (Wβ::luxAB-2) which transduces bioluminescence to infected cells. To facilitate low-level environmental detection and maximize the signal response, expression of luxAB in an earlier version of the reporter phage (Wβ::luxAB-1) was optimized. These alterations prolonged signal kinetics, increased light output, and improved assay sensitivity. Using Wβ::luxAB-2, detection of B. anthracis spores was 1 CFU in 8 h from pure cultures and as low as 10 CFU/g in sterile soil but increased to 105 CFU/g in unprocessed soil due to an unstable signal and the presence of competing bacteria. Inclusion of semiselective medium, mediated by a phage-expressed antibiotic resistance gene, maintained signal stability and enabled the detection of 104 CFU/g in 6 h. The assay does not require spore extraction and relies on the phage infecting germinating cells directly in the soil sample. This reporter phage displays promise for the rapid detection of low levels of spores on clean surfaces and also in grossly contaminated environmental samples from complex matrices such as soils. PMID:26873316

  10. Testing Nucleoside Analogues as Inhibitors of Bacillus anthracis Spore Germination In Vitro and in Macrophage Cell Culture ▿

    OpenAIRE

    Alvarez, Zadkiel; Lee, Kyungae; Abel-Santos, Ernesto

    2010-01-01

    Bacillus anthracis, the etiological agent of anthrax, has a dormant stage in its life cycle known as the endospore. When conditions become favorable, spores germinate and transform into vegetative bacteria. In inhalational anthrax, the most fatal manifestation of the disease, spores enter the organism through the respiratory tract and germinate in phagosomes of alveolar macrophages. Germinated cells can then produce toxins and establish infection. Thus, germination is a crucial step for the i...

  11. Bacillus anthracis spore interactions with mammalian cells: Relationship between germination state and the outcome of in vitro

    OpenAIRE

    Stojkovic Bojana; Prouty Angela M; Tamilselvam Batcha; Gut Ian M; Czeschin Stephanie; van der Donk Wilfred A; Blanke Steven R

    2011-01-01

    Abstract Background During inhalational anthrax, internalization of Bacillus anthracis spores by host cells within the lung is believed to be a key step for initiating the transition from the localized to disseminated stages of infection. Despite compelling in vivo evidence that spores remain dormant within the bronchioalveolar spaces of the lungs, and germinate only after uptake into host cells, most in vitro studies of infection have been conducted under conditions that promote rapid germin...

  12. Population of Pratylenchus coffeae (Z. and growth of Arabica coffee seedling inoculated by Pseudomonas diminuta L. and Bacillus subtilis (C..

    Directory of Open Access Journals (Sweden)

    Iis Nur Asyiah

    2015-04-01

    Full Text Available Serangan nematoda parasit Pratylenchus coffeae menyebabkan kerusakan jaringan akar tanaman kopi. Pengendalian P. coffeae saat ini dilakukan dengan sistem pengendalian hama terpadu (PHT yaitu dengan memadukan penggunaan klon kopi tahan dengan penggunaan agens hayati yang aman terhadap lingkungan. Penelitian ini bertujuan untuk mempelajari pengaruh bakteri Pseudomonas diminuta dan Bacillus subtilis dalam menekan populasi nematoda P. coffeae dan pengaruhnya tehadap pertumbuhan bibit kopi. Penelitian menggunakan bibit kopi Arabika umur satu bulan yang melibatkan delapan perlakuan dan lima kali ulangan. Perlakuan yang dicoba adalah P. diminuta kerapatan 108 cfu/bibit, P. diminuta kerapatan 2x108 cfu/bibit, B. subtilis kerapatan 108 cfu/bibit, B. subtilis kerapatan 2x108 cfu/bibit, nematisida karbofuran 5 g formulasi/pot, P. diminuta dan Bacillus subtilis masing-masing kerapatan 108 cfu/bibit, kontrol negatif (tanpa agen hayati dan pestisida + nematoda, dan kontrol positif (tanpa tambahan apapun. Penelitian dilakukan selama 16 minggu. Hasil penelitian menunjukkan bahwa inokulasi P.diminuta dan B. subtilis berpengaruh nyata dalam menekan populasi P. coffeae. Perlakuan Bacillus subtilis dengan kepadatan 108 cfu dapat menekan populasi nematoda sebesar 71,3% dan tidak berbeda nyata dengan nematisida sintetis karbofuran yang dapat menekan populasi sebesar 89,7%. Demikian juga dengan bakteri P. diminuta kepadatan 2.108 mampu menekan populasi P.coffeae sebesar 64,2%. Pertumbuhan bibit kopi yang diperlakukan dengan bakteri secara nyata juga meningkat terutama yang diperlakukan B. subtilis dengan kepadatan 108 dan P. diminuta dengan kepadatan 108 cfu, masing-masing meningkat sebesar 35,4% dan 34,2% dibanding bibit yang tidak diinokulasi nematoda

  13. Dynamics of Degrading Naphthalene by Bacillus subtilis%枯草芽孢杆菌(Bacillus subtilis)降解萘的动力学研究

    Institute of Scientific and Technical Information of China (English)

    方世纯; 郝瑞霞; 鲁志强

    2007-01-01

    枯草芽孢杆菌(Bacillus subtilis)HBS-4是从油田中分离出来的一株能高效降解有机物萘的菌株.当萘的初始浓度为100 mg时,该菌株在pH为8.0,温度为40℃:下具有较好的降解效果,作用69 h能降解50%以上的萘.通过HBS-4菌株降解萘的动力学研究,在Williams结构模型的基础上建立了HBS-4作用萘的四组分动力学模型,并用此模型解释菌株HBS-4在降解萘的过程中,葡萄糖含量、菌液浓度、pH、Eh随时间的变化特征.

  14. Inhibition of the Aspergillus flavus Growth and Aflatoxin B1 Contamination on Pistachio Nut by Fengycin and Surfactin-Producing Bacillus subtilis UTBSP1

    Science.gov (United States)

    Farzaneh, Mohsen; Shi, Zhi-Qi; Ahmadzadeh, Masoud; Hu, Liang-Bin; Ghassempour, Alireza

    2016-01-01

    In this study, the treatment of pistachio nuts by Bacillus subtilis UTBSP1, a promising isolate to degrade aflatoxin B1 (AFB1), caused to reduce the growth of Aspergillus flavus R5 and AFB1 content on pistachio nuts. Fluorescence probes revealed that the cell free supernatant fluid from UTBSP1 affects spore viability considerably. Using high-performance liquid chromatographic (HPLC) method, 10 fractions were separated and collected from methanol extract of cell free supernatant fluid. Two fractions showed inhibition zones against A. flavus. Mass spectrometric analysis of the both antifungal fractions revealed a high similarity between these anti-A. flavus compounds and cyclic-lipopeptides of surfactin, and fengycin families. Coproduction of surfactin and fengycin acted in a synergistic manner and consequently caused a strong antifungal activity against A. flavus R5. There was a positive significant correlation between the reduction of A. flavus growth and the reduction of AFB1 contamination on pistachio nut by UTBSP1. The results indicated that fengycin and surfactin-producing B. subtilis UTBSP1 can potentially reduce A. flavus growth and AFB1 content in pistachio nut. PMID:27298596

  15. Inhibition of the Aspergillus flavus Growth and Aflatoxin B1 Contamination on Pistachio Nut by Fengycin and Surfactin-Producing Bacillus subtilis UTBSP1

    Directory of Open Access Journals (Sweden)

    Mohsen Farzaneh

    2016-06-01

    Full Text Available In this study, the treatment of pistachio nuts by Bacillus subtilis UTBSP1, a promising isolate to degrade aflatoxin B1 (AFB1, caused to reduce the growth of Aspergillus flavus R5 and AFB1 content on pistachio nuts. Fluorescence probes revealed that the cell free supernatant fluid from UTBSP1 affects spore viability considerably. Using high-performance liquid chromatographic (HPLC method, 10 fractions were separated and collected from methanol extract of cell free supernatant fluid. Two fractions showed inhibition zones against A. flavus. Mass spectrometric analysis of the both antifungal fractions revealed a high similarity between these anti-A. flavus compounds and cyclic-lipopeptides of surfactin, and fengycin families. Coproduction of surfactin and fengycin acted in a synergistic manner and consequently caused a strong antifungal activity against A. flavus R5. There was a positive significant correlation between the reduction of A. flavus growth and the reduction of AFB1 contamination on pistachio nut by UTBSP1. The results indicated that fengycin and surfactin-producing B. subtilis UTBSP1 can potentially reduce A. flavus growth and AFB1 content in pistachio nut.

