WorldWideScience

Sample records for bacillus licheniformis laccase

  1. Improving the functional expression of a Bacillus licheniformis laccase by random and site-directed mutagenesis

    Directory of Open Access Journals (Sweden)

    Schmid Rolf D

    2009-02-01

    Full Text Available Abstract Background Laccases have huge potential for biotechnological applications due to their broad substrate spectrum and wide range of reactions they are able to catalyze. These include, for example, the formation and degradation of dimers, oligomers, polymers, and ring cleavage as well as oxidation of aromatic compounds. Potential applications of laccases include detoxification of industrial effluents, decolorization of textile dyes and the synthesis of natural products by, for instance, dimerization of phenolic acids. We have recently published a report on the cloning and characterization of a CotA Bacillus licheniformis laccase, an enzyme that catalyzes dimerization of phenolic acids. However, the broad application of this laccase is limited by its low expression level of 26 mg l-1 that was achieved in Escherichia coli. To counteract this shortcoming, random and site-directed mutagenesis have been combined in order to improve functional expression and activity of CotA. Results A CotA double mutant, K316N/D500G, was constructed by combining random and site-directed mutagenesis. It can be functionally expressed at an 11.4-fold higher level than the wild-type enzyme. In addition, it is able to convert ferulic acid much faster than the wild-type enzyme (21% vs. 14% and is far more efficient in decolorizing a range of industrial dyes. The investigation of the effects of the mutations K316N and D500G showed that amino acid at position 316 had a major influence on enzyme activity and position 500 had a major influence on the expression of the laccase. Conclusion The constructed double mutant K316N/D500G of the Bacillus licheniformis CotA laccase is an appropriate candidate for biotechnological applications due to its high expression level and high activity in dimerization of phenolic acids and decolorization of industrial dyes.

  2. Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04.

    Science.gov (United States)

    Lu, Lei; Zhao, Min; Wang, Tian-Nv; Zhao, Li-Yan; Du, Mei-Hui; Li, Tai-Lun; Li, De-Bin

    2012-07-01

    A new bacterial strain exhibiting laccase activity was isolated from forest soil and was identified as Bacillus licheniformis LS04. The spore laccase of B. licheniformis LS04 demonstrated a broad pH range for catalyzing substrates. It was quite stable at high temperature and alkaline pH. There was no loss of laccase activity after 10 days incubation at pH 9.0, and about 16% of the initial activity was detected after 10h at 80°C. In addition, the spore laccase was tolerant towards 1M of NaCl and 30% of organic solvents. Reactive black 5, reactive blue 19 and indigo carmine were decolorized by the spore laccase in the absence of mediator. Meanwhile, the decolorization process was efficiently promoted when acetosyringone was present, with more than 80% of color removal in 1h at pH 6.6 or 9.0. The unusual properties indicated a high potential in industrial applications for this novel spore laccase. PMID:21868217

  3. EXPERIMENTAL-INFECTION IN MICE WITH BACILLUS-LICHENIFORMIS

    DEFF Research Database (Denmark)

    Agerholm, J.S.; Jensen, H.E.; Jensen, N.E.

    1995-01-01

    The pathogenicity of Bacillus licheniformis was assessed in normal and immunodepressed BALB/c mice. The animals were challenged intravenously with 4 x 10(7) colony forming units of B, licheniformis (ATCC 14580) and both normal and immunodepressed mice were susceptible. However, the infection was...... more severe in the immunosuppressed animals. In normal mice, lesions were restricted to the liver and kidneys, while lesions also occurred in other organs of immunodepressed mice. By crossed immunoelectrophoresis it was shown that antigens of B. licheniformis are potent immunogens, and the bacteria...

  4. Expression of alpha-amylase in Bacillus licheniformis.

    OpenAIRE

    Rothstein, D. M.; Devlin, P E; Cate, R. L.

    1986-01-01

    In Bacillus licheniformis, alpha-amylase production varied more than 100-fold depending on the presence or absence of a catabolite-repressing carbon source in the growth medium. alpha-Amylase was produced during the growth phase and not at the onset of the stationary phase. Induction of alpha-amylase correlated with synthesis of mRNA initiating at the promoter of the alpha-amylase gene.

  5. Biodegradation of malathion by Bacillus licheniformis strain ML-1

    Directory of Open Access Journals (Sweden)

    Khan Sara

    2016-01-01

    Full Text Available Malathion, a well-known organophosphate pesticide, has been used in agriculture over the last two decades for controlling pests of economically important crops. In the present study, a single bacterium, ML-1, was isolated by soil-enrichment technique and identified as Bacillus licheniformis on the basis of the 16S rRNA technique. The bacterium was grown in carbon-free minimal salt medium (MSM and was found to be very efficient in utilizing malathion as the sole source of carbon. Biodegradation experiments were performed in MSM without carbon source to determine the malathion degradation by the selected strain, and the residues of malathion were determined quantitatively using HPLC techniques. Bacillus licheniformis showed very promising results and efficiently consumed malathion as the sole carbon source via malathion carboxylesterase (MCE, and about 78% malathion was degraded within 5 days. The carboxylesterase activity was determined by using crude extract while using malathion as substrate, and the residues were determined by HPLC. It has been found that the MCE hydrolyzed 87% malathion within 96 h of incubation. Characterization of crude MCE revealed that the enzyme is robust in nature in terms of organic solvents, as it was found to be stable in various concentrations of ethanol and acetonitrile. Similarly, and it can work in a wide pH and temperature range. The results of this study highlighted the potential of Bacillus licheniformis strain ML-1 as a biodegrader that can be used for the bioremediation of malathion-contaminated soil.

  6. N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes.

    OpenAIRE

    Kuhn, H; Fietzek, P P; Lampen, J. O.

    1982-01-01

    The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis.

  7. Nanoactivator mediated modifications in thermostable amylase from Bacillus licheniformis.

    Science.gov (United States)

    Khairnar, Rajendra S; Mahabole, Megha P; Pathak, Anupama P

    2012-12-01

    Gram-positive rod-shaped thermophilic bacteria were isolated using samples collected from terrestrial natural thermal spring located at Unkeshwar (Longitude 78.22 degree East to 78.34 degree East, Latitude 19 degree 34' North to 19 degree 40' North), District Nanded, Maharashtra State, India. The isolates were then cultivated using selective media and identified using culture-dependent techniques. One prominent isolate (UN1) exhibited high temperature stability and remarkable amylase production and was identified as Bacillus licheniformis. Amylase production was carried out in starch media and the enzyme was partially purified and characterized for optimization of pH and temperature. Amylolytic activity of the enzyme was determined. Nanoactivator-mediated modifications were carried out to enhance amylolytic activity of the partially purified amylase. Three-fold increase in catalytic efficiency of amylase was obtained after modification. PMID:23350283

  8. IMPROVING OF THE IMPREGNABILITY OF REFRACTORY SPRUCE WOOD BY BACILLUS LICHENIFORMIS PRETREATMENT

    Directory of Open Access Journals (Sweden)

    Sibel Yildiz,

    2011-11-01

    Full Text Available In this study it was aimed to improve impregnability of spruce (Picea orientalis L. wood with bacteria (Bacillus licheniformis A1 pretreatment, using copper/chromium/arsenic Type C (CCA-C and copper azole Type A (CBA-A. The effects of Bacillus licheniformis A1 on weight loss, copper uptake, and compression strength of samples were determined. Weight loss was slightly changed by bacterial degradation in all test groups. The best copper uptake cases were 1466 ppm for CCA-C and 2730 ppm for CBA-A. Improvement on copper uptake with bacteria pretreatment was in a range of 18 to 103% compared to control samples. Compression strength was decreased by bacterial degradation. However strength losses might be acceptable for several construction applications. Bacillus licheniformis A1 seems to have a good potential for increasing the permeability of spruce wood.

  9. STUDY REGARDING EFFICIENCY OF INDUCED GENETIC TRANSFORMATION IN BACILLUS LICHENIFORMIS WITH PLASMID DNA

    Directory of Open Access Journals (Sweden)

    T. VINTILĂ

    2013-12-01

    Full Text Available A strain of Bacillus licheniformis was subject to genetic transformation with plasmid vectors (pLC1 and pNC61, using electroporation technique, protoplast transformation and bivalent cations (CaCl2 mediated transformation. In the case of transformation by electroporation of Bacillus licheniformis B40, the highest number of transformed colonies (3 were obtained only after a 1,79 KV electric shock, for 2,2 milliseconds. Using this transformation technique we have obtained six kanamycin resistant transformants. The frequency of Bacillus licheniformis B40 protoplasts transformation using pLC1 and pNC61 plasmid vectors is approximately 10% (TF = 10%. As a result of pLC1 plasmid integration in Bacillus licheniformis protoplasts, six kanamycin resistant transformants were obtained. The pNC61 plasmid, which confers trimethoprim resistance, does not integrate in receiver cells by protoplast transformation. The direct genetic transformation in the presence of bivalent cations (CaCl2, mediated by pLC1 and pNC61 plasmid vectors, produce a low transformation frequency. Using this technique, we have obtained three trimethoprim resistant colonies and four kanamycin resistant colonies. The chemical way of transformation is the only technique, which realizes the integration of pNC61 in B. licheniformis B40 cells.

  10. STUDY REGARDING EFFICIENCY OF INDUCED GENETIC TRANSFORMATION IN BACILLUS LICHENIFORMIS WITH PLASMID DNA

    Directory of Open Access Journals (Sweden)

    VINTILĂ T.

    2007-01-01

    Full Text Available A strain of Bacillus licheniformis was subject to genetic transformation with plasmidvectors (pLC1 and pNC61, using electroporation technique, protoplasttransformation and bivalent cations (CaCl2 mediated transformation. In the case oftransformation by electroporation of Bacillus licheniformis B40, the highest numberof transformed colonies (3 were obtained only after a 1,79 KV electric shock, for 2,2milliseconds. Using this transformation technique we have obtained six kanamycinresistant transformants. The frequency of Bacillus licheniformis B40 protoplaststransformation using pLC1 and pNC61 plasmid vectors is approximately 10% (TF =10%. As a result of pLC1 plasmid integration in Bacillus licheniformis protoplasts,six kanamycin resistant transformants were obtained. The pNC61 plasmid, whichconfers trimethoprim resistance, does not integrate in receiver cells by protoplasttransformation. The direct genetic transformation in the presence of bivalent cations(CaCl2, mediated by pLC1 and pNC61 plasmid vectors, produce a lowtransformation frequency. Using this technique, we have obtained three trimethoprimresistant colonies and four kanamycin resistant colonies. The chemical way oftransformation is the only technique, which realizes the integration of pNC61 in B.licheniformis B40 cells.

  11. Control of Bacillus licheniformis spores isolated from dairy materials in yogurt production.

    Science.gov (United States)

    Tanaka, Takashi; Ito, Akiko; Kamikado, Hideaki

    2012-01-01

    To determine the effects of sporulation temperature and period on Bacillus licheniformis spore heat resistance, B. licheniformis strain No.25 spores were sporulated at 30, 37, 42, or 50°C for 11 d and at 50°C for 1.7, 4, 7, or 11 d. The heat resistance of B. licheniformis strain No.25 spores at 110°C increased with an increase in the sporulation temperature. Spores sporulated at 50°C were 1.4-fold more heat resistant than those sporulated at 30°C. Furthermore, the heat resistance of B. licheniformis strain No.25 spores at 110°C increased with an increase in the sporulation period. Spores sporulated for 11 d were 5.3-fold more heat resistant than those sporulated for 1.7 d. The heat resistance of B. licheniformis strain No.25 spores at 110°C increased with increases in the sporulation temperature and sporulation period. The results presented in this study can be applied to the pasteurization process to control B. licheniformis spores. Pasteurization at 110°C for about 60sec. is effective in controlling B. licheniformis spores isolated from dairy materials in yogurt production.

  12. Hydrolysis of Whey Protein Isolate with Bacillus licheniformis Protease: Fractionation and Identification of Aggregating Peptides

    NARCIS (Netherlands)

    Creusot, N.P.; Gruppen, H.

    2007-01-01

    The objective of this work was to identify the dominant aggregating peptides from a whey protein hydrolysate (degree of hydrolysis of 6.8%) obtained with Bacillus licheniformis protease. The aggregating peptides were fractionated with preparative reversed-phase chromatography and identified with liq

  13. Enzyme-induced aggregation of whey proteins with Bacillus licheniformis protease

    NARCIS (Netherlands)

    Creusot, N.P.

    2006-01-01

    Whey proteins are commonly used as ingredient in food. In relation with the gelation properties of whey proteins, this thesis deals with understanding the mechanism of peptide-induced aggregation of whey protein hydrolysates made with Bacillus licheniformis protease (BLP). The results show that BLP

  14. A Bacillus licheniformis pectin acetylesterase is specific for homogalacturonans acetylated at O-3

    NARCIS (Netherlands)

    Remoroza, C.A.; Wagenknecht, M.; Buchholt, H.C.; Moerschbacher, B.M.; Schols, H.A.; Gruppen, H.

    2014-01-01

    A recombinant acetylesterase from Bacillus licheniformis DSM13, belonging to carbohydrate esterase family 12, was purified and biochemically characterized. The purified enzyme, termed BliPAE, was capable of deacetylating acetylated pectins, e.g. sugar beet pectin (SBP). Contrary to its provisional a

  15. The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions

    NARCIS (Netherlands)

    Voigt, B; Schweder, T; Sibbald, MJJB; Albrecht, D; Ehrenreich, A; Bernhardt, J; Feesche, J; Maurer, KH; Gottschalk, G; van Dijl, JM; Hecker, M

    2006-01-01

    The now finished genome sequence of Bacillus licheniformis DSM 13 allows the prediction of the genes involved in protein secretion into the extracellular environment as well as the prediction of the proteins which are translocated. From the sequence 296 proteins were predicted to contain an N-termin

  16. OPTIMIZATION OF MEDIA CONSTITUENTS FOR THE PRODUCTION OF ALKALINE PROTEASE FROM BACILLUS LICHENIFORMIS Mohideen

    Directory of Open Access Journals (Sweden)

    Mohideen Askar Nawas P

    2015-07-01

    Full Text Available Production of alkaline protease by Bacillus licheniformis has been investigated under submerged fermentation. The physical and chemical parameters influencing submerged fermentation were optimized. The effect of incubation time, temperature, pH, carbon sources and nitrogen sources and additional nutrients on the production of alkaline protease was characterized. The optimum conditions for the protease production by Bacillus licheniformis were found to be at pH 9.0 and temperature at 40ºC. The outcome of carbon and inorganic nitrogen sources on protease production proved that glucose and casein were the effective medium ingredients for Bacillus licheniformis respectively. The maximum amount of protease production was recorded in medium supplemented with ammonium sulphate. Among the tested metal ions, the level of protease yield was found to be high in medium supplemented with magnesium chloride. The protease production was amplified in the presence of 1.5% sodium chloride. The extreme stability towards Triton X-100, Tween 20 and SDS was observed in Bacillus licheniformis alkaline protease.

  17. A preliminary study on the pathogenicity of Bacillus licheniformis bacteria in immunodepressed mice

    DEFF Research Database (Denmark)

    Agerholm, J.S.; Jensen, N.E.; Giese, Steen Bjørck;

    1997-01-01

    The pathogenicity of 13 strains of Bacillus licheniformis was studied in immunodepressed mice. The strains had been isolated from cases of bovine abortions (n=5), bovine feedstuffs (n=3), soil (n=l), and grain products (n=2). The origin of two strains was unknown. Groups of 10 mice were inoculated...

  18. Partial purification of a Bacillus licheniformis levansucrase producing levan with antitumor activity.

    Science.gov (United States)

    Dahech, Imen; Belghith, Karima Srih; Belghith, Hafedh; Mejdoub, Hafedh

    2012-10-01

    The extracellular fructosyltransferase (FTase) of a novel strain of Bacillus licheniformis capable of producing fructooligosaccharides (FOS) and a polysaccharide type levan was obtained and partially purified. The purification was achieved by ammonium sulfate precipitation, DEAE cellulose and gel filtration chromatographies. The enzyme was partially purified as determined by SDS-PAGE, and the specific activity reached was 67.5, representing a purification factor of 177 and yield of 40%. Levan was isolated from the cultures of B. licheniformis. The levan was composed mainly of fructose residues when analyzed by TLC after acid hydrolysis and NMR analysis. In a previous study, the levan produced exhibited a hypoglycemiant activity. The present paper deals with the study of the antitumor and anti-cytotoxic effect of levan produced by B. licheniformis strain. In the in vitro antitumor activity test of levan against some tumor cell lines, relatively the significantly high activity was observed against the HepG(2). PMID:22579870

  19. Regulation of the activity of the Bacillus licheniformis A5 glutamine synthetase.

    OpenAIRE

    Donohue, T J; Bernlohr, R W

    1981-01-01

    The regulation of glutamine synthetase activity by positive and negative effectors of enzyme activity singularly and in combinations was studied by using a homogeneous enzyme preparation from Bacillus licheniformis A5. Phosphorylribosyl pyrophosphate at concentrations greater than 2mM stimulated glutamine synthetase activity by approximately 70%. The concentration of phosphorylribosyl pyrophosphate required for half-maximal stimulation of enzyme activity was 0.4 mM. Results obtained from stud...

  20. Effect of oilseed cakes on alpha-amylase production by Bacillus licheniformis CUMC305.

    OpenAIRE

    Krishnan, T.; Chandra, A. K.

    1982-01-01

    The effects of oilseed cakes on extracellular thermostable alpha-amylase production by Bacillus licheniformis CUMC305 was investigated. Each oilseed cake was made of groundnut, mustard, sesame, linseed, coconut copra, madhuca, or cotton. alpha-Amylase production was considerably improved in all instances and varied with the oilseed cake concentration in basal medium containing peptone and beef extract. Maximum increases were effected by a low concentration (0.5 to 1.0%) of groundnut or coconu...

  1. Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges.

    Directory of Open Access Journals (Sweden)

    Rebecca Schroeter

    Full Text Available The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl, and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes, the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress.

  2. [Maxillary sinus infection by Bacillus licheniformis: a case report from Djibouti].

    Science.gov (United States)

    Garcia Hejl, C; Sanmartin, N; Samson, T; Soler, C; Koeck, J-L

    2015-01-01

    Aerobic, spore-forming gram-positive Bacillus spp infections are rare and reported mainly in immunocompromised hosts. We report a case of acute unilateral maxillary sinusitis, caused by Bacillus licheniformis, in a 35-year-old French soldier stationed in Djibouti. It was easily identifiable due to its typical culture and resistance profile. This case is interesting for two reasons: first, it is, to our knowledge, the first case of sinusitis attributed to this microbe, and second, it has rarely been described in immunocompetent patients without altered skin or mucous membranes. PMID:26370779

  3. Fungicin M4: a narrow spectrum peptide antibiotic from Bacillus licheniformis M-4.

    Science.gov (United States)

    Lebbadi, M; Gálvez, A; Maqueda, M; Martínez-Bueno, M; Valdivia, E

    1994-07-01

    The strain Bacillus licheniformis M-4 produces a 3.4 kDa hydrophilic peptide with antifungal activity, named fungicin M4. Analysis of the purified peptide shows that it contains the amino acids Glu (8), Arg (5), Pro (4), Tyr (8), Val (3), Met (2) and Orn (4). Its inhibitory spectrum is restricted to Microsporum canis CECT 2797, Mucor mucedo CECT 2653, Mucor plumbeus CCM 443, Sporothrix schenckii CECT 2799, Bacillus megaterium and Corynebacterium glutamicum CECT 78. Fungicin M4 exerts biocidal activity on liquid cultures of Sporothrix schenckii CECT 2799.

  4. Morphological and molecular based identification of pectinase producing Bacillus licheniformis from rotten vegetable

    Directory of Open Access Journals (Sweden)

    Haneef Ur Rehman

    2015-12-01

    Full Text Available Pectinase catalyzed the degradation of pectin substances and has been used in various biotechnological industries. In the current study, 23 bacterial strains were isolated from rotten vegetables, soil and air. The isolated bacterial strains were qualitatively screened for pectinase production on pectin agar medium and only three strains HR 4, HR 21 and HR 23 were observed to produce extracellular pectinase. These strains were further screened quantitatively for pectinase production through submerged fermentation technology in pectin containing fermentation medium. Strain HR 4 from rotten brinjal (Solanum melongena was found to produce higher pectinase as compared to others. The maximum pectinase producing bacterial strain was identified as Bacillus licheniformis on the basis of morphological, physiological and biochemical characteristics. For further confirmation of identification, 16S rDNA sequence analysis was performed. The 16S rDNA sequences were aligned and the phylogenetic tree was constructed. The phylogenetic tree confirmed that the strain was belonging to B. licheniformis. The 16S rDNA sequences of this new strain were submitted to GenBank and designated as B. licheniformis KIBGE-IB21 with the GenBank accession number JQ 411812. The newly isolated pectinase producing B. licheniformis used apple pectin as carbon and yeast extract as nitrogen source for maximum pectinase production.

  5. Size unlimited markerless deletions by a transconjugative plasmid-system in Bacillus licheniformis.

    Science.gov (United States)

    Rachinger, Michael; Bauch, Melanie; Strittmatter, Axel; Bongaerts, Johannes; Evers, Stefan; Maurer, Karl-Heinz; Daniel, Rolf; Liebl, Wolfgang; Liesegang, Heiko; Ehrenreich, Armin

    2013-09-20

    Conjugative shuttle vectors of the pKVM series, based on an IncP transfer origin and the pMAD vector with a temperature sensitive replication were constructed to establish a markerless gene deletion protocol for Bacilli without natural competence such as the exoenzyme producer Bacillus licheniformis. The pKVM plasmids can be conjugated to strains of B. licheniformis and B. subtilis. For chromosomal gene deletion, regions flanking the target gene are fused and cloned in a pKVM vector prior to conjugative transfer from Escherichia coli to B. licheniformis. Appropriate markers on the vector backbone allow for the identification of the integration at the target locus and thereafter the vector excision, both events taking place via homologous recombination. The functionality of the deletion system was demonstrated with B. licheniformis by a markerless 939 bp in-frame deletion of the yqfD gene and the deletion of a 31 kbp genomic segment carrying a PBSX-like prophage. PMID:23916947

  6. Effect of oilseed cakes on alpha-amylase production by Bacillus licheniformis CUMC305.

    Science.gov (United States)

    Krishnan, T; Chandra, A K

    1982-08-01

    The effects of oilseed cakes on extracellular thermostable alpha-amylase production by Bacillus licheniformis CUMC305 was investigated. Each oilseed cake was made of groundnut, mustard, sesame, linseed, coconut copra, madhuca, or cotton. alpha-Amylase production was considerably improved in all instances and varied with the oilseed cake concentration in basal medium containing peptone and beef extract. Maximum increases were effected by a low concentration (0.5 to 1.0%) of groundnut or coconut, a high concentration (3%) of linseed or mustard, and an Rintermediate concentration (2%) of cotton, madhuca, or sesame. The oilseed cakes made of groundnut or mustard could completely replace the conventional peptone-beef extract medium as the fermentation base for the production of alpha-amylase by B. licheniformis. The addition of corn steep liquor to cotton, linseed, sesame, or madhuca cake in the medium improved alpha-amylase production. PMID:6181738

  7. The Sponge-associated Bacterium Bacillus licheniformis SAB1: A Source of Antimicrobial Compounds

    Directory of Open Access Journals (Sweden)

    Prabha Devi

    2010-04-01

    Full Text Available Several bacterial cultures were isolated from sponge Halichondria sp., collected from the Gujarat coast of the Indo Pacific region. These bacterial cultures were fermented in the laboratory (100 mL and the culture filtrate was assayed for antibiotic activity against 16 strains of clinical pathogens. Bacillus sp. (SAB1, the most potent of them and antagonistic to several clinically pathogenic Gram-positive, Gram-negative bacteria and the fungus Aspergillus fumigatus was chosen for further investigation. Analysis of the nucleotide sequence of the 16S rDNA gene of Bacillus sp. SAB1 showed a strong similarity (100% with the 16S rDNA gene of Bacillus licheniformis HNL09. The bioactive compounds produced by Bacillus licheniformis SAB1 (GenBank accession number: DQ071568 were identified as indole (1, 3-phenylpropionic acid (2 and a dimer 4,4′-oxybis[3-phenylpropionic acid] (3 on the basis of their Fourier Transform Infrared (FTIR, Nuclear Magnetic Resonance (NMR and Electrospray Ionization Mass Spectrometer (ESI-MS data. There is a single reference on the natural occurrence of compound 3 from the leaves of a terrestrial herb Aptenia cordifolia in the literature, so to the best of our knowledge, this is a first report of its natural occurrence from a marine source. The recovery of bacterial strains with antimicrobial activity suggests that marine-invertebrates remain a rich source for the isolation of culturable isolates capable of producing novel bioactive secondary metabolites.

  8. Plasmid-Mediated Dimethoate Degradation by Bacillus licheniformis Isolated From a Fresh Water Fish Labeo rohita

    Directory of Open Access Journals (Sweden)

    Manisha Deb Mandal

    2005-01-01

    Full Text Available The Bacillus licheniformis strain isolated from the intestine of Labeo rohita by an enrichment technique showed capability of utilizing dimethoate as the sole source of carbon. The bacterium rapidly utilized dimethoate beyond 0.6 mg/mL and showed prolific growth in a mineral salts medium containing 0.45 mg/mL dimethoate. The isolated B licheniformis exhibited high level of tolerance of dimethoate (3.5 mg/mL in nutrient broth, while its cured mutant did not tolerate dimethoate beyond 0.45 mg/mL and it was unable to utilize dimethoate. The wild B licheniformis strain transferred dimethoate degradation property to E coli C600 (Nar, F− strain. The transconjugant harbored a plasmid of the same molecular size (approximately 54 kb as that of the donor plasmid; the cured strain was plasmid less. Thus a single plasmid of approximately 54 kb was involved in dimethoate degradation. Genes encoding resistance to antibiotic and heavy metal were also located on the plasmid.

  9. Seeking new mutation clues from Bacillus licheniformis amylase by molecular dynamics simulations

    Science.gov (United States)

    Lu, Tao

    2009-07-01

    Amylase is one of the most important industrial enzymes in the world. Researchers have been searching for a highly thermal stable mutant for many years, but most focus on point mutations of one or few nitrogenous bases. According to this molecular dynamic simulation of amylase from Bacillus licheniformis (BLA), the deletion of some nitrogenous bases would be more efficacious than point mutations. The simulation reveals strong fluctuation of the BLA structure at optimum temperature. The fluctuation of the outer domains of BLA is stronger than that of the core domain. Molecular simulation provides a clue to design thermal stable amylases through deletion mutations in the outer domain.

  10. Cyclodextrin glycosyltransferase from Bacillus licheniformis: optimization of production and its properties Cyclodextrina glycosyltransferase de Bacillus licheniformis: otimização da produção e suas propriedades

    OpenAIRE

    Paulo Roberto Martins Bonilha; Vivian Menocci; Antonio José Goulart; Maria de Lourdes Teixeira de Moraes Polizeli; Rubens Monti

    2006-01-01

    Cyclodextrin glycosyltransferase (EC 2.4.1.19) is an enzyme that produces cyclodextrins from starch via an intramolecular transglycosylation reaction. An alkalophilic Bacillus strain, isolated from cassava peels, was identified as Bacillus licheniformis. CGTase production by this strain was better when potato starch was used as carbon source, followed by cassava starch and amylopectin. Glucose and amylose, on the other hand, acted as synthesis repressors. When the cultivation was supplemented...

  11. Bacillus licheniformis Isolated from Traditional Korean Food Resources Enhances the Longevity of Caenorhabditis elegans through Serotonin Signaling.

    Science.gov (United States)

    Park, Mi Ri; Oh, Sangnam; Son, Seok Jun; Park, Dong-June; Oh, Sejong; Kim, Sae Hun; Jeong, Do-Youn; Oh, Nam Su; Lee, Youngbok; Song, Minho; Kim, Younghoon

    2015-12-01

    In this study, we investigated potentially probiotic Bacillus licheniformis strains isolated from traditional Korean food sources for ability to enhance longevity using the nematode Caenorhabditis elegans as a simple in vivo animal model. We first investigated whether B. licheniformis strains were capable of modulating the lifespan of C. elegans. Among the tested strains, preconditioning with four B. licheniformis strains significantly enhanced the longevity of C. elegans. Unexpectedly, plate counting and transmission electron microscopy (TEM) results indicated that B. licheniformis strains were not more highly attached to the C. elegans intestine compared with Escherichia coli OP50 or Lactobacillus rhamnosus GG controls. In addition, qRT-PCR and an aging assay with mutant worms showed that the conditioning of B. licheniformis strain 141 directly influenced genes associated with serotonin signaling in nematodes, including tph-1 (tryptophan hydroxylase), bas-1 (serotonin- and dopamine-synthetic aromatic amino acid decarboxylase), mod-1 (serotonin-gated chloride channel), ser-1, and ser-7 (serotonin receptors) during C. elegans aging. Our findings suggest that B. licheniformis strain 141, which is isolated from traditional Korean foods, is a probiotic generally recognized as safe (GRAS) strain that enhances the lifespan of C. elegans via host serotonin signaling.

  12. Design of thermostable rhamnogalacturonan lyase mutants from Bacillus licheniformis by combination of targeted single point mutations

    DEFF Research Database (Denmark)

    da Silva, Ines Isabel Cardoso Rodrigues; Jers, Carsten; Otten, Harm;

    2014-01-01

    Rhamnogalacturonan I lyases (RGI lyases) (EC 4.2.2.-) catalyze cleavage of α-1,4 bonds between rhamnose and galacturonic acid in the backbone of pectins by β-elimination. In the present study, targeted improvement of the thermostability of a PL family 11 RGI lyase from Bacillus licheniformis (DSM......, were obtained due to additive stabilizing effects of single amino acid mutations (E434L, G55V, and G326E) compared to the wild type. The crystal structure of the B. licheniformis wild-type RGI lyase was also determined; the structural analysis corroborated that especially mutation of charged amino...

  13. Biochemical Characterization of An Arginine-Specific Alkaline Trypsin from Bacillus licheniformis

    Directory of Open Access Journals (Sweden)

    Jin-Song Gong

    2015-12-01

    Full Text Available In the present study, we isolated a trypsin-producing strain DMN6 from the leather waste and identified it as Bacillus licheniformis through a two-step screening strategy. The trypsin activity was increased up to 140 from 20 U/mL through culture optimization. The enzyme was purified to electrophoretic homogeneity with a molecular mass of 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the specific activity of purified enzyme is 350 U/mg with Nα-Benzoyl-l-arginine ethylester as the substrate. The optimum temperature and pH for the trypsin are 65 °C and pH 9.0, respectively. Also, the enzyme can be significantly activated by Ba2+. This enzyme is relatively stable in alkaline environment and displays excellent activity at low temperatures. It could retain over 95% of enzyme activity after 180 min of incubation at 45 °C. The distinguished activity under low temperature and prominent stability enhance its catalytic potential. In the current work, the open reading frame was obtained with a length of 1371 nucleotides that encoded a protein of 456 amino acids. These data would warrant the B. licheniformis trypsin as a promising candidate for catalytic application in collagen preparation and leather bating through further protein engineering.

  14. Kinetics and thermodynamic studies of alpha amylase from bacillus licheniformis mutant

    International Nuclear Information System (INIS)

    The present investigation deals with the purification and characterization of enzyme a'-amylase from a mutant strain of Bacillus licheniformis EMS-6. A laboratory scale stirred fermentor of 7.5 L capacity was used for the enzyme production under optimal conditions. The enzyme was purified up to homogeneity level by Ammonium sulphate and ion-exchange chromatography using a fast protein liquid chromatography (FPLC) system. The specific activity of the enzyme increased 4-5 times while the yield was found to be 40.4%. The purification fold by RESOURCE-S was recorded to be 3.58. The molecular weight was found to be 55 KDa. In the present research work, the Vmax (2778 U/mg/min) and Km (8.3mg/ml) of a'-amylase were derived from the Lineweaver Burke plot. Thermodynamic parameters for soluble starch hydrolysis, Ea, AH, AS and AG of a'-amylase from B. licheniformis EMS-6 were found to be 25.14 KJ/mol, 22.53 KJ/mole, -110.95 J/mole/K and 36968 J/mole, respectively. The enzyme was stable over a pH range of 4.5-9.0 and gave pH optimum of 7.0. The pKa1 and pKa2 of ionizable groups of active site controlling Vmax, determined by Dixon plot, were 6.0 and 7.5, respectively. (author)

  15. Regulation of the activity of the Bacillus licheniformis A5 glutamine synthetase.

    Science.gov (United States)

    Donohue, T J; Bernlohr, R W

    1981-10-01

    The regulation of glutamine synthetase activity by positive and negative effectors of enzyme activity singularly and in combinations was studied by using a homogeneous enzyme preparation from Bacillus licheniformis A5. Phosphorylribosyl pyrophosphate at concentrations greater than 2mM stimulated glutamine synthetase activity by approximately 70%. The concentration of phosphorylribosyl pyrophosphate required for half-maximal stimulation of enzyme activity was 0.4 mM. Results obtained from studies of fractional inhibition of glutamine synthetase activity were consistent with the presence of one allosteric site for glutamine binding (apparent I0.5, 2.2mM) per active enzyme unit at a glutamate concentration of 50 mM. At a glutamate concentration of 30 mM or less, the data were consistent with the enzyme containing two binding sites for glutamine (one of which was an allosteric site with an apparent I0.5 of 0.4 mM). Bases on an analysis of the response of glutamine synthetase activity to positive and negative effectors in vitro and to the intracellular concentration of these effectors in vivo, the primary modulators of glutamine synthetase activity in B. licheniformis A5 appear to be glutamine and alanine (apparent I0.5, 5.2mM). PMID:6169702

  16. Comparative study on production of α-Amylase from Bacillus licheniformis strains

    Directory of Open Access Journals (Sweden)

    Dibu Divakaran

    2011-12-01

    Full Text Available Alpha amylase (α-1, 4-glucan-glucanhydrolase, EC 3.2.1.1, an extracellular enzyme, degrades α, 1-4 glucosidic linkages of starch and related substrates in an endo-fashion producing oligosaccharides including maltose, glucose and alpha limit dextrin (7. The present study deals with the production and comparative study of production of α-amylase from two strains of Bacillus licheniformis, MTCC 2617 and 2618, by using four different substrates, starch, rice, wheat and ragi powder as carbon source by submerged fermentation. The effect of varying pH and incubation temperature, activator, inhibitor, and substrate concentration was investigated on the activity of α-amylase produced by MTCC strain 2618. The results shows that the production of the α-amylase by the B.licheniformis strain MTCC 2618, using four different substrates were found to be maximum (Starch 3.64 IU/ml/minutes, Rice powder 2.93 IU/ml/minutes, Wheat powder 2.67 IU/ml/minutes, Ragi powder 2.36 IU/ml/minutes on comparing the enzyme production of two strains. It was also observed that the maximum production was found on the 3rd day (i.e. 72 hr and characterization of crude enzyme revealed that optimum activity was at pH 7 and 37ºC.

  17. Two-step purification and partial characterization of an extra cellular α-amylase from Bacillus licheniformis

    Directory of Open Access Journals (Sweden)

    Zare Mirakabadi, A.

    2012-11-01

    Full Text Available The aim of this study was production and partial purification of α-amylase enzyme by Bacillus licheniformis. B. Licheniformis was allowed to grow in broth culture for purpose of inducing α-amylase enzyme. Optimal conditions for amylase production by B. Licheniformis are incubation period of 120 h, temperature of 37 °C and pH 7.0. The α-amylase enzyme was purified by ion exchange chromatography on DEAE-sepharose CL-6B and sephadex G-100 gel filtration with a 19.1-fold increase in specific activity as compared to the concentrated supernatant and with a specific activity of 926.47 U/mg. The α-amylase had the highest activity at pH 7.0 and 65 °C. According to the data on native polyacrylamide gel electrophoresis, the molecular weight of the purified enzyme was 72 kDa.

  18. Study of the solubility of a modified Bacillus licheniformis alpha-amylase around the isoelectric point

    DEFF Research Database (Denmark)

    Faber, Cornilius; Hobley, Timothy John; Mollerup, Jørgen;

    2007-01-01

    The solubility of a modified recombinant Bacillus licheniformis alpha-amylase (mBLA) has been studied by batch crystallization. A semi-pure preparation was chosen containing five isoforms with pI values from 6 to 7.3 (weighted average of 6.6). Small amounts (... sodium sulfate at all pH values and increased with 0.5 mol.L-1 sodium thiocyanate at pH 7 and pH 8. The effect of anions on alpha-amylase solubility followed the Hofmeister series, and only weak evidence of reversal was seen below the isoelectric point. Cations had little effect on solubility. The sign...... and magnitude of the alpha-amylase zeta potential was determined in the presence and absence of 0.1 mol.L-1 salt. Qualitatively, zeta potential correctly predicted the different salts influence on mBLA solubility....

  19. Identification of a new Bacillus licheniformis strain producing a bacteriocin-like substance.

    Science.gov (United States)

    Guo, Yaoqi; Yu, Zhanqiao; Xie, Jianhua; Zhang, Rijun

    2012-06-01

    The emergence of antibiotic resistance has spurred a great number of studies for development of new antimicrobials in the past decade. The purpose of this study was to screen environmental samples for Bacillus strains producing potent antimicrobial agents. A new strain, which showed strong antimicrobial activity against Staphylococcus aureus and Salmonella enterica ser. Pullorum, was isolated from soil and designated as B116. This new isolate was identified as Bacillus licheniformis by morphological, biochemical and genetic analyses. The production of bacteriocin-like substance (BLS) started at early exponential phase and achieved highest level at early stationary phase. The BLS was precipitated by ammonium sulfate and its molecular mass was determined as ∼4 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Culture supernatant of the new isolate exhibited antimicrobial activity against both Gram-positive and Gram-negative bacteria, including Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Micrococcus luteus, Escherichia coli, and Salmonella spp. The BLS was resistant to heat, acid and alkaline treatment. Activity of the BLS was totally lost after digestion by pronase and partially lost after digestion by papain and lipase. The new isolate and relevant BLS are potentially useful in food and feed applications. PMID:22752909

  20. Production of the novel two-peptide lantibiotic lichenicidin by Bacillus licheniformis DSM 13.

    Directory of Open Access Journals (Sweden)

    Jasmin Dischinger

    Full Text Available BACKGROUND: Lantibiotics are small microbial peptide antibiotics that are characterized by the presence of the thioether amino acids lanthionine and methyllanthionine. Lantibiotics possess structural genes which encode inactive prepeptides. During maturation, the prepeptide undergoes posttranslational modifications including the introduction of rare amino acids as lanthionine and methyllanthione as well as the proteolytic removal of the leader. The structural gene (lanA as well as the other genes which are involved in lantibiotic modification (lanM, lanB, lanC, lanP, regulation (lanR, lanK, export (lanT(P and immunity (lanEFG are organized in biosynthetic gene clusters. METHODOLOGY/PRINCIPAL FINDINGS: Sequence comparisons in the NCBI database showed that Bacillus licheniformis DSM 13 harbours a putative lantibiotic gene cluster which comprises two structural genes (licA1, licA2 and two modification enzymes (licM1, licM2 in addition to 10 ORFs that show sequence similarities to proteins involved in lantibiotic production. A heat labile antimicrobial activity was detected in the culture supernatant and a heat stabile activity was present in the isopropanol cell wash extract of this strain. In agar well diffusion assays both fractions exhibited slightly different activity spectra against Gram-positive bacteria. In order to demonstrate the connection between the lantibiotic gene cluster and one of the antibacterial activities, two Bacillus licheniformis DSM 13 mutant strains harbouring insertions in the structural genes of the modification enzymes licM1 and licM2 were constructed. These strains were characterized by a loss of activity in the isopropanol extract and substractive MALDI-TOF predicted masses of 3020.6 Da and 3250.6 Da for the active peptides. CONCLUSIONS/SIGNIFICANCE: In conclusion, B. licheniformis DSM 13 produces an antimicrobial substance that represents the two-peptide lantibiotic lichenicidin and that shows activity against a wide

  1. Production of Levan by Bacillus licheniformis for Use as a Soil Sealant in Earthen Manure Storage Structures

    Directory of Open Access Journals (Sweden)

    Abdel E. Ghaly

    2007-01-01

    Full Text Available Manure application is not permitted on frozen land in Canada and therefore, manure management and storage are the primary issues facing the agri-food industry. Low-cost, effective and environmentally safe earthen manure storage (EMS facilities will lower costs and help make the livestock industry more competitive and efficient. The goal of this study was to develop a biological sealing technology for earthen manure storages. The results showed that it is feasible to use a growing culture of Bacillus licheniformis to produce a non viscous water insoluble levan. Levan can only be produced by Bacillus licheniformis during the growth mode. No levan was produced during the death phase. About 0. 36 g of levan was produced per gram of sucrose which is 91. 1% of theoretical yield. The polymer can be used as a plugging agent to plug the pores of high permeability soils. From the biological and biochemical characteristics of the Bacillus licheniformis, it appears that the organism is capable of producing levan from sucrose under most field and soil conditions. As a soil organism, Bacillus licheniformis should be able to compete with most common soil species such as Arthrobacter and Bacillus. The bacteria could be grown either in the non-polysaccharide producing mode or in the polysaccharide producing mode. The first would permit distribution of the bacteria to the lower soil layers but would delay the production of the polysaccharide due to the lag period required to produce the enzyme (levansucrase. Upon production of levan, pore spaces would close and hence, the hydraulic conductivity would be substantially reduced.

  2. Beneficial Effect of Sugar Osmolytes on the Refolding of Guanidine Hydrochloride-Denatured Trehalose-6-phosphate Hydrolase from Bacillus licheniformis

    OpenAIRE

    Jiau-Hua Chen; Meng-Chun Chi; Min-Guan Lin; Long-Liu Lin; Tzu-Fan Wang

    2015-01-01

    The influence of three sugar osmolytes on the refolding of guanidine hydrochloride- (GdnHCl-) denatured trehalose-6-phosphate hydrolase of Bacillus licheniformis (BlTreA) was studied by circular dichroism (CD) spectra, fluorescence emission spectra, and the recovery of enzymatic activity. These experimental results clearly indicated that sorbitol, sucrose, and trehalose at a concentration of 0.75 M improved the refolding yields of GdnHCl-denatured  BlTreA, probably due to the fact that these ...

  3. Cloning and characterization of the glutamate dehydrogenase gene in Bacillus licheniformis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The gdhA genes of IRC-3 GDH-strain and IRC-8 GDH+ strain were cloned,and they both successfully complemented the nutritional lesion of an E.coli glutamate auxotroph,Q100 GDH-.However,the gdhA gene from the mutant IRC-8 GDH+ strain failed to complement the glutamate deficiency of the wild type strain IRC-3.The gdhA genes of the wild type and mutant origin were sequenced separately.No nucleotide difference was detected between them.Further investigations indicated that the gdhA genes were actively expressed in both the wild type and the mutant.Additionally,no GDH inhibitor was found in the wild type strain IRC-3.It is thus proposed that the inactivity of GDH in wild type is the result of the deficiency at the post-translational level of the gdhA expression.Examination of the deduced amino acid sequence of Bacillus licheniformis GDH revealed the presence of the motifs characteristic of the familyⅠ-type hexameric protein,while the GDH of Bacillus subtilis belongs to family II.

  4. Cloning and characterization of the glutamate dehydrogenase gene in Bacillus licheniformis

    Institute of Scientific and Technical Information of China (English)

    朱冰; 俞冠翘; 朱家璧; 沈善炯

    2000-01-01

    The gdhA genes of IRC-3 GDH strain and IRC-8 GDH+ strain were cloned, and they both successfully complemented the nutritional lesion of an E. coli glutamate auxotroph, Q100 GDH". However, the gdhA gene from the mutant IRC-8 GDH+ strain failed to complement the glutamate deficiency of the wild type strain IRC-3. The gdhA genes of the wild type and mutant origin were sequenced separately. No nucleotide difference was detected between them. Further investigations indicated that the gdhA genes were actively expressed in both the wild type and the mutant. Additionally, no GDH inhibitor was found in the wild type strain IRC-3. It is thus proposed that the inactivity of GDH in wild type is the result of the deficiency at the post-translational level of the gdhA expression. Examination of the deduced amino acid sequence of Bacillus licheniformis GDH revealed the presence of the motifs characteristic of the family I -type hexameric protein, while the GDH of Bacillus subtilis belongs to family II.

  5. Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis

    Directory of Open Access Journals (Sweden)

    Cordone Angela

    2011-09-01

    Full Text Available Abstract Background Secondary metabolites ranging from furanone to exo-polysaccharides have been suggested to have anti-biofilm activity in various recent studies. Among these, Escherichia coli group II capsular polysaccharides were shown to inhibit biofilm formation of a wide range of organisms and more recently marine Vibrio sp. were found to secrete complex exopolysaccharides having the potential for broad-spectrum biofilm inhibition and disruption. Results In this study we report that a newly identified ca. 1800 kDa polysaccharide having simple monomeric units of α-D-galactopyranosyl-(1→2-glycerol-phosphate exerts an anti-biofilm activity against a number of both pathogenic and non-pathogenic strains without bactericidal effects. This polysaccharide was extracted from a Bacillus licheniformis strain associated with the marine organism Spongia officinalis. The mechanism of action of this compound is most likely independent from quorum sensing, as its structure is unrelated to any of the so far known quorum sensing molecules. In our experiments we also found that treatment of abiotic surfaces with our polysaccharide reduced the initial adhesion and biofilm development of strains such as Escherichia coli PHL628 and Pseudomonas fluorescens. Conclusion The polysaccharide isolated from sponge-associated B. licheniformis has several features that provide a tool for better exploration of novel anti-biofilm compounds. Inhibiting biofilm formation of a wide range of bacteria without affecting their growth appears to represent a special feature of the polysaccharide described in this report. Further research on such surface-active compounds might help developing new classes of anti-biofilm molecules with broad spectrum activity and more in general will allow exploring of new functions for bacterial polysaccharides in the environment.

  6. ABILITY OF BACTERIAL CONSORTIUM: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp. and Pseudomonas putida IN BIOREMEDIATION OF WASTE WATER IN CISIRUNG WASTE WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Ratu SAFITRI

    2015-10-01

    Full Text Available This study was conducted in order to determine the ability of bacterial consortium: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp., and Pseudomonas putida in bioremediation of wastewater origin Cisirung WWTP. This study uses an experimental method completely randomized design (CRD, which consists of two treatment factors (8x8 factorial design. The first factor is a consortium of bacteria (K, consisting of 8 level factors (k1, k2, k3, k4, k5, k6, k7, and k8. The second factor is the time (T, consisting of a 7 level factors (t0, t1, t2, t3, t4, t5, t6, and t7. Test parameters consist of BOD (Biochemical Oxygen Demand, COD (Chemical Oxygen Demand, TSS (Total Suspended Solid, Ammonia and Population of Microbes during bioremediation. Data were analyzed by ANOVA, followed by Duncan test. The results of this study showed that the consortium of Bacillus pumilus, Bacillus subtilis, Bacillus coagulans, Nitrosomonas sp., and Pseudomonas putida with inoculum concentration of 5% (k6 is a consortium of the most effective in reducing BOD 71.93%, 64.30% COD, TSS 94.85%, and 88.58% of ammonia.

  7. Isolation and physico-chemical characterization of an antifungal and antibacterial peptide produced by Bacillus licheniformis A12.

    Science.gov (United States)

    Gálvez, A; Maqueda, M; Martínez-Bueno, M; Lebbadi, M; Valdivia, E

    1993-07-01

    An antifungal substance named peptide A12-C has been purified to homogeneity from supernatants of sporulated cultures of Bacillus licheniformis A12. It consists of a 0.77-kDa hydrophilic peptide containing two residues of Glu and one of Arg, Ala, Pro, Tyr and Orn. No fatty acids, phosphorus or carbohydrates have been detected. Peptide A12-C is active on several fungi (Microsporum canis CECT 2797, Mucor mucedo CECT 2653, M. plumbeus (CCM F 443, Sporothrix schenckii CECT 2799 and Trichophyton mentagrophytes CECT 2793) and bacteria (Bacillus megaterium, Corynebacterium glutamicum, Sarcina and Mycobacterium), although the latter are less sensitive.

  8. Systematic mutagenesis method for enhanced production of bacitracin by Bacillus licheniformis mutant strain UV-MN-HN-6

    Directory of Open Access Journals (Sweden)

    Muhammad Nauman Aftab

    2012-03-01

    Full Text Available The purpose of the current study was intended to obtain the enhanced production of bacitracin by Bacillus licheniformis through random mutagenesis and optimization of various parameters. Several isolates of Bacillus licheniformis were isolated from local habitat and isolate designated as GP-35 produced maximum bacitracin production (14±0.72 IU ml-1. Bacitracin production of Bacillus licheniformis GP-35 was increased to 23±0.69 IU ml-1 after treatment with ultraviolet (UV radiations. Similarly, treatment of vegetative cells of GP-35 with chemicals like N-methyl N'-nitro N-nitroso guanidine (MNNG and Nitrous acid (HNO2 increased the bacitracin production to a level of 31±1.35 IU ml-1 and 27±0.89 IU ml-1 respectively. Treatment of isolate GP-35 with combined effect of UV and chemical treatment yield significantly higher titers of bacitracin with maximum bacitracin production of 41.6±0.92 IU ml-1. Production of bacitracin was further enhanced (59.1±1.35 IU ml-1 by optimization of different parameters like phosphate sources, organic acids as well as temperature and pH. An increase of 4.22 fold in the production of bacitracin after mutagenesis and optimization of various parameters was achieved in comparison to wild type. Mutant strain was highly stable and produced consistent yield of bacitracin even after 15 generations. On the basis of kinetic variables, notably Yp/s (IU/g substrate, Yp/x (IU/g cells, Yx/s (g/g, Yp/s, mutant strain B. licheniformis UV-MN-HN-6 was found to be a hyperproducer of bacitracin.

  9. A RETROSPECTIVE STUDY OF BOVINE ABORTIONS ASSOCIATED WITH BACILLUS-LICHENIFORMIS

    DEFF Research Database (Denmark)

    Agerholm, J.S.; Krogh, H.V.; Jensen, H.E.

    1995-01-01

    established due to the lack of sufficient materials, or the isolation of the bacterium was considered to be a result of contamination. In four cases concomitant infections with B, licheniformis and bovine virus diarrhoea virus were present. Abortions caused by B. licheniformis were predominantly seen during...... isolations, especially from the placenta, lungs, and abomasal contents, combined with the histological findings points to B, licheniformis abortions as being of haematogenous origin with subsequent transplacental spread to the fetus....

  10. Production and characterization of keratinase of a feather-degrading Bacillus licheniformis PWD-1.

    Science.gov (United States)

    Cheng, S W; Hu, H M; Shen, S W; Takagi, H; Asano, M; Tsai, Y C

    1995-12-01

    The keratinase produced by Bacillus licheniformis PWD-1 was induced by feather powder. Maximal enzyme production could be achieved by culturing in a medium containing 1% hammer-milled feather powder (100 mesh) at 45 degrees C for 30 h. Maximal growth of PWD-1 was achieved at 50 degrees C, and maximal enzyme induction was at 45 degrees C. The molecular mass and isoelectric point of this enzyme were 31.4 kDa and 8.5, respectively. This enzyme was stable from pH 5 to 12. The optimal reaction pHs for feather powder and casein were 8.5 and 10.5 to 11.5, respectively. The optimal reaction temperature was 50 degrees C to 55 degrees C. The relative activity of this enzyme toward casein, feather powder, keratin, elastin, and collagen was 100:52:41:18:7, and 100:56:32:3 for Suc-AAPL-pNA, Suc-AAPF-pNA, Suc-AAPM-pNA, and Suc-AAVA-pNA (Suc, succinyl; pNA, p-nitrophenylanilide).

  11. High levan production by Bacillus licheniformis NS032 using ammonium chloride as the sole nitrogen source.

    Science.gov (United States)

    Kekez, B D; Gojgic-Cvijovic, G D; Jakovljevic, D M; Stefanovic Kojic, J R; Markovic, M D; Beskoski, V P; Vrvic, M M

    2015-03-01

    In this study, levan production by Bacillus licheniformis NS032 isolated from a petroleum sludge sample was investigated. High levan yield was obtained in a wide range of sucrose concentrations (up to 400 g/L) and, contrary to most levan-producing strains, using ammonium chloride as the sole N source. Interaction between sucrose, ammonium chloride, and initial pH of the medium in a low sucrose (60-200 g/L) and a high sucrose (300-400 g/L) system was analyzed by response surface methodology. According to the calculated model in the low sucrose system, maximum predicted levan yield was 47.8 g/L (sucrose 196.8 g/L, ammonium chloride 2.4 g/L, pH 7.0), while in the high sucrose system, levan yield was 99.2 g/L (sucrose 397.6 g/L, ammonium chloride 4.6 g/L, pH 7.4). In addition, protective effect of microbial levan against copper toxicity to Daphnia magna is observed for the first time. The acute toxicity (48 h EC50) of copper decreased from 0.14 to 0.44 mg/L by levan in concentration of 50 ppm. PMID:25592434

  12. Extracellular polysaccharide production in Bacillus licheniformis SVD1 and its immunomodulatory effect

    Directory of Open Access Journals (Sweden)

    J. Susan van Dyk

    2012-11-01

    Full Text Available Bacillus licheniformis SVD1 exhibited highest production of three different polysaccharides when sucrose was used as the carbon source for polysaccharide production and yeast extract was used as the nitrogen source. Polysaccharides were characterized using size exclusion chromatography (SEC, thin layer chromatography (TLC, gas chromatography with mass spectrometry (GCMS, and Fourier Transform Infrared (FTIR analysis. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM were used to examine the topography of the cells and polysaccharides. The cell-associated polysaccharides were composed of galactose, while two different polysaccharides were present in the extracellular medium, one of 2,000 kDa (EPS1, consisting of fructose monomers and identified as a levan with (2→6-linkages and (1→2-branching linkages. The other extracellular polysaccharide (EPS2 consisted of mannose and galactose and had a range of sizes as identified through SEC. All three polysaccharides displayed an immune modulatory effect as measured using Interleukin 6 (IL6 and tumor necrosis factor alpha (TNFα.

  13. Enhanced production of alkaline protease by a mutant of Bacillus licheniformis N-2 for dehairing

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    2010-10-01

    Full Text Available The purpose of the present investigations was to improve the yield of alkaline protease for leather dehairing by subjecting the indigenous proteolytic strain Bacillus licheniformis N-2 to various mutagenic treatments viz. UV irradiations, NTG (N-methyl-N-nitro-N-nitrosoguinidine and MMS (methyl methane sulfonate. After screening on skim milk agar plates, a total of nine positive mutants were selected for shake flask experiments. Among these, the best proteolytic mutant designated as UV-9 showed 1.4 fold higher alkaline protease activity in preoptimized growth medium than the parent strain. The fermentation profile and kinetic parameters such u(h-1, Yp/s, Yp/x, Yx/s, q s, Qs, q p and Qp also indicated the superiority of the selected mutant UV-9 for alkaline protease production over the parent strain and rest of the mutants. The dehairing capability of mutant UV-9 alkaline protease was analyzed by soaking goat skin pieces for different time intervals (3-15 h at 40 º C. A complete dehairing without degradation of collagen was achieved after 12 h, indicating its commercial exploitation in leather industry.

  14. In Vitro Antibiofilm Activity of an Exopolysaccharide from the Marine Thermophilic Bacillus licheniformis T14.

    Science.gov (United States)

    Spanò, Antonio; Laganà, Pasqualina; Visalli, Giuseppa; Maugeri, Teresa L; Gugliandolo, Concetta

    2016-05-01

    The development of antibiofilm strategies is of major interest in contrasting bacterial pathogenic biofilms. A novel fructose and fucose rich exopolysaccharide (EPS1-T14) produced by the recently described thermophilic Bacillus licheniformis T14, isolated from a shallow hydrothermal vent of Panarea Island (Eolian Island, Italy), was evaluated for its effects on biofilm formation by multiresistant clinical strains of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. The antibiofilm activity of EPS1-T14 was assessed by microtiter plate assays and visualized by confocal laser scanning microscopic images. EPS1-T14, with molecular weight of 1000 kDa, reduced biofilm formation on abiotic surfaces without affecting bacterial vitality. The novel EPS1-T14 is a water-soluble, noncytotoxic exopolymer able to prevent biofilm formation and its use may represent a promising therapeutic strategy for combating bacterial biofilm-associated infections. EPS1-T14 as antiadhesive biomolecule could be useful for novel prospective in medical and nonmedical applications. PMID:26750122

  15. Functional characterization of a Na(+)-coupled dicarboxylate transporter from Bacillus licheniformis.

    Science.gov (United States)

    Strickler, Melodie A; Hall, Jason A; Gaiko, Olga; Pajor, Ana M

    2009-12-01

    The Na(+)-coupled dicarboxylate transporter, SdcL, from Bacillus licheniformis is a member of the divalent anion/Na(+) symporter (DASS) family that includes the bacterial Na(+)/dicarboxylate cotransporter SdcS (from Staphyloccocus aureus) and the mammalian Na(+)/dicarboxylate cotransporters, NaDC1 and NaDC3. The transport properties of SdcL produced in Escherichia coli are similar to those of its prokaryotic and eukaryotic counterparts, involving the Na(+)-dependent transport of dicarboxylates such as succinate or malate across the cytoplasmic membrane with a K(m) of approximately 6 microM. SdcL may also transport aspartate, alpha-ketoglutarate and oxaloacetate with low affinity. The cotransport of Na(+) and dicarboxylate by SdcL has an apparent stoichiometry of 2:1, and a K(0.5) for Na(+) of 0.9 mM. Our findings represent the characterization of another prokaryotic protein of the DASS family with transport properties similar to its eukaryotic counterparts, but with a broader substrate specificity than other prokaryotic DASS family members. The broader range of substrates carried by SdcL may provide insight into domains of the protein that allow a more flexible or larger substrate binding pocket.

