WorldWideScience

Sample records for bacillus subtilis spore

  1. Triple fixation of Bacillus subtilis dormant spores.

    OpenAIRE

    Kozuka, S; Tochikubo, K

    1983-01-01

    A triple-fixation method with a sequential application of 5% glutaraldehyde, 1% osmium tetroxide, and 2% potassium permanganate gave superior preservation of the ultrastructure of Bacillus subtilis dormant spores with a thick spore coat.

  2. Bacillus subtilis Spore Inner Membrane Proteome.

    Science.gov (United States)

    Zheng, Linli; Abhyankar, Wishwas; Ouwerling, Natasja; Dekker, Henk L; van Veen, Henk; van der Wel, Nicole N; Roseboom, Winfried; de Koning, Leo J; Brul, Stanley; de Koster, Chris G

    2016-02-01

    The endospore is the dormant form of Bacillus subtilis and many other Firmicutes. By sporulation, these spore formers can survive very harsh physical and chemical conditions. Yet, they need to go through germination to return to their growing form. The spore inner membrane (IM) has been shown to play an essential role in triggering the initiation of germination. In this study, we isolated the IM of bacterial spores, in parallel with the isolation of the membrane of vegetative cells. With the use of GeLC-MS/MS, over 900 proteins were identified from the B. subtilis spore IM preparations. By bioinformatics-based membrane protein predictions, ca. one-third could be predicted to be membrane-localized. A large number of unique proteins as well as proteins common to the two membrane proteomes were identified. In addition to previously known IM proteins, a number of IM proteins were newly identified, at least some of which are likely to provide new insights into IM physiology, unveiling proteins putatively involved in spore germination machinery and hence putative germination inhibition targets. PMID:26731423

  3. Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores

    Science.gov (United States)

    Wood, Joseph P.; Meyer, Kathryn M.; Kelly, Thomas J.; Choi, Young W.; Rogers, James V.; Riggs, Karen B.; Willenberg, Zachary J.

    2015-01-01

    There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially. PMID:26372011

  4. Heat Resistance and Population Stability of Lyophilized Bacillus subtilis Spores

    OpenAIRE

    Odlaug, Theron E.; Caputo, Ross A.; Graham, Gary S.

    1981-01-01

    Bacillus subtilis 5230 spores were lyophilized in 0.067 M phosphate buffer and stored at 2 to 8°C for 9 to 27 months. The lyophilized spores were reconstituted with buffer or 0.9% saline, and the heat resistance was determined in a thermoresistometer. Lyophilization had no effect on the heat resistance of the spores but did result in a slight decrease in population (≤0.3-logarithm reduction). The lyophilized spores maintained heat resistance and population levels over the test periods. The D-...

  5. Application of gaseous ozone for inactivation of Bacillus subtilis spores.

    Science.gov (United States)

    Aydogan, Ahmet; Gurol, Mirat D

    2006-02-01

    The effectiveness of gaseous ozone (O3) as a disinfectant was tested on Bacillus subtilis spores, which share the same physiological characteristics as Bacillus anthracis spores that cause the anthrax disease. Spores dried on surfaces of different carrier material were exposed to O3 gas in the range of 500-5000 ppm and at relative humidity (RH) of 70-95%. Gaseous O3 was found to be very effective against the B. subtilis spores, and at O3 concentrations as low as 3 mg/L (1500 ppm), approximately 3-log inactivation was obtained within 4 hr of exposure. The inactivation curves consisted of a short lag phase followed by an exponential decrease in the number of surviving spores. Prehydration of the bacterial spores has eliminated the initial lag phase. The inactivation rate increased with increasing O3 concentration but not >3 mg/L. The inactivation rate also increased with increase in RH. Different survival curves were obtained for various surfaces used to carry spores. Inactivation rates of spores on glass, a vinyl floor tile, and office paper were nearly the same. Whereas cut pile carpet and hardwood flooring surfaces resulted in much lower inactivation rates, another type of carpet (loop pile) showed significant enhancement in the inactivation of the spores. PMID:16568801

  6. Sporicidal characteristics of heated dolomite powder against Bacillus subtilis spores.

    Science.gov (United States)

    Yasue, Syogo; Sawai, Jun; Kikuchi, Mikio; Nakakuki, Takahito; Sano, Kazuo; Kikuchi, Takahide

    2014-01-01

    Dolomite is a double salt composed of calcium carbonate (CaCO3) and magnesium carbonate (MgCO3). The heat treatment of CaCO3 and MgCO3 respectively generates calcium oxide (CaO) and magnesium oxide (MgO), which have antimicrobial activity. In this study, heated dolomite powder (HDP) slurry was investigated for its sporicidal activity against Bacillus subtilis ATCC 6633 spores. The B. subtilis spores used in this study were not affected by acidic (pH 1) or alkaline (pH 13) conditions, indicating that they were highly resistant. However, dolomite powder heated to 1000℃ for 1 h could kill B. subtilis spores, even at pH 12.7. Sporicidal activity was only apparent when the dolomite powder was heated to 800℃ or higher, and sporicidal activity increased with increases in the heating temperature. This temperature corresponded to that of the generation of CaO. We determined that MgO did not contribute to the sporicidal activity of HDP. To elucidate the sporicidal mechanism of the HDP against B. subtilis spores, the generation of active oxygen from HDP slurry was examined by chemiluminescence analysis. The generation of active oxygen increased when the HDP slurry concentration rose. The results suggested that, in addition to its alkalinity, the active oxygen species generated from HDP were associated with sporicidal activity. PMID:25252642

  7. Inhibitory effect of novobiocin on ribonucleic acid synthesis during germination of Bacillus subtilis spores.

    OpenAIRE

    Matsuda, M; Kameyama, T

    1980-01-01

    Novobiocin inhibited ribonculeic acid synthesis during germination of Bacillus subtilis spores. Transcription of certain kinds of genes probably required a preceding conformational change in deoxyribonucleic acid.

  8. Activity of essential oils against Bacillus subtilis spores.

    Science.gov (United States)

    Lawrence, Hayley A; Palombo, Enzo A

    2009-12-01

    Alternative methods for controlling bacterial endospore contamination are desired in a range of industries and applications. Attention has recently turned to natural products, such as essential oils, which have sporicidal activity. In this study, a selection of essential oils was investigated to identify those with activity against Bacillus subtilis spores. Spores were exposed to thirteen essential oils, and surviving spores were enumerated. Cardamom, tea tree, and juniper leaf oils were the most effective, reducing the number of viable spores by 3 logs at concentrations above 1%. Sporicidal activity was enhanced at high temperatures (60 degrees C) or longer exposure times (up to one week). Gas chromatography-mass spectrometry analysis identified the components of the active essential oils. However, none of the major oil components exhibited equivalent activity to the whole oils. The fact that oil components, either alone or in combination, did not show the same level of sporicidal activity as the complete oils suggested that minor components may be involved, or that these act synergistically with major components. Scanning electron microscopy was used to examine spores after exposure to essential oils and suggested that leakage of spore contents was the likely mode of sporicidal action. Our data have shown that essential oils exert sporicidal activity and may be useful in applications where bacterial spore reduction is desired. PMID:20075624

  9. Tip-enhanced Raman scattering of bacillus subtilis spores

    Science.gov (United States)

    Rusciano, G.; Zito, G.; Pesce, G.; Sasso, A.; Isticato, R.; Ricca, E.

    2015-07-01

    Understanding of the complex interactions of molecules at biological interfaces is a fundamental issue in biochemistry, biotechnology as well as biomedicine. A plethora of biological processes are ruled by the molecular texture of cellular membrane: cellular communications, drug transportations and cellular recognition are just a few examples of such chemically-mediated processes. Tip-Enhanced Raman Scattering (TERS) is a novel, Raman-based technique which is ideally suited for this purpose. TERS relies on the combination of scanning probe microscopy and Raman spectroscopy. The basic idea is the use of a metalled tip as a sort of optical nano-antenna, which gives place to SERS effect close to the tip end. Herein, we present the application of TERS to analyze the surface of Bacillus subtilis spores. The choice of this biological systems is related to the fact that a number of reasons support the use of spores as a mucosal delivery system. The remarkable and well-documented resistance of spores to various environmental and toxic effects make them clear potentials as a novel, surface-display system. Our experimental outcomes demonstrate that TERS is able to provide a nano-scale chemical imaging of spore surface. Moreover, we demonstrate that TERS allows differentiation between wilde-type spore and genetically modified strains. These results hold promise for the characterization and optimization of spore surface for drug-delivery applications.

  10. Vacuum-induced Mutations In Bacillus Subtilis Spores

    Science.gov (United States)

    Munakata, N.; Maeda, M.; Hieda, K.

    During irradiation experiments with vacuum-UV radiation using synchrotron sources, we made unexpected observation that Bacillus subtilis spores of several recombination-deficient strains lost colony-forming ability by the exposure to high vacuum alone. Since this suggested the possible injury in spore DNA, we looked for mutation induction using the spores of strains HA101 (wild-type repair capability) and TKJ6312 (excision and spore repair deficient) that did not lose survivability. It was found that the frequency of nalidixic-acid resistant mutation increased several times in both of these strains by the exposure to high vacuum (10e-4 Pa after 24 hours). The analysis of sequence changes in gyrA gene showed that the majority of mutations carried a unique allele (gyrA12) of tandem double-base substitutions from CA to TT. The observation has been extended to rifampicin resistant mutations, the majority of that carried substitutions from CA to TT or AT in rpoB gene. On the other hand, when the spores of strains PS578 and PS2319 (obtained from P. Setlow) that are defective in a group of small acidic proteins (alpha/beta-type SASP) were similarly treated, none of the mutants analyzed carried such changes. This suggests that the unique mutations might be induced by the interaction of small acidic proteins with spore DNA under forced dehydration. The results indicate that extreme vacuum causes severe damage in spore DNA, and provide additional constraint to the long-term survival of bacterial spores in the space environment.

  11. Mutagenesis of Bacillus subtilis spores exposed to simulated space environment

    Science.gov (United States)

    Munakata, N.; Natsume, T.; Takahashi, K.; Hieda, K.; Panitz, C.; Horneck, G.

    Bacterial spores can endure in a variety of extreme earthly environments. However, some conditions encountered during the space flight could be detrimental to DNA in the spore, delimiting the possibility of transpermia. We investigate the genetic consequences of the exposure to space environments in a series of preflight simulation project of EXPOSE. Using Bacillus subtilis spores of repair-proficient HA101 and repair-deficient TKJ6312 strains, the mutations conferring resistance to rifampicin were detected, isolated and sequenced. Most of the mutations were located in a N-terminal region of the rpoB gene encoding RNA polymerase beta-subunit. Among several potentially mutagenic factors, high vacuum, UV radiation, heat, and accelerated heavy ions induced mutations with varying efficiencies. A majority of mutations induced by vacuum exposure carried a tandem double-base change (CA to TT) at a unique sequence context of TCAGC. Results indicate that the vacuum and high temperature may act synergistically for the induction of mutations.

  12. Protective Role of Spore Structural Components in Determining Bacillus subtilis Spore Resistance to Simulated Mars Surface Conditions

    OpenAIRE

    Moeller, Ralf; Schuerger, Andrew C.; Reitz, Günther; Nicholson, Wayne L.

    2012-01-01

    Spores of wild-type and mutant Bacillus subtilis strains lacking various structural components were exposed to simulated Martian atmospheric and UV irradiation conditions. Spore survival and mutagenesis were strongly dependent on the functionality of all of the structural components, with small acid-soluble spore proteins, coat layers, and dipicolinic acid as key protectants.

  13. Localization of the Cortex Lytic Enzyme CwlJ in Spores of Bacillus subtilis

    OpenAIRE

    Bagyan, Irina; Setlow, Peter

    2002-01-01

    The enzyme CwlJ is involved in the depolymerization of cortex peptidoglycan during germination of spores of Bacillus subtilis. CwlJ with a C-terminal His tag was functional and was extracted from spores by procedures that remove spore coat proteins. However, this CwlJ was not extracted from disrupted spores by dilute buffer, high salt concentrations, Triton X-100, Ca2+-dipicolinic acid, dithiothreitol, or peptidoglycan digestion, disappeared during spore germination, and was not present in co...

  14. Detection of spore coat protein of Bacillus subtilis by immunological method

    International Nuclear Information System (INIS)

    The spore coat protein of Bacillus subtilis was separated, and the qualitative assay for the spore coat protein was made by use of the immunological technique. The immunological method was found to be useful for judging the maturation of spore coat in the course of sporulation. The spore coat protein antigen appeared at t2 stage of sporulation. The addition of rifampicin at the earlier stages of sporulation inhibited the increase in content of the spore coat antigen. (auth.)

  15. Detection of Anthrax Simulants with Microcalorimetric Spectroscopy: Bacillus subtilis and Bacillus cereus Spores

    Science.gov (United States)

    Arakawa, Edward T.; Lavrik, Nickolay V.; Datskos, Panos G.

    2003-04-01

    Recent advances in the development of ultrasensitive micromechanical thermal detectors have led to the advent of novel subfemtojoule microcalorimetric spectroscopy (CalSpec). On the basis of principles of photothermal IR spectroscopy combined with efficient thermomechanical transduction, CalSpec provides acquisition of vibrational spectra of microscopic samples and absorbates. We use CalSpec as a method of identifying nanogram quantities of biological micro-organisms. Our studies focus on Bacillus subtilis and Bacillus cereus spores as simulants for Bacillus anthracis spores. Using CalSpec, we measured IR spectra of B. subtilis and B. cereus spores present on surfaces in nanogram quantities (approximately 100 -1000 spores). The spectra acquired in the wavelength range of 690 -4000 cm-1 (2.5 -14.5 μm) contain information-rich vibrational signatures that reflect the different ratios of biochemical makeup of the micro-organisms. The distinctive features in the spectra obtained for the two types of micro-organism can be used to distinguish between the spores of the Bacillus family. As compared with conventional IR and Fourier-transform IR microscopic spectroscopy techniques, the advantages of the present technique include significantly improved sensitivity (at least a full order of magnitude), absence of expensive IR detectors, and excellent potential for miniaturization.

  16. Live-imaging of Bacillus subtilis spore germination and outgrowth

    OpenAIRE

    Pandey, R

    2014-01-01

    Spores of Gram-positive bacteria such as Bacillus and Clostridium cause huge economic losses to the food industry. In food products, spores survive under food preservation conditions and subsequent germination and outgrowth eventually causes food spoilage. Therefore efforts are being made to eliminate or inactivate these bacterial spores in foods. In this regard food industry uses different preservation methods such as thermal-treatment, weak acids, antimicrobial compounds etc. Complete therm...

  17. Effects of microbial loading and sporulation temperature on atmospheric plasma inactivation of Bacillus subtilis spores

    Science.gov (United States)

    Deng, X. T.; Shi, J. J.; Shama, G.; Kong, M. G.

    2005-10-01

    Current inactivation studies of Bacillus subtilis spores using atmospheric-pressure glow discharges (APGD) do not consider two important factors, namely microbial loading at the surface of a substrate and sporulation temperature. Yet these are known to affect significantly microbial resistance to heat and hydrogen peroxide. This letter investigates effects of microbial loading and sporulation temperature on spore resistance to APGD. It is shown that microbial loading can lead to a stacking structure as a protective shield against APGD treatment and that high sporulation temperature increases spore resistance by altering core water content and cross-linked muramic acid content of B. subtilis spores.

  18. Comparative Study of Pressure-Induced Germination of Bacillus subtilis Spores at Low and High Pressures

    OpenAIRE

    Wuytack, Elke Y.; Boven, Steven; Michiels, Chris W.

    1998-01-01

    We have studied pressure-induced germination of Bacillus subtilis spores at moderate (100 MPa) and high (500 to 600 MPa) pressures. Although we found comparable germination efficiencies under both conditions by using heat sensitivity as a criterion for germination, the sensitivity of pressure-germinated spores to some other agents was found to depend on the pressure used. Spores germinated at 100 MPa were more sensitive to pressure (>200 MPa), UV light, and hydrogen peroxide than were those g...

  19. Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments

    OpenAIRE

    Nagler, Katja; Setlow, Peter; Reineke, Kai; Driks, Adam; Moeller, Ralf

    2015-01-01

    The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the...

  20. Effect of sporulation conditions on the resistance of Bacillus subtilis spores to heat and high pressure.

    Science.gov (United States)

    Nguyen Thi Minh, Hue; Durand, Alain; Loison, Pauline; Perrier-Cornet, Jean-Marie; Gervais, Patrick

    2011-05-01

    Bacillus subtilis(B. subtilis) cells were placed in various environmental conditions to study the effects of aeration, water activity of the medium, temperature, pH, and calcium content on spore formation and the resulting properties. Modification of the sporulation conditions lengthened the growth period of B. subtilis and its sporulation. In some cases, it reduced the final spore concentration. The sporulation conditions significantly affected the spore properties, including germination capacity and resistance to heat treatment in water (30 min at 97°C) or to high pressure (60 min at 350 MPa and 40°C). The relationship between the modifications of these spore properties and the change in the spore structure induced by different sporulation conditions is also considered. According to this study, sporulation conditions must be carefully taken into account during settling sterilization processes applied in the food industry. PMID:21380515

  1. Bacillus subtilis spores as vaccine adjuvants: further insights into the mechanisms of action.

    Directory of Open Access Journals (Sweden)

    Renata Damásio de Souza

    Full Text Available Bacillus subtilis spores have received growing attention regarding potential biotechnological applications, including the use as probiotics and in vaccine formulations. B. subtilis spores have also been shown to behave as particulate vaccine adjuvants, promoting the increase of antibody responses after co-administration with antigens either admixed or adsorbed on the spore surface. In this study, we further evaluated the immune modulatory properties of B. subtilis spores using a recombinant HIV gag p24 protein as a model antigen. The adjuvant effects of B. subtilis spores were not affected by the genetic background of the mouse lineage and did not induce significant inflammatory or deleterious effects after parenteral administration. Our results demonstrated that co-administration, but not adsorption to the spore surface, enhanced the immunogenicity of that target antigen after subcutaneous administration to BALB/c and C57BL/6 mice. Spores promoted activation of antigen presenting cells as demonstrated by the upregulation of MHC and CD40 molecules and enhanced secretion of pro-inflammatory cytokines by murine dendritic cells. In addition, in vivo studies indicated a direct role of the innate immunity on the immunomodulatory properties of B. subtilis spores, as demonstrated by the lack of adjuvant effects on MyD88 and TLR2 knockout mouse strains.

  2. Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production.

    Science.gov (United States)

    Posada-Uribe, Luisa F; Romero-Tabarez, Magally; Villegas-Escobar, Valeska

    2015-10-01

    Bacillus subtilis spores have important biotechnological applications; however, achieving both, high spore cell densities and sporulation efficiencies in fermentation, is poorly reported. In this study, medium components and culture conditions were optimized with different statistical methods to increase spore production of the plant growth promoting rhizobacteria B. subtilis EA-CB0575. Key medium components were determined with Plackett-Burman (PB) design, and the optimum concentration levels of two components (glucose, MgSO4·7H2O) were optimized with a full factorial and central composite design, achieving 1.37 × 10(9) CFU/mL of spore cell density and 93.5 % of sporulation efficiency in shake flask. The optimized medium was used to determine the effect of culture conditions on spore production at bioreactor level, finding that maintaining pH control did not affect significantly spore production, while the interaction of agitation and aeration rates had a significant effect on spore cell density. The overall optimization generated a 17.2-fold increase in spore cell density (8.78 × 10(9) CFU/mL) and 1.9-fold increase in sporulation efficiency (94.2 %) compared to that of PB design. These results indicate the potential of B. subtilis EA-CB0575 to produce both, high spore cell densities and sporulation efficiencies, with very low nutrient requirements and short incubation period which can represent savings of process production. PMID:26135004

  3. CotC-CotU Heterodimerization during Assembly of the Bacillus subtilis Spore Coat▿

    OpenAIRE

    Isticato, Rachele; Pelosi, Assunta; Zilhão, Rita, 1959-; Baccigalupi, Loredana; Henriques, Adriano O.; De Felice, Maurilio; Ricca, Ezio

    2007-01-01

    We report evidence that CotC and CotU, two previously identified components of the Bacillus subtilis spore coat, are produced concurrently in the mother cell chamber of the sporulating cell under the control of σK and GerE and immediately assembled around the forming spore. In the coat, the two proteins interact to form a coat component of 23 kDa. The CotU-CotC interaction was not detected in two heterologous hosts, suggesting that it occurs only in B. subtilis. Monomeric forms of both CotU a...

  4. Effect of ethanol perturbation on viscosity and permeability of an inner membrane in Bacillus subtilis spores.

    Science.gov (United States)

    Loison, Pauline; Gervais, Patrick; Perrier-Cornet, Jean-Marie; Kuimova, Marina K

    2016-09-01

    In this work, we investigated how a combination of ethanol and high temperature (70°C), affect the properties of the inner membrane of Bacillus subtilis spores. We observed membrane permeabilization for ethanol concentrations ≥50%, as indicated by the staining of the spores' DNA by the cell impermeable dye Propidium Iodide. The loss of membrane integrity was also confirmed by a decrease in the peak corresponding to dipicolinic acid using infrared spectroscopy. Finally, the spore refractivity (as measured by phase contrast microscopy) was decreased after the ethanol-heat treatment, suggesting a partial rehydration of the protoplast. Previously we have used fluorescent lifetime imaging microscopy (FLIM) combined with the fluorescent molecular rotor Bodipy-C12 to study the microscopic viscosity in the inner membrane of B. subtilis spores, and showed that at normal conditions it is characterized by a very high viscosity. Here we demonstrate that the ethanol/high temperature treatment led to a decrease of the viscosity of the inner membrane, from 1000cP to 860cP for wild type spores at 50% of ethanol. Altogether, our present work confirms the deleterious effect of ethanol on the structure of B. subtilis spores, as well as demonstrates the ability of FLIM - Bodipy-C12 to measure changes in the microviscosity of the spores upon perturbation. PMID:27267704

  5. Modeling the inactivation of Bacillus subtilis spores by ethylene oxide processing

    OpenAIRE

    Mendes, G. C.; Brandão, T. R. S.; Silva, C. L. M.

    2011-01-01

    Ethylene oxide is currently a dominant agent in medical device sterilization. This work intends to study the main effects and interactions of temperature, ethylene oxide concentration, and relative humidity on commercial spore strips of Bacillus subtilis, var. niger (ATCC 9372) inactivation, the most common microorganism used in controlling the efficacy of the process. Experiments were carried out using a full factorial experimental design at two levels (23 factorial design). Limit targ...

  6. Modelling the inactivation of Bacillus subtilis spores by ethylene oxide processing

    OpenAIRE

    Mendes, G. C.; Brandão, T. R. S.; Silva, C. L. M.

    2009-01-01

    Ethylene oxide is currently a dominant agent in medical devices sterilization. This work intends to study the main effects and interactions of temperature (T), ethylene oxide (EO) concentration and relative humidity (RH) on commercial spore strips of Bacillus subtilis, var. niger (ATCC 9372) inactivation, the most common microorganism used in controlling the efficacy of the process. Experiments were carried out using a full factorial experimental design at two levels (23 factorial desig...

  7. The action of ionizing radiation on Bacillus subtilis spores in a dry and wet system

    International Nuclear Information System (INIS)

    The action of water in combination with ionizing radiation was examined using different strains of Bacillus subtilis spores. The parameter of the experiments was a modification of water content; maximal degree of desiccation was achieved by high vacuum. The Fricke-method for X-ray dosimetry was compared to the ionizing-chamber method. In the dry state spores of both wild and mutant strain appeared to be more sensitive than in the wet state. This contradicts to the opinion of dose enhancement by the indirect action of water. (orig.)

  8. Ultrastructural localization of dipicolinic acid in dormant spores of Bacillus subtilis by immunoelectron microscopy with colloidal gold particles.

    OpenAIRE

    Kozuka, S; Yasuda, Y.; Tochikubo, K

    1985-01-01

    The localization of dipicolinic acid in dormant spores of Bacillus subtilis was examined by an immunoelectron microscopy method with colloidal gold-immunoglobulin G complex. The colloidal gold particles were distributed mainly in the core regions of dormant spores and were not observed in those of germinated or autoclaved spores. This result clearly demonstrates that dipicolinic acid is localized in the cores of dormant spores.

  9. Improvement of Biological Indicators by Uniformly Distributing Bacillus subtilis Spores in Monolayers To Evaluate Enhanced Spore Decontamination Technologies.

    Science.gov (United States)

    Raguse, Marina; Fiebrandt, Marcel; Stapelmann, Katharina; Madela, Kazimierz; Laue, Michael; Lackmann, Jan-Wilm; Thwaite, Joanne E; Setlow, Peter; Awakowicz, Peter; Moeller, Ralf

    2016-04-01

    Novel decontamination technologies, including cold low-pressure plasma and blue light (400 nm), are promising alternatives to conventional surface decontamination methods. However, the standardization of the assessment of such sterilization processes remains to be accomplished. Bacterial endospores of the genera Bacillus and Geobacillus are frequently used as biological indicators (BIs) of sterility. Ensuring standardized and reproducible BIs for reliable testing procedures is a significant problem in industrial settings. In this study, an electrically driven spray deposition device was developed, allowing fast, reproducible, and homogeneous preparation of Bacillus subtilis 168 spore monolayers on glass surfaces. A detailed description of the structural design as well as the operating principle of the spraying device is given. The reproducible formation of spore monolayers of up to 5 × 10(7) spores per sample was verified by scanning electron microscopy. Surface inactivation studies revealed that monolayered spores were inactivated by UV-C (254 nm), low-pressure argon plasma (500 W, 10 Pa, 100 standard cubic cm per min), and blue light (400 nm) significantly faster than multilayered spores were. We have thus succeeded in the uniform preparation of reproducible, highly concentrated spore monolayers with the potential to generate BIs for a variety of nonpenetrating surface decontamination techniques. PMID:26801572

  10. Role of Dipicolinic Acid in Survival of Bacillus subtilis Spores Exposed to Artificial and Solar UV Radiation

    OpenAIRE

    Slieman, Tony A.; Nicholson, Wayne L.

    2001-01-01

    Pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA]) constitutes approximately 10% of Bacillus subtilis spore dry weight and has been shown to play a significant role in the survival of B. subtilis spores exposed to wet heat and to 254-nm UV radiation in the laboratory. However, to date, no work has addressed the importance of DPA in the survival of spores exposed to environmentally relevant solar UV radiation. Air-dried films of spores containing DPA or lacking DPA due to a null mutation ...

  11. Investigating the thermodynamic stability of Bacillus subtilis spore-uranium(VI) adsorption though surface complexation modeling

    Science.gov (United States)

    Harrold, Z.; Hertel, M.; Gorman-Lewis, D.

    2012-12-01

    Dissolved uranium speciation, mobility, and remediation are increasingly important topics given continued and potential uranium (U) release from mining operations and nuclear waste. Vegetative bacterial cell surfaces are known to adsorb uranium and may influence uranium speciation in the environment. Previous investigations regarding U(VI) adsorption to bacterial spores, a differentiated and dormant cell type with a tough proteinaceous coat, include U adsorption affinity and XAFS data. We investigated the thermodynamic stability of aerobic, pH dependent uranium adsorption to bacterial spore surfaces using purified Bacillus subtilis spores in solution with 5ppm uranium. Adsorption reversibility and kinetic experiments indicate that uranium does not precipitate over the duration of the experiments and equilibrium is reached within 20 minutes. Uranium-spore adsorption edges exhibited adsorption at all pH measured between 2 and 10. Maximum adsorption was achieved around pH 7 and decreased as pH increased above 7. We used surface complexation modeling (SCM) to quantify uranium adsorption based on balanced chemical equations and derive thermodynamic stability constants for discrete uranium-spore adsorption reactions. Site specific thermodynamic stability constants provide insight on interactions occurring between aqueous uranium species and spore surface ligands. The uranium adsorption data and SCM parameters described herein, also provide a basis for predicting the influence of bacterial spores on uranium speciation in natural systems and investigating their potential as biosorption agents in engineered systems.

  12. Disinfection and regrowth potential of bacillus subtilis spores by ozone, ultraviolet rays and gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Yeon; Lee, O Mi; Kim, Tae Hun; Lee, Myun Joo; Yu, Seung Ho [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-06-15

    Chlorination has been the most commonly adopted disinfection process for the treatment of drinking water. However, Cryptosporidium parvum oocysts and Giardia lamblia cysts were not treated effectively by the common chlorine-based disinfectants. Additionally the regrowth of pathogenic microorganisms is associated with hygienic and aesthetic problems for the consumers of drinking water. Study on alternative disinfection processes such as ozone, UV-C, VUV and gamma irradiation were conducted. Bacillus subtilis spores have been used as a surrogate microorganism for Cryptosporidium parvum oocysts and Giardia lamblia cyst. Inactivation efficiency by ozone was from 30% to 96% within the range of 5 min to 120 min exposures. Inactivation efficiencies by UV-C and VUV were 95.18%, 95.07% at 30 sec, respectively. Inactivation efficiency at gamma irradiation dose of 2 kGy was 99.4%. Microbial regrowths after ozone, UV-C, VUV and gamma irradiation disinfections were also evaluated for 4 days. Bacillus subtilis spores after ozone treatment for 120 min exposure at the rate of 1.68 mg {center_dot} min{sup -1} showed 96.02% disinfection efficiency and significant microbial regrowth. Bacillus subtilis spores after UV-C (99.25% disinfection efficiency) and VUV (99.67% disinfection efficiency) treatments for 5 min showed gradual regrowth. However, inactivation efficiency of gamma irradiation at dose of 1 kGy was 98.8% and the disinfected sample showed no microbial regrowth for 4 days. Therefore, gamma irradiation is the most effective process for the disinfection of pathogenic microorganisms such as oocysts of protozoan parasites among four disinfection process.

  13. Disinfection and regrowth potential of bacillus subtilis spores by ozone, ultraviolet rays and gamma irradiation

    International Nuclear Information System (INIS)

    Chlorination has been the most commonly adopted disinfection process for the treatment of drinking water. However, Cryptosporidium parvum oocysts and Giardia lamblia cysts were not treated effectively by the common chlorine-based disinfectants. Additionally the regrowth of pathogenic microorganisms is associated with hygienic and aesthetic problems for the consumers of drinking water. Study on alternative disinfection processes such as ozone, UV-C, VUV and gamma irradiation were conducted. Bacillus subtilis spores have been used as a surrogate microorganism for Cryptosporidium parvum oocysts and Giardia lamblia cyst. Inactivation efficiency by ozone was from 30% to 96% within the range of 5 min to 120 min exposures. Inactivation efficiencies by UV-C and VUV were 95.18%, 95.07% at 30 sec, respectively. Inactivation efficiency at gamma irradiation dose of 2 kGy was 99.4%. Microbial regrowths after ozone, UV-C, VUV and gamma irradiation disinfections were also evaluated for 4 days. Bacillus subtilis spores after ozone treatment for 120 min exposure at the rate of 1.68 mg · min-1 showed 96.02% disinfection efficiency and significant microbial regrowth. Bacillus subtilis spores after UV-C (99.25% disinfection efficiency) and VUV (99.67% disinfection efficiency) treatments for 5 min showed gradual regrowth. However, inactivation efficiency of gamma irradiation at dose of 1 kGy was 98.8% and the disinfected sample showed no microbial regrowth for 4 days. Therefore, gamma irradiation is the most effective process for the disinfection of pathogenic microorganisms such as oocysts of protozoan parasites among four disinfection process

  14. Roles of Small, Acid-Soluble Spore Proteins and Core Water Content in Survival of Bacillus subtilis Spores Exposed to Environmental Solar UV Radiation▿

    OpenAIRE

    Moeller, Ralf; Setlow, Peter; Reitz, Günther; Nicholson, Wayne L.

    2009-01-01

    Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water conte...

  15. Germination and inactivation of Bacillus subtilis spores induced by moderate hydrostatic pressure.

    Science.gov (United States)

    Nguyen Thi Minh, Hue; Dantigny, Philippe; Perrier-Cornet, Jean-Marie; Gervais, Patrick

    2010-12-01

    In this study, we investigated the mechanisms of spore inactivation by high pressure at moderate temperatures to optimize the sterilization efficiency of high-pressure treatments. Bacillus subtilis spores were first subjected to different pressure treatments ranging from 90 to 550 MPa at 40°C, with holding times from 10 min to 4 h. These treatments alone caused slight inactivation, which was related to the pressure-induced germination of the spores. After these pressures treatments, the sensitivity of these processed spores to heat (80°C/10 min) or to high pressure (350 MPa/40°C/10 min) was tested to determine the pressure-induced germination rate and the advancement of the spores in the germination process. The subsequent heat or pressure treatments were applied immediately after decompression from the first pressure treatment or after a holding time at atmospheric pressure. As already known, the spore germination is more efficient at low pressure level than at high pressure level. Our results show that this low germination efficiency at high pressure seemed not to be related either to a lower induction or a difference in the induction mechanisms but rather to an inhibition of enzyme activities which are involved in germination process. In fact, high pressure was necessary and very efficient in inducing spore germination. However, it seemed to slow the enzymatic digestion of the cortex, which is required for germinated spores to be inactivated by pressure. Although these results indicate that high-pressure treatments are more efficient when the two treatments are combined, a small spore population still remained dormant and was not inactivated with any holding time or pressure level. PMID:20589839

  16. Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from being killed by freeze-drying.

    OpenAIRE

    Fairhead, H; Setlow, B; Waites, W M; Setlow, P

    1994-01-01

    Wild-type spores of Bacillus subtilis were resistant to eight cycles of freeze-drying, whereas about 90% of spores lacking the two major DNA-binding proteins (small, acid-soluble proteins alpha and beta) were killed by three to four cycles of freeze-dryings, with significant mutagenesis and DNA damage accompanying the killing. This role for alpha/beta-type small, acid-soluble proteins in spore resistance to freeze-drying may be important in spore survival in the environment.

  17. Inactivation, mutation induction and repair in Bacillus subtilis spores irradiated with heavy ions

    Science.gov (United States)

    Horneck, G.; Bücker, H.

    Studies on the response of bacterial spores to accelerated heavy ions (HZE particles) help in understanding problems of space radiobiology and exobiology. Layers of spores of Bacillus subtilis strains, differing in repair capabilities, were irradiated with accelerated boron, carbon and neon ions of linear energy transfer (LET) values up to 14000 MeV cm2/g. Inactivation as measured by loss of colony forming ability and induction of mutations as measured by reversion to histidine prototrophy and resistance to 150 μg/ml sodium azide were tested, as well as the influence of repair processes on these effects. For inactivation, the cross-sectional values σ plotted as a function of LET follow a saturation curve. The plateau, which is reached around a LET of 2000 MeV cm2/g, occurs at 2.5 × 10-9 cm2, a value in good agreement with the dimensions of the spore protoplast. Lethal damage produced at LET values < 2000 MeV cm2/g is reparable. Recombination repair is more effective than excision repair. At higher LET values, lethal damage could not be reconstituted by the repair mechanisms studied. In addition, at these high LET values, the frequency of induced mutations was drastically decreased. The data support the assumption of at least two qualitatively different types of lesion, depending on the LET of the affecting heavy ion.

  18. Decontamination of Bacillus subtilis var.niger spores on selected surfaces by chlorine dioxide gas

    Institute of Scientific and Technical Information of China (English)

    Yan-ju LI; Neng ZHU; Hai-quan JIA; Jin-hui WU; Ying YI; Jian-cheng QI

    2012-01-01

    Objective:Chlorine dioxide (CD) gas has been used as a fumigant in the disinfection of biosafety laboratories.In this study,some experiments were conducted to assess the inactivation of spores inoculated on six materials [stainless steel (SS),painted steel (PS),polyvinyl chlorid (PVC),polyurethane (PU),glass (GS),and cotton cloth (CC)] by CD gas.The main aims of the study were to determine the sporicidal efficacy of CD gas and the effect of prehumidification before decontamination on sporicidal efficacy.Methods:Material coupons (1.2 cm diameter of SS,PS,and PU; 1.0 cm×1.0 cm for PVC,GS,and CC) were contaminated with 10 μl of Bacillus subtilis var.niger(ATCC 9372) spore suspension in mixed organic burden and then dried in a biosafety cabinet for 12 h.The spores were recovered by soaking the coupons in 5 ml of extraction liquid for 1 h and then vortexing the liquid for 1 min.Results:The log reductions in spore numbers on inoculated test materials exposed to CD gas [0.080% (volume ratio,v/v) for 3 h]were in the range of from 1.80 to 6.64.Statistically significant differences were found in decontamination efficacies on test material coupons of SS,PS,PU,and CC between with and without a 1-h prehumidification treatment.With the extraction method,there were no statistically significant differences in the recovery ratios between the porous and non-porous materials.Conclusions:The results reported from this study could provide information for developing decontamination technology based on CD gas for targeting surface microbial contamination.

  19. Greater enhancement of Bacillus subtilis spore yields in submerged cultures by optimization of medium composition through statistical experimental designs.

    Science.gov (United States)

    Chen, Zhen-Min; Li, Qing; Liu, Hua-Mei; Yu, Na; Xie, Tian-Jian; Yang, Ming-Yuan; Shen, Ping; Chen, Xiang-Dong

    2010-02-01

    Bacillus subtilis spore preparations are promising probiotics and biocontrol agents, which can be used in plants, animals, and humans. The aim of this work was to optimize the nutritional conditions using a statistical approach for the production of B. subtilis (WHK-Z12) spores. Our preliminary experiments show that corn starch, corn flour, and wheat bran were the best carbon sources. Using Plackett-Burman design, corn steep liquor, soybean flour, and yeast extract were found to be the best nitrogen source ingredients for enhancing spore production and were studied for further optimization using central composite design. The key medium components in our optimization medium were 16.18 g/l of corn steep liquor, 17.53 g/l of soybean flour, and 8.14 g/l of yeast extract. The improved medium produced spores as high as 1.52 +/- 0.06 x 10(10) spores/ml under flask cultivation conditions, and 1.56 +/- 0.07 x 10(10) spores/ml could be achieved in a 30-l fermenter after 40 h of cultivation. To the best of our knowledge, these results compared favorably to the documented spore yields produced by B. subtilis strains. PMID:19697022

  20. Adsorption of β-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutants spores of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Sirec Teja

    2012-08-01

    Full Text Available Abstract Background The Bacillus subtilis spore has long been used as a surface display system with potential applications in a variety of fields ranging from mucosal vaccine delivery, bioremediation and biocatalyst development. More recently, a non-recombinant approach of spore display has been proposed and heterologous proteins adsorbed on the spore surface. We used the well-characterized β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius as a model to study enzyme adsorption, to analyze whether and how spore-adsorption affects the properties of the enzyme and to improve the efficiency of the process. Results We report that purified β-galactosidase molecules were adsorbed to purified spores of a wild type strain of B. subtilis retaining ca. 50% of their enzymatic activity. Optimal pH and temperature of the enzyme were not altered by the presence of the spore, that protected the adsorbed β-galactosidase from exposure to acidic pH conditions. A collection of mutant strains of B. subtilis lacking a single or several spore coat proteins was compared to the isogenic parental strain for the adsorption efficiency. Mutants with an altered outermost spore layer (crust were able to adsorb 60-80% of the enzyme, while mutants with a severely altered or totally lacking outer coat adsorbed 100% of the β-galactosidase molecules present in the adsorption reaction. Conclusion Our results indicate that the spore surface structures, the crust and the outer coat layer, have an negative effect on the adhesion of the β-galactosidase. Electrostatic forces, previously suggested as main determinants of spore adsorption, do not seem to play an essential role in the spore-β-galactosidase interaction. The analysis of mutants with altered spore surface has shown that the process of spore adsorption can be improved and has suggested that such improvement has to be based on a better understanding of the spore surface structure

  1. Characterization of heavy ion-induced damage in Bacillus subtilis spores and their global transcriptional response during spore germination. First results

    International Nuclear Information System (INIS)

    The proposed research project is aimed to provide new insights on the spore resistance to heavy ions and the effects on different linear energy transfer (LET)-charged HZE particles. With this project, spores of Bacillus subtilis 168, (wild-type and several selected DNA repair-deficient strains) were used for studying the microbial response heavy ions irradiation. DNA repair and mutation induction events were investigated be the determination of the spore survivability, behavior to selected antibiotics, spore-specific protection mechanisms after irradiation. The activation of DNA repair genes were detected during germination by using DNA microarrays. For studying the DNA repair of treated spores during germination an integrated systems approach was used, id est (i.e.) all experiments were performed in a combination of various biochemical and molecular biological methods to study the spore resistance to heavy ion bombardment. (author)

  2. Understanding of the importance of the spore coat structure and pigmentation in the Bacillus subtilis spore resistance to low-pressure plasma sterilization

    Science.gov (United States)

    Raguse, Marina; Fiebrandt, Marcel; Denis, Benjamin; Stapelmann, Katharina; Eichenberger, Patrick; Driks, Adam; Eaton, Peter; Awakowicz, Peter; Moeller, Ralf

    2016-07-01

    Low-pressure plasmas have been evaluated for their potential in biomedical and defense purposes. The sterilizing effect of plasma can be attributed to several active agents, including (V)UV radiation, charged particles, radical species, neutral and excited atoms and molecules, and the electric field. Spores of Bacillus subtilis were used as a bioindicator and a genetic model system to study the sporicidal effects of low-pressure plasma decontamination. Wild-type spores, spores lacking the major protective coat layers (inner, outer, and crust), pigmentation-deficient spores or spore impaired in encasement (a late step in coat assembly) were systematically tested for their resistance to low-pressure argon, hydrogen, and oxygen plasmas with and without admixtures. We demonstrate that low-pressure plasma discharges of argon and oxygen discharges cause significant physical damage to spore surface structures as visualized by atomic force microscopy. Spore resistance to low-pressure plasma was primarily dependent on the presence of the inner, and outer spore coat layers as well as spore encasement, with minor or less importance of the crust and spore pigmentation, whereas spore inactivation itself was strongly influenced by the gas composition and operational settings.

  3. Live cell imaging of germination and outgrowth of individual bacillus subtilis spores; the effect of heat stress quantitatively analyzed with SporeTracker.

    Directory of Open Access Journals (Sweden)

    Rachna Pandey

    Full Text Available Spore-forming bacteria are a special problem for the food industry as some of them are able to survive preservation processes. Bacillus spp. spores can remain in a dormant, stress resistant state for a long period of time. Vegetative cells are formed by germination of spores followed by a more extended outgrowth phase. Spore germination and outgrowth progression are often very heterogeneous and therefore, predictions of microbial stability of food products are exceedingly difficult. Mechanistic details of the cause of this heterogeneity are necessary. In order to examine spore heterogeneity we made a novel closed air-containing chamber for live imaging. This chamber was used to analyze Bacillus subtilis spore germination, outgrowth, as well as subsequent vegetative growth. Typically, we examined around 90 starting spores/cells for ≥4 hours per experiment. Image analysis with the purposely built program "SporeTracker" allows for automated data processing from germination to outgrowth and vegetative doubling. In order to check the efficiency of the chamber, growth and division of B. subtilis vegetative cells were monitored. The observed generation times of vegetative cells were comparable to those obtained in well-aerated shake flask cultures. The influence of a heat stress of 85°C for 10 min on germination, outgrowth, and subsequent vegetative growth was investigated in detail. Compared to control samples fewer spores germinated (41.1% less and fewer grew out (48.4% less after the treatment. The heat treatment had a significant influence on the average time to the start of germination (increased and the distribution and average of the duration of germination itself (increased. However, the distribution and the mean outgrowth time and the generation time of vegetative cells, emerging from untreated and thermally injured spores, were similar.

  4. Survivability of bare, individual Bacillus subtilis spores to high-velocity surface impact: Implications for microbial transfer through space

    Science.gov (United States)

    Barney, Brandon L.; Pratt, Sara N.; Austin, Daniel E.

    2016-06-01

    Laboratory experiments show that endospores of Bacillus subtilis survive impact against a solid surface at velocities as high as 299 ±28 m/s. During impact, spores experience and survive accelerations of at least 1010 m/s2. The spores were introduced into a vacuum chamber using an electrospray source and accelerated to a narrow velocity distribution by entrainment in a differentially pumped gas flow. Different velocity ranges were studied by modifying the gas flow parameters. The spores were electrically charged, allowing direct measurement of the velocity of each spore as it passed through an image charge detector prior to surface impact. Spores impacted a glass surface and were collected for subsequent analysis by culturing. Most spores survived impact at all measured velocities. These experiments differ fundamentally from other studies that show either shock or impact survivability of bacteria embedded within or on the surface of a projectile. Bacteria in the present experiments undergo a single interaction with a solid surface at the full impact velocity, in the absence of any other effects such as cushioning due to microbe agglomerations, deceleration due to air or vapor, or transfer of impact shock through solid or liquid media. During these full-velocity impact events, the spores experience extremely high decelerations. This study is the first reported instance of accelerations of this magnitude experienced during a bacteria impact event. These results are discussed in the context of potential transfer of viable microbes in space and other scenarios involving surface impacts at high velocities.

  5. Characterization of heavy ion-induced damage in bacillus subtilis spores and their global transcriptional response during spore germination-role of B. subtilis's apurinic/apyrimidinic (AP) endonucleases in the resistance to heavy ion radiation

    International Nuclear Information System (INIS)

    The proposed research project is aimed to provide new insights on the spore resistance to heavy ions and the effects on different linear energy transfer (LET)-charged HZE particles. With this project, spores of Bacillus subtilis 168, (wild-type and several selected DNA repairdeficient strains) were used for studying the microbial response heavy ions irradiation. DNA repair capabilities were investigated be the determination of the spore survivability and spore-specific protection mechanisms after irradiation. The activation of DNA repair genes were detected during germination by using DNA microarrays. For studying the DNA repair of treated spores during germination an integrated systems approach was used, id est (i.e.) all experiments were performed in a combination of various biochemical and molecular biological methods to study the spore resistance to heavy ion bombardment. (author)

  6. Application of gaseous disinfectants ozone and chlorine dioxide for inactivation of Bacillus subtilis spores

    OpenAIRE

    Aydogan, Ahmet

    2006-01-01

    A terrorist attack involving chemical and/or biological warfare agents is a growing possibility. Since anthrax is considered as an immediate public-health threat that can be created by a warfare agent, it is imperative to investigate the potential remediation technologies effective against this threat. In this study, the effectiveness of two gaseous disinfectants, ozone and chlorine dioxide, to inactivate B.subtilis spores - as surrogate to B.anthracis that can cause the infectious anthrax di...

  7. Gel-free proteomic identification of the Bacillus subtilis insoluble spore coat protein fraction

    NARCIS (Netherlands)

    Abhyankar, W.; Beek, A.T.; Dekker, H.; Kort, R.; Brul, S.; Koster, C.G. de

    2011-01-01

    Species from the genus Bacillus have the ability to form endospores, dormant cellular forms that are able to survive heat and acid preservation techniques commonly used in the food industry. Resistance characteristics of spores towards various environmental stresses are in part attributed to their c

  8. Comparative Study of Pressure- and Nutrient-Induced Germination of Bacillus subtilis Spores

    OpenAIRE

    Wuytack, Elke Y.; Soons, Johan; Poschet, Filip; Michiels, Chris W.

    2000-01-01

    Germination experiments with specific germination mutants of Bacillus subtilis, including a newly isolated mutant affected in pressure-induced germination, suggest that a pressure of 100 MPa triggers the germination cascades that are induced by the nutrient germinant alanine (Ala) and by a mixture of asparagine, glucose, fructose, and potassium ions (AGFK), by activating the receptors for alanine and asparagine, GerA and GerB, respectively. As opposed to germination at 100 MPa, germination at...

  9. Bacillus subtilis spore survival and expression of germination-induced bioluminescence after prolonged incubation under simulated Mars atmospheric pressure and composition: implications for planetary protection and lithopanspermia

    Science.gov (United States)

    Nicholson, Wayne L.; Schuerger, Andrew C.

    2005-01-01

    Bacterial endospores in the genus Bacillus are considered good models for studying interplanetary transfer of microbes by natural or human processes. Although spore survival during transfer itself has been the subject of considerable study, the fate of spores in extraterrestrial environments has received less attention. In this report we subjected spores of a strain of Bacillus subtilis, containing luciferase resulting from expression of an sspB-luxAB gene fusion, to simulated martian atmospheric pressure (7-18 mbar) and composition (100% CO(2)) for up to 19 days in a Mars simulation chamber. We report here that survival was similar between spores exposed to Earth conditions and spores exposed up to 19 days to simulated martian conditions. However, germination-induced bioluminescence was lower in spores exposed to simulated martian atmosphere, which suggests sublethal impairment of some endogenous spore germination processes.

  10. Multifactorial Resistance of Bacillus subtilis Spores to High-Energy Proton Radiation: Role of Spore Structural Components and the Homologous Recombination and Non-Homologous End Joining DNA Repair Pathways

    OpenAIRE

    Moeller, Ralf; Reitz, Günther; Li, Zuofeng; Klein, Stuart; Nicholson, Wayne L.

    2012-01-01

    The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiati...

  11. A Cumulative Spore Killing Approach: Synergistic Sporicidal Activity of Dilute Peracetic Acid and Ethanol at Low pH Against Clostridium difficile and Bacillus subtilis Spores.

    Science.gov (United States)

    Nerandzic, Michelle M; Sankar C, Thriveen; Setlow, Peter; Donskey, Curtis J

    2016-01-01

    Background.  Alcohol-based hand sanitizers are the primary method of hand hygiene in healthcare settings, but they lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We previously demonstrated that acidification of ethanol induced rapid sporicidal activity, resulting in ethanol formulations with pH 1.5-2 that were as effective as soap and water washing in reducing levels of C difficile spores on hands. We hypothesized that the addition of dilute peracetic acid (PAA) to acidified ethanol would enhance sporicidal activity while allowing elevation of the pH to a level likely to be well tolerated on skin (ie, >3). Methods.  We tested the efficacy of acidified ethanol solutions alone or in combination with PAA against C difficile and Bacillus subtilis spores in vitro and against nontoxigenic C difficile spores on hands of volunteers. Results.  Acidification of ethanol induced rapid sporicidal activity against C difficile and to a lesser extent B subtilis. The addition of dilute PAA to acidified ethanol resulted in synergistic enhancement of sporicidal activity in a dose-dependent fashion in vitro. On hands, the addition of 1200-2000 ppm PAA enhanced the effectiveness of acidified ethanol formulations, resulting in formulations with pH >3 that were as effective as soap and water washing. Conclusions.  Acidification and the addition of dilute PAA induced rapid sporicidal activity in ethanol. Our findings suggest that it may be feasible to develop effective sporicidal ethanol formulations that are safe and tolerable on skin. PMID:26885539

  12. Role of DNA Repair by Nonhomologous-End Joining in Bacillus subtilis Spore Resistance to Extreme Dryness, Mono- and Polychromatic UV, and Ionizing Radiation▿

    OpenAIRE

    Moeller, Ralf; Stackebrandt, Erko; Reitz, Günther; Berger, Thomas; Rettberg, Petra; Doherty, Aidan J; Horneck, Gerda; Nicholson, Wayne L.

    2007-01-01

    The role of DNA repair by nonhomologous-end joining (NHEJ) in spore resistance to UV, ionizing radiation, and ultrahigh vacuum was studied in wild-type and DNA repair mutants (recA, splB, ykoU, ykoV, and ykoU ykoV mutants) of Bacillus subtilis. NHEJ-defective spores with mutations in ykoU, ykoV, and ykoU ykoV were significantly more sensitive to UV, ionizing radiation, and ultrahigh vacuum than wild-type spores, indicating that NHEJ provides an important pathway during spore germination for r...

  13. Taxonomy Icon Data: Bacillus subtilis [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Bacillus subtilis Bacillus subtilis Bacillus_subtilis_L.png Bacillus_subtilis_NL.png Bacillus..._subtilis_S.png Bacillus_subtilis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus...+subtilis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus+subtilis&t=NL http://biosciencedbc.j...p/taxonomy_icon/icon.cgi?i=Bacillus+subtilis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus

  14. Multifactorial and microdosimetrical analysis of the biological influence of galactic cosmic rays on Bacillus subtilis spores in the biostack experiment

    International Nuclear Information System (INIS)

    In this paper a partial experiment is presented which has been performed during several years and several space flight missions. This experiment is part of a research program to study the radiation biological - and in particular the medical relevance of the 'hard' cosmic ray component. The identification of particles (Z, LET, E) was not hindered by the combination with biological objects and could be performed with sufficient accuracy. Refering to semi-empirical findings the distribution of LET values in the bacillus subtilis could be determined in agreement with other experimental results. The localisation and correlation of particle tracks with the individual cells of the target regions is significant. As a result the LET does not seem to be an important parameter for the biological activity within the parameter range studied here. The energy deposition in the spores by delta-electrons could be calculated on the basis of a microdosimetrical analysis. A more detailed analysis was essentially hampered by an insufficient accuracy for the measurement of the distance between particle tracks and the spores. Thus a dose-survival-curve could not be established. In spite of that the relative biological activity (RBW) has been estimated on the basis of density distributions. The failure of these experiments, a review of the relevant literature, and a detailed discussion contribute essentially to the problem of the existence of specific mechanisms for heavy ions and their radiation biological activity. According to the actual knowledge the existence of such a mechanism in addition to delta-electrons has to be considered as most probable. (orig./MG)

  15. Germination properties as marker events characterizing later stages of Bacillus subtilis spore formation.

    OpenAIRE

    Dion, P; Mandelstam, J

    1980-01-01

    At various stages during spore formation sporangia were shocked by cold treatment or with toluene, and the germination requirements of the prespores were examined. Up to 5 h after induction of sporulation (t5) germination was spontaneous; i.e., it occurred without any added germinants. After t5, during stages V and VI, the capacity for spontaneous germination diminished progressively, and the spores acquired a need for externally added germinants. At t6 this need was satisfied by either L-ala...

  16. Effect Of Dose Rate Of Gamma Rays And Electron Beams Radiation On Bacillus Subtilis Spores In Various Conditions

    International Nuclear Information System (INIS)

    The investigation of the dose rate effect of gamma rays 60Co and electron beams radiations onto resistance of the bacteria spores has been observed. The objective of the research is to know the effect of radiation dose rates onto resistance of the bacteria spores. B. subtilis bacteria often contaminate the silk suture, human cardiac valve for the purposes of transplantation therapy and food material, so that it will be disadvantage to human health. Beside that the bacteria is well known as the most resistant to heat and ethylene oxide treatments, whereas sterilization by ethylene oxide will cause chemical residue on the sterilized materials. The bacteria spores in dry state, wet and frozen conditions in the aquadest, talc and peanut powder suspensions were irradiated with gamma rays at doses from 0 upto 10 kGy, with doses rates of 5 and 10 kGy/hrs. The sample of spores in dry and wet conditions were irradiated using electron beams at the same doses and dose rates were 5 mA/pass and 10 mA/pass. The spores of B. subtilis was cultured on Tryptone Soya Agar medium and incubated at of 32 n 2 oC for 3 days. The survival colonies were calculated and the obtained data was used to establish survival diagram in order to determine the D sub.10 value of spores. The results show that there is no difference relatively among D sub.10 values of bacteria spores irradiated in aquadest, talc or peanut powder suspensions. Nevertheless the D sub.10 (see table 1) of bacteria spores irradiated at 10 kGy/hrs gamma rays or 10 mA/pass electron beams is higher than that of at dose rate 5 kGy/hrs gamma rays or 5 mA/pass electron beams. It means that radiation at 5 kGy/hrs or 5 mA/pass is relatively more efficient than that at dose rates 10 kGy/hrs or 10 mA/pass in killing B. subtilis spores

  17. Uracil incorporation in the forespore and the mother cell during spore development in Bacillus subtilis

    International Nuclear Information System (INIS)

    The transcriptional activity of the two genomes of the sporangium during spore formation was determined by pulse-labeling bacteria with 3H-uracil at different times of sporulation and preparing them for high resolution autoradiography. The quantitative analysis of autoradiographs shows that uracile incorporation in the whole sporangium decreases considerably between stages II and IV. However, the variations of the transpcriptional activity are not identical in the mother cell and in the forespore. The one of the mother cell decreases rapidly between stages II and III and then remains stable until the end of stage IV, whereas that of the forespore which is low at stage II increases as the forespore grows ovoid and then quickly diminishes. It is very weak at the beginning of stage IV and negligible at the end of this stage. (orig.)

  18. Heat resistance of spore-forming microorganisms (Bacillus sporothermodurans, Bacillus subtilis and Geobacillus stearothermophilus) under isothermal and non-iiothermal conditions

    OpenAIRE

    Gómez Jódar, Isabel

    2015-01-01

    [SPA]El principal género de microorganismos esporulados altamente resistentes al calor involucrados en el deterioro de alimentos es Bacillus. Este género causa problemas de no esterilidad en alimentos enlatados y reduce la vida comercial de muchos alimentos procesados. En este estudio se determinó la termorresistencia de Bacillus sporothermodurans IIC65, Bacillus subtilis IC9 y Geobacillus stearothermophilus T26 mediante un termorresistómetro Mastia (Conesa et al., 2009). Las determinaciones ...

  19. Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens.