  16. Effect of Bacillus subtilis in Animal Production%枯草芽孢杆菌在动物生产中的应用效果

    Institute of Scientific and Technical Information of China (English)

    张爱武; 薛军

    2011-01-01

    The mechanism of Bacillus subtilis was summarized. In order to provide an evidence for scientific reasonable using of Bacillus subtilis in animal production, the effects of Bacillus subtilis in animal production including poultry, swine, ruminant and aquatic animal were reviewed.%作者综述了枯草芽孢杆菌的作用机制及其在家禽、猪、反刍动物、水产动物生产中的应用效果,以期为生产实践中科学合理利用枯草芽孢杆菌提供一定的理论依据.

  17. Rugged single domain antibody detection elements for Bacillus anthracis spores and vegetative cells.

    Directory of Open Access Journals (Sweden)

    Scott A Walper

    Full Text Available Significant efforts to develop both laboratory and field-based detection assays for an array of potential biological threats started well before the anthrax attacks of 2001 and have continued with renewed urgency following. While numerous assays and methods have been explored that are suitable for laboratory utilization, detection in the field is often complicated by requirements for functionality in austere environments, where limited cold-chain facilities exist. In an effort to overcome these assay limitations for Bacillus anthracis, one of the most recognizable threats, a series of single domain antibodies (sdAbs were isolated from a phage display library prepared from immunized llamas. Characterization of target specificity, affinity, and thermal stability was conducted for six sdAb families isolated from rounds of selection against the bacterial spore. The protein target for all six sdAb families was determined to be the S-layer protein EA1, which is present in both vegetative cells and bacterial spores. All of the sdAbs examined exhibited a high degree of specificity for the target bacterium and its spore, with affinities in the nanomolar range, and the ability to refold into functional antigen-binding molecules following several rounds of thermal denaturation and refolding. This research demonstrates the capabilities of these sdAbs and their potential for integration into current and developing assays and biosensors.

  18. ON THE USE OF FROTH FLOTATION IN THE RECOVERY OF Bacillus sphaericus SPORES

    Directory of Open Access Journals (Sweden)

    E.M. RIOS

    1997-06-01

    Full Text Available Abstract - The recovery of Bacillus sphaericus strain 2362 spores from fermented medium by batch flotation was tested under different conditions. Flotation kinetic studies were performed at 800 rpm and 3 l air/min. The pH values were adjusted at the following set of values: 5.0, 7.0 and 9.0. The results showed that the spore removal rate is influenced by the pH value. At pH equal to 5.0 we observe an adverse effect on the spore concentrate obtention. In this situation the maximum value of the concentration factor was 1.4 when the recuperation percentage was 99%. At pH equal to 7.0 the concentration factor reached the highest value, 7.0, but the recuperation percentage stayed around 96%. Field experiments with the floated material demonstrated that its larvicide activity was sufficient to keep a Culex quinquefasciatus larvae population under control at in a breeding site, during 3 months with 2 applications

  19. Fatty Acid Profiles for Differentiating Growth Medium Formulations Used to Culture Bacillus cereus T-strain Spores.

    Science.gov (United States)

    Ehrhardt, Christopher J; Murphy, Devonie L; Robertson, James M; Bannan, Jason D

    2015-07-01

    Microbial biomarkers that indicate aspects of an organism's growth conditions are important targets of forensic research. In this study, we examined fatty acid composition as a signature for the types of complex nutrients in the culturing medium. Bacillus cereus T-strain spores were grown in medium formulations supplemented with one of the following: peptone (meat protein), tryptone (casein protein), soy protein, and brain-heart infusion. Cellular biomass was profiled with fatty acid methyl ester (FAME) analysis. Results showed peptone cultures produced spores enriched in straight-chained lipids. Tryptone cultures produced spores enriched in branched-odd lipids when compared with peptone, soy, and brain-heart formulations. The observed FAME variation was used to construct a set of discriminant functions that could help identify the nutrients in a culturing recipe for an unknown spore sample. Blinded classification tests were most successful for spores grown on media containing peptone and tryptone, showing 88% and 100% correct identification, respectively. PMID:25854710

  20. Acción adyuvante de esporas de Bacillus subtilis por vía mucosa

    Directory of Open Access Journals (Sweden)

    Fabiana Tub-Chafer

    2016-04-01

    Full Text Available Las esporas de Bacillus subtilis, generalmente reconocidas como seguras, han recibido una creciente atención en aplicaciones biotecnológicas en formulaciones vacunales, sobre todo como adyuvantes. Este trabajo presenta una revisión actualizada de la acción adyuvante de las esporas de B. subtilis y conjuntamente se expone nuestra experiencia por vía oral (o.r e intranasal (i.n como adyuvante frente antígenos modelos ovoalbúmina (Ova y toxoide tetánico (TT. Se realizó una revisión documental sobre B. subtilis, adyuvante, vacuna y vía mucosal en MEDLINE a través de PubMed; también se revisaron las bases de datos SciELO y LILACS. Para la exploración de la capacidad adyuvante se trabajó con esporas de B. subtilis (cepa RG 4365. Se inmunizaron ratones Balb/c por vía mucosal con esporas coadministradas con los antígenos modelos, y se midió las respuesta de anticuerpos específicos en suero, saliva y heces por método de ELISA. La revisión realizada evidenció la existencia de varios trabajos que utilizan las esporas de B. subtilis por diferentes metodologías y vías de administración como adyuvante, siendo la expresión de antígenos recombinantes la más utilizada, así como la vía o.r entre la aplicación mucosa. En nuestro trabajo se obtuvo un aumento de la respuesta sérica de IgG, subclases IgG1 e IgG2a y de IgA específicos en saliva y heces en los grupos inmunizados con esporas coadministradas con Ova y con TT por ambas vías, significativamente superior a los grupos controles (p<0,05. Estos datos sugieren que las esporas son eficientes adyuvantes pues aumentan la respuesta inmune humoral sistémica y mucosal y resalta su potencial clínico en futuras vacunas mucosales.

  1. Impact of a Bacterial Volatile 2,3-Butanediol on Bacillus subtilis Rhizosphere Robustness

    Science.gov (United States)

    Yi, Hwe-Su; Ahn, Yeo-Rim; Song, Geun C.; Ghim, Sa-Youl; Lee, Soohyun; Lee, Gahyung; Ryu, Choong-Min

    2016-01-01

    Volatile compounds, such as short chain alcohols, acetoin, and 2,3-butanediol, produced by certain strains of root-associated bacteria (rhizobacteria) elicit induced systemic resistance in plants. The effects of bacterial volatile compounds (BVCs) on plant and fungal growth have been extensively studied; however, the impact of bacterial BVCs on bacterial growth remains poorly understood. In this study the effects of a well-characterized bacterial volatile, 2,3-butanediol, produced by the rhizobacterium Bacillus subtilis, were examined in the rhizosphere. The nature of 2,3-butanediol on bacterial cells was assessed, and the effect of the molecule on root colonization was also determined. Pepper roots were inoculated with three B. subtilis strains: the wild type, a 2,3-butanediol overexpressor, and a 2,3-butanediol null mutant. The B. subtilis null strain was the first to be eliminated in the rhizosphere, followed by the wild-type strain. The overexpressor mutant was maintained at roots for the duration of the experiment. Rhizosphere colonization by a saprophytic fungus declined from 14 days post-inoculation in roots treated with the B. subtilis overexpressor strain. Next, exudates from roots exposed to 2,3-butanediol were assessed for their impact on fungal and bacterial growth in vitro. Exudates from plant roots pre-treated with the 2,3-butanediol overexpressor were used to challenge various microorganisms. Growth was inhibited in a saprophytic fungus (Trichoderma sp.), the 2,3-butanediol null B. subtilis strain, and a soil-borne pathogen, Ralstonia solanacearum. Direct application of 2,3-butanediol to pepper roots, followed by exposure to R. solanacearum, induced expression of Pathogenesis-Related (PR) genes such as CaPR2, CaSAR8.2, and CaPAL. These results indicate that 2,3-butanediol triggers the secretion of root exudates that modulate soil fungi and rhizosphere bacteria. These data broaden our knowledge regarding bacterial volatiles in the rhizosphere and