  16. Statistical Approach for Optimization of Physiochemical Requirements on Alkaline Protease Production from Bacillus licheniformis NCIM 2042

    Directory of Open Access Journals (Sweden)

    Biswanath Bhunia

    2012-01-01

    Full Text Available The optimization of physiochemical parameters for alkaline protease production using Bacillus licheniformis NCIM 2042 were carried out by Plackett-Burman design and response surface methodology (RSM. The model was validated experimentally and the maximum protease production was found 315.28 U using optimum culture conditions. The protease was purified using ammonium sulphate (60% precipitation technique. The HPLC analysis of dialyzed sample showed that the retention time is 1.84 min with 73.5% purity. This enzyme retained more than 92% of its initial activity after preincubation for 30 min at 37∘C in the presence of 25% v/v DMSO, methanol, ethanol, ACN, 2-propanol, benzene, toluene, and hexane. In addition, partially purified enzyme showed remarkable stability for 60 min at room temperature, in the presence of anionic detergent (Tween-80 and Triton X-100, surfactant (SDS, bleaching agent (sodium perborate and hydrogen peroxide, and anti-redeposition agents (Na2CMC, Na2CO3. Purified enzyme containing 10% w/v PEG 4000 showed better thermal, surfactant, and local detergent stability.

  17. Covalent Immobilization of Bacillus licheniformis γ-Glutamyl Transpeptidase on Aldehyde-Functionalized Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Meng-Chun Chi

    2013-02-01

    Full Text Available This work presents the synthesis and use of surface-modified iron oxide nanoparticles for the covalent immobilization of Bacillus licheniformis γ-glutamyl transpeptidase (BlGGT. Magnetic nanoparticles were prepared by an alkaline solution of divalent and trivalent iron ions, and they were subsequently treated with 3-aminopropyltriethoxysilane (APES to obtain the aminosilane-coated nanoparticles. The functional group on the particle surface and the amino group of BlGGT was then cross-linked using glutaraldehyde as the coupling reagent. The loading capacity of the prepared nanoparticles for BlGGT was 34.2 mg/g support, corresponding to 52.4% recovery of the initial activity. Monographs of transmission electron microscopy revealed that the synthesized nanoparticles had a mean diameter of 15.1 ± 3.7 nm, and the covalent cross-linking of the enzyme did not significantly change their particle size. Fourier transform infrared spectroscopy confirmed the immobilization of BlGGT on the magnetic nanoparticles. The chemical and kinetic behaviors of immobilized BlGGT are mostly consistent with those of the free enzyme. The immobilized enzyme could be recycled ten times with 36.2% retention of the initial activity and had a comparable stability respective to free enzyme during the storage period of 30 days. Collectively, the straightforward synthesis of aldehyde-functionalized nanoparticles and the efficiency of enzyme immobilization offer wide perspectives for the practical use of surface-bound BlGGT.

  18. Characterization and Application of Biosurfactant Produced by Bacillus licheniformis R2.

    Science.gov (United States)

    Joshi, Sanket J; Geetha, S J; Desai, Anjana J

    2015-09-01

    The biosurfactant produced by Bacillus licheniformis R2 was characterized and studied for enhancing the heavy crude oil recovery at 80 °C in coreflood experiments. The strain was found to be nonpathogenic and produced biosurfactant, reducing the surface tension of medium from 70 to 28 mN/m with 1.1 g/l yield. The biosurfactant was quite stable during exposure to elevated temperatures (85 °C for 90 days), high salinity (10 % NaCl), and a wide range of pH (5-12) for 10 days. It was characterized as lipopeptide similar to lichenysin-A, with a critical micelle concentration of about 19.4 mg/l. The efficiency of crude biosurfactant for enhanced oil recovery by core flood studies revealed it to recovering additional 37.1 % oil from Berea sandstone cores at 80 °C. The results are indicative of the potential for the development of lipopeptide biosurfactant-based ex situ microbial enhanced heavy oil recovery from depleting oil fields with extreme temperatures.

  19. Cloning, Sequencing, and In Silico Analysis of β-Propeller Phytase Bacillus licheniformis Strain PB-13

    Directory of Open Access Journals (Sweden)

    Vinod Kumar

    2014-01-01

    Full Text Available β-Propeller phytases (BPPhy are widely distributed in nature and play a major role in phytate-phosphorus cycling. In the present study, a BPPhy gene from Bacillus licheniformis strain was expressed in E. coli with a phytase activity of 1.15 U/mL and specific activity of 0.92 U/mg proteins. The expressed enzyme represented a full length ORF “PhyPB13” of 381 amino acid residues and differs by 3 residues from the closest similar existing BPPhy sequences. The PhyPB13 sequence was characterized in silico using various bioinformatic tools to better understand structural, functional, and evolutionary aspects of BPPhy class by multiple sequence alignment and homology search, phylogenetic tree construction, variation in biochemical features, and distribution of motifs and superfamilies. In all sequences, conserved sites were observed toward their N-terminus and C-terminus. Cysteine was not present in the sequence. Overall, three major clusters were observed in phylogenetic tree with variation in biophysical characteristics. A total of 10 motifs were reported with motif “1” observed in all 44 protein sequences and might be used for diversity and expression analysis of BPPhy enzymes. This study revealed important sequence features of BPPhy and pave a way for determining catalytic mechanism and selection of phytase with desirable characteristics.

  20. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain.

    Science.gov (United States)

    Li, Lixiang; Li, Kun; Wang, Kai; Chen, Chao; Gao, Chao; Ma, Cuiqing; Xu, Ping

    2014-10-01

    In this study, a thermophilic Bacillus licheniformis strain X10 was newly isolated for 2,3-butanediol (2,3-BD) production from lignocellulosic hydrolysate. Strain X10 could utilize glucose and xylose simultaneously without carbon catabolite repression. In addition, strain X10 possesses high tolerance to fermentation inhibitors including furfural, vanillin, formic acid, and acetic acid. In a fed-batch fermentation, 74.0g/L of 2,3-BD was obtained from corn stover hydrolysate, with a productivity of 2.1g/Lh and a yield of 94.6%. Thus, this thermophilic B. licheniformis strain is a candidate for the development of efficient industrial production of 2,3-BD from corn stover hydrolysate.

  1. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain.

    Science.gov (United States)

    Li, Lixiang; Li, Kun; Wang, Kai; Chen, Chao; Gao, Chao; Ma, Cuiqing; Xu, Ping

    2014-10-01

    In this study, a thermophilic Bacillus licheniformis strain X10 was newly isolated for 2,3-butanediol (2,3-BD) production from lignocellulosic hydrolysate. Strain X10 could utilize glucose and xylose simultaneously without carbon catabolite repression. In addition, strain X10 possesses high tolerance to fermentation inhibitors including furfural, vanillin, formic acid, and acetic acid. In a fed-batch fermentation, 74.0g/L of 2,3-BD was obtained from corn stover hydrolysate, with a productivity of 2.1g/Lh and a yield of 94.6%. Thus, this thermophilic B. licheniformis strain is a candidate for the development of efficient industrial production of 2,3-BD from corn stover hydrolysate. PMID:25151068

  2. Characterization of Biosurfactant Produced by Bacillus licheniformis TT42 Having Potential for Enhanced Oil Recovery.

    Science.gov (United States)

    Suthar, Harish; Nerurkar, Anuradha

    2016-09-01

    Bacillus licheniformis TT42 produced a low-molecular weight anionic biosurfactant that reduced the surface tension of water from 72 to 27 mN/m and the interfacial tension from 12 to 0.05 mN/m against crude oil. We have earlier reported significant enhancement in oil recovery in laboratory sand pack columns and core flood studies, by biosurfactant-TT42 compared to standard strain, Bacillus mojavensis JF2. In the context of this application of the biosurfactant-TT42, its characterization was deemed important. In the preliminary studies, the biosurfactant-TT42 was found to be functionally stable at under conditions of temperature, pH, and salinity generally prevalent in oil reservoirs. Furthermore, the purified biosurfactant-TT42 was found to have a CMC of 22 mg/l. A newly developed activity staining TLC method was used for the purification of biosurfactant-TT42. Structural characterization of biosurfactant-TT42 using TLC, Fourier transform infrared spectroscopy (FTIR), GC-MS, and matrix-assisted laser desorption ionization time of flight (MALDI-TOF)/TOF suggested that it was a mixture of lipopeptide species, all having a common hydrophilic cyclic heptapeptide head with the sequence, Gln-Leu/Ileu-Leu/Ileu-Val-Asp-Leu/Ileu-Leu/Ileu linked to hydrophobic tails of different lengths of 3β-OH-fatty acids bearing 1043, 1057 and 1071 Da molecular weight, where 3β-OH-C19 fatty acid was predominant. This is the longest chain length of fatty acids reported in a lipopeptide.

  3. Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis.

    Directory of Open Access Journals (Sweden)

    Devendra H Dusane

    Full Text Available BACKGROUND: Marine epibiotic bacteria produce bioactive compounds effective against microbial biofilms. The study examines antibiofilm ability of a protein obtained from a tropical marine strain of Bacillus licheniformis D1. METHODOLOGY/PRINCIPAL FINDINGS: B. licheniformis strain D1 isolated from the surface of green mussel, Perna viridis showed antimicrobial activity against pathogenic Candida albicans BH, Pseudomonas aeruginosa PAO1 and biofouling Bacillus pumilus TiO1 cultures. The antimicrobial activity was lost after treatment with trypsin and proteinase K. The protein was purified by ultrafiltration and size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75°C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry for a hypothetical protein (BL00275 derived from B. licheniformis ATCC 14580 with the accession number gi52082584. The protein showed minimum inhibitory concentration (MIC value of 1.6 µg/ml against C. albicans. Against both P. aeruginosa and B. pumilus the MIC was 3.12 µg/ml. The protein inhibited microbial growth, decreased biofilm formation and dispersed pre-formed biofilms of the representative cultures in polystyrene microtiter plates and on glass surfaces. CONCLUSION/SIGNIFICANCE: We isolated a protein from a tropical marine strain of B. licheniformis, assigned a function to the hypothetical protein entry in the NCBI database and described its application as a potential antibiofilm agent.

  4. Comparative evaluation of Bacillus licheniformis 5A5 and Aloe variegata milk-clotting enzymes

    Directory of Open Access Journals (Sweden)

    S. A. Ahmed

    2012-03-01

    Full Text Available The properties of a milk clotting enzyme (MCE produced by bacteria (Bacillus licheniformis 5A5 were investigated and compared to those of rennet extracted from a plant (Aloe variegata. Production of MCE by B. licheniformis 5A5 was better in static than in shaken cultures. Maximum activity (98.3 and 160.3 U/ml of clotting was obtained at 75ºC and 80ºC with bacterial and plant rennet, respectively. In the absence of substrate, the clotting activity of Aloe MCE was found to be less sensitive to heat inactivation up to 80ºC for 75 min, retaining 63.8% of its activity, while bacterial MCE was completely inhibited. CaCl2 stimulated milk clotting activity (MCA up to 2% and 1.5% for bacterial and plant enzymes. NaCl inhibited MCA for both enzymes, even at low concentration (1%. Plant MCE was more sensitive to NaCl at 3% concentration it retained 30.2% of its activity, whereas bacterial MCE retained 64.1%. Increasing skim milk concentration caused a significant increase in MCA up to 6% for both enzymes. Mn2+ stimulated the activity of bacterial and plant enzymes to 158.6 and 177.9%, respectively. EDTA and PMSF increased the activity of plant MCE by 34.4 and 41.1%, respectively, which is higher than those for the bacterial MCE (19.1 and 20.9%. Some natural materials activated MCE, the highest activation of bacterial MCE (128.1% was obtained in the presence of Fenugreek (with acid extraction. However Lupine Giza 1 (with neutral extraction gave the highest activation of plant MCE (137.9%. All extracts from Neem plant increased MCA at range from 105.6% to 136.4%. Plant MCE exhibited much better stability when stored at room temperature (25-30ºC for 30 days, retaining 51.2% of its activity. Bacterial MCE was highly stabile when stored under freezing (-18ºC, retaining 100% of its activity after 30 days. Moreover, bacterial MCE was highly tolerant to repeated freezing and thawing without loss of activity for 8 months.

  5. Codon Optimization Significantly Improves the Expression Level of α-Amylase Gene from Bacillus licheniformis in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Jian-Rong Wang

    2015-01-01

    Full Text Available α-Amylase as an important industrial enzyme has been widely used in starch processing, detergent, and paper industries. To improve expression efficiency of recombinant α-amylase from Bacillus licheniformis (B. licheniformis, the α-amylase gene from B. licheniformis was optimized according to the codon usage of Pichia pastoris (P. pastoris and expressed in P. pastoris. Totally, the codons encoding 305 amino acids were optimized in which a total of 328 nucleotides were changed and the G+C content was increased from 47.6 to 49.2%. The recombinants were cultured in 96-deep-well microplates and screened by a new plate assay method. Compared with the wild-type gene, the optimized gene is expressed at a significantly higher level in P. pastoris after methanol induction for 168 h in 5- and 50-L bioreactor with the maximum activity of 8100 and 11000 U/mL, which was 2.31- and 2.62-fold higher than that by wild-type gene. The improved expression level makes the enzyme a good candidate for α-amylase production in industrial use.

  6. Bacillus licheniformis Contains Two More PerR-Like Proteins in Addition to PerR, Fur, and Zur Orthologues.

    Directory of Open Access Journals (Sweden)

    Jung-Hoon Kim

    Full Text Available The ferric uptake regulator (Fur family proteins include sensors of Fe (Fur, Zn (Zur, and peroxide (PerR. Among Fur family proteins, Fur and Zur are ubiquitous in most prokaryotic organisms, whereas PerR exists mainly in Gram positive bacteria as a functional homologue of OxyR. Gram positive bacteria such as Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus encode three Fur family proteins: Fur, Zur, and PerR. In this study, we identified five Fur family proteins from B. licheniformis: two novel PerR-like proteins (BL00690 and BL00950 in addition to Fur (BL05249, Zur (BL03703, and PerR (BL00075 homologues. Our data indicate that all of the five B. licheniformis Fur homologues contain a structural Zn2+ site composed of four cysteine residues like many other Fur family proteins. Furthermore, we provide evidence that the PerR-like proteins (BL00690 and BL00950 as well as PerRBL (BL00075, but not FurBL (BL05249 and ZurBL (BL03703, can sense H2O2 by histidine oxidation with different sensitivity. We also show that PerR2 (BL00690 has a PerR-like repressor activity for PerR-regulated genes in vivo. Taken together, our results suggest that B. licheniformis contains three PerR subfamily proteins which can sense H2O2 by histidine oxidation not by cysteine oxidation, in addition to Fur and Zur.

  7. Optimization and partial characterization of culture conditions for the production of alkaline protease from Bacillus licheniformis P003

    OpenAIRE

    Sarker, Palash Kumar; Talukdar, Saimon Ahmad; Deb, Promita; Sayem, SM Abu; Mohsina, Kaniz

    2013-01-01

    Proteolytic enzymes have occupied a pivotal position for their practical applications. The present study was carried out under shake flask conditions for the production of alkaline protease from Bacillus licheniformis P003 in basal medium containing glucose, peptone, K2HPO4, MgSO4 and Na2CO3 at pH 10. The effect of culture conditions and medium components for maximum production of alkaline protease was investigated using one factor constant at a time method along with its characterization. Ma...

  8. Supplementation of Carbohydrate to Enhance the α-amylase Production by Bacillus licheniformis ATCC 6346 in Presence of Seed Cakes

    OpenAIRE

    Vengadaramana, A.; Vasanthy, A.; Balakumar, S

    2012-01-01

    Aims: The effect of carbohydrate and amino acids on the production of a-amylase by Bacillus licheniformis ATCC 6346 was investigated. Methodology and results: To find out the influence of carbohydrate the total carbohydrate content of the medium containing different concentration (2-18 g/L) of defatted seed cake powder of sesamum and mustard containing medium was kept constant by the addition of soluble starch separately. The highest a-amylase activity obtained in the medium containing 18g/L ...

  9. High expression level of levansucrase from Bacillus licheniformis RN-01 and synthesis of levan nanoparticles.

    Science.gov (United States)

    Nakapong, Santhana; Pichyangkura, Rath; Ito, Kazuo; Iizuka, Masaru; Pongsawasdi, Piamsook

    2013-03-01

    LsRN from Bacillus licheniformis was cloned and expressed in Escherichia coli. From a 1793 bp genomic sequence, the lsRN gene was found to be composed of a single 1446 bp ORF with a putative promoter consensus boxes and a ribosome-binding site. This ORF was predicted to encode for 482 amino acid residues. The LsRN was constitutively expressed at a relatively high level without sucrose induction. The enzyme was highly purified and an apparent size of 52 kDa with an optimum temperature and pH of 50 °C and 6.0 were determined. The wide range of M(w) of levan (1-600 kDa) was synthesized in a controlled reaction with two variable parameters: temperature and ionic strength. At high temperature (50 °C), LsRN synthesized high M(w) levan (612 kDa) as a major product while at low temperature (30 °C), low M(w) levan (11 kDa) was mainly synthesized. When 0.5M NaCl was added into the reaction, the major products at both temperatures were of the size 11 kDa. Moreover we report for the first time, an enzymatic synthesis of levan nanoparticles (NPs) by a single step reaction. The LsRN synthesized levan NPs as agglomerate with average particle size of 50 nm. The encapsulation of O-acetyl-α-tocopherol was carried out to demonstrate the applicable use of levan NPs. PMID:23219733

  10. Combined effects of dietary fructooligosaccharide and Bacillus licheniformis on innate immunity, antioxidant capability and disease resistance of triangular bream (Megalobrama terminalis).

    Science.gov (United States)

    Zhang, Chun-Nuan; Li, Xiang-Fei; Xu, Wei-Na; Jiang, Guang-Zhen; Lu, Kang-Le; Wang, Li-Na; Liu, Wen-Bin

    2013-11-01

    This study was conducted to investigate the effects of fructooligosaccharide (FOS) and Bacillus licheniformis (B. licheniformis) and their interaction on innate immunity, antioxidant capability and disease resistance of triangular bream Megalobrama terminalis (average initial weight 30.5 ± 0.5 g). Nine experimental diets were formulated to contain three FOS levels (0, 0.3% and 0.6%) and three B. licheniformis levels (0, 1 × 10(7), 5 × 10(7) CFU g(-1)) according to a 3 × 3 factorial design. At the end of the 8-week feeding trial, fish were challenged by Aeromonas hydrophila (A. hydrophila) and survival rate was recorded for the next 7 days. The results showed that leucocyte counts, alternative complement activity as well as total serum protein and globulin contents all increased significantly (P 0.05) was observed in these parameters in terms of dietary FOS levels. Both plasma alkaline phosphatase and phenoloxidase activities were significantly (P FOS levels with the highest values observed in fish fed 0.6 and 0.3% FOS, respectively. Both immunoglobulin M content and liver superoxide dismutase (SOD) activity were significantly affected (P > 0.05) by both FOS and B. licheniformis. Liver catalase, glutathione peroxidase as well as plasma SOD activities of fish fed 1 × 10(7) CFU g(-1)B. licheniformis were all significantly (P 0.05) by either FOS levels or B. licheniformis contents, whereas a significant (P FOS and 1 × 10(7) CFU g(-1)B. licheniformis. The results of this study indicated that dietary FOS and B. licheniformis could significantly enhance the innate immunity and antioxidant capability of triangular bream, as well as improve its disease resistance. The best combination of these two prebiotics and/or probiotics was 0.3% FOS and 1 × 10(7) CFU g(-1)B. licheniformis. PMID:23932988

  11. Microbial reduction of [Co(III)–EDTA]{sup −} by Bacillus licheniformis SPB-2 strain isolated from a solar salt pan

    Energy Technology Data Exchange (ETDEWEB)

    Paraneeiswaran, Arunachalam [Departartment of Biotechnology, Pondicherry University, Puducherry (India); Shukla, Sudhir K. [Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, BARC Facilities, Kalpakkam 603102 (India); Homi Bhabha National Institute, Mumbai 400094 (India); Prashanth, K. [Departartment of Biotechnology, Pondicherry University, Puducherry (India); Rao, T. Subba, E-mail: subbarao@igcar.gov.in [Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, BARC Facilities, Kalpakkam 603102 (India); Homi Bhabha National Institute, Mumbai 400094 (India)

    2015-02-11

    Graphical abstract: - Highlights: • Bacillus licheniformis SPB-2 was used in the bioremediation of [Co(III)–EDTA]{sup −}. • The bacterial biomass adsorbed the Co–EDTA complex after its reduction. • [Co(III)–EDTA]{sup −} complex showed Bacillus spore inducing property. • B. licheniformis SPB-2 showed significantly radio-tolerance (D{sub 10} = 250 Gy). - Abstract: Naturally stressed habitats are known to be repositories for novel microorganisms with potential bioremediation applications. In this study, we isolated a [Co(III)–EDTA]{sup −} reducing bacterium Bacillus licheniformis SPB-2 from a solar salt pan that is exposed to constant cycles of hydration and desiccation in nature. [Co(III)–EDTA]{sup −} generated during nuclear waste management process is difficult to remove from the waste due to its high stability and solubility. It is reduced form i.e. [Co(II)–EDTA]{sup 2−} is less stable though it is toxic. This study showed that B. licheniformis SPB-2 reduced 1 mM [Co(III)–EDTA]{sup −} in 14 days when grown in a batch mode. However, subsequent cycles showed an increase in the reduction activity, which was observed up to four cycles. Interestingly, the present study also showed that [Co(III)–EDTA]{sup −} acted as an inducer for B. licheniformis SPB-2 spore germination. Vegetative cells germinated from the spores were found to be involved in [Co(III)–EDTA]{sup −} reduction. More detailed investigations showed that after [Co(III)–EDTA]{sup −} reduction, i.e. [Co(II)–EDTA]{sup 2−} complex was removed by B. licheniformis SPB-2 from the bulk liquid by adsorption phenomenon. The bacterium showed a D{sub 10} value (radiation dose required to kill 90% cells) of ∼250 Gray (Gy), which signifies the potential use of B. licheniformis SPB-2 for bioremediation of moderately active nuclear waste.

  12. Enhanced production of elastase by Bacillus licheniformis ZJUEL31410: optimization of cultivation conditions using response surface methodology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Sequential methodology based on the application of three types of experimental designs was used to optimize the fermentation conditions for elastase production from mutant strain ZJUEL31410 of Bacillus licheniformis in shaking flask cultures. The optimal cultivation conditions stimulating the maximal elastase production consist of 220 r/min shaking speed, 25 h fermentation time, 5% (v/v) inoculums volume, 25 ml medium volume in 250 ml Erlenmeyer flask and 18 h seed age. Under the optimized conditions, the predicted maximal elastase activity was 495 U/ml. The application of response surface methodology resulted in a significant enhancement in elastase production. The effects of other factors such as elastin and the growth factor (corn steep flour) on elastase production and cell growth were also investigated in the current study. The elastin had no significant effect on enzyme-improved production. It is still not clear whether the elastin plays a role as a nitrogen source or not. Corn steep flour was verified to be the best and required factor for elastase production and cell growth by Bacillus licheniformis ZJUEL31410.

  13. Draft Genome Sequence of Bacillus licheniformis CG-B52, a Highly Virulent Bacterium of Pacific White Shrimp (Litopenaeus vannamei), Isolated from a Colombian Caribbean Aquaculture Outbreak.

    Science.gov (United States)

    Gálvez, Eric J C; Carrillo-Castro, Katerine; Zárate, Lina; Güiza, Linda; Pieper, Dietmar H; García-Bonilla, Erika; Salazar, Marcela; Junca, Howard

    2016-01-01

    Bacillus licheniformis strain CG-B52 was isolated as the etiological agent producing a self-limited outbreak of high mortalities in commercial Litopenaeus vannamei culture ponds on the Colombian Caribbean coast in 2005. Here, we report its draft genome and three novel extrachromosomal elements that it harbors. PMID:27174263

  14. Cloning, expression, purification, crystallization and preliminary X-ray characterization of allantoinase from Bacillus licheniformis ATCC 14580.

    Science.gov (United States)

    Conejero-Muriel, Mayte; Martínez-Gómez, Ana Isabel; Martínez-Rodríguez, Sergio; Gavira, Jose A

    2014-11-01

    Allantoinase, a member of the amidohydrolase superfamily, exists in a wide variety of organisms, including bacteria, fungi, plants and a few animals, such as fishes and amphibians. Allantoinase catalyzes the reversible hydrolysis of allantoin into allantoate by hydrolytic cleavage of the N1-C2 amide bond of the five-membered hydantoin ring. Allantoinase from Bacillus licheniformis (AllBali) presents an inverted enantioselectivity towards allantoin (R-enantioselective), which is a distinguishable feature that is not observed for other allantoinases. In this work, B. licheniformis ATCC 14580 allantoinase (AllBali) containing a C-terminal His6 tag was overproduced in Escherichia coli and purified to homogeneity. Crystals of AllBali were obtained by the vapour-diffusion method using 0.1 M potassium thiocyanate, 20%(w/v) polyethylene glycol 3350 as a crystallization solution. X-ray diffraction data were collected to a resolution of 3.5 Å with an Rmerge of 29.2% from a crystal belonging to space group P12₁1, with unit-cell parameters a=54.93, b=164.74, c=106.89 Å, β=98.49°. There are four molecules in the asymmetric unit with a solvent content of 47% as estimated from the Matthews coefficient (VM=2.34 Å3 Da(-1)). PMID:25372819

  15. Supplementation of Carbohydrate to Enhance the α-amylase Production by Bacillus licheniformis ATCC 6346 in Presence of Seed Cakes

    Directory of Open Access Journals (Sweden)

    Vengadaramana, A.

    2012-01-01

    Full Text Available Aims: The effect of carbohydrate and amino acids on the production of a-amylase by Bacillus licheniformis ATCC 6346 was investigated. Methodology and results: To find out the influence of carbohydrate the total carbohydrate content of the medium containing different concentration (2-18 g/L of defatted seed cake powder of sesamum and mustard containing medium was kept constant by the addition of soluble starch separately. The highest a-amylase activity obtained in the medium containing 18g/L mustard (59.11+b1.48 U/mL and sesamum seed cake powder (55.23+b1.55 U/mL. The results indicated that under these conditions the carbohydrate content had no effect on the production of a-amylase. Effect of amino acids (0.2g/L of glycine, methionine, proline, lysine, leucine, threonine, serine, arginine, alanine, glutamic acid, tryptophan, glutamine, asparagine, histidine, valine, phenylalanine, isoleucine and mixture of amino acids on the production of a-amylase in fermentation medium was investigated. Among the different amino acids supplemented, eight amino acids improved the a-amylase production but casaminoacids slightly inhibited the enzyme production. In presence of tryptophan highest enzyme activity was obtained than control. Conclusion, significance and impact of study: In these study amino acids especially tryptophan takes part in a particular role rather than carbohydrate in the production of a-amylase from B. licheniformis ATCC 6346.

  16. Purification and characterization of biosurfactant produced by Bacillus licheniformis Y-1 and its application in remediation of petroleum contaminated soil.

    Science.gov (United States)

    Liu, Boqun; Liu, Jinpeng; Ju, Meiting; Li, Xiaojing; Yu, Qilin

    2016-06-15

    In our previous research, a petroleum degrading bacteria strain Bacillus licheniformis Y-1 was obtained in Dagang Oilfield which had the capability of producing biosurfactant. This biosurfactant was isolated and purified in this work. The biosurfactant produced by strain Y-1 had the capability to decrease the surface tension of water from 74.66 to 27.26mN/m, with the critical micelle concentration (CMC) of 40mg/L. The biosurfactant performed not only excellent stabilities against pH, temperature and salinity, but also great emulsifying activities to different kinds of oil, especially the crude oil. According to the results of FT-IR spectrum and (1)H NMR spectrum detection, the surfactant was determined to be a cyclic lipopeptide. Furthermore, through the addition of surfactant, the effect of petroleum contaminated soil remediation by fungi got a significant improvement. PMID:27114088

  17. Utjecaj sastava podloge na komercijalnu proizvodnju alkalne proteaze s pomoću soja Bacillus licheniformis N-2

    OpenAIRE

    Nadeem, Muhammad; Qazi, Javed Iqbal; Baig, Shahjahan; Syed, Qurat-ul-Ain

    2008-01-01

    U radu je istražena proizvodnja proteaze s pomoću alkalofilnog soja bakterije Bacillus licheniformis N-2 u 50 mL podloge sastava (u g/L): glukoza 10,0; sojina sačma 10,0; K2HPO4 3,0; MgSO4·7H2O 0,5; NaCl 0,5 i CaCl2·2H2O 0,5; pH=10. Dodatkom raznih izvora ugljika i dušika u obliku finih praškastih organskih, anorganskih i nemasnih hranjiva, odabran je prikladan supstrat za proizvodnju alkalne proteaze. Najviše alkalne proteaze (677,64 U/mL) proizvedeno je u podlozi s glukozom, a nešto manje s...

  18. A New Diketopiperazine, Cyclo(D-trans-Hyp-L-Leu) from a Kenyan Bacterium Bacillus licheniformis LB 8CT.

    Science.gov (United States)

    Lee, Seoung Rak; Beemelmanns, Christine; Tsuma, Leah M M; Clardy, Jon; Cao, Shugeng; Kim, Ki Hyun

    2016-04-01

    Bacterially-produced small molecules demonstrate a wide range of structural and functional diversity. A new diketopiperazine, cyclo(D-trans-Hyp-L-Leu) (1), and five other known diketopiperazines (2-6), were isolated and purified from the fermented broth of a Kenyan bacterium Bacillus licheniformis LB 8CT. The structure of 1 was elucidated by a combination of extensive spectroscopic analyses, including 2D NMR and HR-MS, and the absolute configuration was determined by a combination of NOESY analysis and Marfey's method. The known compounds were identified as cyclo(D-cis-Hyp-L-Leu) (2), cyclo(D-cis-Hyp-L-Phe) (3), cyclo(D-Pro-L-Tyr) (4), cyclo-(D-Trp-L-Leu) (5), and cyclo(L-Tyr-Gly) (6) by comparison of their spectroscopic and physical data with reported values. Compounds 1-6 were tested for antifungal and antimicrobial properties.

  19. Induction of Drought Stress Resistance by Multi-Functional PGPR Bacillus licheniformis K11 in Pepper.

    Science.gov (United States)

    Lim, Jong-Hui; Kim, Sang-Dal

    2013-06-01

    Drought stress is one of the major yield affecting factor for pepper plant. The effects of PGPRs were analyzed in relation with drought resistance. The PGPRs inoculated pepper plants tolerate the drought stress and survived as compared to non-inoculated pepper plants that died after 15 days of drought stress. Variations in protein and RNA accumulation patterns of inoculated and non-inoculated pepper plants subjected to drought conditions for 10 days were confirmed by two dimensional polyacrylamide gel electrophoresis (2D-PAGE) and differential display PCR (DD-PCR), respectively. A total of six differentially expressed stress proteins were identified in the treated pepper plants by 2D-PAGE. Among the stress proteins, specific genes of Cadhn, VA, sHSP and CaPR-10 showed more than a 1.5-fold expressed in amount in B. licheniformis K11-treated drought pepper compared to untreated drought pepper. The changes in proteins and gene expression patterns were attributed to the B. licheniformis K11. Accordingly, auxin and ACC deaminase producing PGPR B. licheniformis K11 could reduce drought stress in drought affected regions without the need for overusing agrochemicals and chemical fertilizer. These results will contribute to the development of a microbial agent for organic farming by PGPR. PMID:25288947

  20. Induction of Drought Stress Resistance by Multi-Functional PGPR Bacillus licheniformis K11 in Pepper

    Directory of Open Access Journals (Sweden)

    Jong-Hui Lim

    2013-06-01

    Full Text Available Drought stress is one of the major yield affecting factor for pepper plant. The effects of PGPRs were analyzed in relation with drought resistance. The PGPRs inoculated pepper plants tolerate the drought stress and survived as compared to non-inoculated pepper plants that died after 15 days of drought stress. Variations in protein and RNA accumulation patterns of inoculated and non-inoculated pepper plants subjected to drought conditions for 10 days were confirmed by two dimensional polyacrylamide gel electrophoresis (2D-PAGE and differential display PCR (DD-PCR, respectively. A total of six differentially expressed stress proteins were identified in the treated pepper plants by 2D-PAGE. Among the stress proteins, specific genes of Cadhn, VA, sHSP and CaPR-10 showed more than a 1.5-fold expressed in amount in B. licheniformis K11-treated drought pepper compared to untreated drought pepper. The changes in proteins and gene expression patterns were attributed to the B. licheniformis K11. Accordingly, auxin and ACC deaminase producing PGPR B. licheniformis K11 could reduce drought stress in drought affected regions without the need for overusing agrochemicals and chemical fertilizer. These results will contribute to the development of a microbial agent for organic farming by PGPR.

  1. Bacillus licheniformis proteases as high value added products from fermentation of wastewater sludge: pre-treatment of sludge to increase the performance of the process.

    Science.gov (United States)

    Drouin, M; Lai, C K; Tyagi, R D; Surampalli, R Y

    2008-01-01

    Wastewater sludge is a complex raw material that can support growth and protease production by Bacillus licheniformis. In this study, sludge was treated by different thermo-alkaline pre-treatment methods and subjected to Bacillus licheniformis fermentation in bench scale fermentors under controlled conditions. Thermo-alkaline treatment was found to be an effective pre-treatment process in order to enhance the proteolytic activity. Among the different pre-treated sludges tested, a mixture of raw and hydrolysed sludge caused an increase of 15% in the protease activity, as compared to the untreated sludge. The benefit of hydrolysis has been attributed to a better oxygen transfer due to decrease in media viscosity and to an increase in nutrient availability. Foam formation was a major concern during fermentation with hydrolysed sludge. The studies showed that addition of a chemical anti-foaming agent (polypropylene glycol) during fermentation to control foam could negatively influence the protease production by increasing the viscosity of sludge.

  2. Purification and partial characterization of bacillocin 490, a novel bacteriocin produced by a thermophilic strain of Bacillus licheniformis

    Directory of Open Access Journals (Sweden)

    De Felice Maurilio

    2002-04-01

    Full Text Available Abstract Background Applications of bacteriocins as food preservatives have been so far limited, principally because of their low antimicrobial activity in foods. Nisin is the only bacteriocin of significant use, but applications are restricted principally because of its very low activity at neutral or alkaline pH. Thus the isolation of new bacteriocins active in foods is desirable. Results We isolated a Bacillus licheniformis thermophilic strain producing a bacteriocin with some novel features, named here bacillocin 490. This bacteriocin was inactivated by pronase E and proteinase K and was active against closely related Bacillus spp. both in aerobic and in anaerobic conditions. Bactericidal activity was kept during storage at 4°C and was remarkably stable in a wide pH range. The bacteriocin was partially purified by elution after adhesion to cells of the food-isolated strain Bacillus smithii and had a rather low mass (2 KDa. Antimicrobial activity against B. smithii was observed also when this organism was grown in water buffalo milk. Conclusions Bacillocin 490 is a novel candidate as a food anti-microbial agent since it displays its activity in milk, is stable to heat treatment and during storage, is active in a wide pH range and has bactericidal activity also at high temperature. These features may allow the use of bacillocin 490 during processes performed at high temperature and as a complementary antimicrobial agent of nisin against some Bacillus spp. in non-acidic foods. The small size suggests its use on solid foods.

  3. Comparative Study on Biochemical Properties and Antioxidative Activity of Cuttlefish (Sepia officinalis) Protein Hydrolysates Produced by Alcalase and Bacillus licheniformis NH1 Proteases

    OpenAIRE

    Balti, Rafik; Bougatef, Ali; El Hadj Ali, Nedra; Ktari, Naourez; Jellouli, Kemel; Nedjar-Arroume, Naima; Dhulster, Pascal; Nasri, Moncef

    2011-01-01

    Antioxidative activities and biochemical properties of protein hydrolysates prepared from cuttlefish (Sepia officinalis) using Alcalase 2.4 L and Bacillus licheniformis NH1 proteases with different degrees of hydrolysis (DH) were determined. For the biochemical properties, hydrolysis by both enzymes increased protein solubility to above 75% over a wide pH range. The antioxidant activities of cuttlefish protein hydrolysates (CPHs) increase with increasing DH. In addition, all CPHs exhibited an...

  4. Raw agro-industrial orange peel waste as a low cost effective inducer for alkaline polygalacturonase production from Bacillus licheniformis SHG10

    OpenAIRE

    Embaby, Amira M.; Masoud, Aliaa A; Marey, Heba S.; Shaban, Nadia Z; Ghonaim, Tayssir M

    2014-01-01

    The current study underlines biotechnological valorization of the accumulated and the non-efficiently utilized agro-industrial orange peel waste to produce polygalacturonase (PGase), an industrially important enzyme with augmented demands in enzymes markets, from Bacillus licheniformis SHG10. Sequential statistical optimization of PGase production was performed through one variable at a time (OVAT) approach, Plackett-Burman (PB) and response surface methodology (RSM). The impact of introducti...

  5. Expression of the Acid Pullulanase in Bacillus licheniformis%酸性普鲁兰酶基因在地衣芽孢杆菌中的表达

    Institute of Scientific and Technical Information of China (English)

    谢银珠; 沈微; 王正祥

    2011-01-01

    According to the sequence of pullulanase gene from Bacillus deramificans ( NCBI accession number:AX203843 ), the gene encoding mature peptide of pulluanase was synthesized and designated pulA. The puIA was amplified by the method of PCR and cloned into the expression vector pHY - WZX, yielding hybrid plasmid pHY-WZX- pulA. Subsequently, pHY- WZX -pulA was introduced into Bacillus licheniformis B60608. Active pullulanase was expressed by recombiant B. licheniformis and secreted into medium. Culture condition of recombinant B. licheniformis were optimized for production of pullulanase. The optimized medium consists of 2 % cotton seed protein and 8 % of glycerol.%根据Genbank公布的来源于Bacillus deramificans的普鲁兰酶基因突变体序列(AX203843)合成普鲁兰酶成熟肽基因.将该基因插入芽孢杆菌分泌型表达载体pHY-WZX,重组质粒转化地衣芽孢杆菌B60608,重组地衣芽孢杆菌实现普鲁兰酶分泌表达.对重组菌产普鲁兰酶的条件进行优化,以含2%药媒和8%甘油的培养基最适合普鲁兰酶表达.

  6. Oxidation of polycyclic aromatic hydrocarbons using Bacillus subtilis CotA with high laccase activity and copper independence.

    Science.gov (United States)

    Zeng, Jun; Zhu, Qinghe; Wu, Yucheng; Lin, Xiangui

    2016-04-01

    Bacterial laccase CueO from Escherichia coli can oxidize polycyclic aromatic hydrocarbons (PAHs); however, its application in the remediation of PAH-contaminated soil mainly suffers from a low oxidation rate and copper dependence. It was reported that a laccase with a higher redox potential tended to have a higher oxidation rate; thus, the present study investigated the oxidation of PAHs using another bacterial laccase CotA from Bacillus subtilis with a higher redox potential (525 mV) than CueO (440 mV). Recombinant CotA was overexpressed in E. coli and partially purified, exhibiting a higher laccase-specific activity than CueO over a broad pH and temperature range. CotA exhibited moderate thermostability at high temperatures. CotA oxidized PAHs in the absence of exogenous copper. Thereby, secondary heavy metal pollution can be avoided, another advantage of CotA over CueO. Moreover, this study also evaluated some unexplained phenomena in our previous study. It was observed that the oxidation of PAHs with bacterial laccases can be promoted by copper. The partially purified bacterial laccase oxidized only two of the 15 tested PAHs, i.e., anthracene and benzo[a]pyrene, indicating the presence of natural redox mediators in crude cell extracts. Overall, the recombinant CotA oxidizes PAHs with high laccase activity and copper independence, indicating that CotA is a better candidate for the remediation of PAHs than CueO. Besides, the findings here provide a better understanding of the oxidation of PAHs using bacterial laccases. PMID:26784443

  7. Cyclodextrin glycosyltransferase from Bacillus licheniformis: optimization of production and its properties Cyclodextrina glycosyltransferase de Bacillus licheniformis: otimização da produção e suas propriedades

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Martins Bonilha

    2006-09-01

    Full Text Available Cyclodextrin glycosyltransferase (EC 2.4.1.19 is an enzyme that produces cyclodextrins from starch via an intramolecular transglycosylation reaction. An alkalophilic Bacillus strain, isolated from cassava peels, was identified as Bacillus licheniformis. CGTase production by this strain was better when potato starch was used as carbon source, followed by cassava starch and amylopectin. Glucose and amylose, on the other hand, acted as synthesis repressors. When the cultivation was supplemented with sodium ions and had the pH adjusted between 6.0 and 9.0, the microorganism maintained the growth and enzyme production capacity. This data is interesting because it contradicts the concept that alkalophilic microorganisms do not grow in this pH range. After ultrafiltration-centrifugation, one protein of 85.2 kDa with CGTase activity was isolated. This protein was identified in plates with starch and phenolphthalein. Determination of the optimum temperature showed higher activities at 25ºC and 55ºC, indicating the possible presence of more than one CGTase in the culture filtrate. Km and Vmax values were 1.77 mg/mL and 0.0263 U/mg protein, respectively, using potato starch as substrate.Ciclodextrina glicosiltransferase (EC 2.4.1.19 é uma enzima que produz ciclodextrinas a partir de amido via transglicosilação intramolecular. Uma cepa de Bacillus alcalofílico, isolada de cascas de mandioca, foi identificada como Bacillus licheniformis. A produção de CGTase por esta cepa foi melhor quando amido de batata foi utilizado como fonte de carbono, seguido por amido de mandioca e amilopectina. Glicose e amilose, por outro lado, atuaram como repressor de síntese desta enzima. Quando o cultivo foi suplementado com íons sódio e teve o pH ajustado entre 6,0 e 9,0, o microrganismo manteve a capacidade de crescimento e de produção da enzima. Este dado é interessante pois contraria o conceito de que microrganismos alcalofílicos não apresentam crescimento

  8. Purification and characterization of an alkaline protease from Bacillus licheniformis UV-9 for detergent formulations

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    2013-04-01

    Full Text Available Alkaline protease produced by mutant strain B. licheniformis UV-9 was purified and characterized for its exploitationin detergent formulation. The enzyme was purified to homogeneity by employing ammonium sulphate precipitation andsephadex G-100 gel filtration chromatography with a 36.83 fold increase in specific activity and 11% recovery. The molecularweight of the protease was found to be 36.12 kDa by SDS-PAGE. The Km and Vmax values exhibited by purified proteasewere 5 mg/ml and 61.58ìM/ml/min, respectively, using casein as substrate. The enzyme exhibited highest activity at pH 11 andtemperature 60°C. Stability studies showed that the enzyme retained higher than 80% residual activity in the pH and temperature ranges of 8 to 11 and 30 to 50°C, respectively. However, in the presence of 10 mM Ca2+ ions the enzyme tained morethan 90% of its residual activity at pH 11 and temperature 60°C. Phenyl methyl sulphonyl fluoride (PMSF completelyinhibited the enzyme activity suggesting that it was serine protease. Among metal ions, the Mg2+ and Ca2+ ions enhancedactivity up to 128% and 145%, respectively. The purified enzyme showed extreme stability towards various surfactantssuch as Tween-20, Tween- 45, Tween-65 and Triton X-45. In addition, the enzyme also exhibited more than 100% residualactivity in the presence of oxidizing agents, H2O2 and sodium perborate. These biochemical properties indicate the potentialuse of B. licheniformis UV-9 enzyme in laundry detergents.

  9. Extracellular Ribonuclease from Bacillus licheniformis (Balifase), a New Member of the N1/T1 RNase Superfamily

    Science.gov (United States)

    Nadyrova, Alsu; Ulyanova, Vera; Ilinskaya, Olga

    2016-01-01

    The N1/T1 RNase superfamily comprises enzymes with well-established antitumor effects, such as ribotoxins secreted by fungi, primarily by Aspergillus and Penicillium species, and bacterial RNase secreted by B. pumilus (binase) and B. amyloliquefaciens (barnase). RNase is regarded as an alternative to classical chemotherapeutic agents due to its selective cytotoxicity towards tumor cells. New RNase with a high degree of structural similarity with binase (73%) and barnase (74%) was isolated and purified from Bacillus licheniformis (balifase, calculated molecular weight 12421.9 Da, pI 8.91). The protein sample with enzymatic activity of 1.5 × 106 units/A280 was obtained. The physicochemical properties of balifase are similar to those of barnase. However, in terms of its gene organization and promoter activity, balifase is closer to binase. The unique feature of balifase gene organization consists in the fact that genes of RNase and its inhibitor are located in one operon. Similarly to biosynthesis of binase, balifase synthesis is induced under phosphate starvation; however, in contrast to binase, balifase does not form dimers under natural conditions. We propose that the highest stability of balifase among analyzed RNase types allows the protein to retain its structure without oligomerization. PMID:27656652

  10. Some Investigations on Protease Enzyme Production Kinetics Using Bacillus licheniformis BBRC 100053 and Effects of Inhibitors on Protease Activity

    Directory of Open Access Journals (Sweden)

    Zahra Ghobadi Nejad

    2014-01-01

    Full Text Available Due to great commercial application of protease, it is necessary to study kinetic characterization of this enzyme in order to improve design of enzymatic reactors. In this study, mathematical modeling of protease enzyme production kinetics which is derived from Bacillus licheniformis BBRC 100053 was studied (at 37°C, pH 10 after 73 h in stationary phase, and 150 rpm. The aim of the present paper was to determine the best kinetic model and kinetic parameters for production of protease and calculating Ki (inhibition constant of different inhibitors to find the most effective one. The kinetic parameters Km (Michaelis-Menten constant and Vm (maximum rate were calculated 0.626 mM and 0.0523 mM/min. According to the experimental results, using DFP (diisopropyl fluorophosphate and PMSF (phenylmethanesulfonyl fluoride as inhibitors almost 50% of the enzyme activity could be inhibited when their concentrations were 0.525 and 0.541 mM, respectively. Ki for DFP and PMSF were 0.46 and 0.56 mM, respectively. Kinetic analysis showed that the Lineweaver-Burk model was the best fitting model for protease production kinetics DFP was more effective than PMSF and both of them should be covered in the group of noncompetitive inhibitors.

  11. Levan-type fructooligosaccharide production using Bacillus licheniformis RN-01 levansucrase Y246S immobilized on chitosan beads

    Directory of Open Access Journals (Sweden)

    Surawut Sangmanee

    2016-06-01

    Full Text Available Bacillus licheniformis RN-01 levansucrase Y246S (LsRN-Y246S was immobilized by covalently linking onto chitosan, Sepabead EC-EP, and Sepabead EC-HFA, beads. The stability of immobilized LsRN-Y246S was found to be the highest with chitosan beads, retaining more than 70% activity after 13 weeks storage at 4 oC, and 68% activity after 12 hours incubation at 40°C. LsRN-Y246S immobilized on chitosan beads withstands sucrose concentrations up to 70% (w/v, retaining over 85% of its activity, significantly better than LsRN-Y246S immobilized on others supporting matrices. LsRN-Y246S immobilized on chitosan showed a 2.4 fold increase in activity in the presence of Mn2+, and gave slight protection against deactivation by of Cu2+, Zn2+, Fe3+, SDS and EDTA. A maximum of 8.36 g and an average of 7.35 g LFOS yield at least up to DP 11 can be produced from 25 g of sucrose, during five production cycles. We have demonstrated that LFOS can be effectively produced by chitosan immobilized LsRN-Y246S and purified.

  12. Overcoming hydrolysis of raw corn starch under industrial conditions with Bacillus licheniformis ATCC 9945a α-amylase.

    Science.gov (United States)

    Šokarda Slavić, Marinela; Pešić, Milja; Vujčić, Zoran; Božić, Nataša

    2016-03-01

    α-Amylase from Bacillus licheniformis ATCC 9945a (BliAmy) was proven to be very efficient in hydrolysis of granular starch below the temperature of gelatinization. By applying two-stage feeding strategy to achieve high-cell-density cultivation of Escherichia coli and extracellular production of BliAmy, total of 250.5 U/mL (i.e. 0.7 g/L) of enzyme was obtained. Thermostability of amylase was exploited to simplify purification. The hydrolysis of concentrated raw starch was optimized using response surface methodology. Regardless of raw starch concentration tested (20, 25, 30 %), BliAmy was very effective, achieving the final hydrolysis degree of 91 % for the hydrolysis of 30 % starch suspension after 24 h. The major A-type crystalline structure and amorphous domains of the starch granule were degraded at the same rates, while amylose-lipid complexes were not degraded. BliAmy presents interesting performances on highly concentrated solid starch and could be of value for starch-consuming industries while response surface methodology (RSM) could be efficiently applied for the optimization of the hydrolysis.

  13. Overcoming hydrolysis of raw corn starch under industrial conditions with Bacillus licheniformis ATCC 9945a α-amylase.

    Science.gov (United States)

    Šokarda Slavić, Marinela; Pešić, Milja; Vujčić, Zoran; Božić, Nataša

    2016-03-01

    α-Amylase from Bacillus licheniformis ATCC 9945a (BliAmy) was proven to be very efficient in hydrolysis of granular starch below the temperature of gelatinization. By applying two-stage feeding strategy to achieve high-cell-density cultivation of Escherichia coli and extracellular production of BliAmy, total of 250.5 U/mL (i.e. 0.7 g/L) of enzyme was obtained. Thermostability of amylase was exploited to simplify purification. The hydrolysis of concentrated raw starch was optimized using response surface methodology. Regardless of raw starch concentration tested (20, 25, 30 %), BliAmy was very effective, achieving the final hydrolysis degree of 91 % for the hydrolysis of 30 % starch suspension after 24 h. The major A-type crystalline structure and amorphous domains of the starch granule were degraded at the same rates, while amylose-lipid complexes were not degraded. BliAmy presents interesting performances on highly concentrated solid starch and could be of value for starch-consuming industries while response surface methodology (RSM) could be efficiently applied for the optimization of the hydrolysis. PMID:26545758

  14. Extracellular Ribonuclease from Bacillus licheniformis (Balifase, a New Member of the N1/T1 RNase Superfamily

    Directory of Open Access Journals (Sweden)

    Yulia Sokurenko

    2016-01-01

    Full Text Available The N1/T1 RNase superfamily comprises enzymes with well-established antitumor effects, such as ribotoxins secreted by fungi, primarily by Aspergillus and Penicillium species, and bacterial RNase secreted by B. pumilus (binase and B. amyloliquefaciens (barnase. RNase is regarded as an alternative to classical chemotherapeutic agents due to its selective cytotoxicity towards tumor cells. New RNase with a high degree of structural similarity with binase (73% and barnase (74% was isolated and purified from Bacillus licheniformis (balifase, calculated molecular weight 12421.9 Da, pI 8.91. The protein sample with enzymatic activity of 1.5 × 106 units/A280 was obtained. The physicochemical properties of balifase are similar to those of barnase. However, in terms of its gene organization and promoter activity, balifase is closer to binase. The unique feature of balifase gene organization consists in the fact that genes of RNase and its inhibitor are located in one operon. Similarly to biosynthesis of binase, balifase synthesis is induced under phosphate starvation; however, in contrast to binase, balifase does not form dimers under natural conditions. We propose that the highest stability of balifase among analyzed RNase types allows the protein to retain its structure without oligomerization.

  15. Effect of synbiotics between Bacillus licheniformis and yeast extract on growth, hematological and biochemical indices of the Nile tilapia (Oreochromis niloticus)

    OpenAIRE

    M.S. Hassaan; M.A. Soltan; M.M.R. Ghonemy

    2014-01-01

    Twelve practical diets were formulated to contain four levels of Bacillus licheniformis (0.0, 0.24 × 106, 0.48 × 106 and 0.96 × 106 CFU g−1), respectively, with three yeast extract levels (0%, 0.5% and 1%), respectively. Each diet was randomly assigned to duplicate groups of 50 Nile tilapia (Oreochromis niloticus) (5.99 ± 0.03 g) in 24 concrete ponds (0.5 m3 and 1.25 m depth) for 12 weeks. Increasing dietary B. licheniformis levels in O. niloticus and yeast extract levels significantly (P ...

  16. Production, Purification, and Characterization of Thermostable α-Amylase Produced by Bacillus licheniformis Isolate AI20

    Directory of Open Access Journals (Sweden)

    Yasser R. Abdel-Fattah

    2013-01-01

    Full Text Available An optimization strategy, based on statistical experimental design, is employed to enhance the production of thermostable α-amylase by a thermotolerant B. licheniformis AI20 isolate. Using one variant at time (OVAT method, starch, yeast extract, and CaCl2 were observed to influence the enzyme production significantly. Thereafter, the response surface methodology (RSM was adopted to acquire the best process conditions among the selected variables, where a three-level Box-Behnken design was employed to create a polynomial quadratic model correlating the relationship between the three variables and α-amylase activity. The optimal combination of the major constituents of media for α-amylase production was 1.0% starch, 0.75% yeast extract, and 0.02% CaCl2. The predicted optimum α-amylase activity was 384 U/mL/min, which is two folds more than the basal medium conditions. The produced α-amylase was purified through various chromatographic techniques. The estimated enzyme molecular mass was 55 kDa and the α-amylase had an optimal temperature and pH of 60–80°C and 6–7.5, respectively. Values of Vmax and Km for the purified enzyme were 454 mU/mg and 0.709 mg/mL. The α-amylase enzyme showed great stability against different solvents. Additionally, the enzyme activity was slightly inhibited by detergents, sodium dodecyl sulphate (SDS, or chelating agents such as EDTA and EGTA. On the other hand, great enzyme stability against different divalent metal ions was observed at 0.1 mM concentration, but 10 mM of Cu2+ or Zn2+ reduced the enzyme activity by 25 and 55%, respectively.

  17. Ability of a solid state fermentation technique to significantly minimize catabolic repression of. alpha. -amylase production by Bacillus licheniformis M27

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, M.V.; Lonsane, B.K. (Central Food Technological Research Inst., Mysore (India). Fermentation Technology and Bioengineering Discipline)

    1991-08-01

    The production of {alpha}-amylase by Bacillus licheniformis M27 in submerged fermentation was completely inhibited due to catabolic repression in medium containing 1% glucose. In contrast, the enzyme production in a solid state fermentation system was 19,550 units/ml extract even when the medium contained 15% glucose. The peak in enzyme titre was, however, shifted from 48 to 72 h. The ability of the solid state fermentation system to significantly overcome catabolic repression was not known earlier and is probably conferred by various physico-chemical factors and culture conditions specific to the system. (orig.).

  18. Cloning, Expression, and Purification of Xylanase Gene from Bacillus licheniformis for Use in Saccharification of Plant Biomass.

    Science.gov (United States)

    Zafar, Asma; Aftab, Muhammad Nauman; Din, Zia Ud; Aftab, Saima; Iqbal, Irfana; Shahid, Anam; Tahir, Arifa; Haq, Ikram Ul

    2016-01-01

    The xylanase gene (xynA) of Bacillus licheniformis 9945A was cloned and expressed in Escherichia coli BL21(DE3) using pET-22b(+) as an expression vector. The recombinant xylanase enzyme was purified by ammonium sulfate precipitation, followed by single-step immobilized metal ion affinity chromatography with a 57.58-fold purification having 138.2 U/mg specific activity and recovery of 70.08 %. Molecular weight of the purified xylanase, 23 kDa, was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable for up to 70 °C with a broad pH range of 4-9 pH units. The enzyme activity was increased in the presence of metal ions especially Ca(+2) and decreased in the presence of EDTA, indicating that the xylanase was a metalloenzyme. However, an addition of 1-4 % Tween 80, β-mercaptoethanol, and DTT resulted in the increase of enzyme activity by 51, 52, and 5 %, respectively. Organic solvents with a concentration of 10-40 % slightly decreased the enzyme activity. The xylanase enzyme possesses the ability of bioconversion of plant biomasses like wheat straw, rice straw, and sugarcane bagasse. Among the different tested biomasses, the highest saccharification percentage was observed with 1 % sugarcane bagasse after 72 h of incubation at 50 °C with 20 units of enzyme. The results suggest that recombinant xylanase can be used in the bioconversion of natural biomasses into simple sugars which could be further used for the production of biofuel. PMID:26438315

  19. Effects of acetic acid and arginine on pH elevation and growth of Bacillus licheniformis in an acidified cucumber juice medium.

    Science.gov (United States)

    Yang, Zhenquan; Meng, Xia; Breidt, Frederick; Dean, Lisa L; Arritt, Fletcher M

    2015-04-01

    Bacillus licheniformis has been shown to cause pH elevation in tomato products having an initial pH below 4.6 and metabiotic effects that can lead to the growth of pathogenic bacteria. Because of this, the organism poses a potential risk to acidified vegetable products; however, little is known about the growth and metabolism of this organism in these products. To clarify the mechanisms of pH change and growth of B. licheniformis in vegetable broth under acidic conditions, a cucumber juice medium representative of a noninhibitory vegetable broth was used to monitor changes in pH, cell growth, and catabolism of sugars and amino acids. For initial pH values between pH 4.1 to 6.0, pH changes resulted from both fermentation of sugar (lowering pH) and ammonia production (raising pH). An initial pH elevation occurred, with starting pH values of pH 4.1 to 4.9 under both aerobic and anaerobic conditions, and was apparently mediated by the arginine deiminase reaction of B. licheniformis. This initial pH elevation was prevented if 5 mM or greater acetic acid was present in the brine at the same pH. In laboratory media, under favorable conditions for growth, data indicated that growth of the organism was inhibited at pH 4.6 with protonated acetic acid concentrations of 10 to 20 mM, corresponding to 25 to 50 mM total acetic acid; however, growth inhibition required greater than 300 mM citric acid (10-fold excess of the amount in processed tomato products) products under similar conditions. The data indicate that growth and pH increase by B. licheniformis may be inhibited by the acetic acid present in most commercial acidified vegetable products but not by the citric acid in many tomato products.

  20. DEGRADACIÓN DEL ALDRÍN POR Bacillus licheniformis, AISLADO DEL AGUA Y SEDIMENTO DE LA CIENAGA GRANDE DE SANTA MARTA

    Directory of Open Access Journals (Sweden)

    Sánchez Díaz Granados José Gregorio

    2012-04-01

    Full Text Available Con el objeto de apoyar la utilización de los microorganismos como alternativa para la degradación de contaminantes orgánicos persistentes, se aisló la bacteria Bacillus licheniformis, a partir de muestras de sedimento y agua del complejo lagunar de la Ciénaga Grande de santa Marta (CGSM, Caribe colombiano; capaz de tolerar y degradar en condiciones aerobias el plaguicida organoclorado aldrín. Se realizó un bioensayo en el que se expuso al B. licheniformis a una concentración de 60ng/L de aldrín, durante un período de 30 días se evaluó la capacidad degradadora de la bacteria sobre el organoclorado. La identificación y aislamiento de B. licheniformis, se realizó a través de caracterización macroscópica y microscópica y pruebas bioquímicas (sistema BBL Crystal y la determinación de las concentraciones de aldrín con la técnica de cromatografía de gases. Los resultaron mostraron que B. licheniformis posee capacidad degradadora de un 24% del aldrín y que los factores como la exposición a la luz solar y la volatilización influyen considerablemente en la degradación del organoclorado con una reducción adicional de 31%.