    Science.gov (United States)

    Liu, Jiajie; Hagberg, Ingrid; Novitsky, Laura; Hadj-Moussa, Hanane; Avis, Tyler J

    2014-11-01

    Bacillus subtilis cyclic lipopeptides are known to have various antimicrobial effects including different types of interactions with the cell membranes of plant pathogenic fungi. The various spectra of activities of the three main lipopeptide families (fengycins, iturins, and surfactins) seem to be linked to their respective mechanisms of action on the fungal biomembrane. Few studies have shown the combined effect of more than one family of lipopeptides on fungal plant pathogens. In an effort to understand the effect of producing multiple lipopeptide families, sensitivity and membrane permeability of spores from four fungal plant pathogens (Alternaria solani, Fusarium sambucinum, Rhizopus stolonifer, and Verticillium dahliae) were assayed in response to lipopeptides, both individually and as combined treatments. Results showed that inhibition of spores was highly variable depending on the tested fungus-lipopeptide treatment. Results also showed that inhibition of the spores was closely associated with SYTOX stain absorption suggesting effects of efficient treatments on membrane permeability. Combined lipopeptide treatments revealed additive, synergistic or sometimes mutual inhibition of beneficial effects. PMID:25442289

  20. Resistance of Bacillus subtilis spores to 12C ion beams, stimulation of high-energy charged particles in space

    Science.gov (United States)

    Zhang, Li; Dang, Bingrong; Li, Junxiong; Chen, Jinsong; Liu, Mei; Liu, Zhiheng; Zhang, Lixin

    To monitor the response of live microbes in space radiation environment with high-energy charged particles, we carry out ground stimulation radiation experiments. Spores of Bacillus (CGMCC 1.1849) species are one of the model systems used for astro- and radiobiological studies. (12) C ion beams served as stimulated space radiation from 5gry, 10gry, 20gry, 40gry, to 80gry at a rate of 15gry/min Death rates are measured and mutant strains are isolated. Five representative strains are analyzed for their corresponding gene sequences, protein sequences and gene expression index of DNA repair system gene recA and recO. The statistic results showed the strains resistance to (12) C ion beams radiation is partially due to the increase of gene expression index of recA and recO. In conclusion, our research provide a surrogate system to monitor the live microbial response in resistant to space radiation environment.

  1. Physical interaction and assembly of Bacillus subtilis spore coat proteins CotE and CotZ studied by atomic force microscopy.

    Science.gov (United States)

    Liu, Huiqing; Qiao, Haiyan; Krajcikova, Daniela; Zhang, Zhe; Wang, Hongda; Barak, Imrich; Tang, Jilin

    2016-08-01

    The spore of Bacillus subtilis, a dormant type of cell, is surrounded by a complex multilayered protein structure known as the coat. It is composed of over 70 proteins and essential for the spore to withstand extreme environmental conditions and allow germination under favorable conditions. However, understanding how the properties of the coat arise from the interactions among all these proteins is an important challenge. Moreover, many specific protein-protein interactions among the coat proteins are crucial for coat assembly. In this study, atomic force microscopy (AFM) based single molecule force spectroscopy (SMFS) was applied to investigate the interaction as a dynamic process between two morphogenetic coat proteins, CotE and CotZ. The unbinding force and kinetic parameters characterizing the interaction between CotE and CotZ were obtained. It is found that there is a strong affinity between CotE and CotZ. Furthermore, the assembly behaviors of CotE and CotZ, individually or in combination, were studied by AFM at solid-liquid interfaces. Our results revealed that CotE-CotZ assembly is dependent on their molar ratios and the interaction between CotE and CotZ involves in the CotE-CotZ assembly. PMID:27320701

  2. Base substitution spectra of nalidixylate resistant mutations induced by monochromatic soft X and 60Co γ-rays in bacillus subtilis spores

    International Nuclear Information System (INIS)

    Bacillus subtilis spores were exposed to three types of photons, monochromatic soft X-rays with the energy corresponding to the absorption peak of phosphorus K-shell electron (2,153 eV) and with the slightly lower energy (2,147 eV), and 60Co γ-rays. From the irradiated spores, 233 mutants exhibiting nalidixic acid resistance were isolated, and together with 94 spontaneous mutants, the sequence changes in the 5'-terminal region of the gyrA gene coding for DNA gyrase subunit A were determined. Among eighteen alleles of the gyrA mutations, eight were single-base substitutions, nine were tandem double-base substitutions, and one was a double substitution skipping a middle base pair. About 6% of the radiation-induced mutations were tandem double-base substitutions, whereas none was observed among the spontaneous ones. Among spontaneous mutations, A:T and G:C pairs were equally subjected to mutations, whereas the substitutions from G:C pairs and those to A:T pairs predominated among those induced with soft X-rays. The peak-energy X-rays were more effective in killing and causing mutations than the low-energy X-rays, however, there seemed no base-change events uniquely attributable to phosphorus K-shell absorption. (author)

  3. Essential Bacillus subtilis genes

    DEFF Research Database (Denmark)

    Kobayashi, K.; Ehrlich, S.D.; Albertini, A.;

    2003-01-01

    To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were...... predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related to...... cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from...

  4. Effect of individual or combined treatment by γ-irradiation or temperature (high or low) on bacillus subtilis spores and its application for sterilization of ground beef

    International Nuclear Information System (INIS)

    The combination of two lethal agents such as irradiation and temperature (high or sub zero) resulted in synergistic death or B. subtilis spores (as indicated by decrease in the thermal D-value). The extent of this synergism in killing a spore population depended mainly on the sequence on application of the two physical agents. Irradiation-temperature (high or sub zero) sequence killed more but injured less B. subtilis spores than temperature irradiation sequence or irradiation and temperature applied separately. Storage at -200C killed more spores than storage at -20C if carried after irradiation, while the reverse was true of storage was prior irradiation. An irradiation dose of 8 KGY followed by thermal exposure to 700C for 1 hr is suggested for the sterilization of ground beef. Irradiation induced certain quantitative changes on the amino-N, protein-N, RNA and DNA of the first subcultures of irradiated spores with stimulatory effect at low irradiation doses and inhibitory effect at the high irradiation doses. This might explain the increased sensitivity of irradiated spores to subsequent exposure to unfavourable temperature (high or sub zero). Exposure of B. subtilis spore to 700C induced a stimulation in the amino- and protein-N of the resulting cells while exposure to 800C resulted in a significant decrease in the amino-N. The protein-N remained more or less the same

  5. Fast Neutron Radiation Effects on Bacillus Subtili

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiaoming; REN Zhenglong; ZHANG Jianguo; ZHENG Chun; TAN Bisheng; YANG Chengde; CHU Shijin

    2009-01-01

    To examine the sterilizing effect and mechanism of neutron radiation, Bacillus sub-tilis vat. niger, strain (ATCC 9372) spores were irradiated with the fast neutron from the Chinese fast burst reactor Ⅱ(CFBR-Ⅱ). The plate-count results indicated that the D10 value was 384.6 Gy with a neutron radiation dose rate of 7.4 Gy/min. The rudimental catalase activity of the spores declined obviously with the increase in the radiation dose. Meanwhile, under the scanning electron microscope, no visible influence of the neutron radiation on the spore configuration was detected even if the dose was increased to 4 kGy. The content and distribution of DNA double-strand breaks induced by neutron radiation at different doses were measured and quantified by pulsed-field gel electrophoresis (PFGE). Further analysis of the DNA release percentage (PR), the DNA breakage level (L), and the average molecular weight, indicated that DNA fragments were obvi-ously distributed around the 5 kb regions at different radiation doses, which suggests that some points in the DNA molecule were sensitive to neutron radiation. Both PR and L varied regularly to some extent with the increase in radiation dose. Thus neutron radiation has a high sterilization power, and can induce falling enzyme activity and DNA breakage in Bacillus subtilis spores

  6. Bacillus subtilis Deoxyribonucleic Acid Gyrase

    OpenAIRE

    Sugino, A; Bott, K F

    1980-01-01

    Bacillus subtilis 168 was shown to contain a deoxyribonucleic acid (DNA) gyrase activity which closely resembled those of the enzymes isolated from Escherichia coli and Micrococcus luteus in its enzymatic requirements, substrate specificity, and sensitivity to several antibiotics. The enzyme was purified from the wild type and nalidixic acid-resistant and novobiocin-resistant mutants of B. subtilis and was functionally characterized in vitro. The genetic loci nalA and novA but not novB were s...

  7. A method for the determination of bacterial spore DNA content based on isotopic labelling, spore germination and diphenylamine assay; ploidy of spores of several Bacillus species

    International Nuclear Information System (INIS)

    A reliable method for measuring the spore DNA content, based on radioactive DNA labelling, spore germination in absence of DNA replication and diphenylamine assay, was developed. The accuracy of the method, within 10 - 15%, is adequate for determining the number of chromosomes per spore, provided that the genome size is known. B subtilis spores were shown to be invariably monogenomic, while those of larger bacilli Bacillus megaterium, Bacillus cereus and Bacillus thuringiensis, often, if not invariably, contain two genomes. Attempts to modify the spore DNA content of B subtilis by altering the richness of the sporulation medium, the sporulation conditions (liquid or solid medium), or by mutation, were apparently unsuccessful. An increase of spore size with medium richness, not accompanied by an increase in DNA content, was observed. The implication of the apparently species-specific spore ploidy and the influence of the sporulation conditions on spore size and shape are discussed

  8. Flow-cytometric Analysis of Bacillus anthracis Spores

    Directory of Open Access Journals (Sweden)

    D. V. Kamboj

    2006-11-01

    Full Text Available Flow-cytometric technique has been established as a powerful tool for detection andidentification of microbiological agents. Unambiguous and rapid detection of Bacillus anthracisspores has been reported using immunoglobulin G-fluorescein isothiocyanate conjugate againstlive spores. In addition to the high sensitivity, the present technique could differentiate betweenspores of closely related species, eg, Bacillus cereus and Bacillus subtilis using fluorescenceintensity. The technique can be used for detection of live as well as inactivated spores makingit more congenial for screening of suspected samples of bioterrorism.

  9. Esterilização por óxido de etileno: I. Influência do meio de esporulação na resistência dos esporos de Bacillus subtilis var. niger Ethylene oxide sterilization: I. The influence of sporulation medium in the resistance of the spores of Bacillus subtilis var. niger

    Directory of Open Access Journals (Sweden)

    Terezinha de Jesus A. Pinto

    1992-12-01

    Full Text Available Tendo por meta a padronização das variáveis influenciando a resistência de esporos empregados no controle do processo esterilizante por óxido de etileno, foram obtidos esporos de Bacillus subtilis var. niger, em meio sólido e líquido sintético de esporulação. Tais esporos, após padronização quantitativa dos 12 lotes obtidos, foram submetidos a exposições subletais como bioindicadores, tendo o papel como suporte. Construiu-se, então, a curva de letalidade característica de cada lote. A análise estatística empregada não evidenciou diferenças entre resistência dos 10 lotes obtidos em meio sólido e os 2 em meio líquido sintético, ressaltando-se a vantagem quanto ao rendimento que caracterizou a primeira metodologia.Some elements influencing the resistance of spores used in ethylene oxide sterilization process control are standardized. Spores of Bacillus subtilis var. niger were produced in chemically defined liquid and solid sporulation media to a total of 12 lots; after standardization of the number of spores, they were challenged by sub-lethal cycles, followed by a lethality study. According to the statistical model applied, there were no differences between the resistance of spores produced in chemically defined liquid and those produced in solid sporulation media. The advantage of the solid sporulation media consists in the larger production of spores.

  10. Molecular physiology of weak organic acid stress in Bacillus subtilis

    OpenAIRE

    Brul, S.; Beilen, van, J.W.A.

    2013-01-01

    The mechanism by which weak organic acid (WOA) preservatives inhibit growth of microorganisms may differ between different WOAs and these differences are not well understood. The aim of this thesis has been to obtain a better understanding of the mode of action of these preservatives by which they inhibit the growth of spore-forming bacteria (more specifically Bacillus subtilis).

  11. Hydrazine vapor inactivates Bacillus spores

    Science.gov (United States)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  12. Use of alternative carrier materials in AOAC Official Method 2008.05, efficacy of liquid sporicides against spores of Bacillus subtilis on a hard, nonporous surface, quantitative three-step method.

    Science.gov (United States)

    Tomasino, Stephen F; Rastogi, Vipin K; Wallace, Lalena; Smith, Lisa S; Hamilton, Martin A; Pines, Rebecca M

    2010-01-01

    The quantitative Three-Step Method (TSM) for testing the efficacy of liquid sporicides against spores of Bacillus subtilis on a hard, nonporous surface (glass) was adopted as AOAC Official Method 2008.05 in May 2008. The TSM uses 5 x 5 x 1 mm coupons (carriers) upon which spores have been inoculated and which are introduced into liquid sporicidal agent contained in a microcentrifuge tube. Following exposure of inoculated carriers and neutralization, spores are removed from carriers in three fractions (gentle washing, fraction A; sonication, fraction B; and gentle agitation, fraction C). Liquid from each fraction is serially diluted and plated on a recovery medium for spore enumeration. The counts are summed over the three fractions to provide the density (viable spores per carrier), which is log10-transformed to arrive at the log density. The log reduction is calculated by subtracting the mean log density for treated carriers from the mean log density for control carriers. This paper presents a single-laboratory investigation conducted to evaluate the applicability of using two porous carrier materials (ceramic tile and untreated pine wood) and one alternative nonporous material (stainless steel). Glass carriers were included in the study as the reference material. Inoculated carriers were evaluated against three commercially available liquid sporicides (sodium hypochlorite, a combination of peracetic acid and hydrogen peroxide, and glutaraldehyde), each at two levels of presumed efficacy (medium and high) to provide data for assessing the responsiveness of the TSM. Three coupons of each material were evaluated across three replications at each level; three replications of a control were required. Even though all carriers were inoculated with approximately the same number of spores, the observed counts of recovered spores were consistently higher for the nonporous carriers. For control carriers, the mean log densities for the four materials ranged from 6.63 for

  13. Bacillus subtilis FZB24® Affects Flower Quantity and Quality of Saffron (Crocus sativus)

    OpenAIRE

    Sharaf-Eldin, Mahmoud; Elkholy, Shereen; Fernández, José-Antonio; Junge, Helmut; Cheetham, Ronald; Guardiola, José; Weathers, Pamela

    2008-01-01

    The effect of Bacillus subtilis FZB24® on saffron (Crocus sativus L.) was studied using saffron corms from Spain and the powdered form of B. subtilis FZB24®. Corms were soaked in water or in B. subtilis FZB24 spore solution for 15min before sowing. Some corms were further soil drenched with the spore solution 6, 10 or 14 weeks after sowing. Growth and saffron stigma chemical composition were measured. Compared to untreated controls, application of B. subtilis FZB24 significantly increased lea...

  14. Dosimetria esporular: Bacillus subtilis TKJ6312 como biossensor de radiação solar biologicamente ativa Spore dosimetry: Bacillus subtilis TKJ6312 as biosensor of biologically effective solar radiation

    Directory of Open Access Journals (Sweden)

    Marcelo Barcellos da Rosa

    2009-01-01

    Full Text Available Since 2000, spore dosimetry and spectral photometry have been performed in parallel at the Southern Space Observatory, São Martinho da Serra (Southern Brazil. A comparative study involving data from Punta Arenas - Chile (53.2º S, São Martinho da Serra (29.5º S, Padang - Indonesia (0.9ºS, Brussels - Belgium (50.9º N and Kiyotake - Japan (31.9º N from 2000 to 2006 is presented. The Spore Inactivation Doses presented the higher values in summer (973 ± 73 for Punta Arenas and 4,369 ± 202 for São Martinho da Serra, as well 1,402 ± 170 and 3,400 ± 1,674 for Brussels and Kiyotake, respectively. The simplicity, robustness and high resistance of bacterial spores makes the biosensor an potential biological tool for UV-B monitoring.

  15. Bacillus subtilis deoxyribonuclease activity specific for single-stranded deoxyribonucleic acid: cellular site and variations during germination and sporulation.

    OpenAIRE

    Cobianchi, F; Attolini, C; Falaschi, A; Ciarrocchi, G

    1980-01-01

    The endonuclease of Bacillus subtilis specific for single-stranded deoxyribonucleic acid is absent in spores, appears during germination only after the start of deoxyribonucleic acid synthesis, and is located almost exclusively in the periplasm.

  16. Regulation of Growth of the Mother Cell and Chromosome Replication during Sporulation of Bacillus subtilis

    OpenAIRE

    Xenopoulos, Panagiotis; Piggot, Patrick J.

    2011-01-01

    During spore formation, Bacillus subtilis divides asymmetrically, resulting in two cells with different fates. Immediately after division, the transcription factor σF becomes active in the smaller prespore, followed by activation of σE in the larger mother cell. We recently showed that a delay in σE activation resulted in the novel phenotype of two spores (twins) forming within the same mother cell. Mother cells bearing twins are substantially longer than mother cells with single spores. Here...

  17. Role of GerD in Germination of Bacillus subtilis Spores▿

    OpenAIRE

    Pelczar, Patricia L.; Igarashi, Takao; Setlow, Barbara; Setlow, Peter

    2006-01-01

    Spores of a Bacillus subtilis strain with a gerD deletion mutation (ΔgerD) responded much slower than wild-type spores to nutrient germinants, although they did ultimately germinate, outgrow, and form colonies. Spores lacking GerD and nutrient germinant receptors also germinated slowly with nutrients, as did ΔgerD spores in which nutrient receptors were overexpressed. The germination defect of ΔgerD spores was not suppressed by many changes in the sporulation or germination conditions. Germin...

  18. Exposure of DNA and Bacillus subtilis spores to simulated martian environments: use of quantitative PCR (qPCR) to measure inactivation rates of DNA to function as a template molecule.

    Science.gov (United States)

    Fajardo-Cavazos, Patricia; Schuerger, Andrew C; Nicholson, Wayne L

    2010-05-01

    Several NASA and ESA missions are planned for the next decade to investigate the possibility of present or past life on Mars. Evidence of extraterrestrial life will likely rely on the detection of biomolecules, which highlights the importance of preventing forward contamination not only with viable microorganisms but also with biomolecules that could compromise the validity of life-detection experiments. The designation of DNA as a high-priority biosignature makes it necessary to evaluate its persistence in extraterrestrial environments and the effects of those conditions on its biological activity. We exposed DNA deposited on spacecraft-qualified aluminum coupons to a simulated martian environment for periods ranging from 1 minute to 1 hour and measured its ability to function as a template for replication in a quantitative polymerase chain reaction (qPCR) assay. We found that inactivation of naked DNA or DNA extracted from exposed spores of Bacillus subtilis followed a multiphasic UV-dose response and that a fraction of DNA molecules retained functionality after 60 minutes of exposure to simulated full-spectrum solar radiation in martian atmospheric conditions. The results indicate that forward-contaminant DNA could persist for considerable periods of time at the martian surface. PMID:20528195

  19. Comparative genome analysis of Bacillus cereus group genomes withBacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D' Souza, Mark; Larsen, Niels; Pusch,Gordon; Liolios, Konstantinos; Grechkin, Yuri; Lapidus, Alla; Goltsman,Eugene; Chu, Lien; Fonstein, Michael; Ehrlich, S. Dusko; Overbeek, Ross; Kyrpides, Nikos; Ivanova, Natalia

    2005-09-14

    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.

  20. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores.

    Science.gov (United States)

    Tseng, Shawn; Abramzon, Nina; Jackson, James O; Lin, Wei-Jen

    2012-03-01

    Bacterial spores are the most resistant form of life and have been a major threat to public health and food safety. Nonthermal atmospheric gas discharge plasma is a novel sterilization method that leaves no chemical residue. In our study, a helium radio-frequency cold plasma jet was used to examine its sporicidal effect on selected strains of Bacillus and Clostridium. The species tested included Bacillus subtilis, Bacillus stearothermophilus, Clostridium sporogenes, Clostridium perfringens, Clostridium difficile, and Clostridium botulinum type A and type E. The plasmas were effective in inactivating selected Bacillus and Clostridia spores with D values (decimal reduction time) ranging from 2 to 8 min. Among all spores tested, C. botulinum type A and C. sporogenes were significantly more resistant to plasma inactivation than other species. Observations by phase contrast microscopy showed that B. subtilis spores were severely damaged by plasmas and the majority of the treated spores were unable to initiate the germination process. There was no detectable fragmentation of the DNA when the spores were treated for up to 20 min. The release of dipicolinic acid was observed almost immediately after the plasma treatment, indicating the spore envelope damage could occur quickly resulting in dipicolinic acid release and the reduction of spore resistance. PMID:22075631

  1. Quantitative immunofluorescence studies of the serology of Bacillus anthracis spores.

    OpenAIRE

    Phillips, A. P.; Martin, K L

    1983-01-01

    A fluorescein-conjugated antibody against formalin-inactivated spores of Bacillus anthracis Vollum reacted only weakly with a variety of Bacillus species in microfluorometric immunofluorescence assays. A conjugated antibody against spores of B. anthracis Sterne showed little affinity for spores of several B. anthracis isolates including B. anthracis Vollum, indicating that more than one anthrax spore serotype exists.

  2. Inactivation of Spores of Bacillus anthracis Sterne, Bacillus cereus, and Bacillus thuringiensis subsp. israelensis by Chlorination

    OpenAIRE

    Rice, E W; Adcock, N. J.; Sivaganesan, M; Rose, L. J.

    2005-01-01

    Three species of Bacillus were evaluated as potential surrogates for Bacillus anthracis for determining the sporicidal activity of chlorination as commonly used in drinking water treatment. Spores of Bacillus thuringiensis subsp. israelensis were found to be an appropriate surrogate for spores of B. anthracis for use in chlorine inactivation studies.

  3. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.; Deutscher, J.; Jensen, Peter Ruhdal

    2005-01-01

    phosphorylation, indicating that this post-translational modifi cation could regulate physiological processes ranging from stress response and exopolysaccharide synthesis to DNA metabolism. Some interesting work in this fi eld was done in Bacillus subtilis , and we here present the current state of knowledge on...

  4. Complete Genome of Bacillus subtilis Myophage Grass

    OpenAIRE

    Miller, Stanton Y.; Colquhoun, Jennifer M.; Perl, Abbey L.; Chamakura, Karthik R.; Kuty Everett, Gabriel F.

    2013-01-01

    Bacillus subtilis is a ubiquitous Gram-positive model organism. Here, we describe the complete genome of B. subtilus myophage Grass. Aside from genes encoding core proteins pertinent to the life cycle of the phage, Grass has several interesting features, including an FtsK/SpoIIIE protein.

  5. 利用枯草芽孢衣壳蛋白表面展示β-半乳糖苷酶%Functional Display of β-galactosidase on the Spore Surface of Bacillus subtilis Using Spore Coat Protein as Anchor Motif

    Institute of Scientific and Technical Information of China (English)

    王贺; 杨瑞金; 华霄; 赵伟; 张文斌

    2012-01-01

    分别将枯草芽孢杆菌(Bacillussubtilis 168)芽孢衣壳蛋白CotB、CotC、CotG和CotX的启动子和编码序列与来自嗜热脂肪芽孢杆菌(BacillusstearothermophilusIAMll001)的β-半乳糖苷酶基因bgaB进行重组,构建融合表达cotB—bgaB、eotC—bgaB、eotG—bgaB和eotX—bgaB的整合型重组质粒。将4种重组质粒分别转入枯草芽孢杆菌Bacillussubtilis168(trp。),获得了能在芽孢表面展示的重组菌株PB701、PB702、PB703和PB704。经Westernblot检测,4种重组菌株均表达了预期分子量的融合蛋白,初步表明β-半乳糖苷酶被锚定在重组菌株的芽孢表面。以oNPG为底物测定4种重组菌株芽孢表面展示β-半乳糖苷酶的水解能力,得到的酶活分别为0.14、0.06、0.22和0.20U/mL。%In this work, we developed an efficient spore display system that a model protein β-galactosidase was anchored on the spore surface of Bacillus subtilis 168 based on the use of spore coat proteins. The PCR-amplifying cotB, cotC, cotG and cotX were ligated with pMD-19T and digested with XbaI and KpnI, and then subcloned into vector pJS700a previously digested with the same two restriction enzymes, finally resulted in the plasmids pJSB, pJSC, pJSG and pJSX. To construct the gene fusions, the bgaB from Bacillus stearothermophilus IAMll001 was cloned into the KpnI and EcoRI sites of plasmid pJSB, pJSC, pJS G and pJSX to generate generating the plasmids pJSBB, pJSCB, pJSGB and pJSXB,respectively After linearization with BgllI restriction endonuclease, the four re- combinant integrative plasmids were transformed into B. subtilis 168 to yield the recombinant strain PB701, PB702, PB703 and PB704,respectively. Results from Western blot analysis showed that the fusion protein was immobilized on the spore surface. Using oNPG as substrate, the enzyme activity of spore-displaying β-galactosidase was assayed and they were 0.14, 0.06, 0.22 and 0.20 U/mL for PB701, PB702, PB

  6. Localization of the Germination Protein GerD to the Inner Membrane in Bacillus subtilis Spores▿

    OpenAIRE

    Pelczar, Patricia L.; Setlow, Peter

    2008-01-01

    GerD of Bacillus subtilis is a protein essential for normal spore germination with either l-alanine or a mixture of l-asparagine, d-glucose, d-fructose, and potassium ions. GerD's amino acid sequence suggests that it may be a lipoprotein, indicating a likely location in a membrane. Location in the spore's outer membrane seems unlikely, since removal of this membrane does not result in a gerD spore germination phenotype, suggesting that GerD is likely in the spore's inner membrane. In order to...

  7. Selectivity in protein degradation during sporulation of Bacillus subtilis

    International Nuclear Information System (INIS)

    The breakdown of cellular protein was investigated in Bacillus subtilis ATCC 6051 labeled with glycine-2-3H or L-phenylalanine-U-14C at the different stages of vegetative growth and sporulation. The growth of the culture was determined by measuring optical density at 660 nm. The heat-resistant spores were scored by plating after heating at 80 deg C for 10 minutes. A question whether the turnover of glycine-labeled protein is similar to that of phenylalanine-labeled protein was experimentally studied. The patterns obtained with the glycine-labeled protein were different from those of phenylalanine-labeled protein. This was not multiple turnover. The cellular protein which was labeled with glycine at an early stage of sporulation showed rapid degradation, but the degradation of the protein labeled with glycine at later stages did not occur at all. Another question whether the labeled glycine incorporated into cells at the different stages of growth and sporulation was present in the spore coat fraction of matured spores was studied. Experiment demonstrated that the glycine incorporated into cells at the late sporulation stage was mainly utilized for the biosynthesis of the spore coat protein. These data suggest that the spore coat protein which contains relatively large amount of glycine is rarely subject to further degradation. (Iwakiri, K.)

  8. Scientific Opinion on the safety and efficacy of Bacillus subtilis PB6 (Bacillus subtilis) as a feed additive for laying hens and minor poultry species for laying

    OpenAIRE

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)

    2015-01-01

    Bacillus subtilis PB6 is the trade name for a feed additive based on viable spores of a strain of Bacillus subtilis. This species is considered by EFSA to be suitable for the qualified presumption of safety approach to safety assessment. This approach requires the identity of the active agent to be established and the absence of toxigenic potential and resistance to antibiotics of human or veterinary clinical significance to be demonstrated. No evidence of toxigenic potential or of resistance...

  9. Proteins that interact with GTP during sporulation of Bacillus subtilis

    International Nuclear Information System (INIS)

    During sporulation of Bacillus subtilis, several proteins were shown to interact with GTP in specific ways. UV light was used to cross-link [α-32P]GTP to proteins in cell extracts at different stages of growth. After electrophoresis, 11 bands of radioactivity were found in vegetative cells, 4 more appeared during sporulation, and only 9 remained in mature spores. Based on the labeling pattern with or without UV light to cross-link either [α-32P]GTP or [γ-32P]GTP, 11 bands of radioactivity were apparent guanine nucleotide-binding proteins, and 5 bands appeared to be phosphorylated and/or guanylated. Similar results were found with Bacillus megaterium. Assuming the GTP might be a type of signal for sporulation, it could interact with and regulate proteins by at least three mechanisms

  10. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.;

    2005-01-01

    phosphorylation, indicating that this post-translational modifi cation could regulate physiological processes ranging from stress response and exopolysaccharide synthesis to DNA metabolism. Some interesting work in this fi eld was done in Bacillus subtilis , and we here present the current state of knowledge on...... protein-tyrosine phosphorylation in this gram-positive model organism. With its two kinases, two kinase modulators, three phosphatases and at least four different tyrosine-phosphorylated substrates, B. subtilis is the bacterium with the highest number of presently known participants in the global network...

  11. Development of bioprocesses for the production of a biological indicator for sterilization processes from Bacillus atrophaeus spores

    OpenAIRE

    Sella, Sandra Regina Barroso Ruiz

    2013-01-01

    Abstract: The genus Bacillus includes a great diversity of industrially important strains, including Bacillus atrophaeus (formerly Bacillus subtilis var. niger). This spore-forming bacterium has been established as industrial bacteria in the production of biological sterilization indicators, in studies of biodefense and astrobiology methods, and as potential adjuvants or vehicles for vaccines, among other applications. Two novels, cost-effective B. atrophaeus Sterilization Bioindicator System...

  12. Cannibalism stress response in Bacillus subtilis.

    Science.gov (United States)

    Höfler, Carolin; Heckmann, Judith; Fritsch, Anne; Popp, Philipp; Gebhard, Susanne; Fritz, Georg; Mascher, Thorsten

    2016-01-01

    When faced with carbon source limitation, the Gram-positive soil organism Bacillus subtilis initiates a survival strategy called sporulation, which leads to the formation of highly resistant endospores that allow B. subtilis to survive even long periods of starvation. In order to avoid commitment to this energy-demanding and irreversible process, B. subtilis employs another strategy called 'cannibalism' to delay sporulation as long as possible. Cannibalism involves the production and secretion of two cannibalism toxins, sporulation delaying protein (SDP) and sporulation killing factor (SKF), which are able to lyse sensitive siblings. The lysed cells are thought to then provide nutrients for the cannibals to slow down or even prevent them from entering sporulation. In this study, we uncovered the role of the cell envelope stress response (CESR), especially the Bce-like antimicrobial peptide detoxification modules, in the cannibalism stress response during the stationary phase. SDP and SKF specifically induce Bce-like systems and some extracytoplasmic function σ factors in stationary-phase cultures, but only the latter provide some degree of protection. A full Bce response is only triggered by mature toxins, and not by toxin precursors. Our study provides insights into the close relationship between stationary-phase survival and the CESR of B. subtilis. PMID:26364265

  13. Comparison of different Bacillus subtilis expression systems.

    Science.gov (United States)

    Vavrová, Ludmila; Muchová, Katarína; Barák, Imrich

    2010-11-01

    Bacillus subtilis is considered to have great potential as a host for the production and secretion of recombinant proteins. Many different expression systems have been developed for B. subtilis. Here we compare two widely used expression systems, the IPTG-inducible derivative of spac system (hyper-spank) and the xylose-inducible (xyl) to the SURE (subtilin-regulated gene expression) system. Western blot analysis of the membrane protein SpoIISA together with its protein partner SpoIISB showed that the highest expression level of this complex is obtained using the SURE system. Measurement of β-galactosidase activities of the promoter-lacZ fusions in individual expression systems confirmed that the P(spaS) promoter of the SURE system is the strongest of those compared, although the induction/repression ratio reached only 1.84. Based on these results, we conclude that the SURE system is the most efficient of these three B. subtilis expression systems in terms of the amount of expressed product. Remarkably, the yield of the SpoIISA-SpoIISB complex obtained from B. subtilis was comparable to that normally obtained from the Escherichia coli arabinose-inducible expression system. PMID:20863884

  14. Hyaluronic Acid Production in Bacillus subtilis

    OpenAIRE

    Widner, Bill; Behr, Régine; Von Dollen, Steve; Tang, Maria; Heu, Tia; Sloma, Alan; Sternberg, Dave; DeAngelis, Paul L; Paul H. Weigel; Brown, Steve

    2005-01-01

    The hasA gene from Streptococcus equisimilis, which encodes the enzyme hyaluronan synthase, has been expressed in Bacillus subtilis, resulting in the production of hyaluronic acid (HA) in the 1-MDa range. Artificial operons were assembled and tested, all of which contain the hasA gene along with one or more genes encoding enzymes involved in the synthesis of the UDP-precursor sugars that are required for HA synthesis. It was determined that the production of UDP-glucuronic acid is limiting in...

  15. Bacillus subtilis pur operon expression and regulation.

    OpenAIRE

    Ebbole, D J; Zalkin, H

    1989-01-01

    The Bacillus subtilis pur operon is a 12-gene cluster, purEKB-purC(orf)QLF-purMNH(J)-purD, organized in groups of overlapping coding units separated by intercistronic gaps. Translational fusions of Escherichia coli lacZ were constructed to purE, purC, and purM, the first gene of each group. Analyses of gene fusions integrated into the chromosomal pur operon exclude the possibility of internal promoters in intercistronic regions and support the view that transcription is from the single sigma ...

  16. Bacillus subtilis regulatory protein GerE

    OpenAIRE

    Ducros, V M A; Brannigan, J.A.; Lewis, R J; Wilkinson, A.J.

    1998-01-01

    GerE is the latest-acting of a series of factors which regulate gene expression in the mother cell during sporulation in Bacillus. The gene encoding GerE has been cloned from B. subtilis and overexpressed in Escherichia coli. Purified GerE has been crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol as a precipitant. The small plate-like crystals belong to the monoclinic space group C2 and diffract beyond 2.2 Angstrom resolution with a synchrotron radiation X-ra...

  17. Bacillus subtilis as potential producer for polyhydroxyalkanoates

    Directory of Open Access Journals (Sweden)

    Patel Sanjay KS

    2009-07-01

    Full Text Available Abstract Polyhydroxyalkanoates (PHAs are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB, the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process – for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA.

  18. Isolation and Characterization of Phages Infecting Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Anna Krasowska

    2015-01-01

    Full Text Available Bacteriophages have been suggested as an alternative approach to reduce the amount of pathogens in various applications. Bacteriophages of various specificity and virulence were isolated as a means of controlling food-borne pathogens. We studied the interaction of bacteriophages with Bacillus species, which are very often persistent in industrial applications such as food production due to their antibiotic resistance and spore formation. A comparative study using electron microscopy, PFGE, and SDS-PAGE as well as determination of host range, pH and temperature resistance, adsorption rate, latent time, and phage burst size was performed on three phages of the Myoviridae family and one phage of the Siphoviridae family which infected Bacillus subtilis strains. The phages are morphologically different and characterized by icosahedral heads and contractile (SIOΦ, SUBω, and SPOσ phages or noncontractile (ARπ phage tails. The genomes of SIOΦ and SUBω are composed of 154 kb. The capsid of SIOΦ is composed of four proteins. Bacteriophages SPOσ and ARπ have genome sizes of 25 kbp and 40 kbp, respectively. Both phages as well as SUBω phage have 14 proteins in their capsids. Phages SIOΦ and SPOσ are resistant to high temperatures and to the acid (4.0 and alkaline (9.0 and 10.0 pH.

  19. Esterilização por óxido de etileno: I. Influência do meio de esporulação na resistência dos esporos de Bacillus subtilis var. niger Ethylene oxide sterilization: I. The influence of sporulation medium in the resistance of the spores of Bacillus subtilis var. niger

    OpenAIRE

    Terezinha de Jesus A. Pinto; Takako Saito

    1992-01-01

    Tendo por meta a padronização das variáveis influenciando a resistência de esporos empregados no controle do processo esterilizante por óxido de etileno, foram obtidos esporos de Bacillus subtilis var. niger, em meio sólido e líquido sintético de esporulação. Tais esporos, após padronização quantitativa dos 12 lotes obtidos, foram submetidos a exposições subletais como bioindicadores, tendo o papel como suporte. Construiu-se, então, a curva de letalidade característica de cada lote. A análise...

  20. Differentiation between spores of Bacillus anthracis and Bacillus cereus by a quantitative immunofluorescence technique.

    OpenAIRE

    Phillips, A. P.; Martin, K L; Broster, M G

    1983-01-01

    A quantitative immunofluorescence assay based on fiber optic microscopy was used to measure the reaction of formalized spores of Bacillus anthracis and Bacillus cereus isolates with fluorescein conjugates prepared by hyperimmunization with B. anthracis Vollum spores. The spores of 11 of the 20 B. cereus strains reacted with the anti-anthrax conjugate to such an extent that they were indistinguishable from the spores of the several B. anthracis isolates tested. However, absorption of the conju...

  1. Pseudosecretion of Escherichia coli chloramphenicol acetyltransferase by Bacillus subtilis.

    OpenAIRE

    Le Grice, S F; Gentz, R; Bannwarth, W; Kocher, H. P.

    1987-01-01

    Bacillus subtilis harboring the vector 25RBSII secrets an Escherichia coli-derived chloramphenicol acetyltransferase into culture supernatants. The secreted enzyme lacks 18 amino acids; these are removed externally rather than during secretion.

  2. Two Genes Encoding Uracil Phosphoribosyltransferase Are Present in Bacillus subtilis

    DEFF Research Database (Denmark)

    Martinussen, Jan; Glaser, Philippe; Andersen, Paal S.;

    1995-01-01

    Uracil phosphoribosyltransferase (UPRTase) catalyzes the key reaction in the salvage of uracil in many microorganisms. Surprisingly, two genes encoding UPRTase activity were cloned from Bacillus subtilis by complementation of an Escherichia coli mutant. The genes were sequenced, and the putative...

  3. Selection of Bacillus subtilis mutants impaired in ammonia assimilation.

    OpenAIRE

    Dean, D R; Aronson, A I

    1980-01-01

    The selection of Bacillus subtilis mutants capable of using D-histidine to fulfill a requirement for L-histidine resulted in mutants with either no glutamate synthase activity or increased amounts of an altered glutamine synthetase.

  4. Water surface tension modulates the swarming mechanics of Bacillus subtilis

    OpenAIRE

    Ke, Wan-Ju; Hsueh, Yi-Huang; Cheng, Yu-Chieh; Wu, Chih-Ching; Liu, Shih-Tung

    2015-01-01

    Many Bacillus subtilis strains swarm, often forming colonies with tendrils on agar medium. It is known that B. subtilis swarming requires flagella and a biosurfactant, surfactin. In this study, we find that water surface tension plays a role in swarming dynamics. B. subtilis colonies were found to contain water, and when a low amount of surfactin is produced, the water surface tension of the colony restricts expansion, causing bacterial density to rise. The increased density induces a quorum ...

  5. Expression of UGA-Containing Mycoplasma Genes in Bacillus subtilis

    OpenAIRE

    Kannan, T. R.; Baseman, Joel B.

    2000-01-01

    We used Bacillus subtilis to express UGA-containing Mycoplasma genes encoding the P30 adhesin (one UGA) of Mycoplasma pneumoniae and methionine sulfoxide reductase (two UGAs) of Mycoplasma genitalium. Due to natural UGA suppression, these Mycoplasma genes were expressed as full-length protein products, but at relatively low efficiency, in recombinant wild-type Bacillus. The B. subtilis-expressed Mycoplasma proteins appeared as single bands and not as multiple bands compared to expression in r...

  6. Draft Genome Sequence of Bacillus subtilis strain KATMIRA1933

    OpenAIRE

    Karlyshev, Andrey V.; Melnikov, Vyacheslav G.; Chikindas, Michael L.

    2014-01-01

    In this report, we present a draft sequence of Bacillus subtilis KATMIRA1933. Previous studies demonstrated probiotic properties of this strain partially attributed to production of an antibacterial compound, subtilosin. Comparative analysis of this strain’s genome with that of a commercial probiotic strain, B. subtilis Natto, is presented.

  7. Transformation of Bacillus subtilis by single-stranded plasmid DNA.

    OpenAIRE

    Rudolph, C F; Schmidt, B J; Saunders, C W

    1986-01-01

    The single-stranded form of a pE194-based plasmid transformed Bacillus subtilis protoplasts at least as efficiently as did the double-stranded plasmid, but the single-stranded form did not detectably transform B. subtilis competent cells.

  8. Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis

    OpenAIRE

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D'Souza, Mark; Larsen, Niels; Pusch, Gordon; Liolios, Konstantinos; Grechkin, Yuri

    2005-01-01

    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-...

  9. Genome sequence of Bacillus subtilis subsp. spizizenii gtP20b, isolated from the Indian ocean.

    Science.gov (United States)

    Fan, Longjiang; Bo, Shiping; Chen, Huan; Ye, Wanzhi; Kleinschmidt, Katrin; Baumann, Heike I; Imhoff, Johannes F; Kleine, Michael; Cai, Daguang

    2011-03-01

    Bacillus subtilis is an aerobic spore-forming Gram-positive bacterium that is a model organism and of great industrial significance as the source of diverse novel functional molecules. Here we present, to our knowledge, the first genome sequence of Bacillus subtilis strain gtP20b isolated from the marine environment. A subset of candidate genes and gene clusters were identified, which are potentially involved in production of diverse functional molecules, like novel ribosomal and nonribosomal antimicrobial peptides. The genome sequence described in this paper is due to its high strain specificity of great importance for basic as well as applied researches on marine organisms. PMID:21183663

  10. Natural Dissemination of Bacillus anthracis Spores in Northern Canada

    OpenAIRE

    Dragon, D C; Bader, D. E.; Mitchell, J.; Woollen, N.

    2005-01-01

    Soil samples were collected from around fresh and year-old bison carcasses and areas not associated with known carcasses in Wood Buffalo National Park during an active anthrax outbreak in the summer of 2001. Sample selection with a grid provided the most complete coverage of a site. Soil samples were screened for viable Bacillus anthracis spores via selective culture, phenotypic analysis, and PCR. Bacillus anthracis spores were isolated from 28.4% of the samples. The highest concentrations of...

  11. The Silicon Layer Supports Acid Resistance of Bacillus cereus Spores

    OpenAIRE

    Hirota, Ryuichi; Hata, Yumehiro; Ikeda, Takeshi; Ishida, Takenori; Kuroda, Akio

    2010-01-01

    Silicon (Si) is considered to be a “quasiessential” element for most living organisms. However, silicate uptake in bacteria and its physiological functions have remained obscure. We observed that Si is deposited in a spore coat layer of nanometer-sized particles in Bacillus cereus and that the Si layer enhances acid resistance. The novel acid resistance of the spore mediated by Si encapsulation was also observed in other Bacillus strains, representing a general adaptation enhancing survival u...

  12. Adhesion of B. subtilis spores and vegetative cells onto stainless steel--DLVO theories and AFM spectroscopy.

    Science.gov (United States)

    Harimawan, Ardiyan; Zhong, Shaoping; Lim, Chwee-Teck; Ting, Yen-Peng

    2013-09-01

    Interactions between the bacterium Bacillus subtilis (either as vegetative cells or as spores) and stainless steel 316 (SS-316) surfaces were quantified using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and extended DLVO (xDLVO) approach in conjunction with live force spectroscopy using an Atomic Force Microscope (AFM). The xDLVO approach accounts for acid-base (polar) interactions that are not considered in the classical DLVO theory. AFM results revealed that spores manifested stronger attraction interactions to stainless steel compared to their vegetative cells counterparts due to lower energy barrier as predicted by both the theoretical approaches as well as the higher hydrophobicity on the spore surfaces. Both DLVO and xDLVO theories predict that vegetative cells manifest weaker attachment on the surfaces compared to spores. Results of AFM force measurement corroborate these findings; spores recorded significantly higher adhesion force (2.92±0.4 nN) compared to vegetative cells (0.65±0.2 nN). The adhesion of spores presents greater challenges in biofilm control owing to its stronger attachment and persistence when the spores are formed under adverse environmental conditions. PMID:23777862

  13. Dynamics of Aerial Tower Formation in Bacillus subtilis Biofilms

    Science.gov (United States)

    Sinha, Naveen; Seminara, Agnese; Wilking, James; Brenner, Michael; Weitz, Dave

    2012-02-01

    Biofilms are highly-organized colonies of bacteria that form on surfaces. These colonies form sophisticated structures which make them robust and difficult to remove from environments such as catheters, where they pose serious infection problems. Previous work has shown that sub-mm sized aerial towers form on the surface of Bacillus subtilis colony biofilms. Spore-formation is located preferentially at the tops of these towers, known as fruiting bodies, which aid in the dispersal and propagation of the colony to new sites. The formation of towers is strongly affected by the quorum-sensing molecule surfactin and the cannibalism pathway of the bacteria. In the present work, we use confocal fluorescence microscopy to study the development of individual fruiting bodies, allowing us to visualize the time-dependent spatial distribution of matrix-forming and sporulating bacteria within the towers. With this information, we investigate the physical mechanisms, such as surface tension and polymer concentration gradients, that drive the formation of these structures.

  14. Direct investigation of viscosity of an atypical inner membrane of Bacillus spores: a molecular rotor/FLIM study.

    Science.gov (United States)

    Loison, Pauline; Hosny, Neveen A; Gervais, Patrick; Champion, Dominique; Kuimova, Marina K; Perrier-Cornet, Jean-Marie

    2013-11-01

    We utilize the fluorescent molecular rotor Bodipy-C12 to investigate the viscoelastic properties of hydrophobic layers of bacterial spores Bacillus subtilis. The molecular rotor shows a marked increase in fluorescence lifetime, from 0.3 to 4ns, upon viscosity increase from 1 to 1500cP and can be incorporated into the hydrophobic layers within the spores from dormant state through to germination. We use fluorescence lifetime imaging microscopy to visualize the viscosity inside different compartments of the bacterial spore in order to investigate the inner membrane and relate its compaction to the extreme resistance observed during exposure of spores to toxic chemicals. We demonstrate that the bacterial spores possess an inner membrane that is characterized by a very high viscosity, exceeding 1000cP, where the lipid bilayer is likely in a gel state. We also show that this membrane evolves during germination to reach a viscosity value close to that of a vegetative cell membrane, ca. 600cP. The present study demonstrates quantitative imaging of the microscopic viscosity in hydrophobic layers of bacterial spores Bacillus subtilis and shows the potential for further investigation of spore membranes under environmental stress. PMID:23831602

  15. Bacillus atrophaeus Outer Spore Coat Assembly and Ultrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Leighton, T J; Wheeler, K E; Pitesky, M E; Malkin, A J

    2005-11-21

    Our previous atomic force microscopy (AFM) studies successfully visualized native Bacillus atrophaeus spore coat ultrastructure and surface morphology. We have shown that the outer spore coat surface is formed by a crystalline array of {approx}11 nm thick rodlets, having a periodicity of {approx}8 nm. We present here further AFM ultrastructural investigations of air-dried and fully hydrated spore surface architecture. In the rodlet layer, planar and point defects, as well as domain boundaries, similar to those described for inorganic and macromolecular crystals, were identified. For several Bacillus species, rodlet structure assembly and architectural variation appear to be a consequence of species-specific nucleation and crystallization mechanisms that regulate the formation of the outer spore coat. We propose a unifying mechanism for nucleation and self-assembly of this crystalline layer on the outer spore coat surface.

  16. Genetic transformation of Bacillus strains close to bacillus subtilis and isolated from the soil

    International Nuclear Information System (INIS)

    Chromosomal and plasmid transformation was found in five out of 118 Bacillus strains, close or identical to Bacillus subtilis, and isolated from soil in Moscow or in the Moscow district. The efficiency of transformation in these strains was lower than that in derivatives of Bac. subtilis strain 168. In these strains the ability to undergo transformation was dependent on the rate of sporulation and the presence of restrictases. As in the case of Bac. subtilis 168 the strains isolated may be used as models in genetic transformation studies on Bac. subtilis

  17. 40 CFR 180.1128 - Bacillus subtilis MBI 600; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis MBI 600; exemption... FOOD Exemptions From Tolerances § 180.1128 Bacillus subtilis MBI 600; exemption from the requirement of... biofungicide Bacillus subtilis MBI 600 in or on all food commodities, including residues resulting from...

  18. Characterization of an L-arabinose isomerase from Bacillus subtilis

    DEFF Research Database (Denmark)

    Kim, Jin-Ha; Prabhu, Ponnandy; Jeya, Marimuthu;

    2010-01-01

    An isolated gene from Bacillus subtilis str. 168 encoding a putative isomerase was proposed as an L-arabinose isomerase (L-AI), cloned into Escherichia coli, and its nucleotide sequence was determined. DNA sequence analysis revealed an open reading frame of 1,491 bp, capable of encoding a polypep......An isolated gene from Bacillus subtilis str. 168 encoding a putative isomerase was proposed as an L-arabinose isomerase (L-AI), cloned into Escherichia coli, and its nucleotide sequence was determined. DNA sequence analysis revealed an open reading frame of 1,491 bp, capable of encoding...

  19. Enhancement of Cellulase Production by Cellulomonas Fimi and Bacillus Subtilis

    International Nuclear Information System (INIS)

    Two bacterial strains identified as Cellulomonas fimi and Baciliius subtilus are cosidered as highly active cellulytic bacteria. Trials for maximizing the cellulolytic activites of the two strains were conducted. A maximum cellulase production was achieved at 1 and 1.5%carboxy methyl cellulose as carbon source, sodium nitrate and yeast as nitrogen source for Cellulomonas fimi and Bacillus subtilis, respectively. Incubation temprature at 30 and 45 degree C, ph at 6 and 7 achieved the highest activity of cellulase for Cellulomonas fimi and bacillus subtilis, respectively

  20. Growth and sporulation of Bacillus subtilis under microgravity (7-IML-1)

    Science.gov (United States)

    Mennigmann, Horst-Dieter

    1992-01-01

    The experiment was aimed at measuring the growth and sporulation of Bacillus subtilis under microgravity. The hardware for the experiment consists of a culture chamber (15 ml) made from titanium and closed by a membrane permeable for gases but not for water. Two variants of this basic structure were built which fit into the standard Biorack container types 1 and 2 respectively. Growth of the bacteria will be monitored by continuously measuring the optical density with a built-in miniaturized photometer. Other parameters (viability, sporulation, fine structure, size distribution of cells and spores, growth kinetics, etc.) will be measured on the fixed samples and on those where metabolism was temporarily halted, respectively.

  1. N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes.

    OpenAIRE

    Kuhn, H; Fietzek, P P; Lampen, J. O.

    1982-01-01

    The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis.

  2. Transformation of Bacillus Subtilis with cloned thymidylate synthetases

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Edward M.

    1980-01-01

    Bacillus subtilis carries two genes, thyA and thyB, each encoding different protein products, with thymidylate synthetase (TSase) activity. Either of these genes alone is sufficient for thymidine independence in B. subtilis. In addition there exist two B. subtilis temperate bacteriophages which upon infection of thymine requiring auxotrophs results in conversion of the organism to thymine independence. Chimeric plasmids selected for Thy/sup +/ transforming activity in E. coli were constructed and then used as a source of defined highly enriched DNA with which to transform competent B. subtilis. These plasmids were studied for their: (1) abiility to transform B. subtilis to thymine independence; (2) site of integration within the B. subtilis chromosome upon transformation; (3) phenotype of Thy/sup +/ plasmid generated transformants; and (4) nucleotide sequence homology among the cloned DNA fragments conferring thymine independence. Plasmids containing the two bacteriophage thy genes displayed the phenotype associated with thyA, whereas the plasmids containing the cloned B. subtilis chromosomal genes displayed the phenotype associated with thyB. Utilizing similar technology, the ability of an entirely foreign hybred bacterial plasmiid to transform B. subtilis was examined. In this case the gene from E. coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid was effective in transforming both E. coli and B. subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine requiring strains of B. subtilis to thymine independence. Although the Thy/sup +/ transformants of E. coli contained plasmid DNA, the Thy/sup +/ transformants derived from the transformation of B. subtilis did not contain detectable extrachromosomal DNA. Instead the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis. (ERB)

  3. Impact of Serine/Threonine Protein Kinases on the Regulation of Sporulation in Bacillus subtilis

    Science.gov (United States)

    Pompeo, Frédérique; Foulquier, Elodie; Galinier, Anne

    2016-01-01

    Bacteria possess many kinases that catalyze phosphorylation of proteins on diverse amino acids including arginine, cysteine, histidine, aspartate, serine, threonine, and tyrosine. These protein kinases regulate different physiological processes in response to environmental modifications. For example, in response to nutritional stresses, the Gram-positive bacterium Bacillus subtilis can differentiate into an endospore; the initiation of sporulation is controlled by the master regulator Spo0A, which is activated by phosphorylation. Spo0A phosphorylation is carried out by a multi-component phosphorelay system. These phosphorylation events on histidine and aspartate residues are labile, highly dynamic and permit a temporal control of the sporulation initiation decision. More recently, another kind of phosphorylation, more stable yet still dynamic, on serine or threonine residues, was proposed to play a role in spore maintenance and spore revival. Kinases that perform these phosphorylation events mainly belong to the Hanks family and could regulate spore dormancy and spore germination. The aim of this mini review is to focus on the regulation of sporulation in B. subtilis by these serine and threonine phosphorylation events and the kinases catalyzing them. PMID:27148245

  4. Molecular Cloning and Nucleotide Sequence of the Superoxide Dismutase Gene and Characterization of Its Product from Bacillus subtilis

    OpenAIRE

    Inaoka, Takashi; MATSUMURA, Yoshinobu; TSUCHIDO, Tetsuaki

    1998-01-01

    Bacillus subtilis was found to possess one detectable superoxide dismutase (Sod) in both vegetative cells and spores. The Sod activity in vegetative cells was maximal at stationary phase. Manganese was necessary to sustain Sod activity at stationary phase, but paraquat, a superoxide generator, did not induce the expression of Sod. The specific activity of purified Sod was approximately 2,600 U/mg of protein, and the enzyme was a homodimer protein with a molecular mass of approximately 25,000 ...

  5. Decontamination Options for Drinking Water Contaminated with Bacillus anthracis Spores

    Energy Technology Data Exchange (ETDEWEB)

    Raber, E; Burklund, A

    2010-02-16

    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination options for use in a contaminated drinking water supply. The parameters were: (1) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus); (2) spore concentration in suspension (10{sup 2} to 10{sup 6} spores/ml); (3) chemical characteristics of decontaminant [sodium dicholor-s-triazinetrione dihydrate (Dichlor), hydrogen peroxide, potassium peroxymonosulfate (Oxone), sodium hypochlorite, and VirkonS{reg_sign}]; (4) decontaminant concentration (0.01% to 5%); and (5) decontaminant exposure time (10 min to 24 hr). Results from 162 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5%, and Dichlor and sodium hypochlorite at a concentration of 2%, were effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting EPA's biocide standard of greater than a 6 log kill after a 10-minute exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS{reg_sign} and Oxone were less effective decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for biocides. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.

  6. Sigma A recognition sites in the Bacillus subtilis genome

    DEFF Research Database (Denmark)

    Jarmer, Hanne Østergaard; Larsen, Thomas Schou; Krogh, Anders Stærmose;

    2001-01-01

    A hidden Markov model of sigma (A) RNA polymerase cofactor recognition sites in Bacillus subtilis, containing either the common or the extended -10 motifs, has been constructed based on experimentally verified sigma (A) recognition sites. This work suggests that more information exists at the ini...

  7. A New Saponin Transformed from Ginsenoside Rhl by Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Guo Hong LI; Yue Mao SHEN; Ke Qin ZHANG

    2005-01-01

    A novel saponin was isolated from the transformed products of ginsenoside Rh1 by Bacillus subtilis. It's structure was determined to be 3-O-β-D-glucopyranosyl-6-O-β-D-glucopyranosyl-20 (S)-protopanaxatriol on the basis of the spectral data.

  8. The transcriptionally active regions in the genome of Bacillus subtilis

    DEFF Research Database (Denmark)

    Rasmussen, Simon; Nielsen, Henrik Bjørn; Jarmer, Hanne Østergaard

    2009-01-01

    The majority of all genes have so far been identified and annotated systematically through in silico gene finding. Here we report the finding of 3662 strand-specific transcriptionally active regions (TARs) in the genome of Bacillus subtilis by the use of tiling arrays. We have measured the genome...

  9. Sigma A recognition sites in the Bacillus subtilis genome

    DEFF Research Database (Denmark)

    Jarmer, Hanne Østergaard; Larsen, Thomas Schou; Krogh, Anders Stærmose; Saxild, Hans Henrik; Brunak, Søren; Knudsen, Steen

    2001-01-01

    A hidden Markov model of sigma (A) RNA polymerase cofactor recognition sites in Bacillus subtilis, containing either the common or the extended -10 motifs, has been constructed based on experimentally verified sigma (A) recognition sites. This work suggests that more information exists at the...

  10. Architecture and High-Resolution Structure of Bacillus thuringiensis and Bacillus cereus Spore Coat Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Leighton, T; Wheeler, K; Malkin, A

    2005-02-18

    We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereus was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.

  11. Incorporation of glycine and serine into sporulating cells of Bacillus subtilis

    International Nuclear Information System (INIS)

    The changes during growth and sporulation in activities of cells of Bacillus subtilis to incorporate various amino acids were investigated with wild-type strain and its asporogenous mutant. In the case of wild type strain the uptake of valine, phenylalanine, and proline was largest during the logarithmic growth period. The uptake of these amino acids decreased rapidly during the early stationary phase. The uptake of valine and cysteine increased again to some extent just prior to the forespore stage. The uptake of glycine and serine, however, was largest at the forespore stage at which the formation of spore coat took place. From these observed phenomena it was assumed that the remarkable incorporation of glycine and serine into the wild type strain during sporulation was closely related to the formation of spore coat. (auth.)

  12. Phylogeny and Molecular Taxonomy of the Bacillus subtilis species Complex and the Description of Bacillus subtilis subsp. inaquosorum subsp. nov

    Science.gov (United States)

    The Bacillus subtilis species complex is a tight assemblage of closely related species. For many years, it has been recognized that these species cannot be differentiated on the basis of phenotypic characteristics. Recently, it has been shown that phylogenetic analysis of the 16S ribosomal RNA gen...