  2. Achieving consistent multiple daily low-dose Bacillus anthracis spore inhalation exposures in the rabbit model

    Directory of Open Access Journals (Sweden)

    Roy E Barnewall

    2012-06-01

    Full Text Available Repeated low-level exposures to Bacillus anthracis could occur before or after the remediation of an environmental release. This is especially true for persistent agents such as Bacillus anthracis spores, the causative agent of anthrax. Studies were conducted to examine aerosol methods needed for consistent daily low aerosol concentrations to deliver a low-dose (less than 106 colony forming units (CFU of B. anthracis spores and included a pilot feasibility characterization study, acute exposure study, and a multiple fifteen day exposure study. This manuscript focuses on the state-of-the-science aerosol methodologies used to generate and aerosolize consistent daily low aerosol concentrations and resultant low inhalation doses. The pilot feasibility characterization study determined that the aerosol system was consistent and capable of producing very low aerosol concentrations. In the acute, single day exposure experiment, targeted inhaled doses of 1 x 102, 1 x 103, 1 x 104, and 1 x 105 CFU were used. In the multiple daily exposure experiment, rabbits were exposed multiple days to targeted inhaled doses of 1 x 102, 1 x 103, and 1 x 104 CFU. In all studies, targeted inhaled doses remained fairly consistent from rabbit to rabbit and day to day. The aerosol system produced aerosolized spores within the optimal mass median aerodynamic diameter particle size range to reach deep lung alveoli. Consistency of the inhaled dose was aided by monitoring and recording respiratory parameters during the exposure with real-time plethysmography. Overall, the presented results show that the animal aerosol system was stable and highly reproducible between different studies and multiple exposure days.

  3. Bacterial spores as particulate carriers for gene gun delivery of plasmid DNA.

    Science.gov (United States)

    Aps, Luana R M M; Tavares, Milene B; Rozenfeld, Julio H K; Lamy, M Teresa; Ferreira, Luís C S; Diniz, Mariana O

    2016-06-20

    Bacillus subtilis spores represent a suitable platform for the adsorption of proteins, enzymes and viral particles at physiological conditions. In the present work, we demonstrate that purified spores can also adsorb DNA on their surface after treatment with cationic molecules. In addition, we demonstrate that DNA-coated B. subtilis spores can be used as particulate carriers and act as an alternative to gold microparticles for the biolistic (gene gun) administration of plasmid DNA in mice. Gene gun delivery of spores pre-treated with DODAB (dioctadecyldimethylammonium bromide) allowed efficient plasmid DNA absorption and induced protein expression levels similar to those obtained with gold microparticles. More importantly, we demonstrated that a DNA vaccine adsorbed on spores can be loaded into biolistic cartridges and efficiently delivered into mice, which induced specific cellular and antibody responses. Altogether, these data indicate that B. subtilis spores represent a simple and low cost alternative for the in vivo delivery of DNA vaccines by the gene gun technology.

  4. Efficiency of Intergeneric Recombinants Between Bacillus Thuringiensis and Bacillus Subtilis for Increasing Mortality Rate in Cotten Leaf Worm

    Science.gov (United States)

    AlOtaibi, Saad Aied

    2012-12-01

    In this study , two strains of Bacillus belonging to two serotypes and four of their transconjugants were screened with respect to their toxicity against lepidopterous cotton pest. . Bacterial transconjugants isolated from conjugation between both strains were evaluated for their transconjugant efficiency caused mortality in Spodoptera littoralis larvae . Two groups of bioinsecticides ; crystals , crystals and spores have been isolated from Bacillusstrains and their transconjugants . Insecticidal crystal protein ( ICP ) was specific for lepidopteran insects because of the toxin sufficient both for insect specificity and toxicity . The toxicities of these two groups against larvae of Spodoptera littoralis was expressed as transconjugant efficiency , which related to the mean number of larvae died expressed as mortality percentage . The results showed transconjugant efficiency in reducing the mean number of Spodoptera littoralis larvae feeding on leaves of Ricinus communis sprayed with bioinsecticides of Bt transconjugants. Most values of positive transconjugant efficiency related to increasing mortality percentage are due to toxicological effects appeared in response to the treatments with crystals + endospores than that of crystals alone .This indicated that crystals + endospores was more effective for increasing mortality percentage than that resulted by crystals . Higher positive transconjugant efficiency in relation to the mid parents and better parent was appeared at 168 h of treatment . The results indicated that recombinant Bacillus thuringiensis are important control agents for lepidopteran pests , as well as , susceptibility decreased with larval development . The results also suggested a potential for the deployment of these recominant entomopathogens in the management of Spodoptera. littoralis larvae .

  5. Noise Expands the Response Range of the Bacillus subtilis Competence Circuit

    Science.gov (United States)

    Hayden, Luke; Liu, Jintao; Wiggins, Chris H.; Süel, Gürol M.; Walczak, Aleksandra M.

    2016-01-01

    Gene regulatory circuits must contend with intrinsic noise that arises due to finite numbers of proteins. While some circuits act to reduce this noise, others appear to exploit it. A striking example is the competence circuit in Bacillus subtilis, which exhibits much larger noise in the duration of its competence events than a synthetically constructed analog that performs the same function. Here, using stochastic modeling and fluorescence microscopy, we show that this larger noise allows cells to exit terminal phenotypic states, which expands the range of stress levels to which cells are responsive and leads to phenotypic heterogeneity at the population level. This is an important example of how noise confers a functional benefit in a genetic decision-making circuit. PMID:27003682

  6. Bacillus subtilis 168 levansucrase (SacB) activity affects average levan molecular weight.

    Science.gov (United States)

    Porras-Domínguez, Jaime R; Ávila-Fernández, Ángela; Miranda-Molina, Afonso; Rodríguez-Alegría, María Elena; Munguía, Agustín López

    2015-11-01

    Levan is a fructan polymer that offers a variety of applications in the chemical, health, cosmetic and food industries. Most of the levan applications depend on levan molecular weight, which in turn depends on the source of the synthesizing enzyme and/or on reaction conditions. Here we demonstrate that in the particular case of levansucrase from Bacillus subtilis 168, enzyme concentration is also a factor defining the molecular weight levan distribution. While a bimodal distribution has been reported at the usual enzyme concentrations (1 U/ml equivalent to 0.1 μM levansucrase) we found that a low molecular weight normal distribution is solely obtained al high enzyme concentrations (>5 U/ml equivalent to 0.5 μM levansucrase) while a high normal molecular weight distribution is synthesized at low enzyme doses (0.1 U/ml equivalent to 0.01 μM of levansucrase). PMID:26256357

  7. Messenger RNA Turnover Processes in Escherichia coli, Bacillus subtilis, and Emerging Studies in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Kelsi L. Anderson

    2009-01-01

    Full Text Available The regulation of mRNA turnover is a recently appreciated phenomenon by which bacteria modulate gene expression. This review outlines the mechanisms by which three major classes of bacterial trans-acting factors, ribonucleases (RNases, RNA binding proteins, and small noncoding RNAs (sRNA, regulate the transcript stability and protein production of target genes. Because the mechanisms of RNA decay and maturation are best characterized in Escherichia coli, the majority of this review will focus on how these factors modulate mRNA stability in this organism. However, we also address the effects of RNases, RNA binding proteins, sRNAs on mRNA turnover, and gene expression in Bacillus subtilis, which has served as a model for studying RNA processing in gram-positive organisms. We conclude by discussing emerging studies on the role modulating mRNA stability has on gene expression in the important human pathogen Staphylococcus aureus.

  8. Modification of the rib operon derived from Bacillus subtilis and its expression in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Zhang Huitu; Meng Kun; Wang Yaru; Luo Huiying; Yuan Tiezheng; Yang Peilong; Bai Yingguo; Yao Bin; Fan Yunliu

    2007-01-01

    A riboflavin operon(rib operon)derived from Bacillus subtilis 368 was modified on structure and the resulting operons were expressed in various strains of Escherichia coli. The results showed that the optimization of the rib operon and the host strain used for expression are two main factors affecting the riboflavin production. Replacing the promoter l and rfn box of the rib operon with a strong constructive promoter spo l drastically increased the expression of the rib genes. When E. Coli JMl09 was used as the host strain, the highest riboflavin production reached 95.3μg/mL(about eight times higher than that 0f the unmodified rib operon). In addition, when tetracycline(20 μg/mL)was used as the selective pressure, compared with the ampicillin resistant transformants, a higher riboflavin yield Was obtained in tetracycline resistant host strain.