  1. Positions of Trp codons in the leader peptide-coding region of the at operon influence anti-trap synthesis and trp operon expression in Bacillus licheniformis.

    Science.gov (United States)

    Levitin, Anastasia; Yanofsky, Charles

    2010-03-01

    Tryptophan, phenylalanine, tyrosine, and several other metabolites are all synthesized from a common precursor, chorismic acid. Since tryptophan is a product of an energetically expensive biosynthetic pathway, bacteria have developed sensing mechanisms to downregulate synthesis of the enzymes of tryptophan formation when synthesis of the amino acid is not needed. In Bacillus subtilis and some other Gram-positive bacteria, trp operon expression is regulated by two proteins, TRAP (the tryptophan-activated RNA binding protein) and AT (the anti-TRAP protein). TRAP is activated by bound tryptophan, and AT synthesis is increased upon accumulation of uncharged tRNA(Trp). Tryptophan-activated TRAP binds to trp operon leader RNA, generating a terminator structure that promotes transcription termination. AT binds to tryptophan-activated TRAP, inhibiting its RNA binding ability. In B. subtilis, AT synthesis is upregulated both transcriptionally and translationally in response to the accumulation of uncharged tRNA(Trp). In this paper, we focus on explaining the differences in organization and regulatory functions of the at operon's leader peptide-coding region, rtpLP, of B. subtilis and Bacillus licheniformis. Our objective was to correlate the greater growth sensitivity of B. licheniformis to tryptophan starvation with the spacing of the three Trp codons in its at operon leader peptide-coding region. Our findings suggest that the Trp codon location in rtpLP of B. licheniformis is designed to allow a mild charged-tRNA(Trp) deficiency to expose the Shine-Dalgarno sequence and start codon for the AT protein, leading to increased AT synthesis. PMID:20061467

  2. Characterization of an Alkali- and Halide-Resistant Laccase Expressed in E. coli: CotA from Bacillus clausii

    DEFF Research Database (Denmark)

    Brander, Søren; Mikkelsen, Jørn Dalgaard; Kepp, Kasper Planeta

    2014-01-01

    . clausii displayed higher combined salt- and alkali-resistance. This resistance is possibly caused by two substitutions (S427Q and V110E) that could repel anions to reduce anion-copper interactions at the expense of catalytic proficiency, a trade-off of potential relevance to laccase optimization.......The limitations of fungal laccases at higher pH and salt concentrations have intensified the search for new extremophilic bacterial laccases. We report the cloning, expression, and characterization of the bacterial cotA from Bacillus clausii, a supposed alkalophilic ortholog of cotA from B...

  3. Bacillus licheniformis proteases as high value added products from fermentation of wastewater sludge: pre-treatment of sludge to increase the performance of the process.

    Science.gov (United States)

    Drouin, M; Lai, C K; Tyagi, R D; Surampalli, R Y

    2008-01-01

    Wastewater sludge is a complex raw material that can support growth and protease production by Bacillus licheniformis. In this study, sludge was treated by different thermo-alkaline pre-treatment methods and subjected to Bacillus licheniformis fermentation in bench scale fermentors under controlled conditions. Thermo-alkaline treatment was found to be an effective pre-treatment process in order to enhance the proteolytic activity. Among the different pre-treated sludges tested, a mixture of raw and hydrolysed sludge caused an increase of 15% in the protease activity, as compared to the untreated sludge. The benefit of hydrolysis has been attributed to a better oxygen transfer due to decrease in media viscosity and to an increase in nutrient availability. Foam formation was a major concern during fermentation with hydrolysed sludge. The studies showed that addition of a chemical anti-foaming agent (polypropylene glycol) during fermentation to control foam could negatively influence the protease production by increasing the viscosity of sludge. PMID:18309222

  4. Production and estimation of alkaline protease by immobilized Bacillus licheniformis isolated from poultry farm soil of 24 Parganas and its reusability

    Directory of Open Access Journals (Sweden)

    Shamba Chatterjee

    2015-01-01

    Full Text Available Microbial alkaline protease has become an important industrial and commercial biotech product in the recent years and exerts major applications in food, textile, detergent, and pharmaceutical industries. By immobilization of microbes in different entrapment matrices, the enzyme produced can be more stable, pure, continuous, and can be reused which in turn modulates the enzyme production in an economical manner. There have been reports in support of calcium alginate and corn cab as excellent matrices for immobilization of Bacillus subtilis and Bacillus licheniformis, respectively. This study has been carried out using calcium alginate, κ-carrageenan, agar-agar, polyacrylamide gel, and gelatin which emphasizes not only on enzyme activity of immobilized whole cells by different entrapment matrices but also on their efficiency with respect to their reusability as first attempt. Gelatin was found to be the best matrix among all with highest enzyme activity (517 U/ml at 24 h incubation point and also showed efficiency when reused.

  5. Optimization and partial characterization of culture conditions for the production of alkaline protease from Bacillus licheniformis P003.

    Science.gov (United States)

    Sarker, Palash Kumar; Talukdar, Saimon Ahmad; Deb, Promita; Sayem, Sm Abu; Mohsina, Kaniz

    2013-01-01

    Proteolytic enzymes have occupied a pivotal position for their practical applications. The present study was carried out under shake flask conditions for the production of alkaline protease from Bacillus licheniformis P003 in basal medium containing glucose, peptone, K2HPO4, MgSO4 and Na2CO3 at pH 10. The effect of culture conditions and medium components for maximum production of alkaline protease was investigated using one factor constant at a time method along with its characterization. Maximum level of enzyme production was obtained after 48h of incubation with 2% inoculum size at 42°C, under continuous agitation at 150 rpm, in growth medium of pH 9. Highest enzyme production was obtained using 1% rice flour as carbon source and 0.8% beef extract as organic nitrogen source. Results indicated that single organic nitrogen source alone was more suitable than using in combinations and there was no significant positive effect of adding inorganic nitrogen sources in basal medium. After optimization of the parameters, enzyme production was increased about 20 fold than that of in basal medium. The crude enzyme was highly active at pH 10 and stable from pH 7-11. The enzyme showed highest activity (100%) at 50°C, and retained 78% relative activity at 70°C. Stability studies showed that the enzyme retained 75% of its initial activity after heating at 60°C for 1h. The enzyme retained about 66% and 46% of its initial activity after 28 days of storage at 4°C and room temperature (25°C) respectively. Mn(2+) and Mg(2+) increased the residual activity of the enzyme, whereas Fe(2+) moderately inhibited its residual activity. When pre-incubated with Tween-20, Tween-80, SDS and H2O2, each at 0.5% concentration, the enzyme showed increased residual activity. These characteristics may make the enzyme suitable for several industrial applications, especially in leather industries. PMID:24133650

  6. Effect of synbiotics between Bacillus licheniformis and yeast extract on growth, hematological and biochemical indices of the Nile tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    M.S. Hassaan

    2014-01-01

    Full Text Available Twelve practical diets were formulated to contain four levels of Bacillus licheniformis (0.0, 0.24 × 106, 0.48 × 106 and 0.96 × 106 CFU g−1, respectively, with three yeast extract levels (0%, 0.5% and 1%, respectively. Each diet was randomly assigned to duplicate groups of 50 Nile tilapia (Oreochromis niloticus (5.99 ± 0.03 g in 24 concrete ponds (0.5 m3 and 1.25 m depth for 12 weeks. Increasing dietary B. licheniformis levels in O. niloticus and yeast extract levels significantly (P < 0.01 improved growth performance and nutrient utilization. Supplementation of the experimental diets with, 0.48 × 106 CFU/g−1 and 1.0% yeast extract showed the best nutrient utilization compared to other treatments. All probiotic levels significantly (P < 0.01 increased chemical composition (P < 0.05 compared to the control group, while increasing yeast extract did not significantly alter chemical composition. Hematological indices, total protein and albumin of O. niloticus significantly increased while aspartate aminotransferase and alanine aminotransferase significantly (P < 0.01 decreased with an increase in B. licheniformis level up to 0.48 × 106 CFU g−1. Increasing levels of yeast extract had no effect on hematological parameters and the diets supplemented with 0.48 × 106 CFU g−1 and 0.5% yeast extract showed the highest hematological values.

  7. Molecular cloning, characterization, and dye-decolorizing ability of a temperature- and pH-stable laccase from Bacillus subtilis X1.

    Science.gov (United States)

    Guan, Zheng-Bing; Zhang, Ning; Song, Chen-Meng; Zhou, Wen; Zhou, Lin-Xi; Zhao, Hong; Xu, Cheng-Wen; Cai, Yu-Jie; Liao, Xiang-Ru

    2014-02-01

    Laccases from fungal origin are typically unstable at high temperatures and alkaline conditions. This characteristic limits their practical applications. In this study, a new bacterial strain exhibiting laccase activity was isolated from raw fennel honey samples and identified as Bacillus subtilis X1. The CotA-laccase gene was cloned from strain X1 and efficiently expressed in Escherichia coli in a biologically active form. The purified recombinant laccase demonstrated an extensive pH range for catalyzing substrates and high stability toward alkaline pH and high temperatures. No loss of laccase activity was observed at pH 9.0 after 10 days of incubation, and approximately 21 % of the initial activity was detected after 10 h at 80 °C. Two anthraquinonic dyes (reactive blue 4 and reactive yellow brown) and two azo dyes (reactive red 11 and reactive brilliant orange) could be partially decolorized by purified laccase in the absence of a mediator. The decolorization process was efficiently promoted when methylsyringate was present, with more than 90 % of color removal occurring in 3 h at pH 7.0 or 9.0. These unusual properties indicated a high potential of the novel CotA-laccase for industrial applications. PMID:24218183

  8. Raw agro-industrial orange peel waste as a low cost effective inducer for alkaline polygalacturonase production from Bacillus licheniformis SHG10.

    Science.gov (United States)

    Embaby, Amira M; Masoud, Aliaa A; Marey, Heba S; Shaban, Nadia Z; Ghonaim, Tayssir M

    2014-01-01

    The current study underlines biotechnological valorization of the accumulated and the non-efficiently utilized agro-industrial orange peel waste to produce polygalacturonase (PGase), an industrially important enzyme with augmented demands in enzymes markets, from Bacillus licheniformis SHG10. Sequential statistical optimization of PGase production was performed through one variable at a time (OVAT) approach, Plackett-Burman (PB) and response surface methodology (RSM). The impact of introduction of six raw agro-industrial wastes (orange, lemon, banana, pomegranate, artichoke peel wastes and wheat bran) and other synthetic carbon sources separately into the fermentation broth on PGase productivity was studied through OVAT approach. Orange peel waste as sole raw carbon source in basal medium proved to be the best PGase inducer. It promoted PGase productivity with relative specific activity of 166% comparable with the effect imposed by synthetic citrus pectin as a reference inducer. Three key determinants (orange peel waste, pH of the production medium and incubation temperature) had RSM optimal levels of 1.76% (w/v), 8.0 and 37.8°C, respectively along with maximal PGase level (2.69 μg galacturonic acid. min(-1). mg(-1)) within 48 hrs. Moreover, SHG10 PGase exhibited activity over a wide range of pH (3-11) and an optimal activity at 50°C. Data greatly encourage pilot scale PGase production from B. licheniformis SHG10. PMID:25077057

  9. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4.

    Directory of Open Access Journals (Sweden)

    Sonica Sondhi

    Full Text Available A novel extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4 (SN4LAC was purified to homogeneity. The laccase was a monomeric protein of molecular weight 32 KDa. UV-visible spectrum and peptide mass fingerprinting results showed that SN4LAC is a multicopper oxidase. Laccase was active in broad range of phenolic and non-phenolic substrates. Catalytic efficiency (kcat/Km showed that 2, 6-dimethoxyphenol was most efficiently oxidized by the enzyme. The enzyme was inhibited by conventional inhibitors of laccase like sodium azide, cysteine, dithiothreitol and β-mercaptoethanol. SN4LAC was found to be highly thermostable, having temperature optimum at 85°C and could retain more than 80% activity at 70°C for 24 h. The optimum pH of activity for 2, 6-dimethoxyphenol, 2, 2'-azino bis[3-ethylbenzthiazoline-6-sulfonate], syringaldazine and guaiacol was 8.0, 5.5, 6.5 and 8.0 respectively. Enzyme was alkali-stable as it retained more than 75% activity at pH 9.0 for 24 h. Activity of the enzyme was significantly enhanced by Cu2+, Co2+, SDS and CTAB, while it was stable in the presence of halides, most of the other metal ions and surfactants. The extracellular nature and stability of SN4LAC in extreme conditions such as high temperature, pH, heavy metals, halides and detergents makes it a highly suitable candidate for biotechnological and industrial applications.

  10. Evaluación de la nisina como sustancia inactivadora de Bacillus licheniformis en el extracto líquido de café

    Directory of Open Access Journals (Sweden)

    Leidy Sierra L.

    2013-10-01

    Full Text Available Objetivo. Evaluar el efecto de la nisina en la inactivación de Bacillus licheniformis en el extracto líquido de café. Materiales y métodos. Se evaluó la acción de la nisina sobre Bacillus licheniformis en extractos líquidos de café variando su concentración, tiempo de incubación, concentración de solidos solubles (grados Brix y la concentración bacteriana contaminante. Resultados. Se observó que la concentración de nisina, para obtener un efecto inhibitorio del 55%, sin alterar las propiedades fisicoquímicas y sensoriales del producto, es 500 UI/ml que corresponden a 12.5 mg/L. Además, se determinó que la concentración de nisina 1000 UI/ml puede actuar satisfactoriamente en poblaciones bacterianas menores de 5x104 UFC/ml en un período de 48 horas. Con relación al efecto de concentración de sólidos solubles en la inactivación del microorganismo, no se encontraron diferencias significativas para un rango entre 15 y 45°Brix. Conclusiones. A partir de este estudio se puede concluir que la nisina puede ser usada como preservante del extracto de líquido de café sin afectar sensorialmente el producto, teniendo en cuenta la concentración bacteriana contaminante y el tiempo de incubación.

  11. Optimization of Culture Medium and Fermentation Conditions of Bacillus licheniformis M109%地衣芽孢杆菌M109高密度发酵条件的优化

    Institute of Scientific and Technical Information of China (English)

    付维来; 杜建涛; 刘鹏; 王安如

    2012-01-01

    Optimization of Bacillus licheniformis M109 culture medium in this research based on the orthogonal test, carbon source, nitrogen source and carbon nitrogen ratio were determine as necessary for fermentation medium of Bacillus licheniformis M109. In order to enhance Bacillus licheniformis M109 fermentation level, growth curve of Bacillus licheniformis M109 and trend of Ph, dissolved oxygen(DO) were studied. Though studying the fermentation process of growth, the optimal Ph and inoculation amount were determined. The results found that DO was a key factor that limited the growth of Bacillus licheniformis M109. It was studied regulation rotate speed of stirring to improve dissolved oxygen and the fermentation density in culture medium. Another study found that Bacillus licheniformis M109 fermentation level could be improved by adding fresh medium. Through optimization of culture medium and conditions, the fermentation level of Bacillus licheniformis M109 incneased to 1. 2×1010 CFU/Ml from the initial 1. 0×109 CFU/Ml and the rate of bacillus arrived to 88%.%试验旨在筛选一株地衣芽孢杆菌M109(Bacillus licheniformis M109)进行培养基和发酵条件的优化.采用单因素试验方法筛选出最佳碳源和氮源的培养基,并利用正交试验方法确定其最佳的碳氮比.为了继续提高地衣芽孢杆菌M109的发酵水平,研究其在发酵过程中的生长曲线、pH和溶氧(DO)水平的变化曲线,通过对发酵过程中生长参数的测定,优化了地衣芽孢杆菌M109最佳的接种量和最适pH.结果发现,溶氧限制是地衣芽孢杆菌M109生长的关键因素;在限定通风量的条件下,通过调节搅拌转速的方法来提高培养基中的溶氧水平,提高发酵密度;通过流加培养基的方法也能提高地衣芽孢杆菌M109的发酵水平.因此,通过对培养基和发酵条件的优化,使地衣芽孢杆菌M109的发酵水平由最初的1.0×109 CFU/mL提高到1.2×1010CFU/mL,芽孢形成率为88%.

  12. Anticorrosion/antifouling properties of bacterial spore-loaded sol-gel type coating for mild steel in saline marine condition: a case of thermophilic strain of Bacillus licheniformis

    OpenAIRE

    Eduok, Ubong; Suleiman, Rami; Gittens, Jeanette; Khaled, Mazen; Smith, Thomas J.; Akid, Robert; El Ali, Bassam; Khalil, Amjad

    2015-01-01

    This work reports the performance of a sol-gel type coating encapsulated with biofilm of inoculums of protective thermophilic strain of Bacillus licheniformis endospores isolated from the Gazan hot springs- Saudi Arabia for the inhibition of marine fouling and corrosion protection of S36-grade mild steel in 3.5 wt% NaCl medium. In order to improve its anticorrosion properties, the hybrid sol-gel coating is further doped with zinc molybdate (MOLY) and zinc aluminum polyphosphate (Z...

  13. 地衣芽孢杆菌1.934培养条件的优化%Optimization of Culture Condition for Bacillus licheniformis 1.934 Production

    Institute of Scientific and Technical Information of China (English)

    于淑玉; 张光明; 万甜

    2012-01-01

    Bacillus licheniformis is very important as a soil microorganism to increase the availability and uptake of mineral nutrients for plants. In this study, the effect of culture condition on Bacillus licheniformis 1. 934 production was investigated. On the basis of single factor experiments, a central composite design was used to optimize the prime factors. The results were analyzed by response surface. Analysis results show that the optimal culture condition is as follows; temperature 35℃,flask shaking speed 150r/min,amount of inoculation 3. 6%,pH 7. 5. Bacillus licheniformis 1. 934 grew well under this condition, incubated for 20h,the highest amylase activity(12. 7U /mL ) can be obtained;incubated for 27h,the highest cell number can be gotten.%研究了生物肥功能菌——地衣芽胞杆菌1.934 (Bacillus licheniformis)培养条件对菌体生长量的影响.采用了单因素实验和响应曲面法(RSM)设计实验和分析数据.获得了菌体摇瓶培养的最适条件:培养温度35℃,转速为150r/min,接种量为3.6%,pH为7.5.地衣芽孢杆菌在最适条件下培养约20h,淀粉酶的酶活最高,活力可达12.7U/mL培养液.培养约27h得到最大的菌体收益.

  14. Characterization of a salt-tolerant aminopeptidase from marine Bacillus licheniformis SWJS33 that improves hydrolysis and debittering efficiency for soy protein isolate.

    Science.gov (United States)

    Lei, Fenfen; Zhao, Qiangzhong; Sun-Waterhouse, Dongxiao; Zhao, Mouming

    2017-01-01

    An aminopeptidase was isolated from the marine Bacillus licheniformis SWJS33 (BLAP) and purified. According to the tandem mass spectrometry, the enzyme displayed 11% amino acid identity with the aminopeptidase from Bacillus (gi|496687392). BLAP exhibited maximum activity at 60°C and pH 8.0-8.5 and had a molecular mass of 100kDa. The presence of NaCl enabled 50% improvement of enzyme activity with 10-15% NaCl being the best. The observed inactivation by EDTA and bestatin and activation by Co(2+) and Ag(+) indicated that the obtained enzyme was a metalloaminopeptidase. Such an aminopeptidase could further improve the hydrolysis degree of soy protein isolate hydrolysates catalyzed by papain, Alcalase 2.4L or Flavourzyme 500MG from 8.5%, 9.5% or 14.4-18.8%, 18.7% or 20.1%, respectively, while decreasing the bitter intensity score of the SPI hydrolysates catalyzed by Alcalase 2.4L from 3.6 to 0.4. PMID:27507484

  15. Study of HMG-CoA Reductase Inhibition Activity of the Hydrolyzed Product of Snakehead Fish (Channa striata) Skin Collagen with 50 kDa Collagenase from Bacillus licheniformis F11.4.

    Science.gov (United States)

    Virginia, Agnes; Rachmawati, Heni; Riani, Catur; Retnoningrum, Debbie S

    2016-01-01

    Bioactive peptides produced from enzymatic hydrolysis fibrous protein have been proven to have several biological activities. Previous study showed that the hydrolysis product of snakehead fish skin collagen with 26 kDa collagenase from Bacillus licheniformis F11.4 showed HMG-CoA (HMGR) inhibition activity. The aim of this research was to determine the ability of the hydrolysis product produced from snakehead fish skin collagen hydrolysed by 50 kDa collagenase from B. licheniformis F11.4 in inhibiting HMGR activity. Snakehead fish skin collagen was extracted using an acid method and collagenase was produced from B. licheniformis F11.4 using half-strength Luria Bertani (LB) medium containing 5% collagen. Crude collagenase was concentrated and fractionated using the DEAE Sephadex A-25 column eluted with increasing gradient concentrations of NaCl. Collagen, collagenase, and fractions were analyzed using SDS-PAGE and collagenolytic activity was analyzed by the zymography method. Collagenase with 50 kDa molecular weight presented in fraction one was used to hydrolyze the collagen. The reaction was done in 18 hours at 50°C. The hydrolysis product using 3.51 μg collagen and 9 ng collagenase showed 25.8% inhibition activity against pravastatin. This work shows for the first time that the hydrolysis product of snakehead fish skin collagen and 50 kDa collagenase from B. licheniformis F11.4 has potential as an anticholesterol agent. PMID:27110500

  16. Study of HMG-CoA Reductase Inhibition Activity of the Hydrolyzed Product of Snakehead Fish (Channa striata) Skin Collagen with 50 kDa Collagenase from Bacillus licheniformis F11.4.

    Science.gov (United States)

    Virginia, Agnes; Rachmawati, Heni; Riani, Catur; Retnoningrum, Debbie S

    2016-01-01

    Bioactive peptides produced from enzymatic hydrolysis fibrous protein have been proven to have several biological activities. Previous study showed that the hydrolysis product of snakehead fish skin collagen with 26 kDa collagenase from Bacillus licheniformis F11.4 showed HMG-CoA (HMGR) inhibition activity. The aim of this research was to determine the ability of the hydrolysis product produced from snakehead fish skin collagen hydrolysed by 50 kDa collagenase from B. licheniformis F11.4 in inhibiting HMGR activity. Snakehead fish skin collagen was extracted using an acid method and collagenase was produced from B. licheniformis F11.4 using half-strength Luria Bertani (LB) medium containing 5% collagen. Crude collagenase was concentrated and fractionated using the DEAE Sephadex A-25 column eluted with increasing gradient concentrations of NaCl. Collagen, collagenase, and fractions were analyzed using SDS-PAGE and collagenolytic activity was analyzed by the zymography method. Collagenase with 50 kDa molecular weight presented in fraction one was used to hydrolyze the collagen. The reaction was done in 18 hours at 50°C. The hydrolysis product using 3.51 μg collagen and 9 ng collagenase showed 25.8% inhibition activity against pravastatin. This work shows for the first time that the hydrolysis product of snakehead fish skin collagen and 50 kDa collagenase from B. licheniformis F11.4 has potential as an anticholesterol agent.

  17. Solid State Fermentation of a Raw Starch Digesting Alkaline Alpha-Amylase from Bacillus licheniformis RT7PE1 and Its Characteristics

    Directory of Open Access Journals (Sweden)

    Romana Tabassum

    2014-01-01

    Full Text Available The thermodynamic and kinetic properties of solids state raw starch digesting alpha amylase from newly isolated Bacillus licheniformis RT7PE1 strain were studied. The kinetic values Qp, Yp/s, Yp/X, and qp were proved to be best with 15% wheat bran. The molecular weight of purified enzyme was 112 kDa. The apparent Km and Vmax values for starch were 3.4 mg mL−1 and 19.5 IU mg−1 protein, respectively. The optimum temperature and pH for α-amylase were 55°C, 9.8. The half-life of enzyme at 95°C was 17h. The activation and denaturation activation energies were 45.2 and 41.2 kJ mol−1, respectively. Both enthalpies (ΔH∗ and entropies of activation (ΔS∗ for denaturation of α-amylase were lower than those reported for other thermostable α-amylases.

  18. Comparative Study on Biochemical Properties and Antioxidative Activity of Cuttlefish (Sepia officinalis Protein Hydrolysates Produced by Alcalase and Bacillus licheniformis NH1 Proteases

    Directory of Open Access Journals (Sweden)

    Rafik Balti

    2011-01-01

    Full Text Available Antioxidative activities and biochemical properties of protein hydrolysates prepared from cuttlefish (Sepia officinalis using Alcalase 2.4 L and Bacillus licheniformis NH1 proteases with different degrees of hydrolysis (DH were determined. For the biochemical properties, hydrolysis by both enzymes increased protein solubility to above 75% over a wide pH range. The antioxidant activities of cuttlefish protein hydrolysates (CPHs increase with increasing DH. In addition, all CPHs exhibited antioxidative activity in a concentration-dependent manner. NH1-CPHs generally showed greater antioxidative activity than Alcalase protein hydrolysates (P<0.05 as indicated by the higher 1,1-diphenyl-1-picryhydrazyl (DPPH radical scavenging activity and ferrous chelating activity. Both Alcalase and NH1 protein hydrolysates were able to retard lipid peroxidation and β-carotene-linoleic acid oxidation. Alcalase-CPH (DH = 12.5% and NH1-CPH (DH = 15% contained 75.36% and 80.11% protein, respectively, with histidine and arginine as the major amino acids, followed by glutamic acid/glutamine, serine, lysine, and leucine. In addition, CPHs have a high percentage of essential amino acids made up 48.85% and 50.04%. Cuttlefish muscle protein hydrolysates had a high nutritional value and could be used as supplement to poorly balanced dietary proteins.

  19. Isolation, Characterization and investing the Industrial Applications of Thermostable and Solvent Tolerant Serine Protease from Hot Spring Isolated Thermophililic Bacillus licheniformis U1

    Directory of Open Access Journals (Sweden)

    Pravin Dudhagara

    2014-03-01

    Full Text Available Protease is the largest selling enzyme in the world due to its various applications in the making of detergent, food and leather, meat tenderisation and pharmaceutical industries. The aim of the study is to isolate and identify thermophilic Bacillus licheniformis U1 strains for thermostable protease production. The partial purified enzyme was characterized under different conditions using Anson-Hagihara’s method. Casein as a substrate in the concentration of 0.6 % w/v optimum for enzyme activity and tolerant up to 2.0% casein concentration. An optimum enzyme activity was reported at pH 7 and decreased with increasing in pH, while temperature optimum was found at 50 °C. The enzyme was stable at 40 °C to 50 °C for half an hour and nearly 50% residual activity was indicated at 60 °C. NaCl was not required for catalysis. Stability of enzymes in the presence of various organic solvents and different detergents was remarkable. The enzyme was stable up to 3 days into various solvents and slowly denatured with prolonged incubation. The result of the washing performance with detergent was clearly indicated. Moreover the removal of blood stains and dehairing in goat skin suggests the crucial application in the commercial production at large scale.

  20. 根际接种芽孢杆菌对辣椒和黄瓜壮苗形成的作用%Effects of Rhizosphere Inoculation with Bacillus licheniformis and Bacillus polymyxa on Pepper and Cucumber Seedling Development

    Institute of Scientific and Technical Information of China (English)

    常冬梅; 张志刚; 尚庆茂

    2010-01-01

    将地衣芽孢杆菌(Bacillus licheniformis)、多粘芽孢杆菌(Bacillus polymyxa)悬浮液注射接种至辣椒、黄瓜幼苗根际,分析对幼苗生长发育及其相关生理指标的影响.结果表明:辣椒苗期根际接种芽孢杆菌后,显著提高了幼苗净光合速率和根系活力,促进了矿质元素的吸收积累,增产幅度29.3%~33.3%,多粘芽孢杆菌的接种效果明显优于地衣芽孢杆菌;黄瓜幼苗根际接种芽孢杆菌后,幼苗根系活力降低,进而抑制了矿质元素吸收和产量形成.

  1. Construcción de un vector para la integración cromosomal de un gen de fitasa de Bacillus licheniformis

    Directory of Open Access Journals (Sweden)

    Maria Teresa Fernández

    2011-07-01

    Full Text Available Las fitasas son una clase especial de fosfatasas que catalizan la hidrólisis secuencial del fitato. La incapacidad de las plantas para utilizar el fósforo a partir de los fitatos del suelo es debido a la baja actividad de fitasas en sus raíces. Los microorganismos del suelo juegan un importante papel en los procesos que afectan la trans- formación de los compuestos fosforados. Muchos de ellos pueden solubilizar el fósforo a partir de los fitatos, mediante la liberación de fitasas. Este proceso permite la movilización del fósforo hacia las plantas y un mejor aprovechamiento de este nutriente. Sin embargo, muchas bacterias carecen de los genes que codifican para estas enzimas, lo que disminuye la disponibilidad de este elemento en el suelo. Una alternativa es mejorar las rizobacterias en cuanto a su capacidad de solubilizar los fitatos del suelo, mediante la transformación genética. En este trabajo el gen phyL de Bacillus licheniformis fue clonado en el vector de liberación suicida pJMT6 (vector derivado del sistema pUT/mini Tn5. La construcción recombinante que contiene un marcador de selección no antibiótico, fue transformada en Escherichia coli CC118λpir. Un clon transformante (F16 fue seleccionado y posteriormente caracterizado. Estos resultados constituyen un primer paso para desarrollar rizobacterias promotoras del crecimiento mejoradas en cuanto a la producción de actividad fitasa recombinante, como alternativa para reducir la contaminación ambiental y mejorar la productividad de los cultivos.

  2. GH53 Endo-Beta-1,4-Galactanase from a Newly Isolated Bacillus licheniformis CBMAI 1609 as an Enzymatic Cocktail Supplement for Biomass Saccharification.

    Science.gov (United States)

    de Lima, Evandro Antonio; Machado, Carla Botelho; Zanphorlin, Letícia Maria; Ward, Richard John; Sato, Hélia Harumi; Ruller, Roberto

    2016-06-01

    Galactanases (endo-β-1,4-galactanases-EC 3.2.1.89) catalyze the hydrolysis of β-1,4 galactosidic bonds in arabinogalactan and galactan side chains found in type I rhamnogalacturan. The aim of this work was to understand the catalytic function, biophysical properties, and use of a recombinant GH53 endo-beta-1,4-galactanase for commercial cocktail supplementation. The nucleotide sequence of the endo-β-1,4-galactanase from Bacillus licheniformis CBMAI 1609 (Bl1609Gal) was cloned and expressed in Escherichia coli, and the biochemical and biophysical properties of the enzyme were characterized. The optimum pH range and temperature of Bl1609Gal activity were 6.5-8 and 40 °C, respectively. Furthermore, Bl1609Gal showed remarkable pH stability, retaining more than 75 % activity even after 24 h of incubation at pH 4-10. The enzyme was thermostable, retaining nearly 100 % activity after 1-h incubation at pH 7.0 at 25-45 °C. The enzymatic efficiency (K cat /K m ) against potato galactan under optimum conditions was 241.2 s(-1) mg(-1) mL. Capillary zone electrophoresis demonstrated that the pattern of galactan hydrolysis by Bl1609Gal was consistent with that of endogalactanases. Supplementation of the commercial cocktail ACCELLERASE(®)1500 with recombinant Bl1609Gal increased hydrolysis of pretreated sugarcane bagasse by 25 %. PMID:26879978

  3. Optimization of the growth conditions for amylase production by bacillus licheniformis 208 isolated from local hotsprings of karachi

    International Nuclear Information System (INIS)

    Studies on the optimum conditions for the production of extracellular amylase were carried out with a newly isolated strain of Bacillus 208 from the hotsprings in Karachi. The optimum temperature, initial medium pH and incubation period for amylase production were 50 degree C, 7.0 and 24 hrs respectively. Furthermore, cells when grown in the complex media showed high amylase production compared to the minimal medium. Effect of different carbon sources revealed that soluble starch (1%) increased the amylase yield significantly. Peptone (as nitrogen source) gave higher yield as compared to other nitrogen sources tested. Under optimized conditions, the organism entered the stationary phase after 12 hrs and amylase production was observed to be maximum at 24th hrs of cultivation. Enzyme production regulation is influenced by catabolite repression. Reduction in enzyme production was observed in the presence of EDTA while addition of tween 20 and CaCl/sub 2/ helped to enhance the enzyme production. (author)

  4. Predicción de la transferencia de masa en cultivos no-newtonianos de Bacillus licheniformis

    Directory of Open Access Journals (Sweden)

    Mariela Rizo-Porro

    2015-01-01

    Full Text Available El objetivo de este trabajo es desarrollar un modelocapaz de predecir el valor del coeficiente volumétrico detransferencia de oxígeno (kLa en cultivos deBacilluslicheniformis,en los cuales se utiliza la sacarosa comosustrato limitante. El proceso se realiza en cuatro eta-pas: la selección de expresiones que correlacionen el kLacon la viscosidad del fluido; la determinación de lascaracterísticas reológicas de un cultivo de esta bacteriacon sobreexpresión de un exopolisacárido (EPS; ladeterminación experimental del kLa en diferentes con-diciones de viscosidad, velocidad de agitación y flujo deaire y por último; la selección de la correlación quemejor representa los resultados experimentales. Comoresultado del trabajo desarrollado se obtuvo que elmodelo de Oswald de Waele representa el comporta-miento pseudoplástico de un cultivo deBacillus licheni-formisen las condiciones estudiadas y se identificaronlos coeficientes de la correlación propuesta la cualrepresenta exitosamente el 99,45 % de los datos experi-mentales. Los valores de kLa experimental fueron obte-nidos entre 0,0056 y 0,981 s-1.

  5. Mutante espontâneo de Bacillus licheniformis bloqueado no estágio I da esporogênese, possuidor de metabolismo respiratório aumentado A spontaneous mutant of Bacillus licheniformis with increased respiratory metabolism, blocked in stage I of sporogenesis

    Directory of Open Access Journals (Sweden)

    Leon Rabinovitch

    1976-01-01

    Full Text Available Um mutante espontâneo de Bacillus licheniformis, derivado da amostra esporogênica 2390, foi estudado com vistas ao reconhecimento do estágio da evolução para esporo em que o mesmo se encontrava bloqueado. Eletronmicrografias sugeriram que as células desse mutante, colhidas durante a fase estacionária da curva de crescimento, não ultrapassaram o estágio I da esporogênese (i.e., permaneceram com o nucleóide disposto como filamento axial, enquanto a produção de antibiótico (bacitracina e a atividade proteolítica foram francamente detectadas. A linhagem mutante, designada Spolp-72, nas condições experimentais empregadas não biossintetizou esporos por estarvação em solução de sais inorgãnicos, mas evidenciou uma frequência de esporulação menor que 10*-7, após crescimento vegetativo em meio de cultura favorável á esporogênese. A amostra Spolp-72 externa um crescimento vegetativo inicial restringido, quando comparada com a amostra 2390, enquanto que, inversamente, sua atividade respiratória é significativamente mais elevada. Este último comportamento foi confirmado no presente trabalho, contrastando, nesse particular, com outros tipos de mutantes de esporulação já descritos, os quais se encontram bloqueados nos primeiros estágios da via esporogenética.A spontaneous mutant strain derived from the sporogenic B. licheniformis 2390 was studied with a view to determining at what developmental stage toward sporulation it was blocked. Electronmicrographs suggested that the mutant cells harvested during the stationary phase of the growth curve were unable to go beyond stage I of sporogenesis (i. e., their nucleoid remained as an axial filament. On the other hand, antibiotic production (bacitracin and proteolytic activity were easily detected. Under the present experimental conditions the mutant strain, named Spolp-72, did not synthesize spores by starvation in a solution of inorganic salts, in contrast with the parental

  6. Synthesis and Physicochemical Characterization of D-Tagatose-1-phosphate: The Substrate of the Tagatose-1-Phosphate Kinase TagK in the PTS-mediated D-Tagatose Catabolic Pathway of Bacillus licheniformis

    Science.gov (United States)

    Van der Heiden, Edwige; Delmarcelle, Michaël; Simon, Patricia; Counson, Melody; Galleni, Moreno; Freedberg, Darón I.; Thompson, John; Joris, Bernard; Battistel, Marcos D.

    2015-01-01

    We report the first enzymatic synthesis of D-tagatose-1-phosphate (Tag-1P) by the multi-component PEP-dependent:tag-PTS present in tagatose-grown cells of Klebsiella pneumoniae. Physicochemical characterization by 31P and 1H NMR spectroscopy reveals that, in solution, this derivative is primarily in the pyranose form. Tag-1P was used to characterize the putative tagatose-1-phosphate kinase (TagK) of the Bacillus licheniformis PTS-mediated D-Tagatose catabolic Pathway (Bli-TagP). For this purpose, a soluble protein fusion was obtained with the 6 His-tagged trigger factor (TFHis6) of Escherichia coli. The active fusion enzyme was named TagK-TFHis6. Tag-1P and D-fructose-1-phosphate (Fru-1P) are substrates for the TagK-TFHis6 enzyme, whereas the isomeric derivatives D-tagatose-6-phosphate (Tag-6P) and D-fructose-6-phosphate (Fru-6P) are inhibitors. Studies of catalytic efficiency (kcat/Km) reveal that the enzyme specificity is markedly in favor of Tag-1P as substrate. Importantly, we show in vivo that the transfer of the phosphate moiety from PEP to the B. licheniformis tagatose-specific enzyme II (EIITag) in E.coli is inefficient. The capability of the PTS general cytoplasmic components of B. subtilis, HPr and EI, to restore the phosphate transfer is demonstrated. PMID:26159072

  7. 高湿度对地衣芽胞杆菌胶囊质量的影响%Influence of High-Humidity on the Quality of the Bacillus lichenifor-mis Capsules

    Institute of Scientific and Technical Information of China (English)

    王丽华

    2014-01-01

    目的:探讨环境湿度对微生态制剂质量的影响。方法:以微生态制剂地衣芽胞杆菌胶囊为研究对象,在模拟的高湿度环境中研究了其干燥失重、活菌数和崩解时限的变化。结果:在相对湿度为80%的环境中放置48 h后,药品的活菌数、干燥失重、崩解时限均有显著变化。结论:高湿对益生菌制剂质量有很大影响,该类制剂应严格遵循药品贮存和使用的条件,并注意密闭包装。%Objective: To study the influence of environment humidity to the probiotics. Methods: Taking Bacil-lus licheniformis capsule as investigated subject, the changes of drying loss, survival number and disintegration time limit under a model high-humidity condition were observed. Results: Compared with normal conditions, the live bacteria number of the Bacillus licheniformis capsules were reduced significantly after 48 h on 80% humidity environment. Conclusion: The high humidity has significant impact on probiotic product. So probiotic product should be instrict accordance with the storage and use condition, and keep in tight packs.

  8. Degradation of dyes using crude extract and a thermostable and pH-stable laccase isolated from Pleurotus nebrodensis.

    Science.gov (United States)

    Yuan, Xianghe; Tian, Guoting; Zhao, Yongchang; Zhao, Liyan; Wang, Hexiang; Ng, Tzi Bun

    2016-08-01

    Three laccase isoenzymes (Lac1, Lac2 and Lac3) have been purified to homogeneity from Pleurotus nebrodensis in our previous study. Lac2 was shown to be the dominant isoform, capable of oxidizing the majority of laccase substrates and manifesting good thermostability and pH stability. Hence, Lac2 was selected to decolourize structurally different dyes and the colour removal efficiencies of Lac2 and the crude extract of P. nebrodensis were compared. By monitoring the λmax of the reaction system during the course of biotransformation, clear hypsochromic shifts were observed for most of the dyes examined, illustrating that at least one peak disappeared as a result of laccase treatment. In general, Lac2 was more efficient within a short time (1 h) and the crude extract, in general, could achieve similar or even higher efficiency when the duration of treatment was extended to 24 h. Malachite green (MG) was chosen to study the detoxifying potential of Lac2, because of the relatively simple structure and high toxicity of the dye towards microorganisms. The toxicity of MG towards both bacteria (Bacillus subtilis, Bacillus licheniformis, Pseudomonas fluorescens and Escherichia coli) and fungi (Fusarium graminearum and Trichoderma harzianum) was dramatically decreased and the potential mechanism was estimated by GC-MS as to remove four methyl groups firstly and the two newly formed amine groups would be degraded or polymerized further. The present study facilitates an understanding of the application of P. nebrodensis laccases and furnishes evidence for the safety of their utilization in the treatment of wastewater emanating from textile industries. PMID:27354563

  9. 地衣芽孢杆菌产Levan果聚糖发酵条件的优化%Optimization of Fermentation Conditions for Production of Levan by Bacillus licheniformis 8-37-0-1

    Institute of Scientific and Technical Information of China (English)

    陆娟; 肖敏; 卢丽丽

    2011-01-01

    通过单因素试验(培养基用水、碳源、氮源、培养温度和培养基初始pH值)和正交试验对地农芽孢杆菌(Bacillus licheniformis)8-37-0-1发酵产生Levan果聚糖的培养基组成及培养条件进行优化,采用苯酚-硫酸法测定多糖含量.结果表明:以蔗糖100g/L、牛肉膏1.0g/L、酵母粉0.6g/L、K2HPO4 3.0g/L、KH2PO4 3.0g/L、NaCl 1.0g/L、MgSO4·7H2O 0.2g/L、FeSO4·7H2O 0.001g/L,自来水配制,培养基初始pH5.0,30℃培养8-37-0-1菌株24h,Levan果聚糖产量达到最高值41.7g/L,约是未优化时的5.0倍.

  10. In silico modeling of the type 2 IDI enzymes of Bacillus licheniformis, Pseudomonas stutzeri, Streptococcus pyogenes, and Staphylococcus aureus for virtual screening of potential inhibitors of this therapeutic target.

    Science.gov (United States)

    Torktaz, Ibrahim; Shahbani Zahiri, Hossein; Akbari Noghabi, Kambiz

    2013-02-01

    Isopentenyl diphosphate isomerase is an essential enzyme in those living organisms such as pathogenic strains of Streptococcus and Staphylococcus genera which rely on the Mevalonate pathway for the production of isoprenoids. The pathogens contain type 2 IDI in contrast to human that contains type 1 IDI. Therefore, the type 2 IDI may be a potential target for the therapy of some infectious diseases. In the current study, a virtual screening by docking was performed among 2000 chemicals from CoCoCo library to find a specific inhibitor for type 2 IDIs. To this end, the structures of the type 2 IDIs of Bacillus licheniformis, Pseudomonas stutzeri, Streptococcus pyogenes, and Staphylococcus aureus were molded using comparative modeling and Hidden Markov Model (HMM) based prediction. The predicted models were evaluated based on Q-mean and Prosa score. Molegro Virtual Docker with MolDock scoring function was used for measuring the binding affinity of the found inhibitor to the active site of the models. Also the inhibition effect of the compound was virtually tested on the crystallography-solved structures of the Sulfolobus shibatae and Thermus thermophilus type 2 IDIs as well as the Escherichia coli type 1 IDI. Finally, the inhibition effect of the found inhibitor was virtually tested on the human type 1 IDI. Interestingly, the results suggest that the inhibitor efficiently binds to and inhibits the bacterial IDIs especially the type 2 IDIs of pathogens while it is not inhibiting the human IDI. PMID:23280415

  11. Effect analysis of Bacillus subtilis two (Live) enteric-coated capsules combined with Bacillus licheniformis capsule in the treatment of antibiotic associated diarrhea%枯草杆菌二联活菌肠溶胶囊联合地衣芽胞杆菌活菌胶囊治疗老年抗生素相关性腹泻的效果分析

    Institute of Scientific and Technical Information of China (English)

    袁宏伟

    2015-01-01

    Objective To explore the clinical effect of Bacillus subtilis two (Live) enteric-coated capsules combined with Bacillus licheniformis capsule in the treatment of antibiotic associated diarrhea. Methods 120 patients with an-tibiotic associated diarrhea in our hospital from February 2013 to February 2014 were selected,and were divided into three groups based on random number table,Bacillus subtilis two (Live) enteric-coated capsules group,Bacillus licheni-formis capsule group,and joint application of Bacillus subtilis two (Live) enteric-coated capsules and Bacillus licheni-formis capsule group.The therapeutic effects among three groups were compared. Results The cure rate of joint applica-tion of Bacillus subtilis two (Live) enteric-coated capsules and Bacillus licheniformis capsule group was higher than that of Bacillus subtilis two (Live) enteric-coated capsules group and Bacillus licheniformis capsule group,the differ-ence was significant (χ2=8.26,P=0.02).The number of diarrhea in healed patients of joint application of Bacillus subtilis two (Live) enteric-coated capsules and Bacillus licheniformis capsule group was less than that of Bacillus subtilis two (Live) enteric-coated capsules group and Bacillus licheniformis capsule group,the difference was significant (F=91.03, P=0.00). Conclusion Both Bacillus subtilis two (Live) enteric-coated capsules and Bacillus licheniformis capsule are classified into probiotics,and have some effect on treating senile associated diarrhea caused by antibiotics.Joint applica-tion of the two drugs displays remarkable effect on treating antibiotic associated diarrhea,and plays a certain assistant role in clinical treatment.%目的:探讨枯草杆菌二联活菌肠溶胶囊联合地衣芽胞杆菌活菌胶囊对老年抗生素相关性腹泻的临床疗效。方法收集2013年2月~2014年2月本院老年抗生素相关性腹泻患者120例,根据随机数字表法分为枯草杆菌二联活菌肠溶胶囊组、地衣芽胞杆

  12. Mathematical modeling of maize starch liquefaction catalyzed by α-amylases from Bacillus licheniformis: effect of calcium, pH and temperature.

    Science.gov (United States)

    Presečki, Ana Vrsalović; Blažević, Zvjezdana Findrik; Vasić-Rački, Ðurđa

    2013-01-01

    The first step of starch hydrolysis, i.e. liquefaction has been studied in this work. Two commercial α-amylases from Bacilllus licheniformis, known as Termamyl and Liquozyme have been used for this purpose. Using starch as the substrate, kinetics of both enzymes has been determined at optimal pH and temperature (pH 7, T = 80 °C) and at 65 °C and pH 5.5. Michaelis-Menten model with uncompetitive product inhibition was used to describe enzyme kinetics. Mathematical models were developed and validated in the repetitive batch and fed-batch reactor. Enzyme inactivation was described by the two-step inactivation model. All experiments were performed with and without calcium ions. The activities of both tested amylases are approximately one hundred times higher at 80 °C than at 65 °C. Lower inactivation rates of enzymes were noticed in the experiments performed at 65 °C without the addition of calcium than in the experiments at 80 °C. Calcium ions in the reaction medium significantly enhance amylase stability at 80 °C and pH 7. At other process conditions (65 °C and pH 5.5) a weaker calcium stabilizing effect was detected.

  13. Resistance to antimicrobials and acid and bile tolerance of Bacillus spp isolated from Bikalga, fermented seeds of Hibiscus sabdariffa

    DEFF Research Database (Denmark)

    Compaore, Clarisse S.; Jensen, Lars Bogø; Diawara, Brehima;

    2013-01-01

    In the aim of selecting starter cultures, thirteen species of Bacillus spp. including six Bacillus subtilis ssp. subtilis, four Bacillus licheniformis and three Bacillus amyloliquefaciens ssp. plantarum isolated from traditional Bikalga were investigated. The study included, for all isolates, gen...

  14. Evaluation of effect of oral applying of Bacillus licheniformis CH 200: DSM 5749 and Bacillus subtilis CH 201: DSM 4750 on development and composition of red-eared slider’s (Trachemys scripta elegans intestinal microflora based on water quality changes in aquaterrariums

    Directory of Open Access Journals (Sweden)

    Mateusz Rawski

    2012-09-01

    Full Text Available Frequent cases of bacterial infections caused by contact with semi-aquatic turtles and water from their thanks had been reported in US, Japan and many other countries. In Poland the topic of microbiological hazard associated with reptile keeping is very rarely discussed. Even less is mentioned about eventual impact of probiotics as factors limiting the colonization and presence of harmful Enterobacteriaceae. The aim of the study was to investigate the microbiological threat related to turtles and tortoises; evaluating the use of probiotics to reduce intestinal pathogenic microflora of red-eared sliders, which is potentially hazardous to humans. The results of the study suggest that tank water is the potential reservoir of pathogenic microorganisms. Oral application of probiotics containing the Bacillus licheniformis CH 200: DSM 5749 and Bacillus subtilis CH 201: DSM 4750 resulted in building a probiotic population in turtle gastrointestinal tract. It affected the water microflora in aquaterrariums by increasing the total number of bacteria, including lactic acid bacteria. Reduction of the presence and quantity of Escherichia coli serotype O157:H7 seems also to be relevant.

  15. Effects of Bacillus licheniformis on Production Performance of Pregnancy and Lactation Sows and Ammonia Concentration in Piggeries%地衣芽孢杆菌对妊娠及哺乳母猪生产性能及猪舍氨气浓度的影响

    Institute of Scientific and Technical Information of China (English)

    郭丽华; 索成; 刘海涛

    2013-01-01

    [Objective] The aim was to explore effects of Bacillus licheniformis on production performance of pregnancy and lactation sows and the ammonia concentration in piggeries. [Method] Landrace × Lange sows before 30 d pregnancy were fed with basic feed added inocula and power of B. licheniformis, and effects of B. licheniformis on production performance of pregnancy and lactation sows and the ammonia concentration in piggeries were investigated. [Result] Compared with control,B. licheniformis could reduce the constipation ratio of sows,the mortality ratio of piglets and ammonia concentration in piggeries significantly. It could also improve the daily feed of sows and the diarrhea ratio of piglets significantly. [Conclusion] B. licheniformis can increase the production performance of sows and piglets effectively, improve the environment of piggeries and reduce environmental pollution.%[目的]探讨地衣芽孢杆菌菌剂和菌粉对妊娠及哺乳母猪生产性能和猪舍氨气浓度的影响.[方法]选用产前30 d的妊娠母猪(长×大)为试验对象,通过在基础日粮中分别添加地衣芽孢杆菌菌剂和菌粉,考察其对妊娠及哺乳母猪生产性能和猪舍氨气浓度的影响.[结果]与对照组相比,饲喂地衣芽孢杆菌后能显著降低母猪便秘率、仔猪腹泻率及猪舍氨气浓度,且对母猪采食量及仔猪死淘率等也有明显改善.[结论]在饲料中添加地衣芽孢杆菌能有效提高母猪及仔猪的生长性能,改善猪舍环境,降低污染.

  16. Genotyping of B. licheniformis based on a novel multi-locus sequence typing (MLST scheme

    Directory of Open Access Journals (Sweden)

    Madslien Elisabeth H

    2012-10-01

    Full Text Available Abstract Background Bacillus licheniformis has for many years been used in the industrial production of enzymes, antibiotics and detergents. However, as a producer of dormant heat-resistant endospores B. licheniformis might contaminate semi-preserved foods. The aim of this study was to establish a robust and novel genotyping scheme for B. licheniformis in order to reveal the evolutionary history of 53 strains of this species. Furthermore, the genotyping scheme was also investigated for its use to detect food-contaminating strains. Results A multi-locus sequence typing (MLST scheme, based on the sequence of six house-keeping genes (adk, ccpA, recF, rpoB, spo0A and sucC of 53 B. licheniformis strains from different sources was established. The result of the MLST analysis supported previous findings of two different subgroups (lineages within this species, named “A” and “B” Statistical analysis of the MLST data indicated a higher rate of recombination within group “A”. Food isolates were widely dispersed in the MLST tree and could not be distinguished from the other strains. However, the food contaminating strain B. licheniformis NVH1032, represented by a unique sequence type (ST8, was distantly related to all other strains. Conclusions In this study, a novel and robust genotyping scheme for B. licheniformis was established, separating the species into two subgroups. This scheme could be used for further studies of evolution and population genetics in B. licheniformis.

  17. STUDY ON THE CHARACTERISTICS OF THE AMMONIA-NIROGEN AND RESIDUAL FEEDS DEGRADATION IN AQUATIC WATER BY BACILLUS LICHENIFORMIS%地衣芽孢杆菌对养殖水体氨氮、残饵降解特性研究

    Institute of Scientific and Technical Information of China (English)

    张庆华; 封永辉; 王娟; 郭婧; 张永华; 高建忠; 宋增福

    2011-01-01

    It is well known that ammonia-nitrogen is one of the toxic factors to affect the growth performances and increase the susceptibility of the aquatic animal in the culture ponds water.With the development of aquaculture, the intensive and high-density culture aggravate the serious pollution problem of the ammonium nitrogen; however, the traditional physical and chemical methods to remove the ammonia-nitrogen will be cut down for the secondary pollution step by step.Meanwhile, the biological methods to remove ammonia-nitrogen and bioremediation have attracted much more attentions from the scientists for the characteristics of high-efficiency, low cost, no residue and environmental friendly,which become more and more popular in the practices.The present studies were focused on the Bacillus subtitles, Bacillus cereus and Sporolactobacillus.Large yellow croaker (Pseudosciaena crocea) is one of the traditional Chinese Four Seafood that is the offshore main economic fishes, which culture widely in the China eastern offshore.In the present experiment, a Bacillus licheniformis strain X3914 as a potential probiotics was isolated from gastrointestinal tract of healthy large yellow croaker (Pseudosciaena crocea) cultured in Xiangshan, Zhejiang Province.The aim of the study is to explore the degradation rules of ammonia-nitrogen, protein and starch of residual feeds by Bacillus licheniformis strain X3914, which probably offers the guidance to the practices in aquaculture.In the present experiment, the ability to remove the ammonia-nitrogen of the Bacillus licheniformis strain X3914 was tested in the simulated waste water, the results indicated that the growth of the strain X3914 was synchronized with the degradation of ammonia-nitrogen and degradation rate of ammonia-nitrogen reached to 36.2% in 24h.Furthermore,Ammonia-nitrogen containing the ammonium ions, and ammonia molecules, as the toxicity of ammonium ions was influenced significantly by environmental factors, such as

  18. 牛源地衣芽胞杆菌诱导小鼠临床乳房炎模型中热休克蛋白和核因子-κB表达上调%Up-regulated expression of heat shock protein 70 and NF-κB in mouse mastitis model established by artificial infection of Bacillus licheniformis from bovine mastitis

    Institute of Scientific and Technical Information of China (English)

    甘露; 徐君; 李姝; 程跃; 蔡亚非

    2012-01-01

    Objective: To further understand how the immune pathogenesis of cow mastitis occurs and look for better control methods to provide data for basic study. Methods: In this study the main mastitis pathogens were isolated and identified by the traditional bacterial culture methods and molecular methods. Bacillus licheniformis was selected from the main pathogens. Then mouse mammary gland was infected by Bacillus licheniformis. HE staining was done to observe the change of the mouse mammary gland after infection and immunohistochemical staining to detect the expression of heat shock protein 70 (HSP70) and NF-κB in those slices. Results: Symptoms of inflammation appeared in the mouse mammary gland after infection. Histopathologic examination of mammary gland revealed that numbers of polymorphonuclear neutrophils were present in alveoli. The expression of HSP70 and NF-κB in the experimental group was significantly increased compared with the saline group and the blank group. Conclusion:The results showed that Bacillus licheniformis was suitable for the replica of mastitis model in mouse. An increase in the expression of HSP70 and NF-κB in the experimental group explained their participation in the pathological process after bacterial infection.%目的:为进一步认识奶牛乳腺炎发生的免疫病理机制和寻找更理想的防治方法提供基础研究数据.方法:从采集回来的奶牛奶样中用传统细菌培养方法和分子学方法分离鉴定主要病原菌,挑选其中地衣芽胞杆菌感染小鼠乳腺组织,H-E染色分析感染后小鼠乳腺组织变化,免疫组织化学方法分析热休克蛋白70(HSP70)和核因子-kB(NF-kB)在感染小鼠体内的表达.结果:感染后小鼠乳腺出现明显的炎症症状,组织病理学观察显示腺泡腔内有大量嗜中性粒细胞浸润.实验组中HSP70和NF-kB表达量比生理盐水组和空白组均有增加.结论:成功通过地衣芽胞杆菌诱发建立实验性乳房炎小

  19. SYNTHESIS AND PROCESSING OF ESCHERICHIA-COLI TEM-BETA-LACTAMASE AND BACILLUS-LICHENIFORMIS ALPHA-AMYLASE IN ESCHERICHIA-COLI : THE ROLE OF SIGNAL PEPTIDASE-I

    NARCIS (Netherlands)

    van Dijl, J M; SMITH, H; BRON, S; VENEMA, G

    1988-01-01

    A mutant of Escherichia coli, in which signal peptidase I synthesis can be regulated, was constructed. The mutant was used to study the effects of signal peptidase I limitation on the synthesis and efficiency of processing of two proteins: the periplasmic E. coli TEM-beta-lactamase and Bacillus lich

  20. Biosynthesis of poly(g-L-glutamic acid) and comparative studies on the biodegradability of the g- and a-enantiomeric forms of the poly (glutamic acid) by Bacillus Licheniformis NCIMB 11709

    OpenAIRE

    Marqués Calvo, M. Soledad; Bou Serra, Jordi; Cerdà Cuéllar, Marta

    2013-01-01

    Poly (y-glutamic acid), a novel polyanionic and multifunctional macromolecule synthesized by Bacillus species, has attracted considerable attention because of its eco-friendly, biodegradable and biocompatible characteristics. Recently, its application in a wide range of fields such as food, agriculture, medicine, hygiene, cosmetics and the environment has been explored. This book discusses the chemistry, food sources and health benefits of glutamic acid.