  13. Comparison of hand hygiene procedures for removing Bacillus cereus spores.

    Science.gov (United States)

    Sasahara, Teppei; Hayashi, Shunji; Hosoda, Kouichi; Morisawa, Yuji; Hirai, Yoshikazu

    2014-01-01

    Bacillus cereus is a spore-forming bacterium. B. cereus occasionally causes nosocomial infections, in which hand contamination with the spores plays an important role. Therefore, hand hygiene is the most important practice for controlling nosocomial B. cereus infections. This study aimed to determine the appropriate hand hygiene procedure for removing B. cereus spores. Thirty volunteers' hands were experimentally contaminated with B. cereus spores, after which they performed 6 different hand hygiene procedures. We compared the efficacy of the procedures in removing the spores from hands. The alcohol-based hand-rubbing procedures scarcely removed them. The soap washing procedures reduced the number of spores by more than 2 log10. Extending the washing time increased the spore-removing efficacy of the washing procedures. There was no significant difference in efficacy between the use of plain soap and antiseptic soap. Handwashing with soap is appropriate for removing B. cereus spores from hands. Alcohol-based hand-rubbing is not effective. PMID:25252644

  14. Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence.

    Science.gov (United States)

    Wang, Yanyu; Jenkins, Sarah A; Gu, Chunfang; Shree, Ankita; Martinez-Moczygemba, Margarita; Herold, Jennifer; Botto, Marina; Wetsel, Rick A; Xu, Yi

    2016-06-01

    Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications. PMID:27304426

  15. Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence.

    Directory of Open Access Journals (Sweden)

    Yanyu Wang

    2016-06-01

    Full Text Available Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications.

  16. Decolorization of Distillery Effluent by Thermotolerant Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Soni Tiwari

    2012-01-01

    Full Text Available Problem statement: Ethanol production from sugarcane molasses generate large volume of effluent containing high Biological Oxygen Demand (BOD and Chemical Oxygen Demand (COD along with melanoidin, a color compound generally produced by Millard reaction. Melanodin is a recalcitrant compound degraded by specific microorganisms having ability to produce mono and di-oxygenases peroxidases, phenoxidases and laccases, are mainly responsible for degradation of complex aromatic hydrocarbons like color compound. These compounds causes several toxic effects on living system, therefore may be treated before disposal. Approach: The purpose of this study was to isolate a potential thermotolerant melanoidin decolorizing bacterium from natural resources for treatment of distillery effluent at industrial level. Results: Total 10 isolates were screened on solid medium containing molasses pigments. Three potential melanoidin decolorizing thermotolerant bacterial isolates identified as Bacillus subtilis, Bacillus cereus and Pseudomonas sp. were further optimized for decolorization at different physico-chemical and nutritional level. Out of these three, Bacillus subtilis showed maximum decolorization (85% at 45°C using (w/v 0.1%, glucose; 0.1%, peptone; 0.05%, MgSO4; 0.01%, KH2PO4; pH-6.0 within 24h of incubation under static condition. Conclusion/Recommendations: The strain of Bacillus subtilis can tolerate higher temperature and required very less carbon (0.1%, w/v and nitrogen sources (0.1%, w/v in submerged fermentation. It can be utilized for melanoidin decolorization of distillery effluent at industrial scale.

  17. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system

    Science.gov (United States)

    Zhang, Kang; Duan, Xuguo; Wu, Jing

    2016-01-01

    Bacillus subtilis ATCC 6051a is an undomesticated strain used in the industrial production of enzymes. Because it is poorly transformable, genetic manipulation in this strain requires a highly efficient genome editing method. In this study, a Streptococcus pyogenes CRISPR/Cas9 system consisting of an all-in-one knockout plasmid containing a target-specific guide RNA, cas9, and a homologous repair template was established for highly efficient gene disruption in B. subtilis ATCC 6051a. With an efficiency of 33% to 53%, this system was used to disrupt the srfC, spoIIAC, nprE, aprE and amyE genes of B. subtilis ATCC 6051a, which hamper its use in industrial fermentation. Compared with B. subtilis ATCC 6051a, the final mutant, BS5 (ΔsrfC, ΔspoIIAC, ΔnprE, ΔaprE, ΔamyE), produces much less foam during fermentation, displays greater resistant to spore formation, and secretes 2.5-fold more β-cyclodextrin glycosyltransferase into the fermentation medium. Thus, the CRISPR/Cas9 system proved to be a powerful tool for targeted genome editing in an industrially relevant, poorly transformable strain. PMID:27305971

  18. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system.

    Science.gov (United States)

    Zhang, Kang; Duan, Xuguo; Wu, Jing

    2016-01-01

    Bacillus subtilis ATCC 6051a is an undomesticated strain used in the industrial production of enzymes. Because it is poorly transformable, genetic manipulation in this strain requires a highly efficient genome editing method. In this study, a Streptococcus pyogenes CRISPR/Cas9 system consisting of an all-in-one knockout plasmid containing a target-specific guide RNA, cas9, and a homologous repair template was established for highly efficient gene disruption in B. subtilis ATCC 6051a. With an efficiency of 33% to 53%, this system was used to disrupt the srfC, spoIIAC, nprE, aprE and amyE genes of B. subtilis ATCC 6051a, which hamper its use in industrial fermentation. Compared with B. subtilis ATCC 6051a, the final mutant, BS5 (ΔsrfC, ΔspoIIAC, ΔnprE, ΔaprE, ΔamyE), produces much less foam during fermentation, displays greater resistant to spore formation, and secretes 2.5-fold more β-cyclodextrin glycosyltransferase into the fermentation medium. Thus, the CRISPR/Cas9 system proved to be a powerful tool for targeted genome editing in an industrially relevant, poorly transformable strain. PMID:27305971

  19. Multigeneration Cross-Contamination of Mail with Bacillus anthracis Spores.

    Directory of Open Access Journals (Sweden)

    Jason Edmonds

    Full Text Available The release of biological agents, including those which could be used in biowarfare or bioterrorism in large urban areas, has been a concern for governments for nearly three decades. Previous incidents from Sverdlosk and the postal anthrax attack of 2001 have raised questions on the mechanism of spread of Bacillus anthracis spores as an aerosol or contaminant. Prior studies have demonstrated that Bacillus atrophaeus is easily transferred through simulated mail handing, but no reports have demonstrated this ability with Bacillus anthracis spores, which have morphological differences that may affect adhesion properties between spore and formite. In this study, equipment developed to simulate interactions across three generations of envelopes subjected to tumbling and mixing was used to evaluate the potential for cross-contamination of B. anthracis spores in simulated mail handling. In these experiments, we found that the potential for cross-contamination through letter tumbling from one generation to the next varied between generations while the presence of a fluidizer had no statistical impact on the transfer of material. Likewise, the presence or absence of a fluidizer had no statistically significant impact on cross-contamination levels or reaerosolization from letter opening.

  20. Multigeneration Cross-Contamination of Mail with Bacillus anthracis Spores.

    Science.gov (United States)

    Edmonds, Jason; Lindquist, H D Alan; Sabol, Jonathan; Martinez, Kenneth; Shadomy, Sean; Cymet, Tyler; Emanuel, Peter

    2016-01-01

    The release of biological agents, including those which could be used in biowarfare or bioterrorism in large urban areas, has been a concern for governments for nearly three decades. Previous incidents from Sverdlosk and the postal anthrax attack of 2001 have raised questions on the mechanism of spread of Bacillus anthracis spores as an aerosol or contaminant. Prior studies have demonstrated that Bacillus atrophaeus is easily transferred through simulated mail handing, but no reports have demonstrated this ability with Bacillus anthracis spores, which have morphological differences that may affect adhesion properties between spore and formite. In this study, equipment developed to simulate interactions across three generations of envelopes subjected to tumbling and mixing was used to evaluate the potential for cross-contamination of B. anthracis spores in simulated mail handling. In these experiments, we found that the potential for cross-contamination through letter tumbling from one generation to the next varied between generations while the presence of a fluidizer had no statistical impact on the transfer of material. Likewise, the presence or absence of a fluidizer had no statistically significant impact on cross-contamination levels or reaerosolization from letter opening. PMID:27123934

  1. [The flotation characteristics of Bacillus cells and spores].

    Science.gov (United States)

    Stabnikova, E V; Gregirchak, N N; Taranenko, T O

    1991-01-01

    Variations in hydrophobicity of the surface of bacillary cells and their capacity to flotation in the process of batch cultivation have been studied. It is shown that hydrophobicity of the cell surface increases in the course of batch cultivation of Bacillus thuringiensis, B. licheniformis and B. megaterium. Hydrophobicity of spores of the mentioned cultures is considerably higher than that of the vegetative cells. The increase of hydrophobicity of bacillary cells positively correlated with their capacity to flotation. That is why the use of flotation for the age fractionation of bacillary cells is possible: spores are concentrated in the foam while vegetative cells remain in the culture liquid. PMID:1779906

  2. Bacillus subtilis Hfq: A role in chemotaxis and motility

    Indian Academy of Sciences (India)

    CHANDRAKANT B JAGTAP; PRADEEP KUMAR; K KRISHNAMURTHY RAO

    2016-09-01

    Hfq is a global post-transcriptional regulator that modulates the translation and stability of target mRNAs and therebyregulates pleiotropic functions, such as growth, stress, virulence and motility, in many Gram-negative bacteria.However, comparatively little is known about the regulation and function(s) of Hfq in Gram-positive bacteria.Recently, in Bacillus subtilis, a role for Hfq in stationary phase survival has been suggested, although the possibilityof Hfq having an additional role(s) cannot be ruled out. In this study we show that an ortholog of Hfq in B. subtilis isregulated by the stress sigma factor, σB, in addition to the stationary phase sigma factor, σH. We further demonstratethat Hfq positively regulates the expression of flagellum and chemotaxis genes (fla/che) that control chemotaxis andmotility, thus assigning a new function for Hfq in B. subtilis.

  3. Enhanced hydrocarbon biodegradation by a newly isolated bacillus subtilis strain

    International Nuclear Information System (INIS)

    The relation between hydrocarbon degradation and biosurfactant (rhamnolipid) production by a new bacillus subtilis 22BN strain was investigated. The strain was isolated for its capacity to utilize n-hexadecane and naphthalene and at the same time to produce surface-active compound at high concentrations (1.5 - 2.0 g l-1). Biosurfactant production was detected by surface tension lowering and emulsifying activity. The strain is a good degrader of both hydrocarbons used with degradability of 98.3 ± 1% and 75 ± 2% for n-hexadecane and naphthalene, respectively. Measurement of cell hydrophobicity showed that the combination of slightly soluble substrate and rhamnolipid developed higher hydrophobicity correlated with increased utilization of both hydrocarbon substrates. To our knowledge, this is the first report of bacillus subtilis strain that degrades hydrophobic compounds and at the same time produces rhamnolipid biosurfactant. (orig.)

  4. Structure-function correlation in glycine oxidase from Bacillus subtilis

    OpenAIRE

    Mörtl, Mario; Diederichs, Kay; Welte, Wolfram; Molla, Gianluca; Motteran, Laura; Andriolo, Gabriella; Pilone, Mirella S.; Pollegioni, Loredano

    2004-01-01

    Structure-function relationships of the flavoprotein glycine oxidase (GO), which was recently proposed as the first enzyme in the biosynthesis of thiamine in Bacillus subtilis, has been investigated by a combination of structural and functional studies. The structure of the GO-glycolate complex was determined at 1.8 Å, a resolution at which a sketch of the residues involved in FAD binding and in substrate interaction can be depicted. GO can be considered a member of the amine oxidase class ...

  5. Maltose- und Maltodextrin-Verwertung in Bacillus subtilis

    OpenAIRE

    Schönert, Stefan

    2004-01-01

    In seinem natürlichen Habitat findet das Gram - positive Bodenbakterium Bacillus subtilis hauptsächlich polymere Zuckerformen als Kohlenstoffquelle vor, die aus den von anderen Organismen synthetisierten Speicherstoffen, z.B. Stärke und Glykogen, stammen. Jedoch müssen diese Polysaccharide zuerst extrazellulär zu Maltose und Maltodextrinen hydrolysiert werden, bevor sie aufgenommen werden können.Im Gegensatz zu der sehr gut untersuchten Maltose - und Maltodextrin - Aufnahme in Escherichia col...

  6. Use of bacillus subtilis strains to inhibit postharvest pathogenic fungi

    International Nuclear Information System (INIS)

    An isolate (87) of the bacillus subtilis strains isolated from cold stored citrus fruit 13 proved to inhibit the growth in vitro of the penicillium italicum used in the experiment (from 50.6% to 92.2%) and to inhibit botrytis cinerea (from 65.3% to 95.9%). A further test, superimposing on plates containing PDA strains Nos. 13, 173, and 160, totally inhibited the fungi. Tested in vivo on artificially bruised oranges, they significantly inhibited two fungi

  7. Extracellular and membrane-bound proteases from Bacillus subtilis.

    OpenAIRE

    Mäntsälä, P; Zalkin, H

    1980-01-01

    Bacillus subtilis YY88 synthesizes increased amounts of extracellular and membrane-bound proteases. More than 99% of the extracellular protease activity is accounted for by an alkaline serine protease and a neutral metalloprotease. An esterase having low protease activity accounts for less than 1% of the secreted protease. These enzymes were purified to homogeneity. Molecular weights of approximately 28,500 and 39,500 were determined for the alkaline and neutral proteases, respectively. The e...

  8. High-Resolution Spore Coat Architecture and Assembly of Bacillus Spores

    Energy Technology Data Exchange (ETDEWEB)

    Malkin, A J; Elhadj, S; Plomp, M

    2011-03-14

    Elucidating the molecular architecture of bacterial and cellular surfaces and its structural dynamics is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance, and provide the means for identifying spore formulation and processing attributes. I will discuss the application of in vitro atomic force microscopy (AFM) for studies of high-resolution coat architecture and assembly of several Bacillus spore species. We have demonstrated that bacterial spore coat structures are phylogenetically and growth medium determined. We have proposed that strikingly different species-dependent coat structures of bacterial spore species are a consequence of sporulation media-dependent nucleation and crystallization mechanisms that regulate the assembly of the outer spore coat. Spore coat layers were found to exhibit screw dislocations and two-dimensional nuclei typically observed on inorganic and macromolecular crystals. This presents the first case of non-mineral crystal growth patterns being revealed for a biological organism, which provides an unexpected example of nature exploiting fundamental materials science mechanisms for the morphogenetic control of biological ultrastructures. We have discovered and validated, distinctive formulation-specific high-resolution structural spore coat and dimensional signatures of B. anthracis spores (Sterne strain) grown in different formulation condition. We further demonstrated that measurement of the dimensional characteristics of B. anthracis spores provides formulation classification and sample matching with high sensitivity and specificity. I will present data on the development of an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures on the B. anthracis surfaces. These studies demonstrate that AFM can probe microbial surface architecture, environmental dynamics and the life cycle of bacterial and cellular systems at near

  9. Cytokine Response to Infection with Bacillus anthracis Spores

    OpenAIRE

    Pickering, Alison K.; Osorio, Manuel; Lee, Gloria M.; Grippe, Vanessa K.; Bray, Mechelle; Merkel, Tod J.

    2004-01-01

    Bacillus anthracis, the etiological agent of anthrax, is a gram-positive, spore-forming bacterium. The inhalational form of anthrax is the most severe and is associated with rapid progression of the disease and the outcome is frequently fatal. Transfer from the respiratory epithelium to regional lymph nodes appears to be an essential early step in the establishment of infection. This transfer is believed to occur by means of carriage within alveolar macrophages following phagocytosis. Therefo...

  10. Production of Bioactive Compounds by Bacillus subtilis against Sclerotium rolfsii

    Directory of Open Access Journals (Sweden)

    Nalisha, I.

    2006-01-01

    Full Text Available This study aims to investigate the characteristic of bioactive compound produced by Bacillus subtilis against Sclerotium rolfsii and the influence of additive supplements on the antagonistic activity of B. subtilis. The fact that B. subtilis produced an antifungal substance which has inhibitory effect on wide range of fungi, including S. rolfsii, is well known. To learn the effect of pH, temperature and light condition on the production of antifungal compound, B. subtilis was inoculated in Potato Dextrose Broth at various initial pH, temperatures and light conditions, respectively. This antagonist was found to produce antifungal compound that stable at 80C with 58.3 % inhibition on S. rolfsii. The activity was constant within a wide range of pH (3–11. However, treatment with pH11 lead to higher antifungal activity (31.57 % inhibition and it was also found to produce substance that can endure dark condition (46.24 % inhibition with fungicidal effect on S. rolfsii. A series of experiments also been carried out to enhance the antifungal production by supplementing different carbon source preparation into bacterial liquid culture. B. subtilis were grown in minimal medium containing 1 % of oil palm root, Ganoderma lucidum or chitin, respectively prior to bioassay. Crude culture from oil palm root supplemented culture shown significantly reduction in S. rolfsii growth compared to other carbon source crude culture or the antagonism alone, suggesting that this approach may provide improved biocontrol efficiency.

  11. Regulation of Polyglutamic Acid Synthesis by Glutamate in Bacillus licheniformis and Bacillus subtilis

    OpenAIRE

    Kambourova, Margarita; Tangney, Martin; Priest, Fergus G.

    2001-01-01

    The synthesis of polyglutamic acid (PGA) was repressed by exogenous glutamate in strains of Bacillus licheniformis but not in strains of Bacillus subtilis, indicating a clear difference in the regulation of synthesis of capsular slime in these two species. Although extracellular γ-glutamyltranspeptidase (GGT) activity was always present in PGA-producing cultures of B. licheniformis under various growth conditions, there was no correlation between the quantity of PGA and enzyme activity. Moreo...

  12. Investigation of biosurfactant production by Bacillus pumilus 1529 and Bacillus subtilis WPI

    Directory of Open Access Journals (Sweden)

    shila khajavi shojaei

    2016-06-01

    Full Text Available Introduction: Biosurfactants are unique amphipathic molecules with extensive application in removing organic and metal contaminants. The purpose of this study was to investigate production of biosurfactant and determine optimal conditions to produce biosurfactant by Bacillus pumilus 1529 and Bacillus subtilis WPI. Materials and methods: In this study, effect of carbon source, temperature and incubation time on biosurfactant production was evaluated. Hemolytic activity, emulsification activity, oil spreading, drop collapse, cell hydrophobicity and measurement of surface tension were used to detect biosurfactant production. Then, according to the results, the optimal conditions for biosurfactant production by and Bacillus subtilis WPI was determined. Results: In this study, both bacteria were able to produce biosurfactant at an acceptable level. Glucose, kerosene, sugarcane molasses and phenanthrene used as a sole carbon source and energy for the mentioned bacteria. Bacillus subtilis WPI produced maximum biosurfactant in the medium containing kerosene and reduced surface tension of the medium to 33.1 mN/m after 156 hours of the cultivation at 37°C. Also, the highest surface tension reduction by Bacillus pumilus 1529 occurred in the medium containing sugarcane molasses and reduce the surface tension of culture medium after 156 hours at 37°C from 50.4 to 28.83 mN/m. Discussion and conclusion: Bacillus pumilus 1529 and Bacillus subtilis WPI had high potential in production of biosurfactant and degradation of petroleum hydrocarbons and Phenanthrene. Therefore, it could be said that these bacteria had a great potential for applications in bioremediation and other environmental process.

  13. Homolactic fermentation from glucose and cellobiose using Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Martinez Alfredo

    2009-04-01

    Full Text Available Abstract Backgroung Biodegradable plastics can be made from polylactate, which is a polymer made from lactic acid. This compound can be produced from renewable resources as substrates using microorganisms. Bacillus subtilis is a Gram-positive bacterium recognized as a GRAS microorganism (generally regarded as safe by the FDA. B. subtilis produces and secretes different kind of enzymes, such as proteases, cellulases, xylanases and amylases to utilize carbon sources more complex than the monosaccharides present in the environment. Thus, B. subtilis could be potentially used to hydrolyze carbohydrate polymers contained in lignocellulosic biomass to produce chemical commodities. Enzymatic hydrolysis of the cellulosic fraction of agroindustrial wastes produces cellobiose and a lower amount of glucose. Under aerobic conditions, B. subtilis grows using cellobiose as substrate. Results In this study, we proved that under non-aerated conditions, B. subtilis ferments cellobiose to produce L-lactate with 82% of the theoretical yield, and with a specific rate of L-lactate production similar to that one obtained fermenting glucose. Under fermentative conditions in a complex media supplemented with glucose, B. subtilis produces L-lactate and a low amount of 2,3-butanediol. To increase the L-lactate production of this organism, we generated the B subtilis CH1 alsS- strain that lacks the ability to synthesize 2,3-butanediol. Inactivation of this pathway, that competed for pyruvate availability, let a 15% increase in L-lactate yield from glucose compared with the parental strain. CH1 alsS- fermented 5 and 10% of glucose to completion in mineral medium supplemented with yeast extract in four and nine days, respectively. CH1 alsS- produced 105 g/L of L-lactate in this last medium supplemented with 10% of glucose. The L-lactate yield was up to 95% using mineral media, and the optical purity of L-lactate was of 99.5% since B. subtilis has only one gene (lctE that

  14. Regulation of proteolysis in Bacillus subtilis: effects of calcium ions and energy poisons

    International Nuclear Information System (INIS)

    Bacillus subtilis cells carry out extensive intracellular proteolysis (k = 0.15-0.23/h) during sporulation. Protein degradation was measured in cells growing in chemically defined sporulation medium, by following the release of [14C]-leucine from the cells during spore formation. Sodium arsenate, carbonyl cyanide 3-chlorophenyl hydrazone, and sodium azide strongly inhibited proteolysis without altering cell viability greatly, which suggested that bulk proteolysis in B. subtilis is energy dependent. The authors have tested the hypothesis that the energy requirement may be for pumping in Ca2+. When [Ca2+] was -6, rates of proteolysis in sporulating cells were reduced 4-8 times that in cells in calcium ion- sufficient medium. Further, omission of Ca2+ from the medium prevented the increase in the activity of the major intracellular serine protease. However, the presence of energy poisons in the media at levels which inhibited proteolysis, had no detectable effect on the uptake of by cells [45Ca]. The authors concluded that B. subtilis cells required both metabolic energy and calcium ions for normal proteolysis

  15. Unlocking the Sporicidal Potential of Ethanol: Induced Sporicidal Activity of Ethanol against Clostridium difficile and Bacillus Spores under Altered Physical and Chemical Conditions.

    Directory of Open Access Journals (Sweden)

    Michelle M Nerandzic

    Full Text Available Due to their efficacy and convenience, alcohol-based hand sanitizers have been widely adopted as the primary method of hand hygiene in healthcare settings. However, alcohols lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We hypothesized that sporicidal activity could be induced in alcohols through alteration of physical or chemical conditions that have been shown to degrade or allow penetration of spore coats.Acidification, alkalinization, and heating of ethanol induced rapid sporicidal activity against C. difficile, and to a lesser extent Bacillus thuringiensis and Bacillus subtilis. The sporicidal activity of acidified ethanol was enhanced by increasing ionic strength and mild elevations in temperature. On skin, sporicidal ethanol formulations were as effective as soap and water hand washing in reducing levels of C. difficile spores.These findings demonstrate that novel ethanol-based sporicidal hand hygiene formulations can be developed through alteration of physical and chemical conditions.

  16. Suppression of Magnaporthe oryzae and interaction between Bacillus subtilis and rice plants in the control of rice blast.

    Science.gov (United States)

    Sha, Yuexia; Wang, Qi; Li, Yan

    2016-01-01

    Magnaporthe oryzae, the causative pathogen of rice blast, has caused extensive losses to rice cultivation worldwide. Strains of the bacterium Bacillus subtilis have been used as biocontrol agents against rice blast. However, little has been reported about the interaction between B. subtilis and the rice plant and its mechanism of action. Here, the colonization process and induced disease resistance by B. subtilis SYX04 and SYX20 in rice plants was examined. Strains of B. subtilis labeled with green fluorescent protein reached population of more than 5 × 10(6) CFU/g after 20 days on mature rice leaves and were detected after 3 days on newly grown leaves. Results showed that SYX04 and SYX20 not only inhibited spore germination, germ tube length, and appressorial formation but also caused a series of alterations in the structures of hyphae and conidia. The cell walls and membrane structures of the fungus showed ultrastructural abnormalities, which became severely degraded as observed through scanning electron microscopy and transmission electron microscopy. The mixture of both B. subtilis and M. oryzae resulted in enhanced activity of peroxidase, and polyphenol oxidase while there was significantly more superoxide dismutase activity in plants that had been sprayed with B. subtilis alone. The present study suggests that colonized SYX04 and SYX20 strains protected rice plants and exhibited antifungal activity and induced systemic resistance, thus indicating their potential biological control agents. PMID:27536521

  17. Prodigiosin Induces Autolysins in Actively Grown Bacillus subtilis Cells.

    Science.gov (United States)

    Danevčič, Tjaša; Borić Vezjak, Maja; Tabor, Maja; Zorec, Maša; Stopar, David

    2016-01-01

    Prodigiosin produced by marine bacterium Vibrio ruber DSM 14379 exhibits a potent antimicrobial activity against a broad range of Gram positive and Gram negative bacteria. The mechanism of prodigiosin antimicrobial action, however, is not known. In this work, the effect of prodigiosin on Bacillus subtilis growth, cell membrane leakage, and induction of autolysins was studied. Treating B. subtilis with prodigiosin resulted in rapid decline of optical density and increased cell membrane leakage measured by β-galactosidase activity. Cell lysis was initiated immediately after treatment with prodigiosin in the middle exponential phase and was completed within 2 h. Lytic activity of prodigiosin in mutant strains with impaired autolysin genes lytABCD decreased for 80% compared to the wild type strain, while in lytABCDEF mutant strain prodigiosin had no bacteriolytic but only bacteriostatic effect. Fast prodigiosin lytic activity on individual B. subtilis cells was confirmed by a modified comet assay. The results indicate that prodigiosin autolysin induction in B. subtilis is growth phase dependent. PMID:26858704

  18. Complexity in regulation of tryptophan biosynthesis in Bacillus subtilis.

    Science.gov (United States)

    Gollnick, Paul; Babitzke, Paul; Antson, Alfred; Yanofsky, Charles

    2005-01-01

    Bacillus subtilis uses novel regulatory mechanisms in controlling expression of its genes of tryptophan synthesis and transport. These mechanisms respond to changes in the intracellular concentrations of free tryptophan and uncharged tRNA(Trp). The major B. subtilis protein that regulates tryptophan biosynthesis is the tryptophan-activated RNA-binding attenuation protein, TRAP. TRAP is a ring-shaped molecule composed of 11 identical subunits. Active TRAP binds to unique RNA segments containing multiple trinucleotide (NAG) repeats. Binding regulates both transcription termination and translation in the trp operon, and translation of other coding regions relevant to tryptophan metabolism. When there is a deficiency of charged tRNA(Trp), B. subtilis forms an anti-TRAP protein, AT. AT antagonizes TRAP function, thereby increasing expression of all the genes regulated by TRAP. Thus B. subtilis and Escherichia coli respond to identical regulatory signals, tryptophan and uncharged tRNA(Trp), yet they employ different mechanisms in regulating trp gene expression. PMID:16285852

  19. A part toolbox to tune genetic expression in Bacillus subtilis.

    Science.gov (United States)

    Guiziou, Sarah; Sauveplane, Vincent; Chang, Hung-Ju; Clerté, Caroline; Declerck, Nathalie; Jules, Matthieu; Bonnet, Jerome

    2016-09-01

    Libraries of well-characterised components regulating gene expression levels are essential to many synthetic biology applications. While widely available for the Gram-negative model bacterium Escherichia coli, such libraries are lacking for the Gram-positive model Bacillus subtilis, a key organism for basic research and biotechnological applications. Here, we engineered a genetic toolbox comprising libraries of promoters, Ribosome Binding Sites (RBS), and protein degradation tags to precisely tune gene expression in B. subtilis We first designed a modular Expression Operating Unit (EOU) facilitating parts assembly and modifications and providing a standard genetic context for gene circuits implementation. We then selected native, constitutive promoters of B. subtilis and efficient RBS sequences from which we engineered three promoters and three RBS sequence libraries exhibiting ∼14 000-fold dynamic range in gene expression levels. We also designed a collection of SsrA proteolysis tags of variable strength. Finally, by using fluorescence fluctuation methods coupled with two-photon microscopy, we quantified the absolute concentration of GFP in a subset of strains from the library. Our complete promoters and RBS sequences library comprising over 135 constructs enables tuning of GFP concentration over five orders of magnitude, from 0.05 to 700 μM. This toolbox of regulatory components will support many research and engineering applications in B. subtilis. PMID:27402159

  20. Complete Genome Sequence of Bacillus subtilis Strain CU1050, Which Is Sensitive to Phage SPβ

    OpenAIRE

    Johnson, Christopher M.; Grossman, Alan D.

    2016-01-01

    The Gram-positive bacterium Bacillus subtilis is used as a model organism to study cellular and molecular processes. Here, we announce the complete genomic sequence of B. subtilis strain CU1050, derived from B. subtilis strain 168. CU1050 has historically been used to study suppressor mutations and phage biology, especially the lysogenic phage SPβ.

  1. A Bacillus subtilis dipeptide transport system expressed early during sporulation.

    Science.gov (United States)

    Mathiopoulos, C; Mueller, J P; Slack, F J; Murphy, C G; Patankar, S; Bukusoglu, G; Sonenshein, A L

    1991-08-01

    Two previously identified Bacillus subtilis DNA segments, dciA and dciB, whose transcripts accumulate very rapidly after induction of sporulation, were found in the same 6.2 kb transcription unit, now known as the dciA operon. Analysis of the sequence of the dciA operon showed that its putative products are homologous to bacterial peptide transport systems. The product of the fifth gene, DciAE, is similar to peptide-binding proteins from Escherichia coli and Salmonella typhimurium (DppA and OppA) and B. subtilis (OppA). A null mutation in dciAE abolished the ability of a proline auxotroph to grow in a medium containing the dipeptide Pro-Gly as sole proline source, suggesting that the dciA operon encodes a dipeptide transport system. PMID:1766370

  2. Regulation of the anaerobic metabolism in Bacillus subtilis.

    Science.gov (United States)

    Härtig, Elisabeth; Jahn, Dieter

    2012-01-01

    The Gram-positive soil bacterium Bacillus subtilis encounters changing environmental conditions in its habitat. The access to oxygen determines the mode of energy generation. A complex regulatory network is employed to switch from oxygen respiration to nitrate respiration and various fermentative processes. During adaptation, oxygen depletion is sensed by the [4Fe-4S](2+) cluster containing Fnr and the two-component regulatory system ResDE consisting of the membrane-bound histidine kinase ResE and the cytoplasmic ResD regulator. Nitric oxide is the signal recognized by NsrR. Acetate formation and decreasing pH are measured via AlsR. Finally, Rex is responding to changes in the cellular NAD(+)/NADH ration. The fine-tuned interplay of these regulators at approximately 400 target gene promoters ensures efficient adaptation of the B. subtilis physiology. PMID:23046954

  3. Stoichiometric growth model for riboflavin-producing Bacillus subtilis.

    Science.gov (United States)

    Dauner, M; Sauer, U

    2001-09-01

    Rate equations for measured extracellular rates and macromolecular composition data were combined with a stoichiometric model to describe riboflavin production with an industrial Bacillus subtilis strain using errors in variables regression analysis. On the basis of this combined stoichiometric growth model, we explored the topological features of the B. subtilis metabolic reaction network that was assembled from a large amount of literature. More specifically, we simulated maximum theoretical yields of biomass and riboflavin, including the associated flux regimes. Based on the developed model, the importance of experimental data on building block requirements for maximum yield and flux calculations were investigated. These analyses clearly show that verification of macromolecular composition data is important for optimum flux calculations. PMID:11505383

  4. Adhesion of Spores of Bacillus thuringiensis on a Planar Surface

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Joy, David Charles [ORNL; Palumbo, Anthony Vito [ORNL; Tsouris, Costas [ORNL

    2010-01-01

    Adhesion of spores of Bacillus thuringiensis (Bt) and spherical silica particles on surfaces was experimentally and theoretically investigated in this study. Topography analysis via atomic force microscopy (AFM) and electron microscopy indicates that Bt spores are rod shaped, {approx}1.3 {mu}m in length and {approx}0.8 {mu}m in diameter. The adhesion force of Bt spores and silica particles on gold-coated glass was measured at various relative humidity (RH) levels by AFM. It was expected that the adhesion force would vary with RH because the individual force components contributing to the adhesion force depend on RH. The adhesion force between a particle and a planar surface in atmospheric environments was modeled as the contribution of three major force components: capillary, van der Waals, and electrostatic interaction forces. Adhesion force measurements for Bt spore (silica particle) and the gold surface system were comparable with calculations. Modeling results show that there is a critical RH value, which depends on the hydrophobicity of the materials involved, below which the water meniscus does not form and the contribution of the capillary force is zero. As RH increases, the van der Waals force decreases while the capillary force increases to a maximum value.

  5. Quantitative Analysis of Spatial-Temporal Correlations during Germination of Spores of Bacillus Species ▿

    OpenAIRE

    Zhang, JinQiao; Garner, Will; Setlow, Peter; Yu, Ji

    2011-01-01

    Bacteria of Bacillus species sporulate upon starvation, and the resultant dormant spores germinate when the environment appears likely to allow the resumption of vegetative growth. Normally, the rates of germination of individual spores in populations are very heterogeneous, and the current work has investigated whether spore-to-spore communication enhances the synchronicity of germination. In order to do this work, time-lapse optical images of thousands of individual spores were captured dur...

  6. Unhairing animal hides using probiotic Bacteria bacillus subtilis

    OpenAIRE

    Данилкович, Анатолій Григорович; Гвоздяк, Петро Ілліч; Романюк, Оксана Олександрівна; Ковтуненко, Ольга Василівна

    2013-01-01

    The most efficient technology of processing natural raw materials into skin and fur is the use of enzyme products for soaking and liming processes. Therefore, the use of bacterial products, which produce enzymes of various functional effects, is considered to be very promising for the above mentioned processes.Soaking and liming of flint-dried rabbit hides were carried out using probiotic bacreria Bacillus subtilis on 4 samples in a laboratory centrifuge at soaking temperature 36-38°С and wor...

  7. Hyper production of alkaline protease by mutagenized bacillus subtilis

    International Nuclear Information System (INIS)

    The purpose of this work was to augment the alkaline protease production from Bacillus subtilis by using chemical mutagen (MMS) and UV mutagenesis. A number of mutants were isolated which produce high levels of extra cellular proteases. Analysis of culture supernatants of these mutants had shown that the total amounts of proteolysis activity were increased from 1 to 2 fold over the wild strain. Clones showing promote response were further characterized by analyzing different parameters; like of Temperature, pH substrate concentration and incubation period, to study the activity of protease enzyme. (author)

  8. Cosegregation of cell wall and DNA in Bacillus subtilis.

    OpenAIRE

    Schlaeppi, J M; Karamata, D

    1982-01-01

    Cosegregation of cell wall and DNA of a lysis-negative mutant of Bacillus subtilis was examined by continuously labeling (i) cell wall, (ii) DNA, and (iii) both cell wall and DNA. After four to five generations of chase in liquid media it was found by light microscope autoradiography that the numbers of wall segregation units per cell are 29 and 9 in rich and minimal medium, respectively. Under the same conditions the numbers of segregation units of DNA were almost 50% lower: 15 and 5, respec...

  9. Identifying experimental surrogates for Bacillus anthracis spores: a review

    Directory of Open Access Journals (Sweden)

    Greenberg David L

    2010-09-01

    Full Text Available Abstract Bacillus anthracis, the causative agent of anthrax, is a proven biological weapon. In order to study this threat, a number of experimental surrogates have been used over the past 70 years. However, not all surrogates are appropriate for B. anthracis, especially when investigating transport, fate and survival. Although B. atrophaeus has been widely used as a B. anthracis surrogate, the two species do not always behave identically in transport and survival models. Therefore, we devised a scheme to identify a more appropriate surrogate for B. anthracis. Our selection criteria included risk of use (pathogenicity, phylogenetic relationship, morphology and comparative survivability when challenged with biocides. Although our knowledge of certain parameters remains incomplete, especially with regards to comparisons of spore longevity under natural conditions, we found that B. thuringiensis provided the best overall fit as a non-pathogenic surrogate for B. anthracis. Thus, we suggest focusing on this surrogate in future experiments of spore fate and transport modelling.

  10. Transfer of Bacillus cereus spores from packaging paper into food.

    Science.gov (United States)

    Ekman, Jaakko; Tsitko, Irina; Weber, Assi; Nielsen-LeRoux, Christina; Lereclus, Didier; Salkinoja-Salonen, Mirja

    2009-11-01

    Food packaging papers are not sterile, as the manufacturing is an open process, and the raw materials contain bacteria. We modeled the potential transfer of the Bacillus cereus spores from packaging paper to food by using a green fluorescent protein-expressing construct of Bacillus thuringiensis Bt 407Cry(-) [pHT315Omega(papha3-gfp)], abbreviated BT-1. Paper (260 g m(-2)) containing BT-1 was manufactured with equipment that allowed fiber formation similar to that of full-scale manufactured paper. BT-1 adhered to pulp during papermaking and survived similar to an authentic B. cereus. Rice and chocolate were exposed to the BT-1-containing paper for 10 or 30 days at 40 or 20 degrees C at relative air humidity of 10 to 60%. The majority of the spores remained immobilized inside the fiber web; only 0.001 to 0.03% transferred to the foods. This amount is low compared with the process hygiene criteria and densities commonly found in food, and it does not endanger food safety. To measure this, we introduced BT-1 spores into the paper in densities of 100 to 1,000 times higher than the amounts of the B. cereus group bacteria found in commercial paper. Of BT-1 spores, 0.03 to 0.1% transferred from the paper to fresh agar surface within 5 min of contact, which is more than to food during 10 to 30 days of exposure. The findings indicate that transfer from paper to dry food is restricted to those microbes that are exposed on the paper surface and readily detectable with a contact agar method. PMID:19903384

  11. Isolation and characterization of protease from Bacillus subtilis 1012M15

    Directory of Open Access Journals (Sweden)

    ELFI SUSANTI

    2003-01-01

    Full Text Available A local strain of Bacillus sp. BAC4, is known to produce penicillin G acylase (PGA enzyme with relatively high activity. This strain secretes the PGA into the culture medium. However, it has been reported that PGA activity fall and rise during culture, and the activity plummets during storege at –200C, which probably due to usage protease activity of Bacillus sp. BAC4. To study the possible use of Bacillus subtilis 1012M15 as a host cell for cloning the pga gene from Bacillus sp. BAC4, the protease activity of Bacillus subtilis 1012M15 were studied. Protease activity was determined by Horikoshi method. In this experiment, maximum protease activity in Bacillus subtilis 1012M15 culture was obsereved after 8 hours. At this optimum condition, protease activity of Bacillus sp. BAC4 is five time higher than that of Bacillus subtilis 1012M15. This situation promised the possible usage of Bacillus subtilis 1012M15 as a host cell for pga expression. For protease characterization, the bacterial culture had been separated from the cell debris by centrifugation. The filtrate was concentrated by freeze drying, fractionated by ammonium sulphate, dialyzed in selovan tube, and then fractionated by ion exchance chromatography employing DEAE-cellulose. The five peaks resulted indicated the presence of five protease. Based on inhibitor and activator influence analysis, it could be concluded that proteases from Bacillus subtilis 1012M15 contained of serin protease as well as metalloprotease and serin protease mixture.

  12. Peptidoglycan hydrolysis is required for assembly and activity of the transenvelope secretion complex during sporulation in Bacillus subtilis

    OpenAIRE

    Rodrigues, Christopher D. A.; Marquis, Kathleen A.; Meisner, Jeffrey; Rudner, David Z.

    2013-01-01

    Sporulating Bacillus subtilis cells assemble a transenvelope secretion complex that connects the mother cell and developing spore. The forespore protein SpoIIQ and the mother-cell protein SpoIIIAH interact across the double membrane septum and are thought to assemble into a channel that serves as the basement layer of this specialized secretion system. SpoIIQ is absolutely required to recruit SpoIIIAH to the sporulation septum on the mother-cell side, however the mechanism by which SpoIIQ is ...

  13. Characterization of dacC, which encodes a new low-molecular-weight penicillin-binding protein in Bacillus subtilis

    DEFF Research Database (Denmark)

    Pedersen, Lotte Bang; Murray, T; Popham, D L;

    1998-01-01

    The pbp gene (renamed dacC), identified by the Bacillus subtilis genome sequencing project, encodes a putative 491-residue protein with sequence homology to low-molecular-weight penicillin-binding proteins. Use of a transcriptional dacC-lacZ fusion revealed that dacC expression (i) is initiated at...... sporulated identically to wild-type cells, and dacC and wild-type spores had the same heat resistance, cortex structure, and germination and outgrowth kinetics. Expression of dacC in Escherichia coli showed that this gene encodes an approximately 59-kDa membrane-associated penicillin-binding protein which is...

  14. SpoIIB Localizes to Active Sites of Septal Biogenesis and Spatially Regulates Septal Thinning during Engulfment in Bacillus subtilis

    OpenAIRE

    Perez, Ana R.; Abanes-De Mello, Angelica; Pogliano, Kit

    2000-01-01

    A key step in the Bacillus subtilis spore formation pathway is the engulfment of the forespore by the mother cell, a phagocytosis-like process normally accompanied by the loss of peptidoglycan within the sporulation septum. We have reinvestigated the role of SpoIIB in engulfment by using the fluorescent membrane stain FM 4-64 and deconvolution microscopy. We have found that spoIIB mutant sporangia display a transient engulfment defect in which the forespore pushes through the septum and bulge...

  15. Isolation of a New Mexican Strain of Bacillus subtilis with Antifungal and Antibacterial Activities

    OpenAIRE

    M. G. L. Basurto-Cadena; M. Vázquez-Arista; García-Jiménez, J.; Salcedo-Hernández, R.; Bideshi, D. K.; Barboza-Corona, J. E.

    2012-01-01

    Although several strains of B. subtilis with antifungal activity have been isolated worldwide, to date there are no published reports regarding the isolation of a native B. subtilis strain from strawberry plants in Mexico. A native bacterium (Bacillus subtilis 21) demonstrated in vitro antagonistic activity against different plant pathogenic fungi. Under greenhouse conditions, it was shown that plants infected with Rhizoctonia solani and Fusarium verticillioides and treated with B. subtilis 2...

  16. Simple, fast and high‐efficiency transformation system for directed evolution of cellulase in Bacillus subtilis

    OpenAIRE

    Zhang, Xiao‐Zhou; Zhang, Y.‐H. Percival

    2010-01-01

    Summary Bacillus subtilis can serve as a powerful platform for directed evolution, especially for secretory enzymes. However, cloning and transformation of a DNA mutant library in B. subtilis are not as easy as they are in Escherichia coli. For direct transformation of B. subtilis, here we developed a new protocol based on supercompetent cells prepared from the recombinant B. subtilis strain SCK6 and multimeric plasmids. This new protocol is simple (restriction enzyme‐, phosphatase‐ and ligas...

  17. DNA shuttling between plasmid vectors and a genome vector: systematic conversion and preservation of DNA libraries using the Bacillus subtilis genome (BGM) vector.

    Science.gov (United States)

    Kaneko, Shinya; Akioka, Manami; Tsuge, Kenji; Itaya, Mitsuhiro

    2005-06-24

    The combined use of the contemporary vector systems, the bacterial artificial chromosome (BAC) vector and the Bacillus subtilis genome (BGM) vector, makes possible the handling of giant-length DNA (above 100 kb). Our newly constructed BGM vector efficiently integrated DNA prepared in the BAC vector. A BAC library comprised of 18 independent clones prepared from mitochondrial DNA (mtDNA) of Arabidopsis thaliana was converted to a parallel BGM library using the new BGM vector. The effectiveness of the combined use of the vector systems was confirmed by the stable recovery of all 18 DNAs as BAC clones from the respective BGM clones. We show that DNA in BGM was stably preserved at room temperature after spore formation of the host B.subtilis. Rapid and stable shuttling between Escherichiacoli and the B. subtilis host, combined with spore-mediated DNA storage, may facilitate the long-term and low-cost preservation and the transportation of DNA resources. PMID:15913652

  18. PRODUKSI ANTIBIOTIKA OLEH Bacillus subtilis M10 DALAM MEDIA UREA-SORBITOL

    Directory of Open Access Journals (Sweden)

    Supartono Supartono

    2012-04-01

    Full Text Available PRODUCTION OF ANTIBIOTICS BY Bacillus subtilis M10 IN UREA-SORBITOL MEDIUM. Infection diseases still become the main health problems that suffered by people in Indonesia. Besides, there were many pathogen bacteria found to be resistant to the some antibiotics. Therefore, the efforts to get a new antibiotic require to be done continuously. A new local strain of Bacillus subtilis BAC4 has been known producing an antibiotic that inhibit Serratia marcescens ATCC 27117 growth. To make efficient the local strain, mutation on Bacillus subtilis BAC4 was done by using acridine orange and a mutant cell of Bacillus subtilis M10 that overproduction for producing antibiotic was obtained. Nevertheless, the production kinetics of antibiotic by this mutant has not been reported. The objective of this research was to study the production kinetics of antibiotic by Bacillus subtilis M10 mutant. The production of antibiotic was conducted using batch fermentation and antibiotic assay was performed with agar absorption method using Serratia marcescens ATCC 27117 as bacteria assay. Research result provided that Bacillus subtilis M10 mutant with overproduction of antibiotic produced an antibiotic since 8th hour’s fermentation and optimum of it production was at 14th hours after inoculation.  Penyakit infeksi masih menjadi masalah yang utama diderita oleh masyarakat Indonesia. Di samping itu, banyak bakteri patogen yang ditemukan resisten terhadap beberapa antibiotika. Oleh karena itu, upaya-upaya untuk mendapatkan antibiotika baru perlu dilakukan secara terus-menerus. Suatu galur lokal baru Bacillus subtilis BAC4 teridentifikasi memproduksi senyawa antibiotika yang menghambat pertumbuhan Serratia marcescens ATCC27117. Untuk memberdayakan galur tersebut, terhadap Bacillus subtilis BAC4 dilakukan mutasi dengan larutan akridin oranye dan diperoleh mutan Bacillus subtilis M10 yang memproduksi antibiotika berlebihan. Namun, kinetika produksi antibiotika oleh Bacillus

  19. Initiation of decay of Bacillus subtilis trp leader RNA.

    Science.gov (United States)

    Deikus, Gintaras; Bechhofer, David H

    2007-07-13

    Transcription termination in the leader region of the Bacillus subtilis trp operon is regulated by binding of the 11-mer TRAP complex to nascent trp RNA, which results in formation of a terminator structure. Rapid decay of trp leader RNA, which is required to release the TRAP complex and maintain a sufficient supply of free TRAP, is mediated by polynucleotide phosphorylase (PNPase). Using purified B. subtilis PNPase, we showed that, when TRAP was present, PNPase binding to the 3' end of trp leader RNA and PNPase digestion of trp leader RNA from the 3' end were inefficient. These results suggested that initiation of trp leader RNA may begin with an endonuclease cleavage upstream of the transcription terminator structure. Such cleavage was observed in vivo. Mutagenesis of nucleotides at the cleavage site abolished processing and resulted in a 4-fold increase in trp leader RNA half-life. This is the first mapping of a decay-initiating endonuclease cleavage site on a native B. subtilis RNA. PMID:17507374

  20. Enhancement of Biocontrol Activities and Cyclic Lipopeptides Production by Chemical Mutagenesis of Bacillus subtilis XF-1, a Biocontrol Agent of Plasmodiophora brassicae and Fusarium solani

    OpenAIRE

    Li, Xing-Yu; Yang, Jing-Jing; Mao, Zi-Chao; Ho, Hon-Hing; Wu, Yi-Xing; He, Yue-qiu

    2014-01-01

    Bacillus subtilis XF-1 has been used as a biocontrol agent of clubroot disease of crucifers infected by Plasmodiophora brassicae, an obligate pathogen. In order to maximize the growth inhibition of the pathogen, random mutagenesis using N-methyl-N′-nitro-N-nitrosoguanidine was applied to strain XF-1. The efficacy of 226 selected mutants was assessed against the growth of an indicator fungal pathogen: Fusarium solani using agar plate assay and the disruptive effects on the resting spores of P....

  1. Inactivation of E. coli and B. subtilis spores in ozonized cassava starch

    Directory of Open Access Journals (Sweden)

    Emanuele Oliveira Cerqueira Amorim

    2013-06-01

    Full Text Available In the present study, the efficacy of ozone inactivation of B. subtilis spores and E. coli in cassava starch was evaluated. Cassava starch with 18 and 30% moisture content was processed with ozone at concentrations of 40-118 ppm and exposure times of 15-120 minutes. The processing at 113 ppm/120 minutes (maximum exposure level to ozone evaluated at 18% of moisture content did not cause significant reduction of B. subtilis spores and caused the reduction of only 2 decimal of E. coli. On the other hand, when the ozonation process was carried out for 120 minutes at 30% of moisture content, 3.6 decimal reduction of B. subtilis was achieved at 40 ppm of ozone and total B. subtilis load reduction (>5 log cycles was observed at 118 ppm of ozone. Similarly, total E. coli load reduction (>7 log cycles was achieved at 40 ppm of ozone exposure for 60 minutes. Therefore, the results indicate that the ozone efficacy against microorganisms in cassava starch was mainly dependent on the sample moisture content and to ozone concentration and exposure time. Moreover, it was observed that ozone is a promising technology to reduce microbial counts in dried food.

  2. Quantum dot incorporated Bacillus spore as nanosensor for viral infection.

    Science.gov (United States)

    Zhang, Xinya; Zhou, Qian; Shen, Zhongfeng; Li, Zheng; Fei, Ruihua; Ji, Eoon Hye; Hu, Shen; Hu, Yonggang

    2015-12-15

    In this paper, we report a high-throughput biological method to prepare spore-based monodisperse microparticles (SMMs) and then form the nanocomposites of CdTe quantum dot (QD)-loaded SMMs by utilizing the endogenous functional groups from Bacillus spores. The SMMs and QD-incorporated spore microspheres (QDSMs) were characterized by using transmission electron microscopy, high-resolution transmission electron microscopy, fluorescence microscopy, fluorescence and UV-visible absorption spectroscopy, zeta potential analysis, Fourier-transform infrared spectroscopy, potentiometric titrations, X-ray photo-electron spectroscopy. The thermodynamics of QD/SMM interaction and antigen/QDSM interaction was also investigated by isothermal titration microcalorimetry (ITC). Fluorescent QDSMs coded either with a single luminescence color or with multiple colors of controlled emission intensity ratios were obtained. Green QDSMs were used as a model system to detect porcine parvovirus antibody in swine sera via flow cytometry, and the results demonstrated a great potential of QDSMs in high-throughput immunoassays. Due to the advantages such as simplicity, low cost, high throughput and eco-friendliness, our developed platform may find wide applications in disease detection, food safety evaluation and environmental assessment. PMID:26190468

  3. Isolation and Identification of the Antimicrobial Substance Produced by Bacillus subtilis fmbR%Bacillus subtilis fmbR抗菌物质的分离和鉴定

    Institute of Scientific and Technical Information of China (English)

    别小妹; 陆兆新; 吕凤霞; 赵海珍; 杨胜远; 孙力军

    2006-01-01

    [目的]对Bacillus subtilis fmbR产生的抗菌物质进行分离和鉴定研究,以确定抗菌物质的组成和结构.[方法]采用HPLC和TLC层析对Bacillus subtilis fmbR抗菌物质进行分离纯化,通过ESI-MS和MALDI-MS分析对抗菌物质的组成和结构进行初步鉴定.[结果]HPLC层析表明了Bacillus subtilis fmbR抗菌物质含有保留时间与surfactin相似的成分.TLC层析和原位酸解证明了Bacillus subtilis fmbR抗菌物质含有闭合肽键类的物质,其中之一为相对迁移率Rf与标样surfactin相近的组分.采用ESI-MS分析检测到Bacillus subtilis fmbR抗菌物质含有分子量与surfactinA相同的m/z1009.1、m/z1023.2 和m/z1037.0等3种同系物;通过MALDI-MS分析获得[M+H]+为m/z 3403.95抗菌物质,该物质分子量与Bacillus subtilis 168产生的细菌素subtilosin的m/z3403.3 相同.[结论]Bacillus subtilis fmbR抗菌物质由C13~C15的3种surfactinA同系物和一种羊毛硫抗生素subtilosin组成.

  4. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid

    OpenAIRE

    Peng Chen; Lei Yan; Zhengrong Wu; Suyue Li; Zhongtian Bai; Xiaojuan Yan; Ningbo Wang; Ning Liang; Hongyu Li

    2016-01-01

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume...

  5. NanoSIMS analysis of Bacillus spores for forensics

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P K; Davisson, M L; Velsko, S P

    2010-02-23

    The threat associated with the potential use of radiological, nuclear, chemical and biological materials in terrorist acts has resulted in new fields of forensic science requiring the application of state-of-the-science analytical techniques. Since the anthrax letter attacks in the United States in the fall of 2001, there has been increased interest in physical and chemical characterization of bacterial spores. While molecular methods are powerful tools for identifying genetic differences, other methods may be able to differentiate genetically identical samples based on physical and chemical properties, as well as provide complimentary information, such as methods of production and approximate date of production. Microanalysis has the potential to contribute significantly to microbial forensics. Bacillus spores are highly structured, consisting of a core, cortex, coat, and in some species, an exosporium. This structure provides a template for constraining elemental abundance differences at the nanometer scale. The primary controls on the distribution of major elements in spores are likely structural and physiological. For example, P and Ca are known to be abundant in the spore core because that is where P-rich nucleic acids and Cadipicolinic acid are located, respectively. Trace elements are known to bind to the spore coat but the controls on these elements are less well understood. Elemental distributions and abundances may be directly related to spore production, purification and stabilization methodologies, which are of particular interest for forensic investigation. To this end, we are developing a high-resolution secondary ion mass spectrometry method using a Cameca NanoSIMS 50 to study the distribution and abundance of trace elements in bacterial spores. In this presentation we will review and compare methods for preparing and analyzing samples, as well as review results on the distribution and abundance of elements in bacterial spores. We use NanoSIMS to

  6. Unusual Biosynthesis and Structure of Locillomycins from Bacillus subtilis 916

    Science.gov (United States)

    Luo, Chuping; Liu, Xuehui; Zhou, Xian; Guo, Junyao; Truong, John; Wang, Xiaoyu; Zhou, Huafei

    2015-01-01

    Three families of Bacillus cyclic lipopeptides—surfactins, iturins, and fengycins—have well-recognized potential uses in biotechnology and biopharmaceutical applications. This study outlines the isolation and characterization of locillomycins, a novel family of cyclic lipopeptides produced by Bacillus subtilis 916. Elucidation of the locillomycin structure revealed several molecular features not observed in other Bacillus lipopeptides, including a unique nonapeptide sequence and macrocyclization. Locillomycins are active against bacteria and viruses. Biochemical analysis and gene deletion studies have supported the assignment of a 38-kb gene cluster as the locillomycin biosynthetic gene cluster. Interestingly, this gene cluster encodes 4 proteins (LocA, LocB, LocC, and LocD) that form a hexamodular nonribosomal peptide synthetase to biosynthesize cyclic nonapeptides. Genome analysis and the chemical structures of the end products indicated that the biosynthetic pathway exhibits two distinct features: (i) a nonlinear hexamodular assembly line, with three modules in the middle utilized twice and the first and last two modules used only once and (ii) several domains that are skipped or optionally selected. PMID:26162886

  7. Isolation and characterization of radioresistant mutants in Bacillus subtilis and Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Vegetative cells of Bac. thuringiensis var. galleriae (the wild-type strain 351) are much more sensitive to lethal effects of UV light and 60Co-γ-rays than those of Bac. subtilis (the wild-type strain 168). This difference is less pronounced for spores of these strains. By means of repeated γ-irradiation-regrowth cycles radioresistant mutants Bac. thuringiensis Gamsup(r) 14 and Bac. subtilis Gamsup(r) 9 were selected. The vegetative cells of these mutants are correspondingly 19 times and 3.9 times more resistant to lethal effects of γ-radiation than the cells of the parental strains. The resistance of the Gamsup(r) mutant cells to lethal effects of UV light and H2O2 is also increased. The spores of the Gamsup(r) 14 mutant are 1.5-1.7 times more resistant to γ-radiation and UV light than the wild-type spores. The radioresistant mutants and the parental strains do not vary in their capacity for host-cell reactivation of UV- or γ-irradiated phages Tg13 and 105

  8. Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29"

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Qian YANG; Li-hua ZHAO; Shu-mei ZHANG; Yu-xia WANG; Xiao-yu ZHAO

    2009-01-01

    An antifungal protein was isolated from a culture of Bacillus subtilis strain B29. The isolation procedure comprised ion exchange chromatography on diethylaminoethyl (DEAE)-52 cellulose and gel filtration chromatography on Bio-Gel P-100.The protein was absorbed on DEAE-cellulose and Bio-Gel P-100. The purified antifungal fraction was designated as B29I, with a molecular mass of 42.3 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), pl value 5.69 by isoelectric focusing (IEF)-PAGE, and 97.81% purity by high performance liquid chromatography (HPLC). B29I exhibited in-hibitory activity on mycelial growth in Fusarium oxysporum, Rhizoctonia solani, Fusarium moniliforme, and Sclerotinia scle-rotiorum. The 50% inhibitory concentrations (IC50) of its antifungal activity toward Fusarium oxysporum and Rhizoctonia solani were 45 and 112 μmol/L, respectively. B291 also demonstrated an inhibitory effect on conidial spore germination of Fusarium oxysporum and suppression of germ-tube elongation, and induced distortion, tumescence, and rupture of a portion of the germi-nated spores.