  9. Site-specific uv crosslinking of minihelix DNA and TrpRS from Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to investigate the recognition mechanism and the relationship between structure and function of minihelix DNA with Tryptophanyl-tRNA Synthetase (TrpRS), TrpRS from Bacillus Subtilis was purified. Four minihelix DNAs were chemically synthesized and the photoreactive reagent s4T was incorporated into three of them at the positions of G73, T72 and T55 corresponding to tRNATrp.The apparatus for uv crossiinking was devised and the parameters for uv crosslinking were optimized. The results indicated that the G73 and T72 base of minihelix DNA interacted with TrpRS directly. The uv crosslinking reaction was improved by the dose of uv irradiation and the concentration of both TrpRS and minihelix DNA.``

  10. Growth Inhibition of Colletotrichum gloeosporioides by Trichoderma harzianum, Trichoderma koningii, Bacillus subtilis and Pseudomonas fluorescens

    OpenAIRE

    Febrilia Nur ‘Aini; Sri Sukamto; Dwi Wahyuni; Risma Galuh Suhesti; Qurrotun Ayunin

    2015-01-01

    Colletotrichum  gloeosporioides is  a  disease  which  can  cause  significant yield  loss  of  cocoa.  The  objective  of  this  research  is  to  investigate  the  abilityof  antagonist  microbes,  Trichoderma  harzianum,  Trichoderma  koningii,  Bacillus subtilis  and Pseudomonas  fluorescens  in  controlling  gloeosporioides  biologically  in  laboratorium  condition.  The  experiment  was  carried  out  in  Crop  Protection  Laboratory,  Indonesian  Coffee  and  Cocoa  Research  Institut...

  11. Removal of Cr(VI from aqueous solution using Bacillus subtilis, Pseudomonas aeruginosa and Enterobacter cloacae

    Directory of Open Access Journals (Sweden)

    P. Sethuraman,

    2010-06-01

    Full Text Available The objective of this study is to investigate the removal efficiency of Cr(VI by Bacillus subtilis, Pseudomonas aeruginosa and Enterobacter cloacae from aqueous solution under different process conditions. Batch mode experiments were carried out as a function of solution pH, biosorbent dosage, Cr(VI concentration and contact time.The FT-IR spectra and SEM analysis of the biosorbent were recorded to analyse the number and position of the functional groups available for the binding of Cr(VI ions and to study the morphology of biosorbent. The batch isothermal equilibrium data were analyzed with Freundlich and Langmuir isotherm models. The kinetic models were examined with pseudo first order and pseudo second order kinetics. The results revealed that the Cr(VI is considerably adsorbed on bacterial biomass and it could be an economical method for the removal of Cr(VI from aqueous solution.

  12. CdSe quantum dot internalization by Bacillus subtilis and Escherichia coli

    Science.gov (United States)

    Kloepfer, Jeremiah A.; Mielke, Randall E.; Nadeau, Jay L.

    2004-06-01

    Biological labeling has been demonstrated with CdSe quantum dots in a variety of animal cells, but bacteria are harder to label because of their cell walls. We discuss the challenges of using minimally coated, bare CdSe quantum dots as luminescent internal labels for bacteria. These quantum dots were solubilized with mercaptoacetic acid and conjugated to adenine. Significant evidence for the internal staining of Bacillus subtilis (Gram positive) and Escherichia coli (Gram negative) using these structures is presented via steady-state emission, epifluorescence microscopy, transmission electron microscopy, and energy dispersive spectroscopy. In particular, the E. coli adenine auxotroph, and not the wild type, took up adenine coated quantum dots, and this only occurred in adenine deficient growth media. Labeling strength was enhanced by performing the incubation under room light. This process was examined with steady-state emission spectra and time-resolved luminescence profiles obtained from time-correlated-single-photon counting.

  13. A four-stranded DNA from Bacillus subtilis which may be an intermediate in genetic recombination

    International Nuclear Information System (INIS)

    DNA of Bacillus subtilis strain UVSS 19-8 M, of high ultraviolet sensitivity, was isolated after cultivating in medium containing bromouracil. Isopycnic banding in CsCl shows an unusual pattern with four bands, including an extra one halfway between those for hybrid and for DNA fully substituted with bromouracil. DNA of this band, amounting to 15-25% of the total DNA mass in one preparation, was isolated and investigated. The characteristics found for this DNA, namely transforming ability, electron microscopic picture, behavior during heat denaturation and gentle shear are in agreement with a fourstranded DNA unit similar to one of the structures postulated by Holliday as intermediates during genetic recombination. The amount of this DNA when the cells were given 5J/m2 of 254 nm UV. UVSS 19-8 M from which this DNA has been isolated is shown to be defective for transformation and transfection, and can be regarded as rec-. (orig./MG)

  14. Numerical simulation of wrinkle morphology formation and the evolution of different Bacillus subtilis biofilms.

    Science.gov (United States)

    Wang, Xiaoling; Hao, Mudong; Wang, Guoqing

    2016-01-01

    Wrinkle morphology is a distinctive phenomenon observed in mature biofilms that are produced by a great number of bacteria. The wrinkle pattern depends on the mechanical properties of the agar substrate and the biofilm itself, governed by the extracellular matrix (ECM). Here we study the macroscopic structures and the evolution of Bacillus subtilis biofilm wrinkles using the commercial finite element software ABAQUS. A mechanical model and simulation are set up to analyze and evaluate bacteria biofilm's wrinkle characteristics. We uncover the wrinkle formation mechanism and enumerate the quantitative relationship between wrinkle structure and mechanical properties of biofilm and its substrate. Our work can be used to modify the wrinkle pattern and control the biofilm size. PMID:26877034

  15. Biodegradation of insecticide monocrotophos by Bacillus subtilis KPA-1, isolated from agriculture soils.

    Science.gov (United States)

    Acharya, K P; Shilpkar, P; Shah, M C; Chellapandi, P

    2015-02-01

    Twenty bacterial strains, which are capable of degrading monocrotophos, were isolated from five soil samples collected from agriculture soils in India. The ability of the strains to mineralize monocrotophos was investigated under different culture conditions. A potential strain degrading monocrotophos was selected and named KPA-1. The strain was identified as a Bacillus subtilis on the basis of the results of its cellular morphology, physiological and chemotaxonomic characteristics, and phylogenetic conclusion of 16S ribosomal DNA (rDNA) gene sequences. Organophosphate hydrolase (opdA gene) involved in the initial biodegradation of monocrotophos in KPA-1 was quantitatively expressed, which was a constitutively expressed cytosolic enzyme. RT-qPCR data revealed that KPA-1 harboring opdA gene in an early stage was significantly downregulated from opdA gene in a degradation stage (1.5 fold more) with a p value of 0.0375 (p pesticides, particularly monocrotophos.

  16. Heterologous expression and characterization of man gene from Bacillus Subtilis in Pichia Pastoris

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    β-Mannanase catalyzes endo-wise hydrolysis of the backbone of mannan and heteromannan, which are abun-dant in the cell wall structure of ungerminated leguminous seeds. The mature β-mannanase originated from Bacillus subtilis was expressed in Pichia pastoris, a methylotrophic yeast, using the leader peptide sequence of Saccharomyces cerevisiae α-factor. The cultivation of β-mannanase express-ing Pichiapastoris yields up to 1.8 g/L protein. In the super-natant the activity of the 40 kDa-total mannanase attained a level of 1102.0 IU/mL. The properties of the β-mannanase were characterized. Optimum pH and temperature for the recombinant enzyme were 5.5 and 50℃ respectively. The enzyme was stable at pH 5.0-10.0 and maintained over 30% original activity after incubating at 70℃ for 30 min.

  17. Rheology, oxygen transfer, and molecular weight characteristics of poly(glutamic acid) fermentation by Bacillus subtilis.