  1. 胡椒经地衣芽孢杆菌发酵脱皮过程中的主要酶系及pH值变化%Dynamic Changes in Main Enzyme Activities and pH during Pepper(Piper nigrum L.) Decortication by Bacillus licheniformis Fermentation

    Institute of Scientific and Technical Information of China (English)

    熊海波; 侯源源; 刘四新; 苗子健; 李从发

    2011-01-01

    采用地衣芽孢杆菌进行静置液态发酵对胡椒进行脱皮,与生产实践中传统水沤法脱皮对比,研究二者发酵脱皮过程中的果胶酶、木聚糖酶、纤维素酶和发酵液pH值的动态变化。结果表明:在发酵脱皮过程中,两种方法的聚半乳糖醛酸酶(PG)和果胶裂解酶(PL)变化规律相似,都出现两次酶活力高峰;而纤维素酶活力都很低,果胶酯酶(PE)酶活力都比较高;在传统水沤法中木聚糖酶活力出现两个高峰,而在发酵法中木聚糖酶活力在脱皮后期逐渐上升;pH值变化总趋势也相似,脱皮完成时pH值均在5~5.5之间。由此推知,胡椒鲜果发酵脱皮过程中果胶酶系%Static liquid-state Bacillus licheniformis fermentation was used for pepper decortication and compared with traditional water retting.Meanwhile,the dynamic changes of pectinases,xylanase,cellulase and pH during pepper decortication by the two methods were explored.The results showed that the changes of polygalacturonase(PG) and pectin lyase(PL) revealed a similar pattern with two activity peaks during both decortication processes.However,cellulase activity was low and the pectin esterase(PE) activity remained high.Similar pH changes were observed during both decortication processes pH was between 5 and 5.5 at the end of decortication.Xylanase activity showed two peaks in traditional water retting method and a gradual increase in the late stage of Bacillus licheniformis fermentation.Therefore,pectinase might play an important role during pepper decortication.In the early stage of decortication,PG and PL first acted on pectin substances and damaged the pectin complex structure,and then PE hydrolyzed pectin molecules to form pectic acid accompanied with pH decrease.Further,xylanase activity increased gradually in the late stage of decortication and as a result,hemicellulose was rapidly depolymerized.Therefore,pepper decortication was completed under the

  2. Effect of supplemental Bacillus culture on rumen fermentation and performance in dairy cattle

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Two parts were involved in this experiment. In experiment 1, 32 Chinese Holstein cows with relatively similar body condition, lactation number and days in milk were selected. The cows were assigned in a randomized complete block design trial to determine the effect of supplemental Bacillus cultures to diet on production performance in dairy cattle. Four treatments, i.e., Bacillus licheniformis (strain number 1.813) group, Bacillus subtilis (strain number 1.1086) group, Bacillus cereus var. mycoides (strain number 1.260) group and control group. Each treatment had eight replicates, each replicate had one cow, 50 g per head per day. Results showed that Bacillus licheniformis group increased the milk yield (P0.05). In experiment 2, 3 Chinese Holstein cows with permanent fistulas were used. 3×3 Latin squares were assigned to three diets: Bacillus lincheniformis culture, Bacillus subtilis culture and control. Bacillus licheniformis culture increased total rumen microorganism (P0.05), increased the rate of acetic acid to propionic acid (P>0.05). Bacillus licheniformis culture decreased the methane production (P>0.05).

  3. LACCASE: PROPERTIES AND APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Vernekar Madhavi

    2009-11-01

    Full Text Available Laccases (benzenediol:oxygen oxidoreductase, EC 1.10.3.2 are multi-copper oxidases that are widely distributed among plants, insects, and fungi. They have been described in different genera of ascomycetes, some deuteromycetes, and mainly in basidiomycetes. These enzymes catalyze the one-electron oxidation of a wide variety of organic and inorganic substrates, including mono-, di-, and polyphenols, amino-phenols, methoxyphenols, aromatic amines, and ascorbate, with the concomitant four electron reduction of oxygen to water. Laccase is currently the focus of much attention because of its diverse applications, such as delignification of lignocellulosics, crosslinking of polysaccha-rides, bioremediation applications, such as waste detoxification, and textile dye transformation, food technologic uses, personal and medical care applications, and biosensor and analytical applications. This review helps to understand the properties of this important enzyme for efficient utilization for its biotechnological and environmental applications.

  4. Role of enzymes of homologous recombination in illegitimate plasmid recombination in Bacillus subtilis

    NARCIS (Netherlands)

    Meima, R; Haijema, BJ; Haan, GJ; Venema, G; Bron, S

    1997-01-01

    The structural stability of plasmid pGP1, which encodes a fusion between the penicillinase gene (penP) of Bacillus licheniformis and the Escherichia coli lacZ gene, was investigated in Bacillus subtilis strains expressing mutated subunits of the ATP-dependent nuclease, AddAB, and strains lacking the

  5. The expression of a plasmid-specified exported protein causes structural plasmid instability in Bacillus subtilis

    NARCIS (Netherlands)

    Cordes, C.; Meima, R; Twiest, B; Kazemier, B; Venema, G; vanDijl, JM; Bron, S

    1996-01-01

    The rolling-circle plasmid pGP1 was used to study the effects of the expression of a plasmid-specified exported protein on structural plasmid stability in Bacillus subtilis. pGP1 contains a fusion between the Bacillus licheniformis penP gene, encoding a C-terminally truncated penicillinase, and the

  6. Resistance to antimicrobials and acid and bile tolerance of Bacillus spp isolated from Bikalga, fermented seeds of Hibiscus sabdariffa

    OpenAIRE

    Compaore, Clarisse S.; Jensen, Lars Bogø; Diawara, Brehima; Ouedraogo, Georges A.; Jakobsen, Mogens; Ouoba, Labia I. I.

    2013-01-01

    In the aim of selecting starter cultures, thirteen species of Bacillus spp. including six Bacillus subtilis ssp. subtilis, four Bacillus licheniformis and three Bacillus amyloliquefaciens ssp. plantarum isolated from traditional Bikalga were investigated. The study included, for all isolates, genes, determination of minimal inhibitory concentration (MIC) for 24 antimicrobials and detection of resistance by PCR using specific primers. The isolates were also examined for their resistance to pH ...

  7. Enhanced stability of laccase by xylitol

    OpenAIRE

    Zille, Andrea; Moldes, Diego; Irgoliç, Ramona; Paulo, Artur Cavaco

    2006-01-01

    Laccase is a multicopper oxidase able to perform one-electron oxidation of several aromatic substrates. The application of laccase on wood delignification, drug analysis, biosensor, wine clarification, bioremediation, etc., was proposed [1]. As every enzymatic system, laccase has some limitations due to the reaction conditions, mainly temperature and pH. Deactivation of laccase at pH values over 6 and lower 3 are undesirable properties that must be improved. The addition of som...

  8. Production of amylolytic enzymes by bacillus spp

    International Nuclear Information System (INIS)

    Sixty six bacteria and twenty fungi were isolated from various sources. These varied from rotten fruites to local drinks and soil samples from different parts of Sudan. On the basis of index of amylolytic activity, forty one bacteria and twelve fungi were found to hydrolyse strach. The best ten strach hydrolysing isolates were identified all as bacilli (Bacillus licheniformis SUD-K1, SUD-K2, SUD-K4, SUD-O, SUD-SRW, SUD-BRW, SUD-By, Bacillus subtilis SUD-K3, and Bacillus circulans SUD-D and SUD-K7). Their amylase productivity was studied with respect to temperature and time. Amylolytic activity was measured by spectrophotometer, the highest activity was produced in around 24 hours of growth in all; six of which gave the highest amylase activity at 50 deg C and the rest at 45C. Based on the thermal production six isolates were chosen for further investigation. These were Bacillus licheniformis SUD-K1, SUD-K2, SUD-K4, SUD-O, Bacillus subtilis SUD-K3 and Bacillus circulans SUD-K7. The inclusion of strach and Mg++ ions in the culture medium gave the highest enzyme yield. The Ph 9.0 was found to be the optimum for amylase production for all isolates except Bacillus subtilis SUD-K3 which had an optimum at pH 7.0. Three isolates (Bacillus licheniformis SUD-K1, SUD-K4 and SUD-O recorded highestamylase production in a medium supplemented with peptone while the rest (Bacillus licheniformis SUD-K2, Bacillus subtilis SUD-K3 and Bacillus circulans SUD-K7) gave highest amylase productivity in a medium supplemented with malt extract. Four isolates (Bacillus licheniformis SUD-K1 and Bacillus subtilis SUD-K3 gave maximum amylase production in a medium containing 0.5% soluble strach while the rest (gave maximum amylase production at 2%. Soluble strach was found to be best substrate among the different carbon sources tested. The maximum temperature for amylase activity ranged from 60-70 deg C and 1% strach concentration was optimum for all isolates. Addition of different metal ions

  9. Laccase Application for Upgrading of Lignocellulose Fibers

    Directory of Open Access Journals (Sweden)

    Maja Vaukner Gabrič

    2015-04-01

    Full Text Available Laccases have the ability to oxidize both phenolic and trough mediators non-phenolic lignin related compounds. When reacting on lignin, they can display both ligninolytic and polymerizing (cross-inking abilities, which makes them very useful for their application in industries based on lignocellulose material. Most of the published papers and applications of laccase and laccase-mediator systems on lignocellulose material relate to the pulp, paper and textile industry. Recent research has been done in terms of laccase assisted biografting of phenols and other compounds on wood surface and use of laccase for adhesion enhancement in fiberboard production. They can be introduced to wood technology as environmentally friendly enzymes. The paper reviews the application of laccases in industries based on lignocellulose material and discusses the future outlook and development in the above mentioned fields.

  10. Blood tolerant laccase by directed evolution.

    Science.gov (United States)

    Mate, Diana M; Gonzalez-Perez, David; Falk, Magnus; Kittl, Roman; Pita, Marcos; De Lacey, Antonio L; Ludwig, Roland; Shleev, Sergey; Alcalde, Miguel

    2013-02-21

    High-redox potential laccases are powerful biocatalysts with a wide range of applications in biotechnology. We have converted a thermostable laccase from a white-rot fungus into a blood tolerant laccase. Adapting the fitness of this laccase to the specific composition of human blood (above neutral pH, high chloride concentration) required several generations of directed evolution in a surrogate complex blood medium. Our evolved laccase was tested in both human plasma and blood, displaying catalytic activity while retaining a high redox potential at the T1 copper site. Mutations introduced in the second coordination sphere of the T1 site shifted the pH activity profile and drastically reduced the inhibitory effect of chloride. This proof of concept that laccases can be adapted to function in extreme conditions opens an array of opportunities for implantable nanobiodevices, chemical syntheses, and detoxification. PMID:23438751

  11. Bacillus pumilus reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress

    NARCIS (Netherlands)

    Handtke, S.; Schroeter, R.; Jurgen, B.; Methling, K.; Schluter, R.; Albrecht, D.; Hijum, S.A.F.T. van; Bongaerts, J.; Maurer, K.H.; Lalk, M.; Schweder, T.; Hecker, M.; Voigt, B.

    2014-01-01

    Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a treatment with high concentrations of hydrogen

  12. Green oxidations with laccase-mediator systems.

    Science.gov (United States)

    Wells, A; Teria, M; Eve, T

    2006-04-01

    Laccases are oxidase enzymes produced by 'white rot' fungi as part of a complex armoury of redox enzymes used to break down lignin--part of the carbon cycle of nature. Laccases alone or in combination with redox co-catalysts have been shown to oxidize xenobiotic compounds under conditions that can be described as 'green'. This paper describes some novel oxidations using the laccase-mediator method and some current limitations to the use of this technology. PMID:16545100

  13. Directed Evolution of Fungal Laccases

    OpenAIRE

    Maté, Diana; García-Ruiz, Eva; Camarero, Susana; Alcalde, Miguel

    2011-01-01

    Fungal laccases are generalists biocatalysts with potential applications that range from bioremediation to novel green processes. Fuelled by molecular oxygen, these enzymes can act on dozens of molecules of different chemical nature, and with the help of redox mediators, their spectrum of oxidizable substrates is further pushed towards xenobiotic compounds (pesticides, industrial dyes, PAHs), biopolymers (lignin, starch, cellulose) and other complex molecules. In recent years, extraordinary e...

  14. Expression of laccase lac2 gene of Bacillus subtilis in P.pastoris by high-density cell culture%工程菌P.pastoris GS115(pPIC9K-lac2)的构建及诱导表达漆酶的研究

    Institute of Scientific and Technical Information of China (English)

    沈锦城; 张泽华; 杨穗珊; 张添元; 罗进贤; 张爱联

    2013-01-01

    用PCR法扩增枯草芽孢杆菌的漆酶基因lac2.构建表达质粒pPIC9K-lac2.通过电转法将lac2基因重组于P.pastoris基因组,筛选高G418抗性和高表达漆酶的转化子作为工程菌GS115(pPIC9K-lac2).在发酵罐中发酵GS115(pPIC9K-lac2)表达重组蛋白.在50 L发酵罐中加入20 L无机盐发酵培养基.在发酵的第一阶段连续24 h补加50%甘油-0.8% PTM4增殖P.pastoris,然后用甲醇-0.8% PTM4诱导49 h.在发酵过程中,通过调节搅拌的频率和通气量,将溶氧维持于20% ~30%,用氨水维持pH 5.0.放罐时生物量为A600=266.5,表达漆酶1097.5U/L发酵液.%The gene of lac2 was amplified from the Bacillus subtilis chromosome by PCR technique according to the pub?lished sequence of lac2 and cloned directly into the P. pastoris vector pPIC9K, resulted in the expression plasmid pPIC9K-Zac2 which was then transformed into P. pastoris GS115 by electroporation method. A recombinant transformant with high G418 resistant characteristics and well expression was selected as engineering strain GS115 ( pPIC9K-Zac2). The fermentation was carried out in a 50 L bioreactor with 20 L inorganic salt fermentation medium. The cells were first grown in 50% glycerol -0. 8% PTM4 trace salts for 24 h and then induced by methanol -0.8% PTM4 for 49 h. During the process of the fermentation, the dissolved oxygen was maintained between 20% -30% by adjusting the rates of agitation and aeration, and pH was controlled at 5 by NH40H. At the end of the fermentation, the biomass growth was 266. 5 as measured by absorption of 600nm, while expressed laccase was 1097.5U/L fermentation broth.

  15. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand;

    2015-01-01

    illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin...

  16. Decolorization and detoxification of two textile industry effluents by the laccase/1-hydroxybenzotriazole system.

    Science.gov (United States)

    Benzina, Ouafa; Daâssi, Dalel; Zouari-Mechichi, Héla; Frikha, Fakher; Woodward, Steve; Belbahri, Lassaad; Rodriguez-Couto, Susana; Mechichi, Tahar

    2013-08-01

    The aim of this work was to determine the optimal conditions for the decolorization and the detoxification of two effluents from a textile industry-effluent A (the reactive dye bath Bezactive) and effluent B (the direct dye bath Tubantin)-using a laccase mediator system. Response surface methodology (RSM) was applied to optimize textile effluents decolorization. A Box-Behnken design using RSM with the four variables pH, effluent concentration, 1-hydroxybenzotriazole (HBT) concentration, and enzyme (laccase) concentration was used to determine correlations between the effects of these variables on the decolorization of the two effluents. The optimum conditions for pH and concentrations of HBT, effluent and laccase were 5, 1 mM, 50 % and 0.6 U/ml, respectively, for maximum decolorization of effluent A (68 %). For effluent B, optima were 4, 1 mM, 75 %, and 0.6 U/ml, respectively, for maximum decolorization of approximately 88 %. Both effluents were treated at 30 °C for 20 h. A quadratic model was obtained for each decolorization through this design. The experimental and predicted values were in good agreement and both models were highly significant. In addition, the toxicity of the two effluents was determined before and after laccase treatment using Saccharomyces cerevisiae, Bacillus cereus, and germination of tomato seeds.

  17. Preparation of Laccase Immobilized Cryogels and Usage for Decolorization

    Directory of Open Access Journals (Sweden)

    Murat Uygun

    2013-01-01

    Full Text Available Poly(methyl methacrylate-co-glycidyl methacrylate (poly(MMA-co-GMA cryogels were synthesized by radical cryopolymerization technique. Then, laccase enzyme was covalently attached to the cryogel and characterized by using swelling studies and SEM and EDX analyses. Kinetic properties and optimum conditions of the immobilized and free laccase were studied and it was found that of the immobilized laccase was lower than that of free laccase. of the immobilized laccase was increased upon immobilization. Optimum pH was found to be 4.0 for each type of laccase, while optimum temperature was shifted to the warmer region after the immobilization. It was also found that thermal stability of the immobilized laccase was higher than that of free laccase. Immobilized laccase could be used for 10 times successive reuse with no significant decrease in its activity. Also, these laccase immobilized cryogels were successfully used for the decolorization of seven different dyes.

  18. Characterization Of Laccase T-DNA Mutants In Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Andersen, Jeppe R; Asp, Torben; Mansfield, Shawn;

    Laccases (P-diphenol:O2 oxidoreductase; EC 1.10.3.2), also termed laccase-like multicopper oxidases, are blue copper-containing oxidases which comprise multigene families in plants. In the Arabidopsis thaliana genome, 17 laccase genes (LAC1 to LAC17) have been annotated. To identify laccases invo...... quite different and distinct biochemical pathways and that laccases might be involved in polymerization of both polysaccharides and monolignols in the Arabidopsis cell wall....

  19. Uses of Laccases in the Food Industry

    Directory of Open Access Journals (Sweden)

    Johann F. Osma

    2010-01-01

    Full Text Available Laccases are an interesting group of multi copper enzymes, which have received much attention of researchers in the last decades due to their ability to oxidise both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. This makes these biocatalysts very useful for their application in several biotechnological processes, including the food industry. Thus, laccases hold great potential as food additives in food and beverage processing. Being energy-saving and biodegradable, laccase-based biocatalysts fit well with the development of highly efficient, sustainable, and eco-friendly industries.

  20. Uses of Laccases in the Food Industry

    Science.gov (United States)

    Osma, Johann F.; Toca-Herrera, José L.; Rodríguez-Couto, Susana

    2010-01-01

    Laccases are an interesting group of multi copper enzymes, which have received much attention of researchers in the last decades due to their ability to oxidise both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. This makes these biocatalysts very useful for their application in several biotechnological processes, including the food industry. Thus, laccases hold great potential as food additives in food and beverage processing. Being energy-saving and biodegradable, laccase-based biocatalysts fit well with the development of highly efficient, sustainable, and eco-friendly industries. PMID:21048873

  1. Norway spruce (Picea abies) laccases: characterization of a laccase in a lignin-forming tissue culture.

    Science.gov (United States)

    Koutaniemi, Sanna; Malmberg, Heli A; Simola, Liisa K; Teeri, Teemu H; Kärkönen, Anna

    2015-04-01

    Secondarily thickened cell walls of water-conducting vessels and tracheids and support-giving sclerenchyma cells contain lignin that makes the cell walls water impermeable and strong. To what extent laccases and peroxidases contribute to lignin biosynthesis in muro is under active evaluation. We performed an in silico study of Norway spruce (Picea abies (L.) Karst.) laccases utilizing available genomic data. As many as 292 laccase encoding sequences (genes, gene fragments, and pseudogenes) were detected in the spruce genome. Out of the 112 genes annotated as laccases, 79 are expressed at some level. We isolated five full-length laccase cDNAs from developing xylem and an extracellular lignin-forming cell culture of spruce. In addition, we purified and biochemically characterized one culture medium laccase from the lignin-forming cell culture. This laccase has an acidic pH optimum (pH 3.8-4.2) for coniferyl alcohol oxidation. It has a high affinity to coniferyl alcohol with an apparent Km value of 3.5 μM; however, the laccase has a lower catalytic efficiency (V(max)/K(m)) for coniferyl alcohol oxidation compared with some purified culture medium peroxidases. The properties are discussed in the context of the information already known about laccases/coniferyl alcohol oxidases of coniferous plants.

  2. Recombinant laccase: I. Enzyme cloning and characterization.

    Science.gov (United States)

    Nicolini, Claudio; Bruzzese, Debora; Cambria, Maria Teresa; Bragazzi, Nicola Luigi; Pechkova, Eugenia

    2013-03-01

    We obtained structural and functional characterization of a recombinant Laccase from Rigidoporus lignosus (formerly Rigidoporus microporus), a white-rot basidiomycete, by means of circular dichroism (CD) spectra, cyclic voltammetry (CV) and biochemical assays. Here we report the optimization of expression and purification procedures of a recombinant Laccase expressed in supercompetent Escherichia coli cells. We amplified the coding sequence of Laccase using PCR from cDNA and cloned into a bacterial expression system. The resulting expression plasmid, pET-28b, was under a strong T7/Lac promoter induced by IPTG (isopropyl-β-d-thiogalactoipyranoside). We obtained purification by fast protein liquid chromatography (FPLC) method. We recorded the variation of the current of a solution containing purified Laccase with increasing Syringaldazine (SGZ) concentration using a potentiometer as proof of principle, showing its compatibility with the development of a new enzymatic biosensor for medical purposes, as described in Part II. PMID:22991171

  3. 一株地衣芽胞杆菌S1-1对赭曲霉毒素A的吸附和降解研究%Adsorption and Degradation of Ochratoxin A by Bacillus licheniformis S1-1

    Institute of Scientific and Technical Information of China (English)

    师磊; 梁志宏; 徐诗涵; 郑浩; 黄昆仑

    2013-01-01

    赭曲霉毒素A(ochratoxin A,OTA)是一种由曲霉(Aspergillus spp.)和青霉(Penicillium spp.)等丝状真菌产生的次级代谢产物,主要污染谷物、葡萄(Vitisvinifera)、大豆(Glycine max)、咖啡(Coffea arabica)及其相关产品.动物实验表明,OTA具有肾毒性、肝毒性,致癌、致畸和致突变性,减少或消除食品及其原料中的OTA对国民食品安全至关重要.本研究以从动物粪便分离的芽胞杆菌(Bacillus spp.)为材料研究OTA的生物脱毒.结果显示,1株Bacillus spp.S1-1既能吸附又能降解OTA:活菌和高温灭活菌(121℃,20 min)均能吸附OTA,OTA浓度为6 μg/mL时,薄层层析(thin layer chromatography,TLC)测定24 h后高温灭活菌(121℃,20 min)的吸附量(80%)高于活菌(60%);菌液上清能降解OTA,OTA浓度为6.2 μg/mL时,高效液相色谱(high-performance liquid chromatograpy,HPLC)测定24 h降解率为98%,没有降解产物产生.S1-1在发霉玉米中OTA的降解率为35.0%.16S rRNA序列比对初步确定S1-1为地衣芽胞杆菌(B.licheniforms).本研究首次获得了1株既能吸附又能降解OTA的B.licheniforms,为OTA的生物脱毒提供了新材料.

  4. Mesosilica-coated ultrafine fibers for highly efficient laccase encapsulation

    Science.gov (United States)

    Wang, Shiwen; Chen, Wei; He, Sha; Zhao, Qilong; Li, Xiaohong; Sun, Jiashu; Jiang, Xingyu

    2014-05-01

    In this paper, we present a simple but efficient biomimetic method to encapsulate laccase on mesoporous silica-modified electrospun (ES) ultrafine fibers. Because of the mild immobilization conditions (room temperature, aqueous condition), the encapsulated laccase retained a high activity of 94%. Because of the protection from the silica layer, the laccase worked efficiently at 60 °C and retained a long-term activity in the presence of proteinase K. After recycling for 10 times the laccase still preserved 96% of its original reactivity. More remarkably, the immobilized laccase on fibers could completely recover its activity after thermal denature, while the free laccase permanently lost the activity. We also demonstrated that the laccase on silica-coated fibers exhibited an enhanced decolorization capability of Brilliant Blue KN-R (BBKN-R) as compared to the free laccase, showing its great potential for industrial applications.In this paper, we present a simple but efficient biomimetic method to encapsulate laccase on mesoporous silica-modified electrospun (ES) ultrafine fibers. Because of the mild immobilization conditions (room temperature, aqueous condition), the encapsulated laccase retained a high activity of 94%. Because of the protection from the silica layer, the laccase worked efficiently at 60 °C and retained a long-term activity in the presence of proteinase K. After recycling for 10 times the laccase still preserved 96% of its original reactivity. More remarkably, the immobilized laccase on fibers could completely recover its activity after thermal denature, while the free laccase permanently lost the activity. We also demonstrated that the laccase on silica-coated fibers exhibited an enhanced decolorization capability of Brilliant Blue KN-R (BBKN-R) as compared to the free laccase, showing its great potential for industrial applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01166j

  5. Reduction in acute ecotoxicity of paper mill effluent by sequential application of xylanase and laccase.

    Directory of Open Access Journals (Sweden)

    Saurabh Sudha Dhiman

    Full Text Available In order to reduce the ecotoxicity of paper mill, four different enzymatic pretreatment strategies were investigated in comparison to conventional chemical based processes. In strategy I, xylanase-aided pretreatment of pulp was carried out, and in strategy II, xylanase and laccase-mediator systems were used sequentially. Moreover, to compare the efficiency of Bacillus stearothermophilus xylanase and Ceriporiopsis subvermispora laccase in the reduction of ecotoxicity and pollution, parallel strategies (III and IV were implemented using commercial enzymes. Conventional C(DE(OPD(1D(2 (C(D, Cl(2 with ClO2; EOP, H2O2 extraction; D1 and D2, ClO2 and X/XLC(DE(OPD(1D(2 (X, xylanase; L, laccase sequences were employed with non-enzymatic and enzymatic strategies, respectively. Acute toxicity was determined by the extent of inhibition of bioluminescence of Vibrio fischeri with different dilutions of the effluent. Two-fold increase was observed in EC50 values for strategy I compared to the control process. On the other hand, sequential application of commercial enzymes resulted in higher acute toxicity compared to lab enzymes. In comparison to the control process, strategy II was the most efficient and successfully reduced 60.1 and 25.8% of biological oxygen demand (BOD and color of effluents, respectively. We report for the first time the comparative analysis of the ecotoxicity of industrial effluents.

  6. Reduction in acute ecotoxicity of paper mill effluent by sequential application of xylanase and laccase.

    Science.gov (United States)

    Dhiman, Saurabh Sudha; Garg, Gaurav; Sharma, Jitender; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul

    2014-01-01

    In order to reduce the ecotoxicity of paper mill, four different enzymatic pretreatment strategies were investigated in comparison to conventional chemical based processes. In strategy I, xylanase-aided pretreatment of pulp was carried out, and in strategy II, xylanase and laccase-mediator systems were used sequentially. Moreover, to compare the efficiency of Bacillus stearothermophilus xylanase and Ceriporiopsis subvermispora laccase in the reduction of ecotoxicity and pollution, parallel strategies (III and IV) were implemented using commercial enzymes. Conventional C(D)E(OP)D(1)D(2) (C(D), Cl(2) with ClO2; EOP, H2O2 extraction; D1 and D2, ClO2) and X/XLC(D)E(OP)D(1)D(2) (X, xylanase; L, laccase) sequences were employed with non-enzymatic and enzymatic strategies, respectively. Acute toxicity was determined by the extent of inhibition of bioluminescence of Vibrio fischeri with different dilutions of the effluent. Two-fold increase was observed in EC50 values for strategy I compared to the control process. On the other hand, sequential application of commercial enzymes resulted in higher acute toxicity compared to lab enzymes. In comparison to the control process, strategy II was the most efficient and successfully reduced 60.1 and 25.8% of biological oxygen demand (BOD) and color of effluents, respectively. We report for the first time the comparative analysis of the ecotoxicity of industrial effluents. PMID:25058160

  7. Fungal Laccases and Their Applications in Bioremediation

    Directory of Open Access Journals (Sweden)

    Buddolla Viswanath

    2014-01-01

    Full Text Available Laccases are blue multicopper oxidases, which catalyze the monoelectronic oxidation of a broad spectrum of substrates, for example, ortho- and para-diphenols, polyphenols, aminophenols, and aromatic or aliphatic amines, coupled with a full, four-electron reduction of O2 to H2O. Hence, they are capable of degrading lignin and are present abundantly in many white-rot fungi. Laccases decolorize and detoxify the industrial effluents and help in wastewater treatment. They act on both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants, and they can be effectively used in paper and pulp industries, textile industries, xenobiotic degradation, and bioremediation and act as biosensors. Recently, laccase has been applied to nanobiotechnology, which is an increasing research field, and catalyzes electron transfer reactions without additional cofactors. Several techniques have been developed for the immobilization of biomolecule such as micropatterning, self-assembled monolayer, and layer-by-layer techniques, which immobilize laccase and preserve their enzymatic activity. In this review, we describe the fungal source of laccases and their application in environment protection.

  8. A New Laccase Biosensor For Polyphenols Determination

    Directory of Open Access Journals (Sweden)

    M. J.F. Rebelo

    2003-06-01

    Full Text Available The relevance of polyphenols in human health is a well known fact. Prompted by that, a very intensive research has been directed to get a method to detect them, wich will improve the current ones. Laccase (p-diphenol:dioxygen oxidoreductase EC 1.10.3.2 is a multi-copper oxidase, wich couples catalytic oxidation of phenolic substrates with four electron reduction of dioxygen to water [1]. A maximum catalytic response in oxigenated electrolyte was observed between 4.5 and 5.5 [2], while for pH > 6.9 the laccase was found to be inactive [3]. We prepared a biosensor with laccase immobilised on a polyether sulphone membrane, at pH 4.5, wich was applied at Universal Sensors base electrode. Reduction of the product of oxidation of several polyphenols, catalysed by laccase, was done at a potential for wich the polyphenol of interest was found to respond. Reduction of catechol was found to occur at a potential of -200mV, wich is often referred to in the literature for polyphenolic biosensors. However other polyphenols did not respond at that potential. It was observed that (+- catechin produced a very large cathodic current when +100mV were applied to the laccase biosensor, both in aqueous acetate and 12% ethanol acetate buffer, whereas caffeic acid responded at -50mV. Other polyphenols tested were gallic acid, malvidin, quercetin, rutin, trans-resveratrol

  9. Function of laccases in cell wall biosynthesis

    DEFF Research Database (Denmark)

    Larsen, Anders; Holm, Preben Bach; Andersen, Jeppe Reitan

    2011-01-01

    substrate specificities and expression patterns. As part of the strategic research centre Bio4Bio, the present project deals with laccase functions in relation to cell wall formation in grasses based on a study of the model species Brachypodium distachyon. Thirty-one isozymes have been retrieved from......Laccases are multicopper oxidases capable of polymerizing monolignols. Histochemical assays have shown temporal and spatial correlation with secondary cell wall formation in both herbs and woody perennials. However, in plants laccases constitutes a relatively large group of isoenzymes with unique...... hybridization. Specific isozymes that show high correlation with the process of secondary cell wall formation will be further studied in a reverse genetic study in which candidates will be knocked out using RNA interference. Phenotypes of knock-out mutants are to be described in relation to cell wall...

  10. Lignin biodegradation with laccase-mediator systems

    Directory of Open Access Journals (Sweden)

    Lew Paul Christopher

    2014-03-01

    Full Text Available Lignin has a significant and largely unrealized potential as a source for the sustainable production of fuels and bulk high-value chemicals. It can replace fossil-based oil as a renewable feedstock that would bring about socio-economic and environmental benefits in our transition to a biobased economy. The efficient utilization of lignin however requires its depolymerization to low molecular weight phenolics and aromatics that can then serve as the building blocks for chemical syntheses of high-value products. The ability of laccase to attack and degrade lignin in conjunction with laccase mediators is currently viewed as one of the potential breakthrough applications for lignin valorization. Here we review the recent progress in lignin biodegradation with laccase-mediator systems, and research needs that need to be addressed in this field.

  11. Laccase Enzymology in Relation to Lignocellulose Processing

    DEFF Research Database (Denmark)

    Sitarz, Anna Katarzyna

    for their ability to grow on lignocellulosic material, such as sugarcane bagasse – a competitive substrate for grain bioethanol. From this investigation, four white-rot fungi (Ganoderma lucidum, Trametes versicolor, Polyporus brumalis, and Polyporus ciliatus), were selected for the growth on lignin (lignin alkaline...... cocktail preparation. This discovery is significant considering the fact that the cellulase cocktail preparations, namely Cellic®CTec1 and Cellic®CTec2, are improved in respect to phenolic-derived, and end-substrate inhibitors. Additionally, the molecular dynamics simulations (MD) of the obtained amino...... acid sequence of the laccase from G. lucidum highlighted a potential mechanism of laccase detoxification of the cellulase-pretreated-biomass-derived inhibitors (Paper II). The mechanism of laccase reaction on the phenolic substrates was further evaluated by the literature study of the reactions...

  12. Location of laccase in ordered mesoporous materials

    Directory of Open Access Journals (Sweden)

    Álvaro Mayoral

    2014-11-01

    Full Text Available The functionalization with amine groups was developed on the SBA-15, and its effect in the laccase immobilization was compared with that of a Periodic Mesoporous Aminosilica. A method to encapsulate the laccase in situ has now been developed. In this work, spherical aberration (Cs corrected scanning transmission electron microscopy combined with high angle annular dark field detector and electron energy loss spectroscopy were applied to identify the exact location of the enzyme in the matrix formed by the ordered mesoporous solids.

  13. Location of laccase in ordered mesoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Mayoral, Álvaro [Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Edificio I - D, Mariano Esquillor, 50018 Zaragoza (Spain); Gascón, Victoria; Blanco, Rosa M.; Márquez-Álvarez, Carlos; Díaz, Isabel, E-mail: idiaz@icp.csic.es [Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid (Spain)

    2014-11-01

    The functionalization with amine groups was developed on the SBA-15, and its effect in the laccase immobilization was compared with that of a Periodic Mesoporous Aminosilica. A method to encapsulate the laccase in situ has now been developed. In this work, spherical aberration (C{sub s}) corrected scanning transmission electron microscopy combined with high angle annular dark field detector and electron energy loss spectroscopy were applied to identify the exact location of the enzyme in the matrix formed by the ordered mesoporous solids.

  14. Laccase catalysed grafting of phenolic onto xylan to improve its applicability in films

    Science.gov (United States)

    Pei, Jicheng; Wang, Bing; Zhang, Fangdong; Li, Zhongyang; Yin, Yunbei; Zhang, Dongxu

    2015-07-01

    Xylan can be tailored for various value-added applications. However, its use in aqueous systems is hampered by its complex structure, and small molecular weight. This research aimed at improving the xylan molecular weight and changing its structure. Laccase-catalysed oxidation of 4-coumaric acid (PCA), ferulic acid (FA), syringaldehyde (SD), and vanillin (VA) onto xylan was grafted to study the changes in its structure, tensile properties, and antibacterial activities. A Fourier transform infrared (FTIR) spectrum analyser was used to observe the changes in functional groups of xylan. The results showed a band at 1635 cm-1 corresponding to the stretching vibration of conjugated carbonyl carboxy hemoglobin and a benzene ring structure were strengthened; the appearance of a new band between 1200 cm-1 and 1270 cm-1 corresponding to alkyl ethers on the aryl C-O stretching vibration was due to the fact that during the grafting process, the number of benzene ring structures increased and covalent connections occurred between phenols and xylan. The reaction mechanism for the laccase-catalysed oxidation of phenol compounds onto xylan was preliminary explored by 13C-NMR. The results showed that PCA-xylan, FA-xylan graft poly onto xylan by Cγ ester bond, SD-xylan graft poly onto xylan by ether bond and an ester bond, and VD-xylan graft poly onto xylan by ether bond. The film strength of xylan derivatives has been significantly increased, especially for the PCA-xylan derivative. The increases in tensile stress at break, tensile strength, tensile yield stress, and Young's modulus were: 24.04%, 31.30%, 55.56%, and 28.21%, respectively. After laccase/phenolics were modified, xylan had a good antibacterial effect to E. coli, Corynebacterium glutamicum, and Bacillus subtilis. The SD-xylan, FA-xylan, and PCA-xylan showed a greater efficacy against E. coli, Corynebacterium glutamicum, and Bacillus subtilis, respectively.

  15. Crystal structure of CotA laccase complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) at a novel binding site

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhongchuan; Xie, Tian [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of (China); Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of (China); Zhong, Qiuping [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of (China); Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of (China); University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of (China); Wang, Ganggang, E-mail: wanggg@cib.ac.cn [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of (China); Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of (China)

    2016-03-24

    The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) in a hole motif has been solved; this novel binding site could be a potential structure-based target for protein engineering of CotA laccase. The CotA laccase from Bacillus subtilis is an abundant component of the spore outer coat and has been characterized as a typical laccase. The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in a hole motif has been solved. The novel binding site was about 26 Å away from the T1 binding pocket. Comparison with known structures of other laccases revealed that the hole is a specific feature of CotA. The key residues Arg476 and Ser360 were directly bound to ABTS. Site-directed mutagenesis studies revealed that the residues Arg146, Arg429 and Arg476, which are located at the bottom of the novel binding site, are essential for the oxidation of ABTS and syringaldazine. Specially, a Thr480Phe variant was identified to be almost 3.5 times more specific for ABTS than for syringaldazine compared with the wild type. These results suggest this novel binding site for ABTS could be a potential target for protein engineering of CotA laccases.

  16. Investigation and Analysis of Bacillus in Yogurt Production Environment%酸奶生产环境中芽孢杆菌的调查与分析

    Institute of Scientific and Technical Information of China (English)

    康博燕; 牟光庆; 陈历俊; 姜铁民

    2013-01-01

    According to the studies on the microbial community of yogurt production environment,found that the Bacillus.sp was the majority bacteria.Base on physiological and biochemical identification and molecular identification on the bacillus isolate from sampling plots,found that Bacillus subtilis account for 30%,Bacillus licheniformis account for 19%,Bacillus megaterium account for 14%,The rest of the seven kinds of the bacillus account for 37%.By traceability analysis,found that there was cross contamination in the connected workshop.%通过对某厂酸奶生产环境微生物菌群分析,发现此环境中微生物以芽孢杆菌属(Bacillus.sp)的菌种居多.对各个采样点分离、纯化的芽孢杆菌进行生理生化和分子鉴定,结果为枯草芽孢杆菌(Bacillus subtilis)占所分离鉴定芽孢杆菌的30%,地衣芽孢杆菌(Bacillus licheniformis)占19%,巨大芽孢杆菌(Bacillus megaterium)占14%,其余7种菌共占37%.对它们进行溯源分析,发现有连通的车间存在交叉污染.

  17. TREATMENT OF SWEET GUM LIGNIN BY LACCASE AND LMS

    Institute of Scientific and Technical Information of China (English)

    HualiWei; ShulanShi; JichengPei

    2004-01-01

    Cellulolytic enzyme lignin (CEL) from sweet gum is treated by laccase and laccase/mediator system (LMS). Phenoli hydroxyl content of lignin is measured, and IR, GPC, 13C-NMR spectrograms are analyzed. Compar. I with control sample, phenolic hydroxyl content of lignin is a little higher after laccase treatment, whereas they are lower after LMStreatment. In LMS, lignin modification by laccase/ABTS is greater than by laccase/VA. It is found from IR that in lignin treated by laccase and LMS, relative content of siringyl hydroxyl group is higher, and α- conjugated carbonyl group content is a little higher. From GPC analysis, compared with control sample, molecular weight decrease after the treatment by laccase and LMS. And the decrement is greater bv laccase alone than by LMS. According to 13C-NMR, relative content of carbonyl group and methoxvl group increase during the treatment by laccase alone, but theamount of them are lower after LMS treatment. And the amount of Cα and Cβ in β-Ο-4 has a little decrement after LMS treatment. It indicates that the oxidation of lignin by laccase and LMS proceed through different reaction pathways.

  18. TREATMENT OF SWEET GUM LIGNIN BY LACCASE AND LMS

    Institute of Scientific and Technical Information of China (English)

    Huali Wei; Shulan Shi; Jicheng Pei

    2004-01-01

    Cellulolytic enzyme lignin (CEL) from sweet gum is treated by laccase and laccase/mediator system (LMS). Phenolic hydroxyl content of lignin is measured, and IR, GPC, 13C-NMR spectrograms are analyzed. Compared with control sample, phenolic hydroxyl content of lignin is a little higher after laccase treatment, whereas they are lower after LMS treatment. In LMS, lignin modification by laccase/ABTS is greater than by laccase/VA. It is found from IR that in lignin treated by laccase and LMS, relative content of siringyl hydroxyl group is higher, and α- conjugated carbonyl group content is a little higher. From GPC analysis, compared with control sample, molecular weight decrease after the treatment by laccase and LMS. And the decrement is greater by laccase alone than by LMS. According to 13C-NMR, relative content of carbonyl group and methoxyl group increase during the treatment by laccase alone, but the amount of them are lower after LMS treatment.And the amount of Cαand C β in β-O-4 has a little decrement after LMS treatment. It indicates that the oxidation of lignin by laccase and LMS proceed through different reaction pathways.

  19. [The flotation characteristics of Bacillus cells and spores].

    Science.gov (United States)

    Stabnikova, E V; Gregirchak, N N; Taranenko, T O

    1991-01-01

    Variations in hydrophobicity of the surface of bacillary cells and their capacity to flotation in the process of batch cultivation have been studied. It is shown that hydrophobicity of the cell surface increases in the course of batch cultivation of Bacillus thuringiensis, B. licheniformis and B. megaterium. Hydrophobicity of spores of the mentioned cultures is considerably higher than that of the vegetative cells. The increase of hydrophobicity of bacillary cells positively correlated with their capacity to flotation. That is why the use of flotation for the age fractionation of bacillary cells is possible: spores are concentrated in the foam while vegetative cells remain in the culture liquid. PMID:1779906

  20. Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermented food condiments.

    Science.gov (United States)

    Ouoba, Labia Irene I; Thorsen, Line; Varnam, Alan H

    2008-06-10

    The ability of various species of Bacillus from fermented seeds of Parkia biglobosa known as African locust bean (Soumbala) and fermented seeds of Hibiscus sabdariffa (Bikalga) was investigated. The study included screening of the isolates by haemolysis on blood agar, detection of toxins in broth and during the fermentation of African locust bean using the Bacillus cereus Enterotoxin Reverse Passive Latex Agglutination test kit (BCET-RPLA) and the Bacillus Diarrhoeal Enterotoxin Visual Immunoassay (BDEVIA). Detection of genes encoding cytotoxin K (CytK), haemolysin BL (Hbl A, Hbl C, Hbl D), non-hemolytic enterotoxin (NheA, NheB, NheC) and EM1 specific of emetic toxin producers was also investigated using PCR with single pair and multiplex primers. Of 41 isolates, 29 Bacillus belonging to the species of B. cereus, Bacillus subtilis, Bacillus licheniformis and Bacillus pumilus showed haemolysis on blood agar. Using RPLA, enterotoxin production was detected for three isolates of B. cereus in broth and all B. cereus (9) in fermented seeds. Using BDEVIA, enterotoxin production was detected in broth as well as in fermented seeds for all B. cereus isolates. None of the isolates belonging to the other Bacillus species was able to produce enterotoxins either by RPLA or BDEVIA. Nhe genes were detected in all B. cereus while Hbl and CytK genes were detected respectively in five and six B. cereus strains. A weak presence of Hbl (A, D) and CytK genes was detected in two isolates of B. subtilis and one of B. licheniformis but results were inconsistent, especially for Hbl genes. The emetic specific gene fragment EM1 was not detected in any of the isolates studied.

  1. Seleção de diferentes meios para produção de lipase a partir de Bacillis licheniformis (UCP 1014

    Directory of Open Access Journals (Sweden)

    Ladiel Luiz Pedrozo Tavares

    2011-01-01

    Full Text Available Development of alternative culture media for microbial enzyme production have been widely exploited in recent decades. The microbial lipases are extracellular enzymes produced in fermentation processes, which favors its extraction, isolation and purification. Bacillus are Gram-positive bacteria, saprophytes, of great importance in various industrial sectors. In this study, we tested three methods of production using B. licheniformis (UCP 1014 media called A, B and C. The kinetics of enzyme production occurred in orbital shaker at 150 rpm, 37 °C, for 96 hours. The collected samples were subjected to the construction of the growth curve, determination of pH and lipolytic activity. The results indicated a better growth in the middle C showing an activity of 256 U/mL, while the means A and B had values of 170 and 153 U/mL, respectively. The results showed that the middle C presented higher enzyme production in the tests.

  2. Origin of laccase gene structural diversity in edible mushrooms

    OpenAIRE

    Billette, Christophe; Gibard, Thierry; Foulongne Oriol, Marie; Savoie, Jean-Michel

    2011-01-01

    Laccase genes have been found in fungi, plants, insects and bacteria. In Basidiomycetes, the number of laccase genes ranges from 0 to 17. The role of these genes is not well known. It seems to be important in fungal interaction, development, melanine synthesis, human and plant pathogenesis, [ectomycorrhizal association and nutrition of the fungi]. Their role as ligninmodifying enzymes is controversial. Laccase phylogeny already published is not congruent with species phylogeny. Phylogeny of g...

  3. Constitutive expression of Botrytis aclada laccase in Pichia pastoris

    OpenAIRE

    Kittl, Roman; Gonaus, Christoph; Pillei, Christian; Haltrich, Dietmar; Ludwig, Roland

    2012-01-01

    The heterologous expression of laccases is important for their large-scale production and genetic engineering—a prerequisite for industrial application. Pichia pastoris is the preferred expression host for fungal laccases. The recently cloned laccase from the ascomycete Botrytis aclada (BaLac) has been efficiently expressed in P. pastoris under the control of the inducible alcohol oxidase (AOX1) promoter. In this study, we compare these results to the constitutive expression in the same organ...

  4. Norway spruce (Picea abies) laccases:Characterization of a laccase in a lignin-forming tissue culture

    Institute of Scientific and Technical Information of China (English)

    Sanna Koutaniemi; Heli A Malmberg; Liisa K Simola; Teemu H Teeri; Anna Karkonen

    2015-01-01

    Secondarily thickened cel wal s of water-conducting vessels and tracheids and support-giving sclerenchyma cel s contain lignin that makes the cel wal s water impermeable and strong. To what extent laccases and peroxidases contribute to lignin biosynthesis in muro is under active evaluation. We performed an in silico study of Norway spruce (Picea abies (L.) Karst.) laccases utilizing available genomic data. As many as 292 laccase encoding sequences (genes, gene fragments, and pseudogenes) were detected in the spruce genome. Out of the 112 genes annotated as laccases, 79 are expressed at some level. We isolated five ful-length laccase cDNAs from developing xylem and an extracel ular lignin-forming cel culture of spruce. In addition, we purified and biochemical y characterized one culture medium laccase from the lignin-forming cel culture. This laccase has an acidic pH optimum (pH 3.8–4.2) for coniferyl alcohol oxidation. It has a high affinity to coniferyl alcohol with an apparent Km value of 3.5 mM;however, the laccase has a lower catalytic efficiency (Vmax/Km) for coniferyl alcohol oxidation compared with some purified culture medium peroxidases. The properties are discussed in the context of the information already known about laccases/coniferyl alcohol oxidases of coniferous plants.

  5. The sponge-associated bacterium Bacillus licheniformis SAB1: A source of antimicrobial compounds

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Wahidullah, S.; Rodrigues, C.; DeSouza, L.

    Skin infection 4. B4 Salmonella typhi Typhoid 5. B5 Shigella flexineri Gastrointestinal infection 6. B6 Klebsiella sp. Urinary tract infection 7. B7 Vibrio cholerae Cholera 8. F1 Fungal pathogens Aspergillus fumigatus Skin infection 9. F2... Rhodotorula sp. Skin infection 10. F3 Candida albicans Candidiasis 11. F4 Cryptococcus neoformans Skin infection 12. F5 Aspergillus niger Skin infection 13. D1 Multi- drug resistant bacteria Streptococcus pyogenes Skin infection 14. D2 Acinetobacter sp...

  6. Structural properties of hydrolyzed high-amylose rice starch by α-amylase from Bacillus licheniformis.

    Science.gov (United States)

    Qin, Fengling; Man, Jianmin; Xu, Bin; Hu, Maozhi; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2011-12-14

    High-amylose cereal starch has a great benefit on human health through its resistant starch (RS) content. Enzyme hydrolysis of native starch is very helpful in understanding the structure of starch granules and utilizing them. In this paper, native starch granules were isolated from a transgenic rice line (TRS) enriched with amylose and RS and hydrolyzed by α-amylase. Structural properties of hydrolyzed TRS starches were studied by X-ray powder diffraction, Fourier transform infrared, and differential scanning calorimetry. The A-type polymorph of TRS C-type starch was hydrolyzed faster than the B-type polymorph, but the crystallinity did not significantly change during enzyme hydrolysis. The degree of order in the external region of starch granule increased with increasing enzyme hydrolysis time. The amylose content decreased at first and then went back up during enzyme hydrolysis. The hydrolyzed starches exhibited increased onset and peak gelatinization temperatures and decreased gelatinization enthalpy on hydrolysis. These results suggested that the B-type polymorph and high amylose that formed the double helices and amylose-lipid complex increased the resistance to BAA hydrolysis. Furthermore, the spectrum results of RS from TRS native starch digested by pancreatic α-amylase and amyloglucosidase also supported the above conclusion. PMID:22059442

  7. Cloning and characterization of a novel L-arabinose isomerase from Bacillus licheniformis

    DEFF Research Database (Denmark)

    Prabhu, Ponnandy; Tiwari, Manish Kumar; Jeya, Marimuthu;

    2008-01-01

    reading frame of 1,422 bp, capable of encoding a polypeptide of 474 amino acid residues with a calculated isoelectric point of pH 4.8 and a molecular mass of 53,500 Da. The gene was overexpressed in E. coli, and the protein was purified as an active soluble form using Ni-NTA chromatography. The molecular...

  8. Anti-biofilm activity of a polysaccharide from marine sponge associated Bacillus licheniformis

    OpenAIRE

    S. M. Abu, Sayem

    2011-01-01

    Secondary metabolites ranging from furanone to exo-polysaccharides have been suggested to have anti-biofilm activity in various recent studies. Among these,Escherichia coli group II capsular polysaccharides were shown to inhibit biofilm formation in a wide range of organisms and more recently marine Vibrio sp. and Kingella kingae were found to secrete complex exopolysaccharides having the potential for broad-spectrum biofilm inhibition and disruption. In this study, a ca. 1800 kDA polysacc...

  9. Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis

    OpenAIRE

    Cordone Angela; Tramice Annabella; Ciavatta Letizia; Manzo Emiliano; Sayem SM; Zanfardino Anna; De Felice Maurilio; Varcamonti Mario

    2011-01-01

    Abstract Background Secondary metabolites ranging from furanone to exo-polysaccharides have been suggested to have anti-biofilm activity in various recent studies. Among these, Escherichia coli group II capsular polysaccharides were shown to inhibit biofilm formation of a wide range of organisms and more recently marine Vibrio sp. were found to secrete complex exopolysaccharides having the potential for broad-spectrum biofilm inhibition and disruption. Results In this study we report that a n...

  10. Induction of Drought Stress Resistance by Multi-Functional PGPR Bacillus licheniformis K11 in Pepper

    OpenAIRE

    Lim, Jong-Hui; Kim, Sang-Dal

    2013-01-01

    Drought stress is one of the major yield affecting factor for pepper plant. The effects of PGPRs were analyzed in relation with drought resistance. The PGPRs inoculated pepper plants tolerate the drought stress and survived as compared to non-inoculated pepper plants that died after 15 days of drought stress. Variations in protein and RNA accumulation patterns of inoculated and non-inoculated pepper plants subjected to drought conditions for 10 days were confirmed by two dimensional polyacryl...

  11. Bleached dissolving pulps applying laccase treatments

    OpenAIRE

    Quintana, Elisabet; Valls Vidal, Cristina; Roncero Vivero, María Blanca

    2012-01-01

    A biobleaching sequence, using a laccase enzyme (Trametes Villosa) in combination with different mediators, was applied to softwood dissolving cellulose in order to study its bleaching efficiency and its potential in terms of kappa number, ISO brightness and viscosity. The tested mediators were classified as synthetic compounds such as HBT (1-hydroxybenzotriazole) and VA (violuric acid), and as natural compounds such as SA (syringaldehyde) and pCA (p-coumaric acid). The influence of the enzym...

  12. Fungal Laccases Degradation of Endocrine Disrupting Compounds

    Directory of Open Access Journals (Sweden)

    Gemma Macellaro

    2014-01-01

    Full Text Available Over the past decades, water pollution by trace organic compounds (ng/L has become one of the key environmental issues in developed countries. This is the case of the emerging contaminants called endocrine disrupting compounds (EDCs. EDCs are a new class of environmental pollutants able to mimic or antagonize the effects of endogenous hormones, and are recently drawing scientific and public attention. Their widespread presence in the environment solicits the need of their removal from the contaminated sites. One promising approach to face this challenge consists in the use of enzymatic systems able to react with these molecules. Among the possible enzymes, oxidative enzymes are attracting increasing attention because of their versatility, the possibility to produce them on large scale, and to modify their properties. In this study five different EDCs were treated with four different fungal laccases, also in the presence of both synthetic and natural mediators. Mediators significantly increased the efficiency of the enzymatic treatment, promoting the degradation of substrates recalcitrant to laccase oxidation. The laccase showing the best performances was chosen to further investigate its oxidative capabilities against micropollutant mixtures. Improvement of enzyme performances in nonylphenol degradation rate was achieved through immobilization on glass beads.

  13. Engineering and Applications of fungal laccases for organic synthesis

    Directory of Open Access Journals (Sweden)

    Ballesteros Antonio

    2008-11-01

    Full Text Available Abstract Laccases are multi-copper containing oxidases (EC 1.10.3.2, widely distributed in fungi, higher plants and bacteria. Laccase catalyses the oxidation of phenols, polyphenols and anilines by one-electron abstraction, with the concomitant reduction of oxygen to water in a four-electron transfer process. In the presence of small redox mediators, laccase offers a broader repertory of oxidations including non-phenolic substrates. Hence, fungal laccases are considered as ideal green catalysts of great biotechnological impact due to their few requirements (they only require air, and they produce water as the only by-product and their broad substrate specificity, including direct bioelectrocatalysis. Thus, laccases and/or laccase-mediator systems find potential applications in bioremediation, paper pulp bleaching, finishing of textiles, bio-fuel cells and more. Significantly, laccases can be used in organic synthesis, as they can perform exquisite transformations ranging from the oxidation of functional groups to the heteromolecular coupling for production of new antibiotics derivatives, or the catalysis of key steps in the synthesis of complex natural products. In this review, the application of fungal laccases and their engineering by rational design and directed evolution for organic synthesis purposes are discussed.

  14. Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger

    NARCIS (Netherlands)

    Tamayo Ramos, J.A.; Berkel, van W.J.H.; Graaff, de L.H.

    2012-01-01

    BACKGROUND: Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and McoB and ascomycete laccase McoG was investigated. RESULTS: The laccase-li

  15. Application of Bacterial Laccases for Sustainable Energy Production

    DEFF Research Database (Denmark)

    Lörcher, Samuel; Koschorreck, Katja; Shipovskov, Stepan;

    of laccase-based biocathodes in the biofuel cells and in the hybrid biobattery-type or photovoltaic power sources could essentially broaden their application, enabling extraction of energy from the sea water/water dissolved oxygen. Here we demonstrate up to 0.8 mW cm-2 extracted power densities and 1.5 month...... operation of domestic devices exploiting cheap and simple hybrid bio-batteries based on fungal laccases covalently attached to carbon materials. The main technological drawback of such systems is that the activity of fungal laccases is restricted to acidic media, which makes them inappropriate for operation...... laccases and electrodes, which resulted in highly efficient bioelectrocatalysis of O2 reduction. The hybrid biobattery exploiting the bacterial laccase biocathode is shown to efficiently operate in basic media....

  16. Bioemulsifier production by a halothermophilic Bacillus strain with potential applications in microbially enhanced oil recovery.

    Science.gov (United States)

    Dastgheib, S M M; Amoozegar, M A; Elahi, E; Asad, S; Banat, I M

    2008-02-01

    A halothermotolerant Gram-positive spore-forming bacterium was isolated from petroleum reservoirs in Iran and identified as Bacillus licheniformis sp. strain ACO1 by phenotypic characterization and 16S rRNA analysis. It showed a high capacity for bioemulsifier production and grew up to 60 degrees C with NaCl at 180 g l(-1). The optimum NaCl concentration, pH and temperature for bioemulsifier production were 4% (w/v), 8.0, and 45 degrees C, respectively. Although ACO1 did not utilize hydrocarbons, it had a high emulsifying activity (E (24) = 65 +/- 5%) on different hydrophobic substrates. Emulsification was optimal while growing on yeast extract as the sole carbon source and NaNO(3) as the nitrogen source. The efficiency of the residual oil recovery increased by 22% after in situ growth of B. licheniformis ACO1 in a sand-pack model saturated with liquid paraffin. PMID:17876532

  17. Paradoxical DNA repair and peroxide resistance gene conservation in Bacillus pumilus SAFR-032.

    Directory of Open Access Journals (Sweden)

    Jason Gioia

    Full Text Available BACKGROUND: Bacillus spores are notoriously resistant to unfavorable conditions such as UV radiation, gamma-radiation, H2O2, desiccation, chemical disinfection, or starvation. Bacillus pumilus SAFR-032 survives standard decontamination procedures of the Jet Propulsion Lab spacecraft assembly facility, and both spores and vegetative cells of this strain exhibit elevated resistance to UV radiation and H2O2 compared to other Bacillus species. PRINCIPAL FINDINGS: The genome of B. pumilus SAFR-032 was sequenced and annotated. Lists of genes relevant to DNA repair and the oxidative stress response were generated and compared to B. subtilis and B. licheniformis. Differences in conservation of genes, gene order, and protein sequences are highlighted because they potentially explain the extreme resistance phenotype of B. pumilus. The B. pumilus genome includes genes not found in B. subtilis or B. licheniformis and conserved genes with sequence divergence, but paradoxically lacks several genes that function in UV or H2O2 resistance in other Bacillus species. SIGNIFICANCE: This study identifies several candidate genes for further research into UV and H2O2 resistance. These findings will help explain the resistance of B. pumilus and are applicable to understanding sterilization survival strategies of microbes.

  18. Contamination profiles and characterisation of Bacillus species in wheat bread and raw materials for bread production.

    Science.gov (United States)

    Rosenkvist, H; Hansen, A

    1995-08-01

    The Bacillus counts in white and wholemeal wheat loaves produced without preservatives or sour dough were consistently 10(6) cfu/g after two days of storage at ambient summer temperatures (25-30 degree C). Identified species were B. subtilis (70%), B. licheniformis (24%), B. pumilus (2%) and B. cereus (2%). The dominance of B. subtilis in bread could be explained by the higher resistance to heat of this species as determined by inoculation studies. Among 14 species isolated from retail bread and wheat grains, B. subtilis was the only species associated with ropiness. Samples of raw materials, particularly bran, seeds and oat products, contained low levels (10(0) - 10(2) cfu/g) of Bacillus spores, surviving a heat treatment (100 degree C, 10 min) corresponding to a baking process. Even low spore levels in raw materials with the frequently isolated species, B. licheniformis (49%) and B. subtilis (10%), resulted in 10(7) Bacillus per g bread crumb in two days as determined by test bakings. The results indicate a need for controlling growth of Bacillus in bread.

  19. Production of a recombinant laccase from Pichia pastoris and biodegradation of chlorpyrifos in a laccase/vanillin system.