  9. Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism

    DEFF Research Database (Denmark)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu;

    2012-01-01

    known transcription regulation network. Interactions across multiple levels of regulation were involved in adaptive changes that could also be achieved by controlling single genes. Our analysis suggests that global trade-offs and evolutionary constraints provide incentives to favor complex control......Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and...... model-based data analyses of dynamic transcript, protein, and metabolite abundances and promoter activities. Adaptation to malate was rapid and primarily controlled posttranscriptionally compared with the slow, mainly transcriptionally controlled adaptation to glucose that entailed nearly half of the...

  10. Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani.

    Science.gov (United States)

    Mnif, Ines; Hammami, Ines; Triki, Mohamed Ali; Azabou, Manel Cheffi; Ellouze-Chaabouni, Semia; Ghribi, Dhouha

    2015-11-01

    Bacillus subtilis SPB1 lipopeptides were evaluated as a natural antifungal agent against Fusarium solani infestation. In vitro antifungal assay showed a minimal inhibitory concentration of about 3 mg/ml with a fungicidal mode of action. In fact, treatment of F. solani by SPB1 lipopeptides generated excessive lyses of the mycelium and caused polynucleation and destruction of the related spores together with a total inhibition of spore production. Furthermore, an inhibition of germination potency accompanied with a high spore blowing was observed. Moreover, in order to be applied in agricultural field, in vivo antifungal activity was proved against the dry rot potato tubers caused by F. solani. Preventive treatment appeared as the most promising as after 20 days of fungi inoculation, rot invasion was reduced by almost 78%, in comparison to that of non-treated one. When treating infected tomato plants, disease symptoms were reduced by almost 100% when applying the curative method. Results of this study are very promising as it enables the use of the crude lipopeptide preparation of B. subtilis SPB1 as a potent natural fungicide that could effectively control the infection of F. solani in tomato and potato tubers at a concentration similar to the commercial fungicide hymexazol and therefore prevent the damage of olive tree. PMID:26178831

  11. Fitness Trade-Offs in Competence Differentiation of Bacillus subtilis

    Science.gov (United States)

    Yüksel, Melih; Power, Jeffrey J.; Ribbe, Jan; Volkmann, Thorsten; Maier, Berenike

    2016-01-01

    In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state). The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off. PMID:27375604

  12. Fitness Trade-Offs in Competence Differentiation of Bacillus subtilis.

    Science.gov (United States)

    Yüksel, Melih; Power, Jeffrey J; Ribbe, Jan; Volkmann, Thorsten; Maier, Berenike

    2016-01-01

    In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state). The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off. PMID:27375604

  13. Inactivation of Bacillus Subtilis by Atomic Oxygen Radical Anion

    Institute of Scientific and Technical Information of China (English)

    LI Longchun; WANG Lian; YU Zhou; LV Xuanzhong; LI Quanxin

    2007-01-01

    UAtomic oxygen radical anion (O- ) is one of the most active oxygen species, and has extremely high oxidation ability toward small-molecules of hydrocarbons. However, to our knowledge, little is known about the effects of O- on cells of micro-organisms. This work showed that O- could quickly react with the Bacillus subtilis cells and seriously damage the cell walls a s well as their other contents, leading to a fast and irreversible inactivation. SEM micrographs revealed that the cell structures were dramatically destroyed by their exposure to O-. The inactivation efficiencies of B. subtilis depend on the O-- intensity, the initial population of cells and the treatment temperature, but not on the pH in the range of our investigation. For a cell concentration of 106 cfu/ml, the number of survived cells dropped from 106 cfu/ml to 103 cfu/ml after about five-minute irradiation by an O- flux in an intensity of 233 nA/cm2 under a dry argon environment (30 ℃, 1 atm, exposed size: 1.8 cm2). The inactivation mechanism of micro-organisms induced by O- is also discussed.

  14. Fitness trade-offs in competence differentiation of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Melih Yüksel

    2016-06-01

    Full Text Available In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state. The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off.

  15. Surfactin production enhances the level of cardiolipin in the cytoplasmic membrane of Bacillus subtilis

    Czech Academy of Sciences Publication Activity Database

    Seydlová, G.; Fišer, R.; Čabala, R.; Kozlík, P.; Svobodová, J.; Pátek, Miroslav

    2013-01-01

    Roč. 1828, č. 11 (2013), s. 2370-2378. ISSN 0005-2736 Institutional support: RVO:61388971 Keywords : Surfactin * Bacillus subtilis * Membrane Subject RIV: EE - Microbiology, Virology Impact factor: 3.431, year: 2013

  16. Regiospecific Addition of Uracil to Acrylates Catalyzed by Alkaline Protease from Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Ying CAI; Jian Yi WU; Na WANG; Xiao Feng SUN; Xian Fu LIN

    2004-01-01

    Michael addition reactions of uracil to acrylates were catalyzed by an alkaline protease from Bacillus subtilis in dimethyl sulfoxide at 55 ℃ for 72 h. The adducts were determined by TLC, IR and 1H NMR.

  17. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus

    Science.gov (United States)

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060

  18. Effect of decoyinine on the regulation of alpha-amylase synthesis in Bacillus subtilis.

    OpenAIRE

    Nicholson, W L; Chambliss, G H

    1987-01-01

    Decoyinine, an inhibitor of GMP synthetase, allows sporulation in Bacillus subtilis to initiate and proceed under otherwise catabolite-repressing conditions. The effect of decoyinine on alpha-amylase synthesis in B. subtilis, an event which exhibits regulatory features resembling sporulation initiation, was examined. Decoyinine did not overcome catabolite repression of alpha-amylase synthesis in a wild-type strain of B. subtilis but did cause premature and enhanced synthesis in a mutant strai...

  19. Production, purification, and characterization of a-amylase by Bacillus subtilis and its mutant derivates

    OpenAIRE

    DEMİRKAN, Elif

    2011-01-01

    The effects of various carbon and nitrogen sources on production of a-amylase by Bacillus subtilis and its mutant derivates were investigated. The maximum production of a-amylase by all strains was obtained in the presence of mesoinositol as the carbon source. There was no more significant increase in enzyme yield in the case of the supplementation of nitrogen sources, whereas malt extract and tryptone were preferred nitrogen sources for amylase production by Bacillus subtilis and mutant U 2-...

  20. [Cloning the alpha-amylase gene of Streptococcus bovis and its expression in Bacillus subtilis cells].

    Science.gov (United States)

    Iakorski, P; Kuntsova, M M; Loseva, E F; Khasanov, F K

    1991-06-01

    The gene coding for alpha-amylase from the ruminant bacterium Streptococcus bovis was cloned on the plasmid pMX39 in Bacillus subtilis cells. An alpha-amylase positive colony was isolated in the initial screening of 3900 colonies on the medium containing insoluble starch. The size of the insert was approximately 2.8 kb. The recombinant plasmid was stably maintained in Bacillus subtilis cells under the nonselective conditions. PMID:1944323

  1. Non-functional expression of Escherichia coli signal peptidase I in Bacillus subtilis

    NARCIS (Netherlands)

    van Dijl, J M; de Jong, A; Smith, H; Bron, S; Venema, G

    1991-01-01

    The Escherichia coli lep gene, encoding signal peptidase I (SPase I) was provided with Bacillus subtilis transcription/translation signals and expressed in this organism. When present on a low-copy-number plasmid, the amount of E. coli SPase I produced (per mg cell protein) in B. subtilis was half t

  2. Identification of a sporulation locus in cloned Bacillus subtilis deoxyribonucleic acid.

    OpenAIRE

    Moran, C P; Losick, R; Sonenshein, A L

    1980-01-01

    A cloned deoxyribonucleic acid from the purA-cysA region of the Bacillus subtilis chromosome was shown to contain the spoVC locus, a gene whose product is required for sporulation. This is the first demonstration of a spo locus in cloned B. subtilis deoxyribonucleic acid.

  3. Metabolic protein interactions in Bacillus subtilis studied at the single cell level

    NARCIS (Netherlands)

    Detert Oude Weme, Ruud Gerardus Johannes

    2015-01-01

    We have investigated protein-protein interactions in live Bacillus subtilis cells (a bacterium). B. subtilis’ natural habitat is the soil and the roots of plants, but also the human microbiota. B. subtilis is used worldwide as a model organism. Unlike eukaryotic cells, bacteria do not have organelle

  4. Transfection of Bacillus subtilis protoplasts by bacteriophage phi do7 DNA.

    OpenAIRE

    Perkins, J B; Dean, D H

    1983-01-01

    DNA from the Bacillus subtilis temperate bacteriophage phi do7 was found to efficiently transfect B. subtilis protoplasts; protoplast transfection was more efficient than competent cell transfection by a magnitude of 10(3). Unlike competent cell transfection, protoplast transfection did not require primary recombination, suggesting that phi do7 DNA enters the protoplast as double-stranded molecules.

  5. The studies on radiation mutation breeding of Bacillus subtilis with high-yield of amylase

    International Nuclear Information System (INIS)

    The mutagenesis effects on the yield of amylase have been investigated with Bacillus subtilis irradiated by γ-rays and fast neutrons in once or twice irradiation at various dose rates and total irradiation doses. Several parameters such as flat transparent circle, colony diameter, transparent circle diameter and the ratio of flat transparent circle to colony diameter (HC) are used to estimate the radiation mutation of Bacillus subtilis. A series of results has been obtained as (1) Irradiation both with neutrons and γ-rays could make Bacillus subtilis mutationed to produce high-yield amylase effectively. (2) The average colony diameter of Bacillus subtilis irradiated by γ-rays or fast neutrons is smaller than that of control group at various total doses and dose rates. And their colony diameter becomes smaller slightly with the increment of γ-rays irradiation dose. (3) After the second neutrons irradiation, the values of average colony diameter, the biggest colony diameter, average transparent circle diameter and the biggest transparent circle diameter of all mutationed Bacillus subtilis exceed that of original strains greatly. (4) Three kinds of mutationed Bacillus subtilis strains with high-yield amylase have been screened out, in which two strains can produce high-yield amylase steadily after 15 times breeding. Their biggest colony diameter, the biggest transparent circle diameter and the biggest HC value are up to 8.32 mm, 22.38 mm and 5.39 respectively. (authors)

  6. Complete Genome Sequences of Bacillus subtilis subsp. subtilis Laboratory Strains JH642 (AG174) and AG1839

    OpenAIRE

    Smith, Janet L.; Goldberg, Jonathan M.; Grossman, Alan D.

    2014-01-01

    The Gram-positive bacterium Bacillus subtilis is widely used for studies of cellular and molecular processes. We announce the complete genomic sequences of strain AG174, our stock of the commonly used strain JH642, and strain AG1839, a derivative that contains a mutation in the replication initiation gene dnaB and a linked Tn917.

  7. Expression, purification, and characterization of a thermophilic neutral protease from Bacillus stearothermophilus in Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The gene coding for a thermophilic neutral protease from Bacillus stearothermophilus was expressed in Bacillus subtilis DB104, under the control of the sacB gene promoter. This was followed by either the native signal peptide sequence of this protease or the signal peptide sequence of the sacB gene. The protease was purified 3.8-fold, with a specific activity of 16530 U mg-1. As analyzed by SDS-PAGE, the molecular mass of the expressed protease was about 35 kDa, and the optimal temperature and pH of the protease were 65℃ and 7.5, respectively. Moreover, it still had about 80% activity after 1 h reaction at 65 ℃ .

  8. Expression, purification, and characterization of a thermophilic neutral protease from Bacillus stearothermophilus in Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The gene coding for a thermophilic neutral protease from Bacillus stearothermophilus was expressed in Bacillus subtilis DB104, under the control of the sacB gene promoter. This was followed by either the native signal peptide sequence of this protease or the signal peptide sequence of the sacB gene. The protease was purified 3.8-fold, with a specific activity of 16530 U mg-1. As analyzed by SDS-PAGE, the molecular mass of the expressed protease was about 35 kDa, and the optimal temperature and pH of the protease were 65℃ and 7.5, respectively. Moreover, it still had about 80% activity after 1 h reaction at 65℃.

  9. Physical Characteristics of Spores of Food-Associated Isolates of the Bacillus cereus Group ▿

    OpenAIRE

    Ankolekar, Chandrakant; Labbé, Ronald G.

    2009-01-01

    All 47 food-borne isolates of Bacillus cereus sensu stricto, as well as 10 of 12 food-borne, enterotoxigenic isolates of Bacillus thuringiensis, possessed appendages. Spores were moderately to highly hydrophobic, and each had a net negative charge. These characteristics indicate that spores of food-associated B. thuringiensis and not only B. cereus sensu stricto have high potential to adhere to inert surfaces.

  10. The search and identification of the new immunodiagnostic targets of bacillus anthracis spore

    International Nuclear Information System (INIS)

    Spores of Bacillus anthracis have been used as bio warfare agent to bio terrorize purposes. As efficiency of anti-epidemic measures included urgent prevention and treatment is determined by terms within which the bio agent is identified. Direct and rapid spore detection by antibodies based detection system is very attractive alternative to current PCR-based assays or routine phenotyping which are the most accurate but are also complex, time-consumption and expensive. The main difficulty with respect to such kind of anthrax spores detection is a cross-reaction with spores of closely related bacteria. For development of species-specific antibodies to anthrax spores recombinant scFvs or hybridoma technique were used. In both case surface spore antigens contained species-specific epitopes are need. Among exosporium proteins only ExsF(BxpB), ExsK and SoaA are specific to B.cereus group. On the surface of B. anthracis spores, a unique tetrasaccharides containing an novel monosaccharide - anthrose, was discovered. It was shown that anthrose can be serving as species-specific target for B. anthracis spores detection. We have revealed that EA1 isolated from spore of Russians strain STI-1 contain carbohydrate which formed species-specific epitopes and determine immunogenicity of this antigen. Antibodies to this antigen specifically recognized the surface target of B. anthracis spores and do not reacted with others Bacillus spore. Based on these antibodies we developed the test-systems in different formats for rapid direct detection and identification of B. anthracis spores. The results of trial these test-systems with using more than 50 different Bacillus strains were indicated that carbohydrate of EA1 isolated from spore is effective immunodiagnostic target for anthrax spores bio detection.(author)

  11. Role of enzymes of homologous recombination in illegitimate plasmid recombination in Bacillus subtilis

    NARCIS (Netherlands)

    Meima, R; Haijema, BJ; Haan, GJ; Venema, G; Bron, S

    1997-01-01

    The structural stability of plasmid pGP1, which encodes a fusion between the penicillinase gene (penP) of Bacillus licheniformis and the Escherichia coli lacZ gene, was investigated in Bacillus subtilis strains expressing mutated subunits of the ATP-dependent nuclease, AddAB, and strains lacking the

  12. The expression of a plasmid-specified exported protein causes structural plasmid instability in Bacillus subtilis

    NARCIS (Netherlands)

    Cordes, C.; Meima, R; Twiest, B; Kazemier, B; Venema, G; vanDijl, JM; Bron, S

    1996-01-01

    The rolling-circle plasmid pGP1 was used to study the effects of the expression of a plasmid-specified exported protein on structural plasmid stability in Bacillus subtilis. pGP1 contains a fusion between the Bacillus licheniformis penP gene, encoding a C-terminally truncated penicillinase, and the

  13. Structural and Functional Analysis of the GerD Spore Germination Protein of Bacillus Species

    OpenAIRE

    Li, Yunfeng; Jin, Kai; Ghosh, Sonali; Devarakonda, Parvathimadhavi; Carlson, Kristina; Davis, Andrew; Stewart, Kerry-Ann V.; Cammett, Elizabeth; Rossi, Patricia Pelczar; Setlow, Barbara; Lu, Min; Setlow, Peter; Hao, Bing

    2014-01-01

    Spore germination in Bacillus species represents an excellent model system with which to study the molecular mechanisms underlying the nutritional control of growth and development. Binding of specific chemical nutrients to their cognate receptors located in the spore inner membrane triggers the germination process that leads to a resumption of metabolism in spore outgrowth. Recent studies suggest that the inner membrane GerD lipoprotein plays a critical role in the receptor-mediated activati...

  14. PCR Assay To Detect Bacillus anthracis Spores in Heat-Treated Specimens

    OpenAIRE

    Fasanella, A.; Losito, S.; Adone, R.; Ciuchini, F.; Trotta, T.; Altamura, S. A.; D. Chiocco; Ippolito, G

    2003-01-01

    Recent interest in anthrax is due to its potential use in bioterrorism and as a biowarfare agent against civilian populations. The development of rapid and sensitive techniques to detect anthrax spores in suspicious specimens is the most important aim for public health. With a view to preventing exposure of laboratory workers to viable Bacillus anthracis spores, this study evaluated the suitability of PCR assays for detecting anthrax spores previously inactivated at 121°C for 45 min. The resu...

  15. Nonribosomal Peptide Synthase Gene Clusters for Lipopeptide Biosynthesis in Bacillus subtilis 916 and Their Phenotypic Functions

    OpenAIRE

    Luo, Chuping; Liu, Xuehui; Zhou, Huafei; Wang, Xiaoyu; Chen, Zhiyi

    2014-01-01

    Bacillus cyclic lipopeptides (LPs) have been well studied for their phytopathogen-antagonistic activities. Recently, research has shown that these LPs also contribute to the phenotypic features of Bacillus strains, such as hemolytic activity, swarming motility, biofilm formation, and colony morphology. Bacillus subtilis 916 not only coproduces the three families of well-known LPs, i.e., surfactins, bacillomycin Ls (iturin family), and fengycins, but also produces a new family of LP called loc...

  16. Regulation of the tryptophan biosynthetic genes in Bacillus halodurans: common elements but different strategies than those used by Bacillus subtilis.

    Science.gov (United States)

    Szigeti, Reka; Milescu, Mirela; Gollnick, Paul

    2004-02-01

    In Bacillus subtilis, an RNA binding protein called TRAP regulates both transcription and translation of the tryptophan biosynthetic genes. Bacillus halodurans is an alkaliphilic Bacillus species that grows at high pHs. Previous studies of this bacterium have focused on mechanisms of adaptation for growth in alkaline environments. We have characterized the regulation of the tryptophan biosynthetic genes in B. halodurans and compared it to that in B. subtilis. B. halodurans encodes a TRAP protein with 71% sequence identity to the B. subtilis protein. Expression of anthranilate synthetase, the first enzyme in the pathway to tryptophan, is regulated significantly less in B. halodurans than in B. subtilis. Examination of the control of the B. halodurans trpEDCFBA operon both in vivo and in vitro shows that only transcription is regulated, whereas in B. subtilis both transcription of the operon and translation of trpE are controlled. The attenuation mechanism that controls transcription in B. halodurans is similar to that in B. subtilis, but there are some differences in the predicted RNA secondary structures in the B. halodurans trp leader region, including the presence of a potential anti-antiterminator structure. Translation of trpG, which is within the folate operon in both bacilli, is regulated similarly in the two species. PMID:14729709

  17. Biocalcifying Bacillus subtilis cells effectively consolidate deteriorated Globigerina limestone.

    Science.gov (United States)

    Micallef, Roderick; Vella, Daniel; Sinagra, Emmanuel; Zammit, Gabrielle

    2016-07-01

    Microbially induced calcite precipitation occurs naturally on ancient limestone surfaces in Maltese hypogea. We exploited this phenomenon and treated deteriorated limestone with biocalcifying bacteria. The limestone was subjected to various mechanical and physical tests to present a statistically robust data set to prove that treatment was indeed effective. Bacillus subtilis conferred uniform bioconsolidation to a depth of 30 mm. Drilling resistance values were similar to those obtained for freshly quarried limestone (9 N) and increased up to 15 N. Treatment resulted in a high resistance to salt deterioration and a slow rate of water absorption. The overall percentage porosity of treated limestone varied by ±6 %, thus the pore network was preserved. We report an eco-friendly treatment that closely resembles the mineral composition of limestone and that penetrates into the porous structure without affecting the limestones' natural properties. The treatment is of industrial relevance since it compares well with stone consolidants available commercially. PMID:27072564

  18. Nutrient depletion in Bacillus subtilis biofilms triggers matrix production

    International Nuclear Information System (INIS)

    Many types of bacteria form colonies that grow into physically robust and strongly adhesive aggregates known as biofilms. A distinguishing characteristic of bacterial biofilms is an extracellular polymeric substance (EPS) matrix that encases the cells and provides physical integrity to the colony. The EPS matrix consists of a large amount of polysaccharide, as well as protein filaments, DNA and degraded cellular materials. The genetic pathways that control the transformation of a colony into a biofilm have been widely studied, and yield a spatiotemporal heterogeneity in EPS production. Spatial gradients in metabolites parallel this heterogeneity in EPS, but nutrient concentration as an underlying physiological initiator of EPS production has not been explored. Here, we study the role of nutrient depletion in EPS production in Bacillus subtilis biofilms. By monitoring simultaneously biofilm size and matrix production, we find that EPS production increases at a critical colony thickness that depends on the initial amount of carbon sources in the medium. Through studies of individual cells in liquid culture we find that EPS production can be triggered at the single-cell level by reducing nutrient concentration. To connect the single-cell assays with conditions in the biofilm, we calculate carbon concentration with a model for the reaction and diffusion of nutrients in the biofilm. This model predicts the relationship between the initial concentration of carbon and the thickness of the colony at the point of internal nutrient deprivation. (paper)

  19. Transcriptional regulation of a Bacillus subtilis dipeptide transport operon.

    Science.gov (United States)

    Slack, F J; Mueller, J P; Strauch, M A; Mathiopoulos, C; Sonenshein, A L

    1991-08-01

    The Bacillus subtilis dciA operon, which encodes a dipeptide transport system, was induced rapidly by several conditions that caused the cells to enter stationary phase and initiate sporulation. The in vivo start point of transcription was mapped precisely and shown to correspond to a site of transcription initiation in vitro by the major vegetative form of RNA polymerase. Post-exponential expression was prevented by a mutation in the spo0A gene (whose product is a known regulator of early sporulation genes) but was restored in a spo0A abrB double mutant. This implicated AbrB, another known regulator, as a repressor of dciA. In fact, purified AbrB protein bound to a portion of the dciA promoter region, protecting it against DNase I digestion. Expression of dciA in growing cells was also repressed independently by glucose and by a mixture of amino acids; neither of these effects was mediated by AbrB. PMID:1766371

  20. Identification of Bacillus subtilis genes expressed early during sporulation.

    Science.gov (United States)

    Mathiopoulos, C; Sonenshein, A L

    1989-08-01

    Labelled cDNA transcribed in vitro from early-sporulation RNA was enriched for sporulation-specific sequences by subtractive hybridization to an excess of vegetative RNA and used to probe libraries of Bacillus subtilis chromosomal DNA. From the initial collection of clones that coded for RNAs transcribed preferentially during sporulation, several were subcloned and studied in more detail. It was found that two clones contained sequences (dciA and dciB) that had an undetectable level of transcription during vegetative growth but had transcripts that started to appear no later than eight minutes after induction of sporulation. A third DNA segment (dciC) was expressed at a low level in vegetative cells and increased within four minutes after induction of sporulation. The effects of spoO mutations, i.e. mutations that prevent cells from reaching stage I of the sporulation process, were tested. Induction of the dciA and dciB transcripts was significantly reduced in strains carrying mutations in the spoOA and spoOH genes but not in a spoOB mutant strain. In addition, a product of the abrB locus, a locus in which mutations are known to partially overcome the pleiotropic effect of spoOA and spoOB mutations, seemed to be required for dciA and dciB expression. PMID:2481799

  1. Novel methyl transfer during chemotaxis in Bacillus subtilis

    International Nuclear Information System (INIS)

    If Bacillus subtilis is incubated in radioactive methionine in the absence of protein synthesis, the methyl-accepting chemotaxis proteins (MCPs) become radioactively methylated. If the bacteria are further incubated in excess nonradioactive methionine (cold-chased) and then given the attractant aspartate, the MCPs lose about half of their radioactivity due to turnover, in which lower specific activity methyl groups from S-adenosylmethionine (AdoMet) replace higher specific activity ones. Due to the cold-chase, the specific activity of the AdoMet pool is reduced at least 2-fold. If, later, the attractant is removed, higher specific activity methyl groups return to the MCPs. Thus, there must exist an unidentified methyl carrier than can reversibly receive methyl groups from the MCPs. In a similar experiment, labeled cells were transferred to a flow cell and exposed to addition and removal of attractant and of repellent. All four kinds of stimuli were found to cause methanol production. Bacterial with maximally labeled MCPs were exposed to many cycles of addition and removal of attractant; the maximum amount of radioactive methanol was evolved on the third, not the first, cycle. This result suggests that there is a precursor-product relationship between methyl groups on the MCPs and on the unidentified carrier, which might be the direct source of methanol. However, since no methanol was produced when a methyltransferase mutant, whose MCPs were unmethylated, was exposed to addition and removal of attractant or repellent, the methanol must ultimately derive from methylated MCPs

  2. A Low Dimensional Approximation For Competence In Bacillus Subtilis.

    Science.gov (United States)

    Nguyen, An; Prugel-Bennett, Adam; Dasmahapatra, Srinandan

    2016-01-01

    The behaviour of a high dimensional stochastic system described by a chemical master equation (CME) depends on many parameters, rendering explicit simulation an inefficient method for exploring the properties of such models. Capturing their behaviour by low-dimensional models makes analysis of system behaviour tractable. In this paper, we present low dimensional models for the noise-induced excitable dynamics in Bacillus subtilis, whereby a key protein ComK, which drives a complex chain of reactions leading to bacterial competence, gets expressed rapidly in large quantities (competent state) before subsiding to low levels of expression (vegetative state). These rapid reactions suggest the application of an adiabatic approximation of the dynamics of the regulatory model that, however, lead to competence durations that are incorrect by a factor of 2. We apply a modified version of an iterative functional procedure that faithfully approximates the time-course of the trajectories in terms of a two-dimensional model involving proteins ComK and ComS. Furthermore, in order to describe the bimodal bivariate marginal probability distribution obtained from the Gillespie simulations of the CME, we introduce a tunable multiplicative noise term in a two-dimensional Langevin model whose stationary state is described by the time-independent solution of the corresponding Fokker-Planck equation. PMID:27045827

  3. Probing phenotypic growth in expanding Bacillus subtilis biofilms.

    Science.gov (United States)

    Wang, Xiaoling; Koehler, Stephan A; Wilking, James N; Sinha, Naveen N; Cabeen, Matthew T; Srinivasan, Siddarth; Seminara, Agnese; Rubinstein, Shmuel; Sun, Qingping; Brenner, Michael P; Weitz, David A

    2016-05-01

    We develop an optical imaging technique for spatially and temporally tracking biofilm growth and the distribution of the main phenotypes of a Bacillus subtilis strain with a triple-fluorescent reporter for motility, matrix production, and sporulation. We develop a calibration procedure for determining the biofilm thickness from the transmission images, which is based on Beer-Lambert's law and involves cross-sectioning of biofilms. To obtain the phenotype distribution, we assume a linear relationship between the number of cells and their fluorescence and determine the best combination of calibration coefficients that matches the total number of cells for all three phenotypes and with the total number of cells from the transmission images. Based on this analysis, we resolve the composition of the biofilm in terms of motile, matrix-producing, sporulating cells and low-fluorescent materials which includes matrix and cells that are dead or have low fluorescent gene expression. We take advantage of the circular growth to make kymograph plots of all three phenotypes and the dominant phenotype in terms of radial distance and time. To visualize the nonlocal character of biofilm growth, we also make kymographs using the local colonization time. Our technique is suitable for real-time, noninvasive, quantitative studies of the growth and phenotype distribution of biofilms which are either exposed to different conditions such as biocides, nutrient depletion, dehydration, or waste accumulation. PMID:27003268

  4. Screening of Bacillus subtilis transposon mutants with altered riboflavin production.

    Science.gov (United States)

    Tännler, Simon; Zamboni, Nicola; Kiraly, Csilla; Aymerich, Stéphane; Sauer, Uwe

    2008-09-01

    To identify novel targets for metabolic engineering of riboflavin production, we generated about 10,000 random, transposon-tagged mutants of an industrial, riboflavin-producing strain of Bacillus subtilis. Process-relevant screening conditions were established by developing a 96-deep-well plate method with raffinose as the carbon source, which mimics, to some extent, carbon limitation in fed batch cultures. Screening in raffinose and complex LB medium identified more efficiently riboflavin overproducing and underproducing mutants, respectively. As expected for a "loss of function" analysis, most identified mutants were underproducers. Insertion mutants in two genes with yet unknown function, however, were found to attain significantly improved riboflavin titers and yields. These genes and possibly further ones that are related to them are promising candidates for metabolic engineering. While causal links to riboflavin production were not obvious for most underproducers, we demonstrated for the gluconeogenic glyceraldehyde-3-phosphate dehydrogenase GapB how a novel, non-obvious metabolic engineering strategy can be derived from such underproduction mutations. Specifically, we improved riboflavin production on various substrates significantly by deregulating expression of the gluconeogenic genes gapB and pckA through knockout of their genetic repressor CcpN. This improvement was also verified under the more process-relevant conditions of a glucose-limited fed-batch culture. PMID:18582593

  5. Loop grafting of Bacillus subtilis lipase A: inversion of enantioselectivity.

    Science.gov (United States)

    Boersma, Ykelien L; Pijning, Tjaard; Bosma, Margriet S; van der Sloot, Almer M; Godinho, Luís F; Dröge, Melloney J; Winter, Remko T; van Pouderoyen, Gertie; Dijkstra, Bauke W; Quax, Wim J

    2008-08-25

    Lipases are successfully applied in enantioselective biocatalysis. Most lipases contain a lid domain controlling access to the active site, but Bacillus subtilis Lipase A (LipA) is a notable exception: its active site is solvent exposed. To improve the enantioselectivity of LipA in the kinetic resolution of 1,2-O-isopropylidene-sn-glycerol (IPG) esters, we replaced a loop near the active-site entrance by longer loops originating from Fusarium solani cutinase and Penicillium purpurogenum acetylxylan esterase, thereby aiming to increase the interaction surface for the substrate. The resulting loop hybrids showed enantioselectivities inverted toward the desired enantiomer of IPG. The acetylxylan esterase-derived variant showed an inversion in enantiomeric excess (ee) from -12.9% to +6.0%, whereas the cutinase-derived variant was improved to an ee of +26.5%. The enantioselectivity of the cutinase-derived variant was further improved by directed evolution to an ee of +57.4%. PMID:18721749

  6. Tryptophan provision by dietary supplementation of a Bacillus subtilis mutant strain in piglets

    DEFF Research Database (Denmark)

    Torres-Pitarch, A; Nielsen, B.; Canibe, Nuria;

    2015-01-01

    Supplementing Bacillus (B.) subtilis mutants selected to overproduce a specific amino acid (AA) may be an alternative method to provide essential AA in pig diets. Two experiments on a B. subtilis strain selected to overproduce Trp were conducted using 8-kg pigs fed Trp-deficient diets for 20 d. B....... subtilis were supplied in a low or high dose in Experiments 1 and 2, respectively. The Trp-deficient diet (0.15 SID Trp:Lys) reduced (p < .05) both gain and feed intake of piglets compared to the positive control diet (0.17 SID Trp:Lys). Supplementation of the B. subtilis strain was not able to...... counterbalance the Trp deficiency in any of the two experiments. No effect of B. subtilis supplementation to piglet diets was observed on the plasma AA profile. In conclusion, this mutant strain of B. subtilis was not able to compensate a Trp deficiency in the tested doses....

  7. Antifungal activity of Bacillus subtilis 355 against wood-surface contaminant fungi.

    Science.gov (United States)

    Feio, Sonia Savluchinske; Barbosa, Ana; Cabrita, Manuela; Nunes, Lina; Esteves, Alexandra; Roseiro, José Carlos; Curto, Maria João Marcelo

    2004-06-01

    A strain of Bacillus subtilis was examined for antifungal activity against phytopathogenic and wood-surface contaminant fungi. The bacterium was grown in five culture media with different incubation times in order to study cell development, sporulation, and the production of metabolites with antifungal activity. The anti-sapstain and anti-mould activity of the bacterium grown in yeast extract glucose broth (YGB) medium in wood was also evaluated. In YGB, the bacterium inhibited the growth of several fungi and displayed a broader spectrum of activity than in the other media tested. A relationship between bacterial spore production and the formation of metabolites with antifungal activity was detected. YGB medium displayed effective control in wood block tests. YGB medium was extracted with solvents of increasing polarity and the dry residues were applied to silicagel plates, resolved with the appropriate solvent and sprayed with different solutions, detecting the presence, of amines, and higher alcohols. The bioautographic method revealed the presence of at least two active compounds against the blue-stain fungus Cladosporium cucumerinum. PMID:15197600

  8. Inactivation of E. coli, B. subtilis spores, and MS2, T4, and T7 phage using UV/H2O2 advanced oxidation

    International Nuclear Information System (INIS)

    The goal of this study was to evaluate the potential of an advanced oxidation process (AOP) for microbiocidal and virucidal inactivation. The viruses chosen for this study were bacteriophage MS2, T4, and T7. In addition, Bacillus subtilis spores and Escherichia coli were studied. By using H2O2 in the presence of filtered ultraviolet (UV) irradiation (UV/H2O2) to generate wavelengths above 295 nm, the direct UV photolysis disinfection mechanism was minimized, while disinfection by H2O2 was also negligible. Virus T4 and E. coli in phosphate buffered saline (PBS) were sensitive to >295 nm filtered UV irradiation (without H2O2), while MS2 was very resistant. Addition of H2O2 at 25 mg/l in the presence of filtered UV irradiation over a 15 min reaction time did not result in any additional disinfection of virus T4, while an additional one log inactivation for T7 and 2.5 logs for MS2 were obtained. With E. coli, only a slight additional effect was observed when H2O2 was added. B. subtilis spores did not show any inactivation at any of the conditions used in this study. The OH radical exposure (CT value) was calculated to present the relationship between the hydroxyl radical dose and microbial inactivation

  9. ABILITY OF BACTERIAL CONSORTIUM: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp. and Pseudomonas putida IN BIOREMEDIATION OF WASTE WATER IN CISIRUNG WASTE WATER TREATMENT PLANT

    OpenAIRE

    Ratu SAFITRI; Bambang PRIADIE; Mia MIRANTI; Arum Widi ASTUTI

    2015-01-01

    This study was conducted in order to determine the ability of bacterial consortium: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp., and Pseudomonas putida in bioremediation of wastewater origin Cisirung WWTP. This study uses an experimental method completely randomized design (CRD), which consists of two treatment factors (8x8 factorial design). The first factor is a consortium of bacteria (K), consisting of 8 level factors (k1, k2, k3, k4, k5...

  10. GLYCOGEN IN BACILLUS-SUBTILIS - MOLECULAR CHARACTERIZATION OF AN OPERON ENCODING ENZYMES INVOLVED IN GLYCOGEN BIOSYNTHESIS AND DEGRADATION

    NARCIS (Netherlands)

    KIEL, JAKW; BOELS, JM; BELDMAN, G; VENEMA, G

    1994-01-01

    Although it has never been reported that Bacillus subtilis is capable of accumulating glycogen, we have isolated a region from the chromosome of B. subtilis containing a glycogen operon. The operon is located directly downstream from trnB, which maps at 275 degrees on the B. subtilis chromosome. It

  11. A non-destructive method for characterizing phenotypes and growth of a Bacillus subtilis biofilm using fluorescence microscopy

    Science.gov (United States)

    Koehler, Stephan; Wang, Xiaoling; Wilking, James; Weitz, Dave

    2015-11-01

    We develop an imaging technique for characterizing growth of biofilms using a triple fluorescent labeled strain for the three main phenotypes of a Bacillus subtilis biofilm on an agar substrate. We find that the biofilm does not flow across the substrate and thus growth is due to colonization at the periphery and thickening of the interior regions. We obtain local height and its composition of the three main phenotypes, which are motile, matrix-producing and sporulating, as well as the non-fluorescent material, which can be spores, dormant or dead cells or extracellular matrix. This technique is suitable for the study of biofilm growth and inhibition for different conditions such as biocides or bioremediation.

  12. Effect of Riboflavin Operon Dosage on Riboflavin Productivity in Bacillus Subtilis

    Institute of Scientific and Technical Information of China (English)

    CHEN Tao; CHEN Xun; WANG Jingyu; ZHAO Xueming

    2005-01-01

    After deregulating the purine and riboflavin synthesis in the Gram-positive bacterium Bacillus subtilis,it is critical to amplify riboflavin operon with appropriate dosage in the host strain for remarkable increase of riboflavin production.Bacillus subtilis RH13, a riboflavin-producing strain, was selected as host strain in the construction of engineering strains by protoplast fusion. The integrative plasmid pRB63 and autonomous plasmid pRB49, pRB62 containing riboflavin operon of B.subtilis 24 were constructed and transformed into the host strain respectively. Increasing one operon copy in B.subtilis RH13 results in about 0.4 g/L improvement in riboflavin yield and the appropriate number of operon copies was about 7-8. Amplifying more riboflavin operons is of no use for further improvement of yield of riboflavin. Furthermore, excessive operon dosage results in metabolic unbalance and is fatal to the host cells producing riboflavin.

  13. Enhancement of extracellular expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis: Effects of promoter and host.

    Science.gov (United States)

    Song, Wan; Nie, Yao; Mu, Xiao Qing; Xu, Yan

    2016-08-01

    Pullulanase plays an important role in industrial applications of starch processing. However, extracellular production of pullulanase from recombinant Bacillus subtilis is yet limited due to the issues on regulatory elements of B. subtilis expression system. In this study, the gene encoding B. naganoensis pullulanase (PUL) was expressed in B. subtilis WB800 under the promoter PHpaII in the shuttle vector pMA0911. The extracellular activity of expressed pullulanase was 3.9 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-PHpaII-pul. To further enhance the yield of PUL, the promoter PHpaII in pMA0911 was replaced by a stronger constitutive promoter P43. Then the activity was increased to 8.7 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-P43-pul. Effect of host on pullulanase expression was further investigated by comparison between B. subtilis WB600 and B. subtilis WB800. In addition to the available B. subtilis WB800 recombinants, the constructed plasmids pMA0911-PHpaII-pul and pMA0911-P43-pul were transformed into B. subtilis WB600, respectively. Consequently, the extracellular production of PUL was significantly enhanced by B. subtilis WB600/pMA0911-P43-pul, resulting in the extracellular pullulanase activity of 24.5 U ml(-1). Therefore, promoter and host had an impact on pullulanase expression and their optimization would be useful to improve heterologous protein expression in B. subtilis. PMID:27109467

  14. Anthrax Toxins in Context of Bacillus anthracis Spores and Spore Germination

    OpenAIRE

    Cote, Christopher K.; Susan L. Welkos

    2015-01-01

    The interaction of anthrax toxin or toxin components with B. anthracis spores has been demonstrated. Germinating spores can produce significant amounts of toxin components very soon after the initiation of germination. In this review, we will summarize the work performed that has led to our understanding of toxin and spore interactions and discuss the complexities associated with these interactions.

  15. Biological control of Colletotrichum panacicola on Panax ginseng by Bacillus subtilis HK-CSM-1

    OpenAIRE

    Ryu, Hojin; Park, Hoon; Suh, Dong-Sang; Jung, Gun Ho; Park, Kyungseok; Lee, Byung Dae

    2014-01-01

    Background Biological control of plant pathogens using benign or beneficial microorganisms as antagonistic agents is currently considered to be an important component of integrated pest management in agricultural crops. In this study, we evaluated the potential of Bacillus subtilis strain HK-CSM-1 as a biological control agent against Colletotrichum panacicola. Methods The potential of B. subtilis HK-CSM-1 as a biological control agent for ginseng anthracnose was assessed. C. panacicola was i...

  16. Biocontrol of Rhizoctonia solani Damping-Off of Tomato with Bacillus subtilis RB14

    OpenAIRE

    Asaka, O.; Shoda, M

    1996-01-01

    Bacillus subtilis RB14, which showed antibiotic activities against several phytopathogens in vitro by producing the antibiotics iturin A and surfactin, was subjected to a pot test to investigate its ability to suppress damping-off of tomato seedlings caused by Rhizoctonia solani. To facilitate recovery from soil, B. subtilis RB14-C, a spontaneous streptomycin-resistant mutant of RB14, was used. Damping-off was suppressed when the culture broth, cell suspension, or cell-free culture broth of R...

  17. Levan from Bacillus subtilis Natto: its effects in normal and in streptozotocin-diabetic rats

    OpenAIRE

    Fernando Cesar Bazani Cabral de Melo; Cássia Thaïs Bussamra Viera Zaia; Maria Antonia Pedrine Colabone Celligoi

    2012-01-01

    Levan is an exopolysaccharide of fructose primarily linked by β-(2→6) glycosidic bonds with some β-(2→1) branched chains. Due to its chemical properties, levan has possible applications in both the food and pharmaceutical industries. Bacillus subtilis is a promising industrial levan producer, as it ferments sucrose and has a high levan-formation capacity. A new strain of B. subtilis was recently isolated from Japanese food natto, and it has produced levan in large quanti...

  18. Intrinsic Levanase Activity of Bacillus subtilis 168 Levansucrase (SacB)

    OpenAIRE

    Méndez-Lorenzo, Luz; Jaime R Porras-Domínguez; Raga-Carbajal, Enrique; Olvera, Clarita; Rodríguez-Alegría, Maria Elena; Carrillo-Nava, Ernesto; Costas, Miguel; López Munguía, Agustín

    2015-01-01

    Levansucrase catalyzes the synthesis of fructose polymers through the transfer of fructosyl units from sucrose to a growing fructan chain. Levanase activity of Bacillus subtilis levansucrase has been described since the very first publications dealing with the mechanism of levan synthesis. However, there is a lack of qualitative and quantitative evidence regarding the importance of the intrinsic levan hydrolysis of B. subtilis levansucrase and its role in the levan synthesis process. Particul...

  19. Amino acid efflux in response to chemotactic and osmotic signals in Bacillus subtilis.

    OpenAIRE

    Wong, L S; Johnson, M. S.; Sandberg, L. B.; Taylor, B L

    1995-01-01

    We observed a large efflux of nonvolatile radioactivity from Bacillus subtilis in response to the addition of 31 mM butyrate or the withdrawal of 0.1 M aspartate in a flow assay. The major nonvolatile components effluxed were methionine, proline, histidine, and lysine. In studies of the release of volatile radioactivity in chemotaxis by B. subtilis cells that had been labeled with [3H]methionine, the breakdown of methionine to methanethiol can contribute substantially to the volatile radioact...

  20. Methodological approaches to help unravel the intracellular metabolome of Bacillus subtilis

    OpenAIRE

    Meyer, Hanna; Weidmann, Hendrikje; Lalk, Michael

    2013-01-01

    Background Bacillus subtilis (B. subtilis) has become widely accepted as a model organism for studies on Gram-positive bacteria. A deeper insight into the physiology of this prokaryote requires advanced studies of its metabolism. To provide a reliable basis for metabolome investigations, a validated experimental protocol is needed since the quality of the analytical sample and the final data are strongly affected by the sampling steps. To ensure that the sample analyzed precisely reflects the...

  1. Effects of Bacillus subtilis natto and Different Components in Culture on Rumen Fermentation and Rumen Functional Bacteria In Vitro.

    Science.gov (United States)

    Sun, Peng; Li, Jinan; Bu, Dengpan; Nan, Xuemei; Du, Hong

    2016-05-01

    This study was to investigate the effects of live or autoclaved Bacillus subtilis natto, their fermented products and media on rumen fermentation and rumen functional bacteria in vitro. Rumen fluid from three multiparous lactating Holstein cows was combined and transferred into serum bottles after diluted. Fifteen serum bottles were divided into five treatments, which were designed as following: CTR (the fermentation of 0.5 g TMR and ruminal fluids from dairy cows), LBS (CTR plus a minimum of 10(11) cfu live Bacillus subtilis natto), ABS (CTR plus a minimum of 10(11) cfu autoclaved Bacillus subtilis natto), BSC (CTR plus 1 ml Bacillus subtilis natto fermentation products without bacteria), and BSM (CTR plus 1 ml liquid fermentation medium). When separated from the culture, live Bacillus subtilis natto individually increased the concentrations of ammonia-N (P production (P probiotic in dairy ration. PMID:26821238

  2. Atmospheric pressure-thermal desorption (AP-TD)/electrospray ionization-mass spectrometry for the rapid analysis of Bacillus spores.

    Science.gov (United States)

    Basile, Franco; Zhang, Shaofeng; Shin, Yong-Seung; Drolet, Barbara

    2010-04-01

    A technique is described where an atmospheric pressure-thermal desorption (AP-TD) device and electrospray ionization (ESI)-mass spectrometry (MS) are coupled and used for the rapid analysis of Bacillus subtilis spores in complex matrices. The resulting AP-TD/ESI-MS technique combines the generation of volatile compounds and/or pyrolysis products with soft-ionization MS detection. In the AP-TD/ESI-MS approach, an electrospray solvent plume was used as the ionization vehicle of thermally desorbed neutrals at atmospheric pressure prior to mass spectrometric analysis using a quadrupole ion trap mass spectrometer. The approach is quantitative with the volatile standard dimethyl methylphosphonate (DMMP) and with the use of an internal standard (diethyl methylphosphonate, DEMP). A linear response was obtained as tested in the 1-50 ppm range (R(2) = 0.991) with a standard error of the estimate of 0.193 (0.9% RSD, n = 5). Bacterial spores were detected by performing pyrolysis in situ methylation with the reagent tetramethylammonium hydroxide (TMAH) for the detection of the bacterial spore biomarker dipicolinic acid (DPA) as the dimethylated derivative (2Me-DPA). This approach allowed spore detection even in the presence of growth media in crude lyophilized samples. Repetitive analyses could be performed with a duty cycle of less than 5 min total analysis time (including sample loading, heating and data acquisition). This strategy proved successful over other direct ambient MS approaches like DESI-MS and AP-TD/ESI-MS without the in situ derivatization step to detect the dipicolinic acid biomarker from spores. A detection limit for the dimethylated DPA biomarker was estimated at 1 ppm (equivalent to 0.01 mug of DPA deposited in the thermal desorption tube), which corresponded to a calculated detection limit of 10(5) spores deposited or 0.1% by weight spore composition in solid samples (assuming a 1 mg sample size). The AP-TD/ESI source used in conjunction with the in situ

  3. Evaluation of surface sampling method performance for Bacillus Spores on clean and dirty outdoor surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Einfeld, Wayne; Boucher, Raymond M.; Brown, Gary Stephen; Tezak, Matthew Stephen

    2011-06-01

    Recovery of Bacillus atrophaeous spores from grime-treated and clean surfaces was measured in a controlled chamber study to assess sampling method performance. Outdoor surfaces investigated by wipe and vacuum sampling methods included stainless steel, glass, marble and concrete. Bacillus atrophaeous spores were used as a surrogate for Bacillus anthracis spores in this study designed to assess whether grime-coated surfaces significantly affected surface sampling method performance when compared to clean surfaces. A series of chamber tests were carried out in which known amounts of spores were allowed to gravitationally settle onto both clean and dirty surfaces. Reference coupons were co-located with test coupons in all chamber experiments to provide a quantitative measure of initial surface concentrations of spores on all surfaces, thereby allowing sampling recovery calculations. Results from these tests, carried out under both low and high humidity conditions, show that spore recovery from grime-coated surfaces is the same as or better than spore recovery from clean surfaces. Statistically significant differences between method performance for grime-coated and clean surfaces were observed in only about half of the chamber tests conducted.

  4. Integrative bacterial artificial chromosomes for DNA integration into the Bacillus subtilis chromosome.

    Science.gov (United States)

    Juhas, Mario; Ajioka, James W

    2016-06-01

    Bacillus subtilis is a well-characterized model bacterium frequently used for a number of biotechnology and synthetic biology applications. Novel strategies combining the advantages of B. subtilis with the DNA assembly and editing tools of Escherichia coli are crucial for B. subtilis engineering efforts. We combined Gibson Assembly and λ red recombineering in E. coli with RecA-mediated homologous recombination in B. subtilis for bacterial artificial chromosome-mediated DNA integration into the well-characterized amyE target locus of the B. subtilis chromosome. The engineered integrative bacterial artificial chromosome iBAC(cav) can accept any DNA fragment for integration into B. subtilis chromosome and allows rapid selection of transformants by B. subtilis-specific antibiotic resistance and the yellow fluorescent protein (mVenus) expression. We used the developed iBAC(cav)-mediated system to integrate 10kb DNA fragment from E. coli K12 MG1655 into B. subtilis chromosome. iBAC(cav)-mediated chromosomal integration approach will facilitate rational design of synthetic biology applications in B. subtilis. PMID:27033694

  5. Menaquinone and iron are essential for complex colony development in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Gidi Pelchovich

    Full Text Available Cells of undomesticated species of Bacillus subtilis frequently form complex colonies during spreading on agar surfaces. Given that menaquinone is involved in another form of coordinated behavior, namely, sporulation, we looked for a possible role for menaquinone in complex colony development (CCD in the B. subtilis strain NCIB 3610. Here we show that inhibition of menaquinone biosynthesis in B. subtilis indeed abolished its ability to develop complex colonies. Additionally some mutations of B. subtilis which confer defective CCD could be suppressed by menaquinone derivatives. Several such mutants mapped to the dhb operon encoding the genes responsible for the biosynthesis of the iron siderophore, bacillibactin. Our results demonstrate that both menaquinone and iron are essential for CCD in B. subtilis.

  6. Spores

    Science.gov (United States)

    A spore is a cell that certain fungi, plants (moss, ferns), and bacteria produce. Spores are involved in reproduction. Certain bacteria make spores as a way to defend themselves. These spores have thick walls. They can resist high temperatures, ...

  7. In vitro characterization of the Bacillus subtilis protein tyrosine phosphatase YwqE

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Musumeci, Lucia; Tautz, Lutz;

    2005-01-01

    Both gram-negative and gram-positive bacteria possess protein tyrosine phosphatases (PTPs) with a catalytic Cys residue. In addition, many gram-positive bacteria have acquired a new family of PTPs, whose first characterized member was CpsB from Streptococcus pneumoniae. Bacillus subtilis contains......, we characterize YwqE, compare the activities of the three B. subtilis PTPs (YwqE, YwlE, and YfkJ), and demonstrate that the two B. subtilis class II PTPs do not dephosphorylate the physiological substrates of YwqE....

  8. Antagonistic and Inhibitory Effect of Bacillus subtilis Against Certain Plant Pathogenic Fungi, I

    Directory of Open Access Journals (Sweden)

    S. M. Matar

    2009-01-01

    Full Text Available The antagonistic and inhibitory activity of fourteen Bacillus subtilis isolates (B1 to B14 obtained from different Egyptian sites, were tested against six fungal isolates belonging to four different genera, Rhizoctonia solani, Helminthosporium spp., Alternaria spp. and Fusarium oxysporum. Cultural, morphological and physiological characteristics of these isolates were found to be identical to Bacillus subtilis. When the fourteen B. subtilis isolates were tested as biological control agents for their antagonistic effect on the in vitro growth of the fungal isolates, four B. subtilis isolates B1, B4, B7, B8 had more antagonistic effect on all fungal isolates. Supernatant of B. subtilis isolate B7 had antagonistic effect on 6 fungal isolates but it was more effective on Helminthosporium spp., Alternaria spp. and F. oxysporum. B. subtilis as well as, isolate B7 showed effectiveness in reducing disease incidence and severity levels of tomato plants when added to the F. oxysporum and R. solani-infested soil. Also, it stimulated the growth of tomato plants compared to the other. HPLC analysis of the HCl precipitate of B. subtilis isolate B7 culture supernatant revealed that an identical pattern of five peaks to that of a purified preparation of iturin A was obtained.

  9. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis Bioacumulação de cobre, zinco, cádmio e chumbo por Bacillus sp., Bacillus cereus, Bacillus sphaericus e Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Augusto da Costa

    2001-03-01

    Full Text Available This work presents some results on the use of microbes from the genus Bacillus for uptake of cadmium, zinc, copper and lead ions. Maximum copper bioaccumulations were 5.6 mol/g biomass for B. sphaericus, 5.9 mol/g biomass for B. cereus and B. subtilis, and 6.4 mol/g biomass for Bacillus sp. Maximum zinc bioaccumulations were 4.3 mol/g biomass for B. sphaericus, 4.6 mol/g biomass for B. cereus, 4.8 mol/g biomass for Bacillus sp. and 5.0 mol/g biomass for B. subtilis. Maximum cadmium bioaccumulations were 8.0 mol/g biomass for B. cereus, 9.5 mol/g biomass for B. subtilis, 10.8 mol/g biomass for Bacillus sp. and 11.8 mol/g biomass for B. sphaericus. Maximum lead biomaccumulations were 0.7 mol/g biomass for B. sphaericus, 1.1 mol/g biomass for B. cereus, 1.4 mol/g biomass for Bacillus sp. and 1.8 mol/g biomass for B. subtilis. The different Bacillus strains tested presented distinct uptake capacities, and the best results were obtained for B. subtilis and B. cereus.Este trabalho apresenta resultados de acumulação dos íons metálicos cádmio, zinco, cobre e chumbo por bactérias do gênero Bacillus. A bioacumulação máxima de cobre foi 5,6 mol/g biomassa para B. sphaericus, 5,9 mol/g biomassa para B. cereus e B. subtilis, e 6,4 mol/g biomassa para Bacillus sp.. A bioacumulação máxima de zinco foi 4,3 mol/g biomassa para B. sphaericus, 4,6 mol/g biomassa para B. cereus, 4,8 mol/g biomassa para Bacillus sp. e 5,0 mol/g biomassa para B. subtilis. A bioacumulação máxima de cádmio foi 8,0 mol/g biomassa para B. cereus, 9,5 mol/g biomassa para B. subtilis, 10,8 mol/g biomassa para Bacillus sp. e 11,8 mol/g biomassa para B. sphaericus. A bioacumulação máxima de chumbo foi 0,7 mol/g biomassa para B. sphaericus, 1,1 mol/g biomassa para B. cereus, 1,4 mol/g biomassa para Bacillus sp. e 1,8 mol/g biomassa para B. subtilis. As distintas linhagens de Bacillus testadas apresentaram variáveis capacidades de carregamento de íons metálicos, sendo os

  10. Biocontrol of Soil Fungi in Tomato with Microencapsulates Containing Bacillus subtilis

    OpenAIRE

    Marcela H. Suarez; Francisco D. Hernandez-Castillo; Gabriel Gallegos-Morales; R. H. Lira-Saldivar; Raul Rodriguez-Herrera; Aguilar, Cristobal N.

    2011-01-01

    Problem statement: An option to reduce pollution by synthetic agro-chemical in root plant disease management is the use of antagonist rhizobacteria belonging to Bacillus genus, because their inhibitory properties, stimulation of plant growth and crop yield increase. Approach: This study was carried out in order to evaluate if Bacillus subtilis strains could play an antagonists role of plant pathogens and if they can be microencapsulated inside a biopolymer matrix. It was adapted an equipment ...

  11. Study of the catalytic properties of bacillus subtilis proteases Estudio de las propiedades catalíticas de las proteasas bacillus subtilis

    OpenAIRE

    Salcedo L.; Castellanos O.; Grebeshova R.

    1998-01-01

    The catalytic properties of proteases isolated from the filtrate of submerged fermentation of Bacillus subtilis were investigated. Proteases present in the filtrate were determined to be of the serine protease type based on the use of specific protease inhibitors; ethylenediamintetraacetic acid (EDTA) was used as a metalloprotease inhibitor, and phenylmethylsulfonylfluoride (PMSF) was used as a serine protease inhibitor. Protease activity was highly stable in alkaline solutions and at high te...

  12. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores.

    Science.gov (United States)

    van Bokhorst-van de Veen, Hermien; Xie, Houyu; Esveld, Erik; Abee, Tjakko; Mastwijk, Hennie; Nierop Groot, Masja

    2015-02-01

    Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is still not fully understood. In this study, the biocidal effect by nitrogen CAP was determined for chemical (hypochlorite and hydrogen peroxide), physical (UV) and heat-resistant spores. The three different sporeformers used are Bacillus cereus a food-borne pathogen, and Bacillus atrophaeus and Geobacillus stearothermophilus that are used as biological indicators for validation of chemical sterilization and thermal processes, respectively. The different spores showed variation in their degree of inactivation by applied heat, hypochlorite, hydrogen peroxide, and UV treatments, whereas similar inactivation results were obtained with the different spores treated with nitrogen CAP. G. stearothermophilus spores displayed high resistance to heat, hypochlorite, hydrogen peroxide, while for UV treatment B. atrophaeus spores are most tolerant. Scanning electron microscopy analysis revealed distinct morphological changes for nitrogen CAP-treated B. cereus spores including etching effects and the appearance of rough spore surfaces, whereas morphology of spores treated with heat or disinfectants showed no such changes. Moreover, microscopy analysis revealed CAP-exposed B. cereus spores to turn phase grey conceivably because of water influx indicating damage of the spores, a phenomenon that was not observed for non-treated spores. In addition, data are supplied that exclude UV radiation as determinant of antimicrobial activity of nitrogen CAP. Overall, this study shows that nitrogen CAP treatment has a biocidal effect on selected Bacillus and Geobacillus spores associated with alterations in spore surface morphology and loss of spore integrity. PMID:25481059

  13. WprA基因在Bacillus subtilis WB800中的克隆表达%Clonging and Expression of a WprA gene in Bacillus subtilis WB800

    Institute of Scientific and Technical Information of China (English)

    柴海云; 崔堂兵

    2012-01-01

    A fibrinolytic enzyme gene (WprA) was cloned from Bacillus subtilis 168. To efficiently express WprA in Bacillus subtilis WB800, WprA gene was inserted into pBE3 to yield a nove vector pBE-WprA. Then the vector pBE-WprA was transformed and expressed in Bacillus subtilis WB800. Results showed WprA gene was efficiently expressed during the exponential and stationary growth stages, and WprA was secreted into the medium.%对源自Bacillus subtilis 168的具有纤溶活性的基因序列(WprA)进行克隆,然后将WprA基因克隆到大肠杆菌-枯草杆菌穿梭载体pBE3中,构建表达载体pBE-WprA,将重组载体转化到Bacillus subtilis WB800中,实现了WprA基因在Bacillus subtilis WB800中的表达.结果表明,WprA基因在Bacillus subtilis WB800中的对数生长期和平衡期均获得了表达,且产物被分泌到胞外.