    Science.gov (United States)

    Richard, Andrew; Margaritis, Argyrios

    2003-05-01

    Poly(glutamic acid) (PGA) is a water-soluble, biodegradable biopolymer that is produced by microbial fermentation. Recent research has shown that PGA can be used in drug delivery applications for the controlled release of paclitaxel (Taxol) in cancer treatment. A fundamental understanding of the key fermentation parameters is necessary to optimize the production and molecular weight characteristics of poly(glutamic acid) by Bacillus subtilis for paclitaxel and other applications of pharmaceuticals for controlled release. Because of its high molecular weight, PGA fermentation broths exhibit non-Newtonian rheology. In this article we present experimental results on the batch fermentation kinetics of PGA production, mass transfer of oxygen, specific oxygen uptake rate, broth rheology, and molecular weight characterization of the PGA biopolymer.

  18. Intrinsic Levanase Activity of Bacillus subtilis 168 Levansucrase (SacB).

    Science.gov (United States)

    Méndez-Lorenzo, Luz; Porras-Domínguez, Jaime R; Raga-Carbajal, Enrique; Olvera, Clarita; Rodríguez-Alegría, Maria Elena; Carrillo-Nava, Ernesto; Costas, Miguel; López Munguía, Agustín

    2015-01-01

    Levansucrase catalyzes the synthesis of fructose polymers through the transfer of fructosyl units from sucrose to a growing fructan chain. Levanase activity of Bacillus subtilis levansucrase has been described since the very first publications dealing with the mechanism of levan synthesis. However, there is a lack of qualitative and quantitative evidence regarding the importance of the intrinsic levan hydrolysis of B. subtilis levansucrase and its role in the levan synthesis process. Particularly, little attention has been paid to the long-term hydrolysis products, including its participation in the final levan molecules distribution. Here, we explored the hydrolytic and transferase activity of the B. subtilis levansucrase (SacB) when levans produced by the same enzyme are used as substrate. We found that levan is hydrolyzed through a first order exo-type mechanism, which is limited to a conversion extent of around 30% when all polymer molecules reach a structure no longer suitable to SacB hydrolysis. To characterize the reaction, Isothermal Titration Calorimetry (ITC) was employed and the evolution of the hydrolysis products profile followed by HPLC, GPC and HPAEC-PAD. The ITC measurements revealed a second step, taking place at the end of the reaction, most probably resulting from disproportionation of accumulated fructo-oligosaccharides. As levanase, levansucrase may use levan as substrate and, through a fructosyl-enzyme complex, behave as a hydrolytic enzyme or as a transferase, as demonstrated when glucose and fructose are added as acceptors. These reactions result in a wide variety of oligosaccharides that are also suitable acceptors for fructo-oligosaccharide synthesis. Moreover, we demonstrate that SacB in the presence of levan and glucose, through blastose and sucrose synthesis, results in the same fructooligosaccharides profile as that observed in sucrose reactions. We conclude that SacB has an intrinsic levanase activity that contributes to the final

  19. Protein-protein interaction domains of Bacillus subtilis DivIVA.

    Science.gov (United States)

    van Baarle, Suey; Celik, Ilkay Nazli; Kaval, Karan Gautam; Bramkamp, Marc; Hamoen, Leendert W; Halbedel, Sven

    2013-03-01

    DivIVA proteins are curvature-sensitive membrane binding proteins that recruit other proteins to the poles and the division septum. They consist of a conserved N-terminal lipid binding domain fused to a less conserved C-terminal domain. DivIVA homologues interact with different proteins involved in cell division, chromosome segregation, genetic competence, or cell wall synthesis. It is unknown how DivIVA interacts with these proteins, and we used the interaction of Bacillus subtilis DivIVA with MinJ and RacA to investigate this. MinJ is a transmembrane protein controlling division site selection, and the DNA-binding protein RacA is crucial for chromosome segregation during sporulation. Initial bacterial two-hybrid experiments revealed that the C terminus of DivIVA appears to be important for recruiting both proteins. However, the interpretation of these results is limited since it appeared that C-terminal truncations also interfere with DivIVA oligomerization. Therefore, a chimera approach was followed, making use of the fact that Listeria monocytogenes DivIVA shows normal polar localization but is not biologically active when expressed in B. subtilis. Complementation experiments with different chimeras of B. subtilis and L. monocytogenes DivIVA suggest that MinJ and RacA bind to separate DivIVA domains. Fluorescence microscopy of green fluorescent protein-tagged RacA and MinJ corroborated this conclusion and suggests that MinJ recruitment operates via the N-terminal lipid binding domain, whereas RacA interacts with the C-terminal domain. We speculate that this difference is related to the cellular compartments in which MinJ and RacA are active: the cell membrane and the cytoplasm, respectively.

  20. Comprehensive analysis of temporal alterations in cellular proteome of Bacillus subtilis under curcumin treatment.

    Directory of Open Access Journals (Sweden)

    Panga Jaipal Reddy

    Full Text Available Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division.

  1. Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore.

    Science.gov (United States)

    Zawadzka, Anna M; Kim, Youngchang; Maltseva, Natalia; Nichiporuk, Rita; Fan, Yao; Joachimiak, Andrzej; Raymond, Kenneth N

    2009-12-22

    Iron deprivation activates the expression of components of the siderophore-mediated iron acquisition systems in Bacillus subtilis, including not only the synthesis and uptake of its siderophore bacillibactin but also expression of multiple ABC transporters for iron scavenging using xenosiderophores. The yclNOPQ operon is shown to encode the complete transporter for petrobactin (PB), a photoreactive 3,4-catecholate siderophore produced by many members of the B. cereus group, including B. anthracis. Isogenic disruption mutants in the yclNOPQ transporter, including permease YclN, ATPase YclP, and a substrate-binding protein YclQ, are unable to use either PB or the photoproduct of FePB (FePB(nu)) for iron delivery and growth, in contrast to the wild-type B. subtilis. Complementation of the mutations with the copies of the respective genes restores this capability. The YclQ receptor binds selectively iron-free and ferric PB, the PB precursor, 3,4-dihydroxybenzoic acid (3,4-DHB), and FePB(nu) with high affinity; the ferric complexes are seen in ESI-MS, implying strong electrostatic interaction between the protein-binding pocket and siderophore. The first structure of a gram-positive siderophore receptor is presented. The 1.75-A crystal structure of YclQ reveals a bilobal periplasmic binding protein (PBP) fold consisting of two alpha/beta/alpha sandwich domains connected by a long alpha-helix with the binding pocket containing conserved positively charged and aromatic residues and large enough to accommodate FePB. Orthologs of the B. subtilis PB-transporter YclNOPQ in PB-producing Bacilli are likely contributors to the pathogenicity of these species and provide a potential target for antibacterial strategies.

  2. Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore

    Energy Technology Data Exchange (ETDEWEB)

    Zawadzka, A. M.; Kim, Y.; Maltseva, N; Nichiporuk, R; Fan, Y; Joachimiak, A; Raymond, KN (Biosciences Division); (Univ. of California)

    2009-12-22

    Iron deprivation activates the expression of components of the siderophore-mediated iron acquisition systems in Bacillus subtilis, including not only the synthesis and uptake of its siderophore bacillibactin but also expression of multiple ABC transporters for iron scavenging using xenosiderophores. The yclNOPQ operon is shown to encode the complete transporter for petrobactin (PB), a photoreactive 3,4-catecholate siderophore produced by many members of the B. cereus group, including B. anthracis. Isogenic disruption mutants in the yclNOPQ transporter, including permease YclN, ATPase YclP, and a substrate-binding protein YclQ, are unable to use either PB or the photoproduct of FePB (FePB{sup {nu}}) for iron delivery and growth, in contrast to the wild-type B. subtilis. Complementation of the mutations with the copies of the respective genes restores this capability. The YclQ receptor binds selectively iron-free and ferric PB, the PB precursor, 3,4-dihydroxybenzoic acid (3,4-DHB), and FePB{sup {nu}} with high affinity; the ferric complexes are seen in ESI-MS, implying strong electrostatic interaction between the protein-binding pocket and siderophore. The first structure of a Gram-positive siderophore receptor is presented. The 1.75-{angstrom} crystal structure of YclQ reveals a bilobal periplasmic binding protein (PBP) fold consisting of two {alpha}/{beta}/{alpha} sandwich domains connected by a long {alpha}-helix with the binding pocket containing conserved positively charged and aromatic residues and large enough to accommodate FePB. Orthologs of the B. subtilis PB-transporter YclNOPQ in PB-producing Bacilli are likely contributors to the pathogenicity of these species and provide a potential target for antibacterial strategies.