    Science.gov (United States)

    Xie, Huifang; Li, Qi; Wang, Minmin; Zhao, Linguo

    2013-06-28

    The recombinant strain P. pastoris GS115-lccC was used to produce laccase with high activity. Factors influencing laccase expression, such as pH, methanol concentration, copper concentration, peptone concentration, shaker rotate speed, and medium volume were investigated. Under the optimal conditions, laccase activity reached 12,344 U/L on day 15. The recombinant enzyme was purified by precipitating and dialyzing to electrophoretic homogeneity, and was estimated to have a molecular mass of about 58 kDa. When guaiacol was the substrate, the laccase showed the highest activity at pH 5.0 and was stable when the pH was 4.5~6.0. The optimal temperature for the laccase to oxidize guaiacol was 60°C, but it was not stable at high temperature. The enzyme could remain stable at 30°C for 5 days. The recombinant laccase was used to degrade chlorpyrifos in several laccase/mediator systems. Among three synthetic mediators (ABTS, HBT, VA) and three natural mediators (vanillin, 2,6-DMP, and guaiacol), vanillin showed the most enhancement on degradation of chlorpyrifos. Both laccase and vanillin were responsible for the degradation of chlorpyrifos. A higher dosage of vanillin may promote a higher level of degradation of chlorpyrifos, and the 2-step addition of vanillin led to 98% chlorpyrifos degradation. The degradation of chlorpyrifos was faster in the L/V system (kobs = 0.151) than that in the buffer solution (kobs = 0.028).

  20. Laccase from Sycamore Maple (Acer pseudoplatanus) Polymerizes Monolignols.

    Science.gov (United States)

    Sterjiades, R; Dean, J F; Eriksson, K E

    1992-07-01

    Current understanding of the final oxidative steps leading to lignin deposition in trees and other higher plants is limited with respect to what enzymes are involved, where they are localized, how they are transported, and what factors regulate them. With the use of cell suspension cultures of sycamore maple (Acer pseudoplatanus), an in-depth study of laccase, one of the oxidative enzymes possibly responsible for catalyzing the dehydrogenative polymerization of monolignols in the extracellular matrix, was undertaken. The time course for secretion of laccase into suspension culture medium was determined with respect to age and mass of the cells. Laccase was completely separated from peroxidase activity by hydrophobic interaction column chromatography, and its purity was assessed with different types of gel electrophoresis (isoelectric focusing-, native-, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Amino acid and glycosyl analyses of the purified enzyme were compared with those reported from previous studies of plant and fungal laccases. The specific activity of laccase toward several common substrates, including monolignols, was determined. Unlike a laccase purified from the Japanese lacquer tree (Rhus vernicifera), laccase from sycamore maple oxidized sinapyl, coniferyl, and p-coumaryl alcohols to form water-insoluble polymers (dehydrogenation polymers).

  1. Preparation of Magnetic Chitosan Nanoparticles and Immobilization of Laccase

    Institute of Scientific and Technical Information of China (English)

    FANG Hua; HUANG Jun; DING Liyun; LI Mingtian; CHEN Zhao

    2009-01-01

    The magnetic chitosan nanoparticles were prepared by reversed-phase suspension method using Span-80 as an emulsifier, glutaraldehyde as cross-linking reagent. And the nanoparticles were characterized by TEM, FT-IR and hysteresis loop. The results show that the nanoparticles are spherical and almost superparamagnetic. The laccase was immobilized on nanoparticles by adsorption and subsequently by cross-linking with glutaraldehyde. The immobilization conditions and charac-terizations of the immobilized laccase were investigated. The optimal immobilization conditions were as follows: 10 mL of phosphate buffer (0.1 M, pH 7.0) containing 50 mg of magnetic chitosan nanoparticles, 1.0 mg·mL-1 of laccase and 1% (v/v) glutaraldehyde, immobilization temperature of 4 ℃ and immobilization time of 4 h. The immobilized laccase exhibited an appreciable catalytic capability (480 units·g-1 support) and had good storage stability and operation stability. The Km of immobilized and free laccase for ABTS were 140.6 and 31.1 μM in phosphate buffer (0.1 M, pH 3.0) at 37 ℃, respectively. The immobilized laccase is a good candidate for the research and development of biosensors based on laccase catalysis.

  2. Production of laccase by Coriolus versicolor and its application in decolorization of dyestuffs : (Ⅰ) Production of laccase by batch and repeated-batch processes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The production of laccase by Coriolus versicolor wasstudied. The effect of cultivation conditions on laccase productionby Coriolus versicolor was examined to obtain optimal medium andcultivation conditions. Both batch and repeated-batch processeswere performed for laccase production. In repeated-batchfermentation with self-immobilized mycelia, total of 14 cycles wereperformed with laccase activity in the range between 3.4 and 14.8U/ml.

  3. Laccase immobilized on magnetic carriers for biotechnology applications

    Energy Technology Data Exchange (ETDEWEB)

    Rotkova, Jana [Department of Biological and Biochemical Sciences, University of Pardubice, Strossova 239, 530 03 Pardubice (Czech Republic); Sulakova, Romana [Department of Technology of Organic Compounds, Doubravice 41, 533 53 Pardubice (Czech Republic); Korecka, Lucie; Zdrazilova, Pavla; Jandova, Miroslava [Department of Biological and Biochemical Sciences, University of Pardubice, Strossova 239, 530 03 Pardubice (Czech Republic); Lenfeld, Jiri; Horak, Daniel [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho nam. 2, 162 06 Praha (Czech Republic); Bilkova, Zuzana [Department of Biological and Biochemical Sciences, University of Pardubice, Strossova 239, 530 03 Pardubice (Czech Republic)], E-mail: Zuzana.Bilkova@upce.cz

    2009-05-15

    Laccase catalyzing the oxidation of p-diphenols has been applied in many industrial and biotechnology areas. Immobilized form of laccase has overcome the problem with contamination of the final product. Nevertheless sensitive enzymes immobilized to the matrix can be inactivated by the environmental conditions. The aim of this research was to prepare carrier with improved activity and responsible stability even under extreme reaction conditions. Laccase immobilized through carbohydrate moieties on magnetic hydrazide bead cellulose with a final activity of 0.63 I.U./1 ml of settled carrier confirmed that carriers with oriented immobilized enzyme might be useful in routine biocatalytic applications.

  4. Degradation of various dyes using Laccase enzyme.

    Science.gov (United States)

    Dhaarani, S; Priya, A K; Rajan, T Vel; Kartic, D Navamani

    2012-10-01

    Disposal of untreated dyeing effluent in water bodies, from textile industries, cause serious environmental and health hazards. The chemical structures of dye molecules are designed to resist fading on exposure to light or chemical attack, and they prove to be quite resistant towards microbial degradation. Therefore, current conventional biological processes may not be able to meet wastewater discharge criteria and reuse. An enzymatic treatment undergoes oxidative cleavage avoiding formation of toxic amines. Laccase is a multi-copper containing protein that catalyzes the oxidation of a wide range of aromatic substrates concomitantly with the reduction of molecular oxygen to water. UV visible spectral analysis of various synthetic dyes was performed in the study and wavelengths of maximum absorbance determined. Laccase enzyme was obtained from the fungi Pleorotus ostreatus. The enzyme showed high efficiency against Malachite Green, Basic Red and Acid Majanta with decolorization capacities of 97%, 94% and 94% respectively. Further, these dyes can be used for optimization of degradation parameters and analysis of degradation products.

  5. In silico Analysis for Laccase-mediated Bioremediation of the Emerging Pharmaceutical Pollutants

    Directory of Open Access Journals (Sweden)

    Anjali Singh

    2015-12-01

    Full Text Available Laccases, a copper oxidase enzyme, has been employed for bioremediation of anthropogenic pollutants in the recent past. Laccase has a broad range of substrate specificity which offers the prospect for screening in numerable xenobiotics. The present study was aimed to use protein-ligand docking as a tool for prediction of biodegradation of selected pharmaceutical pollutants. A comparative study was also done to determine the binding efficacy of bacterial and fungal laccase for those selected pollutants. The laccase-pollutant docking was carried out using HEX software. The docking scores of bacterial and fungal laccase for predefined pollutants were comparable to ABTS, a substrate for laccase, which suggested that laccase might be able to degrade emerging pharmaceutical pollutants. The docking analysis approach can be useful in prediction of binding competence of pharmaceutical pollutants with laccase for in situ laccase-mediated bioremediation.

  6. Effect of inducers and culturing processes on laccase synthesis in Phanerochaete chrysosporium NCIM 1197 and the constitutive expression of laccase isozymes

    DEFF Research Database (Denmark)

    Manavalan, Arulmani

    2006-01-01

    Phanerochaete chrysosporium NCIM 1197 constitutively secretes considerable level of extracellular enzyme laccase in defined growth medium. Effect of several inducers on laccase production was attempted and found that copper sulphate alone at 30 mM concentration accelerate the laccase production...

  7. In vivo and in vitro digestibility of plant ingredients and diets by Bacillus phytases in tilapia, Oreochromis mossambicus

    Directory of Open Access Journals (Sweden)

    Rande B. Dechavez

    2012-12-01

    Full Text Available This study aimed to evaluate four Bacillus phytases for their efficacy in making plant-baseddiets bioavailable to tilapia (Oreochromis mossambicus using in vivo digestibility measurement and todetermine the in vitro level of dephosphorylation. The four Bacillus strains used were B. pumilus , B. megaterium , B. coagulans, and B. licheniformis. Phytase activities varied between bacterial sources aswell as between feed ingredients. For the cassava leaf meal, Pi released was highest in B. pumilus andwas not significantly different from those of B. megaterium and B. licheniformis. For the soybean meal, Pirelease was in this decreasing order: B. megaterium > B. pumilus > B. coagulans > B. licheniformisphytase. For the corn meal, addition of B. licheniformis phytase to the reaction mixture resulted insignificantly the highest Pi released followed by B. coagulans phytase which was not significantly differentfrom that of B. megaterium phytase which released the lowest Pi. Pi released by B. pumilus phytase fromcorn meal was not significantly different from the lowest Pi release of B. megaterium phytase. Theapparent digestibility coefficient (ADC values for the feed dry matter (DM ranged from 86.3 to 88.3%and were not significantly different from each other (p > 0.05.

  8. Sequence analysis and homology modeling of laccase from Pycnoporus cinnabarinus.

    Science.gov (United States)

    Meshram, Rohan J; Gavhane, Aj; Gaikar, Rb; Bansode, Ts; Maskar, Au; Gupta, Ak; Sohni, Sk; Patidar, Ma; Pandey, Tr; Jangle, Sn

    2010-09-20

    Industrial effluents of textile, paper, and leather industries contain various toxic dyes as one of the waste material. It imparts major impact on human health as well as environment. The white rot fungus Pycnoporus cinnabarinus Laccase is generally used to degrade these toxic dyes. In order to decipher the mechanism of process by which Laccase degrade dyes, it is essential to know its 3D structure. Homology modeling was performed in presented work, by satisfying Spatial restrains using Modeller Program, which is considered as standard in this field, to generate 3D structure of Laccase in unison, SWISSMODEL web server was also utilized to generate and verify the alternative models. We observed that models created using Modeller stands better on structure evaluation tests. This study can further be used in molecular docking techniques, to understand the interaction of enzyme with its mediators like 2, 2-azinobis (3-ethylbenzthiazoline-6-sulfonate) (ABTS) and Vanillin that are known to enhance the Laccase activity.

  9. Laccase Catalyzed Synthesis of Iodinated Phenolic Compounds with Antifungal Activity

    OpenAIRE

    Julian Ihssen; Mark Schubert; Linda Thöny-Meyer; Michael Richter

    2014-01-01

    Iodine is a well known antimicrobial compound. Laccase, an oxidoreductase which couples the one electron oxidation of diverse phenolic and non-phenolic substrates to the reduction of oxygen to water, is capable of oxidizing unreactive iodide to reactive iodine. We have shown previously that laccase-iodide treatment of spruce wood results in a wash-out resistant antimicrobial surface. In this study, we investigated whether phenolic compounds such as vanillin, which resembles sub-structures of ...

  10. Induction and Transcriptional Regulation of Laccases in Fungi

    OpenAIRE

    Piscitelli, Alessandra; Giardina, Paola; Lettera, Vincenzo; Pezzella, Cinzia; Sannia, Giovanni; Faraco, Vincenza

    2011-01-01

    Fungal laccases are phenol oxidases widely studied for their use in several industrial applications, including pulp bleaching in paper industry, dye decolourisation, detoxification of environmental pollutants and revalorization of wastes and wastewaters. The main difficulty in using these enzymes at industrial scale ensues from their production costs. Elucidation of the components and the mechanisms involved in regulation of laccase gene expression is crucial for increasing the productivity o...

  11. Maintenance metabolism and carbon fluxes in Bacillus species

    Directory of Open Access Journals (Sweden)

    Decasper Seraina

    2008-06-01

    Full Text Available Abstract Background Selection of an appropriate host organism is crucial for the economic success of biotechnological processes. A generally important selection criterion is a low maintenance energy metabolism to reduce non-productive consumption of substrate. We here investigated, whether various bacilli that are closely related to Bacillus subtilis are potential riboflavin production hosts with low maintenance metabolism. Results While B. subtilis exhibited indeed the highest maintenance energy coefficient, B. licheniformis and B. amyloliquefaciens exhibited only statistically insignificantly reduced maintenance metabolism. Both B. pumilus and B. subtilis (natto exhibited irregular growth patterns under glucose limitation such that the maintenance metabolism could not be determined. The sole exception with significantly reduced maintenance energy requirements was the B. licheniformis strain T380B. The frequently used spo0A mutation significantly increased the maintenance metabolism of B. subtilis. At the level of 13C-detected intracellular fluxes, all investigated bacilli exhibited a significant flux through the pentose phosphate pathway, a prerequisite for efficient riboflavin production. Different from all other species, B. subtilis featured high respiratory tricarboxylic acid cycle fluxes in batch and chemostat cultures. In particular under glucose-limited conditions, this led to significant excess formation of NADPH of B. subtilis, while anabolic consumption was rather balanced with catabolic NADPH formation in the other bacilli. Conclusion Despite its successful commercial production of riboflavin, B. subtilis does not seem to be the optimal cell factory from a bioenergetic point of view. The best choice of the investigated strains is the sporulation-deficient B. licheniformis T380B strain. Beside a low maintenance energy coefficient, this strain grows robustly under different conditions and exhibits only moderate acetate overflow, hence

  12. Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or gamma-polyglutamate.

    Science.gov (United States)

    Ornek, D; Jayaraman, A; Syrett, B C; Hsu, C-H; Mansfeld, F B; Wood, T K

    2002-04-01

    Pitting corrosion of aluminum 2024 in Luria Bertani medium was reduced by the secretion of anionic peptides by engineered and natural Bacillus biofilms and was studied in continuous reactors using electrochemical impedance spectroscopy. Compared to sterile controls, pitting was reduced dramatically by the presence of the biofilms. The secretion of a 20 amino acid polyaspartate peptide by an engineered Bacillus subtilis WB600/pBE92-Asp biofilm slightly reduced the corrosion rate of the passive aluminum alloy at pH 6.5; however, the secretion of gamma-polyglutamate by a Bacillus licheniformis biofilm reduced the corrosion rate by 90% (compared to the B. subtilis WB600/pBE92 biofilm which did not secrete polyaspartate or gamma-polyglutamate). The corrosion potential ( E(corr)) of aluminum 2024 was increased by about 0.15-0.44 V due to the formation of B. subtilis and B. licheniformis biofilms as compared to sterile controls. The increase of E(corr) and the observed prevention of pitting indicate that the pitting potential ( E(pit)) had increased. This result and the further decrease of corrosion rates for the passive aluminum alloy suggest that the rate of the anodic metal dissolution reaction was reduced by an inhibitor produced by the biofilms. Purified gamma-polyglutamate also decreased the corrosion rates of aluminum 2024. PMID:11956749

  13. Application of nisin and pediocin against resistance and germination of Bacillus spores in sous vide products.

    Science.gov (United States)

    Cabo, M L; Torres, B; Herrera, J J R; Bernárdez, M; Pastoriza, L

    2009-03-01

    Sous vide and other mild preservation techniques are increasingly demanded by consumers. However, spores often will survive in minimally processed foods, causing both spoilage and safety problems. The main objective of the present work was to solve an industrial spoilage problem associated with two sous vide products: mushrooms and shellfish salad. Bacillus subtilis and Bacillus licheniformis predominated as the most heat-resistant organisms isolated from mushrooms and shellfish salad, respectively. The combined effects of nisin and pediocin against resistance and germination of both Bacillus species were described by empirical equations. Whereas nisin was more effective for decreasing thermal resistance of B. subtilis spores, pediocin was more effective against B. licheniformis. However, a significant positive interaction between both biopeptides for decreasing the proportion of vegetative cells resulting from thermoresistant spores was demonstrated in later experiments, thus indicating the increased efficacy of applying high concentrations of both bacteriocins. This efficacy was further demonstrated in additional challenge studies carried out at 15 degrees C in the two sous vide products: mushrooms and shellfish salad. Whereas no vegetative cells were detected after 90 days in the presence of bacteriocins, almost 100% of the population in nontreated samples of mushrooms and shellfish salad was in the vegetative state after 17 and 43 days of storage at 15 degrees C, respectively. PMID:19343939

  14. Removal of monomer delignification products by laccase from Trametes versicolor.

    Science.gov (United States)

    Kolb, Michaela; Sieber, Volker; Amann, Manfred; Faulstich, Martin; Schieder, Doris

    2012-01-01

    The influence of a laccase from Trametes versicolor on the removal of phenolic monomers in liquid hot water pretreated wheat straw supernatants (LHW-S) was examined. Beside the total phenol content derived by Folin-Ciocalteu (FC-) assay, phenolic monomers were measured via headspace-solid phase micro-extraction (HS-SPME)/GC-MS. A notable decrease of the phenols was achieved using 0.2 and 0.5 U/mL laccase whilst higher dosage showed no improvement. Nearly all kind of monomer phenolic compounds identified in the LHW-S were found to be removed after 24h. However, acetophenone and 4-hydroxybenzaldehyde (HBA) were obviously not affected by laccase. Summarizing, three laccase reaction groups (LRG) of phenolic monomers could be classified: immediate removal (LRG-A), degradation after 1 day (LRG-B), no effect of laccase (LRG-C). Additionally, HS-SPME/GC was found to be a powerful tool to study the reaction of laccase and phenolic monomers in complex lignocellulose derived solutions.

  15. Control of Anthracnose Caused by Colletotrichum musae on Curcuma alismatifolia Gagnep. Using Antagonistic Bacillus spp.

    Directory of Open Access Journals (Sweden)

    Supuk Mahadtanapuk

    2007-01-01

    Full Text Available Over 400 bacterial strains, isolated from leaf surfaces of Curcuma alismatifolia Gagnep. and hot springs in the Chiang Mai province of northern Thailand, were screened in vitro for antagonistic activity against Colletotrichum musae, an anthracnose fungus. Three isolates provided greater than 75% growth inhibition of the fungus in vitro and were identified as Bacillus licheniformis, B. amyloliquefaciens and B. subtilis. Using in planta tests, B. amyloliquefaciens and B. subtilis were shown to efficiently colonize the curcuma bracts, provide a statistically significant growth suppression of C. musae over that of B. licheniformis, and all three isolates could provide 100% inhibition of conidial fungal germination. When B. licheniformis was co-inoculated in combination with either of the other two bacteria, the ability of B. amyloliquefaciens and B. subtilis to suppress the fungal disease was dramatically reduced. Both B. amyloliquefaciens and B. subtilis were found to contain an isoform of iturin A with antifungal activity against C. musae. As a preventative measure to control the spread of C. musae and reduce the severity of fungal infections, B. amyloliquefaciens could be used to inoculate curcuma flowers cost effectively and reduce the need for the toxic synthetic fungicides currently in use.

  16. Assessment of the Bacteriocinogenic Potential of Marine Bacteria Reveals Lichenicidin Production by Seaweed-Derived Bacillus spp.

    Directory of Open Access Journals (Sweden)

    Gillian E. Gardiner

    2012-10-01

    Full Text Available The objectives of this study were (1 to assess the bacteriocinogenic potential of bacteria derived mainly from seaweed, but also sand and seawater, (2 to identify at least some of the bacteriocins produced, if any and (3 to determine if they are unique to the marine environment and/or novel. Fifteen Bacillus licheniformis or pumilus isolates with antimicrobial activity against at least one of the indicator bacteria used were recovered. Some, at least, of the antimicrobials produced were bacteriocins, as they were proteinaceous and the producers displayed immunity. Screening with PCR primers for known Bacillus bacteriocins revealed that three seaweed-derived Bacillus licheniformis harbored the bli04127 gene which encodes one of the peptides of the two-peptide lantibiotic lichenicidin. Production of both lichenicidin peptides was then confirmed by mass spectrometry. This is the first definitive proof of bacteriocin production by seaweed-derived bacteria. The authors acknowledge that the bacteriocin produced has previously been discovered and is not unique to the marine environment. However, the other marine isolates likely produce novel bacteriocins, as none harboured genes for known Bacillus bacteriocins.

  17. Bacillus anthracis

    OpenAIRE

    2003-01-01

    The events of 11 September 2001 and the subsequent anthrax outbreaks have shown that the West needs to be prepared for an increasing number of terrorist attacks, which may include the use of biological warfare. Bacillus anthracis has long been considered a potential biological warfare agent, and this review will discuss the history of its use as such. It will also cover the biology of this organism and the clinical features of the three disease forms that it can produce: cutaneous, gastrointe...

  18. Bacillus anthracis

    OpenAIRE

    BOSERET, GÉRALDINE; Linden, Annick; Mainil, Jacques

    2002-01-01

    The literature describes several methods for detection of Bacillus anthracis based on application of specific bacteriophages. The following methods of pahoinpitely are used to identify the causative agent of anthrax: the reaction of bacteriophage titer growth (RBTG), the reaction of phage adsorption (RPA), fagoterapii method (FTM) and fluorescentserological method (FSM). The essence of RBTG consists in the following: if there is the researchform of bacteria presents in the test material, then...

  19. CHARACTERIZATION OF THE GROWTH AND LACCASE ACTIVITY OF STRAINS OF PLEUROTUS OSTREATUS IN SUBMERGED FERMENTATION

    Directory of Open Access Journals (Sweden)

    Araceli Tomasini

    2011-02-01

    Full Text Available Kinetic parameters of growth and laccase activity of five ATCC strains of Pleurotus ostreatus in submerged fermentation were evaluated. The best strain for laccase production and the time of maximum laccase activity were also determined. The greatest laccase activity (37490 U/L, laccase productivity (78 U/L h, specific growth rate (0.026/h, and specific rate of laccase production (119 U/gX h were observed with the strain of P. ostreatus ATCC 32783. In general, the isoenzyme patterns were different in all the cases; however, all the strains showed two laccase bands in the same position in the gel. Not all strains responded in the same way to the addition of Cu in the culture medium. In general, the sensitivity to Cu could be used to select strains having high laccase activity for commercial exploitation.

  20. Laccase treatment of recycled blue dyed paper: Physical properties and fiber charge

    Digital Repository Service at National Institute of Oceanography (India)

    Mohandass, C.; Knutson, K.; Ragauskas, A.J.

    Recycled blue colored paper was treated with laccase under various combinations of physical and chemical parameters including enzyme concentration, temperature, oxygen, and reaction time. Laccase treatment of recycled dyed pulp increased acid group...

  1. Identification and Pathogenic Potential of Clinical Bacillus and Paenibacillus Isolates.

    Science.gov (United States)

    Celandroni, Francesco; Salvetti, Sara; Gueye, Sokhna Aissatou; Mazzantini, Diletta; Lupetti, Antonella; Senesi, Sonia; Ghelardi, Emilia

    2016-01-01

    The soil-related Bacillus and Paenibacillus species have increasingly been implicated in various human diseases. Nevertheless, their identification still poses problems in the clinical microbiology laboratory and, with the exception of Bacillus anthracis and Bacillus cereus, little is known on their pathogenicity for humans. In this study, we evaluated the use of matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS) in the identification of clinical isolates of these genera and conducted genotypic and phenotypic analyses to highlight specific virulence properties. Seventy-five clinical isolates were subjected to biochemical and MALDI-TOF MS identification. 16S rDNA sequencing and supplemental tests were used to solve any discrepancies or failures in the identification results. MALDI-TOF MS significantly outperformed classical biochemical testing for correct species identification and no misidentification was obtained. One third of the collected strains belonged to the B. cereus species, but also Bacillus pumilus and Bacillus subtilis were isolated at high rate. Antimicrobial susceptibility testing showed that all the B. cereus, B. licheniformis, B. simplex, B. mycoides, Paenibacillus glucanolyticus and Paenibacillus lautus isolates are resistant to penicillin. The evaluation of toxin/enzyme secretion, toxin-encoding genes, motility, and biofilm formation revealed that B. cereus displays the highest virulence potential. However, although generally considered nonpathogenic, most of the other species were shown to swim, swarm, produce biofilms, and secrete proteases that can have a role in bacterial virulence. In conclusion, MALDI-TOF MS appears useful for fast and accurate identification of Bacillus and Paenibacillus strains whose virulence properties make them of increasing clinical relevance.

  2. Identification and Pathogenic Potential of Clinical Bacillus and Paenibacillus Isolates.

    Directory of Open Access Journals (Sweden)

    Francesco Celandroni

    Full Text Available The soil-related Bacillus and Paenibacillus species have increasingly been implicated in various human diseases. Nevertheless, their identification still poses problems in the clinical microbiology laboratory and, with the exception of Bacillus anthracis and Bacillus cereus, little is known on their pathogenicity for humans. In this study, we evaluated the use of matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS in the identification of clinical isolates of these genera and conducted genotypic and phenotypic analyses to highlight specific virulence properties. Seventy-five clinical isolates were subjected to biochemical and MALDI-TOF MS identification. 16S rDNA sequencing and supplemental tests were used to solve any discrepancies or failures in the identification results. MALDI-TOF MS significantly outperformed classical biochemical testing for correct species identification and no misidentification was obtained. One third of the collected strains belonged to the B. cereus species, but also Bacillus pumilus and Bacillus subtilis were isolated at high rate. Antimicrobial susceptibility testing showed that all the B. cereus, B. licheniformis, B. simplex, B. mycoides, Paenibacillus glucanolyticus and Paenibacillus lautus isolates are resistant to penicillin. The evaluation of toxin/enzyme secretion, toxin-encoding genes, motility, and biofilm formation revealed that B. cereus displays the highest virulence potential. However, although generally considered nonpathogenic, most of the other species were shown to swim, swarm, produce biofilms, and secrete proteases that can have a role in bacterial virulence. In conclusion, MALDI-TOF MS appears useful for fast and accurate identification of Bacillus and Paenibacillus strains whose virulence properties make them of increasing clinical relevance.

  3. Incorporation of copper ions into crystals of T2 copper-depleted laccase from Botrytis aclada

    OpenAIRE

    Osipov, E. M.; Polyakov, K. M.; Tikhonova, T. V.; Kittl, R.; Dorovatovskii, P.V.; Shleev, S. V.; Popov, V. O.; Ludwig, R

    2015-01-01

    Laccases belong to the class of multicopper oxidases catalyzing the oxidation of phenols accompanied by the reduction of molecular oxygen to water without the formation of hydrogen peroxide. The activity of laccases depends on the number of Cu atoms per enzyme molecule. The structure of type 2 copper-depleted laccase from Botrytis aclada has been solved previously. With the aim of obtaining the structure of the native form of the enzyme, crystals of the depleted laccase were soaked in Cu+- an...

  4. Bacterial versus fungal laccase: potential for micropollutant degradation.

    Science.gov (United States)

    Margot, Jonas; Bennati-Granier, Chloé; Maillard, Julien; Blánquez, Paqui; Barry, David A; Holliger, Christof

    2013-01-01

    Relatively high concentrations of micropollutants in municipal wastewater treatment plant (WWTP) effluents underscore the necessity to develop additional treatment steps prior to discharge of treated wastewater. Microorganisms that produce unspecific oxidative enzymes such as laccases are a potential means to improve biodegradation of these compounds. Four strains of the bacterial genus Streptomyces (S. cyaneus, S. ipomoea, S. griseus and S. psammoticus) and the white-rot fungus Trametes versicolor were studied for their ability to produce active extracellular laccase in biologically treated wastewater with different carbon sources. Among the Streptomyces strains evaluated, only S. cyaneus produced extracellular laccase with sufficient activity to envisage its potential use in WWTPs. Laccase activity produced by T. versicolor was more than 20 times greater, the highest activity being observed with ash branches as the sole carbon source. The laccase preparation of S. cyaneus (abbreviated LSc) and commercial laccase from T. versicolor (LTv) were further compared in terms of their activity at different pH and temperatures, their stability, their substrate range, and their micropollutant oxidation efficiency. LSc and LTv showed highest activities under acidic conditions (around pH 3 to 5), but LTv was active over wider pH and temperature ranges than LSc, especially at near-neutral pH and between 10 and 25°C (typical conditions found in WWTPs). LTv was also less affected by pH inactivation. Both laccase preparations oxidized the three micropollutants tested, bisphenol A, diclofenac and mefenamic acid, with faster degradation kinetics observed for LTv. Overall, T. versicolor appeared to be the better candidate to remove micropollutants from wastewater in a dedicated post-treatment step. PMID:24152339

  5. Bacterial versus fungal laccase: potential for micropollutant degradation

    Science.gov (United States)

    2013-01-01

    Relatively high concentrations of micropollutants in municipal wastewater treatment plant (WWTP) effluents underscore the necessity to develop additional treatment steps prior to discharge of treated wastewater. Microorganisms that produce unspecific oxidative enzymes such as laccases are a potential means to improve biodegradation of these compounds. Four strains of the bacterial genus Streptomyces (S. cyaneus, S. ipomoea, S. griseus and S. psammoticus) and the white-rot fungus Trametes versicolor were studied for their ability to produce active extracellular laccase in biologically treated wastewater with different carbon sources. Among the Streptomyces strains evaluated, only S. cyaneus produced extracellular laccase with sufficient activity to envisage its potential use in WWTPs. Laccase activity produced by T. versicolor was more than 20 times greater, the highest activity being observed with ash branches as the sole carbon source. The laccase preparation of S. cyaneus (abbreviated LSc) and commercial laccase from T. versicolor (LTv) were further compared in terms of their activity at different pH and temperatures, their stability, their substrate range, and their micropollutant oxidation efficiency. LSc and LTv showed highest activities under acidic conditions (around pH 3 to 5), but LTv was active over wider pH and temperature ranges than LSc, especially at near-neutral pH and between 10 and 25°C (typical conditions found in WWTPs). LTv was also less affected by pH inactivation. Both laccase preparations oxidized the three micropollutants tested, bisphenol A, diclofenac and mefenamic acid, with faster degradation kinetics observed for LTv. Overall, T. versicolor appeared to be the better candidate to remove micropollutants from wastewater in a dedicated post-treatment step. PMID:24152339

  6. Comparative Study of Substrates and Inhibitors of Azospirillum lipoferum and Pyricularia oryzae Laccases

    OpenAIRE

    Faure, D.; Bouillant, M.; Bally, R.

    1995-01-01

    Azospirillum lipoferum and Pyricularia oryzae laccases were compared, using several substrates and inhibitors. Sixteen phenolic or nonphenolic compounds were found to be substrates of both fungal and bacterial laccases. In the presence of different phenol oxidase inhibitors, P. oryzae and A. lipoferum laccase activities had similar properties.

  7. Laccase oxidation and removal of toxicants released during combustion processes.

    Science.gov (United States)

    Prasetyo, Endry Nugroho; Semlitsch, Stefan; Nyanhongo, Gibson S; Lemmouchi, Yahia; Guebitz, Georg M

    2016-02-01

    This study reports for the first time the ability of laccases adsorbed on cellulose acetate to eliminate toxicants released during combustion processes. Laccases directly oxidized and eliminated more than 40% w/v of 14 mM of 1,4-dihydroxybenzene (hydroquinone); 2-methyl-1,4-benzenediol (methylhydroquinone); 1,4-dihydroxy-2,3,5-trimethylbenzene (trimethylhydroquinone); 3-methylphenol (m-cresol); 4-methylphenol (p-cresol); 2-methylphenol (o-cresol); 1,3-benzenediol (resorcinol); 1,2-dihydroxybenzene (catechol); 3,4-dihydroxytoluene (4-methylcatechol) and 2-naphthylamine. Further, laccase oxidized 2-naphthylamine, hydroquinone, catechol, methylhydroquinone and methylcatechol were also able to in turn mediate the elimination of >90% w/v of toxicants which are per-se non-laccase substrates such as 3-aminobiphenyl; 4-aminobiphenyl; benz[a]anthracene; 3-(1-nitrosopyrrolidin-2-yl) pyridine (NNN); formaldehyde; 4-(methyl-nitrosamino-1-(3-pyridyl)-1-butanone (NNK); 2-butenal (crotonaldehyde); nitric oxide and vinyl cyanide (acrylonitrile). These studies demonstrate the potential of laccase immobilized on solid supports to remove many structurally different toxicants released during combustion processes. This system has great potential application for in situ removal of toxicants in the manufacturing, food processing and food service industries. PMID:26408262

  8. Laccase: Microbial Sources, Production, Purification, and Potential Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Shraddha

    2011-01-01

    Full Text Available Laccase belongs to the blue multicopper oxidases and participates in cross-linking of monomers, degradation of polymers, and ring cleavage of aromatic compounds. It is widely distributed in higher plants and fungi. It is present in Ascomycetes, Deuteromycetes and Basidiomycetes and abundant in lignin-degrading white-rot fungi. It is also used in the synthesis of organic substance, where typical substrates are amines and phenols, the reaction products are dimers and oligomers derived from the coupling of reactive radical intermediates. In the recent years, these enzymes have gained application in the field of textile, pulp and paper, and food industry. Recently, it is also used in the design of biosensors, biofuel cells, as a medical diagnostics tool and bioremediation agent to clean up herbicides, pesticides and certain explosives in soil. Laccases have received attention of researchers in the last few decades due to their ability to oxidize both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. It has been identified as the principal enzyme associated with cuticular hardening in insects. Two main forms have been found: laccase-1 and laccase-2. This paper reviews the occurrence, mode of action, general properties, production, applications, and immobilization of laccases within different industrial fields.

  9. Identification and safety evaluation of Bacillus species occurring in high numbers during spontaneous fermentations to produce Gergoush, a traditional Sudanese bread snack

    DEFF Research Database (Denmark)

    Thorsen, Line; Abdelgadir, Warda S.; Rønsbo, Mie Hvillum;

    2011-01-01

    Gergoush is a naturally fermented Sudanese Bread snack produced in three fermentation steps (primary starter, adapted starter and final dough), followed by three baking steps for a half to one hour at above 200°C. This study examines the microbiota of two sets of fermentations performed at a trad......Gergoush is a naturally fermented Sudanese Bread snack produced in three fermentation steps (primary starter, adapted starter and final dough), followed by three baking steps for a half to one hour at above 200°C. This study examines the microbiota of two sets of fermentations performed....... cereus sensu lato, 16-27% as Bacillus licheniformis, 8-32% as Bacillus subtilis and 4-20% as Bacillus sonorensis. During the second set of fermentation trials performed in 2009, the Bacillus spp. and B. cereus occurred in numbers of between 7.7-9.9 and 6.1-7.8 log(10) CFU/g, respectively, while...

  10. DECOLORIZATION OF DENIM DYESTUFF BY LACCASE ENZYME

    Directory of Open Access Journals (Sweden)

    Serap GEDİKLİ

    2011-02-01

    Full Text Available Large quantities of dyes used in the textile industry are discharged to recipient environment during manufacture. This situation is beginning of a process which is difficult to recovery and relevant toenvironment and human health. Therefore, pollution of dyestuff produced textile industry will be reduced by cleaning of polluted area and integrating biological approaches with technologies havingpolluting potential. In scope of this study, commercial denim dye was decolorized by using high laccase activity culture supernatant of Trametes versicolor ATCC 200801 pellets grown in potato dextrose broth including wheat bran and determined optimum conditions. In the result of experiments done, pH, initial dye concentration, temperature and incubation time were selected 4.0, 75 mg/l, 55 oCand 120 minutes, respectively. 68.02 % of decolorization was obtained at the determined optimum conditions. Furthermore, adding different metal ions to find in textile wastewater and supplementarychemical materials used fabric dyeing process to reaction medium, potential of decolorization copied with improvement was investigated effects of these. When the obtained data were examined, pollutantswhich tested at optimum conditions were observed not affected negatively decolorization. Even in the presence of Tween 80 detected the maximum inhibitor effect, 54.68 % of decolorization was obtained.

  11. Mesoporous Silicas with Tunable Morphology for the Immobilization of Laccase

    Directory of Open Access Journals (Sweden)

    Victoria Gascón

    2014-05-01

    Full Text Available Siliceous ordered mesoporous materials (OMM are gaining interest as supports for enzyme immobilization due to their uniform pore size, large surface area, tunable pore network and the introduction of organic components to mesoporous structure. We used SBA-15 type silica materials, which exhibit a regular 2D hexagonal packing of cylindrical mesopores of uniform size, for non-covalent immobilization of laccase. Synthesis conditions were adjusted in order to obtain supports with different particle shape, where those with shorter channels had higher loading capacity. Despite the similar isoelectric points of silica and laccase and the close match between the size of laccase and the pore dimensions of these SBA-15 materials, immobilization was achieved with very low leaching. Surface modification of macro-/mesoporous amorphous silica by grafting of amine moieties was proved to significantly increase the isoelectric point of this support and improve the immobilization yield.

  12. Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus.

    Directory of Open Access Journals (Sweden)

    Shalini Porwal

    Full Text Available Bacillus represents microbes of high economic, medical and biodefense importance. Bacillus strain identification based on 16S rRNA sequence analyses is invariably limited to species level. Secondly, certain discrepancies exist in the segregation of Bacillus subtilis strains. In the RDP/NCBI databases, out of a total of 2611 individual 16S rDNA sequences belonging to the 175 different species of the genus Bacillus, only 1586 have been identified up to species level. 16S rRNA sequences of Bacillus anthracis (153 strains, B. cereus (211 strains, B. thuringiensis (108 strains, B. subtilis (271 strains, B. licheniformis (131 strains, B. pumilus (83 strains, B. megaterium (47 strains, B. sphaericus (42 strains, B. clausii (39 strains and B. halodurans (36 strains were considered for generating species-specific framework and probes as tools for their rapid identification. Phylogenetic segregation of 1121, 16S rDNA sequences of 10 different Bacillus species in to 89 clusters enabled us to develop a phylogenetic frame work of 34 representative sequences. Using this phylogenetic framework, 305 out of 1025, 16S rDNA sequences presently classified as Bacillus sp. could be identified up to species level. This identification was supported by 20 to 30 nucleotides long signature sequences and in silico restriction enzyme analysis specific to the 10 Bacillus species. This integrated approach resulted in identifying around 30% of Bacillus sp. up to species level and revealed that B. subtilis strains can be segregated into two phylogenetically distinct groups, such that one of them may be renamed.

  13. TtMCO: A highly thermostable laccase-like multicopper oxidase from the thermophilic Thermobaculum terrenum

    DEFF Research Database (Denmark)

    Brander, Søren; Mikkelsen, Jørn Dalgaard; Kepp, Kasper Planeta

    2015-01-01

    This paper reports the identification, heterologous expression in Escherichia coli and characterization of TtMCO from the thermophilic bacterium Thermobaculum terrenum, the first laccase-like multi-copper oxidase (LMCO) from the distinct Phylum Chloroflexi. TtMCO has only 39% identity to its clos...... closest characterized homologue, CotA from Bacillus subtilis, but sequence and spectrophotometry confirmed copper coordination similar to that of LMCOs. TtMCO is extremely thermophilic with a half-time of inactivation of 2.24 days at 70 degrees C and 350 min at 80°C and pH 7, consistent...... with a hyperthermal habitat of the host. TtMCO was screened for activity against 56 chemically diverse substrates. It displayed limited activity on classical LMCO substrates, such as e.g. phenolics, transition metals, or bilirubin. Highest activities were observed for nitrogen-containing aromatic compounds, i.e. 1...

  14. Excretion of laccase by sycamore (Acer pseudoplatanus L.) cells. Effects of a copper deficiency.

    Science.gov (United States)

    Bligny, R; Gaillard, J; Douce, R

    1986-07-15

    Copper-deprived sycamore (Acer pseudoplatanus) cells do not excrete molecules of active laccase in their culture medium. In the range of 2-100 micrograms of copper initially present per litre of nutrient solution, the total laccase activity measured in the cell suspensions at the end of the exponential phase of growth was closely proportional to the amount of added copper. However, copper-deprived cells excreted the laccase apoprotein (laccase without copper) at the same rate as copper-supplied cells excreted the active, copper-containing, laccase. When the culture medium was initially supplied with limiting amounts of copper, the active laccase was excreted until all copper molecules were metabolized. Thereafter, the laccase apoprotein was excreted. Consequently, at the end of the exponential phase of growth, the cell supernatants contained a mixture of apoprotein and copper-containing laccase. After purification and concentration, this mixture of copper-containing laccase (blue) and laccase apoprotein (slightly yellow) showed a yellow-green colour. Under copper-limiting culture conditions an equivalent decrease of Type 1, Type 2 and Type 3 Cu2+ was observed. Addition of copper to copper-deficient enzyme solutions does not result in a recovery of the enzyme activity. However, when added to copper-deficient sycamore-cell suspensions, copper induced a recovery of the excretion of active enzyme, at a normal rate, within about 10 h. The first molecules of active laccase were excreted after 3-4 h.

  15. Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes.

    Directory of Open Access Journals (Sweden)

    Luka Ausec

    Full Text Available Fungal laccases have been used in various fields ranging from processes in wood and paper industries to environmental applications. Although a few bacterial laccases have been characterized in recent years, prokaryotes have largely been neglected as a source of novel enzymes, in part due to the lack of knowledge about the diversity and distribution of laccases within Bacteria. In this work genes for laccase-like enzymes were searched for in over 2,200 complete and draft bacterial genomes and four metagenomic datasets, using the custom profile Hidden Markov Models for two- and three-domain laccases. More than 1,200 putative genes for laccase-like enzymes were retrieved from chromosomes and plasmids of diverse bacteria. In 76% of the genes, signal peptides were predicted, indicating that these bacterial laccases may be exported from the cytoplasm, which contrasts with the current belief. Moreover, several examples of putatively horizontally transferred bacterial laccase genes were described. Many metagenomic sequences encoding fragments of laccase-like enzymes could not be phylogenetically assigned, indicating considerable novelty. Laccase-like genes were also found in anaerobic bacteria, autotrophs and alkaliphiles, thus opening new hypotheses regarding their ecological functions. Bacteria identified as carrying laccase genes represent potential sources for future biotechnological applications.

  16. Bioinformatic Analysis Reveals High Diversity of Bacterial Genes for Laccase-Like Enzymes

    Science.gov (United States)

    Ausec, Luka; Zakrzewski, Martha; Goesmann, Alexander; Schlüter, Andreas; Mandic-Mulec, Ines

    2011-01-01

    Fungal laccases have been used in various fields ranging from processes in wood and paper industries to environmental applications. Although a few bacterial laccases have been characterized in recent years, prokaryotes have largely been neglected as a source of novel enzymes, in part due to the lack of knowledge about the diversity and distribution of laccases within Bacteria. In this work genes for laccase-like enzymes were searched for in over 2,200 complete and draft bacterial genomes and four metagenomic datasets, using the custom profile Hidden Markov Models for two- and three- domain laccases. More than 1,200 putative genes for laccase-like enzymes were retrieved from chromosomes and plasmids of diverse bacteria. In 76% of the genes, signal peptides were predicted, indicating that these bacterial laccases may be exported from the cytoplasm, which contrasts with the current belief. Moreover, several examples of putatively horizontally transferred bacterial laccase genes were described. Many metagenomic sequences encoding fragments of laccase-like enzymes could not be phylogenetically assigned, indicating considerable novelty. Laccase-like genes were also found in anaerobic bacteria, autotrophs and alkaliphiles, thus opening new hypotheses regarding their ecological functions. Bacteria identified as carrying laccase genes represent potential sources for future biotechnological applications. PMID:22022440

  17. Insights into laccase producing organisms, fermentation states, purification strategies, and biotechnological applications.

    Science.gov (United States)

    Forootanfar, Hamid; Faramarzi, Mohammad Ali

    2015-01-01

    Laccases are phenol oxidases belonging to the superfamily of multicopper oxidases and are found in bacteria, fungi, lichens, higher plants, and insects. Over the past few decades, laccases and laccase mediator systems (LMS) have found uses in a wide range of technological applications such as textile dye decolorization, industrial wastewater detoxification, pulp bleaching, chemical synthesis, and development of miniaturized biosensors. This has encouraged numerous studies to find and purify laccases with exploitable characteristics. The main aim of the present review is to summarize the rich literature data gained in recent years from the studies on laccases, focusing on the organisms that produce them, the methods used for screening, laccase activity assays, purification strategies, and the application of laccases as eco-friendly biocatalysts. PMID:26399693

  18. Regulation of Laccase and Cellulase Genes Transcription in Agaricus bisporus

    OpenAIRE

    Ohga, Shoji; Wood, David A.

    1998-01-01

    A time course for laccase and cellulase genes transcription of Agaricus bisporus compost culture are examined. The results of assays for laccase gene leel show that the expression of this gene increased in the compost until pinning stage of development. In the fruiting cultures the amount of leel declined rapidly over a 4-5 d period immediately. Cellulase gene celS expression contrasted sharply appeared with leel expression by remaining at a low level until after the pins were seen. The cel3...

  19. Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance.

    Science.gov (United States)

    Wang, Feng; Guo, Chen; Yang, Liang-rong; Liu, Chun-Zhao

    2010-12-01

    Newly large-pore magnetic mesoporous silica nanoparticles (MMSNPs) with wormhole framework structures were synthesized for the first time by using tetraethyl orthosilicate as the silica source and amine-terminated Jeffamine surfactants as template. Iminodiacerate was attached on these MMSNPs through a silane-coupling agent and chelated with Cu(2+). The Cu(2+)-chelated MMSNPs (MMSNPs-CPTS-IDA-Cu(2+)) showed higher adsorption capacity of 98.1 mg g(-1)-particles and activity recovery of 92.5% for laccase via metal affinity adsorption in comparison with MMSNPs via physical adsorption. The Michaelis constant (K(m)) and catalytic constant (k(cat)) of laccase immobilized on the MMSNPs-CPTS-IDA-Cu(2+) were 3.28 mM and 155.4 min(-1), respectively. Storage stability and temperature endurance of the immobilized laccase on MMSNPs-CPTS-IDA-Cu(2+) increased significantly, and the immobilized laccase retained 86.6% of its initial activity after 10 successive batch reactions operated with magnetic separation. PMID:20655206

  20. Evaluation of Fungal Laccase Immobilized on Natural Nanostructured Bacterial Cellulose.

    Science.gov (United States)

    Chen, Lin; Zou, Min; Hong, Feng F

    2015-01-01

    The aim of this work was to assess the possibility of using native bacterial nanocellulose (BC) as a carrier for laccase immobilization. BC was synthesized by Gluconacetobacter xylinus, which was statically cultivated in a mannitol-based medium and was freeze-dried to form BC sponge after purification. For the first time, fungal laccase from Trametes versicolor was immobilized on the native nanofibril network-structured BC sponge through physical adsorption and cross-linking with glutaraldehyde. The properties including morphologic and structural features of the BC as well as the immobilized enzyme were thoroughly investigated. It was found that enzyme immobilized by cross-linking exhibited broader pH operation range of high catalytic activity as well as higher running stability compared to free and adsorbed enzyme. Using ABTS as substrate, the optimum pH value was 3.5 for the adsorption-immobilized laccase and 4.0 for the crosslinking-immobilized laccase. The immobilized enzyme retained 69% of the original activity after being recycled seven times. Novel applications of the BC-immobilized enzyme tentatively include active packaging, construction of biosensors, and establishment of bioreactors.

  1. Synthetic Dye Decolorization by Three Sources of Fungal Laccase

    Directory of Open Access Journals (Sweden)

    Hamid Forootanfar

    2012-12-01

    Full Text Available Decolorization of six synthetic dyes using three sources of fungal laccase with the origin of Aspergillus oryzae,Trametes versicolor, and Paraconiothyrium variabile was investigated. Among them, the enzyme from P. variabile was the most efficient which decolorized bromophenol blue (100%, commassie brilliant blue (91%, panseu-S (56%,Rimazol brilliant blue R (RBBR; 47%, Congo red (18.5%, and methylene blue (21.3% after 3 h incubation in presence of hydroxybenzotriazole (HBT; 5 mM as the laccase mediator. It was also observed that decolorization efficiency of all dyes was enhanced by increasing of HBT concentration from 0.1 mM to 5 mM. Laccase from A.oryzae was able to remove 53% of methylene blue and 26% of RBBR after 30 min incubation in absence of HBT, but the enzyme could not efficiently decolorize other dyes even in presence of 5 mM of HBT. In the case of laccase from T. versicolor, only RBBR was decolorized (93% in absence of HBT after 3 h incubation.

  2. Synthetic dye decolorization by three sources of fungal laccase

    Directory of Open Access Journals (Sweden)

    Forootanfar Hamid

    2012-12-01

    Full Text Available Abstract Decolorization of six synthetic dyes using three sources of fungal laccase with the origin of Aspergillus oryzae, Trametes versicolor, and Paraconiothyrium variabile was investigated. Among them, the enzyme from P. variabile was the most efficient which decolorized bromophenol blue (100%, commassie brilliant blue (91%, panseu-S (56%, Rimazol brilliant blue R (RBBR; 47%, Congo red (18.5%, and methylene blue (21.3% after 3 h incubation in presence of hydroxybenzotriazole (HBT; 5 mM as the laccase mediator. It was also observed that decolorization efficiency of all dyes was enhanced by increasing of HBT concentration from 0.1 mM to 5 mM. Laccase from A. oryzae was able to remove 53% of methylene blue and 26% of RBBR after 30 min incubation in absence of HBT, but the enzyme could not efficiently decolorize other dyes even in presence of 5 mM of HBT. In the case of laccase from T. versicolor, only RBBR was decolorized (93% in absence of HBT after 3 h incubation.

  3. Evaluation of fungal laccase immobilized on natural nanostructured bacterial cellulose

    Directory of Open Access Journals (Sweden)

    Lin eChen

    2015-11-01

    Full Text Available The aim of this work was to assess the possibility of using native bacterial nanocellulose (BC as a carrier for laccase immobilization. BC was synthesized by Gluconacetobacter xylinus, which was statically cultivated in a mannitol-based medium and was freeze-dried to form BC sponge after purification. For the first time, fungal laccase from Trametes versicolor was immobilized on the native nanofibril network-structured BC sponge through physical adsorption and cross-linking with glutaraldehyde. The properties including morphologic and structural features of the BC as well as the immobilized enzyme were thoroughly investigated. It was found that enzyme immobilized by cross-linking exhibited broader pH operation range of high catalytic activity as well as higher running stability compared to free and adsorbed enzyme. Using ABTS as substrate, the optimum pH value was 3.5 for the adsorption-immobilized laccase and 4.0 for the crosslinking-immobilized laccase. The immobilized enzyme retained 69% of the original activity after being recycled 7 times. Novel applications of the BC-immobilized enzyme tentatively include active packaging, construction of biosensors, and establishment of bioreactors.

  4. Evaluation of Fungal Laccase Immobilized on Natural Nanostructured Bacterial Cellulose.

    Science.gov (United States)

    Chen, Lin; Zou, Min; Hong, Feng F

    2015-01-01

    The aim of this work was to assess the possibility of using native bacterial nanocellulose (BC) as a carrier for laccase immobilization. BC was synthesized by Gluconacetobacter xylinus, which was statically cultivated in a mannitol-based medium and was freeze-dried to form BC sponge after purification. For the first time, fungal laccase from Trametes versicolor was immobilized on the native nanofibril network-structured BC sponge through physical adsorption and cross-linking with glutaraldehyde. The properties including morphologic and structural features of the BC as well as the immobilized enzyme were thoroughly investigated. It was found that enzyme immobilized by cross-linking exhibited broader pH operation range of high catalytic activity as well as higher running stability compared to free and adsorbed enzyme. Using ABTS as substrate, the optimum pH value was 3.5 for the adsorption-immobilized laccase and 4.0 for the crosslinking-immobilized laccase. The immobilized enzyme retained 69% of the original activity after being recycled seven times. Novel applications of the BC-immobilized enzyme tentatively include active packaging, construction of biosensors, and establishment of bioreactors. PMID:26617585

  5. Reductant-dependent electron distribution among redox sites of laccase

    DEFF Research Database (Denmark)

    Farver, O; Goldberg, M; Wherland, S;

    1978-01-01

    Rhus laccase (monophenol monooxygenase, monophenol,dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) an O2/H2O oxidoreductase containing four copper ions bound to three redox sites (type 1, type 2, and type 3 Cu pair), was titrated anaerobically with several reductants having various ch...

  6. Evaluation of Fungal Laccase Immobilized on Natural Nanostructured Bacterial Cellulose

    Science.gov (United States)

    Chen, Lin; Zou, Min; Hong, Feng F.

    2015-01-01

    The aim of this work was to assess the possibility of using native bacterial nanocellulose (BC) as a carrier for laccase immobilization. BC was synthesized by Gluconacetobacter xylinus, which was statically cultivated in a mannitol-based medium and was freeze-dried to form BC sponge after purification. For the first time, fungal laccase from Trametes versicolor was immobilized on the native nanofibril network-structured BC sponge through physical adsorption and cross-linking with glutaraldehyde. The properties including morphologic and structural features of the BC as well as the immobilized enzyme were thoroughly investigated. It was found that enzyme immobilized by cross-linking exhibited broader pH operation range of high catalytic activity as well as higher running stability compared to free and adsorbed enzyme. Using ABTS as substrate, the optimum pH value was 3.5 for the adsorption-immobilized laccase and 4.0 for the crosslinking-immobilized laccase. The immobilized enzyme retained 69% of the original activity after being recycled seven times. Novel applications of the BC-immobilized enzyme tentatively include active packaging, construction of biosensors, and establishment of bioreactors. PMID:26617585

  7. Cellular fatty acid profile and H(+)-ATPase activity to assess acid tolerance of Bacillus sp. for potential probiotic functional attributes.

    Science.gov (United States)

    Shobharani, P; Halami, Prakash M

    2014-11-01

    The present study has been focused widely on comparative account of probiotic qualities of Bacillus spp. for safer usage. Initially, 170 heat resistant flora were isolated and selected for non-pathogenic cultures devoid of cytK, hblD, and nhe1 virulence genes. Subsequently, through biochemical tests along with 16S rRNA gene sequencing and fatty acid profiling, the cultures were identified as Bacillus megaterium (AR-S4), Bacillus subtilis (HR-S1), Bacillus licheniformis (Csm1-1a and HN-S1), and Bacillus flexus (CDM4-3c and CDM3-1). The selected cultures showed 70-80 % survival under simulated gastrointestinal condition which was also confirmed through H(+)-ATPase production. The amount of H(+)-ATPase increased by more than 2-fold when grown at pH 2 which support for the acid tolerance ability of Bacillus isolates. The study also examined the influence of acidic pH on cellular fatty acid composition of Bacillus spp. A remarkable shift in the fatty acid profile was observed at acidic pH through an increased amount of even numbered fatty acid (C16 and C18) in comparison with odd numbered (C15 and C17). Additionally, the cultures exhibited various probiotic functional properties. Overall, the study increases our understanding of Bacillus spp. and will allow both industries and consumers to choose for well-defined probiotic with possible health benefits. PMID:25125040

  8. Conditions Optimizing and Application of Laccase-mediator System (LMS) for the Laccase-catalyzed Pesticide Degradation

    Science.gov (United States)

    Jin, Xiaoting; Yu, Xiangyang; Zhu, Guangyan; Zheng, Zuntao; Feng, Fayun; Zhang, Zhiyong

    2016-01-01

    A high capacity of laccase from Trametes versicolor capable of degrading pesticides has been revealed. The conditions for degrading of five selected pesticides including chlorpyrifos, chlorothalonil, pyrimethanil, atrazine and isoproturon with the purified laccases from Trametes versicolor were optimized. The results showed that the optimum conditions for the highest activity were pH at 5.0 and temperature at 25 °C. The best mediators were violuric acid for pyrimethanil and isoproturon, vanillin for chlorpyrifos, and acetosyringone and HBT for chlorothalonil and atrazine, respectively. The laccase was found to be stable at a pH range from 5.0 to 7.0 and temperature from 25 to 30 °C. It was observed that each pesticide required a different laccase mediator concentration typically between 4.0–6.0 mmol/L. In the experiment, the degradation rates of pyrimethanil and isoproturon were significantly faster than those of chlorpyrifos, chlorothalonil and atrazine. For example, it was observed that pyrimethanil and isoproturon degraded up to nearly 100% after 24 hours while the other three pesticides just reached up 90% of degradation after 8 days of incubation. PMID:27775052

  9. Enhancing the laccase production and laccase gene expression in the white-rot fungus Trametes velutina 5930 with great potential for biotechnological applications by different metal ions and aromatic compounds.

    Directory of Open Access Journals (Sweden)

    Yang Yang

    Full Text Available Laccase is useful for various biotechnological and industrial applications. The white-rot fungus Trametes velutina 5930 and its laccase, isolated from the Shennongjia Nature Reserve in China by our laboratory, has great potential for practical application in environmental biotechnology. However, the original level of laccase produced by Trametes velutina 5930 was relatively low in the absence of any inducer. Therefore, in order to enhance the laccase production by Trametes velutina 5930 and make better use of this fungus in the field of environmental biotechnology, the regulation of laccase production and laccase gene expression in Trametes velutina 5930 were investigated in this study. Different metal ions such as Cu(2+ and Fe(2+ could stimulate the laccase synthesis and laccase gene transcription in Trametes velutina 5930. Some aromatic compounds structurally related to lignin, such as tannic acid, syringic acid, cinnamic acid, gallic acid and guaiacol, could also enhance the level of laccase activity and laccase gene transcription. We also found that there existed a positive synergistic effect of aromatic compound and metal ion on the laccase production and laccase gene transcription in Trametes velutina 5930. Taken together, our study may contribute to the improvement of laccase productivity by Trametes velutina 5930.

  10. Enhancing the laccase production and laccase gene expression in the white-rot fungus Trametes velutina 5930 with great potential for biotechnological applications by different metal ions and aromatic compounds.