  14. Genomics of Bacillus Species

    Science.gov (United States)

    Økstad, Ole Andreas; Kolstø, Anne-Brit

    Members of the genus Bacillus are rod-shaped spore-forming bacteria belonging to the Firmicutes, the low G+C gram-positive bacteria. The Bacillus genus was first described and classified by Ferdinand Cohn in Cohn (1872), and Bacillus subtilis was defined as the type species (Soule, 1932). Several Bacilli may be linked to opportunistic infections. However, pathogenicity among Bacillus spp. is mainly a feature of bacteria belonging to the Bacillus cereus group, including B. cereus, Bacillus anthracis, and Bacillus thuringiensis. Here we review the genomics of B. cereus group bacteria in relation to their roles as etiological agents of two food poisoning syndromes (emetic and diarrhoeal).

  15. Construction of Phenol Degradation Genetically Engineered Bacteria Bacillus subtilis dqly-2%苯酚降解工程菌Bacillus subtilis dqly-2的构建

    Institute of Scientific and Technical Information of China (English)

    杨庆丽; 刘宇峰; 姬妍茹; 董艳; 高媛

    2012-01-01

    目的:构建苯酚降解工程菌Bacillus Subtilis dqly-2.方法:选取2株苯酚降解菌,分别为铜绿假单胞菌Pseudomonas aeruginosa zllf4和枯草芽孢杆菌Bacillus Subtilis BHf3-4,体外扩增Pseudomonas aeruginosa zllf4的邻苯二酚2,3双加氧酶基因(SYJ),并将此基因转入Bacillus Subtilis BHf3-4中,构建基因工程菌,并对野生菌和工程菌降解能力进行比较.结果:作用96h后,工程菌苯酚降解率为96.18%,显著高于野生菌的84.78%.结论:成功构建高效苯酚降解基因工程菌.

  16. The Adsorption Properties of Bacillus atrophaeus Spores on Single-Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    P. Cortes

    2009-01-01

    Full Text Available An adsorption equilibrium and a kinetic study of Bacillus atrophaeus on Single-Wall Carbon Nanotubes (SWCNTs were here performed to provide the basis for developing biosensor devices for detecting threatening micro-organisms in water supply systems. B. atrophaeus spores and carbon nanotubes were subjected to a batch adsorption process to document their equilibria and kinetics. Here, commercial nanotubes were either studied as received or were acid-purified before adsorption experiments. The Bacillus spores appear to show higher affinity towards the purified nanotubes than to the as-received nanomaterial. The effective diffusivity of the spores onto the purified nanotubes was found to be approximately 30 percent higher than onto the as-received nanotubes. It seems that the removal of amorphous carbon from the as-received nanotubes through a purification process yielded an intimate nantoubes-spore interaction as revealed by transmission electron microscopy. Freundlich model successfully correlated the adsorption equilibrium data for the nanotubes-spore interaction. Transmission electron micrographs showed extensive contact between the Bacillus and the purified nanotubes, but the association appeared less intimate between the spores and the as-received nanotubes.

  17. Adaptation of Oil Palm Seedlings Inoculated with Arbuscular Mycorrhizal Fungi and Mycorrhizal Endosymbiotic Bacteria Bacillus subtilis B10 towards Biotic Stress of Pathogen Ganoderma boninense Pat

    Directory of Open Access Journals (Sweden)

    YENNI BAKHTIAR

    2012-12-01

    Full Text Available The effects of mycorrhizal endosymbiotic bacteria Bacillus subtilis B10 and composite of arbuscular mycorrhizal fungal spores in green house experiment were examined in order to evaluate their effectiveness and compatibility with oil palm seedlings in the presence of a fungal pathogen Ganoderma boninense, the most serious pathogen in oil palm (Elaeis guineensis Jacq in Indonesia. A three factors experiment were conducted, with mycorrhizal inoculation (M0 and M1, bacterial B. subtilis B10 inoculation (B0 and B1, and G. boninense inoculation (G0 and G1 as the first, second, and third factors, respectively. The results showed that disease severity index, plant height, root dry-weight, and phosphorus uptake were affected by co-inoculation of mycorrhizal endosymbiotic bacteria B. subtilis B10 and composite of arbuscular mycorrhizal fungi. Co-inoculation of mycorrhizal endosymbiotic bacteria B. subtilis B10 and arbuscular mycorrhizal fungi did not only reduce the percentage of basal stem rot incidence, but also significantly increased plant height and phosphorus uptake by oil palm seedlings. Our results suggest that in oil palm seedlings mycorrhizal endosymbiotic bacteria B. subtilis B10 worked synergistically with arbuscular mycorrhizal fungi in increasing plant adaptation toward biotic stress of pathogen G. boninese and could be promising biocontrol agents.

  18. Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions.

    Science.gov (United States)

    Luo, Chuping; Liu, Xuehui; Zhou, Huafei; Wang, Xiaoyu; Chen, Zhiyi

    2015-01-01

    Bacillus cyclic lipopeptides (LPs) have been well studied for their phytopathogen-antagonistic activities. Recently, research has shown that these LPs also contribute to the phenotypic features of Bacillus strains, such as hemolytic activity, swarming motility, biofilm formation, and colony morphology. Bacillus subtilis 916 not only coproduces the three families of well-known LPs, i.e., surfactins, bacillomycin Ls (iturin family), and fengycins, but also produces a new family of LP called locillomycins. The genome of B. subtilis 916 contains four nonribosomal peptide synthase (NRPS) gene clusters, srf, bmy, fen, and loc, which are responsible for the biosynthesis of surfactins, bacillomycin Ls, fengycins, and locillomycins, respectively. By studying B. subtilis 916 mutants lacking production of one, two, or three LPs, we attempted to unveil the connections between LPs and phenotypic features. We demonstrated that bacillomycin Ls and fengycins contribute mainly to antifungal activity. Although surfactins have weak antifungal activity in vitro, the strain mutated in srfAA had significantly decreased antifungal activity. This may be due to the impaired productions of fengycins and bacillomycin Ls. We also found that the disruption of any LP gene cluster other than fen resulted in a change in colony morphology. While surfactins and bacillomycin Ls play very important roles in hemolytic activity, swarming motility, and biofilm formation, the fengycins and locillomycins had little influence on these phenotypic features. In conclusion, B. subtilis 916 coproduces four families of LPs which contribute to the phenotypic features of B. subtilis 916 in an intricate way. PMID:25362061

  19. ON THE USE OF FROTH FLOTATION IN THE RECOVERY OF Bacillus sphaericus SPORES

    OpenAIRE

    RIOS E.M.; LOPES C.E.; F.P. de FRANÇA

    1997-01-01

    Abstract - The recovery of Bacillus sphaericus strain 2362 spores from fermented medium by batch flotation was tested under different conditions. Flotation kinetic studies were performed at 800 rpm and 3 l air/min. The pH values were adjusted at the following set of values: 5.0, 7.0 and 9.0. The results showed that the spore removal rate is influenced by the pH value. At pH equal to 5.0 we observe an adverse effect on the spore concentrate obtention. In this situation the maximum value of the...

  20. Friction and Adhesion Forces of Bacillus thuringiensis Spores on Planar Surfaces in Atmospheric Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2011-01-01

    The kinetic friction force and the adhesion force of Bacillus thuringiensis spores on planar surfaces in atmospheric systems were studied using atomic force microscopy. The influence of relative humidity (RH) on these forces varied for different surface properties including hydrophobicity, roughness, and surface charge. The friction force of the spore was greater on a rougher surface than on mica, which is atomically flat. As RH increases, the friction force of the spores decreases on mica whereas it increases on rough surfaces. The influence of RH on the interaction forces between hydrophobic surfaces is not as strong as for hydrophilic surfaces. The friction force of the spore is linear to the sum of the adhesion force and normal load on the hydrophobic surface. The poorly defined surface structure of the spore and the adsorption of contaminants from the surrounding atmosphere are believed to cause a discrepancy between the calculated and measured adhesion forces.

  1. Anthrax vaccine design: strategies to achieve comprehensive protection against spore, bacillus, and toxin

    OpenAIRE

    Roehrl, Michael H.; Wang, Jun-Xia

    2005-01-01

    The successful use of Bacillus anthracis as a lethal biological weapon has prompted renewed research interest in the development of more effective vaccines against anthrax. The disease consists of three critical components: spore, bacillus, and toxin, elimination of any of which confers at least partial protection against anthrax. Current remedies rely on postexposure antibiotics to eliminate bacilli and pre- and postexposure vaccination to target primarily toxins. Vaccines effective against ...

  2. The LuxS based quorum sensing governs lactose induced biofilm formation by Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Danielle eDuanis-Assaf

    2016-01-01

    Full Text Available Bacillus species present a major concern in the dairy industry as they can form biofilms in pipelines and on surfaces of equipment and machinery used in the entire line of production. These biofilms represent a continuous hygienic problem and can lead to serious economic losses due to food spoilage and equipment impairment. Biofilm formation by Bacillus subtilis is apparently dependent on LuxS quorum sensing (QS by Autoinducer-2 (AI-2. However, the link between sensing environmental cues and AI-2 induced biofilm formation remains largely unknown. The aim of this study is to investigate the role of lactose, the primary sugar in milk, on biofilm formation by B. subtilis and its possible link to QS processes. Our phenotypic analysis shows that lactose induces formation of biofilm bundles as well as formation of colony type biofilms. Furthermore, using reporter strain assays, we observed an increase in AI-2 production by B. subtilis in response to lactose in a dose dependent manner. Moreover, we found that expression of eps and tapA operons, responsible for extracellular matrix synthesis in B. subtilis, were notably up-regulated in response to lactose. Importantly, we also observed that LuxS is essential for B. subtilis biofilm formation in the presence of lactose. Overall, our results suggest that lactose may induce biofilm formation by B. subtilis through the LuxS pathway.

  3. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid.

    Science.gov (United States)

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-01-01

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV-vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid. PMID:26841717

  4. Clp-dependent proteolysis down-regulates central metabolic pathways in glucose-starved Bacillus subtilis

    NARCIS (Netherlands)

    Gerth, Ulf; Kock, Holger; Kusters, Ilja; Michalik, Stephan; Switzer, Robert L.; Hecker, Michael

    2008-01-01

    Entry into stationary phase in Bacillus subtilis is linked not only to a redirection of the gene expression program but also to posttranslational events such as protein degradation. Using S-35-labeled methionine pulse-chase labeling and two-dimensional polyacrylamide gel electrophoresis we monitored

  5. 75 FR 862 - Bacillus subtilis; Registration Review Proposed Decision; Notice of Availability

    Science.gov (United States)

    2010-01-06

    ..., cucurbits, fruiting vegetables, herbs, leafy crops, legumes, ornamental plants and cuttings, peanuts, root... grasses, wheat, barley, corn, and canola. It is also used in greenhouses to treat peat moss and soil..., strawberry, tuber/root and corm vegetables, turf, sod, lawns, trees, and shrubs; Bacillus subtilis strain...

  6. A positive selection vector for the analysis of structural plasmid instability in Bacillus subtilis

    NARCIS (Netherlands)

    Meima, R; Venema, G; Bron, S

    1996-01-01

    A system for the positive selection of structural plasmid rearrangements in Bacillus subtilis was developed. Random deletions removing a transcription terminator structure in the assay plasmid, designated pGP100, resulted in expression of the cat-86 gene, under control of a constitutive bacteriophag

  7. Influence of physical, chemical and inducer treatments on menaquinone-7 biosynthesis by Bacillus subtilis MTCC 2756

    Directory of Open Access Journals (Sweden)

    Alka Puri

    2015-06-01

    Full Text Available Effects of physical and chemical treatment on nutrient mobility, their utilization for menaquinone-7 (MK-7 biosynthesis; growth of microbial cells has been investigated in the present research. Bacillus subtilis MTCC 2756 fermented medium was supplied with 1-naphthol and hypoxanthine resulted in a significant increase in MK-7 production. Ultrasonication, electric shock, heat shock, and tween 80 were used for inducer uptake by Bacillus subtilis and menaquinone-7 production. Induction of Bacillus subtilis (at 16 hours of fermentation using 1-naphthol (2 mg/ml, along with tween 80 (0.1% was found to increase the MK-7 production by 3 fold i.e. 14.4 µg/ml as compared to the untreated fermentation medium. The ultrasonicated (ultrasonic power 33 W, treatment time 4 min and frequency 36 KHz microbial cells yielded higher biomass and 2.5 fold increase in the MK-7 production i.e.10.3 µg/ml than control. 1-naphthol along with physical or chemical treatment is required for maximum MK-7 production by Bacillus subtilis.

  8. Transcriptional Profiling in Cotton Associated with Bacillus Subtilis (UFLA285) Induced Biotic-stress Tolerance

    Science.gov (United States)

    Plant growth promoting rhizobacteria (PGPR) confer disease resistance in many agricultural crops. In the case of Bacillus subtilis (UFLA285) isolated from the cotton producing state of Mato Grosso (Brazil), in addition to inducing foliar and root growth, disease resistance against damping-off cause...

  9. Regioselective Synthesis of Polymerizable Vinyl Guaifenesin Esters Catalyzed by an Alkaline Protease of Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Na WANG; Qi WU; Jian Ming XU; Xiu Ming JIANG; Xian Fu LIN

    2004-01-01

    Three polymerizable vinyl guaifenesin esters with different acyl donor carbon chain lengths (C4,C6,C10) were regioselectivly synthesized by an alkaline protease from Bacillus subtilis in pyridine at 50°C for 1, 3, 5 days respectively.

  10. Mutational analysis of the regulatory region of the srfA operon in Bacillus subtilis.

    OpenAIRE

    Nakano, M M; Zuber, P

    1993-01-01

    Transcription of the Bacillus subtilis srfA operon is dependent on the transcriptional activator ComA. Mutational analysis of the srfA regulatory region suggests that two regions of dyad symmetry upstream of the srfA promoter may function in transcriptional activation by facilitating a cooperative interaction between ComA dimers.

  11. Absence of correlation between rates of cell wall turnover and autolysis shown by Bacillus subtilis mutants.

    OpenAIRE

    Vitković, L; Cheung, H. Y.; Freese, E

    1984-01-01

    Bacillus subtilis mutants with reduced rates of cell wall autolysis reached a constant rate of wall turnover after a longer lag than the standard strain but eventually showed the same turnover rate. In reverse, a turnover-deficient mutant autolysed at a slightly higher rate than the standard strain. Consequently, there is no correlation between the rates of cell wall turnover and autolysis.

  12. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    NARCIS (Netherlands)

    Marciniak, Bogumila C.; Trip, Hein; van-der Veek, Patricia J.; Kuipers, Oscar P.; Marciniak, Bogumiła C.

    2012-01-01

    Background: Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe) status, its genetic accessibility and its capacity to grow in large fermentatio

  13. Protective effects of SOD on Bacillus subtilis irradiated by γ-rays

    International Nuclear Information System (INIS)

    In order to investigate the protective effect of SOD, Bacillus subtilis vegetative cells treated with SOD of different concentrations were irradiated to different doses by 60Co γ-rays. Cell survival rate was examined with the standard plate-count method. Intercellular SOD activity was measured by SOD kit with xanthine oxidase method, and DNA double-strand breaks was analyzed by pulsed-field gel electrophoresis (PFGE). The results showed that the cell survival rate increased obviously with the SOD-added Bacillus subtilis, though we did not find a clear relation among the intercellular SOD activity, concentration of added SOD and irradiation dose. The DNA release percentage(PR) value decreased evidently with the SOD-treated Bacillus subtilis. Basically,the trend of cell survival rate with concentration of the added SOD and irradiation dose is consistent with the PR value. It can be concluded that exogenous SOD could protect Bacillus subtilis vegetative cell from damage induced by γ-rays, and the protective efficiency of added SOD is related to the concentration. (authors)

  14. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis

    DEFF Research Database (Denmark)

    Bisicchia, Paola; Noone, David; Lioliou, Efthimia;

    2007-01-01

    Adaptation of bacteria to the prevailing environmental and nutritional conditions is often mediated by two-component signal transduction systems (TCS). The Bacillus subtilis YycFG TCS has attracted special attention as it is essential for viability and its regulon is poorly defined. Here we show...

  15. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis

    DEFF Research Database (Denmark)

    Nicolas, Pierre; Mäder, Ulrike; Dervyn, Etienne;

    2012-01-01

    Bacteria adapt to environmental stimuli by adjusting their transcriptomes in a complex manner, the full potential of which has yet to be established for any individual bacterial species. Here, we report the transcriptomes of Bacillus subtilis exposed to a wide range of environmental and nutritional...

  16. Purification and properties of phosphoribosyl-diphosphate synthetase from Bacillus subtilis

    DEFF Research Database (Denmark)

    Arnvig, Kirsten; Hove-Jensen, Bjarne; Switzer, Robert L.

    1990-01-01

    Phosphoribosyl-diphosphate (PPRibP) synthetase from Bacillus subtiliis has been purified to near homogeneity from an Escherichia coli Δprs strain bearing the cloned B. subtilis prs gene, encoding PPRibP synthentase, on a plasmid. The Mr of the subunit (34,000) and its amino-terminal amino acid...

  17. Electron transfer reactions, cyanide and O2 binding of truncated hemoglobin from Bacillus subtilis

    DEFF Research Database (Denmark)

    Fernandez, Esther; Larsson, Jonas T.; McLean, Kirsty J.;

    2013-01-01

    The truncated hemoglobin from Bacillus subtilis (trHb-Bs) possesses a surprisingly high affinity for oxygen and resistance to (auto)oxidation; its physiological role in the bacterium is not understood and may be connected with its very special redox and ligand binding reactions. Electron transfer...

  18. A novel halotolerant xylanase from marine isolate Bacillus subtilis cho40: gene cloning and sequencing

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Verma, P.; Deobagkar, D.

    % Composition of amino acid from amino acid sequence of xylanase enzyme from Bacillus subtilis Cho40 Amino acid composition Alanine (Ala (A) 15 7.1% Arginine (Arg) (R) 6 2.8% Asparagine (Asn) (N) 19 9.0% Aspartic acid (Asp) (D...

  19. Genome Sequence of Bacillus subtilis Strain HUK15, Isolated from Hexachlorocyclohexane-Contaminated Soil

    OpenAIRE

    Gasc , Cyrielle; Richard, Jean-Yves; Peyret, Pierre

    2016-01-01

    Bacillus subtilis strain HUK15 has been isolated from hexachlorocyclohexane (HCH)-long-term-contaminated soil. The genome of strain HUK15 was sequenced to investigate its adaptation toward HCH and its potential capability to degrade the pesticide. Here, we report the annotated draft genome sequence (~4.3 Mbp) of this strain.

  20. Differences in cold adaptation of .i.Bacillus subtilis./i. under anaerobic and aerobic conditions

    Czech Academy of Sciences Publication Activity Database

    Beranová, J.; Mansilla, M.C.; de Mendoza, D.; Elhottová, Dana; Konopásek, I.

    2010-01-01

    Roč. 192, č. 16 (2010), s. 4164-4171. ISSN 0021-9193 R&D Projects: GA MŠk LC06066 Institutional research plan: CEZ:AV0Z60660521 Keywords : cold adaptation * Bacillus subtilis * anaerobiosis Subject RIV: EE - Microbiology, Virology Impact factor: 3.726, year: 2010

  1. YbxF, a protein associated with exponential-phase ribosomes in Bacillus subtilis

    Czech Academy of Sciences Publication Activity Database

    Sojka, Luděk; Fučík, Vladimír; Krásný, Libor; Barvík, I.; Jonák, Jiří

    2007-01-01

    Roč. 189, č. 13 (2007), s. 4809-4814. ISSN 0021-9193 R&D Projects: GA AV ČR IAA5052206 Institutional research plan: CEZ:AV0Z50520514 Keywords : ybxF * ymxC * ribosomes * Bacillus subtilis * GFP * growth phase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.013, year: 2007

  2. Growth rate regulates membrane fluidity and membrane cold adaptation in .i.Bacillus subtilis./i

    Czech Academy of Sciences Publication Activity Database

    Beranová, J.; Jemiola-Rzeminska, M.; Elhottová, Dana; Strzalka, K.; Konopásek, I.

    2007-01-01

    Roč. 274, Suppl. 1 (2007), s. 362. ISSN 1742-464X. [Congress of the Federation-of-European-Biochemical-Societies /32./. 07.07.2007-12.07.2007, Vienna] Institutional research plan: CEZ:AV0Z60660521 Keywords : membrane fluidity * membrane cold adaptation * Bacillus subtilis Subject RIV: EH - Ecology, Behaviour

  3. 77 FR 1633 - Bacillus Subtilis Strain CX-9060; Exemption From the Requirement of a Tolerance

    Science.gov (United States)

    2012-01-11

    ..., 2009; 74 FR 15865; FRL-8408-7). The previously submitted studies on Bacillus subtilis MBI 600 include... Register of March 10, 2010 (75 FR 11171) (FRL-8810- 8), EPA issued a notice pursuant to section 408(d)(3...(h) (75 FR 76284, FRL-8853-8) eliminates the option for the expression of tolerances or...

  4. Involvement of deoxyribonucleic acid polymerase III in W-reactivation in Bacillus subtilis.

    OpenAIRE

    Fields, P I; Yasbin, R E

    1980-01-01

    6-(p-Hydroxyphenylazo)-uracil, a purine analog that is known to specifically inhibit deoxyribonucleic acid polymerase III in gram-positive organisms, inhibited W-reactivation in Bacillus subtilis. On the other hand, W-reactivation proceeded normally in the presence of 6-(p-hydroxyphenylazo)-uracil when a strain possessing a resistant deoxyribonucleic acid polymerase III was used as the host.

  5. Postreplication repair of ultraviolet-irradiated transforming deoxyribonucleic acid in Bacillus subtilis

    International Nuclear Information System (INIS)

    Repair of ultraviolet-irradiated transforming deoxyribonucleic acid (DNA) in several strains of Bacillus subtilis was studied in order to determine the effects of excision repair and postreplication repair on transformation. Two mutations that cause a Uvr- phenotype (uvr-1 and uvr-42) were shown to have strikingly different effects on repair of ultraviolet-irradiated transforming DNA

  6. ISOLATION AND CHARACTERIZATION OF COML, A TRANSCRIPTION UNIT INVOLVED IN COMPETENCE DEVELOPMENT OF BACILLUS-SUBTILIS

    NARCIS (Netherlands)

    VANSINDEREN, D; WITHOFF, S; BOELS, H; VENEMA, G

    1990-01-01

    Using the transformation-deficient mutant M465, which was previously isolated by means of insertional mutagenesis with plasmid pHV60, a transcription unit comL required for genetic competence of Bacillus subtilis was identified. A chromosomal DNA fragment flanking the inserted pHV60 was isolated and

  7. Natural products from Bacillus subtilis with antimicrobial properties☆

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; Yafei Liang; Mianbin Wu; Zhengjie Chen; Jianping Lin; Lirong Yang

    2015-01-01

    Bacil us subtilis produces many chemical y-diverse secondary metabolites of interest to chemists and biologists. Based on this, this review gives a detalled overview of the natural components produced by B. subtilis including cyclic lipopeptides, polypeptides, proteins (enzymes), and non-peptide products. Their structures, bioactive ac-tivities and the relevant variants as novel lead structures for drug discovery are also described. The challenging effects of fermentation metabolites, isolation and purification, as wel as the overproduction of bioactive com-pounds from B. subtilis by metabolic engineering, were also highlighted. Systematical y exploring biosynthetic routes and the functions of secondary metabolites from B. subtilis may not only be beneficial in improving yields of the products, but also in helping them to be used in food industry and public medical service on a large-scale.

  8. RNA synthesis in Bacillus subtilis Cgr4 mutant during the stationary phase of growth

    International Nuclear Information System (INIS)

    The authors studied RNA synthesis in Bacillus subtilis Cgr4 cultured in the mineral sporulation medium enriched with glucose up to 2% and amino acids up to 1%. For the study of mRNA synthesis they used a method of transfering the 3H-uridine pulse-labeled culture to the supernatant of the physiologically identical unlabeled culture with subsequent continuation of incubation, during which they measured the amount of label both in the cells and in the supernatant, and they also analyzed the RNA by electrophoresis and the distribution of the label over the fractions. They have shown that the mRNA synthesized at the logarithmic phase at the second hour of growth is broken down to the extent of up to 12% in 10 min; the mRNA synthesized at the stationary phase at the seventh hour of growth is stable and no degradation occurs for 2-3 h. The beginning of breakdown coincides in time with the second induction of the synthesis of serine proteinases, and with the onset of a sharp decrease in the incorporation of 3H-uridine in RNA and with the induction of spore morphogenesis. The electrophoretic analysis of the pulse-labeled RNA showed that before the transfer the labeled uridine was incorporated and after, it was retained for 2-3 h in the fraction. In its electrophoretic mobility in polyacrylamide gel, this fraction corresponded to the mRNA. They conclude that the mRNAs synthesized at the stationary phase and used for the translation of the serine proteinase secreted are stable

  9. Bistable forespore engulfment in Bacillus subtilis by a zipper mechanism in absence of the cell wall.

    Directory of Open Access Journals (Sweden)

    Nikola Ojkic

    2014-10-01

    Full Text Available To survive starvation, the bacterium Bacillus subtilis forms durable spores. The initial step of sporulation is asymmetric cell division, leading to a large mother-cell and a small forespore compartment. After division is completed and the dividing septum is thinned, the mother cell engulfs the forespore in a slow process based on cell-wall degradation and synthesis. However, recently a new cell-wall independent mechanism was shown to significantly contribute, which can even lead to fast engulfment in [Formula: see text] 60 [Formula: see text] of the cases when the cell wall is completely removed. In this backup mechanism, strong ligand-receptor binding between mother-cell protein SpoIIIAH and forespore-protein SpoIIQ leads to zipper-like engulfment, but quantitative understanding is missing. In our work, we combined fluorescence image analysis and stochastic Langevin simulations of the fluctuating membrane to investigate the origin of fast bistable engulfment in absence of the cell wall. Our cell morphologies compare favorably with experimental time-lapse microscopy, with engulfment sensitive to the number of SpoIIQ-SpoIIIAH bonds in a threshold-like manner. By systematic exploration of model parameters, we predict regions of osmotic pressure and membrane-surface tension that produce successful engulfment. Indeed, decreasing the medium osmolarity in experiments prevents engulfment in line with our predictions. Forespore engulfment may thus not only be an ideal model system to study decision-making in single cells, but its biophysical principles are likely applicable to engulfment in other cell types, e.g. during phagocytosis in eukaryotes.

  10. Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Francisco Fábio Cavalcante Barros

    2013-01-01

    Full Text Available Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes.

  11. Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis.

    Science.gov (United States)

    Barros, Francisco Fábio Cavalcante; Simiqueli, Ana Paula Resende; de Andrade, Cristiano José; Pastore, Gláucia Maria

    2013-01-01

    Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes. PMID:23533780

  12. Effect of Bacillus subtilis Natto on Meat Quality and Skatole Content in TOPIGS Pigs.

    Science.gov (United States)

    Sheng, Q K; Zhou, K F; Hu, H M; Zhao, H B; Zhang, Y; Ying, W

    2016-05-01

    This study investigated the effect of Bacillus subtilis (B. subtilis) natto on meat quality and skatole in TOPIGS pigs. Sixty TOPIGS pigs were randomly assigned to 3 groups (including 5 pens per group, with 4 pigs in each pen) and fed with basic diet (control group), basic diet plus 0.1% B. subtilis natto (B group), and basic diet plus 0.1% B. subtilis natto plus 0.1% B. coagulans (BB group), respectively. All pigs were sacrificed at 100 kg. Growth performance, meat quality, serum parameters and oxidation status in the three groups were assessed and compared. Most parameters regarding growth performance and meat quality were not significantly different among the three groups. However, compared with the control group, meat pH24, fat and feces skatole and the content of Escherichia coli (E. Coli), Clostridium, NH3-N were significantly reduced in the B and BB groups, while serum total cholesterol, high density lipoprotein, the levels of liver P450, CYP2A6, and CYP2E1, total antioxidant capability (T-AOC) and glutathione peroxidase and Lactobacilli in feces were significantly increased in the B and BB groups. Further, the combined supplementation of B. subtilis natto and B. coagulans showed more significant effects on the parameters above compared with B. subtilis, and Clostridium, and NH3-N. Our results indicate that the supplementation of pig feed with B. subtilis natto significantly improves meat quality and flavor, while its combination with B. coagulans enhanced these effects. PMID:26954164

  13. Effect of Bacillus subtilis Natto on Meat Quality and Skatole Content in TOPIGS Pigs

    Science.gov (United States)

    Sheng, Q. K.; Zhou, K. F.; Hu, H. M.; Zhao, H. B.; Zhang, Y.; Ying, W.

    2016-01-01

    This study investigated the effect of Bacillus subtilis (B. subtilis) natto on meat quality and skatole in TOPIGS pigs. Sixty TOPIGS pigs were randomly assigned to 3 groups (including 5 pens per group, with 4 pigs in each pen) and fed with basic diet (control group), basic diet plus 0.1% B. subtilis natto (B group), and basic diet plus 0.1% B. subtilis natto plus 0.1% B. coagulans (BB group), respectively. All pigs were sacrificed at 100 kg. Growth performance, meat quality, serum parameters and oxidation status in the three groups were assessed and compared. Most parameters regarding growth performance and meat quality were not significantly different among the three groups. However, compared with the control group, meat pH24, fat and feces skatole and the content of Escherichia coli (E. Coli), Clostridium, NH3-N were significantly reduced in the B and BB groups, while serum total cholesterol, high density lipoprotein, the levels of liver P450, CYP2A6, and CYP2E1, total antioxidant capability (T-AOC) and glutathione peroxidase and Lactobacilli in feces were significantly increased in the B and BB groups. Further, the combined supplementation of B. subtilis natto and B. coagulans showed more significant effects on the parameters above compared with B. subtilis, and Clostridium, and NH3-N. Our results indicate that the supplementation of pig feed with B. subtilis natto significantly improves meat quality and flavor, while its combination with B. coagulans enhanced these effects. PMID:26954164

  14. Mutagenesis and ultraviolet inactivation of transforming DNA of ``Haemophilus influenzae`` complexed with a ``Bacillus subtilis`` protein that alter DNA conformation

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, Jane K. [Brookhaven National Lab., Upton, NY (United States); Setlow, Barbara C.; Setlow, Peter [Connecticut Univ., Farmington, CT (United States)

    1996-12-31

    The wild-type ``Bacillus subtilis`` spore protein, SspC{sup wt}, binds to DNA ``in vitro`` and ``in vivo`` and changes the conformation of DNA from B to A. Synthesis of the cloned SspC{sup wt} gene in ``Escherichia coli`` also causes large increases in mutation frequency. Binding of SspC{sup wt} to transforming DNA from ``Haemophilus influenzae`` made the DNA resistant to ultraviolet (UV) radiation. The mutant protein, SspC{sup ala}, which does not bind DNA, did not change the UV resistance. The UV sensitivity of the DNA/SspC{sup wt} complex was not increased when the recipients of the DNA were defective in excision of pyrimidine dimers. These data indicate that the ``H. influenzae`` excision mechanism does not operate on the spore photoproduct formed by UV irradiation of the complex. Selection for the streptomycin- or erythromycin-resistance markers on the transforming DNA evidenced significant mutations at loci closely linked to these, but not at other loci. SspC{sup wt} apparently entered the cell attached to the transforming DNA, and caused mutations in adjacent loci. The amount of such mutations decreased when the transforming DNA was UV irradiated, because UV unlinks linked markers. (author). 22 refs, 4 figs, 4 tabs.

  15. 40 CFR 180.1011 - Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the requirement of a tolerance. 180.1011 Section 180.1011 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL...

  16. Draft Genome Sequence of the Spore-Forming Probiotic Strain Bacillus coagulans Unique IS-2.

    Science.gov (United States)

    Upadrasta, Aditya; Pitta, Swetha; Madempudi, Ratna Sudha

    2016-01-01

    ITALIC! Bacillus coagulansUnique IS-2 is a potential spore-forming probiotic that is commercially available on the market. The draft genome sequence presented here provides deep insight into the beneficial features of this strain for its safe use as a probiotic for various human and animal health applications. PMID:27103709

  17. Draft Genome Sequence of the Spore-Forming Probiotic Strain Bacillus coagulans Unique IS-2

    Science.gov (United States)

    Upadrasta, Aditya; Pitta, Swetha

    2016-01-01

    Bacillus coagulans Unique IS-2 is a potential spore-forming probiotic that is commercially available on the market. The draft genome sequence presented here provides deep insight into the beneficial features of this strain for its safe use as a probiotic for various human and animal health applications. PMID:27103709

  18. Thermal inactivation of Bacillus anthracis surrogate spores in a bench-scale enclosed landfill gas flare.

    Science.gov (United States)

    Tufts, Jenia A McBrian; Rosati, Jacky A

    2012-02-01

    A bench-scale landfill flare system was designed and built to test the potential for landfilled biological spores that migrate from the waste into the landfill gas to pass through the flare and exit into the environment as viable. The residence times and temperatures of the flare were characterized and compared to full-scale systems. Geobacillus stearothermophilus and Bacillus atrophaeus, nonpathogenic spores that may serve as surrogates for Bacillus anthracis, the causative agent for anthrax, were investigated to determine whether these organisms would be inactivated or remain viable after passing through a simulated landfill flare. High concentration spore solutions were aerosolized, dried, and sent through a bench-scale system to simulate the fate of biological weapon (BW)-grade spores in a landfill gas flare. Sampling was conducted downstream of the flare using a bioaerosol collection device containing sterile white mineral oil. The samples were cultured, incubated for seven days, and assessed for viability. Results showed that the bench-scale system exhibited good similarity to the real-world conditions of an enclosed standard combustor flare stack with a single orifice, forced-draft diffusion burner. All spores of G. stearothermophilus and B. atrophaeus were inactivated in the flare, indicating that spores that become re-entrained in landfill gas may not escape the landfill as viable, apparently becoming completely inactivated as they exit through a landfill flare. PMID:22442931

  19. Production and antimicrobial activity of 3-hydroxypropionaldehyde from Bacillus subtilis strain CU12.

    Science.gov (United States)

    Wise, C; Novitsky, L; Tsopmo, A; Avis, T J

    2012-12-01

    Bacillus subtilis strains are known to produce a vast array of antimicrobial compounds. However, some compounds remain to be identified. Disk assays performed in vitro with Bacillus subtilis CU12 showed a significant reduction in mycelial growth of Alternaria solani, Botrytis cinerea, Fusarium sambucinum, and Pythium sulcatum. Crude B. subtilis culture filtrates were subsequently extracted with ethyl acetate and butanol. A bioassay guided purification procedure revealed the presence of one major antifungal compound in the butanol extract. Purification of the compound was performed using a reverse-phase C18 solid phase extraction (SPE) cartridge and flash column chromatography. NMR data showed that the main antimicrobial compound was a cyclic dimer of 3-hydroxypropionaldehyde (HPA). This study demonstrated the antimicrobial activity of B. subtilis strain CU12 against phytopathogenic microorganisms is mediated at least in part by the production of HPA. It also suggests that this B. subtilis strain could be effective at controlling pathogens through protection of its ecological niche by antibiosis. PMID:23179100

  20. Biocontrol of Soil Fungi in Tomato with Microencapsulates Containing Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Marcela H. Suarez

    2011-01-01

    Full Text Available Problem statement: An option to reduce pollution by synthetic agro-chemical in root plant disease management is the use of antagonist rhizobacteria belonging to Bacillus genus, because their inhibitory properties, stimulation of plant growth and crop yield increase. Approach: This study was carried out in order to evaluate if Bacillus subtilis strains could play an antagonists role of plant pathogens and if they can be microencapsulated inside a biopolymer matrix. It was adapted an equipment and evaluated a technique for microcapsules elaboration, in order to incorporate B. subtilis strains and to analyze their potential as biocontrol agents by determining their antagonistic effect against pathogenic soil fungi; in addition, it was analyzed their effect on tomato plant growth promotion under greenhouse conditions. B. subtilis strains identified as B1, J1, M2 and their mixture were used; microcapsules containing bacterial strains were inoculated to tomato seeds cv. Floradade. When seedlings emerged, a second application of microcapsules containing B. subtilis was performed on the pots, which previously were inoculated with the fungi Rhizoctonia solani and Fusarium oxysporum. Response variables were: Incidence and disease severity, plant growth, aerial and root dry weight, leaf area and fruit yield. Results: The outcome showed that the equipment designed and adapted for microcapsules elaboration was useful to obtain microcapsules containing the bacterial strains. B. subtilis strains exerted apparent biocontrol, since incidence and disease severity was reduced and for that reason inhibited the infective activity of the inoculated plant pathogens, also microcapsules containing Bacillus strains stimulated tomato growth and fruit yield. Conclusion: Microcapsules containing B. subtilis strains could be effective biocontrol agents against soil fungi plant pathogens and could have a potential biofertilizer effect, since they stimulated growth and yield

  1. Radiosensitization of Bacillus cereus spores in minced meat treated with cinnamaldehyde

    Science.gov (United States)

    Ayari, S.; Dussault, D.; Jerbi, T.; Hamdi, M.; Lacroix, M.

    2012-08-01

    Minced meat beef inoculated with Bacillus cereus spores was treated with four essential oil constituents. The active compounds were sprayed separately onto the meat in order to determine the concentration needed to reduce by 1 log the population of B. cereus spores. Cinnamaldehyde was the best antimicrobial compound selected. It was mixed with ascorbic acid and/or sodium pyrophosphate decahydrate and tested for its efficiency to increase the relative radiation sensitivity (RRS) of B. cereus spores in minced meat packed under air. Results demonstrated that the radiation treatment in presence of the cinnamaldehyde and sodium phosphate decahydrate increased the RRS of B. cereus spores by two fold. The study revealed also that the irradiation of raw beef meat pre-treated with cinnamaldehyde produced an inhibition of the growth of B. cereus count during refrigerated storage. This technology seems to be compatible with industrial meat processing.

  2. Radiosensitization of Bacillus cereus spores in minced meat treated with cinnamaldehyde

    International Nuclear Information System (INIS)

    Minced meat beef inoculated with Bacillus cereus spores was treated with four essential oil constituents. The active compounds were sprayed separately onto the meat in order to determine the concentration needed to reduce by 1 log the population of B. cereus spores. Cinnamaldehyde was the best antimicrobial compound selected. It was mixed with ascorbic acid and/or sodium pyrophosphate decahydrate and tested for its efficiency to increase the relative radiation sensitivity (RRS) of B. cereus spores in minced meat packed under air. Results demonstrated that the radiation treatment in presence of the cinnamaldehyde and sodium phosphate decahydrate increased the RRS of B. cereus spores by two fold. The study revealed also that the irradiation of raw beef meat pre-treated with cinnamaldehyde produced an inhibition of the growth of B. cereus count during refrigerated storage. This technology seems to be compatible with industrial meat processing.

  3. Fate of pathogenic Bacillus cereus spores after ingestion by protist grazers

    DEFF Research Database (Denmark)

    Winding, Anne; Santos, Susana; Hendriksen, Niels Bohse; Jakobsen, Hans

    evolution of Bacillus cereus group bacteria (e.g. B. cereus, B. anthracis, B. thuringiensis) as a pathogen. It has been hypothesized that the spore stage protects against digestion by predating protists. Indeed, B. thuringiensis spores have been shown to be readily ingested by ciliated protists but failed...... to be digested (Manasherob et al 1998 AEM 64:1750-). Here we report how diverse protist grazers grow on both vegetative cells and spores of B. cereus and how the bacteria survive ingestion and digestion, and even proliferate inside the digestive vacuoles of ciliated protists. The survival ability of...... B. cereus was initially investigated in microcosms inoculated with pure cultures of the protists Acanthamoeba castellanii, Tetrahymena pyriformis and Cercomonas sp. as grazers. Individual protist cultures were fed with fluorescently labelled (CellTracker™RedCMTPX) B. cereus spores or vegetative...

  4. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides.

    Science.gov (United States)

    Kim, Pyoung Il; Ryu, Jaewon; Kim, Young Hwan; Chi, Youn-Tae

    2010-01-01

    A bacterial strain isolated from soil for its potential to control the anthracnose disease caused by Colletotrichum gloeosporioides was identified as a Bacillus subtilis. Bacillus subtilis CMB32 produced antifungal agents on M9 broth at 30degreesC. Biosurfactant lipopeptides produced by Bacillus subtilis CMB32 were precipitated by adjusting to pH 2 and extracting using chloroform/methanol, and then were purified using column chromatography and reverse-phase HPLC. Molecular masses of the lipopeptides were estimated by MALDI-TOF mass spectrometry as (a) 1080, (b) 1486, and (c) 1044 Da, respectively. They had cyclic structures and amino acid compositions of (a) Pro, Asx, Ser, Tyr, Glx, (b) Glx, Tyr, Thr, Ala, Pro, Ile, and (c) Glx, Leu, Val, Asx, respectively. Further analysis revealed that Bacillus subtilis CMB32 produced three antifungal lipopeptides: (a) iturin A, (b) fengycin, and (c) surfactin A. PMID:20134245

  5. Engineering the Xylan Utilization System in Bacillus subtilis for Production of Acidic Xylooligosaccharides

    OpenAIRE

    Rhee, Mun Su; Wei, Lusha; Sawhney, Neha; Rice, John D.; St John, Franz J.; Hurlbert, Jason C.; Preston, James F.

    2014-01-01

    Xylans are the predominant polysaccharides in hemicelluloses and an important potential source of biofuels and chemicals. The ability of Bacillus subtilis subsp. subtilis strain 168 to utilize xylans has been ascribed to secreted glycoside hydrolase family 11 (GH11) and GH30 endoxylanases, encoded by the xynA and xynC genes, respectively. Both of these enzymes have been defined with respect to structure and function. In this study, the effects of deletion of the xynA and xynC genes, individua...

  6. Bacillus subtilis genome vector-based complete manipulation and reconstruction of genomic DNA for mouse transgenesis

    OpenAIRE

    Iwata, Tetsuo; Kaneko, Shinya; Shiwa, Yuh; Enomoto, Takayuki; Yoshikawa, Hirofumi; Hirota, Junji

    2013-01-01

    Background The Bacillus subtilis genome (BGM) vector is a novel cloning system for large DNA fragments, in which the entire 4.2 Mb genome of B. subtilis functions as a vector. The BGM vector system has several attractive properties, such as a large cloning capacity of over 3 Mb, stable propagation of cloned DNA and various modification strategies using RecA-mediated homologous recombination. However, genetic modifications using the BGM vector system have not been fully established, and this s...

  7. Conversion of sub-megasized DNA to desired structures using a novel Bacillus subtilis genome vector

    OpenAIRE

    Kaneko, Shinya; Tsuge, Kenji; Takeuchi, Takashi; Itaya, Mitsuhiro

    2003-01-01

    A novel genome vector using the 4215 kb Bacillus subtilis genome provides for precise target cloning and processing of the cloned DNA to the desired structure. Each process highly dependent on homologous recombination in the host B.subtilis is distinguished from the other cloning systems. A 120 kb mouse jumonji (jmj) genomic gene was processed in the genome vector to give a series of truncated sub-megasized DNA. One of these truncated segments containing the first intron was copied in a plasm...

  8. Identification of a Bacillus subtilis secretion mutant using a beta-galactosidase screening procedure

    DEFF Research Database (Denmark)

    Jacobs, M F; Borchert, T V; Kontinen, V P;

    1995-01-01

    High-level synthesis of exportable beta-galactosidase (LacZ) fusion proteins in Bacillus subtilis results in a lethal phenotype, and has been suggested as a tool for the selection of secretion mutants. We tested a plasmid-based, inducible lacZ fusion gene system for this purpose, but frequent...... mutations in cis, which reduced expression of the fusion gene, forced abandonment of the induction-selection strategy. Instead, after modification of the indicator plasmid, a screening procedure for increased basal LacZ activity levels was adopted. This led to the identification of a conditional B. subtilis...

  9. Identification of a Bacillus subtilis secretion mutant using a ß-galactosidase screening procedure

    DEFF Research Database (Denmark)

    Jacobs, Myra F.; Andersen, Jens Bo; Borchert, Torben V.;

    1995-01-01

    High-level synthesis of exportable beta-galactosidase (LacZ) fusion proteins in Bacillus subtilis results in a lethal phenotype, and has been suggested as a tool for the selection of secretion mutants. We tested a plasmid-based, inducible lacZ fusion gene system for this purpose, but frequent...... mutations in cis, which reduced expression of the fusion gene, forced abandonment of the induction-selection strategy. Instead, after modification of the indicator plasmid, a screening procedure for increased basal LacZ activity levels was adopted. This led to the identification of a conditional B. subtilis...

  10. MinCD Proteins Control the Septation Process during Sporulation of Bacillus subtilis

    OpenAIRE

    Barák, Imrich; Prepiak, Peter; Schmeisser, Falko

    1998-01-01

    Mutation of the divIVB locus in Bacillus subtilis causes misplacement of the septum during cell division and allows the formation of anucleate minicells. The divIVB locus contains five open reading frames (ORFs). The last two ORFs (minCD) are homologous to minC and minD of Escherichia coli but a minE homolog is lacking in B. subtilis. There is some similarity between minicell formation and the asymmetric septation that normally occurs during sporulation in terms of polar septum localization. ...

  11. Process optimization by response surface methodology for extracellular alkaline protease production from bacillus subtilis

    International Nuclear Information System (INIS)

    Three microbial cultures Bacillus subtilis DSM 1970, Bacillus subtilis GCU-8 and Bacillus licheniformis DSM 1969 were screened for protease production by casein agar plate method. Among these Bacillus subtilis GCU-8 was found to be the most potent protease producer in wide pH range (5.0 to 8.0). Fermentation conditions were optimized for the production of alkaline protease using two statistical tools: Placket Burmen Model for linear regression study and Response Surface Model for interactive effects of significant factors on production. The alkaline protease was optimally produced after 48 hours of incubation at 37 degree C in fermentation media containing equal amounts of substrates (soybean meal and wheat bran, 7.5 g), MgSO/sub 4/ 7H/sub 2/O, 0.10 g and yeast extract 0.55 g. The protease was purified to homogeneity by salt precipitation, ion-exchange chromatography and size exclusion chromatography. The homogeneity and molecular weights were checked by SDS-PAGE. The protease was 45 KDa protein, predominantly alkaline and optimally active at pH 8.0. (author)

  12. Free and attached cells of Bacillus subtilis as starters for production of a soup flavouring (“ogiri egusi”)

    OpenAIRE

    Peter-Ikechukwu, A. I.; Ahaotu, I.; Owuamanam, C. I.; Ogueke, C. C.

    2013-01-01

    Aims: This Bacillus subtilis has been identified to be the main fermenting bacterium during indigenous production of “ogiri egusi”; a traditional soup flavouring rich in protein. Evaluation of the use of starter and broth cultures of this bacterium in the production of ‘ogiri egusi’ was therefore undertaken with the view to improve the fermentation process and quality of product. Methodology and Results: Cowpea granules in association with Bacillus subtilis cells were developed as starter cul...

  13. Effect of berberine on Escherichia coli, Bacillus subtilis, and their mixtures as determined by isothermal microcalorimetry.

    Science.gov (United States)

    Kong, Wei-Jun; Xing, Xiao-Yan; Xiao, Xiao-He; Zhao, Yan-Ling; Wei, Jian-He; Wang, Jia-Bo; Yang, Rui-Chuang; Yang, Mei-Hua

    2012-10-01

    The strong toxicity of pathogenic bacteria has resulted in high levels of morbidity and mortality in the general population. Developing effective antibacterial agents with high efficacy and long activity is in great demand. In this study, the microcalorimetric technique based on heat output of bacterial metabolism was applied to evaluate the effect of berberine on Escherichia coli, Bacillus subtilis, individually and in a mixture of both using a multi-channel microcalorimeter. The differences in shape of the power-time fingerprints and thermokinetic parameters of microorganism growth were compared. The results revealed that low concentration (20 μg/mL) of berberine began to inhibit the growth of E. coli and mixed microorganisms, while promoting the growth of B. subtilis; high concentration of berberine (over 100 μg/mL) inhibited B. subtilis. The endurance of E. coli to berberine was obviously lower than B. subtilis, and E. coli could decrease the endurance of B. subtilis to berberine. The sequence of half-inhibitory concentration (IC(50)) of berberine was: B. subtilis (952.37 μg/mL) > mixed microorganisms (682.47 μg/mL) > E. coli (581.69 μg/mL). Berberine might be a good selection of antibacterial agent used in the future. The microcalorimetric method should be strongly suggested in screening novel antibacterial agents for fighting against pathogenic bacteria. PMID:22878842

  14. Inhibition of Bacillus cereus growth by bacteriocin producing Bacillus subtilis isolated from fermented baobab seeds (maari) is substrate dependent.

    Science.gov (United States)

    Kaboré, Donatien; Nielsen, Dennis Sandris; Sawadogo-Lingani, Hagrétou; Diawara, Bréhima; Dicko, Mamoudou Hama; Jakobsen, Mogens; Thorsen, Line

    2013-03-01

    Maari is a spontaneously alkaline fermented food condiment made from baobab tree seeds. Due to the spontaneous nature of maari fermentations growth of the opportunistic human pathogen Bacillus cereus is occasionally observed. Bacillus subtilis strains are important for alkaline seed fermentations because of their enzymatic activities contributing to desirable texture, flavor and pH development. Some B. subtilis strains have antimicrobial properties against B. cereus. In the present work, three bacteriocin producing B. subtilis strains (B3, B122 and B222) isolated from maari were tested. The production of antimicrobial activity by the three strains was found to be greatly influenced by the substrate. All three B. subtilis strains produced antimicrobial activity against B. cereus NVH391-98 in BHI broth as determined by the agar well diffusion assay, whereas no antimicrobial activity was detected in whole cooked baobab seeds and in 10% (w/v) grinded baobab seeds. Incorporation of BHI with up to 5% (w/w) grinded baobab seeds enhanced the antimicrobial activity of B. subtilis compared with pure BHI in a strain dependent manner. Incorporation of BHI with 50% (w/w) baobab grinded seeds decreased the antimicrobial activity. Addition of the inorganic salts FeCl₃, MgSO₄ and MnSO₄ has previously been reported to increase bacteriocin production of B. subtilis, but the addition of these salts to 10% (w/v) grinded baobab seed broth did not cause antimicrobial activity. Survival of B. cereus NVH391-98 in co-culture with B. subtilis was tested in BHI broth, 10% (w/v) grinded baobab seed based broth and during baobab seed fermentation to produce maari. B. cereus NVH391-98 grew well in all three substrates in mono-culture. All the 3 B. subtilis strains were able to decrease B. cereus NVH391-98 to levels below the detection limit (starter culture candidates originating from maari which are able to prevent pathogen outgrowth remain to be identified. PMID:23376785

  15. Mechanisms of Bacillus spore germination and inactivation during high pressure processing

    OpenAIRE

    Reineke, Kai

    2013-01-01

    Hochdruck in Kombination mit hohen Prozesstemperaturen ermöglicht es, hochwertige sterile Lebensmittel herzustellen. Da unter anderem die Inaktivierungsmechanismen bakterieller Sporen nicht vollständig geklärt sind, wird diese Technologie bisher noch nicht industriell verwendet. Ziel der Arbeit war es, das Keimungs- und Inaktivierungsverhalten von Bacillus subtilis Sporen sowie von isogenen mutierten Stämmen, denen ein Teil des Keimungsmechanismus fehlt, in einem großen Druck-Temperatur-Zeitb...

  16. Cloning of the Bacillus subtilis recE+ gene and functional expression of recE+ in B. subtilis

    International Nuclear Information System (INIS)

    By use of the Bacillus subtilis bacteriophage cloning vehicle Phi 105J23, B. subtilis chromosomal MboI fragments have been cloned that alleviate the pleiotropic effects of the recE4 mutation. The recombinant bacteriophages Phi 105Rec Phi1 (3.85-kilobase insert) and Phi 105Rec Phi4 (3.3-kilobase insert) both conferred on the recE4 strain YB1015 resistance to ethylmethane sulfonate, methylmethane sulfonate, mitomycin C, and UV irradiation comparable with the resistance observed in recE+ strains. While strain YB1015 (recE4) and its derivatives lysogenized with bacteriophage Phi105J23 were not transformed to prototrophy by B. subtilis chromosomal DNA, strain YB1015 lysogenized with either Phi 105Rec Phi 1 or Phi 105RecPhi 4 was susceptible to transformation with homologous B. subtilis chromosomal DNA. The heteroimmune prophages Phi 105 and SPO2 were essentially uninducible in strain YB1015. Significantly, both recombinant prophages Phi 105RecPhi 1 and Phi 105Rec Phi 4 were fully inducible and allowed the spontaneous and mitomycin C-dependent induction of a coresident SPO2 prophage in a recE4 host. The presence of the recombinant prophages also restored the ability of din genes to be induced in strains carrying the recE4 mutation. Finally, both recombinant bacteriophages elaborated a mitomycin C-inducible, 45-kilodalton protein that was immunoreactive with Escherichia coli recA+ gene product antibodies. Collectively, these data demonstrate that the recE+ gene has been cloned and that this gene elaborates the 45-kilodalton protein that is involved in SOB induction and homologous recombination

  17. Isolation and characterization of Bacillus subtilis genes involved in siderophore biosynthesis: relationship between B. subtilis sfpo and Escherichia coli entD genes.

    OpenAIRE

    Grossman, T H; Tuckman, M; Ellestad, S; Osburne, M S

    1993-01-01

    In response to iron deprivation, Bacillus subtilis secretes a catecholic siderophore, 2,3-dihydroxybenzoyl glycine, which is similar to the precursor of the Escherichia coli siderophore enterobactin. We isolated two sets of B. subtilis DNA sequences that complemented the mutations of several E. coli siderophore-deficient (ent) mutants with defective enterobactin biosynthesis enzymes. One set contained DNA sequences that complemented only an entD mutation. The second set contained DNA sequence...

  18. Engineering of Bacillus subtilis 168 for increased nisin resistance

    DEFF Research Database (Denmark)

    Hansen, Mette; Wangari, Romilda; Hansen, Egon Bech;

    2009-01-01

    Nisin is a natural bacteriocin produced commercially by Lactococcus lactis and widely used in the food industry as a preservative because of its broad host spectrum. Despite the low productivity and troublesome fermentation of L. lactis, no alternative cost-effective host has yet been found...... to overcome the nisin sensitivity of B. subtilis by introducing the nisin resistance genes nisFEG and nisI from L. lactis under the control of a synthetic promoter library....

  19. ABILITY OF BACTERIAL CONSORTIUM: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp. and Pseudomonas putida IN BIOREMEDIATION OF WASTE WATER IN CISIRUNG WASTE WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Ratu SAFITRI

    2015-10-01

    Full Text Available This study was conducted in order to determine the ability of bacterial consortium: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp., and Pseudomonas putida in bioremediation of wastewater origin Cisirung WWTP. This study uses an experimental method completely randomized design (CRD, which consists of two treatment factors (8x8 factorial design. The first factor is a consortium of bacteria (K, consisting of 8 level factors (k1, k2, k3, k4, k5, k6, k7, and k8. The second factor is the time (T, consisting of a 7 level factors (t0, t1, t2, t3, t4, t5, t6, and t7. Test parameters consist of BOD (Biochemical Oxygen Demand, COD (Chemical Oxygen Demand, TSS (Total Suspended Solid, Ammonia and Population of Microbes during bioremediation. Data were analyzed by ANOVA, followed by Duncan test. The results of this study showed that the consortium of Bacillus pumilus, Bacillus subtilis, Bacillus coagulans, Nitrosomonas sp., and Pseudomonas putida with inoculum concentration of 5% (k6 is a consortium of the most effective in reducing BOD 71.93%, 64.30% COD, TSS 94.85%, and 88.58% of ammonia.

  20. Effects of salinomycin and Bacillus subtilis on growth performance and immune responses in broiler chickens.

    Science.gov (United States)

    Lee, Kyung-Woo; Lillehoj, Hyun S; Jang, Seung I; Lee, Sung-Hyen

    2014-10-01

    The present study was undertaken to compare the effect of salinomycin and Bacillus subtilis on growth performance, serum antibody levels against Clostridium spp. and Eimeria spp., and cytokine mRNA expression levels in broiler chickens raised in the used litter. Broiler chickens fed a diet containing salinomycin showed lower (P chickens fed the B. subtilis-enriched diet compared with those on either the salinomycin-fed or control diet-fed chickens. None of the dietary treatments affected (P > 0.05) serum antibody levels against Clostridium perfringens toxins. Both salinomycin and B.subtilis significantly lowered (P chickens. Further study is warranted to investigate the mode of action of salinomycin on host immune response and growth performance in broiler chickens. PMID:25135491

  1. Adsorption of Cu2+, Zn2+ and Cd2+ on Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A process of biosorption of Cu2+, Zn2+ and Cd2+ on Bacillus subtilis was investigated.The experiments show that the process of biosorption is quite fast. The maximum adsorption was reached after 5 min and hardly changed with time. The experimental data was analyzed using four sorption kinetic models: the pseudo-first-order, the Ritchie second-order, the modified second-order and the Elovich equations, which helped to determine the best-fit equation for the sorption of metal ions onto biomass. The results show that both the Ritchie second-order and modified secondorder equations can fit the experimental data. The Langmuir model is able to accurately describe adsorption of Cu2+ and Zn2+ on B. subtilis. The experimental data points of adsorption Cd2+ and Zn2+ on B. subtilis are described by Freundlich isotherms model.