  3. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine.

    Science.gov (United States)

    Farace, Giovanni; Fernandez, Olivier; Jacquens, Lucile; Coutte, François; Krier, François; Jacques, Philippe; Clément, Christophe; Barka, Essaid Ait; Jacquard, Cédric; Dorey, Stéphan

    2015-02-01

    Non-self-recognition of microorganisms partly relies on the perception of microbe-associated molecular patterns (MAMPs) and leads to the activation of an innate immune response. Bacillus subtilis produces three main families of cyclic lipopeptides (LPs), namely surfactins, iturins and fengycins. Although LPs are involved in induced systemic resistance (ISR) activation, little is known about defence responses induced by these molecules and their involvement in local resistance to fungi. Here, we showed that purified surfactin, mycosubtilin (iturin family) and plipastatin (fengycin family) are perceived by grapevine plant cells. Although surfactin and mycosubtilin stimulated grapevine innate immune responses, they differentially activated early signalling pathways and defence gene expression. By contrast, plipastatin perception by grapevine cells only resulted in early signalling activation. Gene expression analysis suggested that mycosubtilin activated salicylic acid (SA) and jasmonic acid (JA) signalling pathways, whereas surfactin mainly induced an SA-regulated response. Although mycosubtilin and plipastatin displayed direct antifungal activity, only surfactin and mycosubtilin treatments resulted in a local long-lasting enhanced tolerance to the necrotrophic fungus Botrytis cinerea in grapevine leaves. Moreover, challenge with specific strains overproducing surfactin and mycosubtilin led to a slightly enhanced stimulation of the defence response compared with the LP-non-producing strain of B. subtilis. Altogether, our results provide the first comprehensive view of the involvement of LPs from B. subtilis in grapevine plant defence and local resistance against the necrotrophic pathogen Bo. cinerea. Moreover, this work is the first to highlight the ability of mycosubtilin to trigger an immune response in plants. PMID:25040001

  4. Antimicrobial, antiadhesive and antibiofilm potential of lipopeptides synthesised by Bacillus subtilis, on uropathogenic bacteria.

    Science.gov (United States)

    Moryl, Magdalena; Spętana, Magdalena; Dziubek, Klaudia; Paraszkiewicz, Katarzyna; Różalska, Sylwia; Płaza, Grażyna A; Różalski, Antoni

    2015-01-01

    The aim of this study was to investigate the antimicrobial effect of lipopeptide biosurfactants from surfactin, iturin and fengycin families, synthesised by the Bacillus subtilis I'1a strain, on uropathogenic bacteria, including the effects on planktonic growth, processes of biofilm formation and dislodging. Antimicrobial activity was tested against 32 uropathogenic strains belonging to 12 different species of Gram-negative and Gram-positive bacteria. The sensitivity of 25 tested bacterial strains to the B. subtilis I'1a filtrate was confirmed by an agar diffusion assay. None of the strains seemed to be sensitive to pure surfactin at concentrations ranging from 0.1 mg × ml(-1) to 0.4 mg ml(-1). After the treatment of uropathogens with B. subtilis lipopeptides, the metabolic activity of planktonic cells was inhibited by 88.05±3.96% in the case of 21 studied uropathogens, the process of biofilm formation was reduced by 88.15±4.77% in the case of 24 uropathogens and mature biofilms of 18 strains were dislodged by about 81.20±4.72%. Ten strains of uropathogenic bacteria were selected to study the antimicrobial activity of surfactin (concentrations 0.1, 0.2 and 0.4 mg × ml(-1)). Surfactin had no influence on the metabolic activity of planktonic forms of uropathogens, however, biofilms of 5 tested strains were reduced by 64.77±9.05% in the presence of this biosurfactant at the concentration 0.1 mg × ml(-1). The negative effect of the compound on the biofilm formation process was observed at all concentrations used. The above-described results were fully confirmed by CLSM. It could suggest that synergistic application of biosurfactants could be efficient in uropathogen eradication. PMID:26505130

  5. Intrinsic Levanase Activity of Bacillus subtilis 168 Levansucrase (SacB.

    Directory of Open Access Journals (Sweden)

    Luz Méndez-Lorenzo

    Full Text Available Levansucrase catalyzes the synthesis of fructose polymers through the transfer of fructosyl units from sucrose to a growing fructan chain. Levanase activity of Bacillus subtilis levansucrase has been described since the very first publications dealing with the mechanism of levan synthesis. However, there is a lack of qualitative and quantitative evidence regarding the importance of the intrinsic levan hydrolysis of B. subtilis levansucrase and its role in the levan synthesis process. Particularly, little attention has been paid to the long-term hydrolysis products, including its participation in the final levan molecules distribution. Here, we explored the hydrolytic and transferase activity of the B. subtilis levansucrase (SacB when levans produced by the same enzyme are used as substrate. We found that levan is hydrolyzed through a first order exo-type mechanism, which is limited to a conversion extent of around 30% when all polymer molecules reach a structure no longer suitable to SacB hydrolysis. To characterize the reaction, Isothermal Titration Calorimetry (ITC was employed and the evolution of the hydrolysis products profile followed by HPLC, GPC and HPAEC-PAD. The ITC measurements revealed a second step, taking place at the end of the reaction, most probably resulting from disproportionation of accumulated fructo-oligosaccharides. As levanase, levansucrase may use levan as substrate and, through a fructosyl-enzyme complex, behave as a hydrolytic enzyme or as a transferase, as demonstrated when glucose and fructose are added as acceptors. These reactions result in a wide variety of oligosaccharides that are also suitable acceptors for fructo-oligosaccharide synthesis. Moreover, we demonstrate that SacB in the presence of levan and glucose, through blastose and sucrose synthesis, results in the same fructooligosaccharides profile as that observed in sucrose reactions. We conclude that SacB has an intrinsic levanase activity that

  6. Thermostable levansucrase from Bacillus subtilis BB04, an isolate of Banana peel

    Directory of Open Access Journals (Sweden)

    Viniti D Vaidya

    2012-04-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Extensive screening resulted in the isolation of Bacillus sp. from Banana peel that produces considerable amount of thermostable levansucrase of molecular size 52kDa. 16S rRNA sequence analysis suggests that it belongs to Bacillus subtilis and was designated as strain BB04. Levansucrase was sucrose inducible, showed optimum activity at 50°C and pH 6.0. It was stable at pH range 6.0 - 7.0. Ca2+ at 1.0 mmol-1 concentration enhanced levansucrase activity by 24%. However levan production was highest at 40°C and pH 6.0. Cane molasses and juice proved to be good sources of sucrose for levan production. B. subtilis BB04 produced relatively more levan using cane molasses (11.32 gl-1 as sucrose source than in cane juice (4.81 gl-1.

  7. Immobilisation of Bacillus subtilis NRC33a levansucrase and some studies on its properties

    Directory of Open Access Journals (Sweden)

    M. A. Esawy

    2008-06-01

    Full Text Available Bacillus subtilis NRC33a levansucrase was immobilised on different carriers using different immobilisation methods including physical adsorption, covalent binding, ionic binding and entrapment. The immobilised enzyme prepared by covalent binding on chitosan through 3% gluteraldehyde had the highest immobilization yield (81.51%. Therefore, it was used as a typical example for Bacillus subtilis NRC33a immobilised levansucrase and its properties were investigated. The time of the reaction and substrate concentration revealed that the activity of the immobilised enzyme was relatively lower than the free enzyme. The immobilised levansucrase showed a slight increase in activity compared with the free enzyme above 35°C. The activation energies were 6.62 and 9.27 kcal mol-1 for free and immobilised enzyme respectively. Although the thermal stability of the immobilised levansucrase was significantly improved in comparison to the free form, the deactivation energy of the immobilised enzyme was lower than that of the free enzyme. The half life of the immobilised and free levansucrase was also determined. The effect of different pH values reported that at acidic pH the activity of the immobilised levansucrase was higher than that of the free enzyme. The study of pH stability of free and immobilised levansucrase showed that the immobilisation process protected the enzyme from alkaline and severe acidic media. The effect of various metal ions showed that the free levansucrase was more sensitive to the inhibitory effect of the investigated substances. Immobilised levansucrase retained 51.13% after 14 repeated uses.