    Science.gov (United States)

    Yang, Yang; Wei, Fuxiang; Zhuo, Rui; Fan, Fangfang; Liu, Huahua; Zhang, Chen; Ma, Li; Jiang, Mulan; Zhang, Xiaoyu

    2013-01-01

    Laccase is useful for various biotechnological and industrial applications. The white-rot fungus Trametes velutina 5930 and its laccase, isolated from the Shennongjia Nature Reserve in China by our laboratory, has great potential for practical application in environmental biotechnology. However, the original level of laccase produced by Trametes velutina 5930 was relatively low in the absence of any inducer. Therefore, in order to enhance the laccase production by Trametes velutina 5930 and make better use of this fungus in the field of environmental biotechnology, the regulation of laccase production and laccase gene expression in Trametes velutina 5930 were investigated in this study. Different metal ions such as Cu(2+) and Fe(2+) could stimulate the laccase synthesis and laccase gene transcription in Trametes velutina 5930. Some aromatic compounds structurally related to lignin, such as tannic acid, syringic acid, cinnamic acid, gallic acid and guaiacol, could also enhance the level of laccase activity and laccase gene transcription. We also found that there existed a positive synergistic effect of aromatic compound and metal ion on the laccase production and laccase gene transcription in Trametes velutina 5930. Taken together, our study may contribute to the improvement of laccase productivity by Trametes velutina 5930.

  11. Enzymatic synthesis of bioactive compounds by Rhus laccase from Chinese Rhus vernicifera

    Institute of Scientific and Technical Information of China (English)

    WAN YunYang; LU Rong; AKIYAMA Kazuhiro; MIYAKOSHI Tetsuo; DU YuMin

    2007-01-01

    A simple one step synthesis of pinoresinol and its derivatives-active components of Du-Zhong (Eucommia ulmoides)-from coniferyl alcohol and p-courmaryl alcohol with higher yields was achieved by Rhus laccases (RL) catalysis in water miscible organic solvents. Biomacromolecules dehydrogenative polymers (DHP) were only synthesized by fungal laccases, not by RL. The structures and the reaction mechanism were discussed to promote the understanding of the function of laccases in the process of lignin biosynthesis.

  12. Modeling Based Structural Insights into Biodegradation of the Herbicide Diuron by Laccase-1 from Ceriporiopsis subvermispora

    OpenAIRE

    Vieira, Ana Carolina; Marschalk, Cidnei; Biavatti, Débora Carina; Lorscheider, Carla Andréia; Peralta, Rosane Marina; Seixas, Flavio Augusto Vicente

    2015-01-01

    The herbicide diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is used in many agricultural crops and non-crop areas worldwide, leading to the pollution of the aquatic environment by soil leaching. White rot fungi and its lignin modifying enzymes, peroxidases and laccases, are responsible for its degradation. Therefore, it is of interest to explore the potential use of Ceriporiopsis subvermispora laccase (CersuLac1) in the biotransformation of this herbicide by using its enzyme laccase. Howev...

  13. Determination of the Influence of Substrate Concentration on Enzyme Selectivity Using Whey Protein Isolate and Bacillus licheniformis Protease

    NARCIS (Netherlands)

    Butré, C.I.; Sforza, S.; Gruppen, H.; Wierenga, P.A.

    2014-01-01

    Increasing substrate concentration during enzymatic protein hydrolysis results in a decrease in hydrolysis rate. To test if changes in the mechanism of hydrolysis also occur, the enzyme selectivity was determined. The selectivity is defined quantitatively as the relative rate of hydrolysis of each c

  14. Competition for nitrate and glucose between Pseudomonas fluorescens and Bacillus licheniformis under continuous or fluctuating anoxic conditions

    NARCIS (Netherlands)

    Nijburg, J.W.; Gerards, S.; Laanbroek, H.J.

    1998-01-01

    The dissimilatory nitrate-reducing bacterial community in the rhizosphere of aerenchymatous plant species such as Glyceria maxima, consists of oxidative. denitrifying and fermentative nitrate-ammonifying bacteria. To study the respective ecological niches of both types of nitrate-reducing bacteria,

  15. Competition for nitrate and glucose between Pseudomonas fluorescens and Bacillus licheniformis under continuous or fluctuating anoxic conditions

    NARCIS (Netherlands)

    Nijburg, J.W.; Gerards, S.; Laanbroek, H.J.

    1998-01-01

    The dissimilatory nitrate-reducing bacterial community in the rhizosphere of aerenchymatous plant species such as Glyceria maxima, consists of oxidative, denitrifying and fermentative nitrate-ammonifying bacteria. To study the respective ecological niches of both types of nitrate-reducing bacteria,

  16. Influence of different silica derivatives in the immobilization and stabilization of a Bacillus licheniformis protease (Subtilisin Carlsberg)

    OpenAIRE

    Ferreira, L.; Ramos, M. A.; Dordick, J S; Gil, M. H.

    2003-01-01

    Alcalase 2T, a commercial preparation of Subtilisin Carlsberg, was covalent immobilized onto physiochemically characterized silica supports. The effect of mean pore diameter and surface chemistry on enzyme activity in the hydrolysis of casein has been examined. Two sets of chemically distinct silica supports were used presenting terminal amino (SAPTES) or hydroxyl groups (STESPM-pHEMA). The percentage of immobilized protein was smaller in SAPTES (31-39%) than in STESPM-pHEMA (62-71%), but pre...

  17. Sol–gel immobilization of Alcalase from Bacillus licheniformis for application in the synthesis of C-terminal peptide amides

    NARCIS (Netherlands)

    Corici, L.N.; Frissen, A.E.; Zoelen, van D.J.; Eggen, I.F.; Peter, F.; Davidescu, C.M.; Boeriu, C.G.

    2011-01-01

    Alcalase 2.4L FG, a commercial preparation of Subtilisin A, was physically entrapped in glass sol–gel matrices using alkoxysilanes of different types mixed with tetramethoxysilane (TMOS). The materials were used for catalyzing C-terminal amidation of Z-Ala-Phe-OMe in a mixture of tert-butanol/DMF. F

  18. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with alpha-amylase from Bacillus licheniformis

    NARCIS (Netherlands)

    Baks, T.; Bruins, M.E.; Matser, A.M.; Janssen, A.E.M.; Boom, R.M.

    2008-01-01

    Enzymatic hydrolysis of starch can be used to obtain various valuable hydrolyzates with different compositions. The effects of starch pretreatment, enzyme addition point, and hydrolysis conditions on the hydrolyzate composition and reaction rate during wheat starch hydrolysis with ¿-amylase from Bac

  19. Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis

    Digital Repository Service at National Institute of Oceanography (India)

    Dusane, D.H.; Damare, S.R.; Nancharaiah, Y.V.; Ramaiah, N.; Venugopalan, V.P.; Kumar, A.R.; Zinjarde, S.S.

    incubation period, the slides were removed, rinsed twice with sterile phosphate buffer (50 mM, pH 7.0) to remove the planktonic cells and the biofilms were stained with BacLight Live/Dead stain (Molecular Probes, Eugene). The cell viability was assessed... inhibits biofilm formation of the human pathogens Escherichia coli and Staphylococcus aureus [35]. 4-phenylbutanoic acid obtained from a marine strain of B. pumilus is also reported to be effective in inhibiting bacterial biofilms [36]. Interestingly...

  20. Cagelike mesoporous silica encapsulated with microcapsules for immobilized laccase and 2, 4-DCP degradation.

    Science.gov (United States)

    Yang, Junya; Huang, Yan; Yang, Yuxiang; Yuan, Hongming; Liu, Xiangnong

    2015-12-01

    In this study, cage-like mesoporous silica was used as the carrier to immobilize laccase by a physical approach, followed by encapsulating with chitosan/alginate microcapsule membranes to form microcapsules of immobilized laccase based on layer-by-layer technology. The relationship between laccase activity recovery/leakage rate and the coating thickness was simultaneously investigated. Because the microcapsule layers have a substantial network of pores, they act as semipermeable membranes, while the laccase immobilized inside the microcapsules acts as a processing plant for degradation of 2,4-dichlorophenol. The microcapsules of immobilized laccase were able to degrade 2,4-dichlorophenol within a wide range of 2,4-dichlorophenol concentration, temperature and pH, with mean degradation rate around 62%. Under the optimal conditions, the thermal stability and reusability of immobilized laccase were shown to be improved significantly, as the removal rate and degradation rate remained over 40.2% and 33.8% respectively after 6cycles of operation. Using mass spectrometry (MS) and nuclear magnetic resonance (NMR), diisobutyl phthalate and dibutyl phthalate were identified as the products of 2,4-dichlorophenol degradation by the microcapsules of immobilized laccase and laccase immobilized by a physical approach, respectively, further demonstrating the degradation mechanism of 2,4-dichlorophenol by microcapsule-immobilized laccase. PMID:26702968

  1. Study on Laccase-Catalyzed Oxidation of Disubstituted Ferrocene and π-arene-π-cyclopentadienyliron Derivatives

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    It is studied that Rhus vernicifera laccase catalyzed oxidation of 26 disubstituted ferrocene and its metal complexes, π-arene-π-cyclopentadienyliron derivatives and metal meso-(tetra-4-sulfanatophenyl)porphyrin in the diethylene glycol monobutyl ether (DGBE)/phosphate buffer (V/V,1/5).It is found that 1,1'-bishydroxylmethy1 ferrocene etc 16 compounds are new substrates of laccase. The relation of structure and function of substrates is discussed. The affective factors of laccase-catalyzed oxidation of 1,1'-bishydroxylmethyl ferrocene--pH, temperature, substrate concentration, laccase quantity and surfactant were investigated further.

  2. An acid-stable laccase from sclerotium rolfsii with potential for wool dye decolourization

    OpenAIRE

    Ryan, S.; Schnitzhofer, W; Tzanov, Tzanko; Paulo, Artur Cavaco

    2003-01-01

    The plant pathogen basidiomycete S. rolfsii secretes two laccases (SRL1 and SRL2) with molecular weights of 55 and 86 kDa, respectively. Laccase production was shown to be inducible by the addition of 2,5-xylidine to the cultural media. After treatment with a combination of chitinase and -1,3-glucanase, two different laccases were isolated from the sclerotia depending on the stage of sclerotia development. The more prominent laccase, SRL1, was purified and found to decolourize the i...

  3. Effect of different compounds on the induction of laccase production by Agaricus blazei.

    Science.gov (United States)

    Valle, J S; Vandenberghe, L P S; Oliveira, A C C; Tavares, M F; Linde, G A; Colauto, N B; Soccol, C R

    2015-01-01

    Laccases are polyphenol oxidases produced by many fungi and have many applications in textile, food and beverage, and pulp and paper industries. Laccase production can be induced using aromatic or phenolic compounds that mostly affect the transcription of laccase-encoding genes. In this study, we analyzed laccase and biomass production by Agaricus blazei in the presence of different concentrations of nitrogen, copper, and inducers such as pyrogallol, veratryl alcohol, xylidine, vanillin, guaiacol, and ethanol. Laccase production by A. blazei U2-4 reached 43.8 U/mL in the presence of 2.8 g/L nitrogen and 150 μM copper. However, addition of copper to the cultivation medium decreased biomass production. Different compounds differentially induced laccase production by A. blazei. Moreover, different concentrations of these inducers exerted different effects on laccase activity. Ethanol (1.0 mM), guaiacol (0.5 mM), and vanillin (0.5 mM) were the best inducers and increased laccase activity by 120% (A. blazei U2-2), 30% (A. blazei U2-3), and 9% (A. blazei U2-4), respectively. In contrast, pyrogallol and xylidine decreased laccase activity but increased biomass production. PMID:26634556

  4. Immobilized laccase of Cerrena unicolor for elimination of endocrine disruptor micropollutants.

    Science.gov (United States)

    Songulashvili, George; Jimenéz-Tobón, Gloria A; Jaspers, Charles; Penninckx, Michel J

    2012-08-01

    The white-rot fungus Cerrena unicolor C-139 produced 450 000 U l(-1) of laccase when cultivated in submerged (50 ml) fermentation of wheat bran. Laccase (benzenediol: oxygen oxidoreductase, EC 1.10.3.2.), from C. unicolor C-139 was immobilized covalently on control porosity carrier silica beads. The activity of the immobilized laccase was approximately 15.8 units per gram of silica beads. The pH optimum was between 2.5 and 3.0 for free and immobilized laccase. The immobilization of enzyme appeared to be the main factor for retention of laccase activity at high temperature of 80 °C. The apparent K(m) value (100 μmol) of immobilized laccase from C. unicolor C-139 was 6.7 times higher than free laccase (15 μmol) using 2,2-azino-bis-[3-ethylthiazoline-6-sulfonate] (ABTS) as the substrate. Immobilized laccase was able to eliminate 80 % of Bisphenol A, 40 % of Nonylphenol, and 60 % of Triclosan from solutions containing 50 μmol of each micropollutant separately. The experiments were run three times consecutively with the same immobilized laccase without loss of enzyme activity. PMID:22862916

  5. Cagelike mesoporous silica encapsulated with microcapsules for immobilized laccase and 2, 4-DCP degradation.

    Science.gov (United States)

    Yang, Junya; Huang, Yan; Yang, Yuxiang; Yuan, Hongming; Liu, Xiangnong

    2015-12-01

    In this study, cage-like mesoporous silica was used as the carrier to immobilize laccase by a physical approach, followed by encapsulating with chitosan/alginate microcapsule membranes to form microcapsules of immobilized laccase based on layer-by-layer technology. The relationship between laccase activity recovery/leakage rate and the coating thickness was simultaneously investigated. Because the microcapsule layers have a substantial network of pores, they act as semipermeable membranes, while the laccase immobilized inside the microcapsules acts as a processing plant for degradation of 2,4-dichlorophenol. The microcapsules of immobilized laccase were able to degrade 2,4-dichlorophenol within a wide range of 2,4-dichlorophenol concentration, temperature and pH, with mean degradation rate around 62%. Under the optimal conditions, the thermal stability and reusability of immobilized laccase were shown to be improved significantly, as the removal rate and degradation rate remained over 40.2% and 33.8% respectively after 6cycles of operation. Using mass spectrometry (MS) and nuclear magnetic resonance (NMR), diisobutyl phthalate and dibutyl phthalate were identified as the products of 2,4-dichlorophenol degradation by the microcapsules of immobilized laccase and laccase immobilized by a physical approach, respectively, further demonstrating the degradation mechanism of 2,4-dichlorophenol by microcapsule-immobilized laccase.

  6. Characteristics of bacillus strains with antifungal activity against phytopathogens

    International Nuclear Information System (INIS)

    Four bacterial isolates that showed antifungal activity against Alternaria alternata and other phytopathogens were isolates from bean rhizosphere. 16S rDNA analysis and phylogenetic relationship indicated that these isolates belong to Genus Bacillus. Isolate A1 clustered with Bacillus licheniformis while other isolates A2, A3 and A4 clustered together with B.pumilus. n-Butanol extract of these isolates strongly inhibited the growth of A. alternata while, chloroform extract of isolate A2 and ethyl acetate extract of A1,A3, and A4 inhibited the test fungus partially. All the isolates except A4 produced chitinase enzyme. None of the isolates solubilized mineral phosphate. Radiation sensitivity of isolates A1, A2, A3 and A4 were assessed and the LD99 values are determined as 0.50, 6.69, 11,60, 1.53 kGy, respectively. Mutant libraries of each isolate were prepared by exposing them to gamma radiation at their respective LD99 dose. Crude metabolite caused drastic changes on A. alternata hyphal morphology. Appearance of shrunken and collapsed hyphae could be due to the leak of cell wall or changes in membrane permeability

  7. 腾冲热海嗜热芽孢杆菌的分离鉴定%Isolation and Characterization of Thermophilic Bacillus from in Tengchong Rehai

    Institute of Scientific and Technical Information of China (English)

    晏爱芬; 余丽; 林连兵

    2012-01-01

    26 Thermophilic Bacillus was obtained according to the disassociation from Tengchong hot springs. And one of the strains, NHH4 is selected to analyze its morphologic characteristics, development features, nitric and carbon sources. The cytomorphology of the bacillus is nemaline with gemma, gram-positive, oxygen-loving. And the most suitable temperature for its development is 55 ℃ , the PH value is 7. 5. It can use glucose, sucrose, D-frucose, D-marvnopyranose, but can' t use maltose, lactose, D-xylose, L- rhamnose. The analysis on the phyloge-ny of 16srRNA' s gene sequence indicates that the similarity of NHH4 and Bacillus licheniformis strain N8 is 99% , so the bacillus is identified as thermophilic lichen-bacillus.%从云南腾冲热海温泉中分离得到26株嗜热芽孢杆菌菌株,对其中一株嗜热芽孢杆菌菌株NHH4进行电镜形态、生长特征、碳源、氮源等分析.该菌株细胞形态为杆状,产芽胞,革兰氏染色阳性,严格好氧,其最适生长温度为55℃,最适为pH7.5.能利用葡萄糖、蔗糖、D-果糖、D-甘露糖,不能利用麦芽糖、乳糖、D-木糖、L-鼠季糖.通过对其16S rRNA基因序列的系统发育分析表明,NHH4与Bacillus licheniformis strain N8的序列相似性为99%,将此菌株鉴定为嗜热地衣芽胞杆菌菌株.

  8. Immobilization of laccase on hybrid layered double hydroxide

    Directory of Open Access Journals (Sweden)

    David Isidoro Camacho Córdova

    2009-01-01

    Full Text Available Crystals of Mg/Al layered double hydroxide were synthesized by alkaline precipitation and treated in an aqueous solution of glutamic acid. The glutamate ions were not intercalated into the interlayer space, but were detected in the material by Fourier transform infrared spectroscopy, suggesting that only the external surfaces of crystals were modified with glutamate ions. The resulting hybrid material was tested as a support for immobilization of the enzyme laccase (Myceliophthora thermophila. The immobilized enzyme preparation was characterized by electronic paramagnetic resonance spectroscopy and by assays of catalytic activity. The activity of the immobilized laccase was 97% of the activity in the free enzyme. Layered double hydroxide is a suitable support for use in remediation of soil studies.

  9. Stability mechanisms of a thermophilic laccase probed by molecular dynamics

    DEFF Research Database (Denmark)

    Christensen, Niels Johan; Kepp, Kasper Planeta

    2013-01-01

    Laccases are highly stable, industrially important enzymes capable of oxidizing a large range of substrates. Causes for their stability are, as for other proteins, poorly understood. In this work, multiple-seed molecular dynamics (MD) was applied to a Trametes versicolor laccase in response...... of structural response to environment, whereas solvent-accessibility, radius of gyration, and fluctuations were only locally relevant. Backbone hydrogen bonds decreased systematically with temperature in all simulations (∼9 per 50 K), probing structural changes associated with enthalpy-entropy compensation...... integrity by increasing persistent backbone hydrogen bonds by ∼4 across simulations, mainly via prevention of F(-) intrusion. Hydrogen-bond loss in distinct loop regions and ends of critical β-sheets suggest potential strategies for laboratory optimization of these industrially important enzymes....

  10. EXOPOLYSACCHARIDE PRODUCTION BY DROUGHT TOLERANT BACILLUS SPP. AND EFFECT ON SOIL AGGREGATION UNDER DROUGHT STRESS

    Directory of Open Access Journals (Sweden)

    Sandhya Vardharajula

    2014-08-01

    Full Text Available Exopolysaccharides (EPS of microbial origin with novel functionality, reproducible physico-chemical properties, are important class of polymeric materials. EPS are believed to protect bacterial cells from dessication, produce biofilms, thus enhancing the cells chances of bacterial colonizing special ecological niches. In rhizosphere, EPS are known to be useful to improve the moisture-holding capacity. Three Bacillus spp. strains identified by 16s rDNA sequence analysis as B. amyloliquefaciens strain HYD-B17; B. licheniformis strain HYTAPB18; B. subtilis strain RMPB44 were studied for the ability to tolerate matric stress and produce EPS under different water potentials. EPS production in all the three Bacillus spp strains increased with increasing water stress indicating correlation between drought stress tolerance and EPS production. Among the isolates, strain HYD-17 showed highest production of EPS. The exopolysaccharide composition of the three strains was further analyzed by HPLC. Drought stress influenced the ratio of sugars in EPS and glucose was found as major sugar in strains HYTAPB18 and RMPB44 whereas raffinose was major sugar found in strain HYD-B17. Inoculation of EPS producing Bacillus spp. strains in soil resulted in good soil aggregation under drought stress conditions at different incubation periods. This study shows that exposure to water stress conditions affects the composition and ratios of sugars in EPS produced by Bacillus spp. strains HYD-B17, HYTAPB18 and RMPB44 influencing abiotic stress tolerance of the microorganisms.

  11. Screening for Pseudomonas and Bacillus antagonistic rhizobacteria strains for the biocontrol of Fusarium wilt of chickpea

    Directory of Open Access Journals (Sweden)

    Hannane Abed

    2016-07-01

    Full Text Available The aim of this work is to study the ability of several isolates belonging to Rhizobacteria (Pseudomonas and Bacillus collected from several chickpea growing areas in Algeria, to control the mycelium growth of Fusarium oxysporum f. sp. ciceris. Interesting isolates were characterized for their morphological characteristics, physiological and biochemical activities as potential bio-control agent. Fungal inhibition tests were performed using plate assay and each isolate were tested for the production of protease, cyanide hydrogen, indole acetic acid, antifungal volatile and extracellular compound. According to API 50 CH, we are able to identify six Bacillus species (B. subtilis, B. circulans, B. lentus, B. aneurinilyticus, B. firmus, B. licheniformis; and with API 20NE test we have identified three Pseudomonas species (P. aeruginosa, P. luteola, P. fluorescens. The ability of bacterial isolates was varied in production of Protease, Gelatinase, Amylase, Cellulase, Acid Indole acetic, Lipase, Catalase and Cyanid Hydrogen. This is traduced in different rate of inhibition growth due to various extracellular compounds, where B61 (Bacillus aneurinilyticus and P39 (Pseudomonas luteola and P70 (Pseudomonas fluorescens were the most efficient with 77 and 55.5% respectively, while B39 (Bacillus firmus and P41 (Pseudomonas luteola were the most efficient by volatile compounds with 70.5 and 77.5% respectively. Our results indicate that these bacteria isolates can be used in the biocontrol of Fusarium oxysporum f. sp. ciceris.

  12. Process optimization by response surface methodology for extracellular alkaline protease production from bacillus subtilis

    International Nuclear Information System (INIS)

    Three microbial cultures Bacillus subtilis DSM 1970, Bacillus subtilis GCU-8 and Bacillus licheniformis DSM 1969 were screened for protease production by casein agar plate method. Among these Bacillus subtilis GCU-8 was found to be the most potent protease producer in wide pH range (5.0 to 8.0). Fermentation conditions were optimized for the production of alkaline protease using two statistical tools: Placket Burmen Model for linear regression study and Response Surface Model for interactive effects of significant factors on production. The alkaline protease was optimally produced after 48 hours of incubation at 37 degree C in fermentation media containing equal amounts of substrates (soybean meal and wheat bran, 7.5 g), MgSO/sub 4/ 7H/sub 2/O, 0.10 g and yeast extract 0.55 g. The protease was purified to homogeneity by salt precipitation, ion-exchange chromatography and size exclusion chromatography. The homogeneity and molecular weights were checked by SDS-PAGE. The protease was 45 KDa protein, predominantly alkaline and optimally active at pH 8.0. (author)

  13. Recognition of greater diversity of Bacillus species and related bacteria in human faeces.

    Science.gov (United States)

    Hoyles, Lesley; Honda, Harue; Logan, Niall A; Halket, Gillian; La Ragione, Roberto M; McCartney, Anne L

    2012-01-01

    In a study looking at culturable aerobic Actinobacteria associated with the human gastrointestinal tract, the vast majority of isolates obtained from dried human faeces belonged to the genus Bacillus and related bacteria. A total of 124 isolates were recovered from the faeces of 10 healthy adult donors. 16S rRNA gene sequence analyses showed the majority belonged to the families Bacillaceae (n=81) and Paenibacillaceae (n=3), with Bacillus species isolated from all donors. Isolates tentatively identified as Bacillus clausii (n=32) and Bacillus licheniformis (n=28) were recovered most frequently, with the genera Lysinibacillus, Ureibacillus, Oceanobacillus, Ornithinibacillus and Virgibacillus represented in some donors. Phenotypic data confirmed the identities of isolates belonging to well-characterized species. Representatives of the phylum Actinobacteria were recovered in much lower numbers (n=11). Many of the bacilli exhibited antimicrobial activity against one or more strains of Clostridium difficile, Clostridium perfringens, Listeria monocytogenes and Staphylococcus aureus, with some (n=12) found to have no detectable cytopathic effect on HEp-2 cells. This study has revealed greater diversity within gut-associated aerobic spore-formers than previous studies, and suggests that bacilli with potential as probiotics could be isolated from the human gut. PMID:22041546

  14. Laccase: Microbial Sources, Production, Purification, and Potential Biotechnological Applications

    OpenAIRE

    Shraddha; Ravi Shekher; Simran Sehgal; Mohit Kamthania; Ajay Kumar

    2011-01-01

    Laccase belongs to the blue multicopper oxidases and participates in cross-linking of monomers, degradation of polymers, and ring cleavage of aromatic compounds. It is widely distributed in higher plants and fungi. It is present in Ascomycetes, Deuteromycetes and Basidiomycetes and abundant in lignin-degrading white-rot fungi. It is also used in the synthesis of organic substance, where typical substrates are amines and phenols, the reaction products are dimers and oligomers derived from the ...

  15. Laccases from New Fungal Sources and Some Promising Applications

    OpenAIRE

    Mendoza, Laura

    2011-01-01

    Fungi are a group of organisms with the ability to produce different types of enzymes in order to get access to nutrients. Among the enzymes, oxidoreductases have the ability to degrade lignocellulosic material via an oxidative mechanism, facilitating the uptake of cellulosic material, which will be metabolized using other enzymes to provide the required nutrients to the fungi. Ecologically, oxidoreductases play an essential role in the mobilization of carbon into the ecosystem. Laccase is an...

  16. Chemical reactivity of alkali lignin modified with laccase

    International Nuclear Information System (INIS)

    The modification of alkali lignin with laccase was investigated. The structural change of lignin was analyzed. The sulfonation reactivity was measured by the content of sulfonic group. The results showed the sulfonation reactivity increased to some extent under the condition of atmosphere pressure, but decreased under the condition of 0.3 MPa oxygen pressure. The analysis of Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) showed the cleavage of various ether linkages and demethylation took place in the structure of lignin to certain extent during modification with laccase, which contributed to the improvement of sulfonation reactivity. Under the condition of 0.3 MPa oxygen pressure, the ratio of s/g (guaiacyl/syringyl) increased after modification, which reduced the sulfonation reactivity of lignin. Simultaneously partial polymerization reaction, such as 4-O-5′, β-5, 5-5 and other reaction in the aromatic ring decreased the activity sites of C2, C5 and C6. Abundant polymerization reaction of α-O increased steric hindrance of C2 and C6 in aromatic ring, resulting in low sulfonation reactivity of lignin. -- Highlights: ► The modification of alkali lignin with laccase was investigated. ► The sulfonation reactivity increased under the condition of atmosphere pressure. ► More content of guaiacyl and hydroxy, the less content of methoxyl, syringyl can enhance the sulfonation reactivity of lignin. ► Partial moieties polymerized each other with α-O linkgages during treatment with laccase under oxygen pressure. ► The steric hindrance on C2 and C6 in aromatic ring resulted in low sulfonation reaction reactivity of lignin

  17. Bacterial versus fungal laccase: potential for micropollutant degradation

    OpenAIRE

    Margot, Jonas; Bennati-Granier, Chloé; Maillard, Julien; Blánquez, Paqui; Barry, David Andrew; Holliger, Christof

    2013-01-01

    Relatively high concentrations of micropollutants in municipal wastewater treatment plant (WWTP) effluents underscore the necessity to develop additional treatment steps prior to discharge of treated wastewater. Microorganisms that produce unspecific oxidative enzymes such as laccases are a potential means to improve biodegradation of these compounds. Four strains of the bacterial genus Streptomyces (S. cyaneus, S. ipomoea, S. griseus and S. psammoticus) and the white-rot fungus Trametes vers...

  18. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-09-01

    Full Text Available In this work, amidoxime polyacrylonitrile (AOPAN nanofibrous membrane was prepared by a reaction between PAN nanofibers and hydroxylamine hydrochloride. The AOPAN nanofibrous membranes were used for four metal ions (Fe3+, Cu2+, Ni2+, Cd2+ chelation under different conditions. Further, the competition of different metal ions coordinating with AOPAN nanofibrous membrane was also studied. The AOPAN chelated with individual metal ion (Fe3+, Cu2+, Ni2+, Cd2+ and also the four mixed metal ions were further used for laccase (Lac immobilization. Compared with free laccase, the immobilized laccase showed better resistance to pH and temperature changes as well as improved storage stability. Among the four individual metal ion chelated membranes, the stability of the immobilized enzymes generally followed the order as Fe–AOPAN–Lac > Cu–AOPAN–Lac > Ni–AOPAN–Lac > Cd–AOPAN–Lac. In addition, the immobilized enzyme on the carrier of AOPAN chelated with four mixed metal ions showed the best properties.

  19. Laccase aided modification of nanofibrillated cellulose with dodecyl gallate

    Directory of Open Access Journals (Sweden)

    Päivi Saastamoinen

    2012-11-01

    Full Text Available Nanofibrillated cellulose, NFC, is an interesting wood fibre-based material that could be utilized in coatings, foams, composites, packages, dispersions, and emulsions, due to its high tensile strength and barrier properties, light weight, and stabilizing features. To improve applicability and properties of NFC, modification of its surface properties is often needed. In this study, the applicability of laccase-aided surface modification with hydrophobic dodecyl gallate (DOGA on unbleached NFC was investigated. Also, laccase-catalyzed polymerization of DOGA and other phenolic compounds with lignin moieties was investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS. NFC modified with T. hirsuta-based laccase and DOGA showed decreased hydrophilicity, as compared with the native NFC, when coated on a paper surface. When dried as free-standing films, the surface properties of chemo-enzymatically modified NFC resembled those of the native NFC. The effect of modification was thus greatly influenced by different surface formation in differently prepared samples. Also, changing of the dispersion properties of DOGA by enzymatic polymerization affected the surface properties of the dried NFC samples. Covalent bonding between DOGA and NFC was not the main factor affecting the surface properties of the NFC in free-standing films or coatings.

  20. Constitutive expression of Botrytis aclada laccase in Pichia pastoris.

    Science.gov (United States)

    Kittl, Roman; Gonaus, Christoph; Pillei, Christian; Haltrich, Dietmar; Ludwig, Roland

    2012-01-01

    The heterologous expression of laccases is important for their large-scale production and genetic engineering--a prerequisite for industrial application. Pichia pastoris is the preferred expression host for fungal laccases. The recently cloned laccase from the ascomycete Botrytis aclada (BaLac) has been efficiently expressed in P. pastoris under the control of the inducible alcohol oxidase (AOX1) promoter. In this study, we compare these results to the constitutive expression in the same organism using the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. The results show that the amounts of BaLac produced with the GAP system (517 mgL(-1)) and the AOX1 system (495 mgL(-1)) are comparable. The constitutive expression is, however, faster, and the specific activity of BaLac in the culture supernatant is higher (41.3 Umg(-1) GAP, 14.2 Umg(-1) AOX1). In microtiter plates, the constitutive expression provides a clear advantage due to easy manipulation (simple medium, no methanol feeding) and fast enzyme production (high-throughput screening assays can already be performed after 48 h). PMID:22705842

  1. Effect of amino acids and vitamins on laccase production by the bird's nest fungus Cyathus bulleri

    Energy Technology Data Exchange (ETDEWEB)

    Shikha Dhawan; Ramesh Chander Kuhad [University of Delhi, New Delhi (India). Dept. of Microbiology

    2002-08-01

    Various amino acids, their analogues and vitamins have shown stimulatory as well as inhibitory effects on laccase production by Cyathus bulleri. DL-methionine, DL-tryptophan, glycine and DL-valine stimulated laccase production, while L-cysteine monohydrochloride completely inhibited the enzyme production. Among vitamins tested biotin, riboflavin and pyridoxine hydrochloride were found to induce laccase production. (author)

  2. A Novel Laccase from Ganoderma Lucidum Capable of Enhancing Enzymatic Degradation of Lignocellulolytic Biomass

    DEFF Research Database (Denmark)

    2014-01-01

    for the hydrolysis of biomass using a laccase derived from Ganoderma lucidum. Further, the invention provides an enzyme composition comprising a laccase derived from Ganoderma lucidum which may be combined with one or more cellulases, and for its use in enhancing lignocellulose biomass hydrolysis....

  3. Electroenzymatic Reactions With Oxygen on Laccase-Modified Electrodes in Anhydrous (Pure) Organic Solvent

    DEFF Research Database (Denmark)

    Yarapolov, A.; Shleev, S.; Zaitseva, E.;

    2007-01-01

    glassy carbon and graphite electrodes with adsorbed laccase. The influence of the time for drying the laccase solution at the electrode surface on the electroreduction of oxygen was studied. Investigating the electroenzymatic oxidation reaction of catechol and hydroquinone in DMSO reveals the formation...

  4. Laccase is upregulated via stress pathways in the phytopathogenic fungus Sclerotinia sclerotiorum.

    Science.gov (United States)

    Coman, Cristina; Moţ, Augustin C; Gal, Emese; Pârvu, Marcel; Silaghi-Dumitrescu, Radu

    2013-01-01

    We report on the factors affecting the production of the newly characterized laccase from the phytopathogenic fungus Sclerotinia sclerotiorum (Lib.) de Bary. The carbon/nitrogen ratio appears to be of great importance. Rather than a simple nutrient-rich nitrogen source, yeast extract (YE) behaves as a true laccase upregulator, apparently acting via a stress pathway. Chelidonium majus extract, a known antifungal agent, acts in a similar manner. The compound(s) in the YE responsible for enhancing laccase synthesis are suggested to be hydrolysable choline derivatives. Both extracts reduce biomass and sclerotia development and enhance laccase production, leading to an increase in laccase activity by one order of magnitude compared to controls. The pH of the medium, a well-known virulence regulator for this fungus, also acts as a true laccase regulator, though via a different mechanism. The effect of pH appeared to be linked to the acidification kinetics of the extracellular medium during fungal development. A number of other known laccase inducers were found to enhance laccase production at most twofold. PMID:23931118

  5. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications

    DEFF Research Database (Denmark)

    Sitarz, Anna K.; Mikkelsen, Jørn D.; Meyer, Anne S.

    2016-01-01

    . The substrate range for laccase catalysis can be expanded by means of supplementary mediators that essentially function as vehicles for electron transfer. Comparisons of amino acid sequences and structural traits of selected laccases reveal conservation of the active site trinuclear center geometry...

  6. Improved immobilization of laccase on a glassy carbon electrode by oriented covalent attachment

    Directory of Open Access Journals (Sweden)

    Liu Xin

    2014-01-01

    Full Text Available A laccase from Thermus thermophilus HB27 was reported to be potentially useful in the design of a temperature controlled biofuel cell. For enhancing its application in different thermal conditions, we engineered a laccase-oriented immobilized electrode. A site-directed mutant N323C of the laccase was constructed. A photometric assay was employed in order to compare the catalytic properties of wild-type laccase and mutant. The mutant was attached to a glass carbon electrode by covalent cross-linking. The electrochemical properties of the immobilized laccase were investigated by cyclic voltammetry. This immobilization allowed the active electrode to function at temperatures up to 95°C. The thermal and pH dependence profiles were similar to those of the soluble enzyme investigated by spectrophotometry.

  7. Laccase immobilized on mesoporous SiO2 and its use for degradation of chlorophenol pesticides

    Science.gov (United States)

    Yang, Yuxiang; Xu, Yong; Yang, Yiwen; Yang, Huan; Yuan, Hongmin; Huang, Yan; Liu, Xiangnong

    2016-10-01

    In this paper, mesoporous silica with large specific surface area was used to immobilize laccase by the glutaraldehyde cross-linking method, and after screening and optimization experiments, the best enzyme immobilization process conditions were found (25°C, pH 5.4, 4% glutaraldehyde and 0.2 g/L laccase, treatment time 6 h). After that, the removal and degradation ratio of 2,4-dichlorophenol (abbreviated as DCP) under different conditions were also studied. After the degradation process was performed for 6 h at 30°C, pH 5.4, and DCP initial concentration of 50 mg/L in the presence of 0.1 g of immobilized laccase, the removal ratio and the degradation ratio were 42.28 and 15.93%, respectively. Compared with free laccase, the reusability of immobilized laccase is significantly improved.

  8. Biobleaching chemistry of laccase-mediator systems on high-lignin-content kraft pulps

    International Nuclear Information System (INIS)

    A high-lignin-content softwood kraft pulp was reacted with laccase in the presence of 1-hydroxybenzotriazole (HBT), N-acetyl-N-phenylhydroxylamine (NHA), and violuric acid (VA). The biodelignification response with violuric acid was superior to both 1-hydroxybenzotriazole and N-acetyl-N-phenylhydroxylamine. NMR analysis of residual lignins isolated before and after the biobleaching treatments revealed that the latter material was highly oxidized and that the magnitude of structural changes was most pronounced with the laccase - violuric acid biobleaching system. An increase in the content of carboxylic acid groups and a decrease in methoxyl groups were noted with all three laccase-mediator systems. The oxidation biobleaching pathway is directed primarily towards noncondensed C5 phenolic lignin functional structures for all three laccase-mediated systems. The laccase - violuric acid system was also reactive towards C5-condensed phenolic lignin structures. (author)

  9. Degradation of Synthetic Dyes by Laccases – A Mini-Review

    Directory of Open Access Journals (Sweden)

    Legerská Barbora

    2016-06-01

    Full Text Available Laccases provide a promising future as a tool to be used in the field of biodegradation of synthetic dyes with different chemical structures. These enzymes are able to oxidize a wide range of phenolic substrates without the presence of additional co-factors. Laccases have been confirmed for their potential of synthetic dye degradation from wastewater and degradation products of these enzymatic reactions become less toxic than selected dyes. This study discusses the potential of laccase enzymes as agents for laccase-catalyzed degradation in terms of biodegradation efficiency of synthetic dyes, specifically: azo dyes, triphenylmethane, indigo and anthraquinone dyes. Review also summarizes the laccase-catalyzed degradation mechanisms of the selected synthetic dyes, as well as the degradation products and the toxicity of the dyes and their degradation products.

  10. Diversity of bacteria of the genus Bacillus on board of international space station.

    Science.gov (United States)

    Alekhova, T A; Zakharchuk, L M; Tatarinova, N Yu; Kadnikov, V V; Mardanov, A V; Ravin, N V; Skryabin, K G

    2015-01-01

    From swabs of surfaces of equipment and air samples of the Russian segment of the International Space Station, nine strains of spore-forming bacteria of the genus Bacillus belonging to the species B. pumilus, B. licheniformis, B. subtilis, B. megaterium, and B. amyloliquefaciens were isolated. The last species of bacilli on the equipment of RS ISS was detected for the first time. For these species of bacilli, there are known strains that can be opportunistic to humans, and their metabolites can cause biodegradation of equipment and materials. B. pumilus found on ISS belongs to the group of bacteria that exhibits a particularly high resistance to adverse environmental conditions, such as dehydration, ultraviolet and gamma radiation, and chemical disinfection.

  11. Diversity of bacteria of the genus Bacillus on board of international space station.

    Science.gov (United States)

    Alekhova, T A; Zakharchuk, L M; Tatarinova, N Yu; Kadnikov, V V; Mardanov, A V; Ravin, N V; Skryabin, K G

    2015-01-01

    From swabs of surfaces of equipment and air samples of the Russian segment of the International Space Station, nine strains of spore-forming bacteria of the genus Bacillus belonging to the species B. pumilus, B. licheniformis, B. subtilis, B. megaterium, and B. amyloliquefaciens were isolated. The last species of bacilli on the equipment of RS ISS was detected for the first time. For these species of bacilli, there are known strains that can be opportunistic to humans, and their metabolites can cause biodegradation of equipment and materials. B. pumilus found on ISS belongs to the group of bacteria that exhibits a particularly high resistance to adverse environmental conditions, such as dehydration, ultraviolet and gamma radiation, and chemical disinfection. PMID:26728721

  12. Advanced Synthesis of Conductive Polyaniline Using Laccase as Biocatalyst

    Science.gov (United States)

    de Salas, Felipe; Pardo, Isabel; Salavagione, Horacio J.; Aza, Pablo; Amougi, Eleni; Vind, Jesper; Martínez, Angel T.; Camarero, Susana

    2016-01-01

    Polyaniline is a conductive polymer with distinctive optical and electrical properties. Its enzymatic synthesis is an environmentally friendly alternative to the use of harsh oxidants and extremely acidic conditions. 7D5L, a high-redox potential laccase developed in our lab, is the biocatalyst of choice for the synthesis of green polyaniline (emeraldine salt) due to its superior ability to oxidize aniline and kinetic stability at the required polymerization conditions (pH 3 and presence of anionic surfactants) as compared with other fungal laccases. Doses as low as 7.6 nM of 7D5L catalyze the polymerization of 15 mM aniline (in 24 h, room temperature, 7% yield) in the presence of different anionic surfactants used as doping templates to provide linear and water-soluble polymers. Aniline polymerization was monitored by the increase of the polaron absorption band at 800 nm (typical for emeraldine salt). Best polymerization results were obtained with 5 mM sodium dodecylbenzenesulfonate (SDBS) as template. At fixed conditions (15 mM aniline and 5mM SDBS), polymerization rates obtained with 7D5L were 2.5-fold the rates obtained with commercial Trametes villosa laccase. Moreover, polyaniline yield was notably boosted to 75% by rising 7D5L amount to 0.15 μM, obtaining 1g of green polyaniline in 1L-reaction volume. The green polymer obtained with the selected system (7D5L/SDBS) holds excellent electrochemical and electro-conductive properties displayed in water-dispersible nanofibers, which is advantageous for the nanomaterial to be readily cast into uniform films for different applications. PMID:27741301

  13. RESEARCH OF LIGNIN DEGRADATION BY SOIL MICROMYCETES LACCASE PRODUCERS

    OpenAIRE

    Khalimova, L.; Zakirova, L.; Petukhova, N.; Zorin, V.

    2011-01-01

    The possibility of sawdust, sunflower peeling and straw lignin degradation by four strains of soil micromycetes I-1, A-1, E-2, O-1 on optimized Czapek medium was searched. It has been shown that these fungi destruct peeling lignin on 15-32 %, straw lignin on 12-24 % and sawdust lignin on 8-15 % during 21 days of cultivating. In these conditions the highest rate of peeling lignin (3032 %) and straw lignin (20-24 %) conversion was obtained by strains K-2 and X-1 which laccase activity correlate...

  14. Electrochemical Studies of a Truncated Laccase Produced in Pichia pastoris

    OpenAIRE

    Gelo-Pujic, Mirjana; Kim, Hyug-Han; Butlin, Nathan G.; Palmore, G. Tayhas R.

    1999-01-01

    The cDNA that encodes an isoform of laccase from Trametes versicolor (LCCI), as well as a truncated version (LCCIa), was subcloned and expressed by using the yeast Pichia pastoris as the heterologous host. The amino acid sequence of LCCIa is identical to that of LCCI except that the final 11 amino acids at the C terminus of LCCI are replaced with a single cysteine residue. This modification was introduced for the purpose of improving the kinetics of electron transfer between an electrode and ...

  15. Functional expression of a blood tolerant laccase in Pichia pastoris

    OpenAIRE

    Mate, Diana M.; Gonzalez-Perez, David; Kittl, Roman; Ludwig, Roland; Alcalde, Miguel

    2013-01-01

    Abstract Background Basidiomycete high-redox potential laccases (HRPLs) working in human physiological fluids (pH 7.4, 150 mM NaCl) arise great interest in the engineering of 3D-nanobiodevices for biomedical uses. In two previous reports, we described the directed evolution of a HRPL from basidiomycete PM1 strain CECT 2971: i) to be expressed in an active, soluble and stable form in Saccharomyces cerevisiae, and ii) to be active in human blood. In spite of the fact that S. cerevisiae is suite...

  16. Inhibition of cellulose enzymatic hydrolysis by laccase-derived compounds from phenols.

    Science.gov (United States)

    Oliva-Taravilla, Alfredo; Tomás-Pejó, Elia; Demuez, Marie; González-Fernández, Cristina; Ballesteros, Mercedes

    2015-01-01

    The presence of inhibitors compounds after pretreatment of lignocellulosic materials affects the saccharification and fermentation steps in bioethanol production processes. Even though, external addition of laccases selectively removes the phenolic compounds from lignocellulosic prehydrolysates, when it is coupled to saccharification step, lower hydrolysis yields are attained. Vanillin, syringaldehyde and ferulic acid are phenolic compounds commonly found in wheat-straw prehydrolysate after steam-explosion pretreatment. These three phenolic compounds were used in this study to elucidate the inhibitory mechanisms of laccase-derived compounds after laccase treatment. Reaction products derived from laccase oxidation of vanillin and syringaldehyde showed to be the strongest inhibitors. The presence of these products causes a decrement on enzymatic hydrolysis yield of a model cellulosic substrate (Sigmacell) of 46.6 and 32.6%, respectively at 24 h. Moreover, a decrease in more than 50% of cellulase and β-glucosidase activities was observed in presence of laccase and vanillin. This effect was attributed to coupling reactions between phenoxyl radicals and enzymes. On the other hand, when the hydrolysis of Sigmacell was performed in presence of prehydrolysate from steam-exploded wheat straw a significant inhibition on enzymatic hydrolysis was observed independently of laccase treatment. This result pointed out that the other components of wheat-straw prehydrolysate are affecting the enzymatic hydrolysis to a higher extent than the possible laccase-derived products. PMID:25740593

  17. Trichoderma viride Laccase Plays a Crucial Role in Defense Mechanism against Antagonistic Organisms.

    Science.gov (United States)

    Divya, Lakshmanan; Sadasivan, C

    2016-01-01

    Fungal laccases are involved in a variety of physiological functions such as delignification, morphogenesis, and parasitism. In addition to these functions, we suggest that fungal laccases are involved in defense mechanisms. When the laccase secreting Trichoderma viride was grown in the presence of a range of microorganisms including bacteria and fungi, laccase secretion was enhanced in response to antagonistic organisms alone. In addition, growth of antagonistic microbes was restricted by the secreting fungi. Besides, our study for the first time shows the inability of the secreting fungi (T. viride) to compete with antagonistic organism when laccase activity is inhibited, further emphasizing its involvement in rendering a survival advantage to the secreting organism. When laccase inhibitor was added to the media, the zone of inhibition exerted by the antagonist organism was more pronounced and consequently growth of T. viride was significantly restricted. Based on these observations we accentuate that, laccase plays an important role in defense mechanism and provides endurance to the organism when encountered with an antagonistic organism in its surrounding. PMID:27242756

  18. A laccase-like activity is correlated with lignin biosynthesis in Zinnia elegans

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lan; Dean, J.F.D.; Eriksson, K.E.L. (Univ. of Georgia, Athens (United States))

    1993-05-01

    The authors have previously shown that a laccase (p-diphenol:O[sub 2] oxidoreductase, EC 1.10.3.1) purified from suspension cultures of Acer pseudoplatanus polymerizes monolignols to form water-insoluble, lignin-like polymers (Sterjiades et al. Plant Physiol. 99:1162). Using chromogenic substrates suitable for staining Acer laccase, we have followed the development of a laccase-like activity in lignifying tissues of Zinnia elegans. We have also used a variety of compounds to examine these same tissues for peroxidase activity, as well as hydrogen peroxide generation. Although peroxidase activity was detected throughout Zinnia stem tissues, evidence will be presented to suggest that the laccase-like activity is more specifically correlated with lignification of vascular tissues during normal development than is peroxidase activity. We are working to characterize the enzyme extracted from Zinnia tissues to determine whether it is indeed a true laccase or some other phenoloxidase. In addition, we are attempting to examine the developmental sequence of Zinnia laccase expression using gene probes and specific antibodies developed against the laccase purified form A. pseudoplatanus.

  19. EVALUATION OF A NEW LACCASE PRODUCED BY STREPTOMYCES IPOMOEA ON BIOBLEACHING AND AGEING OF KRAFT PULPS

    Directory of Open Access Journals (Sweden)

    M. Enriqueta Arias

    2011-06-01

    Full Text Available The aim of this work is to prove the suitability of a new alkaline and halo-tolerant bacterial laccase (SilA produced by Streptomyces ipomoea CECT 3341 to enhance the conventional chemical bleaching process of an industrial eucalyptus kraft pulp. The laccase used for this study was a recombinant laccase obtained from cultures of E. coli BL21 (DE3 grown in LB liquid medium. The biobleaching experiment was carried out on Eucalyptus globulus kraft pulps using the above mentioned laccase and acetosyringone as natural mediator. Then, an alkaline extraction and further hydrogen peroxide steps were applied to evaluate the efficiency of the laccase-mediator system as a pretreatment in the bleaching sequences. Biobleached pulps showed a kappa number decrease and a brightness increase without decreasing the viscosity values significantly. Also, a reduction in the consumption of hydrogen peroxide was observed when the enzymatic treatment was applied to the pulp. CIE L*a*b* and CIE L*C* color coordinates measured in pulps demonstrated that among all treatments applied to pulps, the laccase-acetosyringone system presented the best optical properties even after an accelerated ageing process. Finally, it is also remarkable that during this treatment 64% of the laccase activity remained unaltered.

  20. Effect of various pollutants and soil-like constituents on laccase from Cerrena unicolor

    Energy Technology Data Exchange (ETDEWEB)

    Filazzola, M.T.; Sannino, F.; Rao, M.A.; Gianfreda, L.

    1999-12-01

    Laccase from Cerrena unicolor catalyses the oxidation of a wide range of aromatic compounds, either xenobiotic or naturally occurring phenols, leading to the formation of polymeric products. These are characterized by their low solubility and often may form precipitates or aggregates. The oxidizing efficiency of the enzyme is strictly dependent on the number of hydroxyl groups and the position of substituents on the phenolic molecules. During the reaction with some substrates, the enzyme is inactivated, because of possible adsorption of laccase molecules on newly formed polyphenols. By contrast, the oxidation of humic precursors (i.e., resorcinol, gallic acid, and pyrogallol) does not influence greatly the residual laccase activity. The triazinic herbicides, triazine and prometryn (2,4-bis(isopropylamino)-6-methylthio-s-triazine), are not substrates of laccase. They, however, inhibit laccase activity assayed with 2,4-dichlorophenol (2,4-DCP) or catechol as substrates. The reduction of substrate oxidation rates is usually accompanied by the retention of higher levels of residual enzymatic activity. These results, together with the slight recovery in laccase activity following dialysis of the assay mixture, provide further evidence that the enzyme may be incorporated into or adsorbed onto polyphenolic products, with a consequent reduction in the concentration of active forms of laccase.

  1. Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Akihito; Bae, Jun Gu; Fukai, Kotaro; Tokumoto, Naoki; Kuroda, Kouichi; Ogawa, Jun; Shimizu, Sakayu; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences; Nakatani, Masato [Daiwa Kasei, Shiga (Japan)

    2012-05-15

    A gene encoding laccase I was identified and cloned from the white-rot fungus Trametes sp. Ha1. Laccase I contained 10 introns and an original secretion signal sequence. After laccase I without introns was prepared by overlapping polymerase chain reaction, it was inserted into expression vector pULD1 for yeast cell surface display. The oxidation activity of a laccase-I-displaying yeast as a whole-cell biocatalyst was examined with 2,2{sup '}-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), and the constructed yeast showed a high oxidation activity. After the pretreatment of hydrothermally processed rice straw (HPRS) with laccase-I-displaying yeast with ABTS, fermentation was conducted with yeast codisplaying endoglucanase, cellobiohydrolase, and {beta}-glucosidase with HPRS. Fermentation of HPRS treated with laccase-I-displaying yeast was performed with 1.21-fold higher activities than those of HPRS treated with control yeast. The results indicated that pretreatment with laccase-I-displaying yeast with ABTS was effective for direct fermentation of cellulosic materials by yeast codisplaying endoglucanase, cellobiohydrolase, and {beta}-glucosidase. (orig.)

  2. Laccase immobilization on bacterial nanocellulose membranes: Antimicrobial, kinetic and stability properties.

    Science.gov (United States)

    Sampaio, Liliana M P; Padrão, Jorge; Faria, Jorge; Silva, João P; Silva, Carla J; Dourado, Fernando; Zille, Andrea

    2016-07-10

    This work studied the physical immobilization of a commercial laccase on bacterial nanocellulose (BNC) aiming to identify the laccase antibacterial properties suitable for wound dressings. Physico-chemical analysis demonstrates that the BNC structure is manly formed by pure crystalline Iα cellulose. The pH optimum and activation energy of free laccase depends on the substrate employed corresponding to pH 6, 7, 3 and 57, 22, 48kJmol(-1) for 2,6-dimethylphenol (DMP), catechol and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), respectively. The Michaelis-Menten constant (Km) value for the immobilized laccase (0.77mM) was found to be almost double of that of the free enzyme (0.42mM). However, the specific activities of immobilized and free laccase are similar suggesting that the cage-like structure of BNC allows entrapped laccase to maintain some flexibility and favour substrate accessibility. The results clearly show the antimicrobial effect of laccase in Gram-positive (92%) and Gram-negative (26%) bacteria and cytotoxicity acceptable for wound dressing applications. PMID:27106145

  3. Purification of a thermostable alkaline laccase from papaya (Carica papaya) using affinity chromatography.

    Science.gov (United States)

    Jaiswal, Nivedita; Pandey, Veda P; Dwivedi, Upendra N

    2015-01-01

    A laccase from papaya leaves was purified to homogeneity by a two step procedure namely, heat treatment (at 70 °C) and Con-A affinity chromatography. The procedure resulted in 1386.7-fold purification of laccase with a specific activity of 41.3 units mg(-1) and an overall yield of 61.5%. The native purified laccase was found to be a hexameric protein of ∼ 260 kDa. The purified enzyme exhibited acidic and alkaline pH optima of 6.0 and 8.0 with the non-phenolic substrate (ABTS) and phenolic substrate (catechol), respectively. The purified laccase was found to be thermostable up to 70 °C such that it retained ∼ 80% activity upon 30 min incubation at 70 °C. The Arrhenius energy of activation for purified laccase was found to be 7.7 kJ mol(-1). The enzyme oxidized various phenolic and non-phenolic substrates having catalytic efficiency (K(cat)/K(m)) in the order of 7.25>0.67>0.27 mM(-1) min(-1) for ABTS, catechol and hydroquinone, respectively. The purified laccase was found to be activated by Mn(2+), Cd(2+), Ca(2+), Na(+), Fe(2+), Co(2+) and Cu(2+) while weakly inhibited by Hg(2+). The properties such as thermostability, alkaline pH optima and metal tolerance exhibited by the papaya laccase make it a promising candidate enzyme for industrial exploitation.

  4. Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: application to PAH degradation.

    Science.gov (United States)

    Chang, Yi-Tang; Lee, Jiunn-Fwu; Liu, Keng-Hua; Liao, Yi-Fen; Yang, Vivian

    2016-03-01

    Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation.

  5. Production and characterization of phytase from Bacillus spp. as feed additive in aquaculture

    Directory of Open Access Journals (Sweden)

    Rande B. Dechavez

    2011-07-01

    Full Text Available Phytases are phosphohydrolases that catalyze the release of phosphate from phytate (myo inositol hexakisphosphate, the major phosphorus (P form mostly occurring in animal feeds of plant origin. These enzymes can be supplemented in animal diets to reduce inorganic phosphorus supplementation and fecal phosphorus excretion. Four species of Bacillus namely, B. pumilus , B.megaterium , B. coagulans , and B. licheniformis were used to study the biochemical characteristics of their phytases. All the strains investigated were able to hydrolyze extracellular phytate. The activity of phytase increased markedly at the late stationary phase in all the species tested. Highest enzyme activity was found in phytase from B. megaterium after the 4th day of culture. The crude phytases from the different Bacillus strains were optimally active at pH values ranging 5.5 to 7.0 at 37 0 C and retained their activity at temperatures up to 80 0 C. The enzymes exhibited thermostability, retaining ~50 %activity at 70 0 C and were fairly stable up to pH 10. These properties indicate that the Bacillus phytases appear to be suitable for animal feed supplementation in aquaculture to improve the bioavailability of phosphorus.

  6. Production, purification and characterization of laccase from Pleurotus ostreatus grown on tomato pomace.

    Science.gov (United States)

    Freixo, Maria do Rosário; Karmali, Amin; Arteiro, José Maria

    2012-01-01

    A strain of Pleurotus ostreatus was grown in tomato pomace as sole carbon source for production of laccase. The culture of P. ostreatus revealed a peak of laccase activity (147 U/L of fermentation broth) on the 4th day of culture with a specific activity of 2.8 U/mg protein. Differential chromatographic behaviour of laccase was investigated on affinity chromatographic matrices containing either urea, acetamide, ethanolamine or IDA as affinity ligands. Laccase exhibited retention on such affinity matrices and it was purified on a Sepharose 6B-BDGE-urea column with final enzyme recoveries of about 60%, specific activity of 6.0 and 18.0 U/mg protein and purification factors in the range of 14-46. It was also possible to demonstrate that metal-free laccase did not adsorb to Sepharose 6B-BDGE-urea column which suggests that adsorption of native laccase on this affinity matrix was apparently due to the specific interaction of carbonyl groups available on the matrix with the active site Cu (II) ions of laccase. The kinetic parameters (V(max), K(m), K(cat), and K(cat)/K(m)) of the purified enzyme for several substrates were determined as well as laccase stability and optimum pH and temperature of enzyme activity. This is the first report describing the production of laccase from P. ostreatus grown on tomato pomace and purification of this enzyme based on affinity matrix containing urea as affinity ligand. PMID:22806800

  7. Enzymatic synthesis of bioactive compounds by Rhus laccase from Chinese Rhus vernicifera

    Institute of Scientific and Technical Information of China (English)

    AKIYAMA; Kazuhiro; MIYAKOSHI; Tetsuo

    2007-01-01

    A simple one step synthesis of pinoresinol and its derivatives-active components of Du-Zhong(Eu-commia ulmoides) -from coniferyl alcohol and p-courmaryl alcohol with higher yields was achieved by Rhus laccases(RL) catalysis in water miscible organic solvents. Biomacromolecules dehydro-genative polymers(DHP) were only synthesized by fungal laccases,not by RL. The structures and the reaction mechanism were discussed to promote the understanding of the function of laccases in the process of lignin biosynthesis.