  2. Transcriptome analysis documents induced competence of Bacillus subtilis during nitrogen limiting conditions

    DEFF Research Database (Denmark)

    Jarmer, Hanne Østergaard; Berka, R.; Knudsen, Steen;

    2002-01-01

    DNA microarrays were used to analyze the changes in gene expression in Bacillus subtilis strain 168 when nitrogen limiting (glutamate) and nitrogen excess (ammonium plus glutamate) growth conditions were compared. Among more than 100 genes that were significantly induced during nitrogen starvation...... we detected the comG, comF, comE, nin-nucA and comK transcription units together with recA. DNA was added to B. subtilis grown in minimal medium with glutamate as the sole nitrogen source and it was demonstrated that the cells were competent. Based on these observations we propose a simplification of...... previously designed one-step transformation procedures for B. subtilis strain 168....

  3. Study on mutagenic breeding of bacillus subtilis and properties of its antifungal substances

    International Nuclear Information System (INIS)

    Bacillus subtilis JA isolated by our laboratory produced a large amount of antifungal substances, which had strong inhibitory activity against various plant pathogenic fungi, such as Rhizoctonia solani, Fusarium graminearum and so on. Ion beam implantation as a new mutagenic methods was applied in our study. After B. subtilis JA was implanted by N+ ions, a strain designated as B. Subtilis JA-026 was screened and obtained, which had a higher ability to produce those antifungal substances. A series of experiments indicated that the antifungal substances were thermostable and partially sensitive to proteinases K and tryproteinase. When the fermentating broth was fractionated with ammonium sulphate of a final saturation of 70%, the precipitate enhanced inhibitory activity while the supernatant lost this activity. It appeared that the antifungal substances were likely to be protein. (authors)

  4. Structural and genetic analyses of a par locus that regulates plasmid partition in Bacillus subtilis.

    OpenAIRE

    Chang, S.; Chang, S Y; Gray, O

    1987-01-01

    The Bacillus plasmid pLS11 partitions faithfully during cell division. Using a partition-deficient plasmid vector, we randomly cloned DNA fragments of plasmid pLS11 and identified the locus that regulates plasmid partition (par) by cis complementation in Bacillus subtilis. The cloned par gene conferred upon the vector plasmid a high degree of segregational stability. The par locus was mapped to a 167-base-pair segment on pLS11, and its nucleotide sequence was determined. The cloned par fragme...

  5. ISOLATION OF THE ANTIMICROBIAL CYCLIC PEPTIDE SUBTILOSIN A FROM A GUT-ASSOCIATED BACILLUS SUBTILIS STRAIN

    Directory of Open Access Journals (Sweden)

    Ghislain Schyns

    2013-01-01

    Full Text Available The endospore-forming Bacillus subtilis has been used as probiotics over the last 50 years. However, little is known on how Bacillus spp act in the gut compared to other well-characterized probiotics such as lactic acid bacteria. It is believed that the competitive exclusion of pathogens results from different mode of action notably the production of antimicrobial compounds such as bacteriocins. Here, we report the characterization of the unexpected ability of a gut-associated B. subtilis BSP1 to synthetize the cyclic bacteriocin subtilosin A at high level. Our findings suggest that the BSP1 phenotype could be related, at least in part, to a subsequent increased expression level of the subtilosin A biosynthetic gene cluster sbo-alb in response to a higher activity of the stationery and sporulation master regulator Spo0A.

  6. Improved production, characterization and flocculation properties of poly (-glutamic acid produced from Bacillus Subtilis

    Directory of Open Access Journals (Sweden)

    Bhunia B

    2012-04-01

    Full Text Available Bacillus subtilis 2063 produced extracellular biopolymer whichshowed excellent flocculation activity. The biopolymer wasconfirmed as poly (γ-glutamic acid (PGA by using productcharacterization. HPLC profile showed that molecular weight ofPGA was found to be 5.8×106 Da. Improved production,Characterization and flocculation properties of PGA produced byBacillus species were studied. PGA produced by B. subtilis wasdevoid of any polysaccharides. The flocculating activity wasmarkedly stimulated by the addition of cations. The pH of reaction mixture also influenced the flocculating activity. Glycerol and ammonium chloride were found to be most useful carbon and nitrogen sources. An overall 4.24-fold increase in protease production was achieved in the design medium composed with Glycerol and ammonium chloride as a carbon and nitrogen sources as compared with basal media. PGA production increased significantly with optimized medium (21.42 gl-1 when compared with basal medium (5.06 gl-1.

  7. The Use of Germinants to Potentiate the Sensitivity of Bacillus anthracis Spores to Peracetic Acid.

    Science.gov (United States)

    Celebi, Ozgur; Buyuk, Fatih; Pottage, Tom; Crook, Ant; Hawkey, Suzanna; Cooper, Callum; Bennett, Allan; Sahin, Mitat; Baillie, Leslie

    2016-01-01

    Elimination of Bacillus anthracis spores from the environment is a difficult and costly process due in part to the toxicity of current sporicidal agents. For this reason we investigated the ability of the spore germinants L-alanine (100 mM) and inosine (5 mM) to reduce the concentration of peracetic acid (PAA) required to inactivate B. anthracis spores. While L-alanine significantly enhanced (p = 0.0085) the bactericidal activity of 500 ppm PAA the same was not true for inosine suggesting some form of negative interaction. In contrast the germinant combination proved most effective at 100 ppm PAA (p = 0.0009). To determine if we could achieve similar results in soil we treated soil collected from the burial site of an anthrax infected animal which had been supplemented with spores of the Sterne strain of B. anthracis to increase the level of contamination to 10(4) spores/g. Treatment with germinants followed 1 h later by 5000 ppm PAA eliminated all of the spores. In contrast direct treatment of the animal burial site using this approach delivered using a back pack sprayer had no detectable effect on the level of B. anthracis contamination or on total culturable bacterial numbers over the course of the experiment. It did trigger a significant, but temporary, reduction (p < 0.0001) in the total spore count suggesting that germination had been triggered under real world conditions. In conclusion, we have shown that the application of germinants increase the sensitivity of bacterial spores to PAA. While the results of the single field trial were inconclusive, the study highlighted the potential of this approach and the challenges faced when attempting to perform real world studies on B. anthracis spores contaminated sites. PMID:26858699

  8. The Use of Germinants to Potentiate the Sensitivity of Bacillus anthracis Spores to Peracetic Acid

    Science.gov (United States)

    Celebi, Ozgur; Buyuk, Fatih; Pottage, Tom; Crook, Ant; Hawkey, Suzanna; Cooper, Callum; Bennett, Allan; Sahin, Mitat; Baillie, Leslie

    2016-01-01

    Elimination of Bacillus anthracis spores from the environment is a difficult and costly process due in part to the toxicity of current sporicidal agents. For this reason we investigated the ability of the spore germinants L-alanine (100 mM) and inosine (5 mM) to reduce the concentration of peracetic acid (PAA) required to inactivate B. anthracis spores. While L-alanine significantly enhanced (p = 0.0085) the bactericidal activity of 500 ppm PAA the same was not true for inosine suggesting some form of negative interaction. In contrast the germinant combination proved most effective at 100 ppm PAA (p = 0.0009). To determine if we could achieve similar results in soil we treated soil collected from the burial site of an anthrax infected animal which had been supplemented with spores of the Sterne strain of B. anthracis to increase the level of contamination to 104 spores/g. Treatment with germinants followed 1 h later by 5000 ppm PAA eliminated all of the spores. In contrast direct treatment of the animal burial site using this approach delivered using a back pack sprayer had no detectable effect on the level of B. anthracis contamination or on total culturable bacterial numbers over the course of the experiment. It did trigger a significant, but temporary, reduction (p < 0.0001) in the total spore count suggesting that germination had been triggered under real world conditions. In conclusion, we have shown that the application of germinants increase the sensitivity of bacterial spores to PAA. While the results of the single field trial were inconclusive, the study highlighted the potential of this approach and the challenges faced when attempting to perform real world studies on B. anthracis spores contaminated sites. PMID:26858699

  9. Influence of phosphate supply on teichoic acid and teichuronic acid content of Bacillus subtilis cell walls.

    OpenAIRE

    Lang, W K; Glassey, K; Archibald, A R

    1982-01-01

    Bacillus subtilis 168 was grown in chemostat culture in fully defined media containing a constant concentration of magnesium and concentrations of phosphate that varied from those giving phosphate-limited growth to those in which phosphate was present in excess and magnesium was limiting. Phosphate-limited bacteria were deficient in wall teichoic acid and contained less than half as much cellular phosphate as did bacteria grown in excess of phosphate. Approximately 70% of the additional phosp...

  10. Sigma factors, asymmetry, and the determination of cell fate in Bacillus subtilis.

    OpenAIRE

    Lewis, P J; Partridge, S R; Errington, J

    1994-01-01

    Soon after the initiation of sporulation, Bacillus subtilis divides asymmetrically to produce sister cells that have very different developmental fates. Recently, it has been proposed that the differential gene expression which begins soon after this division is due to cell-specific activation of the transcription factors sigma F and sigma E in the prespore and the mother cell, respectively. We describe the use of a method for the localization of gene expression in individual sporulating cell...

  11. Ehanced oil recovery under simulated reservoir conditions using an indigenous Bacillus subtilis strain

    OpenAIRE

    Gudiña, Eduardo J.; Pereira, Jorge F. B.; Costa, A R; L. R. Rodrigues; Coutinho, J.A.P.; J.A. Teixeira

    2013-01-01

    Microbial Enhanced Oil Recovery (MEOR) is potentially useful to increment oil recovery from reservoirs beyond primary and secondary recovery operations using microorganisms and their metabolites. In situ stimulation of microorganisms that produce biosurfactants and degrade heavy oil fractions reduces the capillary forces that retain the oil inside the reservoir and decreases oil viscosity, thus promoting its flow and increasing oil production. Bacillus subtilis #573, isolated from crude oil s...

  12. Microbial enhanced oil recovery by Bacillus subtilis strains under simulated reservoir conditions

    OpenAIRE

    Gudiña, Eduardo J.; L. R. Rodrigues; J.A. Teixeira; Pereira, J. F.; Coutinho, J.A.P.; Soares, L. P.; Ribeiro, M. T.

    2012-01-01

    Microbial Enhanced Oil Recovery (MEOR) is a tertiary oil recovery process in which microorganisms and their metabolites are used to retrieve unrecoverable oil from mature reservoirs. Stimulation of microorganisms that produce biosurfactants and degrade heavy oil fractions in situ reduces the capillary forces that retain the oil into the reservoir and decreases oil viscosity, thus promoting its flow. As a result, oil production can be increased. In previous work, Bacillus subtilis strains that...

  13. Plasmid marker rescue transformation proceeds by breakage-reunion in Bacillus subtilis.

    OpenAIRE

    Weinrauch, Y; Dubnau, D

    1987-01-01

    Bacillus subtilis carrying a plasmid which replicates with a copy number of about 1 was transformed with linearized homologous plasmid DNA labeled with the heavy isotopes 2H and 15N, in the presence of 32Pi and 6-(p-hydroxyphenylazo)-uracil to inhibit DNA replication. Plasmid DNA was isolated from the transformed culture and fractionated in cesium chloride density gradients. The distribution of total and donor plasmid DNA was examined, using specific hybridization probes. The synthesis of new...

  14. Amplification, Sequencing and Cloning of Iranian Native Bacillus subtilis Alpha-amylase Gene in Saccharomyces cerevisiae

    OpenAIRE

    Fahimeh Afzal-Javan; Mohsen Mobini-Dehkordi

    2013-01-01

    Background: Alpha-amylases are digestive enzymes which hydrolyze starch glycosidic bonds to glucose, maltose, maltotriose and dextrin which have diverse applications in a wide range of industries such as food, textile, paper, detergents representing approximately 30% of the world enzyme production.Objectives: In this study, the gene encoding the alpha-amylase enzyme of native isolated Bacillus subtilis was amplified with specific primers containing of NotI and AscI restriction sites by PCR and...

  15. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm

    OpenAIRE

    Hobley, Laura; Ostrowski, Adam; Rao, Francesco V.; Bromley, Keith M.; Porter, Michael; Prescott, Alan R.; MacPhee, Cait E.; van Aalten, Daan M F; Nicola R. Stanley-Wall

    2013-01-01

    Biofilms represent the predominant mode of microbial growth in the natural environment. Bacillus subtilis is a ubiquitous Gram-positive soil bacterium that functions as an effective plant growth-promoting agent. The biofilm matrix is composed of an exopolysaccharide and an amyloid fiber-forming protein, TasA, and assembles with the aid of a small secreted protein, BslA. Here we show that natively synthesized and secreted BslA forms surface layers around the biofilm. Biophysical analysis demon...

  16. Peptidoglycan Synthesis in the Absence of Class A Penicillin-Binding Proteins in Bacillus subtilis

    OpenAIRE

    McPherson, Derrell C.; Popham, David L.

    2003-01-01

    Penicillin-binding proteins (PBPs) catalyze the final, essential reactions of peptidoglycan synthesis. Three classes of PBPs catalyze either trans-, endo-, or carboxypeptidase activities on the peptidoglycan peptide side chains. Only the class A high-molecular-weight PBPs have clearly demonstrated glycosyltransferase activities that polymerize the glycan strands, and in some species these proteins have been shown to be essential. The Bacillus subtilis genome sequence contains four genes encod...

  17. Small Regulatory RNA-Induced Growth Rate Heterogeneity of Bacillus subtilis

    OpenAIRE

    Mars, Ruben A. T.; Nicolas, Pierre; Ciccolini, Mariano; Reilman, Ewoud; Reder, Alexander; Schaffer, Marc; Maeder, Ulrike; Voelker, Uwe; van Dijl, Jan Maarten; Denham, Emma L.

    2015-01-01

    Author Summary Bacterial cells that share the same genetic information can display very different phenotypes, even if they grow under identical conditions. Despite the relevance of this population heterogeneity for processes like drug resistance and development, the molecular players that induce heterogenic phenotypes are often not known. Here we report that in the Gram-positive model bacterium Bacillus subtilis a small regulatory RNA (sRNA) can induce heterogeneity in growth rates by increas...

  18. Multiple response optimization of Bacillus subtilis EA-CB0015 culture and identification of antifungal metabolites

    OpenAIRE

    Ord??z, Sergio; Mosquera, Sandra; Gonz??lez Jaramillo, Lina Mar??a; Villegas Escobar, Valeska

    2014-01-01

    The low yields of biomass and antimicrobial metabolites obtained in fermentation processes are limiting factors for implementing biological control agents in the field -- In this context, optimization of the culture medium for the biological control agent Bacillus subtilis EA-CB0015 was conducted in submerged culture to maximize the biomass production and antifungal activity -- Additionally, the active metabolites against the phytopathogen Mycosphaerella fijiensis produced under optimized con...

  19. Biomechanics of bacterial walls: studies of bacterial thread made from Bacillus subtilis.

    OpenAIRE

    Thwaites, J J; Mendelson, N H

    1985-01-01

    Bacterial threads of up to 1 m in length have been produced from filaments of separation-suppressed mutants of Bacillus subtilis. Individual threads may contain 20,000 cellular filaments in parallel alignment. The tensile properties of bacterial threads have been examined by using conventional textile engineering techniques. The kinetics of elongation at constant load are indicative of a viscoelastic material. Both Young's modulus and breaking stress are highly dependent upon relative humidit...

  20. Undecaprenyl Pyrophosphate Involvement in Susceptibility of Bacillus subtilis to Rare Earth Elements

    OpenAIRE

    Inaoka, Takashi; Ochi, Kozo

    2012-01-01

    The rare earth element scandium has weak antibacterial potency. We identified a mutation responsible for a scandium-resistant phenotype in Bacillus subtilis. This mutation was found within the uppS gene, which encodes undecaprenyl pyrophosphate synthase, and designated uppS86 (for the Thr-to-Ile amino acid substitution at residue 86 of undecaprenyl pyrophosphate synthase). The uppS86 mutation also gave rise to increased resistance to bacitracin, which prevents cell wall synthesis by inhibitin...

  1. Identification of host genes that affect acquisition of an integrative and conjugative element in Bacillus subtilis

    OpenAIRE

    Johnson, Christopher M; Grossman, Alan D.

    2014-01-01

    Conjugation, a major type of horizontal gene transfer in bacteria, involves transfer of DNA from a donor to a recipient using donor-encoded conjugation machinery. Using a high throughput screen (Tn-seq), we identified genes in recipients that contribute to acquisition of the integrative and conjugative element ICEBs1 by Bacillus subtilis. We found that null mutations in some genes caused an increase, and others a decrease in conjugation efficiency. Some mutations affected conjugation only whe...

  2. Bacillithiol is a major buffer of the labile zinc pool in Bacillus subtilis

    OpenAIRE

    Ma, Zhen; Chandrangsu, Pete; Helmann, Tyler C.; Romsang, Adisak; Gaballa, Ahmed; Helmann, John D.

    2014-01-01

    Intracellular zinc levels are tightly regulated since zinc is an essential cofactor for numerous enzymes, yet can be toxic when present in excess. The majority of intracellular zinc is tightly associated with proteins and is incorporated during synthesis from a poorly defined pool of kinetically labile zinc. In Bacillus subtilis, this labile pool is sensed by equilibration with the metalloregulator Zur, as an indication of zinc sufficiency, and by CzrA, as an indication of zinc excess. Here, ...

  3. Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system.

    OpenAIRE

    Neyfakh, A A; Bidnenko, V E; L. B. CHEN

    1991-01-01

    Bacillus subtilis cells selected for their resistance to rhodamine 6G demonstrated a multidrug-resistance (MDR) phenotype resembling that of mammalian MDR cells. Like MDR in mammalian cells, MDR in bacteria was mediated by the efflux of the drugs from the cells. The bacterial multidrug efflux system transported similar drugs and was sensitive to similar inhibitors as the mammalian multidrug transporter, P-glycoprotein. The gene coding for the bacterial multidrug transporter, like the P-glycop...

  4. Five new amicoumacins isolated from a marine-derived Bacterium bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2012-02-03

    Four novel amicoumacins, namely lipoamicoumacins A-D (1-4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature. 2012 by the authors; licensee MDPI.

  5. Crystallization of the Effector-Binding Domain of Repressor DeoR from Bacillus subtilis

    Czech Academy of Sciences Publication Activity Database

    Písačková, Jana; Procházková, Kateřina; Fábry, Milan; Řezáčová, Pavlína

    2013-01-01

    Roč. 13, č. 2 (2013), s. 844-848. ISSN 1528-7483 R&D Projects: GA MŠk ME08016; GA MŠk(CZ) LK11205; GA ČR GA203/09/0820 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z40550506 Keywords : X-ray crystallography * deoxyribonucleoside regulator * Bacillus subtilis * thermofluor assay Subject RIV: CE - Biochemistry Impact factor: 4.558, year: 2013

  6. Isolation and characterization of a novel extracellular metalloprotease from Bacillus subtilis.

    OpenAIRE

    Rufo, G A; Sullivan, B J; Sloma, A; Pero, J

    1990-01-01

    We have isolated and characterized two minor extracellular proteases from culture supernatants of a strain of Bacillus subtilis containing deletion mutations of the genes for the extracellular proteases subtilisin (apr) and neutral protease (npr) and a minor extracellular protease (epr) as well as intracellular serine protease-I (isp-1). Characterization studies have revealed that one of these enzymes is the previously described protease bacillopeptidase F. The second enzyme, the subject of t...

  7. Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms

    OpenAIRE

    Cairns, Lynne S; Hobley, Laura; Stanley-Wall, Nicola R.

    2014-01-01

    Biofilm formation is a social behaviour that generates favourable conditions for sustained survival in the natural environment. For the Gram-positive bacterium Bacillus subtilis the process involves the differentiation of cell fate within an isogenic population and the production of communal goods that form the biofilm matrix. Here we review recent progress in understanding the regulatory pathways that control biofilm formation and highlight developments in understanding the composition, func...

  8. Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms.

    Science.gov (United States)

    Cairns, Lynne S; Hobley, Laura; Stanley-Wall, Nicola R

    2014-08-01

    Biofilm formation is a social behaviour that generates favourable conditions for sustained survival in the natural environment. For the Gram-positive bacterium Bacillus subtilis the process involves the differentiation of cell fate within an isogenic population and the production of communal goods that form the biofilm matrix. Here we review recent progress in understanding the regulatory pathways that control biofilm formation and highlight developments in understanding the composition, function and structure of the biofilm matrix. PMID:24988880

  9. Cucumber Rhizosphere Microbial Community Response to Biocontrol Agent Bacillus subtilis B068150

    OpenAIRE

    Lihua Li; Jincai Ma; A. Mark Ibekwe; Qi Wang; Ching-Hong Yang

    2015-01-01

    Gram-positive bacteria Bacillus subtilis B068150 has been used as a biocontrol agent against the pathogen Fusarium oxysporum cucumerinum. Cucumber was grown in three soils with strain B068150 inoculated in a greenhouse for 90 days, and the colonization ability of strain B068150 in cucumber rhizosphere and non-rhizosphere soils was determined. Changes in total bacteria and fungi community composition and structures using denaturing gradient gel electrophoresis (DGGE) and sequencing were determ...

  10. On the effect of N-methyl-bis (3-mesyloxypropyl) amine hydroxychloride on Bacillus subtilis cells.

    Science.gov (United States)

    Shimi, I R; Shoukry, S

    1975-06-01

    N-Methyl-bis (3-mesyloxypropyl)amine hydrochloride is now in use as an antitumer drug. In view of its activity against some bacteria the present work was conducted to study its mode of action of Bacillus subtilis. The compound was found to induce irreversible damage to bacterial DNA whereas its effect on RNA was temporary and depending on maintenance of effective concentrations of the compound. PMID:168172

  11. Differential Actions of Chlorhexidine on the Cell Wall of Bacillus subtilis and Escherichia coli

    OpenAIRE

    Cheung, Hon-Yeung; Wong, Matthew Man-Kin; Cheung, Sau-Ha; Liang, Longman Yimin; Lam, Yun-Wah; Chiu, Sung-Kay

    2012-01-01

    Chlorhexidine is a chlorinated phenolic disinfectant used commonly in mouthwash for its action against bacteria. However, a comparative study of the action of chlorhexidine on the cell morphology of Gram-positive and Gram-negative bacteria is lacking. In this study, the actions of chlorhexidine on the cell morphology were identified with the aids of electron microscopy. After exposure to chlorhexidine, numerous spots of indentation on the cell wall were found in both Bacillus subtilis and Esc...

  12. REMOVAL OF PHOSPHATE FROM RHIZOSPHERE SOIL USING Bacillus subtilis AND Enterobacter aerogenes

    Directory of Open Access Journals (Sweden)

    Andrew J.

    2014-03-01

    Full Text Available The addition of phosphorus is one of the major environmental problems because of its leading contribution to the increased eutrophication process of lakes and other natural waters. The eutrophication is the process where excessive nutrients in a lake or other body of water usually caused by runoff of nutrients (animal waste, fertilizers, and sewage from the land which causes a dense growth of plant life, the decomposition of the plants depletes the supply of oxygen which leads to the death of animal life. Microbial process is widely used for the removal of phosphorus from soil and wastewater to avoid eutrophication. The most efficient phosphate reducers chosen were namely Bacillus subtilis and Enterobacter aerogenes. The Mineral Salt Medium and the carbon sources (glucose, sucrose, lactose and starch at 0.5% and 0.7% were prepared. On the removal of phosphate by Bacillus subtilis and Enterobacter aerogenes it was found that the Bacillus subtilis was giving the maximum bacterial growth and was observed to be in lactose 0.107 OD at 0.7% concentration for 72th hour. In the case of Enterobacter aerogenes the maximum bacterial growth was found to be in sucrose 0.133 OD at 0.7% concentration at 72 hr. The pH change in the medium was found to be in both the isolates with different carbon sources but in overall the constant pH was at 7. Among the two organisms, Bacillus subtilis showed the maximum removal of phosphate 83% as starch as carbon source at 0.5% concentration whereas Enterobacter aerogenes showed 77.4% of phosphate removal at 0.5% concentration as glucose as carbon source. Therefore, these bacterial isolates can be used in the remediation of phosphate contaminated environments.

  13. Biosynthesis of hydrolytic enzymes of UV-mutants of Bacillus subtilis B-3 strain

    International Nuclear Information System (INIS)

    The studies were carried out on 12 UV-mutants of Bacillus subtilis B-3 which synthesize from 18 to 105% more hydrolytic enzymes (proteinases, amylases, cellulases and lipases) than the wild strain. After 5 years' storage of the mutants, a 26-fold increase in amylase biosynthesis was observed for a G7 UV-mutant. This mutant showed also other phenotypic differences. The increased ability of mutant G7 to synthesize amylases was controlled by the maltose-substrate induction. (author)

  14. Cell division of cycle of Bacillus subtilis: evidence of variability in period D.

    OpenAIRE

    Holmes, M.; Rickert, M; Pierucci, O

    1980-01-01

    In Bacillus subtilis the deoxyribonucleic acid content and the extent of cell division during inhibition of chromosome replication increased as a function of the average cell mass, independent of the growth rate. At each growth rate, mass, deoxyribonucleic acid, and residual division varied in different cultures. The variation is consistent with a large variability in the D period. At growth rates higher than 1.5 doublings per h at 37 degrees C, the change in D accounts for the growth rate de...

  15. Cell wall synthesis and initiation of deoxyribonucleic acid replication in Bacillus subtilis.

    OpenAIRE

    Sandler, N.; Keynan, A

    1981-01-01

    We have observed a connection between cell wall synthesis and the initiation of chromosome replication in Bacillus subtilis. Initiation of chromosome replication was prevented in synchronous cultures in the presence of the cell wall synthesis inhibitor vancomycin. When vancomycin was added to the cultures after initiation of chromosome replication, one round of replication was completed but no reinitiation occurred. Similar results were obtained when cell wall synthesis was inhibited by risto...

  16. Scale-down and parallel operation of a riboflavin production process with Bacillus subtilis

    OpenAIRE

    Knorr, Bettina

    2007-01-01

    Novel parallel bioreactor systems at a milliliter scale were recently developed for the design and improvement of biological cultivations. The objective of this work was to identify the reaction parameters that were necessary for a representative scale-down of an industrial manufacturing process to be carried out with the new technology. The process for the production of riboflavin with Bacillus subtilis, operated in a controlled fed-batch mode, served as an example for investigations in stir...

  17. Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells.

    OpenAIRE

    O'Hara, M B; Hageman, J H

    1990-01-01

    Bacterial cells degrade intracellular proteins at elevated rates during starvation and can selectively degrade proteins by energy-dependent processes. Sporulating bacteria can degrade protein with apparent first-order rate constants of over 0.20 h-1. We have shown, with an optimized [14C]leucine-labeling and chasing procedure, in a chemically defined sporulation medium, that intracellular protein degradation in sporulating cells of Bacillus subtilis 168 (trpC2) is apparently energy dependent....

  18. Production and Characteristics of Raw-Potato-Starch-Digesting α-Amylase from Bacillus subtilis 65

    OpenAIRE

    Hayashida, Shinsaku; Teramoto, Yuji; Inoue, Takehiro

    1988-01-01

    A newly isolated bacterium, identified as Bacillus subtilis 65, was found to produce raw-starch-digesting α-amylase. The electrophoretically homogeneous preparation of enzyme (molecular weight, 68,000) digested and solubilized raw corn starch to glucose and maltose with small amounts of maltooligosaccharides ranging from maltotriose to maltoheptaose. This enzyme was different from other amylases and could digest raw potato starch almost as fast as it could corn starch, but it showed no adsorb...

  19. Rapid isolation and sequencing of purified plasmid DNA from Bacillus subtilis.

    OpenAIRE

    Voskuil, M. I.; Chambliss, G H

    1993-01-01

    We report two methods for isolation of plasmid DNA from the gram-positive bacterium Bacillus subtilis. The protoplast alkaline lysis procedure was developed for general use, and the protoplast alkaline lysis magic procedure was developed for isolation of DNA for sequencing. Both procedures yielded large amounts of high-quality DNA in less than 1 h, while current protocols require 4 to 7 h to perform and give lower yields and quality. Plasmid DNA was obtained from strains containing either hig...

  20. Cloning, Sequencing, and Disruption of the Bacillus subtilis psd Gene Coding for Phosphatidylserine Decarboxylase

    OpenAIRE

    Matsumoto, Kouji; Okada, Masahiro; Horikoshi, Yuko; Matsuzaki, Hiroshi; Kishi, Tsutomu; Itaya, Mitsuhiro; Shibuya, Isao

    1998-01-01

    The psd gene of Bacillus subtilis Marburg, encoding phosphatidylserine decarboxylase, has been cloned and sequenced. It encodes a polypeptide of 263 amino acid residues (deduced molecular weight of 29,689) and is located just downstream of pss, the structural gene for phosphatidylserine synthase that catalyzes the preceding reaction in phosphatidylethanolamine synthesis (M. Okada, H. Matsuzaki, I. Shibuya, and K. Matsumoto, J. Bacteriol. 176:7456–7461, 1994). Introduction of a plasmid contain...

  1. Episodic Selection and the Maintenance of Competence and Natural Transformation in Bacillus subtilis

    OpenAIRE

    Johnsen, P. J.; Dubnau, D; Levin, B. R.

    2009-01-01

    We present a new hypothesis for the selective pressures responsible for maintaining natural competence and transformation. Our hypothesis is based in part on the observation that in Bacillus subtilis, where transformation is widespread, competence is associated with periods of nongrowth in otherwise growing populations. As postulated for the phenomenon of persistence, the short-term fitness cost associated with the production of transiently nongrowing bacteria can be compensated for and the c...

  2. Decolourization of 4-chloro-2-nitrophenol by a soil bacterium, Bacillus subtilis RKJ 700.

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    Full Text Available A 4-Chloro-2-nitrophenol (4C2NP decolourizing strain RKJ 700 was isolated from soil collected from a pesticide contaminated site of India and identified as Bacillus subtilis on the basis of the 16S rRNA gene sequence analysis. Bacillus subtilis RKJ 700 decolourized 4C2NP up to concentration of 1.5 mM in the presence of additional carbon source. The degradation pathway of 4C2NP was studied and 4-chloro-2-aminophenol, 4-chloro-2-acetaminophenol and 5-chloro-2-methylbenzoxazole (5C2MBZ were identified as metabolites by high performance liquid chromatography and gas chromatography-mass spectrometry. Resting cell studies showed that Bacillus subtilis RKJ 700 depleted 4C2NP completely with stoichiometric formation of 5C2MBZ. This is the first report of (i the degradation of 4C2NP at high concentration (1.5 mM and, (ii the formation of 5C2MBZ by a soil bacterium.

  3. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2015-03-24

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning plug-and-playa approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  4. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    Science.gov (United States)

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-03-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning ``plug-and-play'' approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  5. Dry heat exposures of surface exposed and embedded Bacillus spores

    Science.gov (United States)

    Schubert, Wayne

    Dry heat microbial reduction (DHMR) is the primary technique used to reduce the microbial load of spacecraft and component parts. Often, manufacturing procedures require heating flight hardware to high temperatures for purposes other than planetary protection DHMR. The existing specifications, however, do not allow for additional planetary protection bioburden reduction credit if the hardware is exposed without controlled relative humidity. The intent of this study was to provide adequate data on the DHMR technique to support modification of four aspects of current requirements; expansion of acceptable time and temperature combinations used for spacecraft dry heat microbial reduction processes above 125° C, determining the effect that humidity has on spore lethality as a function of temperature, understanding the lethality for spores with exceptionally high thermal resistance and to investigate the extended exposure requirement for materials that might contain embedded microorganisms. Spores from two bacterial species were tested, B. atrophaeus ATCC 9372 and B. sp. ATCC 29669, under three conditions encompassing 5 temperature points. Embedded experiments utilized a silicone rubber polymer that is commonly used on robotic spacecraft, and surface exposed experiments were performed under both ambient and vacuum-controlled humidity conditions. The results obtained support the use of DHMR protocols that extend the maximum temperature range from 125° C to 170° C, with either controlled or ambient humidity. If implemented, this will give projects bioburden reduction credit for shorter treatments at extended temperatures, and allow spacecraft to be processed in more readily available and less expensive facilities that do not have humidity control, with significant cost and schedule benefits. The study also demonstrated that the required heating time for materials presumed to have embedded bioburden is conservative.

  6. Study of the catalytic properties of bacillus subtilis proteases Estudio de las propiedades catalíticas de las proteasas bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Salcedo L.

    1998-06-01

    Full Text Available The catalytic properties of proteases isolated from the filtrate of submerged fermentation of Bacillus subtilis were investigated. Proteases present in the filtrate were determined to be of the serine protease type based on the use of specific protease inhibitors; ethylenediamintetraacetic acid (EDTA was used as a metalloprotease inhibitor, and phenylmethylsulfonylfluoride (PMSF was used as a serine protease inhibitor. Protease activity was highly stable in alkaline solutions and at high temperatures as well as in the presence of detergents. We propose that this protease preparation be used as biocomponent in detergent production.Se investigaron las propiedades catalíticas de las proteasas obtenidas del filtrado de cultivo de la bacteria Bacillus subtilis. Utilizando inhibidores específicos de proteasas se determinó que las proteasas presentes en el filtrado pertenecían al grupo de las serina proteasas. Se utilizó ácido etilendiaminatetraacético (EDTA como inhibidor de metaloproteasas, y fenilmetilsulfonil fluoruro (FMSF como inhibidor de serina proteasas. La actividad proteolítica fue altamente estable en soluciones alcalinas y a altas temperaturas, además tolero la presencia de detergentes. Se propone que estas proteasas sean utilizadas en calidad de biocomponente para la producción de detergentes.

  7. Resistance of Bacillus amyloliquefaciens spores to melt extrusion process conditions

    OpenAIRE

    Ciera, Lucy Wanjiru; Beladjal, Lynda; Almeras, Xavier; Gheysens, Tom; Nierstrasz, Vincent; Van Langenhove, Lieva; Mertens, Johan

    2014-01-01

    With the increasing demand for functionalised textile materials, industry is focusing on research that will add novel properties to textiles. Bioactive compounds and their benefits have been and are still considered as a possible source of unique functionalities to be explored. However, incorporating bioactive compounds into textiles and their resistance to textile process parameters has not yet been studied. In this study, we developed a system to study the resistance of Bacillus amyloliquef...

  8. A Study on Effect of different culture media on amylase enzyme production by a native strain of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    ziba Akbari

    2015-12-01

    Full Text Available Introduction: Amylases are among the most important enzymes and have great significance in present-day biotechnology. Amylase with commercial applications is mainly derived from the genus Bacillus. The main purpose of this study is identification and isolatation amylase enzyme producer Bacillus, determining the amylase enzyme activity and affecting a number of culture medium on amylase enzyme production. Materials and methods: Soil, water and wastewater samples were collected from agricultural area, choghakhor lake in chahar mahal e bakhtiari province and from food factory in Esfahan. Bacillus isolates were screened for amylolytic properties by starch hydrolysis test on starch agar plate. Amylase producing Bacillus were identified biochemical tests and molecular experiments. Amylase enzyme activity of isolates was measured using di-nitro salicylic acid (DNS method. Enzyme production was studied in variose medium culture TSB, NB, Yeast extract, molases and milk medium. Results: The enzyme amylase-producing strains, one sample showed was the highest amylase activity. The Bacillus has been detected as a member of Bacillus subtilis according to Bergey's Manual of Systematic Bacteriology and molecular recognition. The enzyme activity of Bacillus subtilis was measured 7/21 (U/ml in production media. Trough medium culture maximum amylase production for Bacillus subtilis was achieved in molases medium. Discussion and conclusion: In this study, Bacillus subtilis strains isolated from wastewater of a significant amount of enzyme producing 7/21 (U/ml as indicated. Among the medium-amylase from Bacillus subtilis highest enzyme activity was observed in beet molasses. According to this study, the use of Bacillus strains is an efficient way to achieve the amylase enzyme.

  9. Two purine nucleoside phosphorylases in Bacillus subtilis. Purification and some properties of the adenosine-specific phosphorylase

    DEFF Research Database (Denmark)

    Jensen, Kaj Frank

    1978-01-01

    Two purine nucleoside phosphorylases (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1) were purified from vegetative Bacillus subtilis cells. One enzyme, inosine-guanosine phosphorylase, showed great similarity to the homologous enzyme of Bacillus cereus. It appeared to be a...

  10. The Exosporium Layer of Bacterial Spores: a Connection to the Environment and the Infected Host.

    Science.gov (United States)

    Stewart, George C

    2015-12-01

    Much of what we know regarding bacterial spore structure and function has been learned from studies of the genetically well-characterized bacterium Bacillus subtilis. Molecular aspects of spore structure, assembly, and function are well defined. However, certain bacteria produce spores with an outer spore layer, the exosporium, which is not present on B. subtilis spores. Our understanding of the composition and biological functions of the exosporium layer is much more limited than that of other aspects of the spore. Because the bacterial spore surface is important for the spore's interactions with the environment, as well as being the site of interaction of the spore with the host's innate immune system in the case of spore-forming bacterial pathogens, the exosporium is worthy of continued investigation. Recent exosporium studies have focused largely on members of the Bacillus cereus family, principally Bacillus anthracis and Bacillus cereus. Our understanding of the composition of the exosporium, the pathway of its assembly, and its role in spore biology is now coming into sharper focus. This review expands on a 2007 review of spore surface layers which provided an excellent conceptual framework of exosporium structure and function (A. O. Henriques and C. P. Moran, Jr., Annu Rev Microbiol 61:555-588, 2007, http://dx.doi.org/10.1146/annurev.micro.61.080706.093224). That review began a process of considering outer spore layers as an integrated, multilayered structure rather than simply regarding the outer spore components as independent parts. PMID:26512126

  11. Characterization of Bacillus subtilis Colony Biofilms via Mass Spectrometry and Fluorescence Imaging.

    Science.gov (United States)

    Si, Tong; Li, Bin; Zhang, Ke; Xu, Yiran; Zhao, Huimin; Sweedler, Jonathan V

    2016-06-01

    Colony biofilms of Bacillus subtilis are a widely used model for studying cellular differentiation. Here, we applied matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to examine cellular and molecular heterogeneity in B. subtilis colony biofilms. From B. subtilis cells cultivated on a biofilm-promoting medium, we detected two cannibalistic factors not found in previous MALDI MSI studies of the same strain under different culturing conditions. Given the importance of cannibalism in matrix formation of B. subtilis biofilms, we employed a transcriptional reporter to monitor matrix-producing cell subpopulations using fluorescence imaging. These two complementary imaging approaches were used to characterize three B. subtilis strains, the wild type isolate NCIB3610, and two mutants, Δspo0A and ΔabrB, with defective and enhanced biofilm phenotypes, respectively. Upon deletion of key transcriptional factors, correlated changes were observed in biofilm morphology, signaling, cannibalistic factor distribution, and matrix-related gene expression, providing new insights on cannibalism in biofilm development. This work underscores the advantages of using multimodal imaging to compare spatial patterns of selected molecules with the associated protein expression patterns, obtaining information on cellular heterogeneity and function not obtainable when using a single method to characterize biofilm formation. PMID:27136705

  12. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Yueju Zhao

    Full Text Available Fusarium graminearum causes Fusarium head blight (FHB, a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI, FHB index and DON (P ≤ 0.05. Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins.

  13. Translation Control of Swarming Proficiency in Bacillus subtilis by 5-Amino-pentanolylated Elongation Factor P.

    Science.gov (United States)

    Rajkovic, Andrei; Hummels, Katherine R; Witzky, Anne; Erickson, Sarah; Gafken, Philip R; Whitelegge, Julian P; Faull, Kym F; Kearns, Daniel B; Ibba, Michael

    2016-05-20

    Elongation factor P (EF-P) accelerates diprolyl synthesis and requires a posttranslational modification to maintain proteostasis. Two phylogenetically distinct EF-P modification pathways have been described and are encoded in the majority of Gram-negative bacteria, but neither is present in Gram-positive bacteria. Prior work suggested that the EF-P-encoding gene (efp) primarily supports Bacillus subtilis swarming differentiation, whereas EF-P in Gram-negative bacteria has a more global housekeeping role, prompting our investigation to determine whether EF-P is modified and how it impacts gene expression in motile cells. We identified a 5-aminopentanol moiety attached to Lys(32) of B. subtilis EF-P that is required for swarming motility. A fluorescent in vivo B. subtilis reporter system identified peptide motifs whose efficient synthesis was most dependent on 5-aminopentanol EF-P. Examination of the B. subtilis genome sequence showed that these EF-P-dependent peptide motifs were represented in flagellar genes. Taken together, these data show that, in B. subtilis, a previously uncharacterized posttranslational modification of EF-P can modulate the synthesis of specific diprolyl motifs present in proteins required for swarming motility. PMID:27002156

  14. Novel Sample Preparation Method for Safe and Rapid Detection of Bacillus anthracis Spores in Environmental Powders and Nasal Swabs

    OpenAIRE

    Luna, Vicki A.; King, Debra; Davis, Carisa; Rycerz, Tony; Ewert, Matthew; Cannons, Andrew; Amuso, Philip; Cattani, Jacqueline

    2003-01-01

    Bacillus anthracis spores have been used as a biological weapon in the United States. We wanted to develop a safe, rapid method of sample preparation that provided safe DNA for the detection of spores in environmental and clinical specimens. Our method reproducibly detects B. anthracis in samples containing

  15. Development of a Rapid and Sensitive Immunoassay for Detection and Subsequent Recovery of Bacillus anthracis Spores in Environmental Samples

    OpenAIRE

    Hang, Jun; Sundaram, Appavu K.; Zhu, Peixuan; Shelton, Daniel R.; Karns, Jeffrey S.; Martin, Phyllis A. W.; Li, Shuhong; Amstutz, Platte; Tang, Cha-Mei

    2008-01-01

    Bacillusanthracis is considered a major threat as an agent of bioterrorism. B. anthracis spores are readily dispersed as aerosols, are very persistent, and are resistant to normal disinfection treatments. Immunoassays have been developed to rapidly detect B. anthracis spores at high concentrations. However, detection of B. anthracis spores at lower concentrations is problematic due to the fact that closely related Bacillus species (e.g., B. thuringiensis) can cross react with anti-B. anthraci...

  16. Lactoferrin and transferrin fragments react with nitrite to form an inhibitor of Bacillus cereus spore outgrowth.

    OpenAIRE

    Custer, M C; Hansen, J N

    1983-01-01

    Tryptone is a pancreatic digest of casein which contains a heterogeneous mixture of substances that react with nitrite when heated in the presence of sodium thioglycolate to form a bacteriostatic agent which inhibits outgrowth of Bacillus cereus T spores. The substances which are precursors to the bacteriostatic agent can be fractionated on the basis of molecular size and charge and have properties which indicate that they are fragments of lactoferrin, an iron-binding glycoprotein. The bacter...

  17. Inactivation of Bacillus anthracis Spores during Laboratory-Scale Composting of Feedlot Cattle Manure

    Science.gov (United States)

    Xu, Shanwei; Harvey, Amanda; Barbieri, Ruth; Reuter, Tim; Stanford, Kim; Amoako, Kingsley K.; Selinger, Leonard B.; McAllister, Tim A.

    2016-01-01

    Anthrax outbreaks in livestock have social, economic and health implications, altering farmer’s livelihoods, impacting trade and posing a zoonotic risk. Our study investigated the survival of Bacillus thuringiensis and B. anthracis spores sporulated at 15, 20, or 37°C, over 33 days of composting. Spores (∼7.5 log10 CFU g-1) were mixed with manure and composted in laboratory scale composters. After 15 days, the compost was mixed and returned to the composter for a second cycle. Temperatures peaked at 71°C on day 2 and remained ≥55°C for an average of 7 days in the first cycle, but did not exceed 55°C in the second. For B. thuringiensis, spores generated at 15 and 21°C exhibited reduced (P < 0.05) viability of 2.7 and 2.6 log10 CFU g-1 respectively, as compared to a 0.6 log10 CFU g-1 reduction for those generated at 37°C. For B. anthracis, sporulation temperature did not impact spore survival as there was a 2.5, 2.2, and 2.8 log10 CFU g-1 reduction after composting for spores generated at 15, 21, and 37°C, respectively. For both species, spore viability declined more rapidly (P < 0.05) in the first as compared to the second composting cycle. Our findings suggest that the duration of thermophilic exposure (≥55°C) is the main factor influencing survival of B. anthracis spores in compost. As sporulation temperature did not influence survival of B. anthracis, composting may lower the viability of spores associated with carcasses infected with B. anthracis over a range of sporulation temperatures. PMID:27303388

  18. Survival of Bacillus pumilus spores for a prolonged period of time in real space conditions.

    Science.gov (United States)

    Vaishampayan, Parag A; Rabbow, Elke; Horneck, Gerda; Venkateswaran, Kasthuri J

    2012-05-01

    To prevent forward contamination and maintain the scientific integrity of future life-detection missions, it is important to characterize and attempt to eliminate terrestrial microorganisms associated with exploratory spacecraft and landing vehicles. Among the organisms isolated from spacecraft-associated surfaces, spores of Bacillus pumilus SAFR-032 exhibited unusually high resistance to decontamination techniques such as UV radiation and peroxide treatment. Subsequently, B. pumilus SAFR-032 was flown to the International Space Station (ISS) and exposed to a variety of space conditions via the European Technology Exposure Facility (EuTEF). After 18 months of exposure in the EXPOSE facility of the European Space Agency (ESA) on EuTEF under dark space conditions, SAFR-032 spores showed 10-40% survivability, whereas a survival rate of 85-100% was observed when these spores were kept aboard the ISS under dark simulated martian atmospheric conditions. In contrast, when UV (>110 nm) was applied on SAFR-032 spores for the same time period and under the same conditions used in EXPOSE, a ∼7-log reduction in viability was observed. A parallel experiment was conducted on Earth with identical samples under simulated space conditions. Spores exposed to ground simulations showed less of a reduction in viability when compared with the "real space" exposed spores (∼3-log reduction in viability for "UV-Mars," and ∼4-log reduction in viability for "UV-Space"). A comparative proteomics analysis indicated that proteins conferring resistant traits (superoxide dismutase) were present in higher concentration in space-exposed spores when compared to controls. Also, the first-generation cells and spores derived from space-exposed samples exhibited elevated UVC resistance when compared with their ground control counterparts. The data generated are important for calculating the probability and mechanisms of microbial survival in space conditions and assessing microbial contaminants

  19. Inactivation of Bacillus anthracis Spores during Laboratory-Scale Composting of Feedlot Cattle Manure.

    Science.gov (United States)

    Xu, Shanwei; Harvey, Amanda; Barbieri, Ruth; Reuter, Tim; Stanford, Kim; Amoako, Kingsley K; Selinger, Leonard B; McAllister, Tim A

    2016-01-01

    Anthrax outbreaks in livestock have social, economic and health implications, altering farmer's livelihoods, impacting trade and posing a zoonotic risk. Our study investigated the survival of Bacillus thuringiensis and B. anthracis spores sporulated at 15, 20, or 37°C, over 33 days of composting. Spores (∼7.5 log10 CFU g(-1)) were mixed with manure and composted in laboratory scale composters. After 15 days, the compost was mixed and returned to the composter for a second cycle. Temperatures peaked at 71°C on day 2 and remained ≥55°C for an average of 7 days in the first cycle, but did not exceed 55°C in the second. For B. thuringiensis, spores generated at 15 and 21°C exhibited reduced (P < 0.05) viability of 2.7 and 2.6 log10 CFU g(-1) respectively, as compared to a 0.6 log10 CFU g(-1) reduction for those generated at 37°C. For B. anthracis, sporulation temperature did not impact spore survival as there was a 2.5, 2.2, and 2.8 log10 CFU g(-1) reduction after composting for spores generated at 15, 21, and 37°C, respectively. For both species, spore viability declined more rapidly (P < 0.05) in the first as compared to the second composting cycle. Our findings suggest that the duration of thermophilic exposure (≥55°C) is the main factor influencing survival of B. anthracis spores in compost. As sporulation temperature did not influence survival of B. anthracis, composting may lower the viability of spores associated with carcasses infected with B. anthracis over a range of sporulation temperatures. PMID:27303388

  20. Evolution of Bacillus subtilis to enhanced hypobaric growth: global alterations in gene expression

    Science.gov (United States)

    Nicholson, Wayne; Robles-Martinez, Jose; Rivas-Castillo, Andrea; Schuerger, Andrew

    Much astrobiology research is concerned with defining the environmental limits for life in the universe. Because Mars currently is the primary target for life detection missions, it is important to understand how terrestrial microbes might survive, proliferate, and evolve in martian envi-ronments. This issue is relevant in three distinct but related contexts: (i) testing panspermia hypotheses [1], (ii) mitigating the forward contamination of Mars [2], and (iii) understanding the molecular mechanisms leading to microbial growth in extreme extraterrestrial environments [3]. Prime candidates for Earth-to-Mars transfer include bacteria of the genus Bacillus, spores of which are significant contaminants of Mars-bound spacecraft and which are considered good candidates for lithopanspermia [1-4]. It is thus relevant to assess the potential for such microbes to survive and proliferate in the martian environment. The martian atmosphere poses a significant barrier to growth of terrestrial microbes, due to its low pressure (1-10 mbar; average 7 mbar) and anoxic (˜95% CO2) composition. In an earlier study [5] we showed that low pressures approaching those found on the surface of Mars exhibited an inhibitory effect on the germination and vegetative growth of several Bacillus spp. isolated from spacecraft or their assembly facilities. Even in an Earth-like 80%N2/20%O2 atmosphere, growth of B. subtilis cells was nearly completely inhibited at pressures below 35 mbar, well above the highest pressure on the martian surface [5]. The purpose of the present investigation was to use low pressure as a selective agent to test the hypothesis that a terrestrial microorganism, Bacillus subtilis, could evolve the ability for enhanced growth under hypobaric conditions approaching those of Mars. B. subtilis wild-type strains WN624 (SpcR) and WN628 (CmR) have been described previously [6] and were used as ancestral strains. Strains were propagated in LB liquid medium containing the appropriate

  1. Characteristics and antimicrobial activity of Bacillus subtilis strains isolated from soil.

    Science.gov (United States)

    Todorova, Sevdalina; Kozhuharova, Lubka

    2010-07-01

    Antagonistic Bacillus strains were isolated from soil and analyzed for the purpose of determining whether they could be used as natural biological agents. Primary in vitro screening for antagonism of the isolates was performed against five phytopathogenic mould fungi. Strains TS 01 and ZR 02 exhibited the most pronounced inhibitory effects. They were identified as Bacillus subtilis on the basis of their morphological, cultural and physiology-biochemical properties as well as their hierarchical cluster analysis conducted by means of computer program SPSS. The antimicrobial activity of the strains from cultural medium and sterile filtrate were determined in vitro against a great number of predominantly phytopathogenic fungi and bacteria. TS 01 and ZR 02 strains exhibited very broad and at the same time degree varying antibiotic spectra of activities against both Gram-positive and Gram-negative microorganisms. Many of them were tested against sensitivity to the antimicrobial action of B. subtilis for the very first time. B. subtilis TS 01 and ZR 02 showed highest antifungal activity (sterile zone in diameter over 37 mm) against Alternaria solani, Botrytis cinerea, Monilia linhartiana 869, Phytophthora cryptogea 759/1 and Rhizoctonia sp. The most sensitive bacterial species were found to be Pseudomonas syringae pv. tomato Ro and Xanthomonas campestris with sterile zones 48.0 and 50.0 mm in diameter, respectively. The latter draws a conclusion that the isolated and identified Bacillus subtilis strains are promising natural biocontrol agents and should be further studied and tested for control of numerous plant diseases. PMID:24026925

  2. Increased resistance to detachment of adherent microspheres and Bacillus spores subjected to a drying step.

    Science.gov (United States)

    Faille, Christine; Bihi, Ilyesse; Ronse, Annette; Ronse, Gilles; Baudoin, Michael; Zoueshtiagh, Farzam

    2016-07-01

    In various environments, including that of food processing, adherent bacteria are often subjected to drying conditions. These conditions have been shown to result in changes in the ability of biofilms to cross-contaminate food in contact with them. In this study, we investigated the consequences of a drying step on the further ability of adherent bacterial spores to resist detachment. An initial series of experiment was set up with latex microspheres as a model. A microsphere suspension was deposited on a glass slide and incubated at 25, 35 and 50°C for times ranging from 1h to 48h. By subjecting the dried slides to increasing water flow rates, we showed that both time and temperature affected the ease of microsphere detachment. Similar observations were made for three Bacillus spores despite differences in their surface properties, especially regarding their surface physicochemistry. The differences in ease of adherent spore detachment could not be clearly linked to the minor changes in spore morphology, observed after drying in various environmental conditions. In order to explain the increased interaction between spheres or spores and glass slides, the authors made several assumptions regarding the possible underlying mechanisms: the shape of the liquid bridge between the sphere and the substratum, which is greatly influenced by the hydrophilic/hydrophobic characters of both surfaces; the accumulation of soil at the liquid/air interface; the presence of trapped nano-bubbles around and/or under the sphere. PMID:27022869

  3. Modeling curvature-dependent subcellular localization of a small sporulation protein in Bacillus subtilis

    Science.gov (United States)

    Wasnik, Vaibhav; Wingreen, Ned; Mukhopadhyay, Ranjan

    2012-02-01

    Recent experiments suggest that in the bacterium, B. subtilis, the cue for the localization of small sporulation protein, SpoVM, that plays a central role in spore coat formation, is curvature of the bacterial plasma membrane. This curvature-dependent localization is puzzling given the orders of magnitude difference in lengthscale of an individual protein and radius of curvature of the membrane. Here we develop a minimal model to study the relationship between curvature-dependent membrane absorption of SpoVM and clustering of membrane-associated SpoVM and compare our results with experiments.

  4. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.

  5. Salt-sensitivity of σ(H) and Spo0A prevents sporulation of Bacillus subtilis at high osmolarity avoiding death during cellular differentiation.

    Science.gov (United States)

    Widderich, Nils; Rodrigues, Christopher D A; Commichau, Fabian M; Fischer, Kathleen E; Ramirez-Guadiana, Fernando H; Rudner, David Z; Bremer, Erhard

    2016-04-01

    The spore-forming bacterium Bacillus subtilis frequently experiences high osmolarity as a result of desiccation in the soil. The formation of a highly desiccation-resistant endospore might serve as a logical osmostress escape route when vegetative growth is no longer possible. However, sporulation efficiency drastically decreases concomitant with an increase in the external salinity. Fluorescence microscopy of sporulation-specific promoter fusions to gfp revealed that high salinity blocks entry into the sporulation pathway at a very early stage. Specifically, we show that both Spo0A- and SigH-dependent transcription are impaired. Furthermore, we demonstrate that the association of SigH with core RNA polymerase is reduced under these conditions. Suppressors that modestly increase sporulation efficiency at high salinity map to the coding region of sigH and in the regulatory region of kinA, encoding one the sensor kinases that activates Spo0A. These findings led us to discover that B. subtilis cells that overproduce KinA can bypass the salt-imposed block in sporulation. Importantly, these cells are impaired in the morphological process of engulfment and late forespore gene expression and frequently undergo lysis. Altogether our data indicate that B. subtilis blocks entry into sporulation in high-salinity environments preventing commitment to a developmental program that it cannot complete. PMID:26712348

  6. Production of the polyketide 6-deoxyerythronolide B in the heterologous host Bacillus subtilis.

    Science.gov (United States)

    Kumpfmüller, Jana; Methling, Karen; Fang, Lei; Pfeifer, Blaine A; Lalk, Michael; Schweder, Thomas

    2016-02-01

    Polyketides, such as erythromycin, are complex natural products with diverse therapeutic applications. They are synthesized by multi-modular megaenzymes, so-called polyketide synthases (PKSs). The macrolide core of erythromycin, 6-deoxyerythronolide B (6dEB), is produced by the deoxyerythronolide B synthase (DEBS) that consists of three proteins each with a size of 330-370 kDa. We cloned and investigated the expression of the corresponding gene cluster from Saccharopolyspora erythraea, which comprises more than 30 kb, in Bacillus subtilis. It is shown that the DEBS genes are functionally expressed in B. subtilis when the native eryAI-III operon was separated into three individual expression cassettes with optimized ribosomal binding sites. A synthesis of 6dEB could be detected by using the acetoin-inducible acoA promoter and a fed-batch simulating EnBase-cultivation strategy. B. subtilis was capable of the secretion of 6dEB into the medium. In order to improve the 6dEB production, several genomic modifications of this production strain were tested. This included the knockout of the native secondary metabolite clusters of B. subtilis for the synthesis of surfactin (26 kb), bacillaene (76 kb), and plipastatin (38 kb). It is revealed that the deletion of the prpBD operon, responsible for propionyl-CoA utilization, resulted in a significant increase of the 6dEB product yield when exogenous propionate is provided. Although the presented B. subtilis 6dEB production strain is not competitive with established Escherichia coli 6dEB production strains, the results of this study indicate that B. subtilis is a suitable heterologous host for the secretory production of a complex polyketide. PMID:26432460

  7. Stepwise optimization of a low-temperature Bacillus subtilis expression system for "difficult to express" proteins.

    Science.gov (United States)

    Welsch, Norma; Homuth, Georg; Schweder, Thomas

    2015-08-01

    In order to improve the overproduction of "difficult to express" proteins, a low-temperature expression system for Bacillus subtilis based on the cold-inducible promoter of the desaturase-encoding des gene was constructed. Selected regulatory DNA sequence elements from B. subtilis genes known to be cold-inducible were fused to different model genes. It could be demonstrated that these regulatory elements are able to mediate increased heterologous gene expression, either by improved translation efficiency or by higher messenger RNA (mRNA) stability. In case of a cold-adapted β-galactosidase from Pseudoalteromonas haloplanktis TAE79A serving as the model, significantly higher expression was achieved by fusing its coding sequence to the so-called "downstream box" sequence of cspB encoding the major B. subtilis cold-shock protein. The combination of this fusion with a cspB 5'-UTR stem-loop structure resulted in further enhancement of the β-galactosidase expression. In addition, integration of the transcription terminator of the B. subtilis cold-inducible bkd operon downstream of the target genes caused a higher mRNA stability and enabled thus a further significant increase in expression. Finally, the fully optimized expression system was validated by overproducing a B. subtilis xylanase as well as an α-glucosidase from Saccharomyces cerevisiae, the latter known for tending to form inclusion bodies. These analyses verified the applicability of the engineered expression system for extracellular and intracellular protein synthesis in B. subtilis, thereby confirming the suitability of this host organism for the overproduction of critical, poorly soluble proteins. PMID:25851716

  8. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    Directory of Open Access Journals (Sweden)

    Marciniak Bogumiła C

    2012-05-01

    Full Text Available Abstract Background Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe status, its genetic accessibility and its capacity to grow in large fermentations. However, production of heterologous proteins still faces limitations. Results This study aimed at the identification of bottlenecks in secretory protein production by analyzing the response of B. subtilis at the transcriptome level to overproduction of eight secretory proteins of endogenous and heterologous origin and with different subcellular or extracellular destination: secreted proteins (NprE and XynA of B. subtilis, Usp45 of Lactococcus lactis, TEM-1 β-lactamase of Escherichia coli, membrane proteins (LmrA of L. lactis and XylP of Lactobacillus pentosus and lipoproteins (MntA and YcdH of B. subtilis. Responses specific for proteins with a common localization as well as more general stress responses were observed. The latter include upregulation of genes encoding intracellular stress proteins (groES/EL, CtsR regulated genes. Specific responses include upregulation of the liaIHGFSR operon under Usp45 and TEM-1 β-lactamase overproduction; cssRS, htrA and htrB under all secreted proteins overproduction; sigW and SigW-regulated genes mainly under membrane proteins overproduction; and ykrL (encoding an HtpX homologue specifically under membrane proteins overproduction. Conclusions The results give better insights into B. subtilis responses to protein overproduction stress and provide potential targets for genetic engineering in order to further improve B. subtilis as a protein production host.