  8. [Bacillus subtilis and streptomycin resistant mutant growth in the medium with saponite].

    Science.gov (United States)

    Chebotarev, A Iu; Gordienko, A S; Kurdish, I K

    2013-01-01

    The influence of dispersed saponite on growth activity of Bacillus subtilis IMV B-7023 and its streptomycin resistant mutant has been shown. The effectiveness of this process depends on the content of dispersed material and phosphate in the medium. It has been found that when B. subtilis is cultured in the medium containing 0.6 g/l PO4(3-) stimulation of bacteria growth is observed, but at a lower concentration (0.1 g/l PO4(3-)) there is a decline in the culture growth activity. At the same time streptomycin resistant mutant is shown to increase growth activity in the growth medium which contains up to 1.0 g/l saponite, regardless of the concentration of phosphate. It is shown that this effect is a consequence of uniformity of surface properties of streptomycin resistant strain of bacteria and similar parent strain at a concentration of 0.6 g/l PO4(3-). PMID:24479315

  9. Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor.

    Science.gov (United States)

    Coutte, François; Lecouturier, Didier; Yahia, Saliha Ait; Leclère, Valérie; Béchet, Max; Jacques, Philippe; Dhulster, Pascal

    2010-06-01

    Surfactin and fengycin are lipopeptide biosurfactants produced by Bacillus subtilis. This work describes for the first time the use of bubbleless bioreactors for the production of these lipopeptides by B. subtilis ATCC 21332 with aeration by a hollow fiber membrane air-liquid contactor to prevent foam formation. Three different configurations were tested: external aeration module made from either polyethersulfone (reactor BB1) or polypropylene (reactor BB2) and a submerged module in polypropylene (reactor BB3). Bacterial growth, glucose consumption, lipopeptide production, and oxygen uptake rate were monitored during the culture in the bioreactors. For all the tested membranes, the bioreactors were of satisfactory bacterial growth and lipopeptide production. In the three configurations, surfactin production related to the culture volume was in the same range: 242, 230, and 188 mg l(-1) for BB1, BB2, and BB3, respectively. Interestingly, high differences were observed for fengycin production: 47 mg l(-1) for BB1, 207 mg l(-1) for BB2, and 393 mg l(-1) for BB3. A significant proportion of surfactin was adsorbed on the membranes and reduced the volumetric oxygen mass transfer coefficient. The degree of adsorption depended on both the material and the structure of the membrane and was higher with the submerged polypropylene membrane.

  10. Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis.

    Science.gov (United States)

    Wang, Xindan; Le, Tung B K; Lajoie, Bryan R; Dekker, Job; Laub, Michael T; Rudner, David Z

    2015-08-01

    SMC condensin complexes play a central role in compacting and resolving replicated chromosomes in virtually all organisms, yet how they accomplish this remains elusive. In Bacillus subtilis, condensin is loaded at centromeric parS sites, where it encircles DNA and individualizes newly replicated origins. Using chromosome conformation capture and cytological assays, we show that condensin recruitment to origin-proximal parS sites is required for the juxtaposition of the two chromosome arms. Recruitment to ectopic parS sites promotes alignment of large tracks of DNA flanking these sites. Importantly, insertion of parS sites on opposing arms indicates that these "zip-up" interactions only occur between adjacent DNA segments. Collectively, our data suggest that condensin resolves replicated origins by promoting the juxtaposition of DNA flanking parS sites, drawing sister origins in on themselves and away from each other. These results are consistent with a model in which condensin encircles the DNA flanking its loading site and then slides down, tethering the two arms together. Lengthwise condensation via loop extrusion could provide a generalizable mechanism by which condensin complexes act dynamically to individualize origins in B. subtilis and, when loaded along eukaryotic chromosomes, resolve them during mitosis. PMID:26253537

  11. Common versus noble Bacillus subtilis differentially responds to air and argon gas plasma.

    Science.gov (United States)

    Winter, Theresa; Bernhardt, Jörg; Winter, Jörn; Mäder, Ulrike; Schlüter, Rabea; Weltmann, Klaus-Dieter; Hecker, Michael; Kusch, Harald

    2013-09-01

    The applications of low-temperature plasma are not only confined to decontamination and sterilization but are also found in the medical field in terms of wound and skin treatment. For the improvement of already established and also for new plasma techniques, in-depth knowledge on the interactions between plasma and microorganism is essential. In an initial study, the interaction between growing Bacillus subtilis and argon plasma was investigated by using a growth chamber system suitable for low-temperature gas plasma treatment of bacteria in liquid medium. In this follow-up investigation, a second kind of plasma treatment-namely air plasma-was applied. With combined proteomic and transcriptomic analyses, we were able to investigate the plasma-specific stress response of B. subtilis toward not only argon but also air plasma. Besides an overlap of cellular responses due to both argon and air plasma treatment (DNA damage and oxidative stress), a variety of gas-dependent cellular responses such as growth retardation and morphological changes were observed. Only argon plasma treatments lead to a phosphate starvation response whereas air plasma induced the tryptophan operon implying damage by photooxidation. Biological findings were supported by the detection of reactive plasma species by optical emission spectroscopy and Fourier transformed infrared spectroscopy measurements. PMID:23794223

  12. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes.

    Science.gov (United States)

    Esmailzadeh, Hakimeh; Sangpour, Parvaneh; Shahraz, Farzaneh; Hejazi, Jalal; Khaksar, Ramin

    2016-01-01

    Recent advances in nanotechnology have opened new windows in active food packaging. Nano-sized ZnO is an inexpensive material with potential antimicrobial properties. The aim of the present study is to evaluate the antibacterial effect of low density Polyethylene (LDPE) containing ZnO nanoparticles on Bacillus subtilis and Enterobacter aerogenes. ZnO nanoparticles have been synthesized by facil molten salt method and have been characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposite films containing 2 and 4 wt.% ZnO nanoparticles were prepared by melt mixing in a twin-screw extruder. The growth of both microorganisms has decreased in the presence of ZnO containing nanocomposites compared with controls. Nanocomposites with 4 wt.% ZnO nanoparticles had stronger antibacterial effect against both bacteria in comparison with the 2 wt.% ZnO containing nanocomposites. B. subtilis as Gram-positive bacteria were more sensitive to ZnO containing nanocomposite films compared with E. aerogenes as Gram-negative bacteria. There were no significant differences between the migration of Zn ions from 2 and 4 wt.% ZnO containing nanocomposites and the released Zn ions were not significantly increased in both groups after 14 days compared with the first. Regarding the considerable antibacterial effects of ZnO nanoparticles, their application in active food packaging can be a suitable solution for extending the shelf life of food. PMID:26478403

  13. Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation.

    Science.gov (United States)

    Ebrahiminezhad, Alireza; Varma, Vikas; Yang, Shuyi; Berenjian, Aydin

    2016-01-01

    Production of menaquinone-7 (MK-7) by Bacillus subtilis natto is associated with major drawbacks. To address the current challenges in MK-7 fermentation, studying the effect of magnetic nanoparticles on the bacterial cells can open up a new domain for intensified bioprocesses. This article introduces the new concept of application of iron oxide nanoparticles (IONs) as a pioneer tool for MK-7 process intensification. In this order, IONs with the average size of 11 nm were successfully fabricated and characterized for possible in situ removal of target substances from the fermentation media. The prepared particles were used for decoration and immobilization of B. subtilis natto cells. Presence of iron oxide nanoparticles significantly enhanced the MK-7 specific yield (15 %) as compared to the control samples. In addition, fabricated IONs showed a promising ability for in situ recovery of bacterial cells from the fermentation media with more than 95 % capture efficiency. Based on the results, IONs can be implemented successfully as a novel tool for MK-7 production. This study provides a considerable interest for industrial application of magnetic nanoparticles and their future role in designing an intensified biological process.