  8. Rhus laccase catalysis and product characterization of 1,2-dimethoxyphenol in organic solutions

    Institute of Scientific and Technical Information of China (English)

    Yun Yang Wan; Yu Min Du; Tetsuo Miyakoshi

    2008-01-01

    Dimethoxyphenol was a widely used substrate in determination of laccases activity. It was surprised, however, that the products of it had not been completely determined until now. Studies were thus conducted on Rhus laccase (RL) and immobilized Rhus laccase (IRL)-catalyzed oxidation of 2,6-dimethoxyphenol (DMP) in water-organic solvent systems. Only one product, 3,3',5,5'-tetramethoxy-l,l'-biphenyl-4,4'-diol (TMBP), was produced by RL catalysis, and it was thoroughly characterized by FT-IR, NMR and GC-MS, etc.

  9. Purification and Characterization of a Secreted Laccase of Gaeumannomyces graminis var. tritici

    OpenAIRE

    Edens, William A.; Goins, Tresa Q.; Dooley, David; Henson, Joan M.

    1999-01-01

    We purified a secreted fungal laccase from filtrates of Gaeumannomyces graminis var. tritici cultures induced with copper and xylidine. The active protein had an apparent molecular mass of 190 kDa and yielded subunits with molecular masses of 60 kDa when denatured and deglycosylated. This laccase had a pI of 5.6 and an optimal pH of 4.5 with 2,6-dimethoxyphenol as its substrate. Like other, previously purified laccases, this one contained several copper atoms in each subunit, as determined by...

  10. Laccase immobilization on bacterial nanocellulose membranes: antimicrobial, kinetic and stability properties

    OpenAIRE

    Sampaio, Liliana M. P.; Padrão, Jorge; Faria, Jorge; Silva, João P.; Silva, Carla J.; Dourado, Fernando; Zille, Andrea

    2016-01-01

    This work studied the physical immobilization of a commercial laccase on bacterial nanocellulose (BNC) aiming to identify the laccase antibacterial properties suitable for wound dressings. Physico-chemical analysis demonstrates that the BNC structure is manly formed by pure crystalline I cellulose. The pH optimum and activation energy of free laccase depends on the substrate employed corresponding to pH 6, 7, 3 and 57, 22, 48 kJ mol1 for 2,6-dimethylphenol (DMP), catechol and 2,2 -azino-bis-(...

  11. Development and mapping of gene-tagged SNP markers in laccases of maize (Zea mays L.)

    DEFF Research Database (Denmark)

    Andersen, J R; Asp, T; Lu, Y C;

    2009-01-01

    . By a bioinformatic approach, 14 putative laccases were identified in maize. One putative laccase was identical to ZmLac1, while five were highly homologous to either ZmLac4 or ZmLac5. Sequence alignment of allelic sequences enabled the development of TaqMan single nucleotide polymorphism (SNP) markers for nine...... putative laccases. Four of these gene-tagged SNP markers were validated in a doubled-haploid mapping population of 140 individuals, mapping these loci to chromosomes 1, 2, 3 and 7, respectively....

  12. Nuclear track-based biosensors with the enzyme laccase

    International Nuclear Information System (INIS)

    Highlights: • We construct a biosensor using polymer foils with laccase-clad etched nuclear tracks. • We use the biosensor for quantitation of phenolic compounds. • The biosensor can detect picomolar concentrations for some phenolic compounds. - Abstract: A new type of biosensors for detecting phenolic compounds is presented here. These sensors consist of thin polymer foils with laccase-clad etched nuclear tracks. The presence of suitable phenolic compounds in the sensors leads to the formation of enzymatic reaction products in the tracks, which differ in their electrical conductivities from their precursor materials. These differences correlate with the concentrations of the phenolic compounds. Corresponding calibration curves have been established for a number of compounds. The sensors thus produced are capable to cover between 5 and 9 orders of magnitude in concentration – in the best case down to some picomoles. The sensor's detection sensitivity strongly depends on the specific compound. It is highest for caffeic acid and acid blue 74, followed by ABTS and ferulic acid

  13. Nuclear track-based biosensors with the enzyme laccase

    Energy Technology Data Exchange (ETDEWEB)

    García-Arellano, H. [Departamento de Ciencias Ambientales, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Lerma, Av. de las Garzas No. 10, Col. El Panteón, Lerma de Villada, Municipio de Lerma, Estado de México, C.P. 52005 (Mexico); Fink, D., E-mail: fink@xanum.uam.mx [Division de Ciencias Naturales e Ingeneria, Universidad Autónoma Metropolitana-Cuajimalpa, Artificios 40, Col. Hidalgo, Del. Álvaro Obregón C.P. 01120, México, D.F. (Mexico); Nuclear Physics Institute, 25068 Řež (Czech Republic); Muñoz Hernández, G. [Division de Ciencias Naturales e Ingeneria, Universidad Autónoma Metropolitana-Cuajimalpa, Artificios 40, Col. Hidalgo, Del. Álvaro Obregón C.P. 01120, México, D.F. (Mexico); Departamento de Fisica, Universidad Autónoma Metropolitana-Iztapalapa, PO Box 55-534, 09340 México, D.F. (Mexico); Vacík, J.; Hnatowicz, V. [Nuclear Physics Institute, 25068 Řež (Czech Republic); Alfonta, L. [Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105 (Israel)

    2014-08-15

    Highlights: • We construct a biosensor using polymer foils with laccase-clad etched nuclear tracks. • We use the biosensor for quantitation of phenolic compounds. • The biosensor can detect picomolar concentrations for some phenolic compounds. - Abstract: A new type of biosensors for detecting phenolic compounds is presented here. These sensors consist of thin polymer foils with laccase-clad etched nuclear tracks. The presence of suitable phenolic compounds in the sensors leads to the formation of enzymatic reaction products in the tracks, which differ in their electrical conductivities from their precursor materials. These differences correlate with the concentrations of the phenolic compounds. Corresponding calibration curves have been established for a number of compounds. The sensors thus produced are capable to cover between 5 and 9 orders of magnitude in concentration – in the best case down to some picomoles. The sensor's detection sensitivity strongly depends on the specific compound. It is highest for caffeic acid and acid blue 74, followed by ABTS and ferulic acid.

  14. Revisiting direct electron transfer in nanostructured carbon laccase oxygen cathodes.

    Science.gov (United States)

    Adam, Catherine; Scodeller, Pablo; Grattieri, Matteo; Villalba, Matías; Calvo, Ernesto J

    2016-06-01

    The biocatalytic electroreduction of oxygen has been studied on large surface area graphite and Vulcan® carbon electrodes with adsorbed Trametes trogii laccase. The electrokinetics of the O2 reduction reaction (ORR) was studied at different electrode potentials, O2 partial pressures and concentrations of hydrogen peroxide. Even though the overpotential at 0.25 mA·cm(-2) for the ORR at T1Cu of the adsorbed laccase on carbon is 0.8 V lower than for Pt of similar geometric area, the rate of the reaction and thus the operative current density is limited by the enzyme reaction rate at the T2/T3 cluster site for the adsorbed enzyme. The transition potential for the rate determining step from the direct electron transfer (DET) to the enzyme reaction shifts to higher potentials at higher oxygen partial pressure. Hydrogen peroxide produced by the ORR on bare carbon support participates in an inhibition mechanism, with uncompetitive predominance at high H2O2 concentration, non-competitive contribution can be detected at low inhibitor concentration. PMID:26883057

  15. Studies on Acetone Powder and Purified Rhus Laccase Immobilized on Zirconium Chloride for Oxidation of Phenols

    Directory of Open Access Journals (Sweden)

    Rong Lu

    2012-01-01

    Full Text Available Rhus laccase was isolated and purified from acetone powder obtained from the exudates of Chinese lacquer trees (Rhus vernicifera from the Jianshi region, Hubei province of China. There are two blue bands appearing on CM-sephadex C-50 chromatography column, and each band corresponding to Rhus laccase 1 and 2, the former being the major constituent, and each had an average molecular weight of approximately 110 kDa. The purified and crude Rhus laccases were immobilized on zirconium chloride in ammonium chloride solution, and the kinetic properties of free and immobilized Rhus laccase, such as activity, molecular weight, optimum pH, and thermostability, were examined. In addition, the behaviors on catalytic oxidation of phenols also were conducted.

  16. Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts

    DEFF Research Database (Denmark)

    De Fine Licht, Henrik; Schiøtt, Morten; Rogowska-Wrzesinska, Adelina;

    2013-01-01

    of neotropical ecosystems has remained elusive. Here we show how coevolutionary adaptation of a specific enzyme in the fungal symbiont has helped leaf-cutting ants overcome plant defensive phenolic compounds. We identify nine putative laccase-coding genes in the fungal genome of Leucocoprinus gongylophorus...... cultivated by the leaf-cutting ant Acromyrmex echinatior. One of these laccases (LgLcc1) is highly expressed in the specialized hyphal tips (gongylidia) that the ants preferentially eat, and we confirm that these ingested laccase molecules pass through the ant guts and remain active when defecated...... on the leaf pulp that the ants add to their gardens. This accurate deposition ensures that laccase activity is highest where new leaf material enters the fungus garden, but where fungal mycelium is too sparse to produce extracellular enzymes in sufficient quantities to detoxify phenolic compounds...

  17. Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza-Ticlo, D.; Tiwari, R.; Sah, A.K.; Raghukumar, C.

    enhancement in laccase production was found during treatment of colored effluents from textile, paper and pulp mill and distillery waste. Industrial effluents and synthetic dyes added to the growing culture of this fungus were decolorized to a great extent...

  18. Banana skin: a novel material for a low-cost production of laccase

    CERN Document Server

    Cruz, Johann Faccelo Osma

    2008-01-01

    Laccases (benzenodiol: oxygen oxidoreductases; EC 1.10.3.2) are multicopper oxidases of wide substrate specificity mainly found in white-rot fungi, which are the only microorganisms able to degrade the whole wood components, but they are also expressed in bacteria and higher plants. Laccases are used currently in biotechnological processes because this enzyme oxidizes both phenolic and non-phenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. In this work banana skin has been selected as a supporting material for laccase produntion because of its high content in carbohydrates, which due to their organic nature are easily metabolized by the fungus. In addition, its content in ascorbic acid exerts an inhibitory effect against bacteria. The activity of the produced laccase is tested in decoloration studies.

  19. Incorporation of copper ions into crystals of T2 copper-depleted laccase from Botrytis aclada.

    Science.gov (United States)

    Osipov, E M; Polyakov, K M; Tikhonova, T V; Kittl, R; Dorovatovskii, P V; Shleev, S V; Popov, V O; Ludwig, R

    2015-12-01

    Laccases belong to the class of multicopper oxidases catalyzing the oxidation of phenols accompanied by the reduction of molecular oxygen to water without the formation of hydrogen peroxide. The activity of laccases depends on the number of Cu atoms per enzyme molecule. The structure of type 2 copper-depleted laccase from Botrytis aclada has been solved previously. With the aim of obtaining the structure of the native form of the enzyme, crystals of the depleted laccase were soaked in Cu(+)- and Cu(2+)-containing solutions. Copper ions were found to be incorporated into the active site only when Cu(+) was used. A comparative analysis of the native and depleted forms of the enzymes was performed.

  20. Knockdown of a Laccase in Populus deltoides Confers Altered Cell Wall Chemistry and Increased Sugar Release

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Anthony C.; Jawdy, Sara; Gunter, Lee; Gjersing, Erica; Sykes, Robert; Hinchee, Maud A. W.; Winkeler, Kimberly A.; Collins, Cassandra M.; Engle, Nancy; Tschaplinski, Timothy J.; Yang, Xiaohan; Tuskan, Gerald A.; Muchero, Wellington; Chen, Jin-Gui

    2016-10-01

    Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G064000, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl (S/G) ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent on a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. We propose that this particular laccase has a range of functions related to oxidation of phenolics and conjugation of flavonoids that interact with lignin in the cell wall.

  1. Incorporation of copper ions into crystals of T2 copper-depleted laccase from Botrytis aclada.

    Science.gov (United States)

    Osipov, E M; Polyakov, K M; Tikhonova, T V; Kittl, R; Dorovatovskii, P V; Shleev, S V; Popov, V O; Ludwig, R

    2015-12-01

    Laccases belong to the class of multicopper oxidases catalyzing the oxidation of phenols accompanied by the reduction of molecular oxygen to water without the formation of hydrogen peroxide. The activity of laccases depends on the number of Cu atoms per enzyme molecule. The structure of type 2 copper-depleted laccase from Botrytis aclada has been solved previously. With the aim of obtaining the structure of the native form of the enzyme, crystals of the depleted laccase were soaked in Cu(+)- and Cu(2+)-containing solutions. Copper ions were found to be incorporated into the active site only when Cu(+) was used. A comparative analysis of the native and depleted forms of the enzymes was performed. PMID:26625287

  2. Influence of process variables on the properties of laccase biobleached pulps.

    Science.gov (United States)

    Martin-Sampedro, Raquel; Miranda, Jesús; García-Fuentevilla, Luisa L; Hernández, Manuel; Arias, Maria E; Diaz, Manuel J; Eugenio, Maria E

    2015-01-01

    A laccase stage can be used as a pre-treatment of a standard chemical bleaching sequence to reduce environmental concerns associated to this process. The importance of each independent variable and its influence on the properties of the bleached pulp have been studied in depth in this work, using an adaptive network-based fuzzy inference system (ANFIS) with four independent variables (laccase, buffer, mediator and oxygen) as input. Eucalyptus globulus kraft pulp was biobleached using a laccase from Pycnoporus sanguineus and a natural mediator (acetosyringone). Later, an alkaline extraction and a hydrogen peroxide treatment were applied. Most biobleaching processes showed a decrease in kappa number and an increase in brightness with no significant impact on the viscosity values, compared with the control. Oxygen was the variable with the smallest influence on the final pulp properties while the laccase and buffer solution showed a significant influence. PMID:25085529

  3. Effects and Interactions of Medium Components on Laccase from a Marine-Derived Fungus Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Chandralata Raghukumar

    2009-11-01

    Full Text Available The effects of various synthetic medium components and their interactions with each other ultimately impact laccase production in fungi. This was studied using a laccasehyper-producing marine-derived basidiomycete, Cerrena unicolor MTCC 5159. Inducible laccases were produced in the idiophase only after addition of an inducer such as CuSO4. Concentration of carbon and nitrogen acted antagonistically with respect to laccase production. A combination of low nitrogen and high carbon concentration favored both biomass and laccase production. The most favorable combination resulted in 917 U L-1 of laccase. After sufficient growth had occurred, addition of a surfactant such as Tween 80 positively impacted biomass and increased the laccase activity to around 1,300 U L-1. Increasing the surface to volume ratio of the culture vessel further increased its activity to almost 2,000 U L-1.

  4. Lignin-Derived Compounds as Efficient Laccase Mediators for Decolorization of Different Types of Recalcitrant Dyes

    OpenAIRE

    Camarero, Susana; Ibarra, David; Martínez, María Jesús; Martínez, Ángel T.

    2005-01-01

    Ten phenols were selected as natural laccase mediators after screening 44 different compounds with a recalcitrant dye (Reactive Black 5) as a substrate. Their performances were evaluated at different mediator/dye ratios and incubation times (up to 6 h) by the use of Pycnoporus cinnabarinus and Trametes villosa laccases and were compared with those of eight known synthetic mediators (including -NOH- compounds). Among the six types of dyes assayed, only Reactive Blue 38 (phthalocyanine) was res...

  5. Determination of optimal conditions for the degradation of micropollutants by laccase from Trametes versicolor

    OpenAIRE

    Margot, Jonas; Maillard, Julien; Rossi, Luca; Barry, David Andrew; Holliger, Christof

    2012-01-01

    Many hydrophilic organic compounds present at low concentrations in municipal wastewater, such as several pharmaceuticals, biocides and pesticides, are recalcitrant in conventional wastewater treatment plants. To improve the biodegradation of these compounds, oxidoreductase enzymes such as laccases could be used. Laccase activity is, however, strongly dependent on the conditions of the treatment such as pH, temperature, reaction time and enzyme concentration. In this study, the optimal condit...

  6. Laccase and Melanization in Clinically Important Cryptococcus Species Other than Cryptococcus neoformans

    OpenAIRE

    Ikeda, Reiko; Sugita, Takashi; Jacobson, Eric S.; Shinoda, Takako

    2002-01-01

    The laccase enzyme and melanin synthesis have been implicated as contributors to virulence in Cryptococcus neoformans. Since isolations of Cryptococcus species other than C. neoformans from clinical specimens have been increasing, we examined the laccase activities of C. albidus, C. laurentii, C. curvatus, and C. humicola. Incubation of cells with epinephrine produced adrenochrome color in C. albidus, C. laurentii, and C. curvatus but not in C. humicola. Activity was always less than in C. ne...

  7. Typing and selection of wild strains of Trichoderma spp. producers of extracellular laccase.

    Science.gov (United States)

    Cázares-García, Saila Viridiana; Arredondo-Santoyo, Marina; Vázquez-Marrufo, Gerardo; Soledad Vázquez-Garcidueñas, Ma; Robinson-Fuentes, Virginia A; Gómez-Reyes, Víctor Manuel

    2016-05-01

    Using the ITS region and the gene tef1, 23 strains of the genus Trichoderma were identified as belonging to the species T. harzianum (n = 14), T. olivascens (n = 1), T. trixiae (n = 1), T. viridialbum (n = 1), T. tomentosum (n = 2), T. koningii (n = 1), T. atroviride (n = 1), T. viride (n = 1), and T. gamsii (n = 1). Strains expressing extracellular laccase activity were selected by decolorization/oxidation assays in solid media, using azo, anthraquinone, indigoid, and triphenylmethane dyes, and the phenolic substances tannic acid and guaiacol. No strain decolorized Direct Blue 71 or Chicago Blue 6B, but all of them weakly oxidized guaiacol, decolorized Methyl Orange, and efficiently oxidized tannic acid. Based in decolorization/oxidation assays, strains CMU-1 (T. harzianum), CMU-8 (T. atroviride), CMU-218 (T. viride), and CMU-221 (T. tomentosum) were selected for evaluating their extracellular laccase activity in liquid media. Strain CMU-8 showed no basal laccase activity, while strains CMU-1, CMU-218, and CMU-221 had a basal laccase activity of 1,313.88 mU/mL, 763.88 mU/mL, and 799.53 mU/mL, respectively. Addition of sorghum straw inhibited laccase activity in strain CMU-1 by 34%, relative to the basal culture, while strains CMU-8, CMU-21, and CMU-221 increased their laccase activity by 1,321.5%, 64%, and 47%, respectively. These results show that assayed phenolic substrates are good tools for selecting laccase producer strains in Trichoderma. These same assays indicate the potential use of studied strains for bioremediation processes. Straw laccase induction suggests that analyzed strains have potential for straw delignification in biopulping and other biotechnological applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:787-798, 2016. PMID:26821938

  8. Laccase-katalysierte Dominoreaktionen von Brenzcatechinen und Hydrochinonen mit 1,3-Dicarbonylverbindungen

    OpenAIRE

    Hajdok, Szilvia

    2012-01-01

    In der vorliegenden Arbeit wurden neuartige Dominoreaktionen beschrieben, die auf Laccase-katalysierten Oxidation von Brenzcatechinen und Hydrochinonen zu den entsprechenden o- und p-Chinonen und sich daran anschließenden Umsetzungen mit 1,3-Dicarbonylen beruhen. Im ersten Teil dieser Dissertation wurde ein effizienter Zugang zu 3,4-Dihydro-7,8-dihydroxy-2H-dibenzofuran-1-onen entwickelt, der sich die Laccase-initiierte Dominoreaktion zwischen Cyclohexan-1,3-dionen und Brenzcatechinen mit...

  9. Electron Beam-Induced Immobilization of Laccase on Porous Supports for Waste Water Treatment Applications

    Directory of Open Access Journals (Sweden)

    Elham Jahangiri

    2014-08-01

    Full Text Available The versatile oxidase enzyme laccase was immobilized on porous supports such as polymer membranes and cryogels with a view of using such biocatalysts in bioreactors aiming at the degradation of environmental pollutants in wastewater. Besides a large surface area for supporting the biocatalyst, the aforementioned porous systems also offer the possibility for simultaneous filtration applications in wastewater treatment. Herein a “green” water-based, initiator-free, and straightforward route to highly reactive membrane and cryogel-based bioreactors is presented, where laccase was immobilized onto the porous polymer supports using a water-based electron beam-initiated grafting reaction. In a second approach, the laccase redox mediators 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS and syringaldehyde were cross-linked instead of the enzyme via electron irradiation in a frozen aqueous poly(acrylate mixture in a one pot set-up, yielding a mechanical stable macroporous cryogel with interconnected pores ranging from 10 to 50 µm in size. The membranes as well as the cryogels were characterized regarding their morphology, chemical composition, and catalytic activity. The reactivity towards waste- water pollutants was demonstrated by the degradation of the model compound bisphenol A (BPA. Both membrane- and cryogel-immobilized laccase remained highly active after electron beam irradiation. Apparent specific BPA removal rates were higher for cryogel- than for membrane-immobilized and free laccase, whereas membrane-immobilized laccase was more stable with respect to maintenance of enzymatic activity and prevention of enzyme leakage from the carrier than cryogel-immobilized laccase. Cryogel-immobilized redox mediators remained functional in accelerating the laccase-catalyzed BPA degradation, and especially ABTS was found to act more efficiently in immobilized than in freely dissolved state.

  10. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta.

    Science.gov (United States)

    Abadulla, E; Tzanov, T; Costa, S; Robra, K H; Cavaco-Paulo, A; Gübitz, G M

    2000-08-01

    Trametes hirsuta and a purified laccase from this organism were able to degrade triarylmethane, indigoid, azo, and anthraquinonic dyes. Initial decolorization velocities depended on the substituents on the phenolic rings of the dyes. Immobilization of the T. hirsuta laccase on alumina enhanced the thermal stabilities of the enzyme and its tolerance against some enzyme inhibitors, such as halides, copper chelators, and dyeing additives. The laccase lost 50% of its activity at 50 mM NaCl while the 50% inhibitory concentration (IC(50)) of the immobilized enzyme was 85 mM. Treatment of dyes with the immobilized laccase reduced their toxicities (based on the oxygen consumption rate of Pseudomonas putida) by up to 80% (anthraquinonic dyes). Textile effluents decolorized with T. hirsuta or the laccase were used for dyeing. Metabolites and/or enzyme protein strongly interacted with the dyeing process indicated by lower staining levels (K/S) values than obtained with a blank using water. However, when the effluents were decolorized with immobilized laccase, they could be used for dyeing and acceptable color differences (DeltaE*) below 1.1 were measured for most dyes.

  11. Xenobiotic Compounds Degradation by Heterologous Expression of a Trametes sanguineus Laccase in Trichoderma atroviride.

    Directory of Open Access Journals (Sweden)

    Edgar Balcázar-López

    Full Text Available Fungal laccases are enzymes that have been studied because of their ability to decolorize and detoxify effluents; they are also used in paper bleaching, synthesis of polymers, bioremediation, etc. In this work we were able to express a laccase from Trametes (Pycnoporus sanguineus in the filamentous fungus Trichoderma atroviride. For this purpose, a transformation vector was designed to integrate the gene of interest in an intergenic locus near the blu17 terminator region. Although monosporic selection was still necessary, stable integration at the desired locus was achieved. The native signal peptide from T. sanguineus laccase was successful to secrete the recombinant protein into the culture medium. The purified, heterologously expressed laccase maintained similar properties to those observed in the native enzyme (Km and kcat and kcat/km values for ABTS, thermostability, substrate range, pH optimum, etc. To determine the bioremediation potential of this modified strain, the laccase-overexpressing Trichoderma strain was used to remove xenobiotic compounds. Phenolic compounds present in industrial wastewater and bisphenol A (an endocrine disruptor from the culture medium were more efficiently removed by this modified strain than with the wild type. In addition, the heterologously expressed laccase was able to decolorize different dyes as well as remove benzo[α]pyrene and phenanthrene in vitro, showing its potential for xenobiotic compound degradation.

  12. Non-additive transcriptional profiles underlie dikaryotic superiority in Pleurotus ostreatus laccase activity.

    Directory of Open Access Journals (Sweden)

    Raúl Castanera

    Full Text Available BACKGROUND: The basidiomycete Pleurotus ostreatus is an efficient producer of laccases, a group of enzymes appreciated for their use in multiple industrial processes. The aim of this study was to reveal the molecular basis of the superiority of laccase production by dikaryotic strains compared to their parental monokaryons. METHODOLOGY/PRINCIPAL FINDINGS: We bred and studied a set of dikaryotic strains starting from a meiotic population of monokaryons. We then completely characterised the laccase allelic composition, the laccase gene expression and activity profiles in the dikaryotic strain N001, in two of its meiotic full-sib monokaryons and in the dikaryon formed from their mating. CONCLUSIONS/SIGNIFICANCE: Our results suggested that the dikaryotic superiority observed in laccase activity was due to non-additive transcriptional increases in lacc6 and lacc10 genes. Furthermore, the expression of these genes was divergent in glucose- vs. lignocellulose-supplemented media and was highly correlated to the detected extracellular laccase activity. Moreover, the expression profile of lacc2 in the dikaryotic strains was affected by its allelic composition, indicating a putative single locus heterozygous advantage.

  13. Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR

    Energy Technology Data Exchange (ETDEWEB)

    D`Souza, T.M.; Boominathan, K.; Reddy, C.A. [Michigan State Univ., East Lansing, MI (United States)

    1996-10-01

    Degenerate primers corresponding to the consensus sequences of the copper-binding regions in the N-terminal domains of known basidiomycete laccases were used to isolate laccase gene-specific sequences from strains representing nine genera of wood rot fungi. All except three gave the expected PCR product of about 200 bp. Computer searches of the databases identified the sequences of each of the PCR product of about 200 bp. Computer searches of the databases identified the sequence of each of the PCR products analyzed as a laccase gene sequence, suggesting the specificity of the primers. PCR products of the white rot fungi Ganoderma lucidum, Phlebia brevispora, and Trametes versicolor showed 65 to 74% nucleotide sequence similarity to each other; the similarity in deduced amino acid sequences was 83 to 91%. The PCR products of Lentinula edodes and Lentinus tigrinus, on the other hand, showed relatively low nucleotide and amino acid similarities (58 to 64 and 62 to 81%, respectively); however, these similarities were still much higher than when compared with the corresponding regions in the laccases of the ascomycete fungi Aspergillus nidulans and Neurospora crassa. A few of the white rot fungi, as well as Gloeophyllum trabeum, a brown rot fungus, gave a 144-bp PCR fragment which had a nucleotide sequence similarity of 60 to 71%. Demonstration of laccase activity in G. trabeum and several other brown rot fungi was of particular interest because these organisms were not previously shown to produce laccases. 36 refs., 6 figs., 2 tabs.

  14. Improved Laccase Production by Trametes pubescens MB89 in Distillery Wastewaters

    Directory of Open Access Journals (Sweden)

    P. J. Strong

    2011-01-01

    Full Text Available Various culture parameters were optimised for laccase synthesis by Trametes pubescens MB89, including pH, carbon source, nitrogen source, lignocellulosic supplements, and reported inducers. Glucose, in conjunction with a complex nitrogen source at pH 5.0, resulted in the highest laccase yield. Adding ethanol, copper, or 2,5-xylidine prior to inoculation further improved laccase concentrations. The addition of 2,5-xylidine was further investigated with multiple additions applied at varying times. This novel application substantially improved laccase production when applied regularly from inoculation and during the growth phase, and also countered glucose repression of laccase synthesis. Single and multiple factor changes were studied in three distillery wastewaters and a wine lees. A synergistic increase in laccase synthesis was observed with the addition of glucose, copper, and 2,5-xylidine. Single addition of 2,5-xylidine proved most beneficial with distillery wastewaters, while copper addition was most beneficial when using the wine lees as a culture medium.

  15. Xenobiotic Compounds Degradation by Heterologous Expression of a Trametes sanguineus Laccase in Trichoderma atroviride

    Science.gov (United States)

    Balcázar-López, Edgar; Méndez-Lorenzo, Luz Helena; Batista-García, Ramón Alberto; Esquivel-Naranjo, Ulises; Ayala, Marcela; Kumar, Vaidyanathan Vinoth; Savary, Olivier; Cabana, Hubert; Herrera-Estrella, Alfredo; Folch-Mallol, Jorge Luis

    2016-01-01

    Fungal laccases are enzymes that have been studied because of their ability to decolorize and detoxify effluents; they are also used in paper bleaching, synthesis of polymers, bioremediation, etc. In this work we were able to express a laccase from Trametes (Pycnoporus) sanguineus in the filamentous fungus Trichoderma atroviride. For this purpose, a transformation vector was designed to integrate the gene of interest in an intergenic locus near the blu17 terminator region. Although monosporic selection was still necessary, stable integration at the desired locus was achieved. The native signal peptide from T. sanguineus laccase was successful to secrete the recombinant protein into the culture medium. The purified, heterologously expressed laccase maintained similar properties to those observed in the native enzyme (Km and kcat and kcat/km values for ABTS, thermostability, substrate range, pH optimum, etc). To determine the bioremediation potential of this modified strain, the laccase-overexpressing Trichoderma strain was used to remove xenobiotic compounds. Phenolic compounds present in industrial wastewater and bisphenol A (an endocrine disruptor) from the culture medium were more efficiently removed by this modified strain than with the wild type. In addition, the heterologously expressed laccase was able to decolorize different dyes as well as remove benzo[α]pyrene and phenanthrene in vitro, showing its potential for xenobiotic compound degradation. PMID:26849129

  16. Optimization of Laccase Production using White Rot Fungi and Agriculture Wastes in Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Hendro Risdianto

    2012-07-01

    Full Text Available Laccase has been produced in a solid state fermentation (SSF using white rot fungi and various lignocellulosic based substrates. White rot fungi used were Marasmius sp, Trametes hirsuta, Trametes versicolor and Phanerochaete crysosporium. The solid substrates employed in this research were collected from agriculture waste which were empty fruit bunches (EFB, rice straw, corn cob, and rice husk. The objective of this research was to determine the most promising fungus, the best solid substrate and the optimal conditions for the production of laccase. The results showed that Marasmius sp. on all solid substrates displayed higher laccase activity than that of any other strain of white rot fungi. Marasmius sp. and solid substrate of rice straw demonstrated the highest laccase activity of 1116.11 U/L on day 10. Three significant factors, i.e. pH, temperature and yeast extract concentration were studied by response surface method on laccase production using Marasmius sp and rice straw. The optimized conditions were pH, temperature and yeast extract concentration of 4.9, 31ºC and 0.36 g/L respectively. The fermentation of Marasmius sp. in SSF on agricultural waste shows a great potential for the production of laccase.

  17. Production of Trametes pubescens Laccase under Submerged and Semi-Solid Culture Conditions on Agro-Industrial Wastes

    OpenAIRE

    Gonzalez, Juan C.; Medina, Sandra C.; Alexander Rodriguez; Osma, Johann F.; Carlos J. Alméciga-Díaz; Sánchez, Oscar F.

    2013-01-01

    Laccases are copper-containing enzymes involved in the degradation of lignocellulosic materials and used in the treatment of phenol-containing wastewater. In this study we investigated the effect of culture conditions, i.e. submerged or semi-solid, and copper supplementation on laccase production by Trametespubescens grown on coffee husk, soybean pod husk, or cedar sawdust. The highest specific laccase activity was achieved when the culture was conducted under submerged conditions supplemente...

  18. Preparation and Application of Polyclonal Antibody against a Recombinant Laccase

    Institute of Scientific and Technical Information of China (English)

    Yinghai Xu; Yuzhi Hong; Yazhong Xiao; Wei Fang

    2007-01-01

    A laccase gene from Trametes sp. 420 was recombinantly expressed in Pichia pastoris, producing the enzyme rLacD.Six mutant enzymes were produced by site-directed mutation at six potential glycosylation sites in the enzyme rLacD respectively. To probe the mutants with lower activities sensitively and specifically, the antiserum containing specific polyclonal antibodies were prepared by immunizing healthy male rabbits, about 4-month-old and 2 kilogram weight, using pure rLacD as an immunogen. Antibodies were collected after the fifth immunization injection. The antiserum had titres of 1:32 in double immunodiffusion test and of 1:128,000 in enzyme-linked immunosorbent assay (ELISA). The results obtained by Western blot analysis showed that the antiserum could react with rLacD and its mutants with highly specific and sensitive affinities.

  19. Phylogenetic Analysis of 16S rDNA Sequence and PCR - RFLP of Bacillus from Fumao - flavor Daqu%福矛高温大曲中芽孢杆菌16S rDNA-RFLP及系统发育分析

    Institute of Scientific and Technical Information of China (English)

    颜林春; 张守财; 马校卫; 汤二将; 黄祖新; 陈由强

    2012-01-01

    目的:从福建建瓯黄华山酿酒有限公司高温大曲中分离出89株芽孢杆菌,通过初步筛选鉴定并进行微生物多样性研究.方法:对其16S rDNA进行PCR - RFLP分析和系统发育研究.结果:初步筛选得到的18株芽孢杆菌被HhaⅠ和MspⅠ酶切聚类分为四大组.通过系统发育分析样品中有6株Bacillus subtilis,4株Bacillus cereus,2株Bacillus sonorensis,2株Bacillus licheniformis,以及Bacillus pumilus、Bacillus oleronius、Bacillus coagulans和Bacillus thuringiensis各1株.结论:研究显示该高温大曲中可培养芽孢杆菌具有微生物多样性.

  20. Phenols and lignin: Key players in reducing enzymatic hydrolysis yields of steam-pretreated biomass in presence of laccase.

    Science.gov (United States)

    Oliva-Taravilla, Alfredo; Tomás-Pejó, Elia; Demuez, Marie; González-Fernández, Cristina; Ballesteros, Mercedes

    2016-01-20

    Phenols are known as inhibitors for cellulases and fermentative microorganisms in bioethanol production processes. The addition of laccases removes the phenolic compounds and subsequently reduces the lag phase of the fermentative microorganism. However, the application of laccases diminishes glucose release during the enzymatic hydrolysis. In this study a model cellulosic substrate (Sigmacell) together with lignin extract, whole steam-pretreated wheat straw (slurry) and its water insoluble solid fraction (WIS) were subjected to enzymatic hydrolysis to evaluate the effects of laccase treatment in presence of lignin and phenols. The presence of laccase in enzymatic hydrolysis of Sigmacell with lignin extract reduced glucose yield by 37% compared with assays without laccase. Furthermore, this reduction was even more marked in presence of phenols (55% reduction). Interestingly, when hydrolyzing WIS, the addition of phenols coupled with laccase treatment did not show a reduction when compared with only laccase addition. This fact suggests the key role of lignin in the hydrolysis inhibition since in WIS the ratio cellulase per gram of lignin was much lower than in Sigmacell experiments. Finally, the lower cellobiose and xylose recoveries point out that phenolic oligomers formed by laccase oxidation play important roles in the inhibition of endoglucanases, cellobiohydrolases and xylanases. To conclude, the proportion of lignin and the composition of phenols are key players in the inhibition of cellulases when the enzymatic hydrolysis is combined with laccases detoxification. PMID:26684987

  1. 凉水保护区土壤产类漆酶-多铜氧化酶细菌群落结构%The community structure of laccase-like multicopper oxidase-producing bacteria in soil of Liangshui Nature Reserve

    Institute of Scientific and Technical Information of China (English)

    赵丹; 谷惠琦; 崔岱宗; 范晓旭; 张曦; 赵敏

    2012-01-01

    在凉水国家级自然保护区3种主要林型红松(Pinus koraiensis)、白桦(Betula platyphylla)及云杉(Picea dietrich)林采集林下土壤样品,以铜离子作为筛选剂处理后,结合平板分离法与基于16S rDNA V3区片段的变性梯度凝胶电泳(Denaturing Gradient Gel Electrophoresis,DGGE)技术,调查了土壤样品中产类漆酶-多铜氧化酶(laccase-like multicopper oxidase,LMCO)细菌的群落结构.这是研究产类漆酶-多铜氧化酶细菌在环境中存在的种、属及分布的新尝试.平板分离获得10株细菌均为芽孢杆菌属(Bacillus sp.),其中梭状芽孢杆菌(Bacillus fusiformis)未见相关报道.通过DGGE图谱分析可知,产类漆酶-多铜氧化酶细菌在研究地不同林型土壤中的群落结构无明显差异,在红松林土壤中多样性最为丰富.DGGE条带测序结果表明,取样地土壤中产类漆酶细菌主要为罗尔斯顿菌属(Ralstonia sp.)、肠杆菌属(Enterobacter sp.)、芽孢杆菌属和一些未培养细菌.%Laccases catalyze the oxidation of various aromatics, particularly phenolic and amine substrates, making them valuable in industrial applications. Laccases also play an important role in soil organic matter (SOM) turnover processes and the global carbon cycle due to their involvement in the synthesis and degradation of lignin as well as transformation of lignified substrates and humic substances. Laccases belong to the protein family of multicopper oxidases characterized by copper atoms in the active center. Laccases or laccase-like multicopper oxidases ( LMCO) have been extensively studied especially in fungi. Recently, increasing evidence points to a wide occurrence of LMCO in bacteria. As bacterial communities are known to decompose pollutants and municipal wastes involving large quantities of phenolic substances and organic matter, it can be deduced that bacterial LMCO might also participate in lignin degradation and SOM cycling. Copper atoms not only constitute

  2. Mapping by interspecies transformation experiments of several ribosomal protein genes near the replication origin of Bacillus subtilis chromosome.

    Science.gov (United States)

    Osawa, S; Tokui, A; Saito, H

    1978-08-17

    Bacillus subtilis 168 was transformed with DNAs from B. amyloliquefaciens K or B. licheniformis IAM 11054. These two species show a considerable difference in ribosomal proteins from B. subtilis. Analyses of the transformants indicated that the genes for 16 proteins, S3, S5, S8, S12, S17, S19, BL1, BL5, BL6, BL8, BL14, BL16, BL17, BL22, BL23 and BL25 are located in the cysA-str-spc region on B. subtilis chromosome. The genes for 10 proteins, S4, S6, S13, S16, S20, BL15, BL18, BL20, BL24 and BL28 could not be found in this region in the present experiments.

  3. Direct bio-electrocatalysis by multi-copper oxidases: Gas-diffusion laccase-catalyzed cathodes for biofuel cells

    International Nuclear Information System (INIS)

    We have studied the bio-electroreduction of oxygen based on direct electron transfer (DET) between laccase and the electrode. Laccase enzymes from two different sources, namely, tree laccase from Rhus vernicifera, and fungal laccase from Trametes hirsuta were used in the study. The gas-diffusion cathode was made using a mixture of teflonized carbon and untreated carbon black, with a nickel mesh that served as a current collector, sandwiched between a hydrophobic gas diffusion layer, and a hydrophilic biocatalytic layer with physically adsorbed laccase enzyme. High current densities: up to 1 mA cm−2 under oxygen (for bio-electrocatalytic oxygen reduction) and increased stability (up to 30 days) has been achieved using teflonized carbon blacks at gas–electrode interface, high surface area carbon black for loading the enzyme. Gas diffusion laccase-catalyzed cathode demonstrates a number of advantageous properties including good adhesion, biocompatibility and high bio-electrocatalytic properties. An open circuit potential (OCP) of 600 mV at pH 7 for tree laccase (R. vernicifera) and 725 mV at pH 5 for fungal laccase (T. hirsuta) at zero current densities were obtained with respect to SHE reference electrode. Tafel plots obtained confirmed different DET characteristics for the two sources of laccase enzymes, which could suggest different mechanism of charge transfer: 4-electron electroreduction of oxygen using fungal laccase and 2-electron electroreduction using tree laccase. The performance of the cathode was studied in galvanostatic mode and polarization curves at various conditions are reported including those obtained under air and neat oxygen feed from the gas phase.

  4. Biosensor based on laccase immobilized on plasma polymerized allylamine/carbon electrode

    International Nuclear Information System (INIS)

    In this work, a simple and rapid method was used to functionalize carbon electrode in order to efficiently immobilize laccase for biosensor application. A stable allylamine coating was deposited using a low pressure inductively excited RF tubular plasma reactor under mild plasma conditions (low plasma power (10 W), few minutes) to generate high density amine groups (N/C ratio up to 0.18) on rough carbon surface electrodes. The longer was the allylamine plasma deposition time; the better was the surface coverage. Laccase from Trametes versicolor was physisorbed and covalently bound to these allylamine modified carbon surfaces. The laccase activities and current outputs measured in the presence of 2,2′-azinobis-(3-ethylbenzothiazole-6-sulfonic acid) (ABTS) showed that the best efficiency was obtained for electrode plasma coated during 30 min. They showed also that for all the tested electrodes, the activities and current outputs of the covalently immobilized laccases were twice higher than the physically adsorbed ones. The sensitivity of these biocompatible bioelectrodes was evaluated by measuring their catalytic efficiency for oxygen reduction in the presence of ABTS as non-phenolic redox substrate and 2,6-dimethoxyphenol (DMP) as phenolic one. Sensitivities of around 4.8 μA mg−1 L and 2.7 μA mg−1 L were attained for ABTS and DMP respectively. An excellent stability of this laccase biosensor was observed for over 6 months. - Highlights: Low pressure plasma was used to generate stable allylamine coating. • Laccase from Trametes versicolor was physisorbed and covalently immobilized. • Best biosensor efficiency obtained for the covalently immobilized laccases • Sensitivities of 4.8 μA mg−1 L and 2.7 μA mg−1 L for ABTS and DMP respectively

  5. Inactivation of Spores of Bacillus anthracis Sterne, Bacillus cereus, and Bacillus thuringiensis subsp. israelensis by Chlorination

    OpenAIRE

    Rice, E W; Adcock, N. J.; Sivaganesan, M; Rose, L. J.

    2005-01-01

    Three species of Bacillus were evaluated as potential surrogates for Bacillus anthracis for determining the sporicidal activity of chlorination as commonly used in drinking water treatment. Spores of Bacillus thuringiensis subsp. israelensis were found to be an appropriate surrogate for spores of B. anthracis for use in chlorine inactivation studies.

  6. Isolation and characterisation of laccase cDNAs from meristematic and stem tissues of ryegrass (¤Lolium perenne¤)

    DEFF Research Database (Denmark)

    Gavnholt, B.; Larsen, K.; Rasmussen, S.K.

    2002-01-01

    Plant laccases are believed to be involved in dehydrogenative polymerisation of lignin. We report here the first cloning of monocot laccases. Five different laccase-encoding cDNA sequences were identified from ryegrass (Lolium perenne); four from stem and one from meristematic tissue. Three c...

  7. Extraction and Application of Laccases from Shimeji Mushrooms (Pleurotus ostreatus Residues in Decolourisation of Reactive Dyes and a Comparative Study Using Commercial Laccase from Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Ricardo Sposina S. Teixeira

    2010-01-01

    Full Text Available Oxidases are able to degrade organic pollutants; however, high costs associated with biocatalysts production still hinder their use in environmental biocatalysis. Our study compared the action of a commercial laccase from Aspergillus oryzae and a rich extract from Pleurotus ostreatus cultivation residues in decolourisation of reactive dyes: Drimaren Blue X-3LR (DMBLR, Drimaren Blue X-BLN (DMBBLN, Drimaren Rubinol X-3LR (DMR, and Drimaren Blue C-R (RBBR. The colour removal was evaluated by considering dye concentration, reaction time, absence or presence of the mediator ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, and the source of laccase. The presence of ABTS was essential for decolourisation of DMR (80–90%, 1 h and RBBR (80–90%, 24 h with both laccases. The use of ABTS was not necessary in reactions containing DMBLR (85–97%, 1 h and DMBBLN (63–84%, 24 h. The decolourisation of DMBBLN by commercial laccase showed levels near 60% while the crude extract presented 80% in 24 h.

  8. Extraction and Application of Laccases from Shimeji Mushrooms (Pleurotus ostreatus) Residues in Decolourisation of Reactive Dyes and a Comparative Study Using Commercial Laccase from Aspergillus oryzae

    Science.gov (United States)

    Teixeira, Ricardo Sposina S.; Pereira, Patrícia Maia; Ferreira-Leitão, Viridiana S.

    2010-01-01

    Oxidases are able to degrade organic pollutants; however, high costs associated with biocatalysts production still hinder their use in environmental biocatalysis. Our study compared the action of a commercial laccase from Aspergillus oryzae and a rich extract from Pleurotus ostreatus cultivation residues in decolourisation of reactive dyes: Drimaren Blue X-3LR (DMBLR), Drimaren Blue X-BLN (DMBBLN), Drimaren Rubinol X-3LR (DMR), and Drimaren Blue C-R (RBBR). The colour removal was evaluated by considering dye concentration, reaction time, absence or presence of the mediator ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and the source of laccase. The presence of ABTS was essential for decolourisation of DMR (80–90%, 1 h) and RBBR (80–90%, 24 h) with both laccases. The use of ABTS was not necessary in reactions containing DMBLR (85–97%, 1 h) and DMBBLN (63–84%, 24 h). The decolourisation of DMBBLN by commercial laccase showed levels near 60% while the crude extract presented 80% in 24 h. PMID:21052547

  9. Important role of fungal intracellular laccase for melanin synthesis: purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies.

    Science.gov (United States)

    Nagai, Masaru; Kawata, Maki; Watanabe, Hisayuki; Ogawa, Machiko; Saito, Kumiko; Takesawa, Toshikazu; Kanda, Katsuhiro; Sato, Toshitsugu

    2003-09-01

    A laccase (EC 1.10.3.2) was isolated from the fully browned gills of Lentinula edodes fruit bodies. The enzyme was purified to a homogeneous preparation using hydrophobic, cation-exchange and size-exclusion chromatography. SDS-PAGE analysis showed the purified laccase, Lcc 2, to be a monomeric protein of 58.0 kDa. The enzyme had an isoelectric point of around pH 6.9. The optimum pH for enzyme activity was around 3.0 against 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt (ABTS), and it was most active at 40 degrees C and stable up to 50 degrees C. The enzyme contained 8.6 % carbohydrate and some copper atoms. The enzyme oxidized ABTS, p-phenylenediamine, pyrogallol, guaiacol, 2,6-dimethoxyphenol, catechol and ferulic acid, but not veratryl alcohol and tyrosine. Beta-(3,4-dihydroxyphenyl)alanine (L-DOPA), which was not oxidized by a laccase previously reported from the culture filtrate of L. edodes, was also oxidized by Lcc 2, and the oxidative product of L-dopa was identified as L-DOPA quinone by HPLC analysis. Lcc 2 was able to oxidize phenolic compounds extracted from fresh gills to brown-coloured products, suggesting a role for laccase in melanin synthesis in this strain. PMID:12949171

  10. Effect of inducers on the decolorization and biodegradation of textile azo dye Navy blue 2GL by Bacillus sp. VUS.

    Science.gov (United States)

    Dawkar, Vishal V; Jadhav, Umesh U; Ghodake, Gajanan S; Govindwar, Sanjay P

    2009-11-01

    Bacillus sp. VUS decolorized azo dye Navy blue 2GL in 48 h at static anoxic condition in yeast extract medium, whereas it took only 18 h for the decolorization in presence of CaCl(2). Different inducers played role in the decolorization of Navy blue 2GL. CaCl(2) found to be the most effective inducer among all inducers tested. The activity of enzymes like lignin peroxidase, laccase and reductases viz. NADH-DCIP, azo and riboflavin induced during decolorization represents their role in the biodegradation. Extracellular LiP and intracellular laccase activity induced with CaCl(2). Yeast extract was best medium for faster decolorization than other media. UV-vis spectrophotometer analysis and visual examinations showed decolorization of dye. High performance liquid chromatography, Fourier transforms infrared spectroscopy showed degradation of dye. Gas Chromatography-Mass Spectroscopy revealed formation of 4-Amino-3-(2-bromo-4, 6-dinitro-phenylazo)-phenol and acetic acid 2-(-acetoxy-ethylamino)-ethyl ester as final products. Bacillus sp. VUS also decolorized synthetic effluent. Phytotoxicity study showed detoxification of Navy blue 2GL.

  11. Comparison of Bacillus thuringiensis and Bacillus cereus

    International Nuclear Information System (INIS)

    Bacillus cereus and Bacillus thuringiensis are closely related, spore forming soil bacteria. B. thuringiensis produces insecticidal crystal proteins during sporulation and these toxins are the most important biopesticides in the world today. Genomes of the B. thuringiensis and B. cereus strains were analysed by pulsed field gel electrophoresis after treatment of the DNA with the restriction enzyme NotI. The NotI fingerprint patterns varied both within the B. thuringiensis and the B. cereus strains. The size of the fragments varied between 15 and 1350 kb. When physical maps of the B. thuringiensis and B. cereus strains were compared, B. thuringiensis appeared to be as closely related to B. cereus as the B. cereus strains were to each other. Nine out of 12 B. thuringiensis strains and 18 out of 25 B. cereus strains produced enterotoxins. The close relationship between B. thuringiensis and B. cereus should be taken into consideration when B. thuringiensis is used as a biopesticide. (author). 10 refs, 4 figs, 1 tab

  12. Characterization of Bacillus cereus

    NARCIS (Netherlands)

    Wijnands LM; Dufrenne JB; Leusden FM; MGB

    2002-01-01

    Bacillus cereus is a ubiquitary microorganism that may cause food borne disease. Pathogenicity, however, depends on various characteristics such as the ability to form (entero)-toxin(s) that can not be detected by microbiological methods. Further characterization of pathogenic properties is not only

  13. Biodiversity in Bacillus cereus

    NARCIS (Netherlands)

    Pielaat A; Fricker M; Nauta MJ; Leusden FM van; MGB

    2006-01-01

    Experiments have been performed by different partners to identify variability in properties of Bacillus cereus strains that contribute to the extent of their virulence as part of an EU project. To this end, 100 B. cereus strains were selected and screened for biological properties, such as toxin pro

  14. Essential Bacillus subtilis genes

    DEFF Research Database (Denmark)

    Kobayashi, K.; Ehrlich, S.D.; Albertini, A.;

    2003-01-01

    To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes we...

  15. Laccase gene expression as a possible key adaptation for herbivorous niche expansion in the attine fungus-growing ants

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Nygaard, Sanne;

    played an important role in allowing the leaf-cutting ants to become generalist functional herbivores. Laccases are polyphenol oxidase enzymes (PPOs) that are best known for their ability to degrade lignin in saprophytic and wood-pathogenic fungi. We found that laccase activity was primarily expressed...

  16. Laccase gene expression as a possible key adaptation for herbivorous niche expansion in the attine fungus-growing ants

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    generalist functional herbivores. Laccases are polyphenol oxidase enzymes (PPOs) that are best known for their ability to degrade lignin in saprophytic and wood-pathogenic fungi. We found that laccase activity was primarily expressed in newly constructed garden sections where secondary leaf compounds...

  17. Laccase Production from a Temperature and pH Tolerant Fungal Strain of Trametes hirsuta (MTCC 11397

    Directory of Open Access Journals (Sweden)

    Kusum Dhakar

    2013-01-01

    Full Text Available Laccase production by a temperature and pH tolerant fungal strain (GBPI-CDF-03 isolated from a glacial site in Indian Himalayan Region (IHR has been investigated. The fungus developed white cottony mass on potato dextrose agar and revealed thread-like mycelium under microscope. ITS region analysis of fungus showed its 100% similarity with Trametes hirsuta. The fungus tolerated temperature from 4 to 48°C ± 2 (25°C opt. and pH 3–13 (5–7 opt.. Molecular weight of laccase was determined approximately 45 kDa by native PAGE. Amplification of laccase gene fragment (corresponding to the copper-binding conserved domain contained 200 bp. The optimum pH for laccase production, at optimum growth temperature, was determined between 5.5 and 7.5. In optimization experiments, fructose and ammonium sulfate were found to be the best carbon and nitrogen sources, respectively, for enhancing the laccase production. Production of laccase was favored by high carbon/nitrogen ratio. Addition of CuSO4 (up to 1.0 mM induced laccase production up to 2-fold, in case of 0.4 mM concentration. Addition of organic solvents also induced the production of laccase; acetone showed the highest (2-fold induction. The study has implications in bioprospecting of ecologically resilient microbial strains.

  18. Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor.

    Science.gov (United States)

    Nguyen, Luong N; Hai, Faisal I; Dosseto, Anthony; Richardson, Christopher; Price, William E; Nghiem, Long D

    2016-06-01

    Laccase was immobilized on granular activated carbon (GAC) and the resulting GAC-bound laccase was used to degrade four micropollutants in a packed-bed column. Compared to the free enzyme, the immobilized laccase showed high residual activities over a broad range of pH and temperature. The GAC-bound laccase efficiently removed four micropollutants, namely, sulfamethoxazole, carbamazepine, diclofenac and bisphenol A, commonly detected in raw wastewater and wastewater-impacted water sources. Mass balance analysis showed that these micropollutants were enzymatically degraded following adsorption onto GAC. Higher degradation efficiency of micropollutants by the immobilized compared to free laccase was possibly due to better electron transfer between laccase and substrate molecules once they have adsorbed onto the GAC surface. Results here highlight the complementary effects of adsorption and enzymatic degradation on micropollutant removal by GAC-bound laccase. Indeed laccase-immobilized GAC outperformed regular GAC during continuous operation of packed-bed columns over two months (a throughput of 12,000 bed volumes). PMID:26803903

  19. Decolorization of reactive dyes by laccase immobilized in alginate/gelatin blent with PEG

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; FAN Xuerong; CUI Li; WANG Qiang; ZHOU Aihui

    2008-01-01

    To achieve effective decolorization of reactive dyes, laccase immobilization was investigated. Laccase 0.2% (m/V) (Denilite ⅡS) was trapped in beads of alginate/gelatin blent with polyethylene glycol (PEG), and then the supporters were activated by cross-linking with glutaraldehyde. The results of repeated batch decolorization showed that gelatin and appropriate concentration of glutaraldehyde accelerated the decolorization of Reactive Red B-3BF (RRB); PEG had a positive effect on enzyme stability and led to an increase of color removal. While the beads contained 0.2%, 2.0%, 2.0%, and 0.5% (m/V) of laccase, alginate, gelatin, and PEG, respectively. The dye of 50 mg/L initial concentration of RRB was decolorized down to 50% during the tenth repeated batch. As far as the decolorization mechanism was concerned, the thermal and pH stabilities of the immobilized laccase were also investigated and were both appreciably improved. The study indicates that the immobilized laccase can be potential candidate for utilization in biodecolorization processes.

  20. Studies on Possible Activation of Microbial Laccase Production Using Gamma Irradiation

    International Nuclear Information System (INIS)

    Enzyme production is an essential discipline in biotechnology. Laccase enzyme is an oxidoreductase that catalyzes the oxidation of various aromatic compounds, with the simultaneous reduction of oxygen into water. Although the enzyme is present in plants, insects and bacteria, the most important source is fungi and particularly the Basidiomycetes. In fungi, the enzyme plays a role in the removal of potentially toxic phenols arising during fungal morphogenesis, sporulation, phytopathogensis and virulence. In this work, the production of fungal laccase was optimized from a local isolate of Pleurotus ostreatus using solid state fermentation. Factorial design was used to study the effect of several nutrients and inducer on enzyme activity. Purification, characterization of the enzyme, the effect of temperature and ph were studied. The effect of gamma radiation on fungal growth and enzyme production was investigated. The optimization of the production conditions yielded an enzyme with activity over 32,054 IU/gram of fermented substrate. Factorial design was capable of establishing the conditions that multiplied the activity of the enzyme several folds and consequently, reducing the cost of production. The enzyme was capable of decolorizing several dyes with over 80 % reduction in color in case of methyl orange and trypan blue. The decolorisation of dyes is a simple method to assess the aromatic degrading capability of laccase. The enzyme was also used in the synthesis of gold nanoparticles, proving that laccase from Pleurotus ostreatus has a strong potential in several industrial applications, which opens a door towards using of fungal laccase in further biotechnological processes.

  1. Laccase immobilized on methylene blue modified mesoporous silica MCM-41/PVA

    International Nuclear Information System (INIS)

    The mesoporous silica sieve MCM-41 containing methylene blue (MB) provides a suitable immobilization of biomolecule matrix due to its uniform pore structure, high surface areas, good biocompatibility and nice conductivity. Based on this, a facilely fabricated amperometric biosensor by entrapping laccase into the MB modified MCM-41/PVA composite film has been developed. Laccase from Trametes versicolor is assembled on a composite film of MCM-41 containing MB/PVA modified Au electrode and the electrode is characterized with respect to transmission electron microscopy (TEM) and scanning electron microscopic (SEM), Cyclic voltammetry (CV), response time, detection limit, linear range and activity of laccase. The laccase modified electrode remains good redox behavior in pH 4.95 acetate buffer solution, at room temperature in present of 0.1 mM catechol. The response time (t90%) of the modified electrode is less than 4 s for catechol. The detection limit is 0.331 μM and the linear detect range is about from 4.0 μM to 87.98 μM for catechol with a correlation coefficient of 0.99913(S/N = 3). The apparent Michaelis-Menten (KMapp) is estimated using the Lineweaver-Burk equation and the KMapp value is about 0.256 mM. This work demonstrated that the mesoporous silica MCM-41 containing MB provides a novel support for laccase immobilization and the construction of biosensors with a faster response and better bioactivity.