  9. Purification and Characterization of an Extracellular Cholesterol Oxidase of Bacillus subtilis Isolated from Tiger Excreta.

    Science.gov (United States)

    Kumari, Lata; Kanwar, Shamsher S

    2016-01-01

    A mesophilic Bacillus sp. initially isolated from tiger excreta and later identified as a Bacillus subtilis strain was used to produce an extracellular cholesterol oxidase (COX) in cholesterol-enriched broth. This bacterial isolate was studied for the production of COX by manipulation of various physicochemical parameters. The extracellular COX was successfully purified from the cell-free culture broth of B. subtilis by successive salting out with ammonium sulfate, dialysis, and riboflavin-affinity chromatography. The purified COX was characterized for its molecular mass/structure and stability. The enzyme possessed some interesting properties such as high native Mr (105 kDa), multimeric (pentamer of ∼21 kDa protein) nature, organic solvent compatibility, and a half-life of ∼2 h at 37 °C. The bacterial COX exhibited ∼22 % higher activity in potassium phosphate buffer (pH 7.5) in the presence of a nonionic detergent Triton X-100 at 0.05 % (v/v). The K m and V max value of COX of B. subtilis COX were found to be 3.25 mM and 2.17 μmol min ml(-1), respectively. The purified COX showed very little cytotoxicity associated with it. PMID:26453032

  10. Evaluation of in situ valine production by Bacillus subtilis in young pigs

    DEFF Research Database (Denmark)

    Nørgaard, Jan Værum; Canibe, Nuria; Assadi Soumeh, Elham;

    2016-01-01

    Mutants of Bacillus subtilis can be developed to overproduce Val in vitro. It was hypothesized that addition of Bacillus subtilis mutants to pig diets can be a strategy to supply the animal with Val. The objective was to investigate the effect of Bacillus subtilis mutants on growth performance and...... blood amino acid (AA) concentrations when fed to piglets. Experiment 1 included 18 pigs (15.0±1.1 kg) fed one of three diets containing either 0.63 or 0.69 standardized ileal digestible (SID) Val : Lys, or 0.63 SID Val : Lys supplemented with a Bacillus subtilis mutant (mutant 1). Blood samples were...... obtained 0.5 h before feeding and at 1, 2, 3, 4, 5 and 6 h after feeding and analyzed for AAs. In Experiment 2, 80 piglets (9.1±1.1 kg) were fed one of four diets containing 0.63 or 0.67 SID Val : Lys, or 0.63 SID Val : Lys supplemented with another Bacillus subtilis mutant (mutant 2) or its parent wild...

  11. Use of a Novel Report Protein to Study the Secretion Signal of Flagellin in Bacillus subtilis.

    Science.gov (United States)

    Wang, Guangqiang; Xia, Yongjun; Xiong, Zhiqiang; Zhang, Hui; Ai, Lianzhong

    2016-08-01

    Flagellin (also called Hag) is the main component of bacterial flagellum and is transported across the cytoplasmic membrane by flagellar secretion apparatus. Because flagella play an essential role in the pathogenesis of numerous pathogens, the flagellins of Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, Campylobacter jejuni, and Vibrio cholerae have been intensively studied; however, very few studies have focused on the flagellin of Bacillus subtilis, which is considered to be a model organism with which to study the secretion of bacteria and is used on an industrial scale for the secretion of proteins. The signal of B. subtilis flagellin is still debated. This study was performed to seek the export signals of flagellin from B. subtilis. The naturally nonsecretory, intrinsically disordered domain of nucleoskeletal-like protein (Nsp) was used as the reporter protein. Our results demonstrate that the export signal is contained within the first 50 amino acids of B. subtilis flagellin. Nsp is easily degraded inside the cell and can be exported into culture medium with the aid of the signal of flagellin. This method provides a new potential strategy for the expression of proteins with high proteolytic susceptibility via fusion to export signals. PMID:27154466

  12. Identification and characterization of the vanillin dehydrogenase YfmT in Bacillus subtilis 3NA.

    Science.gov (United States)

    Graf, Nadja; Wenzel, Marian; Altenbuchner, Josef

    2016-04-01

    With vanillin as one of the most important flavoring agents, many efforts have been made to optimize its biotechnological production from natural abundant substrates. However, its toxicity against the hosts results in rather low yields and product concentrations. Bacillus subtilis as a soil-dwelling bacterium is a possible lignin-derived compound-degrading microorganism. Therefore, its vanillin and ferulic acid metabolism was investigated. With a rather high tolerance for vanillin up to 20 mM, it is a promising candidate to produce natural vanillin. In this study, the well-studied phenolic acid decarboxylases PadC and BsdBCD could be ascribed to function as the only enzymes in B. subtilis 3NA converting ferulic acid to 4-vinylguaiacol and vanillic acid to guaiacol, respectively. As vanillin also becomes converted to guaiacol, a previous conversion to vanillic acid was assumed. Usage of bioinformatic tools revealed YfmT, which could be shown to function as the only vanillin dehydrogenase in B. subtilis 3NA. Thus, YfmT was further characterized regarding its temperature and pH optima as well as its substrate range. Vanillin and ferulic acid metabolic routes in the tested B. subtilis strain were revealed, a direct conversion of ferulic acid to vanillin, however, could not be found. PMID:26658822

  13. Identification of a soluble diacylglycerol kinase required for lipoteichoic acid production in Bacillus subtilis.

    Science.gov (United States)

    Jerga, Agoston; Lu, Ying-Jie; Schujman, Gustavo E; de Mendoza, Diego; Rock, Charles O

    2007-07-27

    Diacylglycerol kinases (DagKs) are key enzymes in lipid metabolism that function to reintroduce diacylglycerol formed from the hydrolysis of phospholipids into the biosynthetic pathway. Bacillus subtilis is a prototypical Gram-positive bacterium with a lipoteichoic acid structure containing repeating units of sn-glycerol-1-P groups derived from phosphatidylglycerol head groups. The B. subtilis homolog of the prokaryotic DagK gene family (dgkA; Pfam01219) was not a DagK but rather was an undecaprenol kinase. The three members of the soluble DagK protein family (Pfam00781) in B. subtilis were tested by complementation of an E. coli dgkA mutant, and only the essential yerQ gene possessed DagK activity. This gene was dubbed dgkB, and the soluble protein product was purified, and its DagK activity was verified in vitro. Conditional inactivation of dgkB led to the accumulation of diacylglycerol and the cessation of lipoteichoic acid formation in B. subtilis. This study identifies a soluble protein encoded by the dgkB (yerQ) gene as an essential kinase in the diacylglycerol cycle that drives lipoteichoic acid production. PMID:17535816

  14. Preliminary X-ray crystallographic studies of Bacillus subtilis SpeA protein

    International Nuclear Information System (INIS)

    In order to further illustrate the catalytic mechanism of arginine decarboxylase by determining the three-dimensional structure of the enzyme the speA gene was amplified from B. subtilis genomic DNA and cloned. The enzyme was expressed in Escherichia coli and purified to homogeneity by nickel-chelation chromatography followed by size-exclusion chromatography. High-quality crystals were obtained using the hanging-drop vapour-diffusion method at 298 K. The speA gene in Bacillus subtilis encodes arginine decarboxylase, which catalyzes the conversion of arginine to agmatine. Arginine decarboxylase is an important enzyme in polyamine metabolism in B. subtilis. In order to further illustrate the catalytic mechanism of arginine decarboxylase by determining the three-dimensional structure of the enzyme, the speA gene was amplified from B. subtilis genomic DNA and cloned into the expression vector pET-28a(+). SpeA was expressed in Escherichia coli and purified to homogeneity by nickel-chelation chromatography followed by size-exclusion chromatography. High-quality crystals were obtained using the hanging-drop vapour-diffusion method at 289 K. The best crystal diffracted to 2.0 Å resolution and belonged to space group P21, with unit-cell parameters a = 86.4, b = 63.3 c = 103.3 Å, β = 113.9°

  15. Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens

    Institute of Scientific and Technical Information of China (English)

    Baby Joseph; Berlina Dhas; Vimalin Hena; Justin Raj

    2013-01-01

    Objective:To isolate and identify Bacillus subtilis (B. subtilis) from soil and to characterize and partially purify the bacteriocin. To evaluate the antimicrobial activity against four diabetic foot ulcer bacterial pathogens. Methods:Genotypic identification was done based on Bergey’s manual of systemic bacteriology. Antimicrobial susceptibility test was done by Kirby-Bauer disc diffusion method. Colonies were identified by colony morphology and biochemical characterization and also compared with MTCC 121 strain. Further identification was done by 16S rRNA sequencing. Inhibitory activities of partially purified bacteriocin on all the DFU isolates were done by agar well diffusion method. The strain was identified to produce bacteriocin by stab overlay assay. Bacteriocin was extracted by organic solvent extraction using chloroform, further purified by HPLC and physical, and chemical characterization was performed. Results: The four isolates showed high level of resistance to amoxyclav and sensitivity to ciprofloxacin. HPLC purification revealed that the extracts are bacteriocin. The phylogenetic tree analysis results showed that the isolate was 99%related to B. subtilis BSF01. The results reveled activity to all the four isolates and high level of activity was seen in case of Klebsiella sp. Conclusions:Partially purified bacteriocin was found to have antimicrobial activity against the four diabetic foot ulcer bacterial pathogens, which can thus be applied as a better drug molecule on further studies. The strain B. subtilis are found to be safe for use and these antimicrobial peptides can be used as an antimicrobial in humans to treat DFU bacterial pathogens.

  16. D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis.

    Science.gov (United States)

    Leiman, Sara A; May, Janine M; Lebar, Matthew D; Kahne, Daniel; Kolter, Roberto; Losick, Richard

    2013-12-01

    The soil bacterium Bacillus subtilis forms biofilms on surfaces and at air-liquid interfaces. It was previously reported that these biofilms disassemble late in their life cycle and that conditioned medium from late-stage biofilms inhibits biofilm formation. Such medium contained a mixture of D-leucine, D-methionine, D-tryptophan, and D-tyrosine and was reported to inhibit biofilm formation via the incorporation of these D-amino acids into the cell wall. Here, we show that L-amino acids were able to specifically reverse the inhibitory effects of their cognate D-amino acids. We also show that D-amino acids inhibited growth and the expression of biofilm matrix genes at concentrations that inhibit biofilm formation. Finally, we report that the strain routinely used to study biofilm formation has a mutation in the gene (dtd) encoding D-tyrosyl-tRNA deacylase, an enzyme that prevents the misincorporation of D-amino acids into protein in B. subtilis. When we repaired the dtd gene, B. subtilis became resistant to the biofilm-inhibitory effects of D-amino acids without losing the ability to incorporate at least one noncanonical D-amino acid, D-tryptophan, into the peptidoglycan peptide side chain. We conclude that the susceptibility of B. subtilis to the biofilm-inhibitory effects of D-amino acids is largely, if not entirely, due to their toxic effects on protein synthesis. PMID:24097941

  17. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions.

    Directory of Open Access Journals (Sweden)

    Yi-Huang Hsueh

    Full Text Available The superior antimicrobial properties of silver nanoparticles (Ag NPs are well-documented, but the exact mechanisms underlying Ag-NP microbial toxicity remain the subject of intense debate. Here, we show that Ag-NP concentrations as low as 10 ppm exert significant toxicity against Bacillus subtilis, a beneficial bacterium ubiquitous in the soil. Growth arrest and chromosomal DNA degradation were observed, and flow cytometric quantification of propidium iodide (PI staining also revealed that Ag-NP concentrations of 25 ppm and above increased membrane permeability. RedoxSensor content analysis and Phag-GFP expression analysis further indicated that reductase activity and cytosolic protein expression decreased in B. subtilis cells treated with 10-50 ppm of Ag NPs. We conducted X-ray absorption near-edge structure (XANES and extended X-ray absorption fine structure (EXAFS analyses to directly clarify the valence and fine structure of Ag atoms in B. subtilis cells placed in contact with Ag NPs. The results confirmed the Ag species in Ag NP-treated B. subtilis cells as Ag2O, indicating that Ag-NP toxicity is likely mediated by released Ag+ ions from Ag NPs, which penetrate bacterial cells and are subsequently oxidized intracellularly to Ag2O. These findings provide conclusive evidence for the role of Ag+ ions in Ag-NP microbial toxicity, and suggest that the impact of inappropriately disposed Ag NPs to soil and water ecosystems may warrant further investigation.

  18. Bacillus subtilis ZH168多酚氧化酶分离纯化研究%Purification of polyphenol oxidase from the Bacillus subtilis ZH168

    Institute of Scientific and Technical Information of China (English)

    张丽香

    2015-01-01

    从一株产黑色素Bacillus subtilis ZH168发酵液中提取多酚氧化酶,通过硫酸铵盐析,超滤,阴离子交换层析,活性和变性电泳确定该酶有2条同工酶带,分离纯化到其中分子量较大的同工酶,为101.5 ku,并将纯化同工酶带作基质辅助激光吸附-离子化飞行时间质谱(MALDI-TOF-MS)获得蛋白肽指纹谱,通过一二级质谱检索结果确定该蛋白与枯草茅孢杆菌芽孢衣蛋白有极高相似性.

  19. Duodenal histology and carcass quality of feedlot cattle supplemented with calcium butyrate and Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Thiago Simas de Oliveira Moreira

    2016-01-01

    Full Text Available The experiment was carried out at the Comigo Technology Center, in Rio Verde, State of Goiás, Brazil, with the objective of evaluating the effects of supplementation with calcium butyrate, as a growth promoting agent for the duodenal mucosa and Bacillus subtilis as a probiotic performance enhancer in feedlot cattle. Calcium butyrate (5 and 10 g per animal per day and Bacillus (10 g per animal per day were added to a basal diet. There were used 85 Nelore bulls, with average weight of 315 ± 7 kg. The experiment lasted 118 days, including the adaptation period, until slaughter at 30 months of age. Diets were distributed in a completely randomized design with four treatments, where: T1 = control (basal diet; T2 = basal diet + 5 g calcium butyrate; T3 = basal diet + 10 g calcium butyrate and T4 = basal diet + 10 g calcium butyrate + 10 g probiotic with four replications and five to six animals per replication. It was used a forage: concentrate ratio of 30:70, the roughage used was the corn silage. Height and width measurements of intestinal villi were taken, and carcass and meat quality were evaluated. The supplementation of calcium butyrate and Bacillus subtilis positively influenced (p < 0.05 the carcass marbling level and calcium butyrate increased the villus height in the small intestine.

  20. Engineering of Bacillus subtilis for the Production of 2,3-Butanediol from Sugarcane Molasses.

    Science.gov (United States)

    Deshmukh, Apoorva Nandkumar; Nipanikar-Gokhale, Padmaja; Jain, Rishi

    2016-05-01

    2,3-butanediol is known to be a platform chemical with several potential industrial applications. Sustainable industrial scale production can be attained by using a sugarcane molasses based fermentation process using Bacillus subtilis. However, the accumulation of acetoin needs to be reduced to improve process efficiency. In this work, B. subtilis was genetically modified in order to increase the yield of 2,3-butanediol. Metabolic engineering strategies such as cofactor engineering and overexpression of the key enzyme butanediol dehydrogenase were attempted. Both the strategies individually led to a statistically significant increase in the 2,3-butanediol yields for sugarcane molasses based fermentation. Cofactor engineering led to a 26 % increase in 2,3-butanediol yield and overexpression of bdhA led to a 11 % increase. However, the combination of the two strategies did not lead to a synergistic increase in 2,3-butanediol yield. PMID:26825987

  1. Effects of nitrogen ion irradiation on endoglucanase activity and gene mutation of Bacillus subtilis Bac01

    International Nuclear Information System (INIS)

    Bacillus subtilis Bac01 was mutated by 15 keV N+ ions of 1.5xl016 cm-2. The mutant strain Bac11 with high yield of endoglucanase was isolated using carboxymethylcellulose sodium and congo red indicative plates. It exhibited higher endoglucanase activity (381.89IU) than the original strain Bac01 (93.33IU). Two 1,500 bp endoglucanase gene fragments were obtained with PCR amplification from B. subtilis Bac01 and mutant strain Bac11. BLAST comparison result indicated that 10 nucleotides mutated. Bioinformatics methods were used to analyze the two predicted amino acid sequences, and it was found that 5 amino acid residues changed, being all in the cellulose-binding domain of endoglucanase. (authors)

  2. Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato.

    Science.gov (United States)

    Ben Khedher, Saoussen; Kilani-Feki, Olfa; Dammak, Mouna; Jabnoun-Khiareddine, Hayfa; Daami-Remadi, Mejda; Tounsi, Slim

    2015-12-01

    The aim of this study is to evaluate the efficacy of the strain Bacillus subtilis V26, a local isolate from the Tunisian soil, to control potato black scurf caused by Rhizoctonia solani. The in vitro antifungal activity of V26 significantly inhibited R. solani growth compared to the untreated control. Microscopic observations revealed that V26 caused considerable morphological deformations of the fungal hyphae such as vacuolation, protoplast leakage and mycelia crack. The most effective control was achieved when strain V26 was applied 24h prior to inoculation (protective activity) in potato slices. The antagonistic bacterium V26 induced significant suppression of root canker and black scurf tuber colonization compared to untreated controls with a decrease in incidence disease of 63% and 81%, respectively, and promoted plant growth under greenhouse conditions on potato plants. Therefore, B. subtilis V26 has a great potential to be commercialized as a biocontrol agent against R. solani on potato crops. PMID:26563555

  3. [An Efficient Method for Genetic Certification of Bacillus subtilis strains, Prospective Producers of Biopreparations].

    Science.gov (United States)

    Terletskiy, V P; Tyshenko, V I; Novikova, I I; Boikova, I V; Tyulebaev, S D; Shakhtamirov, I Ya

    2016-01-01

    Genetic certification of commercial strains of bacteria antagonistic to phytopathogenic microorganisms guarantees their unequivocal identification and confirmation of safety. In Russia, unlike EU countries, genetic certification of Bacillus subtilis strains is not used. Based on the previously proposed double digestion selective label (DDSL) fingerprinting, a method for genetic identification and certification of B. subtilis strains was proposed. The method was tested on several strains differing in their physiological and biochemical properties and in the composition of secondary metabolites responsible for the spectrum of antibiotic activity. High resolving power of this approach was shown. Optimal restriction endonucleases (SgsI and Eco32I) were determined and validated. A detailed protocol for genetic certification of this bacterial species was developed. DDSL is a universal method, which may be adapted for genetic identification and certification of other bacterial species. PMID:27301128

  4. Influence of Silica Nanoparticles on Antioxidant Potential of Bacillus subtilis IMV B-7023

    Science.gov (United States)

    Skorochod, Iryna O.; Roy, Alla O.; Kurdish, Ivan K.

    2016-03-01

    It was found that if introduced into a nutrient medium of 0.05-1 g/L nano-SiO2, the oxidant activity (OA) of the culture medium (CM) of bacilli increased by 43.2-60.1 % and the antioxidant activity (AA) decreased by 4.5-11.8 %. SiO2 nanoparticles had different effects on antiradical activity (ARA) of the CM of Bacillus subtilis IMV B-7023. In particular, nano-SiO2 had no significant effect on the ability of the CM of bacilli to inactivate the 2.2-diphenyl-1-picrylhydrazyl (DPPH·) free radical. However, for the content of the nanomaterial of 0.01-1 g/L decreased hydroxyl radical scavenging in the CM of B. subtilis IMV B-7023 on 7.2-17.6 % compared with a control. Low doses of silica nanoparticles stimulated the reducing power of the CM of bacteria and then highly suppressed it.

  5. Gamma radiation effect on Bacillus cereus spores inoculated in black pepper

    International Nuclear Information System (INIS)

    It had been analyzed 37 samples of worn out black pepper and in 85% of these samples was observed the presence of Bacillus cereus in numbers of up to 4,6 x 104 UFC/g. The population of aerobic mesofilis bacteria varied of 2,8 x 105 the 1,9 x 108 UFC/g. The black pepper used during the experiment was evaluated, evidencing the aerobic presence of one aerobic mesofilis microbiota of, approximately, 2,6 x 106 UFC/g, consisting, mainly, for species of the Bacillus sort. It was observed that the absence of B. cereus, coliforms, filamentous fungus and leavenings. The evaluation of the irradiation of the black pepper inoculated with 106 UFC/g of B. cereus spores of with doses of gamma radiation varying between 2 and 10 kGy evidenced that doses up to 5 kGy had been enough to reduce the counting of, approximately, 106 UFC/g of aerobic mesofilis organisms and 104 UFC/g of B. cereus spores the not detectable numbers by the used methodology. The dose of reduction decimal (D10) for the inoculated B. cereus spores in black pepper was of 1,78 kGy

  6. A community-curated consensual annotation that is continuously updated: the Bacillus subtilis centred wiki SubtiWiki.

    OpenAIRE

    Flórez, Lope A.; Roppel, Sebastian F.; Schmeisky, Arne G.; Lammers, Christoph R.; Stülke, Jörg

    2009-01-01

    Bacillus subtilis is the model organism for Gram-positive bacteria, with a large amount of publications on all aspects of its biology. To facilitate genome annotation and the collection of comprehensive information on B. subtilis, we created SubtiWiki as a community-oriented annotation tool for information retrieval and continuous maintenance. The wiki is focused on the needs and requirements of scientists doing experimental work. This has implications for the design of the interface and for ...

  7. Analysis of Peptidoglycan Structure from Vegetative Cells of Bacillus subtilis 168 and Role of PBP 5 in Peptidoglycan Maturation

    OpenAIRE

    Atrih, Abdelmadjid; Bacher, Gerold; Allmaier, Günter; Williamson, Michael P; Foster, Simon J.

    1999-01-01

    The composition and fine structure of the vegetative cell wall peptidoglycan from Bacillus subtilis were determined by analysis of its constituent muropeptides. The structures of 39 muropeptides, representing 97% of the total peptidoglycan, were elucidated. About 99% analyzed muropeptides in B. subtilis vegetative cell peptidoglycan have the free carboxylic group of diaminopimelic acid amidated. Anhydromuropeptides and products missing a glucosamine at the nonreducing terminus account for 0.4...

  8. Production of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli grown on cane molasses fortified with ethanol

    OpenAIRE

    Eman Zakaria Gomaa

    2014-01-01

    The aim of this work was to study the production of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli isolated from the industrial contaminated soil samples using cane molasses as an inexpensive substrate. The amount of PHA accumulated followed a similar pattern to its growth for each of treatment indicating a growth-related production, yielding maximum PHA production of 54.1 and 47.16% for B. subtilis and E. coli, respectively after 96 h cultivation in the medium contain...

  9. An inducible recA expression Bacillus subtilis genome vector for stable manipulation of large DNA fragments

    OpenAIRE

    Ogawa, Takafumi; Iwata, Tetsuo; Kaneko, Shinya; Itaya, Mitsuhiro; Hirota, Junji

    2015-01-01

    Background The Bacillus subtilis genome (BGM) vector is a novel cloning system based on the natural competence that enables B. subtilis to import extracellular DNA fragments into the cell and incorporate the recombinogenic DNA into the genome vector by homologous recombination. The BGM vector system has several attractive properties, such as a megabase cloning capacity, stable propagation of cloned DNA inserts, and various modification strategies using RecA-mediated homologous recombination. ...

  10. Horizontal Transfer of Iturin A Operon, itu, to Bacillus subtilis 168 and Conversion into an Iturin A Producer

    OpenAIRE

    Tsuge, Kenji; Inoue, Satoka; Ano, Takashi; Itaya, Mitsuhiro; Shoda, Makoto

    2005-01-01

    Iturin A and its derivatives are lipopeptide antibiotics produced by Bacillus subtilis and several closely related bacteria. Three iturin group operons (i.e., iturin A, mycosubtilin, and bacillomycin D) of those antibiotic-producing strains have been cloned and sequenced thus far, strongly implying the horizontal transfer of these operons. To examine the nature of such horizontal transfer in terms of antibiotic production, a 42-kb region of the B. subtilis RB14 genome, which contains a comple...

  11. Engineering of a Bacillus subtilis Strain with Adjustable Levels of Intracellular Biotin for Secretory Production of Functional Streptavidin

    OpenAIRE

    Wu, Sau-Ching; Wong, Sui-Lam

    2002-01-01

    Streptavidin is a biotin-binding protein which has been widely used in many in vitro and in vivo applications. Because of the ease of protein recovery and availability of protease-deficient strains, the Bacillus subtilis expression-secretion system is an attractive system for streptavidin production. However, attempts to produce streptavidin using B. subtilis face the problem that cells overproducing large amounts of streptavidin suffer poor growth, presumably because of biotin deficiency. Th...

  12. AN INTEGRATED APPROACH USING Bacillus subtilis B26 AND ESSENTIAL OILS TO LIMIT FUNGAL DISCOLORATION OF WOOD

    OpenAIRE

    Yu Wang; Jianmin Chang,; Jeffrey J. Morrell,; Camille M. Freitag,; Joseph J. Karchesy

    2012-01-01

    Bacillus subtilis and essential oils have been explored separately for their ability to limit colonization by wood stain and mold fungi, but neither approach has been completely effective. One alternative strategy would be to combine the bacterial biocontrol with one or more natural products extracts. In this report, the ability of combinations of B. subtilis B26 and 20 essential oils to limit fungal stain was explored on Douglas-fir sapwood wafers under controlled laboratory conditions. A nu...

  13. Temporal Expression of the Bacillus subtilis secA Gene, Encoding a Central Component of the Preprotein Translocase

    OpenAIRE

    Herbort, Markus; Klein, Michael; Manting, Erik H.; Driessen, Arnold J. M.; Freudl, Roland

    1999-01-01

    In Bacillus subtilis, the secretion of extracellular proteins strongly increases upon transition from exponential growth to the stationary growth phase. It is not known whether the amounts of some or all components of the protein translocation apparatus are concomitantly increased in relation to the increased export activity. In this study, we analyzed the transcriptional organization and temporal expression of the secA gene, encoding a central component of the B. subtilis preprotein transloc...

  14. Molecular Cloning and Production of Recombinant Phytase from Bacillus subtilis ASUIA243 in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Nor Soleha Mohd Dali

    2011-12-01

    Full Text Available Phytase gene obtained from Bacillus subtilis ASUIA243 was cloned into a medium vector and transformed into E. coli. Restriction enzyme digestion was conducted to get blunt-ended phytase gene and ligated into the Pichia expression vector, pPICZαA. The recombinant vector, pPICZαA-243HPp was then linearized with PmeI and transformed into P. pastoris strain X33. Screening for multi copy gene number of transformants was done by re-plating the selected colonies on increasing concentration of zeocin. One positive clone, X243HPp#2 was then grown in BMGY media as the starting culture, followed by induction in BMMY media for protein expression study. The supernatant was then analysed by SDS-PAGE and Western blot method to check the protein expression.ABSTRAK: Gen fitase yang didapati daripada Bacillus subtilis ASUIA243 diklonkan sebagai vektor perantara dan berubah menjadi E. coli. Sekatan pencernaan enzim dijalankan untuk mendapatkan gen fitase berhujung tumpul dan diligatkan dengan vektor ekspresi Pichia, pPICZαA. Vektor rekombinan, pPICZαA-243HPp kemudian dilinearkan dengan PmeI dan berubah menjadi P. pastoris strain X33. Penyaringan untuk nombor gen berbilang salinan yang menjalani transformasi genetik dijalankan dengan menyalur semula koloni terpilih dengan penambahan kepekatan zeocin. Satu klon positif, X243HPp#2 kemudian dibiarkan hidup dalam perantara BMGY sebagai kultur permulaan, diikuti dengan aruhan dalam perantara BMMY untuk kajian penglahiran protein. Supernatan kemudian dikaji dengan SDS-PAGE dan kaedah sap Western untuk menyemak penglahiran protein.KEYWORDS:  phytase, Bacillus subtilis, Pichia pastoris, gene cloning.

  15. Antagonismo de Trichoderma SPP. E Bacillus subtilis (UFV3918 a Fusarium sambucinum em Pinus elliottii engelm

    Directory of Open Access Journals (Sweden)

    Caciara Gonzatto Maciel

    2014-06-01

    Full Text Available Pinus elliottii é uma espécie de importância no setor florestal e apresenta vulnerabilidade na qualidade sanitária de suas sementes, especialmente pela associação de Fusarium spp., responsável por perdas de plântulas no viveiro. Este trabalho teve como objetivo avaliar a ação antagonista in vitro e in vivo dos agentes Trichoderma spp. e Bacillus subtilis (UFV3918 no controle de Fusarium sambucinum, responsável por danos em plântulas de Pinus elliottii. O controle in vitro foi avaliado através da inibição do crescimento micelial (confronto pareado de culturas, após a incubação a 25±2 ºC e fotoperíodo de 12 h. Para os testes in vivo (desenvolvidos em condições de viveiro, as sementes inicialmente foram inoculadas com o patógeno e, na sequência, microbiolizadas com os agentes antagônicos, para posterior semeadura. Utilizaram-se as técnicas de contato com o biocontrolador em meio BDA por 48 h e peliculização, como formas de microbiolização. Tanto Trichoderma spp. quanto Bacillus subtilis (UFV3918 foram eficientes no controle in vitro de F. sambucinum, e no teste de biocontrole in vivo o produto Bacillus subtilis (UFV3918 destacou-se, reduzindo as perdas de plântulas causadas pelo patógeno, assim como potencializando as variáveis de comprimento de plântula, massa verde e massa seca.

  16. Purine salvage pathways of Bacillus subtilis and effect of guanine on growth of GMP reductase mutants.

    Science.gov (United States)

    Endo, T; Uratani, B; Freese, E

    1983-07-01

    We have isolated numerous mutants containing mutations in the salvage pathways of purine synthesis. The mutations cause deficiencies in adenine phosphoribosyltransferase (adeF), in hypoxanthine-guanine phosphoribosyltransferase (guaF), in adenine deaminase (adeC), in inosine-guanosine phosphorylase, (guaP), and in GMP reductase (guaC). The physiological properties of mutants containing one or more of these mutations and corresponding enzyme measurements have been used to derive a metabolic chart of the purine salvage pathway of Bacillus subtilis. PMID:6408059

  17. Simultaneous and selective production of levan and poly(gamma-glutamic acid) by Bacillus subtilis.

    Science.gov (United States)

    Shih, Ing-Lung; Yu, Yun-Ti

    2005-01-01

    Bacillus subtilis(natto) Takahashi, used to prepare the fermented soybean product natto, was grown in a basal medium containing 5% (w/w) sucrose and 1.5% (w/w) L-glutamate and produced 58% (w/w) poly(gamma-glutamic acid) and 42% (w/w) levan simultaneously. After 21 h, 40-50 mg levan ml-1 had been produced in medium containing 20% (w/w) sucrose but without L-glutamate. In medium containing L-glutamic acid but without sucrose, mainly poly(gamma-glutamic acid) was produced. PMID:15703872

  18. SacY, a Transcriptional Antiterminator from Bacillus subtilis, Is Regulated by Phosphorylation In Vivo†

    OpenAIRE

    Idelson, Maria; Amster-Choder, Orna

    1998-01-01

    SacY antiterminates transcription of the sacB gene in Bacillus subtilis in response to the presence of sucrose in the growth medium. We have found that it can substitute for BglG, a homologous protein, in antiterminating transcription of the bgl operon in Escherichia coli. We therefore sought to determine whether, similarly to BglG, SacY is regulated by reversible phosphorylation in response to the availability of the inducing sugar. We show here that two forms of SacY, phosphorylated and non...

  19. Different agroresidues used in solid substrate fermentation for alpha- amylase production by bacillus subtilis-329

    International Nuclear Information System (INIS)

    The best mass ratio for agroresidue fermentation for a-amylase production by locally isolated Bacillus subtilis-239 was found to be wheat bran to rice bran 2:1 with 70% initial moisture content for 60 h incubation time. Among different inorganic nitrogen sources supplemented, sodium nitrate and ammonium chloride (0.5% w/w) increased the enzyme yield upto 178 U/ml and 176 U/ml, respectively, whereas all the organic nitrogen sources decreased the enzyme production. Addition of glucose (1% w/w) as a carbon source enhanced a-amylase synthesis to 185 U/ml as compared to the control (134 U/ml). (author)

  20. Molecular Cloning and Production of Recombinant Phytase from Bacillus subtilis ASUIA243 in Pichia pastoris

    OpenAIRE

    Nor Soleha Mohd Dali; Tamrin Nuge; Mohd Hafidz Mahamad Maifiah; Faridah Yusof; Anis Shobirin Meor Hussin; Abd-Elaziem Farouk; and Hamzah Mohd. Salleh

    2011-01-01

    Phytase gene obtained from Bacillus subtilis ASUIA243 was cloned into a medium vector and transformed into E. coli. Restriction enzyme digestion was conducted to get blunt-ended phytase gene and ligated into the Pichia expression vector, pPICZαA. The recombinant vector, pPICZαA-243HPp was then linearized with PmeI and transformed into P. pastoris strain X33. Screening for multi copy gene number of transformants was done by re-plating the selected colonies on increasing concentrati...

  1. Protease obtention using Bacillus subtilis 3411 and amaranth seed meal medium at different aeration rates

    Directory of Open Access Journals (Sweden)

    Pastor Maria Delia

    2001-01-01

    Full Text Available The influence of the addition of Amaranthus cruenthus seed meal to the medium, as nutrient and growth factor, on protease production by Bacillus subtilis 3411 was studied. Tests were carried out in a rotary shaker and in mechanically stirred fermenters. The influence of aeration was also evaluated. The addition of amaranth in a concentration of 20 g/L resulted in 400% increase in protease production. Aeration up to 750 r.p.m. and 1 L/L.min had a favorable effect.

  2. The Bacillus subtilis Primosomal Protein DnaD Untwists Supercoiled DNA

    OpenAIRE

    Zhang, Wenke; Allen, Stephanie; Roberts, Clive J.; Soultanas, Panos

    2006-01-01

    The essential Bacillus subtilis DnaD and DnaB proteins have been implicated in the initiation of DNA replication. Recently, DNA remodeling activities associated with both proteins were discovered that could provide a link between global or local nucleoid remodeling and initiation of replication. DnaD forms scaffolds and opens up supercoiled plasmids without nicking to form open circular complexes, while DnaB acts as a lateral compaction protein. Here we show that DnaD-mediated opening of supe...

  3. Regulation of the Bacillus subtilis ytmI Operon, Involved in Sulfur Metabolism

    OpenAIRE

    Burguière, Pierre; Fert, Juliette; Guillouard, Isabelle; Auger, Sandrine; Danchin, Antoine; Martin-Verstraete, Isabelle

    2005-01-01

    The YtlI regulator of Bacillus subtilis activates the transcription of the ytmI operon encoding an l-cystine ABC transporter, a riboflavin kinase, and proteins of unknown function. The expression of the ytlI gene and the ytmI operon was high with methionine and reduced with sulfate. Using deletions and site-directed mutagenesis, a cis-acting DNA sequence important for YtlI-dependent regulation was identified upstream from the −35 box of ytmI. Gel mobility shift assays confirmed that YtlI spec...

  4. DNA segregation by the bacterial actin AlfA during Bacillus subtilis growth and development

    OpenAIRE

    Becker, Eric; Herrera, Nick C; Gunderson, Felizza Q.; Derman, Alan I.; Dance, Amber L; Sims, Jennifer; Larsen, Rachel A.; Pogliano, Joe

    2006-01-01

    We here identify a protein (AlfA; actin like filament) that defines a new family of actins that are only distantly related to MreB and ParM. AlfA is required for segregation of Bacillus subtilis plasmid pBET131 (a mini pLS32-derivative) during growth and sporulation. A 3-kb DNA fragment encoding alfA and a downstream gene (alfB) is necessary and sufficient for plasmid stability. AlfA-GFP assembles dynamic cytoskeletal filaments that rapidly turn over (t1/2

  5. The Bacillus subtilis DnaD and DnaB Proteins Exhibit Different DNA Remodelling Activities

    OpenAIRE

    Zhang, Wenke; Carneiro, Maria J. V. M.; Turner, Ian J.; ALLEN, Stephanie; Roberts, Clive J.; Soultanas, Panos

    2005-01-01

    Primosomal protein cascades load the replicative helicase onto DNA. In Bacillus subtilis a putative primosomal cascade involving the DnaD-DnaB-DnaI proteins has been suggested to participate in both the DnaA and PriA-dependent loading of the replicative helicase DnaC onto the DNA. Recently we discovered that DnaD has a global remodelling DNA activity suggesting a more widespread role in bacterial nucleoid architecture. Here, we show that DnaB forms a “square-like” tetramer with a hole in the ...

  6. Characterization of BshA, bacillithiol glycosyltransferase from Staphylococcus aureus and Bacillus subtilis

    OpenAIRE

    Upton, Heather; Newton, Gerald L.; Gushiken, Melissa; Lo, Kelly; Holden, D; Fahey, Robert C.; Rawat, Mamta

    2012-01-01

    The first step during bacillithiol (BSH) biosynthesis involves the formation of N-acetylglucosaminylmalate from UDP-N-acetylglucosamine and L-malate and is catalyzed by a GT4 class glycosyltransferase enzyme (BshA). Recombinant Staphylococcus aureus and Bacillus subtilis BshA were highly specific and active with L-malate but the former showed low activity with D-glyceric acid and the latter with D-malate. We show that BshA is inhibited by BSH and similarly that MshA (first enzyme of mycothiol...

  7. In vivo recognition of Bacillus subtilis by desorption electrospray ionization mass spectrometry (DESI-MS).

    Science.gov (United States)

    Song, Yishu; Talaty, Nari; Datsenko, Kirill; Wanner, Barry L; Cooks, R Graham

    2009-05-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) of culture of the bacterium Bacillus subtilis as a biofilm growing on agar nutrient gives simple, high quality mass spectra dominated in both the positive and negative ion modes by signals due to the cyclic lipopeptide, Surfactin(C15). This in vivo experiment, performed by direct analysis of untreated microorganism samples under ambient conditions, allows rapid identification of this microorganism and the antibiotics that it produces. The result is suggestive of the capabilities of DESI-MS for in vivo microorganism characterization in general and for monitoring fermentation processes for the production of antibiotics and other biochemicals. PMID:19381372

  8. Identification and Characterization of Mutations Conferring Resistance to d-Amino Acids in Bacillus subtilis

    OpenAIRE

    Leiman, Sara A.; Richardson, Charles; Foulston, Lucy; Elsholz, Alexander K.W.; First, Eric A.; Losick, Richard

    2015-01-01

    Bacteria produce d-amino acids for incorporation into the peptidoglycan and certain nonribosomally produced peptides. However, d-amino acids are toxic if mischarged on tRNAs or misincorporated into protein. Common strains of the Gram-positive bacterium Bacillus subtilis are particularly sensitive to the growth-inhibitory effects of d-tyrosine due to the absence of d-aminoacyl-tRNA deacylase, an enzyme that prevents misincorporation of d-tyrosine and other d-amino acids into nascent proteins. ...

  9. d-Amino Acids Indirectly Inhibit Biofilm Formation in Bacillus subtilis by Interfering with Protein Synthesis

    OpenAIRE

    Leiman, Sara A.; May, Janine M.; Lebar, Matthew D.; Kahne, Daniel; Kolter, Roberto; Losick, Richard

    2013-01-01

    The soil bacterium Bacillus subtilis forms biofilms on surfaces and at air-liquid interfaces. It was previously reported that these biofilms disassemble late in their life cycle and that conditioned medium from late-stage biofilms inhibits biofilm formation. Such medium contained a mixture of d-leucine, d-methionine, d-tryptophan, and d-tyrosine and was reported to inhibit biofilm formation via the incorporation of these d-amino acids into the cell wall. Here, we show that l-amino acids were ...

  10. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

    OpenAIRE

    Mars, Ruben A. T.; Pierre Nicolas; Mariano Ciccolini; Ewoud Reilman; Alexander Reder; Marc Schaffer; Ulrike Mäder; Uwe Völker; Jan Maarten van Dijl; Denham, Emma L.

    2015-01-01

    Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 inter...

  11. Sekvencijsko optimiranje prinosa poli(γ-glutaminske kiseline) iz novoizoliranoga soja Bacillus subtilis

    OpenAIRE

    Bajaj, Ishwar B.; Singhal, Rekha S.

    2009-01-01

    Provedbom taksonomske i 16S rRNA studije identificiran je novi soj bakterije Bacillus subtilis, podrijetlom iz mora, koji proizvodi poli(γ-glutaminsku kiselinu) (engl. PGA). Za poboljšanje proizvodnje PGA primijenjeno je sekvencijsko optimiranje. Jednofaktorskom metodom istražen je utjecaj izvora ugljika i dušika te pH-vrijednosti na proizvodnju PGA. Primjenom Plackett-Burmanovog dizajna odabrana su hranjiva koja najviše utječu na prinos, a metodom odzivnih površina razvijen je matematički mo...

  12. Cell wall mechanical properties as measured with bacterial thread made from Bacillus subtilis.

    OpenAIRE

    Mendelson, N H; Thwaites, J J

    1989-01-01

    Engineering approaches used in the study of textile fibers have been applied to the measurement of mechanical properties of bacterial cell walls by using the Bacillus subtilis bacterial thread system. Improved methods have been developed for the production of thread and for measuring its mechanical properties. The best specimens of thread produced from cultures of strain FJ7 grown in TB medium at 20 degrees C varied in diameter by a factor of 1.09 over a 30-mm thread length. The stress-strain...

  13. Mutations that relieve nutritional repression of the Bacillus subtilis dipeptide permease operon.

    OpenAIRE

    Slack, F J; Mueller, J P; Sonenshein, A L

    1993-01-01

    The Bacillus subtilis dciA operon encodes a dipeptide transport complex that is induced rapidly as cells enter stationary phase and initiate sporulation. Expression of this operon in growing cells is repressed by glucose, by a mixture of amino acids, and by the AbrB protein. A genetic screen was devised to identify mutations that allow inappropriate expression from the dciA promoter during growth. These mutations resulted in increased dciA transcription during growth in nutrient broth, in min...

  14. Substrate induction of siderophore transport in Bacillus subtilis mediated by a novel one-component regulator

    OpenAIRE

    Gaballa, Ahmed; Helmann, John D.

    2007-01-01

    When iron is scarce, Bacillus subtilis expresses genes involved in the synthesis and uptake of the siderophore bacillibactin (BB) and uptake systems to pirate other microbial siderophores. Here, we demonstrate that transcriptional induction of the feuABCybbA operon, encoding the Fe-BB uptake system, is mediated by Btr (formerly YbbB) which is encoded by the immediately upstream gene. Btr contains an AraC-type DNA binding domain fused to a substrate binding protein (SBP) domain related to FeuA...

  15. Septation, dephosphorylation, and the activation of σF during sporulation in Bacillus subtilis

    OpenAIRE

    King, Nicole; Dreesen, Oliver; Stragier, Patrick; Pogliano, Kit; Losick, Richard

    1999-01-01

    Cell-specific activation of transcription factor σF during sporulation in Bacillus subtilis requires the formation of the polar septum and the activity of a serine phosphatase (SpoIIE) located in the septum. The SpoIIE phosphatase indirectly activates σF by dephosphorylating a protein (SpoIIAA-P) in the pathway that controls the activity of the transcription factor. By use of a SpoIIE–GFP fusion protein in time-course and time-lapse experiments and by direct visualization of septa in living c...

  16. Structure of the Phosphatase Domain of the Cell Fate Determinant SpoIIE from Bacillus subtilis

    OpenAIRE

    Levdikov, Vladimir M; Blagova, Elena V.; Rawlings, Andrea E.; Jameson, Katie; Tunaley, James; Hart, Darren J.; Barak, Imrich; Wilkinson, Anthony J.

    2012-01-01

    Sporulation in Bacillus subtilis begins with an asymmetric cell division producing two genetically identical cells with different fates. SpoIIE is a membrane protein that localizes to the polar cell division sites where it causes FtsZ to relocate from mid-cell to form polar Z-rings. Following polar septation, SpoIIE establishes compartment-specific gene expression in the smaller forespore cell by dephosphorylating the anti-sigma factor antagonist SpoIIAA, leading to the release of the RNA pol...

  17. PRODUCTION OPTIMIZATION OF EXTRACELLULAR L-ASPARAGINASE THROUGH SOLID- STATE FERMENTATION BY ISOLATED BACILLUS SUBTILIS.

    Directory of Open Access Journals (Sweden)

    Susmita Shukla

    2013-02-01

    Full Text Available L-asparaginase has been used as anti-tumor agent for the treatment of acute lymphoblastic leukemia and food processing aid to reduce the formation of cancer causing acrylamide. Extracellular Lasparaginase production was optimized through solid state fermentation using ground nut cake by isolated Bacillus subtilis. which was not reported in literature.Optimum production of L-asparaginase enzyme (18.4U/ml was obtained after 48h of incubation at 370C moisture content of 70% and at pH 7.

  18. A Catalytic Mechanism Revealed by the Crystal Structures of the Imidazolonepropionase from Bacillus subtilis.

    OpenAIRE

    Yu, Y.; Liang, Y.H.; Brostromer, E.; Quan, J. M.; PANJIKAR, S; Dong, Y. H.; Su, X. D.

    2006-01-01

    Imidazolonepropionase (EC 3.5.2.7) catalyzes the third step in the universal histidine degradation pathway, hydrolyzing the carbon-nitrogen bonds in 4-imidazolone-5-propionic acid to yield N-formimino-l-glutamic acid. Here we report the crystal structures of the Bacillus subtilis imidazolonepropionase and its complex at 2.0-A resolution with substrate analog imidazole-4-acetic acid sodium (I4AA). The structure of the native enzyme contains two domains, a TIM (triose-phosphate isomerase) barre...

  19. Cloning, nucleotide sequence, and expression of the Bacillus subtilis lon gene.

    OpenAIRE

    Riethdorf, S.; Völker, U; Gerth, U.; Winkler, A; Engelmann, S; Hecker, M.

    1994-01-01

    The lon gene of Escherichia coli encodes the ATP-dependent serine protease La and belongs to the family of sigma 32-dependent heat shock genes. In this paper, we report the cloning and characterization of the lon gene from the gram-positive bacterium Bacillus subtilis. The nucleotide sequence of the lon locus, which is localized upstream of the hemAXCDBL operon, was determined. The lon gene codes for an 87-kDa protein consisting of 774 amino acid residues. A comparison of the deduced amino ac...

  20. Purification and characterization of keratinase from a new Bacillus subtilis strain

    OpenAIRE

    Cai, Cheng-gang; Chen, Ji-shuang; Qi, Jiong-jiong; Yin, Yun; Zheng, Xiao-dong

    2008-01-01

    The aim of this study was to purify and characterize a keratinase produced by a new isolated Bacillus subtilis KD-N2 strain. The keratinase produced by the isolate was purified using ammonium sulphate precipitation, Sephadex G-75 and DEAE (diethylaminoethyl)-Sepharose chromatographic techniques. The purified enzyme was shown to have a molecular mass of 30.5 kDa, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The optimum pH at 50 °C was 8.5 and ...

  1. Localization of UvrA and Effect of DNA Damage on the Chromosome of Bacillus subtilis

    OpenAIRE

    Smith, Bradley T.; Grossman, Alan D.; Walker, Graham C.

    2002-01-01

    We found that the nucleotide excision repair protein UvrA, which is involved in DNA damage recognition, localizes to the entire chromosome both before and after damage in living Bacillus subtilis cells. We suggest that the UvrA2B damage recognition complex is constantly scanning the genome, searching for lesions in the DNA. We also found that DNA damage induces a dramatic reconfiguration of the chromosome such that it no longer fills the entire cell as it does during normal growth. This recon...

  2. Isolation and characterization of topological specificity mutants of minD in Bacillus subtilis

    OpenAIRE

    Karoui, M E; Errington, J

    2001-01-01

    In rod-shaped bacteria such as Bacillus subtilis, division site selection is mediated by MinC and MinD, which together function as a division inhibitor. Topological specificity is imposed by DivIVA, which ensures that MinCD specifically inhibits division close to the cell poles, while allowing division at mid-cell. MinD plays a central role in this process, as it positions and activates MinC and is dependent on DivIVA for its own positioning at the poles. To investigate MinD activities furthe...

  3. recE4-Independent Recombination Between Homologous Deoxyribonucleic Acid Segments of Bacillus subtilis Plasmids

    OpenAIRE

    Tanaka, T

    1980-01-01

    A plasmid (pLS104) carrying a tandem repetition of the leu region of the Bacillus subtilis chromosome arose spontaneously from pLS103, which carried a single copy of the leu region. Plasmid preparations from strains harboring pLS104 also contained the original plasmid, pLS103, and, in some preparations, plasmids carrying three or four repetitions of the leu region. These plasmids were shown to be generated by recombination between homologous deoxyribonucleic acid (DNA) segments in the tandeml...

  4. Single-stranded plasmid DNA in Bacillus subtilis and Staphylococcus aureus.

    OpenAIRE

    te Riele, H; Michel, B.; Ehrlich, S D

    1986-01-01

    Plasmid pC194 was found to exist in a double-stranded and a single-stranded DNA form in Bacillus subtilis and Staphylococcus aureus. This single-stranded DNA was found as a circular molecule of the same size as the parental monomer and corresponded to only one of the two DNA strands. It represented one-third of plasmid copies. Single- and double-stranded DNA copies in similar proportions to the above were detected for five other S. aureus plasmids (pC221, pC223, pE194, pT127, and pT181) and o...

  5. Plasmid transduction by Bacillus subtilis bacteriophage SPP1: effects of DNA homology between plasmid and bacteriophage.

    OpenAIRE

    Deichelbohrer, I; Alonso, J.C.; Lüder, G; Trautner, T A

    1985-01-01

    Any SPP1 DNA restriction fragment cloned into Bacillus subtilis plasmid pC194 or pUB110 increased the transduction frequency of the plasmid by SPP1 100- to 1,000-fold over the transduction level of the plasmid alone. This increment was observed irrespective of whether a fragment contained the SPP1 packaging origin (pac). Furthermore, an SPP1 derivative into whose genome pC194 DNA had been integrated transduced pC194 DNA with a greatly enhanced frequency. Transduction enhancement mediated by D...

  6. Cloning, sequencing, and expression of Bacillus subtilis genes involved in ATP-dependent nuclease synthesis.

    OpenAIRE

    Kooistra, J; Venema, G

    1991-01-01

    The genes encoding the subunits of the Bacillus subtilis ATP-dependent nuclease (add genes) have been cloned. The genes were located on an 8.8-kb SalI-SmaI chromosomal DNA fragment. Transformants of a recBCD deletion mutant of Escherichia coli with plasmid pGV1 carrying this DNA fragment showed ATP-dependent nuclease activity. Three open reading frames were identified on the 8.8-kb SalI-SmaI fragment, which could encode three proteins with molecular masses of 135 (AddB protein), 141 (AddA pro...

  7. Role of Branched-Chain Amino Acid Transport in Bacillus subtilis CodY Activity

    OpenAIRE

    Belitsky, Boris R.

    2015-01-01

    CodY is a branched-chain amino acid-responsive transcriptional regulator that controls the expression of several dozen transcription units in Bacillus subtilis. The presence of isoleucine, valine, and leucine in the growth medium is essential for achieving high activity of CodY and for efficient regulation of the target genes. We identified three permeases—BcaP, BraB, and BrnQ—that are responsible for the bulk of isoleucine and valine uptake and are also involved in leucine uptake. At least o...

  8. Characterization of the decolorizing activity of azo dyes by Bacillus subtilis azoreductase AzoR1

    OpenAIRE

    Montira Leelakriangsak; Sukallaya Borisut

    2012-01-01

    The product of the Bacillus subtilis gene azoR1 is annotated as a putative azoreductase, production of which isinduced in response to thiol-reactive compounds. Here we report on the decolorization of four azo dyes by azoreductaseactivity. The ability of overexpressed AzoR1 strain ORB7106 to catalyze decolorization of azo dyes was investigated on agarplates and in liquid cultures. The decolorization efficacy of a mutant, ORB7106, which has lost negative control of azoR1expression, was signific...

  9. Identification of the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R.

    Directory of Open Access Journals (Sweden)

    Xiankai Liu

    Full Text Available Immunoproteomics was used to screen the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. The spore and vegetative proteins were separated by 2D gel electrophoresis and transferred to polyvinylidene difluoride membranes, and then western blotting was performed with rabbit immune serum against B.anthracis live spores. Immunogenic spots were cut and digested by trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed to identify the proteins. As a result, 11 and 45 immunogenic proteins were identified in the spores and vegetative cells, respectively; 26 of which have not been reported previously. To verify their immunogenicity, 12 of the identified proteins were selected to be expressed, and the immune sera from the mice vaccinated by the 12 expressed proteins, except BA0887, had a specific western blot band with the A16R whole cellular lytic proteins. Some of these immunogenic proteins might be used as novel vaccine candidates themselves or for enhancing the protective efficacy of a protective-antigen-based vaccine.

  10. Changes in ultraviolet resistance and photoproduct formation as early events in spore germination of Bacillus cereus T

    International Nuclear Information System (INIS)

    In order to determine the timing of the change in the state of DNA in bacterial spores during the course of germination, L-alanine-induced germination of Bacillus cereus spores was interrupted by 0.3M CaCl2 as an inhibitor, and the resulting semi-refractive spores (spores at the end of the first phase of germination) were examined for UV-resistance and photoproduct formation. Upon UV-irradiation, these spores, still having a semi-refractile core as observed under a phase-contrast microscope, gave rise to mainly the cyclobutane-type thymine dimer. It was concluded that change in the stats of the spore DNA occurs early in the process of germination, i.e. before the refractility of the core is lost. It was also found that CaCl2 markedly prolonged the duration of the transient UV-resistant stage. (author)

  11. Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis.