  14. Dynamic expression of the translational machinery during Bacillus subtilis life cycle at a single cell level.

    Directory of Open Access Journals (Sweden)

    Alex Rosenberg

    Full Text Available The ability of bacteria to responsively regulate the expression of translation components is crucial for rapid adaptation to fluctuating environments. Utilizing Bacillus subtilis (B. subtilis as a model organism, we followed the dynamics of the translational machinery at a single cell resolution during growth and differentiation. By comprehensive monitoring the activity of the major rrn promoters and ribosomal protein production, we revealed diverse dynamics between cells grown in rich and poor medium, with the most prominent dissimilarities exhibited during deep stationary phase. Further, the variability pattern of translational activity varied among the cells, being affected by nutrient availability. We have monitored for the first time translational dynamics during the developmental process of sporulation within the two distinct cellular compartments of forespore and mother-cell. Our study uncovers a transient forespore specific increase in expression of translational components. Finally, the contribution of each rrn promoter throughout the bacterium life cycle was found to be relatively constant, implying that differential expression is not the main purpose for the existence of multiple rrn genes. Instead, we propose that coordination of the rrn operons serves as a strategy to rapidly fine tune translational activities in a synchronized fashion to achieve an optimal translation level for a given condition.

  15. [Adhesion of Bacillus subtilis on the surface of pectin-calcium gel].

    Science.gov (United States)

    Gunter, E A; Melekhin, A K

    2015-01-01

    Pectin-calcium gels obtained based on pectins of callus cultures are able to adhere to the surface of cells of Gram-positive bacteria Bacillus subtilis to various degrees and this is thanks to the structural features of pectin. Rapid adhesion of the cells to gels obtained from the pectin of Tanacetum vulgare (TVC) callus cultures is associated with a high content of the linear region in the carbohydrate chain of pectin, a high molecular weight, and a low degree of methyl etherification of pectin. The number of adherent cells on the surface of gels obtained from pectins of Silene vulgaris callus cultures (SVC), TVC, and Lemna minor (LMC) after 8 h of incubation was close, whereas the number of cells was minimal on a gel produced using the pectin of Silene tatarica (STC) callus culture. This was due to the higher degree of methyl etherification of STC pectin (45%) compared to other pectins (4-12%). The adhesion rate constant (k) of B. subtilis for TCV gel during the first 120 min was the highest in comparison with other gels; the k value for SVC, STC and LMC gels was similar. The lowest level of k was characteristic for the gel from commercial apple pectin. The obtained data can beused for the production of gels with adhesive and antiadhesive properties. PMID:25842905

  16. Visualization of Biosurfactant Film Flow in a Bacillus subtilis Swarm Colony on an Agar Plate

    Directory of Open Access Journals (Sweden)

    Kyunghoon Kim

    2015-08-01

    Full Text Available Collective bacterial dynamics plays a crucial role in colony development. Although many research groups have studied the behavior of fluidic swarm colonies, the detailed mechanics of its motion remains elusive. Here, we developed a visualization method using submicron fluorescent beads for investigating the flow field in a thin layer of fluid that covers a Bacillus subtilis swarm colony growing on an agar plate. The beads were initially embedded in the agar plate and subsequently distributed spontaneously at the upper surface of the expanding colony. We conducted long-term live cell imaging of the B. subtilis colony using the fluorescent tracers, and obtained high-resolution velocity maps of microscale vortices in the swarm colony using particle image velocimetry. A distinct periodic fluctuation in the average speed and vorticity of flow in swarm colony was observed at the inner region of the colony, and correlated with the switch between bacterial swarming and growth phases. At the advancing edge of the colony, both the magnitudes of velocity and vorticity of flow in swarm colony were inversely correlated with the spreading speed of the swarm edge. The advanced imaging tool developed in this study would facilitate further understanding of the effect of micro vortices in swarm colony on the collective dynamics of bacteria.

  17. SubtiList: the reference database for the Bacillus subtilis genome.

    Science.gov (United States)

    Moszer, Ivan; Jones, Louis M; Moreira, Sandrine; Fabry, Cécilia; Danchin, Antoine

    2002-01-01

    SubtiList is the reference database dedicated to the genome of Bacillus subtilis 168, the paradigm of Gram-positive endospore-forming bacteria. Developed in the framework of the B.subtilis genome project, SubtiList provides a curated dataset of DNA and protein sequences, combined with the relevant annotations and functional assignments. Information about gene functions and products is continuously updated by linking relevant bibliographic references. Recently, sequence corrections arising from both systematic verifications and submissions by individual scientists were included in the reference genome sequence. SubtiList is based on a generic relational data schema and a World Wide Web interface developed for the handling of bacterial genomes, called GenoList. The World Wide Web interface was designed to allow users to easily browse through genome data and retrieve information according to common biological queries. SubtiList also provides more elaborate tools, such as pattern searching, which are tightly connected to the overall browsing system. SubtiList is accessible at http://genolist.pasteur.fr/SubtiList/. Similar bacterial databases are accessible at http://genolist.pasteur.fr/. PMID:11752255

  18. Cloning, purification, crystallization and preliminary structural studies of penicillin V acylase from Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Rathinaswamy, Priya; Pundle, Archana V.; Prabhune, Asmita A.; SivaRaman, Hepzibah [Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008 (India); Brannigan, James A., E-mail: jab@ysbl.york.ac.uk; Dodson, Guy G. [Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW (United Kingdom); Suresh, C. G., E-mail: jab@ysbl.york.ac.uk [Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008 (India)

    2005-07-01

    An unannotated protein reported from B. subtilis has been expressed in E. coli and identified as possessing penicillin V acylase activity. The crystallization and preliminary crystallographic analysis of this penicillin V acylase is presented. Penicillin acylase proteins are amidohydrolase enzymes that cleave penicillins at the amide bond connecting the side chain to their β-lactam nucleus. An unannotated protein from Bacillus subtilis has been expressed in Escherichia coli, purified and confirmed to possess penicillin V acylase activity. The protein was crystallized using the hanging-drop vapour-diffusion method from a solution containing 4 M sodium formate in 100 mM Tris–HCl buffer pH 8.2. Diffraction data were collected under cryogenic conditions to a spacing of 2.5 Å. The crystals belonged to the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 111.0, b = 308.0, c = 56.0 Å. The estimated Matthews coefficient was 3.23 Å{sup 3} Da{sup −1}, corresponding to 62% solvent content. The structure has been solved using molecular-replacement methods with B. sphaericus penicillin V acylase (PDB code 2pva) as the search model.

  19. Influence of Silica Nanoparticles on Antioxidant Potential of Bacillus subtilis IMV B-7023.

    Science.gov (United States)

    Skorochod, Iryna O; Roy, Alla O; Kurdish, Ivan K

    2016-12-01

    It was found that if introduced into a nutrient medium of 0.05-1 g/L nano-SiO2, the oxidant activity (OA) of the culture medium (CM) of bacilli increased by 43.2-60.1 % and the antioxidant activity (AA) decreased by 4.5-11.8 %. SiO2 nanoparticles had different effects on antiradical activity (ARA) of the CM of Bacillus subtilis IMV B-7023. In particular, nano-SiO2 had no significant effect on the ability of the CM of bacilli to inactivate the 2.2-diphenyl-1-picrylhydrazyl (DPPH·) free radical. However, for the content of the nanomaterial of 0.01-1 g/L decreased hydroxyl radical scavenging in the CM of B. subtilis IMV B-7023 on 7.2-17.6 % compared with a control. Low doses of silica nanoparticles stimulated the reducing power of the CM of bacteria and then highly suppressed it. PMID:26969592

  20. SubtiWiki 2.0--an integrated database for the model organism Bacillus subtilis.

    Science.gov (United States)

    Michna, Raphael H; Zhu, Bingyao; Mäder, Ulrike; Stülke, Jörg

    2016-01-01

    To understand living cells, we need knowledge of each of their parts as well as about the interactions of these parts. To gain rapid and comprehensive access to this information, annotation databases are required. Here, we present SubtiWiki 2.0, the integrated database for the model bacterium Bacillus subtilis (http://subtiwiki.uni-goettingen.de/). SubtiWiki provides text-based access to published information about the genes and proteins of B. subtilis as well as presentations of metabolic and regulatory pathways. Moreover, manually curated protein-protein interactions diagrams are linked to the protein pages. Finally, expression data are shown with respect to gene expression under 104 different conditions as well as absolute protein quantification for cytoplasmic proteins. To facilitate the mobile use of SubtiWiki, we have now expanded it by Apps that are available for iOS and Android devices. Importantly, the App allows to link private notes and pictures to the gene/protein pages. Today, SubtiWiki has become one of the most complete collections of knowledge on a living organism in one single resource. PMID:26433225