    Science.gov (United States)

    Jin, Peng; Zhang, Linpei; Yuan, Panhong; Kang, Zhen; Du, Guocheng; Chen, Jian

    2016-04-20

    Chondroitin and heparosan, important polysaccharides and key precursors of chondroitin sulfate and heparin/heparan sulfate, have drawn much attention due to their wide applications in many aspects. In this study, we designed two independent synthetic pathways of chondroitin and heparosan in food-grade Bacillus subtilis, integrating critical synthases genes derived from Escherichia coli into B. subtilis genome. By RT-PCR analysis, we confirmed that synthases genes transcripted an integral mRNA chain, suggesting co-expression. In shaken flask, chondroitin and heparosan were produced at a level of 1.83gL(-1) and 1.71gL(-1), respectively. Since B. subtilis endogenous tuaD gene encodes the limiting factor of biosynthesis, overexpressing tuaD resulted in enhanced chondroitin and heparosan titers, namely 2.54gL(-1) and 2.65gL(-1). Moreover, production reached the highest peaks of 5.22gL(-1) and 5.82gL(-1) in 3-L fed-batch fermentation, respectively, allowed to double the production that in shaken flask. The weight-average molecular weight of chondroitin and heparosan from B. subtilis E168C/pP43-D and E168H/pP43-D were 114.07 and 67.70kDa, respectively. This work provided alternative safer synthetic pathways for metabolic engineering of chondroitin and heparosan in B. subtilis and a useful approach for enhancing production, which can be optimized for further improvement. PMID:26876870

  12. Variable Lymphocyte Receptor Recognition of the Immunodominant Glycoprotein of Bacillus anthracis Spores

    Energy Technology Data Exchange (ETDEWEB)

    Kirchdoerfer, Robert N.; Herrin, Brantley R.; Han, Byung Woo; Turnbough, Jr., Charles L.; Cooper, Max D.; Wilson, Ian A. (SNU); (Scripps); (Emory); (UAB); (Emory Vaccine)

    2012-07-25

    Variable lymphocyte receptors (VLRs) are the adaptive immune receptors of jawless fish, which evolved adaptive immunity independent of other vertebrates. In lieu of the immunoglobulin fold-based T and B cell receptors, lymphocyte-like cells of jawless fish express VLRs (VLRA, VLRB, or VLRC) composed of leucine-rich repeats and are similar to toll-like receptors (TLRs) in structure, but antibodies (VLRB) and T cell receptors (VLRA and VLRC) in function. Here, we present the structural and biochemical characterization of VLR4, a VLRB, in complex with BclA, the immunodominant glycoprotein of Bacillus anthracis spores. Using a combination of crystallography, mutagenesis, and binding studies, we delineate the mode of antigen recognition and binding between VLR4 and BclA, examine commonalities in VLRB recognition of antigens, and demonstrate the potential of VLR4 as a diagnostic tool for the identification of B. anthracis spores.

  13. Draft Genome Sequence of Commercial Textile Dye-Decolorizing and -Degrading Bacillus subtilis Strain C3 Isolated in India

    Science.gov (United States)

    Kunadia, Khushbu; Nathani, Neelam M.; Kothari, Vishal; Kotadia, Rohit J.; Kothari, Charmy R.; Joshi, Anjali; Rank, Jalpa K.; Faldu, Priti R.; Shekar, M. Chandra; Viroja, Mitkumar J.; Patel, Priyank A.; Jadeja, Divyarajsinh; Reddy, Bhaskar; Pal Singh, Ravindra; Koringa, Prakash G.; Joshi, Chaitanya G.

    2016-01-01

    Bacillus subtilis C3, a commercial textile dye-decolorizing and -degrading bacterium, was isolated from the common effluent treatment plant (CEPT) of the Jetpur textile dyeing and printing industrial sector situated in the district of Rajkot, Gujarat, India. Here, we present the annotated 4.18-Mb draft genome sequence of B. subtilis C3, providing information about the metabolic pathways involved in decolorization and degradation of several commercial textile azo dyes. Thus, we confirm B. subtilis C3 as a potential candidate for bioremediation of textile effluents. PMID:26966205

  14. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of Bacillus subtilis

    DEFF Research Database (Denmark)

    Soufi, Boumediene; Kumar, C.; Gnad, F.;

    2010-01-01

    We applied stable isotope labeling by amino acids in cell culture (SILAC) to large-scale quantitative proteomics analyses of the model bacterium Bacillus subtilis in two physiological conditions: growth on succinate and growth under phosphate starvation. Using a B. subtilis strain auxotrophic for...... most comprehensive quantitative proteomics studies in bacteria, covering more than 75% of the B. subtilis genes expressed in the log phase of growth. Furthermore, we detect and quantify dynamics of 35 Ser/Thr/Tyr phosphorylation sites under growth on succinate, and 10 phosphorylation sites under...

  15. High-level expression and characterization of the Bacillus subtilis subsp. subtilis str. BSP1 YwaD aminopeptidase in Pichia pastoris.

    Science.gov (United States)

    Tang, Wei; Li, Zhezhe; Li, Chunhua; Yu, Xianhong; Wang, Fei; Wan, Xin; Wang, Yaping; Ma, Lixin

    2016-06-01

    Aminopeptidases are widely used for creating protein hydrolysates and peptide sequencing. The ywaD gene from a new Bacillus isolate, named Bacillus subtilis subsp. subtilis str. BSP1, was cloned into the yeast expression vector pHBM905A and expressed and secreted by Pichia pastoris strain GS115. The deduced amino acid sequence of the aminopeptidase encoded by the ywaD gene shared up to 98% identity with aminopeptidases from B. subtilis strains 168 and zj016. The yield (3.81 g/l) and specific activity (788 U/mg) of recombinant YwaD in high-density fermentation were extremely high. And 829.83 mg of the purified enzyme (4089.72 U/mg) were harvested. YwaD was glycosylated, and its activity decreased after deglycosylation, which was similar to that of the aminopeptidase from B. subtilis strain zj016. YwaD was most active toward l-arginine-4-nitroanilide. Moreover, it exhibited high resistance to carbamide, which was not true for aminopeptidases from B. subtilis strains 168 and zj016, which could simplify the purification of YwaD. Moreover, the expression and parts of characterization of the aminopeptidase from B. subtilis strain 168 in Pichia pastoris were added as supplementary material. The sequence and other characteristics of YwaD were compared with those of aminopeptidases from B. subtilis strains 168 and zj016, and they will provide a solid foundation for further research on the influence of amino acid mutations on the function of aminopeptidases. PMID:26898926

  16. Crude glycerol from biodiesel industry as substrate for biosurfactant production by Bacillus subtilis ATCC 6633

    Directory of Open Access Journals (Sweden)

    Marylane de Sousa

    2014-04-01

    Full Text Available Glycerol, a co-product of the biodiesel industry, may be a suitable raw material for the production of high added-value compounds by the microorganisms. This study aimed to use the glycerol obtained from the biodiesel production process as the main carbon source for biosurfactant production by Bacillus subtilis ATCC 6633. Results indicated that the strain lowered the surface tension of the cell-free fermented broth to 31.5 ± 1.6 mN/m, indicating the production of biosurfactant. The critical micelle concentration (CMC = 33.6 mN/m obtained was similar to the previously reported for biossurfactants isolated from other Bacillus. The produced biosurfactant was able to emulsify n-hexadecane and soybean oil.

  17. Partial characterization of bacitracin like inhibitory substance from bacillus subtilis BS15, a local soil isolate

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the production of bacteriocin/bacteriocin-like inhibitory substances (BLIS) from Bacillus subtilis BS15, isolated from soil. The inhibitory substance was partially purified and characterized as BLIS with a molecular-weight of 3-5 kDa, as determined by SDS-PAGE. Its production was observed during the late exponential phase or at the beginning of stationary-phase. It retained its activity up to 80 deg. C and over a wide range of pH i.e., 3-9. It was found active against several clinically important bacterial species such as Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, Salmonella typhi and also against the food-spoilage causing microbes, and may be considered as future food preservative. (author)

  18. Caracterización de cristales de calcita bioprecipitada por un aislamiento nativo de Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Carolina Montoya

    2007-02-01

    Full Text Available Bacillus subtilis es una bacteria útil en algunas aplicaciones biotecnológicas por poseer enzimas como las amilasas, las cuales desempeñan un papel importante en diferentes procesos industriales. Una de sus propiedades, poco estudiada, ha sido su capacidad de inducir bioprecipitación química de carbonato de calcio (Ca2+ + HCO3 3> CaCO3 + H+ mediante un mecanismo similar al observado en la formación de rocas, suelos y estructuras biológicas como huesos, conchas y dientes. En esta investigación se estudiaron los cristales producidos por un aislamiento nativo de B. subtilis, tomado de una mina de oro situada en Segovia (Antioquia. Se determinó su capacidad calcificante utilizando el medio de cultivo B4. La caracterización del cristal producido se realizó con lupa binocular, microscopio petrográfico de luz plana polarizada (MOLP en su modo de luz transmitida, microscopio electrónico de barrido con analizador de estado sólido (ESEM/EDX y espectroscopía infrarroja con transformada de Fourier (FTIR. A partir de los resultados obtenidos por medio de la caracterización utilizando la combinación de las técnicas analíticas que se mencionaron, fue posible determinar que el aislado nativo de B. subtilis generó y por ende es productor de cristales de carbonato de calcio (CaCO3 en su forma polimórfica de baja temperatura (calcite.Palabras clave: Bacillus subtilis, calcita, bioprecipitación, mineralogía aplicada, biomineralogía.ABSTRACTBacillus subtilis, a bacterium useful in some biotechnology applications, contains enzymes such as amylases, which play an important role in several industrial processes. One of its properties, not very well studied, is its capacity to induce the chemical bioprecipitation of CaCO3 (Ca2+ + HCO3 —> CaCO3 + H+, a similar mechanism commonly observed in the formation of rocks, soils and biological structures like bones, shells and teeth. In this work we have studied carbonate crystals produced by a B

  19. Heterologous expression, biochemical characterization, and overproduction of alkaline α-amylase from Bacillus alcalophilus in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Li Jianghua

    2011-10-01

    Full Text Available Abstract Background Alkaline α-amylases have potential applications for hydrolyzing starch under high pH conditions in the starch and textile industries and as ingredients in detergents for automatic dishwashers and laundries. While the alkaline α-amylase gains increased industrial interest, the yield of alkaline α-amylases from wild-type microbes is low, and the combination of genetic engineering and process optimization is necessary to achieve the overproduction of alkaline α-amylase. Results The alkaline α-amylase gene from Bacillus alcalophilus JN21 (CCTCC NO. M 2011229 was cloned and expressed in Bacillus subtilis strain WB600 with vector pMA5. The recombinant alkaline α-amylase was stable at pH from 7.0 to 11.0 and temperature below 40°C. The optimum pH and temperature of alkaline α-amylase was 9.0 and 50°C, respectively. Using soluble starch as the substrate, the Km and Vmax of alkaline α-amylase were 9.64 g/L and 0.80 g/(L·min, respectively. The effects of medium compositions (starch, peptone, and soybean meal and temperature on the recombinant production of alkaline α-amylase in B. subtilis were investigated. Under the optimal conditions (starch concentration 0.6% (w/v, peptone concentration 1.45% (w/v, soybean meal concentration 1.3% (w/v, and temperature 37°C, the highest yield of alkaline α-amylase reached 415 U/mL. The yield of alkaline α-amylase in a 3-L fermentor reached 441 U/mL, which was 79 times that of native alkaline α-amylase from B. alcalophilus JN21. Conclusions This is the first report concerning the heterologous expression of alkaline α-amylase in B. subtilis, and the obtained results make it feasible to achieve the industrial production of alkaline α-amylase with the recombinant B. subtilis.

  20. A Bacitracin-Resistant Bacillus subtilis Gene Encodes a Homologue of the Membrane-Spanning Subunit of the Bacillus licheniformis ABC Transporter

    OpenAIRE

    Ohki, Reiko; Tateno, Kozue; Okada, Youji; Okajima, Haruo; Asai, Kei; Sadaie, Yoshito; Murata, Makiko; Aiso, Toshiko

    2003-01-01

    Bacitracin is a peptide antibiotic nonribosomally produced by Bacillus licheniformis. The bcrABC genes which confer bacitracin resistance to the bacitracin producer encode ATP binding cassette (ABC) transporter proteins, which are hypothesized to pump out bacitracin from the cells. Bacillus subtilis 168, which has no bacitracin synthesizing operon, has several genes homologous to bcrABC. It was found that the disruption of ywoA, a gene homologous to bcrC, resulted in hypersensitivity to bacit...

  1. Optimization of medium composition for the production of compounds effective against Xanthomonas campestris by bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Rončević Zorana Z.

    2014-01-01

    Full Text Available The biocontrol agents are a very promising alternative to synthetic pesticides that are presently used to control plant diseases caused by phytopathogenic microorganisms. Members of the Bacillus genera are soil bacteria that produce significant quantities of agriculturally important bioactive compounds. Production of these compounds can be improved by changing the nutritional and environmental conditions. The aim of this study was the optimization of medium composition, using response surface methodology, for the production of compounds effective against Xanthomonas campestris ATCC 13951 by Bacillus subtilis ATCC 6633. To study the production of antimicrobial compounds by selected Bacillus strain, the producing microorganisms were cultivated on nutrient broth. The inhibition zone diameter of 18.0 mm obtained by the diffusion-disc method indicated that the used Bacillus subtilis strain produces compounds with antimicrobial activity against Xanthomonas campestris ATCC 13951. To optimize the composition of the cultivation medium in terms of glycerol, sodium nitrite and phosphates content, experiments were carried out in accordance with Box-Behnken design, and optimization of multiple responses was performed using the concept of desirability function. The developed model predicted that the maximum inhibition zone diameter (26.23 mm against tested phytopathogen is achieved when the initial content of glycerol, sodium nitrite and phosphate were 50.00 g/L, 2.85 g/L and 11.00 g/L, respectively. To minimize the consumption of medium components and costs of effluents processing, additional optimization set was made. The techno-economic analysis of the obtained results has to be done to select optimal medium composition for industrial production of antimicrobial compounds.

  2. Transcriptional Stimulation of Anthrax Toxin Receptors by Anthrax Edema Toxin and Bacillus anthracis Sterne Spore

    OpenAIRE

    Xu, Qingfu; Hesek, Eric D.; Zeng, Mingtao

    2007-01-01

    We used quantitative real-time RT-PCR to not only investigate the mRNA levels of anthrax toxin receptor 1 (ANTXR1) and 2 (ANTXR2) in the murine J774A.1 macrophage cells and different tissues of mice, but also evaluate the effect of anthrax edema toxin and Bacillus anthracis Sterne spores on the expression of mRNA of these receptors. The mRNA transcripts of both receptors was detected in J774A.1 cells and mouse tissues such as the lung, heart, kidney, spleen, stomach, jejunum, brain, skeleton ...

  3. Recovery of Bacillus sphaericus spores by flocculation/sedimentation and flotation

    OpenAIRE

    Christine Lamenha Luna; Carlos Edison Lopes; Giulio Massarani

    2005-01-01

    The aim of this work was use flocculation/sedimentation and flotation for recovery of spores of the Bacillus sphaericus. Microorganism was produced batchwise using culture medium based skimmed milk, corn steep liquor and mineral salts. The best results of flocculation were obtained using CaCl2.2H2O, FeCl3.6H2O, Al2(SO4)3 and tannin as flocculating agents, with optimal flocculation concentrations of 1,500, 3,000, 2,000 and 1,700ppm, respectively. Flocculent suspensions were characterized based...

  4. IMMUNE-RELATED GENES EXPRESSION AND PHAGOCYTOSIS AGAINST WHITE SPOT SYNDROME VIRUS AFTER ORAL DELIVERY OF VP28 USING BACILLUS SUBTILIS AS VEHICLES IN LITOPENAEUS VANNAMEI%以枯草芽孢杆菌递呈VP28对南美白对虾免疫相关基因表达和细胞特异性吞噬的影响

    Institute of Scientific and Technical Information of China (English)

    丁晶; 王彦波; 傅玲琳

    2013-01-01

    以枯草芽孢杆菌(Bacillus subtilis)为活载体口服递呈对虾白斑综合征病毒(WSSV)囊膜蛋白 VP28,评价其抗病毒感染能力、对南美白对虾免疫相关基因表达以及血淋巴细胞对病毒特异性吞噬的影响。经口服免疫枯草重组菌株B. subtilis-VP28攻毒后,对虾的相对存活率达83.3%。为探讨重组菌株的抗病机理,比较研究了免疫相关基因-proPO(酚氧化酶原)、Peroxinectin(PE)和脂多糖-β-1,3-葡聚糖结合蛋白(LGBP)基因的表达差异,并进一步分析了血淋巴细胞吞噬活性和特异性。结果表明, B. subtilis-VP28菌液能显著提高(P<0.05)对虾proPO、PE和LGBP mRNA的表达水平和血细胞对WSSV的吞噬活性, B. subtilis组对免疫相关基因也有一定的激活作用,而B. subtilis-VP28发酵上清液则能增加血细胞吞噬活性;此外, B. subtilis-VP28菌液组血细胞对WSSV具有特异性吞噬作用。研究为枯草重组菌株B. subtilis-VP28抗WSSV感染作用及其作为特殊功能水产微生态制剂的应用提供了一定的科学依据。%The regulation of immune-related genes expression and phagocytosis of White Spot Syndrome Virus (WSSV) were evaluated by oral delivery of VP28 using Bacillus subtilis as vehicles in Litopenaeus vannamei. In our initial ex-periment, by oral delivery of B. subtilis spores harboring VP28 (B. subtilis-VP28) to L. vannamei, the extremely high survival (Relative Percent Survival:83.3%) upon challenge with WSSV can be observed. The differences of genes ex-pression levels of proPO, Peroxinectin (PE) and lipopolysaccharide-and beta-1, 3-glucan-binding protein (LGBP) were demonstrated among experimental groups of B. subtilis-VP28 bacterial spores, B. subtilis-VP28 supernatants, B. subtilis and control. The result showed that immune-related genes (proPO, PE and LGBP) were significantly (P<0.05) upregu-lated in both B. subtilis-VP28 bacterial spores and B. subtilis feeding groups compared to B. subtilis-VP28

  5. Kinetics of Mn(II) oxidation by spores of the marine Bacillus sp. SG-1

    Science.gov (United States)

    Toyoda, Kazuhiro; Tebo, Bradley M.

    2016-09-01

    The kinetics of Mn(II) oxidation by spores of the marine Bacillus sp. SG-1 was measured under controlled conditions of the initial Mn(II) concentration, spore concentration, chemical speciation, pH, O2, and temperature. Mn(II) oxidation experiments were performed with spore concentrations ranging from 0.7 to 11 × 109 spores/L, a pH range from 5.8 to 8.1, temperatures between 4 and 58 °C, a range of dissolved oxygen from 2 to 270 μM, and initial Mn(II) concentrations from 1 to 200 μM. The Mn(II) oxidation rates were directly proportional to the spore concentrations over these ranges of concentration. The Mn(II) oxidation rate increased with increasing initial Mn(II) concentration to a critical concentration, as described by the Michaelis-Menten model (Km = ca. 3 μM). Whereas with starting Mn(II) concentrations above the critical concentration, the rate was almost constant in low ionic solution (I = 0.05, 0.08). At high ionic solution (I = 0.53, 0.68), the rate was inversely correlated with Mn(II) concentration. Increase in the Mn(II) oxidation rate with the dissolved oxygen concentration followed the Michaelis-Menten model (Km = 12-19 μM DO) in both a HEPES-buffered commercial drinking (soft) water and in artificial and natural seawater. Overall, our results suggest that the mass transport limitations of Mn(II) ions due to secondary Mn oxide products accumulating on the spores cause a significant decrease of the oxidation rate at higher initial Mn(II) concentration on a spore basis, as well as in more concentrated ionic solutions. The optimum pH for Mn(II) oxidation was approximately 7.0 in low ionic solutions (I = 0.08). The high rates at the alkaline side (pH > 7.5) may suggest a contribution by heterogeneous reactions on manganese bio-oxides. The effect of temperature on the Mn(II) oxidation rate was studied in three solutions (500 mM NaCl, ASW, NSW solutions). Thermal denaturation occurred at 58 °C and spore germination was evident at 40 °C in all three

  6. Levan from Bacillus subtilis Natto: its effects in normal and in streptozotocin-diabetic rats

    Directory of Open Access Journals (Sweden)

    Fernando Cesar Bazani Cabral de Melo

    2012-12-01

    Full Text Available Levan is an exopolysaccharide of fructose primarily linked by β-(2→6 glycosidic bonds with some β-(2→1 branched chains. Due to its chemical properties, levan has possible applications in both the food and pharmaceutical industries. Bacillus subtilis is a promising industrial levan producer, as it ferments sucrose and has a high levan-formation capacity. A new strain of B. subtilis was recently isolated from Japanese food natto, and it has produced levan in large quantities. For future pharmaceutical applications, this study aimed to investigate the effects of levan produced by B. subtilis Natto, mainly as potential hypoglycemic agent, (previously optimized with a molecular weight equal to 72.37 and 4,146 kDa in Wistar male rats with diabetes induced by streptozotocin and non-diabetic rats and to monitor their plasma cholesterol and triacylglycerol levels. After 15 days of experimentation, the animals were sacrificed, and their blood samples were analyzed. The results, compared using analysis of variance, demonstrated that for this type of levan, a hypoglycemic effect was not observed, as there was no improvement of diabetes symptoms during the experiment. However, levan did not affect any studied parameters in normal rats, indicating that the exopolysaccharide can be used for other purposes.

  7. Levan from Bacillus subtilis Natto: its effects in normal and in streptozotocin-diabetic rats.

    Science.gov (United States)

    de Melo, Fernando Cesar Bazani Cabral; Zaia, Cássia Thaïs Bussamra Viera; Celligoi, Maria Antonia Pedrine Colabone

    2012-10-01

    Levan is an exopolysaccharide of fructose primarily linked by β-(2→6) glycosidic bonds with some β-(2→1) branched chains. Due to its chemical properties, levan has possible applications in both the food and pharmaceutical industries. Bacillus subtilis is a promising industrial levan producer, as it ferments sucrose and has a high levan-formation capacity. A new strain of B. subtilis was recently isolated from Japanese food natto, and it has produced levan in large quantities. For future pharmaceutical applications, this study aimed to investigate the effects of levan produced by B. subtilis Natto, mainly as potential hypoglycemic agent, (previously optimized with a molecular weight equal to 72.37 and 4,146 kDa) in Wistar male rats with diabetes induced by streptozotocin and non-diabetic rats and to monitor their plasma cholesterol and triacylglycerol levels. After 15 days of experimentation, the animals were sacrificed, and their blood samples were analyzed. The results, compared using analysis of variance, demonstrated that for this type of levan, a hypoglycemic effect was not observed, as there was no improvement of diabetes symptoms during the experiment. However, levan did not affect any studied parameters in normal rats, indicating that the exopolysaccharide can be used for other purposes. PMID:24031993

  8. selective production and characterization of levan by Bacillus subtilis (Natto) Takahashi.

    Science.gov (United States)

    Shih, Ing-Lung; Yu, Yun-Ti; Shieh, Chwen-Jen; Hsieh, Chien-Yan

    2005-10-19

    To meet the industrial need of an efficient microbial method for increased levan production, Bacillus subtilis (natto) Takahashi, a commercial natto starter for preparing fermented soybeans (natto), was used to produce levan. After cultivation for 21 h, 40-50 mg of levan mL(-1) was produced in medium containing 20% (w/w) sucrose, which was approximately 50% yield on available fructose. The product consisted of two fractions with different molecular masses (1794 and 11 kDa), which were easily separated by fractionation using an ethanol gradient. The products were well characterized by GPC, 13C NMR, and 1H NMR. The various sugars and concentrations, initial pH, fermentation temperature, and agitation speed affected the levan production by B. subtilis (natto) Takahashi. Takahashi strain is the most efficient levan-producing strain among all of the B. subtilis strains tested and, as previously reported, it produced the highest yield of levan in the least time (21 h) under the common cultivation condition. PMID:16218666

  9. Ectopic integration vectors for generating fluorescent promoter fusions in Bacillus subtilis with minimal dark noise.

    Directory of Open Access Journals (Sweden)

    Stephanie Trauth

    Full Text Available Fluorescent protein promoter reporters are important tools that are widely used for diverse purposes in microbiology, systems biology and synthetic biology and considerable engineering efforts are still geared at improving the sensitivity of the reporter systems. Here we focus on dark noise, i.e. the signal that is generated by the empty vector control. We quantitatively characterize the dark noise of a few common bacterial reporter systems by single cell microscopy. All benchmarked reporter systems generated significant amounts of dark noise that exceed the cellular autofluorescence to different extents. We then reengineered a multicolor set of fluorescent ectopic integration vectors for Bacillus subtilis by introducing a terminator immediately upstream of the promoter insertion site, resulting in an up to 2.7-fold reduction of noise levels. The sensitivity and dynamic range of the new high-performance pXFP_Star reporter system is only limited by cellular autofluorescence. Moreover, based on studies of the rapE promoter of B. subtilis we show that the new pXFP_Star reporter system reliably reports on the weak activity of the rapE promoter whereas the original reporter system fails because of transcriptional interference. Since the pXFP_Star reporter system properly isolates the promoter from spurious transcripts, it is a particularly suitable tool for quantitative characterization of weak promoters in B. subtilis.

  10. Second Messenger Signaling in Bacillus subtilis: Accumulation of Cyclic di-AMP Inhibits Biofilm Formation.

    Science.gov (United States)

    Gundlach, Jan; Rath, Hermann; Herzberg, Christina; Mäder, Ulrike; Stülke, Jörg

    2016-01-01

    The Gram-positive model organism Bacillus subtilis produces the essential second messenger signaling nucleotide cyclic di-AMP. In B. subtilis and other bacteria, c-di-AMP has been implicated in diverse functions such as control of metabolism, cell division and cell wall synthesis, and potassium transport. To enhance our understanding of the multiple functions of this second messenger, we have studied the consequences of c-di-AMP accumulation at a global level by a transcriptome analysis. C-di-AMP accumulation affected the expression of about 700 genes, among them the two major operons required for biofilm formation. The expression of both operons was severely reduced both in the laboratory and a non-domesticated strain upon accumulation of c-di-AMP. In excellent agreement, the corresponding strain was unable to form complex colonies. In B. subtilis, the transcription factor SinR controls the expression of biofilm genes by binding to their promoter regions resulting in transcription repression. Inactivation of the sinR gene restored biofilm formation even at high intracellular c-di-AMP concentrations suggesting that the second messenger acts upstream of SinR in the signal transduction pathway. As c-di-AMP accumulation did not affect the intracellular levels of SinR, we conclude that the nucleotide affects the activity of SinR. PMID:27252699

  11. The interaction of Bacillus subtilis sigmaA with RNA polymerase.

    Science.gov (United States)

    Johnston, Elecia B; Lewis, Peter J; Griffith, Renate

    2009-11-01

    RNA polymerase (RNAP) is an essential and highly conserved enzyme in all organisms. The process of transcription initiation is fundamentally different between prokaryotes and eukaryotes. In prokaryotes, initiation is regulated by sigma factors, making the essential interaction between sigma factors and RNAP an attractive target for antimicrobial agents. Our objective was to achieve the first step in the process of developing novel antimicrobial agents, namely to prove experimentally that the interaction between a bacterial RNAP and an essential sigma factor can be disrupted by introducing carefully designed mutations into sigma(A) of Bacillus subtilis. This disruption was demonstrated qualitatively by Far-Western blotting. Design of mutant sigmas was achieved by computer-aided visualization of the RNAP-sigma interface of the B. subtilis holoenzyme (RNAP + sigma) constructed using a homology modeling approach with published crystal structures of bacterial RNAPs. Models of the holoenzyme and the core RNAP were rigorously built, evaluated, and validated. To allow a high-quality RNAP-sigma interface model to be constructed for the design of mutations, a crucial error in the B. subtilis sigma(A) sequence in published databases at amino acid 165 had to be corrected first. The new model was validated through determination of RNAP-sigma interactions using targeted mutations. PMID:19735077

  12. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

    Science.gov (United States)

    Mars, Ruben A T; Nicolas, Pierre; Ciccolini, Mariano; Reilman, Ewoud; Reder, Alexander; Schaffer, Marc; Mäder, Ulrike; Völker, Uwe; van Dijl, Jan Maarten; Denham, Emma L

    2015-03-01

    Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions. PMID:25790031

  13. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Ruben A T Mars

    2015-03-01

    Full Text Available Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions.

  14. Protein-tyrosine phosphorylation in Bacillus subtilis: a 10-year retrospective

    Directory of Open Access Journals (Sweden)

    Josef eDeutscher

    2015-01-01

    Full Text Available The discovery of tyrosine-phosphorylated proteins in Bacillus subtilis in the year 2003 was followed by a decade of intensive research activity. Here we provide an overview of the lessons learned in that period. While the number of characterized kinases and phosphatases involved in reversible protein-tyrosine phosphorylation in B. subtilis has remained essentially unchanged, the number of proteins known to be targeted by this post-translational modification has increased dramatically. This is mainly due to phosphoproteomics and interactomics studies, which were instrumental in identifying new tyrosine-phosphorylated proteins. Despite their structural similarity, the two B. subtilis protein-tyrosine kinases (BY-kinases, PtkA and PtkB (EpsB, seem to accomplish different functions in the cell. The PtkB is encoded by a large operon involved in exopolysaccharide production, and its main role appears to be the control of this process. The PtkA seems to have a more complex role; it phosphorylates and regulates a large number of proteins involved in the DNA, fatty acid and carbon metabolism and engages in physical interaction with other types of kinases (Ser/Thr kinases, leading to mutual phosphorylation. PtkA also seems to respond to several activator proteins, which direct its activity towards different substrates. In that respect PtkA seems to function as a highly connected signal integration device.

  15. Activation of pur Gene Expression by a Homologue of the Bacillus subtilis PurR repressor:

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Martinussen, Jan

    1998-01-01

    R encoded repressor from Bacillus subtilis. The wildtype purR gene complements the purine auxotrophy of a purR::Iss1mutant, and it was shown that the purR::Iss1 mutation lowers transcription from the purine regulated L. lactis purD promoter. In a parallel study on the regulation of purC and purD expression....... We have identified a PurBox sequence overlapping the -35 region of the L. lactis purR promoter and found, by studies of a purR-lacLM fusion plasmid, that purR is autoregulated. Because of the high similarity of the PurR proteins from B. subtilis and L. lactis, we looked for PurBox sequences in the...... promoter regions of the PurR regulated genes in B. subtilis, and identified a perfectly matching PurBox in the purA promoter region, and slightly degenerate PurBox like sequences in the promoter regions for the pur operon and the purR gene....

  16. Second Messenger Signaling in Bacillus subtilis: Accumulation of Cyclic di-AMP Inhibits Biofilm Formation

    Science.gov (United States)

    Gundlach, Jan; Rath, Hermann; Herzberg, Christina; Mäder, Ulrike; Stülke, Jörg

    2016-01-01

    The Gram-positive model organism Bacillus subtilis produces the essential second messenger signaling nucleotide cyclic di-AMP. In B. subtilis and other bacteria, c-di-AMP has been implicated in diverse functions such as control of metabolism, cell division and cell wall synthesis, and potassium transport. To enhance our understanding of the multiple functions of this second messenger, we have studied the consequences of c-di-AMP accumulation at a global level by a transcriptome analysis. C-di-AMP accumulation affected the expression of about 700 genes, among them the two major operons required for biofilm formation. The expression of both operons was severely reduced both in the laboratory and a non-domesticated strain upon accumulation of c-di-AMP. In excellent agreement, the corresponding strain was unable to form complex colonies. In B. subtilis, the transcription factor SinR controls the expression of biofilm genes by binding to their promoter regions resulting in transcription repression. Inactivation of the sinR gene restored biofilm formation even at high intracellular c-di-AMP concentrations suggesting that the second messenger acts upstream of SinR in the signal transduction pathway. As c-di-AMP accumulation did not affect the intracellular levels of SinR, we conclude that the nucleotide affects the activity of SinR. PMID:27252699

  17. Enhanced and Secretory Expression of Human Granulocyte Colony Stimulating Factor by Bacillus subtilis SCK6

    Science.gov (United States)

    Bashir, Shaista; Sadaf, Saima; Ahmad, Sajjad; Akhtar, Muhammad Waheed

    2015-01-01

    This study describes a simplified approach for enhanced expression and secretion of a pharmaceutically important human cytokine, that is, granulocyte colony stimulating factor (GCSF), in the culture supernatant of Bacillus subtilis SCK6 cells. Codon optimized GCSF and pNWPH vector containing SpymwC signal sequence were amplified by prolonged overlap extension PCR to generate multimeric plasmid DNA, which was used directly to transform B. subtilis SCK6 supercompetent cells. Expression of GCSF was monitored in the culture supernatant for 120 hours. The highest expression, which corresponded to 17% of the total secretory protein, was observed at 72 hours of growth. Following ammonium sulphate precipitation, GCSF was purified to near homogeneity by fast protein liquid chromatography on a QFF anion exchange column. Circular dichroism spectroscopic analysis showed that the secondary structure contents of the purified GCSF are similar to the commercially available GCSF. Biological activity, as revealed by the regeneration of neutrophils in mice treated with ifosfamine, was also similar to the commercial preparation of GCSF. This, to our knowledge, is the first study that reports secretory expression of human GCSF in B. subtilis SCK6 with final recovery of up to 96 mg/L of the culture supernatant, without involvement of any chemical inducer. PMID:26881203

  18. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production.

    Science.gov (United States)

    Stahmann, K P; Revuelta, J L; Seulberger, H

    2000-05-01

    Chemical riboflavin production, successfully used for decades, is in the course of being replaced by microbial processes. These promise to save half the costs, reduce waste and energy requirements, and use renewable resources like sugar or plant oil. Three microorganisms are currently in use for industrial riboflavin production. The hemiascomycetes Ashbya gossypii, a filamentous fungus, and Candida famata, a yeast, are naturally occurring overproducers of this vitamin. To obtain riboflavin production with the gram-positive bacterium Bacillus subtilis requires at least the deregulation of purine synthesis and a mutation in a flavokinase/FAD-synthetase. It is common to all three organisms that riboflavin production is recognizable by the yellow color of the colonies. This is an important tool for the screening of improved mutants. Antimetabolites like itaconate, which inhibits the isocitrate lyase in A. gossypii, tubercidin, which inhibits purine biosynthesis in C. famata, or roseoflavin, a structural analog of riboflavin used for B. subtilis, have been applied successfully for mutant selections. The production of riboflavin by the two fungi seems to be limited by precursor supply, as was concluded from feeding and gene-overexpression experiments. Although flux studies in B. subtilis revealed an increase both in maintenance metabolism and in the oxidative part of the pentose phosphate pathway, the major limitation there seems to be the riboflavin pathway. Multiple copies of the rib genes and promoter replacements are necessary to achieve competitive productivity. PMID:10855708

  19. Novel broad host range shuttle vectors for expression in Escherichia coli, Bacillus subtilis and Pseudomonas putida.

    Science.gov (United States)

    Troeschel, Sonja Christina; Thies, Stephan; Link, Olga; Real, Catherine Isabell; Knops, Katja; Wilhelm, Susanne; Rosenau, Frank; Jaeger, Karl-Erich

    2012-10-15

    Novel shuttle vectors named pEBP were constructed to allow the gene expression in different bacterial hosts including Escherichia coli, Bacillus subtilis and Pseudomonas putida. These vectors share the inducible promoters P(T7) and P(Xyl) and a cos site to enable packaging of plasmid DNA into phage, and carry different multiple cloning sites and antibiotic resistance genes. Vector pEBP41 generally replicates episomally while pEBP18 replicates episomally in Gram-negative bacteria only, but integrates into the chromosome of B. subtilis. Plasmid copy numbers determined for E. coli and P. putida were in the range of 5-50 per cell. The functionality of pEBP18 and pEBP41 was confirmed by expression of two lipolytic enzymes, namely lipase A from B. subtilis and cutinase from the eukaryotic fungus Fusarium solani pisi in three different host strains. Additionally, we report here the construction of a T7 RNA polymerase-based expression strain of P. putida. PMID:22440389

  20. Simulation of Bacillus subtilis biofilm growth on agar plate by diffusion–reaction based continuum model

    Science.gov (United States)

    Zhang, Xianlong; Wang, Xiaoling; Nie, Kai; Li, Mingpeng; Sun, Qingping

    2016-08-01

    Various species of bacteria form highly organized spatially-structured aggregates known as biofilms. To understand how microenvironments impact biofilm growth dynamics, we propose a diffusion–reaction continuum model to simulate the formation of Bacillus subtilis biofilm on an agar plate. The extended finite element method combined with level set method are employed to perform the simulation, numerical results show the quantitative relationship between colony morphologies and nutrient depletion over time. Considering that the production of polysaccharide in wild-type cells may enhance biofilm spreading on the agar plate, we inoculate mutant colony incapable of producing polysaccharide to verify our results. Predictions of the glutamate source biofilm’s shape parameters agree with the experimental mutant colony better than that of glycerol source biofilm, suggesting that glutamate is rate limiting nutrient for Bacillus subtilis biofilm growth on agar plate, and the diffusion-limited is a better description to the experiment. In addition, we find that the diffusion time scale is of the same magnitude as growth process, and the common-employed quasi-steady approximation is not applicable here.

  1. Induced sensitivity of Bacillus subtilis colony morphology to mechanical media compression

    Directory of Open Access Journals (Sweden)

    Jessica K. Polka

    2014-09-01

    Full Text Available Bacteria from several taxa, including Kurthia zopfii, Myxococcus xanthus, and Bacillus mycoides, have been reported to align growth of their colonies to small features on the surface of solid media, including anisotropies created by compression. While the function of this phenomenon is unclear, it may help organisms navigate on solid phases, such as soil. The origin of this behavior is also unknown: it may be biological (that is, dependent on components that sense the environment and regulate growth accordingly or merely physical. Here we show that B. subtilis, an organism that typically does not respond to media compression, can be induced to do so with two simple and synergistic perturbations: a mutation that maintains cells in the swarming (chained state, and the addition of EDTA to the growth media, which further increases chain length. EDTA apparently increases chain length by inducing defects in cell separation, as the treatment has only marginal effects on the length of individual cells. These results lead us to three conclusions. First, the wealth of genetic tools available to B. subtilis will provide a new, tractable chassis for engineering compression sensitive organisms. Second, the sensitivity of colony morphology to media compression in Bacillus can be modulated by altering a simple physical property of rod-shaped cells. And third, colony morphology under compression holds promise as a rapid, simple, and low-cost way to screen for changes in the length of rod-shaped cells or chains thereof.

  2. Point-cycle bistability and stochasticity in a regulatory circuit for Bacillus subtilis competence.

    Science.gov (United States)

    Xi, Hongguang; Duan, Lixia; Turcotte, Marc

    2013-08-01

    Bacillus subtilis is a very well-studied organism in biology. Recent results show that an evolutionary plausible alternative competence regulation circuit for this bacterium, despite presenting equivalent functionality, exhibits physiologically important differences. Thus, it is not a priori clear why Nature only selects a specific gene regulation circuit other than a plethora of equivalent others. Here, we use simulations to study this question further. Based on the wild-type Bacillus subtilis circuit, we add a positive autoregulation feedback loop to the intermediate gene comS. We use bifurcation theory to study the dynamical features of the hypothetical gene circuit versus the feedback strength of the added loop, and we rely on stochastic simulations to perform in silico experiments. We discover the existence of a bistable system: a stable limit cycle and a stable fixed point separated by an unstable limit cycle with a varying height of underlying stochastic potential. This structure is absent from the wild type. The coexistence of the unstable limit cycle with stochastic noise endows the circuit with an ability to confine, prevent or switch between its two stable attractors. PMID:23693123

  3. Isolation and characterization of atrazine mineralizing Bacillus subtilis strain HB-6.

    Directory of Open Access Journals (Sweden)

    Jinhua Wang

    Full Text Available Atrazine is a widely used herbicide with great environmental concern due to its high potential to contaminate soil and waters. An atrazine-degrading bacterial strain HB-6 was isolated from industrial wastewater and the 16S rRNA gene sequencing identified HB-6 as a Bacillus subtilis. PCR assays indicated that HB-6 contained atrazine-degrading genes trzN, atzB and atzC. The strain HB-6 was capable of utilizing atrazine and cyanuric acid as a sole nitrogen source for growth and even cleaved the s-triazine ring and mineralized atrazine. The strain demonstrated a very high efficiency of atrazine biodegradation with a broad optimum pH and temperature ranges and could be enhanced by cooperating with other bacteria, suggesting its huge potential for remediation of atrazine-contaminated sites. To our knowledge, there are few Bacillus subtilis strains reported that can mineralize atrazine, therefore, the present work might provide some new insights on atrazine remediation.

  4. Testing Nucleoside Analogues as Inhibitors of Bacillus anthracis Spore Germination In Vitro and in Macrophage Cell Culture ▿

    OpenAIRE

    Alvarez, Zadkiel; Lee, Kyungae; Abel-Santos, Ernesto

    2010-01-01

    Bacillus anthracis, the etiological agent of anthrax, has a dormant stage in its life cycle known as the endospore. When conditions become favorable, spores germinate and transform into vegetative bacteria. In inhalational anthrax, the most fatal manifestation of the disease, spores enter the organism through the respiratory tract and germinate in phagosomes of alveolar macrophages. Germinated cells can then produce toxins and establish infection. Thus, germination is a crucial step for the i...

  5. Bacillus anthracis spore interactions with mammalian cells: Relationship between germination state and the outcome of in vitro

    OpenAIRE

    Stojkovic Bojana; Prouty Angela M; Tamilselvam Batcha; Gut Ian M; Czeschin Stephanie; van der Donk Wilfred A; Blanke Steven R

    2011-01-01

    Abstract Background During inhalational anthrax, internalization of Bacillus anthracis spores by host cells within the lung is believed to be a key step for initiating the transition from the localized to disseminated stages of infection. Despite compelling in vivo evidence that spores remain dormant within the bronchioalveolar spaces of the lungs, and germinate only after uptake into host cells, most in vitro studies of infection have been conducted under conditions that promote rapid germin...

  6. Contamination of healthcare workers' hands with bacterial spores.

    Science.gov (United States)

    Sasahara, Teppei; Ae, Ryusuke; Watanabe, Michiyo; Kimura, Yumiko; Yonekawa, Chikara; Hayashi, Shunji; Morisawa, Yuji

    2016-08-01

    Clostridium species and Bacillus spp. are spore-forming bacteria that cause hospital infections. The spores from these bacteria are transmitted from patient to patient via healthcare workers' hands. Although alcohol-based hand rubbing is an important hand hygiene practice, it is ineffective against bacterial spores. Therefore, healthcare workers should wash their hands with soap when they are contaminated with spores. However, the extent of health care worker hand contamination remains unclear. The aim of this study is to determine the level of bacterial spore contamination on healthcare workers' hands. The hands of 71 healthcare workers were evaluated for bacterial spore contamination. Spores attached to subject's hands were quantitatively examined after 9 working hours. The relationship between bacterial spore contamination and hand hygiene behaviors was also analyzed. Bacterial spores were detected on the hands of 54 subjects (76.1%). The mean number of spores detected was 468.3 CFU/hand (maximum: 3300 CFU/hand). Thirty-seven (52.1%) and 36 (50.7%) subjects were contaminated with Bacillus subtilis and Bacillus cereus, respectively. Nineteen subjects (26.8%) were contaminated with both Bacillus species. Clostridium difficile was detected on only one subject's hands. There was a significant negative correlation between the hand contamination level and the frequency of handwashing (r = -0.44, P bacterial spores due to insufficient handwashing during daily patient care. PMID:27236515

  7. Isolation of Bacillus subtilis as indicator in the disinfection of residual water by means of gamma radiation; Aislamiento de Bacillus subtilis como indicador en la desinfeccion de aguas residuales mediante radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Mata J, M.; Colin C, A. [Facultad de Quimica, UAEM, Paseo Colon esq. Tollocan s/n, Toluca, 50000 Estado de Mexico (Mexico); Lopez V, H.; Brena V, M.; Carrasco A, H.; Pavon R, S. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In the attempt to get more alternatives of disinfection of residual water, the Bacillus subtilis was isolated by means of gamma radiation as a bio indicator of disinfection since it turned out to be resistant to the 5 KGy dose, comparing this one with other usual microorganisms as biondicators like E. coli and S typhimurium which turn out more sensitive to such dose. (Author)

  8. Isolation and Identification of Lipopeptides Produced by Bacillus subtilis fmbJ%Bacillus subtilis fmbJ脂肽类抗菌物质的分离和鉴定

    Institute of Scientific and Technical Information of China (English)

    别小妹; 吕凤霞; 陆兆新; 黄现青; 沈娟

    2006-01-01

    Bacillus subtilis fmbJ脂肽类抗菌物质的分离和鉴定进行了系统研究.通过HPLC层析确定Bacillus subtilis fmbJ抗菌物质由多种组分构成,其中含有保留时间与surfactin相似的成分.通过TLC层析和原位酸解确定Bacillus subtilis fmbJ抗菌物质含有两个具有闭合肽键类的物质,其中之一为迁移率Rf与标样surfactin非常相近的组分.通过ESI-MS分析检测到Bacillus subtilis fmbJ抗菌物质含有分子量与fengicin相同的m/z1449.9、m/z1463.8、m/z1477.8、m/z1491.9和m/z1505.9五种同系物,和分子量与surfactin相同的m/z1008.8、m/z1022.8和m/z1036.8三种同系物.

  9. Co-production of surfactin and a novel bacteriocin by Bacillus subtilis subsp. subtilis H4 isolated from bikalga, an African alkaline Hibiscus sabdariffa seed fermented condiment

    DEFF Research Database (Denmark)

    Compaore, C. S.; Nielsen, Dennis S.; Ouoba, L. I. I.;

    2013-01-01

    bikalga were examined for their antimicrobial activity against a panel of 36 indicator organisms including Gram-positive and Gram-negative bacteria and yeasts. The Bacillus spp. isolates showed variable inhibitory abilities depending on the method used. Both Gram-positive and Gram-negative bacteria were...... and Bacillus cereus, while CFS of 2 B. licheniformis (E3 and F9) strains only inhibited M. luteus. The antimicrobial substance(s) produced by B. subtilis subsp. subtilis H4 was further characterized. The antimicrobial substance(s) produced by H4 was detected from mid-exponential growth phase. The...... activity was sensitive to protease and trypsin, but resistant to the proteolytic action of proteinase K and papain. Treatment with α-amylase and lipase II resulted in a complete loss of antimicrobial effect, indicating that a sugar moiety and lipid moiety are necessary for the activity. Treatment with...

  10. Growth Inhibition of Colletotrichum gloeosporioides by Trichoderma harzianum, Trichoderma koningii, Bacillus subtilis and Pseudomonas fluorescens

    Directory of Open Access Journals (Sweden)

    Febrilia Nur ‘Aini

    2015-11-01

    Full Text Available Colletotrichum  gloeosporioides is  a  disease  which  can  cause  significant yield  loss  of  cocoa.  The  objective  of  this  research  is  to  investigate  the  abilityof  antagonist  microbes,  Trichoderma  harzianum,  Trichoderma  koningii,  Bacillus subtilis  and Pseudomonas  fluorescens  in  controlling  gloeosporioides  biologically  in  laboratorium  condition.  The  experiment  was  carried  out  in  Crop  Protection  Laboratory,  Indonesian  Coffee  and  Cocoa  Research  Institute.  Results of  this  research  showed  that  antagonist  fungi,  T.  harzianum,  T.  koningii,  had  a stronger  ability  in  inhibiting  growth  of  C.  gloeosporioides about  83%  compared  to  the  ability  of  antagonist  bacteria,  B.  subtilis  and P.  fluorescens,  only about  49%. Key words: Growth  inhibition,  Colletotrichum  gloeosporioides,  Trichoderma  harzianum, Trichoderma koningii,  Bacillus subtilis, Pseudomonas fluorescens.

  11. Effects of the electrolytic treatment on Bacillus subtilis Efeito do tratamento eletrolítico em Bacillus subtis

    Directory of Open Access Journals (Sweden)

    Rodolfo Tolentino-Bisneto

    2003-11-01

    Full Text Available Conventional processes of water disinfection can generate toxic composites. It is the case of the trihalomethanes (carcinogenic formed in the contact of chlorine with organic substances present in the water. The electrolytic treatment can be a substitute for the chlorination process without the need for addition of chemical substances to the process. The effect of the electrolytic treatment using carbon cathode on the viability of the microorganism Bacillus subtilis was tested to determine the death process. By means of electronic microscopy, it was observed that the main cause of the microorganism's death was the cellular lysis due to the electroporation in the cell membrane.Processos convencionais de desinfecção de águas podem gerar compostos tóxicos. Esse é o caso dos trialometanos formados na reação do cloro com compostos orgânicos presentes na água. O tratamento eletrolítico pode ser um substituto à cloração com vantagem de não requer a adição de nenhum composto na água. O efeito do tratamento eletrolítico, utilizando eletrodos de carbono, na viabilidade de Bacillus subtilis foi testado para se determinar o mecanismo de morte. Através de microscopia eletrônica, foi possível evidenciar que a morte do microrganismo se deu pela lise celular, provavelmente provocada pela eletroporação irreversível da membrana celular.

  12. Changes in the Acetylome and Succinylome of Bacillus subtilis in Response to Carbon Source.

    Directory of Open Access Journals (Sweden)

    Saori Kosono

    Full Text Available Lysine residues can be post-translationally modified by various acyl modifications in bacteria and eukarya. Here, we showed that two major acyl modifications, acetylation and succinylation, were changed in response to the carbon source in the Gram-positive model bacterium Bacillus subtilis. Acetylation was more common when the cells were grown on glucose, glycerol, or pyruvate, whereas succinylation was upregulated when the cells were grown on citrate, reflecting the metabolic states that preferentially produce acetyl-CoA and succinyl-CoA, respectively. To identify and quantify changes in acetylation and succinylation in response to the carbon source, we performed a stable isotope labeling by amino acids in cell culture (SILAC-based quantitative proteomic analysis of cells grown on glucose or citrate. We identified 629 acetylated proteins with 1355 unique acetylation sites and 204 succinylated proteins with 327 unique succinylation sites. Acetylation targeted different metabolic pathways under the two growth conditions: branched-chain amino acid biosynthesis and purine metabolism in glucose and the citrate cycle in citrate. Succinylation preferentially targeted the citrate cycle in citrate. Acetylation and succinylation mostly targeted different lysine residues and showed a preference for different residues surrounding the modification sites, suggesting that the two modifications may depend on different factors such as characteristics of acyl-group donors, molecular environment of the lysine substrate, and/or the modifying enzymes. Changes in acetylation and succinylation were observed in proteins involved in central carbon metabolism and in components of the transcription and translation machineries, such as RNA polymerase and the ribosome. Mutations that modulate protein acylation affected B. subtilis growth. A mutation in acetate kinase (ackA increased the global acetylation level, suggesting that acetyl phosphate-dependent acetylation is

  13. Bacillus subtilis is a Potential Degrader of Pyrene and Benzo[a]pyrene

    Directory of Open Access Journals (Sweden)

    Lynette Ekunwe

    2005-08-01

    Full Text Available Polycyclic Aromatic Hydrocarbons (PAHs are a group of compounds that pose many health threats to human and animal life. They occur in nature as a result of incomplete combustion of organic matter, as well as from many anthropogenic sources including cigarette smoke and automobile exhaust. PAHs have been reported to cause liver damage, red blood cell damage and a variety of cancers. Because of this, methods to reduce the amount of PAHs in the environment are continuously being sought. The purpose of this study was to find soil bacteria capable of degrading high molecular weight PAHs, such as pyrene (Pyr and benzo[a]pyrene (BaP, which contain more than three benzene rings and so persist in the environment. Bacillus subtilis, identified by fatty acid methyl ester (FAME analysis, was isolated from PAH contaminated soil. Because it grew in the presence of 33μg/ml each of pyrene, 1-AP and 1-HP, its biodegradation capabilities were assessed. It was found that after a four-day incubation period at 30oC in 20μg/ml pyrene or benzo[a]pyrene, B. subtilis was able to transform approximately 40% and 50% pyrene and benzo[a]pyrene, respectively. This is the first report implicating B. subtilis in PAH degradation. Whether or not the intermediates resulting from the transformation are more toxic than their parent compounds, and whether B. subtilis is capable of mineralizing pyrene or benzo[a]pyrene to carbon dioxide and water, remains to be evaluated.

  14. Functional Expression of Enterobacterial O-Polysaccharide Biosynthesis Enzymes in Bacillus subtilis

    Science.gov (United States)

    Schäffer, Christina; Wugeditsch, Thomas; Messner, Paul; Whitfield, Chris

    2002-01-01

    The expression of heterologous bacterial glycosyltransferases is of interest for potential application in the emerging field of carbohydrate engineering in gram-positive organisms. To assess the feasibility of using enzymes from gram-negative bacteria, the functional expression of the genes wbaP (formerly rfbP), wecA (formerly rfe), and wbbO (formerly rfbF) from enterobacterial lipopolysaccharide O-polysaccharide biosynthesis pathways was examined in Bacillus subtilis. WbaP and WecA are initiation enzymes for O-polysaccharide formation, catalyzing the transfer of galactosyl 1-phosphate from UDP-galactose and N-acetylglucosaminyl 1-phosphate from UDP-N-acetylglucosamine, respectively, to undecaprenylphosphate. The WecA product (undecaprenylpyrophosphoryl GlcNAc) is used as an acceptor to which the bifunctional wbbO gene product sequentially adds a galactopyranose and a galactofuranose residue from the corresponding UDP sugars to form a lipid-linked trisaccharide. Genes were cloned into the shuttle vectors pRB374 and pAW10. In B. subtilis hosts, the genes were effectively transcribed under the vegII promoter control of pRB374, but the plasmids were susceptible to rearrangements and deletion. In contrast, pAW10-based constructs, in which genes were cloned downstream of the tet resistance cassette, were stable but yielded lower levels of enzyme activity. In vitro glycosyltransferase assays were performed in Escherichia coli and B. subtilis, using membrane preparations as sources of enzymes and endogenous undecaprenylphosphate as an acceptor. Incorporation of radioactivity from UDP-α-d-14C-sugar into reaction products verified the functionality of WbaP, WecA, and WbbO in either host. Enzyme activities in B. subtilis varied between 20 and 75% of those measured in E. coli. PMID:12324313

  15. Rugged single domain antibody detection elements for Bacillus anthracis spores and vegetative cells.

    Directory of Open Access Journals (Sweden)

    Scott A Walper

    Full Text Available Significant efforts to develop both laboratory and field-based detection assays for an array of potential biological threats started well before the anthrax attacks of 2001 and have continued with renewed urgency following. While numerous assays and methods have been explored that are suitable for laboratory utilization, detection in the field is often complicated by requirements for functionality in austere environments, where limited cold-chain facilities exist. In an effort to overcome these assay limitations for Bacillus anthracis, one of the most recognizable threats, a series of single domain antibodies (sdAbs were isolated from a phage display library prepared from immunized llamas. Characterization of target specificity, affinity, and thermal stability was conducted for six sdAb families isolated from rounds of selection against the bacterial spore. The protein target for all six sdAb families was determined to be the S-layer protein EA1, which is present in both vegetative cells and bacterial spores. All of the sdAbs examined exhibited a high degree of specificity for the target bacterium and its spore, with affinities in the nanomolar range, and the ability to refold into functional antigen-binding molecules following several rounds of thermal denaturation and refolding. This research demonstrates the capabilities of these sdAbs and their potential for integration into current and developing assays and biosensors.

  16. Effect of Mono and Di-rhamnolipids on Biofilms Pre-formed by Bacillus subtilis BBK006.

    Science.gov (United States)

    De Rienzo, Mayri A Díaz; Martin, Peter J

    2016-08-01

    Different microbial inhibition strategies based on the planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilms communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms. In this work, we explore the aspects of Bacillus subtilis BBK006 biofilms and examine the contribution of biologically derived surface-active agents (rhamnolipids) to the disruption or inhibition of microbial biofilms produced by Bacillus subtilis BBK006. The ability of mono-rhamnolipids (Rha-C10-C10) produced by Pseudomonas aeruginosa ATCC 9027 and the di-rhamnolipids (Rha-Rha-C14-C14) produced by Burkholderia thailandensis E264, and phosphate-buffered saline to disrupt biofilm of Bacillus subtilis BBK006 was evaluated. The biofilm produced by Bacillus subtilis BBK006 was more sensitive to the di-rhamnolipids (0.4 g/L) produced by Burkholderia thailandensis than the mono-rhamnolipids (0.4 g/L) produced by Pseudomonas aeruginosa ATCC 9027. Rhamnolipids are biologically produced compounds safe for human use. This makes them ideal candidates for use in new generations of bacterial dispersal agents and useful for use as adjuvants for existing microbial suppression or eradication strategies. PMID:27113589

  17. Draft Genome Sequence of Bacillus subtilis GXA-28, a Thermophilic Strain with High Productivity of Poly-γ-Glutamic Acid

    OpenAIRE

    Zeng, Wei; Chen, Guiguang; Tang, Zhen; Wu, Hao; Shu, Lin; Liang, Zhiqun

    2014-01-01

    Bacillus subtilis GXA-28 is a thermophilic strain that can produce high yield and high molecular weight of poly-γ-glutamic acid under high temperature. Here, we report the draft genome sequence of this strain, which may provide the genomic basis for the high productivity of poly-γ-glutamic acid.

  18. Isolation of Bacillus subtilis as indicator in the disinfection of residual water by means of gamma radiation

    International Nuclear Information System (INIS)

    In the attempt to get more alternatives of disinfection of residual water, the Bacillus subtilis was isolated by means of gamma radiation as a bio indicator of disinfection since it turned out to be resistant to the 5 KGy dose, comparing this one with other usual microorganisms as biondicators like E. coli and S typhimurium which turn out more sensitive to such dose. (Author)

  19. Heterologous Gene Expression in Lactococcus lactis subsp. lactis : Synthesis, Secretion, and Processing of the Bacillus subtilis Neutral Protease

    NARCIS (Netherlands)

    Guchte, Maarten van de; Kodde, Jan; Vossen, Jos M.B.M. van der; Kok, Jan; Venema, Gerard

    1990-01-01

    The Bacillus subtilis nprE gene lacking its own promoter sequence was inserted in the lactococcal expression vector pMG36e. Upon introduction of the recombinant plasmid into Lactococcus lactis subsp. lactis strain MG1363, neutral protease activity could be visualized by the appearance of large clear

  20. Isothermal titration calorimetry and surface plasmon resonance allow quantifying substrate binding to different binding sites of Bacillus subtilis xylanase

    DEFF Research Database (Denmark)

    Cuyvers, Sven; Dornez, Emmie; Abou Hachem, Maher;

    2012-01-01

    Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first was a...