  2. Interaction of small molecules with fungal laccase: A Surface Plasmon Resonance based study.

    Science.gov (United States)

    Surwase, Swati V; Patil, Sushama A; Srinivas, Sistla; Jadhav, Jyoti P

    2016-01-01

    Laccases have a great potential for use in industrial and biotechnological applications. It has affinity towards phenolics and finds major applications in the field of bioremediation. Here, Surface Plasmon Resonance (SPR) as a biosensor with immobilized laccase on chip surface has been studied. Laccase was immobilized by thiol coupling method and compounds containing increasing number of hydroxyl groups were analyzed for their binding affinity at various concentrations in millimolar range. The small molecules like phloroglucinol (1.532×10(-8) M), crocin (3.204×10(-3) M), ascorbic acid (8.331×10(-8) M), kojic acid (6.411×10(-7) M) and saffron (3.466×10(-7) M) were studied and respective KD values are obtained. The results were also confirmed by inhibition assay and IC50 values were calculated. All these molecules showed different affinity towards laccase in terms of KD values. This method may be useful for preliminary screening and characterization of small molecules as laccase substrates, inhibitors or modulators of activity. This method will be useful for rapid screening of phenolics in waste water because of high sensitivity. PMID:26672456

  3. A novel laccase with fair thermostability from the edible wild mushroom (Albatrella dispansus)

    International Nuclear Information System (INIS)

    A laccase with a novel N-terminal sequence was purified from fresh fruiting bodies of the edible wild mushroom Albatrella dispansus using a procedure that entailed ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel and Con A-Sepharose, and gel filtration by fast protein liquid chromatography on Superdex 75. In contrast to most of the previously reported laccases from mushroom mycelia, the laccase was unadsorbed on DEAE-cellulose. Although it was also unadsorbed on Affi-gel blue gel, it was adsorbed on Con A-Sepharose, indicating that it is a glycoprotein. It exhibited a molecular mass of 62 kDa in gel filtration and SDS-PAGE. The activity of the laccase increased with temperature from 20 to 70 deg. C, and notably remained high at 80 deg. C. The pH optimum for the enzyme was around 4. Enzyme activity was indiscernible at pH 8 and pH 9. The laccase did not exert any inhibitory activity toward HIV-1 reverse transcriptase at a concentration of 1 mg/ml, unlike some previously reported mushroom proteins

  4. Properties of bacterial laccases and their application in bioremediation of industrial wastes.

    Science.gov (United States)

    Chandra, Ram; Chowdhary, Pankaj

    2015-02-01

    The bioremediation process of industrial waste can be made more efficient using ligninolytic laccase enzymes, which are obtained from fungi, bacteria, higher plants, insects, and also in lichen. Laccase are catalyzed in the mono-electronic oxidation of a substrate from the expenditure of molecular oxygen. This enzyme belongs to the multicopper oxidases and participates in the cross linking of monomers, involved in the degradation of wide range industrial pollutants. In recent years, these enzymes have gained application in pulp and paper, textile and food industries. There are numerous reviews on laccases; however, a lot of information is still unknown due to their broad range of functions and applications. In this review, the bacterial laccases are focused for the bioremediation of various industrial pollutants. A brief description on structural molecular and physicochemical properties has been made. Moreover, the mechanism by which the reaction is catalyzed, the physical basis of thermostability and enantioselectivity, which requires more attention from researchers, and applications of laccase in various fields of biotechnology are pointed out.

  5. Site-directed mutation of a laccase from Thermus thermophilus: Effect on the activity profile

    Directory of Open Access Journals (Sweden)

    Liu Xin

    2012-01-01

    Full Text Available A site-directed mutant R453T of a laccase from Thermus thermophilus HB27 (Tth-laccase was constructed in order to investigate the effect on laccase catalytic properties. The mutated gene was cloned and overexpressed in Escherichia coli. Nickel-affinity purification was achieved and followed by copper ion incorporation. The mature mutated enzyme was quantitatively equal to the wild type. A photometric assay based on the oxidation of the substrate 2,2-azino-bis-(3- ethylbenzthiazoline-6-sulfonate (ABTS was employed in comparison with the wild-type Tth-laccase on catalytic properties. The R453T mutant exhibited improvement in substrate affinity and specific activity at room temperature, whereas those parameters were not significantly influenced when the temperature increased up to 65°C or higher. The mutant had better catalytic activity than that of the wild type at acidic pH. Investigated by circular dichroism spectroscopy, the mutant Tth-laccase displayed similar profiles at low and high temperatures.

  6. Incorporation of copper ions into crystals of T2 copper-depleted laccase from Botrytis aclada

    Energy Technology Data Exchange (ETDEWEB)

    Osipov, E. M., E-mail: e.m.osipov@gmail.com [A. N. Bach Institute of Biochemistry, Leninsky pr. 33, Moscow 119071 (Russian Federation); Polyakov, K. M. [A. N. Bach Institute of Biochemistry, Leninsky pr. 33, Moscow 119071 (Russian Federation); Engelhardt Institute of Molecular Biology, Vavilova str. 32, Moscow 119991 (Russian Federation); Tikhonova, T. V. [A. N. Bach Institute of Biochemistry, Leninsky pr. 33, Moscow 119071 (Russian Federation); Kittl, R. [BOKU – University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Wien (Austria); Dorovatovskii, P.V. [RSC ‘Kurchatov Institute’, Acad. Kurchatov sq. 1, Moscow 123182 (Russian Federation); Shleev, S. V.; Popov, V. O. [A. N. Bach Institute of Biochemistry, Leninsky pr. 33, Moscow 119071 (Russian Federation); RSC ‘Kurchatov Institute’, Acad. Kurchatov sq. 1, Moscow 123182 (Russian Federation); Ludwig, R. [BOKU – University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Wien (Austria)

    2015-11-18

    The restoration of the native form of laccase from B. aclada from the type 2 copper-depleted form of the enzyme was investigated. Copper ions were found to be incorporated into the active site after soaking the depleted enzyme in a Cu{sup +}-containing solution. Laccases belong to the class of multicopper oxidases catalyzing the oxidation of phenols accompanied by the reduction of molecular oxygen to water without the formation of hydrogen peroxide. The activity of laccases depends on the number of Cu atoms per enzyme molecule. The structure of type 2 copper-depleted laccase from Botrytis aclada has been solved previously. With the aim of obtaining the structure of the native form of the enzyme, crystals of the depleted laccase were soaked in Cu{sup +}- and Cu{sup 2+}-containing solutions. Copper ions were found to be incorporated into the active site only when Cu{sup +} was used. A comparative analysis of the native and depleted forms of the enzymes was performed.

  7. Low pH dye decolorization with ascomycete Lamprospora wrightii laccase.

    Science.gov (United States)

    Mueangtoom, Kitti; Kittl, Roman; Mann, Oliver; Haltrich, Dietmar; Ludwig, Roland

    2010-08-01

    In a screening of saprotrophic, ectomycorrhizal and plant pathogen ascomycetes a frequent occurrence of laccase was observed. Lamprospora wrightii, the best producing organism, was chosen to elucidate the properties of a laccase from a moss-associated, saprotrophic ascomycete. The expression of laccase by this bryophilic fungus could be increased by the addition of tomato juice or copper sulfate to the medium. The obtained volumetric activity after optimization was 420 U/mL in either shaking flask or bioreactor-based cultivations. The purified laccase has a molecular mass of 68 kDa and an isoelectric point of 3.4. Although of ascomycete origin, its catalytic properties are similar to typical basidiomycte laccases, and an excellent activity and stability was observed at low pH, which makes it suitable for bioremediation in acidic environments. As an example, the decolorization reactions of azo-, anthraquinone-, trimethylmethane- and indigoid dyes at pH 3.0 and 5.0 were investigated. All ten selected dyes were decolorized, five of them very efficiently. Depending on the dye, the decolorization was found to be a combination of two reactions, degradation of the chromophore and formation of polymerized products, which contributed to the overall process in a dye-specific pattern. PMID:20652905

  8. Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization.

    Science.gov (United States)

    Niladevi, K N; Prema, P

    2008-07-01

    The process parameters influencing the production of extracellular laccases by Streptomyces psammoticus MTCC 7334 were optimized in submerged fermentation. Coffee pulp and yeast extract were the best substrate and nitrogen source respectively for laccase production by this strain. The optimization studies revealed that the laccase yield was maximum at pH 7.5 and temperature 32 degrees C. Salinity of the medium was also observed to be influencing the enzyme production. An agitation rate of 175 rpm and 15% inoculum were the other optimized conditions for maximum laccase yield (5.9 U/mL). Pyrogallol and para-anisidine proved to be the best inducers for laccase production by this strain and the enzyme yield was enhanced by 50% with these inducers. S. psammoticus was able to decolourize various industrial dyes at different rates and 80% decolourization of Remazol Brilliant Blue R (RBBR) was observed after 10 days of incubation in dye based medium.

  9. Plants increase laccase activity in soil with long-term elevated CO2 legacy

    DEFF Research Database (Denmark)

    Partavian, Asrin; Mikkelsen, Teis Nørgaard; Vestergård, Mette

    2015-01-01

    Actively growing plants can stimulate mineralization of recalcitrant soil organic matter (SOM), and increased atmospheric [CO2] can further enhance such plant-mediated SOM degradation. Laccases are central for recalcitrant SOM decomposition, and we therefore hypothesized that plants and elevated...... [CO2] stimulate laccase activity. We incubated soil exposed to seven years of elevated or ambient field [CO2] in ambient or elevated [CO2] chambers for six months either with or without plants (Deschampsia flexuosa). Elevated chamber [CO2] increased D. flexuosa production and belowground respiration....... Interestingly, plants also grew larger in soil with an elevated [CO2] legacy. Plants stimulated soil microbial biomass, belowground respiration and laccase activity, and the plant-induced laccase stimulation was particularly apparent in soil exposed to long-term elevated [CO2] in the field, whereas laccase...

  10. Biodegradation of bisphenol A and decolorization of synthetic dyes by laccase from white-rot fungus, Trametes polyzona.

    Science.gov (United States)

    Chairin, Thanunchanok; Nitheranont, Thitinard; Watanabe, Akira; Asada, Yasuhiko; Khanongnuch, Chartchai; Lumyong, Saisamorn

    2013-01-01

    Purified laccase from Trametes polyzona WR710-1 was used as biocatalyst for bisphenol A biodegradation and decolorization of synthetic dyes. Degradation of bisphenol A by laccase with or without redox mediator, 1-hydroxybenzotriazole (HBT) was studied. The quantitative analysis by HPLC showed that bisphenol A rapidly oxidized by laccase with HBT. Bisphenol A was completely removed within 3 h and 4-isopropenylphenol was found as the oxidative degradation product from bisphenol A when identified by GC-MS. All synthetic dyes used in this experiment, Bromophenol Blue, Remazol Brilliant Blue R, Methyl Orange, Relative Black 5, Congo Red, and Acridine Orange were decolorized by Trametes laccase and the percentage of decolorization increased when 2 mM HBT was added in the reaction mixture. This is the first report showing that laccase from T. polyzona is an affective enzyme having high potential for environmental detoxification, bisphenol A degradation and synthetic dye decolorization.

  11. Biopulping of sugarcane bagasse and decolorization of kraft liquor by the laccase produced by Klebsiella aerogenes NCIM 2098

    Directory of Open Access Journals (Sweden)

    Jha H.

    2013-12-01

    Full Text Available Aims: Laccase, a copper-containing enzyme, oxidizes variety of aromatic compounds. Since laccase is essential for lignin degradation, it can be used for lignin removal in the pulp and paper industry (biopulping. Laccase is also employed as a dechlorinating agent (biobleaching, along with the removal of phenolic and other aromatic pollutants. In the present investigation it was aimed to employ the laccase produced by the bacterium Klebsiella aerogenes along with the bacterium itself in biopulping of sugarcane bagasse and biobleaching of kraft liquor effluent. Methodology and results: A laccase was isolated from the bacterium K. aerogenes, purified to homogeneity and characterized. The enzyme was purified by conventional techniques following salt precipitation, ion exchange chromatography, and affinity chromatography on Con A sepharose. The purified laccase was found to be monomeric glycoprotein with a Mr of 64 kDa when measured by Sephadex G-200 gel chromatography and SDS-PAGE. The Vmax and Km of laccase towards the substrate guaiacol was determined. The optimum pH of the laccase was found to be 5.0. biopulping and biobleaching activities were determined by TAPPI standard methods. Treatment of sugarcane baggase by K. aerogenes also significantly reduced lignin content of the bagasse. Conclusion, significance and impact of study: The bacterium K. aerogenes and a laccase produced by it were used separately for biopulping of sugarcane bagasse and biobleaching of kraft liquor effluent. Treatment with both brought significant reduction in lignin content and kappa number of the pulp. The handsheets prepared from the treated pulp showed improved brightness without affecting the strength properties of paper. The bacterium and the laccase efficiently decolorized the kraft liquor proving to have biobleaching potential.

  12. A chloride tolerant laccase from the plant pathogen ascomycete Botrytis aclada expressed at high levels in Pichia pastoris.

    Science.gov (United States)

    Kittl, Roman; Mueangtoom, Kitti; Gonaus, Christoph; Khazaneh, Shima Tahvilda; Sygmund, Christoph; Haltrich, Dietmar; Ludwig, Roland

    2012-01-20

    Fungal laccases from basidiomycetous fungi are thoroughly investigated in respect of catalytic mechanism and industrial applications, but the number of reported and well characterized ascomycetous laccases is much smaller although they exhibit interesting catalytic properties. We report on a highly chloride tolerant laccase produced by the plant pathogen ascomycete Botrytis aclada, which was recombinantly expressed in Pichia pastoris with an extremely high yield and purified to homogeneity. In a fed-batch fermentation, 495 mg L(-1) of laccase was measured in the medium, which is the highest concentration obtained for a laccase by a yeast expression system. The recombinant B. aclada laccase has a typical molecular mass of 61,565 Da for the amino acid chain. The pI is approximately 2.4, a very low value for a laccase. Glycosyl residues attached to the recombinant protein make up for approximately 27% of the total protein mass. B. aclada laccase exhibits very low K(M) values and high substrate turnover numbers for phenolic and non-phenolic substrates at acidic and near neutral pH. The enzyme's stability increases in the presence of chloride ions and, even more important, its substrate turnover is only weakly inhibited by chloride ions (I(50)=1.4M), which is in sharp contrast to most other described laccases. This high chloride tolerance is mandatory for some applications such as implantable biofuel cells and laccase catalyzed reactions, which suffer from the presence of chloride ions. The high expression yield permits fast and easy production for further basic and applied research. PMID:22178779

  13. CHARACTERIZATION OF FRACTIONATED LIGNINS POLYMERIZED BY FUNGAL LACCASES

    Directory of Open Access Journals (Sweden)

    Daniel van de Pas

    2011-04-01

    Full Text Available Lignins are important biopolymers that can be converted into value-added materials by enzymatic treatments. However, the heterogeneity of the lignin polymer makes it a challenging material to modify. Thus, chemical fractionation was used to obtain lignins with high homogeneity in order to assess their biotechnological utilization. Commercial Alcell, birch organosolv lignins, and steam-exploded pine and eucalypt lignins were sequentially fractionated by ether, ether/acetone 4:1 (v:v, and acetone. All fractions were structurally characterized prior to treatments with Thielavia arenaria, Trametes hirsuta, and Melanocarpus albomyces laccases. The reactivities of the enzymes towards the lignins were determined by oxygen consumption measurements, and the degree of polymerization was confirmed by size exclusion chromatography. Field emission scanning electron microscopy revealed that the surfaces of the lignin nanoparticles were dispersed in the enzyme treatment, suggesting an increase in hydrophilicity of the surfaces detected as loosened morphology. Hence, it was concluded that enzyme-aided valorization is an attractive means for lignin modification, provided that optimum reaction conditions are employed.

  14. Dihydrobenzofuran Neolignanamides: Laccase-Mediated Biomimetic Synthesis and Antiproliferative Activity.

    Science.gov (United States)

    Cardullo, Nunzio; Pulvirenti, Luana; Spatafora, Carmela; Musso, Nicolò; Barresi, Vincenza; Condorelli, Daniele Filippo; Tringali, Corrado

    2016-08-26

    The biomimetic synthesis of a small library of dihydrobenzofuran neolignanamides (the natural trans-grossamide (4) and the related compounds 21-28) has been carried out through an eco-friendly oxidative coupling reaction mediated by Trametes versicolor laccase. These products, after complete spectroscopic characterization, were evaluated for their antiproliferative activity against Caco-2 (colon carcinoma), MCF-7 (mammary adenocarcinoma), and PC-3 (prostate cancer) human cells, using an MTT bioassay. The racemic neolignamides (±)-21 and (±)-27, in being the most lipophilic in the series, were potently active, with GI50 values comparable to or even lower than that of the positive control 5-FU. The racemates were resolved through chiral HPLC, and the pure enantiomers were subjected to ECD measurements to establish their absolute configurations at C-2 and C-3. All enantiomers showed potent antiproliferative activity, with, in particular, a GI50 value of 1.1 μM obtained for (2R,3R)-21. The effect of (±)-21 on the Caco-2 cell cycle was evaluated by flow cytometry, and it was demonstrated that (±)-21 exerts its antiproliferative activity by inducing cell cycle arrest and apoptosis. PMID:27504537

  15. Laccase-mediated oxidation of small organics: bifunctional roles for versatile applications.

    Science.gov (United States)

    Jeon, Jong-Rok; Chang, Yoon-Seok

    2013-06-01

    Laccases have been widely used in several biotechnological areas, including organic synthesis, bioremediation, and pulp/textile bleaching. In most applications, the enzymatic actions start with single-electron oxidation of small organics followed by formation of the corresponding radicals. These radicals are subsequently involved in either oxidative coupling (i.e., bond formation) or bond cleavage of target organics. These bifunctional actions--catabolic versus anabolic--are readily identifiable in in vivo metabolic processes involving laccases. Here, we characterize the bifunctionality of laccase-mediated oxidation of small organics and present the view that knowledge of the biological functions of these metabolic processes in vivo can illuminate potential biotechnological applications of this bifunctionality.

  16. Enzymatic catalysis of 2,6-dimethoxyphenol by laccases and products characterization in organic solutions

    Institute of Scientific and Technical Information of China (English)

    MIYAKOSHI; Tetsuo

    2008-01-01

    2,6-Dimethoxyphenol (DMP) as a substrate was widely used in determination of laccase activity. It is surprising, however, that its catalyzed oxidation products have not been completely determined until now. Studies were thus conducted on Rhus laccase (RL) and immobilized Rhus laccase (IRL)-catalyzed oxidation reactions of 2,6-dimethoxyphenol in water-organic solvent systems. These reactions pro- ceeded well in water-(im)miscible organic solvent systems pre-saturated with water. Only one product, 3,3′,5,5′-tetramethoxy-1,1′biphenyl-4,4′-diol (TMBP), was produced by RL catalysis, and it was thor- oughly characterized by FT-IR, NMR, GC-MS, etc. A simple enzymatic mechanism of this reaction is proposed.

  17. Enzymatic catalysis of 2,6-dimethoxyphenol by laccases and products characterization in organic solutions

    Institute of Scientific and Technical Information of China (English)

    WAN YunYang; DU YuMin; MIYAKOSHI Tetsuo

    2008-01-01

    2,6-Dimethoxyphenol (DMP) as a substrate was widely used in determination of laccase activity. It is surprising, however, that its catalyzed oxidation products have not been completely determined until now. Studies were thus conducted on Rhus laccase (RL) and immobilized Rhus laccase (IRL)-catalyzed oxidation reactions of 2,6-dimethoxyphenol in water-organic solvent systems. These reactions pro-ceeded well in water-(im)miscible organic solvent systems pre-saturated with water. Only one product, 3,3',5,5'-tetramethoxy-1,1'biphenyl-4,4'-diol (TMBP), was produced by RL catalysis, and it was thor-oughly characterized by FT-IR, NMR, GC-MS, etc. A simple enzymatic mechanism of this reaction is proposed.

  18. Autoindicating optical properties of laccase as the base of an optical biosensor film for phenol determination

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, J.; Marcos, S. de; Galban, J. [University of Zaragoza, Analytical Biosensors Group (GBA), Analytical Chemistry Department, Faculty of Sciences, Zaragoza (Spain)

    2012-08-15

    In the context of sustainable analytical chemistry, phenol has been determined through its enzymatic reaction with laccase. The method has been studied and optimized through the autoindicating optical properties of laccase both by intrinsic molecular absorption and fluorescence. The method shows a linear range from 9.79.10{sup -6} to 7.50.10{sup -4} M with a relative standard deviation of 1.07 %. The molecular absorption methodology has been implemented in a polyacrylamide film for the design of an autoindicating optical sensor. In order to increase the lifetime of the sensor, the reversibility study of the enzymatic reaction has proposed, as a novelty, the regeneration of laccase with an oxidase-type enzyme (glucose oxidase). The lifetime of the sensor film has improved from 15 to 30 measurements. The reaction mechanism has also been studied and confirmed by fluorescence and molecular absorption. The method leads to the determination of phenol in environmental samples. (orig.)

  19. Green Synthesis and Antibacterial Activities of Silver Nanoparticles Using Extracellular Laccase of Lentinus edodes

    Directory of Open Access Journals (Sweden)

    Agbaje LATEEF

    2015-12-01

    Full Text Available This study reports the multi-step mutagenesis of Lentinus edodes towards optimization of the production of laccase and novel application of laccase in the biosynthesis of silver nanoparticles (AgNPs which could be used to develop an eco-friendly method for the rapid biosynthesis of AgNPs. The wild strain of L. edodes was subjected to UV irradiation at 254 nm and the resultant viable mutant was further treated with acridine orange, a chemical mutagen. The strains were evaluated for the production of laccase and the crude laccase of the UV mutant (UV10 was used for the green synthesis of AgNPs. The particles were characterized by UV-Visible spectroscopy, Fourier transform infrared (FTIR spectroscopy and scanning electron microscopy (SEM. Laccase activities of wild, UV10 and UV10ACR8 strains of L. edodes were obtained as 2.6, 10.6 and 2.8 U/ml/min respectively after 7 days of fermentation, showing laccase yield improvement of 4.08-fold for UV10 mutant. UV-Visible spectroscopy indicated the formation of AgNPs at absorption band of 430 nm. FTIR result indicated that proteins were responsible for AgNP synthesis, while SEM analysis confirmed the formation of walnut-shaped nanoparticles with size range of 50-100 nm. The biosynthesized nanoparticles revealed effective inhibition against clinical isolates of Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. To the best of the authors’ knowledge, this result represents the first report on the biosynthesis of AgNPs using L. edodes metabolite. The report adds to the growing relevance of L. edodes as potential industrially viable organism, used for diverse biotechnological applications.

  20. A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus.

    Science.gov (United States)

    D'Souza-Ticlo, Donna; Sharma, Deepak; Raghukumar, Chandralata

    2009-01-01

    Laccase, an oxidoreductive enzyme, is important in bioremediation. Although marine fungi are potential sources of enzymes for industrial applications, they have been inadequately explored. The fungus MTCC 5159, isolated from decaying mangrove wood and identified as Cerrena unicolor based on the D1/D2 region of 28S and the 18S ribosomal DNA sequence, decolorized several synthetic dyes. Partially purified laccase reduced lignin content from sugarcane bagasse pulp by 36% within 24 h at 30 degrees C. Laccase was the major lignin-degrading enzyme (approximately 24,000 U L(-1)) produced when grown in low-nitrogen medium with half-strength seawater. Three laccases, Lac I, Lac II, and Lac III, of differing molecular masses were produced. Each of these, further resolved into four isozymes by anion exchange chromatography. The N-terminal amino acid sequence of the major isozyme, Lac IId showed 70-85% homology to laccases from basidiomycetes. It contained an N-linked glycan content of 17%. The optimum pH and temperature for Lac IId were 3 and 70 degrees C, respectively, the half-life at 70 degrees C being 90 min. The enzyme was most stable at pH 9 and retained >60% of its activity up to 180 min at 50 degrees C and 60 degrees C. The enzyme was not inhibited by Pb, Fe, Ni, Li, Co, and Cd at 1 mmol. This is the first report on the characterization of thermostable metal-tolerant laccase from a marine-derived fungus with a potential for industrial application. PMID:19283431

  1. Rapid inactivation of seven Bacillus spp. under simulated Mars UV irradiation

    Science.gov (United States)

    Schuerger, Andrew C.; Richards, Jeff T.; Newcombe, David A.; Venkateswaran, Kasthuri

    2006-03-01

    Seven Bacillus spp. were exposed to simulations of Mars-normal UV fluence rates in order to study the effects of UV irradiation on microbial survival. A UV illumination system was calibrated to deliver 9.78 W m -2 (35.2 kJ m -2 h -1) of UVC + UVB irradiation (200-320 nm) to microbial samples, thus creating a clear-sky simulation (0.5 optical depth) of equatorial Mars. The Bacillus spp. studied were: B. licheniformis KL-196, B. megaterium KL-197, B. nealsonii FO-092, B. pumilus FO-36B, B. pumilus SAFR-032, B. subtilis 42HS1, and B. subtilis HA101. The bacteria were prepared as thin monolayers of endospores on aluminum coupons in order to simulate contaminated spacecraft surfaces. Bacterial monolayers were exposed to Mars UV irradiation for time-steps of 0, 0.25, 0.5, 1, 5, 15, 30, 60, 120, or 180 min. The surviving endospores were then assayed with a Most Probable Numbers (MPN) procedure and with a culture-based assay that utilized a bacillus spore germination medium. Results indicated that B. pumilus SAFR-032 was the most resistant, and B. subtilis 42HS-1 and B. megaterium were the most sensitive of the seven strains exposed to martian UV fluence rates. Bacillus subtilis 42HS1 and B. megaterium were inactivated after 30 min exposure to Mars UV, while B. pumilus SAFR-032 required 180 min for full inactivation in both assays. Spores of B. pumilus SAFR-032 exhibited significantly different inactivation kinetics suggesting that this wild type isolate also was more resistant than the standard dosimetric strain, B. subtilis HA101. Although the various Bacillus spp. exhibited diverse levels of UV resistance, none were immune to UV irradiation, and, thus, all species would be expected to be inactivated on Sun-exposed spacecraft surfaces within a few tens-of-minutes to a few hours on sol 1 under clear-sky conditions on equatorial Mars. The inactivation kinetics of all seven Bacillus spp. support the conclusion that significant levels of bioload reductions are possible on

  2. Structure based protein engineering of Bacillus stearothermophilus α-amylase: toward a new substrate specificity

    International Nuclear Information System (INIS)

    licheniformis crystal structure as initial model) it seems that Bacillus stearothermophilus α-amylase binding site is more complex with and insertion of 40 residues. Therefore the three dimensional structure is crucial to understand the specificity of the substrate of this enzyme which will be used to drive the design of mutation to introduce new properties for industrial purpose. (author)

  3. Removal of Chlorophenols by Fungal Laccase in the Presence of Aromatic Alcohols

    OpenAIRE

    Jarosz-Wilkolazka, Anna; Leonowicz, Andrzej; Oga, Shoji

    2007-01-01

    The effect of aromatic alcohols, coniferyl, sinapyl, vanillyl and iso-vanillyl alcohols, on the removal of chlorinated phenols from water environment by fungal laccases from Cerrena unicolor and Rhizoctonia praticola was studied. In optimal conditions all tested alcohols removed about 30 to 60% of chlorophenols from the supernatant, compared to that of laccase alone. R. praticola at pH 7.0 significantly removed more chlorophenols from supernatant than in the case of C. unicolor at pH 5.5. The...

  4. Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmed I. El-Batal

    2015-03-01

    Optimization of production conditions yielded an enzyme with activity over 32,450 IU/g of fermented substrate. Factorial design was capable of establishing the conditions that multiplied the activity of the enzyme several folds, consequently, reducing the cost of production. The enzyme was capable of decolorizing several dyes with over 80% reduction in color confirming the aromatic degrading capability of laccase. The enzyme was also used in the synthesis of gold nanoparticles, proving that laccase from Pleurotus ostreatus has a strong potential in several industrial applications.

  5. Chloride channel-dependent copper acquisition of laccase in the basidiomycetous fungus Cryptococcus neoformans

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The CLC chloride channel gene CLC-A of the pathogen yeast Cryptococcus neoformans was previously reported to be critical for multicopper laccase activity and growth at an elevated pH.This study reports that copper homeostasis was impaired in the clc-a mutant.This was demonstrated by the substantial decrease of the intracellular quantity of copper under copper-limited growth as determined by flame atomic absorption spectrometry.CLC-A is a critical factor in copper homeostasis which is required for copper acquisition of laccase in C.neoformans.

  6. Taxonomy Icon Data: Bacillus subtilis [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g Bacillus_subtilis_S.png Bacillus_subtilis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus...+subtilis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus+subtilis&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Bacillus+subtilis&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Bacillus+subtilis&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=214 ...

  7. Melanin-Like Pigment Synthesis by Soil Bacillus weihenstephanensis Isolates from Northeastern Poland.

    Directory of Open Access Journals (Sweden)

    Justyna M Drewnowska

    Full Text Available Although melanin is known for protecting living organisms from harmful physical and chemical factors, its synthesis is rarely observed among endospore-forming Bacillus cereus sensu lato. Here, for the first time, we reported that psychrotolerant Bacillus weihenstephanensis from Northeastern Poland can produce melanin-like pigment. We assessed physicochemical properties of the pigment and the mechanism of its synthesis in relation to B. weihenstephanensis genotypic and phenotypic characteristics. Electron paramagnetic resonance (EPR spectroscopy displayed a stable free radical signal of the pigment from environmental isolates which are consistent with the commercial melanin. Fourier transform infrared spectroscopy (FT-IR and physicochemical tests indicated the phenolic character of the pigment. Several biochemical tests showed that melanin-like pigment synthesis by B. weihenstephanensis was associated with laccase activity. The presence of the gene encoding laccase was confirmed by the next generation whole genome sequencing of one B. weihenstephanensis strain. Biochemical (API 20E and 50CHB tests and genetic (Multi-locus Sequence Typing, 16S rRNA sequencing, and Pulsed-Field Gel Electrophoresis characterization of the isolates revealed their close relation to the psychrotrophic B. weihenstephanensis DSMZ 11821 reference strain. The ability to synthesize melanin-like pigment by soil B. weihenstephanensis isolates and their psychrotrophic character seemed to be a local adaptation to a specific niche. Detailed genetic and biochemical analyses of melanin-positive environmental B. weihenstephanensis strains shed some light on the evolution and ecological adaptation of these bacteria. Moreover, our study raised new biotechnological possibilities for the use of water-soluble melanin-like pigment naturally produced by B. weihenstephanensis as an alternative to commercial non-soluble pigment.

  8. Middle-redox potential laccase from Ganoderma sp.: its application in improvement of feed for monogastric animals

    Science.gov (United States)

    Sharma, Krishna Kant; Shrivastava, Bhuvnesh; Sastry, V. R. B.; Sehgal, Neeta; Kuhad, Ramesh Chander

    2013-01-01

    The variables influencing laccase production by white-rot fungus Ganoderma sp. rckk-02 were optimized employing response surface methodology. Malt extract (6.0% w/v), lignin (0.5% w/v) and pH (5.5) were found to be the most significant factors for enhanced laccase production by 7 fold (226.0 U/ml) as compared to unoptimized growth conditions (32.0 U/ml). The N-terminal sequence of laccase revealed its distinct amino acid profile (S- I- R- N- S- G), which suggested it as a novel enzyme. The Far-UV CD spectrum of the laccase showed single broad negative trough at around 213 nm, a typical signature of all β proteins. The laccase was found to fall in the range of middle redox potential laccases. Purified laccase at dosage of 2.5 Ug−1 body weight when supplemented with pelleted diet of rats, a significant improvement (p < 0.05) in nutrients digestibility without causing any elevation of blood stress enzymes was observed. PMID:23416696

  9. Screening of fungal mutant strain with high laccase yield by N+-implantation and enzyme production condition optimization

    International Nuclear Information System (INIS)

    The basidiospores of Pleurotus ostreatus WY01 were exposed to N+ beam and the treated basidiospores were screened in RBBR-containing PDA plates. Then the laccase activities of the selected strains were determined by ABTS, and a mutant named ADW-08 with high yield of laccase was obtained. The maximum activity of laccase of ADW-08 increased up to 7.78 U/g, 2.8 times of the original stain, and its laccase production ability was stable in high carbon and low nitrogen rape straw solid medium (SM). Results showed that glucose as carbon source was obviously superior to sucrose, maltose, wheat bran and soluble amylum in solid culture for ADW-08. Ammonium tartrate as nitrogen source was more suitable than other nitrogen sources for the laccase secretion. The optimal initial pH was 5.0 or 6.0. The ability of laccase production clearly increased by ABTS and veratryl alcohol induction, but was inhibited by Tween 80. When the optimum parameters for laccase production got from orthogonal design were as follows: glucose 15 g/L, ammonium tartrate 0.2 g/L, pH 5.2, the peak value of Lac activity was 8.33 U/g. (authors)

  10. Laccase-polyacrylonitrile nanofibrous membrane: highly immobilized, stable, reusable, and efficacious for 2,4,6-trichlorophenol removal.

    Science.gov (United States)

    Xu, Ran; Chi, Chenglong; Li, Fengting; Zhang, Bingru

    2013-12-11

    Increasing attention has been given to nanobiocatalysis for commercial applications. In this study, laccase was immobilized on polyacrylonitrile (PAN) nanofibrous membranes through ethanol/HCl method of amidination reaction and successfully applied for removal of 2,4,6-trichlorophenol (TCP) from water. PAN membranes with fiber diameters from 200 nm to 300 nm were fabricated via electrospinning and provided a large surface area for enzyme immobilization and catalytic reactions. Images of scanning electron microscope demonstrated the enzyme molecules were aggregated on the nanofiber surface. The immobilized laccase exhibited 72% of the free enzyme activity and kept 60% of its initial activity after 10 operation cycles. Moreover, the storage stability of the immobilized laccase was considered excellent because they maintained more than 92% of the initial activity after 18 days of storage, whereas the free laccase retained only 20%. The laccase-PAN nanofibrous membranes exhibited high removal efficiency of TCP under the combined actions of biodegradation and adsorption. More than 85% of the TCP was removed under optimum conditions. Effects of various factors on TCP removal efficiency of the immobilized laccase were analyzed. Results suggest that laccase-PAN nanofibrous membranes can be used in removing TCP from aqueous sources and have potential for use in other commercial applications. PMID:24245853

  11. Fluorescent Amplified Fragment Length Polymorphism Analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis Isolates

    OpenAIRE

    Hill, Karen K.; Ticknor, Lawrence O.; Okinaka, Richard T.; Asay, Michelle; Blair, Heather; Bliss, Katherine A.; Laker, Mariam; Pardington, Paige E.; Richardson, Amber P.; Tonks, Melinda; Beecher, Douglas J.; Kemp, John D.; Kolstø, Anne-Brit; Wong, Amy C. Lee; Keim, Paul

    2004-01-01

    DNA from over 300 Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis isolates was analyzed by fluorescent amplified fragment length polymorphism (AFLP). B. thuringiensis and B. cereus isolates were from diverse sources and locations, including soil, clinical isolates and food products causing diarrheal and emetic outbreaks, and type strains from the American Type Culture Collection, and over 200 B. thuringiensis isolates representing 36 serovars or subspecies were from the U.S. D...

  12. Formation of protein-oligosaccharide conjugates by laccase and tyrosinase.

    Science.gov (United States)

    Selinheimo, Emilia; Lampila, Piritta; Mattinen, Maija-Liisa; Buchert, Johanna

    2008-05-14

    Proteins and certain carbohydrates contain phenolic moieties, which are potential sites for modification of the function of the biopolymers. In this study, the capability of two different fungal oxidative enzymes, laccase from Trametes hirsuta (ThL) and tyrosinase from Trichoderma reesei (TrT), to catalyze formation of hetero-cross-linking between tyrosine side chains of alpha-casein and phenolic acids of hydrolyzed oat spelt xylan (hOSX) was studied. Formation of reaction products was followed by size exclusion chromatography (SEC), fluorescence spectroscopy, and SDS-PAGE, using specific staining methods for proteins and protein-carbohydrate conjugates. ThL and TrT were observed to differ significantly in their ability to catalyze the formation of protein-carbohydrate conjugates or the linking of the small molecular weight phenolic compounds to alpha-casein. The efficiency of these enzymes to directly cross-link protein also differed notably. TrT was able to cross-link alpha-casein more efficiently than ThL. ThL-catalyzed casein cross-linking was significantly enhanced by ferulic acid, p-coumaric acid, and also hOSX. The main reaction products by ThL appeared to be phenolic acid-bridged alpha-caseins. Indications of hetero-cross-link formation between alpha-casein and hOSX by both oxidative enzymes could be visualized by glycoprotein-specific staining in the SDS-PAGE analysis, although ThL was observed to be more effective in the heteroconjugate formation than TrT. PMID:18422326

  13. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal

    Science.gov (United States)

    Zhang, Yanzhou; Li, Xunhang; Hao, Zhikui; Xi, Ruchun; Cai, Yujie; Liao, Xiangru

    2016-01-01

    For the more efficient detoxification of phenolic compounds, a promising avenue would be to develop a multi-enzyme biocatalyst comprising peroxidase, laccase and other oxidases. However, the development of this multi-enzyme biocatalyst is limited by the vulnerability of fungal laccases and peroxidases to hydrogen peroxide (H2O2)-induced inactivation. Therefore, H2O2-resistant peroxidase and laccase should be exploited. In this study, H2O2-stable CotA and YjqC were isolated from the outer coat of Bacillus altitudinis SYBC hb4 spores. In addition to the thermal and alkali stability of catalytic activity, CotA also exhibited a much higher H2O2 tolerance than fungal laccases from Trametes versicolor and Trametes trogii. YjqC is a sporulation-related manganese (Mn) catalase with striking peroxidase activity for sinapic acid (SA) and sinapine (SNP). In contrast to the typical heme-containing peroxidases, the peroxidase activity of YjqC was also highly resistant to inhibition by H2O2 and heat. CotA could also catalyze the oxidation of SA and SNP. CotA had a much higher affinity for SA than B. subtilis CotA. CotA and YjqC rendered from B. altitudinis spores had promising laccase and peroxidase activities for SA and SNP. Specifically, the B. altitudinis spores could be regarded as a multi-enzyme biocatalyst composed of CotA and YjqC. The B. altitudinis spores were efficient for catalyzing the degradation of SA and SNP in rapeseed meal. Moreover, efficiency of the spore-catalyzed degradation of SA and SNP was greatly improved by the presence of 15 mM H2O2. This effect was largely attributed to synergistic biocatalysis of the H2O2-resistant CotA and YjqC toward SA and SNP. PMID:27362423

  14. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal.

    Directory of Open Access Journals (Sweden)

    Yanzhou Zhang

    Full Text Available For the more efficient detoxification of phenolic compounds, a promising avenue would be to develop a multi-enzyme biocatalyst comprising peroxidase, laccase and other oxidases. However, the development of this multi-enzyme biocatalyst is limited by the vulnerability of fungal laccases and peroxidases to hydrogen peroxide (H2O2-induced inactivation. Therefore, H2O2-resistant peroxidase and laccase should be exploited. In this study, H2O2-stable CotA and YjqC were isolated from the outer coat of Bacillus altitudinis SYBC hb4 spores. In addition to the thermal and alkali stability of catalytic activity, CotA also exhibited a much higher H2O2 tolerance than fungal laccases from Trametes versicolor and Trametes trogii. YjqC is a sporulation-related manganese (Mn catalase with striking peroxidase activity for sinapic acid (SA and sinapine (SNP. In contrast to the typical heme-containing peroxidases, the peroxidase activity of YjqC was also highly resistant to inhibition by H2O2 and heat. CotA could also catalyze the oxidation of SA and SNP. CotA had a much higher affinity for SA than B. subtilis CotA. CotA and YjqC rendered from B. altitudinis spores had promising laccase and peroxidase activities for SA and SNP. Specifically, the B. altitudinis spores could be regarded as a multi-enzyme biocatalyst composed of CotA and YjqC. The B. altitudinis spores were efficient for catalyzing the degradation of SA and SNP in rapeseed meal. Moreover, efficiency of the spore-catalyzed degradation of SA and SNP was greatly improved by the presence of 15 mM H2O2. This effect was largely attributed to synergistic biocatalysis of the H2O2-resistant CotA and YjqC toward SA and SNP.

  15. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal.

    Science.gov (United States)

    Zhang, Yanzhou; Li, Xunhang; Hao, Zhikui; Xi, Ruchun; Cai, Yujie; Liao, Xiangru

    2016-01-01

    For the more efficient detoxification of phenolic compounds, a promising avenue would be to develop a multi-enzyme biocatalyst comprising peroxidase, laccase and other oxidases. However, the development of this multi-enzyme biocatalyst is limited by the vulnerability of fungal laccases and peroxidases to hydrogen peroxide (H2O2)-induced inactivation. Therefore, H2O2-resistant peroxidase and laccase should be exploited. In this study, H2O2-stable CotA and YjqC were isolated from the outer coat of Bacillus altitudinis SYBC hb4 spores. In addition to the thermal and alkali stability of catalytic activity, CotA also exhibited a much higher H2O2 tolerance than fungal laccases from Trametes versicolor and Trametes trogii. YjqC is a sporulation-related manganese (Mn) catalase with striking peroxidase activity for sinapic acid (SA) and sinapine (SNP). In contrast to the typical heme-containing peroxidases, the peroxidase activity of YjqC was also highly resistant to inhibition by H2O2 and heat. CotA could also catalyze the oxidation of SA and SNP. CotA had a much higher affinity for SA than B. subtilis CotA. CotA and YjqC rendered from B. altitudinis spores had promising laccase and peroxidase activities for SA and SNP. Specifically, the B. altitudinis spores could be regarded as a multi-enzyme biocatalyst composed of CotA and YjqC. The B. altitudinis spores were efficient for catalyzing the degradation of SA and SNP in rapeseed meal. Moreover, efficiency of the spore-catalyzed degradation of SA and SNP was greatly improved by the presence of 15 mM H2O2. This effect was largely attributed to synergistic biocatalysis of the H2O2-resistant CotA and YjqC toward SA and SNP. PMID:27362423

  16. Molecular identification and safety of Bacillus species involved in the fermentation of African oil beans (Pentaclethra macrophylla Benth) for production of Ugba.

    Science.gov (United States)

    Ahaotu, I; Anyogu, A; Njoku, O H; Odu, N N; Sutherland, J P; Ouoba, L I I

    2013-03-01

    Molecular identification of Bacillus spp. involved in the fermentation of African oil bean seeds for production of Ugba, as well as ability of the Bacillus spp. isolated to produce toxins, were investigated. Forty-nine bacteria were isolated from Ugba produced in different areas of South Eastern Nigeria and identified by phenotyping and sequencing of 16S rRNA, gyrB and rpoB genes. Genotypic diversities at interspecies and intraspecies level of the isolates were screened by PCR amplification of the 16S-23S rDNA intergenic transcribed spacer (ITS-PCR) and repetitive sequence-based PCR (rep-PCR). The ability of the bacteria to produce toxins was also investigated by detection of genes encoding production of haemolysin BL (HblA, HblC, HblD), non-haemolytic enterotoxin (NheA, NheB, NheC), cytotoxin K (CytK) and emetic toxin (EM1) using PCR with specific primers. Moreover, a Bacillus cereus Enterotoxin Reverse Passive Latex Agglutination test kit (BCET-RPLA) was used to screen ability of the isolates to produce haemolysin in broth and during fermentation of African oil bean seeds. The isolates were characterized as motile, rod-shaped, endospore forming, catalase positive, Gram-positive bacteria. They were identified as Bacillus cereus sensu lato (42), Lysinibacillus xylanilyticus (3), Bacillus clausii (1), Bacillus licheniformis (1), Bacillus subtilis (1), and Bacillus safensis (1). B. cereus was the predominant Bacillus species and was present in all samples studied. Using ITS-PCR, interspecies diversity was observed among isolates, with six clusters representing each of the pre-cited species. Rep-PCR was more discriminatory (eight clusters) and allowed further differentiation at intraspecies level for the B. cereus and L. xylanilyticus isolates with two genotypes for each species. Genes encoding production of non-haemolytic enterotoxin (NheA, NheB, NheC) and cytotoxin K (CytK) genes were detected in all B. cereus isolates, while Hbl genes (HblA, HblC, HblD) were

  17. Occurrence of heterogeneity of N-linked oligosaccharides attached to sycamore (Acer pseudoplatanus L.) laccase after excretion.

    Science.gov (United States)

    Tezuka, K; Hayashi, M; Ishihara, H; Onozaki, K; Nishimura, M; Takahashi, N

    1993-03-01

    The N-linked oligosaccharide moieties of sycamore (Acer pseudoplatanus L.) laccase are known to be highly heterogeneous. We confirmed that this oligosaccharide heterogeneity was caused not only during the oligosaccharide biosynthesis in Golgi apparatus, but also after the excretion of laccase protein into a culture medium. The culture medium for the sycamore cells (Acer pseudoplatanus L.) contained beta-galactosidase, alpha-L-fucosidase, beta-N-acetylglucosaminidase, alpha-mannosidase and beta-xylosidase activities. We showed that the largest sugar chain in laccase, oligosaccharide F, [formula: see text] was degraded to [formula: see text] by a crude exoglycosidase mixture in the culture medium.

  18. Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Lee, Kyoung-Mi; Kalyani, Dayanand; Tiwari, Manish Kumar;

    2012-01-01

    An extracellular laccase-producing yeast was isolated from soil and identified as Yarrowia lipolytica by its morphology and by comparison of its internal transcribed spacer rDNA gene sequence. Extracellular laccase (YlLac) from Y. lipolytica was purified to homogeneity by anion-exchange and gel......)) than any other reported laccase. This enzyme was able to oxidize phenolic compounds present in pretreated rice straw. Several parameters (temperature, enzyme concentration, and mediator compounds) to enhance removal of phenolic compounds from pretreated rice straw were optimized using response surface...

  19. Sonochemical and hydrodynamic cavitation reactors for laccase/hydrogen peroxide cotton bleaching.

    Science.gov (United States)

    Gonçalves, Idalina; Martins, Madalena; Loureiro, Ana; Gomes, Andreia; Cavaco-Paulo, Artur; Silva, Carla

    2014-03-01

    The main goal of this work is to develop a novel and environmental-friendly technology for cotton bleaching with reduced processing costs. This work exploits a combined laccase-hydrogen peroxide process assisted by ultrasound. For this purpose, specific reactors were studied, namely ultrasonic power generator type K8 (850 kHz) and ultrasonic bath equipment Ultrasonic cleaner USC600TH (45 kHz). The optimal operating conditions for bleaching were chosen considering the highest levels of hydroxyl radical production and the lowest energy input. The capacity to produce hydroxyl radicals by hydrodynamic cavitation was also assessed in two homogenizers, EmulsiFlex®-C3 and APV-2000. Laccase nanoemulsions were produced by high pressure homogenization using BSA (bovine serum albumin) as emulsifier. The bleaching efficiency of these formulations was tested and the results showed higher whiteness values when compared to free laccase. The combination of laccase-hydrogen peroxide process with ultrasound energy produced higher whiteness levels than those obtained by conventional methods. The amount of hydrogen peroxide was reduced 50% as well as the energy consumption in terms of temperature (reduction of 40 °C) and operating time (reduction of 90 min). PMID:24035719

  20. Wet strength improvement of unbleached kraft pulp through laccase catalyzed oxidation.

    Science.gov (United States)

    Lund, M; Felby, C

    2001-06-01

    Previous investigations have shown that laccase catalyzed oxidation of lignin containing wood fibers can enhance the strength of medium density fiberboards. In the present work it was investigated if laccase treatment had any impact on the tensile strength of a high yield unbleached kraft pulp. Treatment with laccase alone had only a very little effect on the wet strength of the pulp, whereas addition of lignin rich extractives increased the wet strength after the enzyme treatment significantly. A mediated oxidation gave a similar improvement of the wet tensile strength although no lignin was added to the fiber suspension. Furthermore, it was found that a heat treatment combined with a mediated oxidation gave a higher improvement in wet tensile strength than could be accounted for by the individual treatments. No change in dry tensile strength from the laccase treatment was observed. It is suggested that the observed improvement in wet tensile strength is related to polymerization of lignin on fibers in the hand sheet and/or coupling of phenoxy radicals on lignin associated to adjacent fibers. For the different mediators studied, a correlation was found between oxygen consumption upon mediated oxidation and generation of wet strength in the pulp. PMID:11397456

  1. Mediator-assisted decolorization and detoxification of textile dyes/dye mixture by Cyathus bulleri laccase.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, T R

    2008-12-01

    Laccase from basidiomycete fungus Cyathus bulleri was evaluated for its ability to decolorize a number of reactive and acidic dyes in the presence of natural and synthetic mediators. The extent of decolorization was monitored at different mediator/dye concentrations and incubation time. Among the synthetic mediators, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was effective at low mediator/dye ratios and resulted in 80-95% decolorization at rates that varied from 226 +/- 4 nmol min(-1) mg(-1) for Reactive Orange 1 to 1,333 +/- 15 nmol min(-1) mg(-1) for Reactive Red 198. Other synthetic mediators like 1-hydroxybenzotriazole and violuric acid showed both concentration- and time-dependent increases in percent decolorization. Natural mediators like vanillin, on the other hand, were found to be less effective on all the dyes except Reactive Orange 1. Computed rates of decolorization were about twofold lower than that with ABTS. The laccase-ABTS system also led to nearly 80% decolorization for the simulated dye mixture. No clear correlation between laccase activity on the mediator and its ability to decolorize dyes was found, but pH had a significant effect: Optimum pH for decolorization coincided with the optimum pH for mediator oxidation. The treated samples were also evaluated for toxicity in model microbial systems. The laccase-mediator system appears promising for treatment of textile wastewaters.

  2. Bioinspired production of magnetic laccase-biotitania particles for the removal of endocrine disrupting chemicals.

    Science.gov (United States)

    Ardao, Inés; Magnin, Delphine; Agathos, Spiros N

    2015-10-01

    Microbial laccases are powerful enzymes capable of degrading lignin and other recalcitrant compounds including endocrine disrupting chemicals (EDCs). Efficient EDC removal on an industrial scale requires robust, stable, easy to handle and cost-effective immobilized biocatalysts. In this direction, magnetic biocatalysts are attractive due to their easy separation through an external magnetic field. Recently, a bioinspired immobilization technique that mimics the natural biomineralization reactions in diatoms has emerged as a fast and versatile tool for generating robust, cheap, and highly stable (nano) biocatalysts. In this work, bioinspired formation of a biotitania matrix is triggered on the surface of magnetic particles in the presence of laccase in order to produce laccase-biotitania (lac-bioTiO2 ) biocatalysts suitable for environmental applications using a novel, fast and versatile enzyme entrapment technique. Highly active lac-bioTiO2 particles have been produced and the effect of different parameters (enzyme loading, titania precursor concentration, pH, duration of the biotitania formation, and laccase adsorption steps) on the apparent activity yield of these biocatalysts were evaluated, the concentration of the titania precursor being the most influential. The lac-bioTiO2 particles were able to catalyze the removal of bisphenol A, 17α-ethinylestradiol and diclofenac in a mixture of six model EDCs and retained 90% of activity after five reaction cycles and 60% after 10 cycles.

  3. Dual utility of a novel, copper enhanced laccase from Trichoderma aureoviridae.

    Science.gov (United States)

    Khambhaty, Yasmin; Ananth, Swetha; Sreeram, Kalarical Janardhanan; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni

    2015-11-01

    Ever since the ability of laccase to oxidize non-phenolic lignin models was described, the oxidative degradation reactions catalyzed by laccase have been widely studied for paper pulp production or detoxification of aromatic pollutants. The viability of developing eco-friendly, laccase aided industrial processes has been explored. Here, we report the isolation and screening of fungi to explore their lignolytic ability on solid media using various substrates as indicators. The promising fungus was cultivated in submerged and solid state conditions. The crude enzyme obtained yielded elevated activity at 75°C and pH 9.0. Addition of CuSO4 increased the activity by almost 25% proving that Cu(2+) catalytically enhances the action of laccases. Decolorization studies were carried out using industrial dye, Remazol Brilliant Blue R (CI 61200) on solid and liquid medium. Visual decolorization was observed within 2 days of inoculation on solid media whereas, liquid medium incorporated with varying concentrations of dye solution showed a final level of decolorization of up to 76%. Bamboo degradation studies revealed a decrease in lignin content by 51 and 43% within a month. To the best of our knowledge, this study for the first time reports that Trichoderma aureoviridae can produce lignolytic enzyme and degrade lignin. PMID:26231326

  4. Azide binding to the trinuclear copper center in laccase and ascorbate oxidase

    DEFF Research Database (Denmark)

    Gromov, I; Marchesini, A; Farver, O;

    1999-01-01

    distance between the dipolar coupled Cu(II) pair is shorter in laccase than in AO. The proximity of T2 Cu(II) to the S = 1 Cu(II) pair enhances its relaxation rate, reducing its signal intensity relative to that of native protein. The disruption of the T3 anti-ferromagnetic coupling occurs only in part of...

  5. Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase

    NARCIS (Netherlands)

    Schouten, A.; Wagemakers, L.; Stefanato, F.L.; Kaaij, van der R.M.; Kan, van J.A.L.

    2002-01-01

    The grapevine (Vitis) secondary metabolite resveratrol is considered a phytoalexin, which protects the plant from Botrytis cinerea infection. Laccase activity displayed by the fungus is assumed to detoxify resveratrol and to facilitate colonization of grape. We initiated a functional molecular genet

  6. Melanosis in Penaeus monodon: Involvement of the Laccase-like Activity of Hemocyanin.

    Science.gov (United States)

    Bris, Cédric Le; Cudennec, Benoit; Dhulster, Pascal; Drider, Djamel; Duflos, Guillaume; Grard, Thierry

    2016-01-27

    In shrimp, the development of postmortem melanosis resulting from phenoloxidase activities leads to important economic losses. Phenoloxidase enzymes include catechol oxidases, laccases, and tyrosinases, but hemocyanin is also capable of phenoloxidase activities. These activities have been explored in Penaeus monodon, using different substrates. Results highlighted that tyrosinase-specific substrates were little oxidized, whereas hydroquinone (laccase-specific substrate) was more highly oxidized than l-DOPA (nonspecific substrate) in the pereopods and pleopods. Global phenoloxidase activity, assayed with l-DOPA, did not appear thermally stable over time and probably resulted from phenoloxidase enzymes. Conversely, the laccase-like activity assayed with hydroquinone was thermally stable over time, reflecting the thermal stability of hemocyanin. Independently of the anatomical compartment, the temperature, or the substrate, the highest activities were assayed in the cuticular compartments. This study demonstrates the complexity of phenoloxidase activities in P. monodon, and the importance of considering all the activities, including laccase-like activities such as that of hemocyanin. PMID:26671070

  7. Preparation of starch-sodium lignosulfonate graft copolymers via laccase catalysis and characterization of antioxidant activity

    Science.gov (United States)

    Graft copolymers of waxy maize starch and sodium lignosulfonate (SLS) were prepared by Trametes Versicolor laccase catalysis in aqueous solution. Amount of SLS grafted based on phenol analysis was 0.5% and 1.0% in the absence and presence of 1-hydroxybenzotriazole (HBT), respectively. Starch-SLS gra...

  8. Purification and Characterization of Extracellular Laccase Secreted by Pleurotus sajor-caju MTCC 141

    Institute of Scientific and Technical Information of China (English)

    R. Sahay; R. S. S. Yadav; K. D. S. Yadav

    2008-01-01

    The effect of lignin containing natural substrates corn-cob, coir-dust, saw-dust, wheat straw and bagasse particles on the extracellular secretion of laccase in the liquid culture growth medium of Pleurotus sajor-caju MTCC 141 has been studied. The culture conditions for maximum secretion of laccase by Pleurotus sajor-caju MTCC 141 have been optimized. Homogeneous preparation of laccase from the culture filtrate of the fungus has been achieved using ammonium sulphate precipitation, anion exchange chromatography on DEAE and gel filtration chromatography on Sephadex G-100. The purified enzyme preparation gave a single protein band in SDS-PAGE analysis indicating a molecular weight of 90 kD. The enzymatic characteristics Km, kcat, pH and temperature optima of the purified laccase have been determined using 2, 6-dimethoxyphenol as the substrate and have been found to be 35μmol/L, 0.30 min-1, 4.5 and 37℃ respectively. The Km values for the other substrate like catechol, m-cresol, pyrogallol and syringaldazine have also been determined which were found to be 216 μmol/L, 380 μmol/L, 370 μmol/L and 260 μmol/L respectively.

  9. DECOLORIZATION OF INKJET INK AND DEINKING OF INKJET-PRINTED PAPER WITH LACCASE-MEDIATOR SYSTEM

    Directory of Open Access Journals (Sweden)

    Katariina Nyman

    2011-04-01

    Full Text Available The emergence of novel high-speed inkjet printing technology has been hindered because of claims of poor deinkability of the printed product. Based on our results the decolorization of inkjet inks with the laccase-mediator system is a possible approach to improve the deinkability of inkjet-printed paper. The commercial Myceliophtora thermophila and Trametes versicolor laccases (1 U/mL and a mediator compound acetosyringone (0.1 mM decolorized water-soluble textile and inkjet ink dyes by up to 94% and aqueous dye-based inkjet inks by 40 to 98%. M. thermophila laccase decolorized magenta and black inks effectively even at pH 9.0. Acetosyringone was a better mediator compared to ABTS and violuric acid because of its high efficiency and low inherent color. The enzymatic decolorization of inkjet ink was also achieved in deinking experiments with inkjet-printed paper. A treatment with M. thermophila laccase (2 U/g of paper and acetosyringone (0.02% of paper weight improved ISO-brightness of the pulp by 5%.

  10. Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions

    NARCIS (Netherlands)

    Patila, Michaela; Kouloumpis, Antonios; Gournis, Dimitrios; Rudolf, Petra; Stamatis, Haralambos

    2016-01-01

    Multi-layer graphene oxide-enzyme nanoassemblies were prepared through the multi-point covalent immobilization of laccase from Trametes versicolor (TvL) on functionalized graphene oxide (fGO). The catalytic properties of the fGO-TvL nanoassemblies were found to depend on the number of the graphene o

  11. Genome analysis shows Bacillus axarquiensis is not a later heterotypic synonym of Bacillus mojavensis; reclassification of Bacillus malacitensis and Brevibacterium halotolerans as heterotypic synonyms of Bacillus axarquiensis.

    Science.gov (United States)

    Dunlap, Christopher A; Bowman, Michael J; Schisler, David A; Rooney, Alejandro P

    2016-06-01

    Bacillus axarquiensis and Bacillus malacitensis were previously reported to be later heterotypic synonyms of Bacillus mojavensis, based primarily on DNA-DNA relatedness values. We have sequenced draft genomes of Bacillus axarquiensis NRRL B-41617T and Bacillus malacitensis NRRL B-41618T. Comparative genomics and DNA-DNA relatedness calculations showed that while Bacillus axarquiensis and Bacillus malacitensis are synonymous with each other, they are not synonymous with Bacillus mojavensis. In addition, a draft genome was completed for Brevibacterium halotolerans, a strain long suspected of being a Bacillus subtilis group member based on 16S rRNA similarities (99.8 % with Bacillus mojavensis). Comparative genomics and DNA-DNA relatedness calculations showed that Brevibacterium halotolerans is synonymous with Bacillus axarquiensis and Bacillus malacitensis. The pairwise in silico DNA-DNA hybridization values calculated in comparisons between the three conspecific strains were all greater than 92 %, which is well above the standard species threshold of 70 %. While the pairwise in silico DNA-DNA hybridization values calculated in comparisons of the three conspecific strains with Bacillus mojavensis were all less than 65 %. The combined results of our genotype and phenotype studies showed that Bacillus axarquiensis, Bacillus malacitensis and Brevibacterium halotolerans are conspecific and distinct from Bacillus mojavensis. Because the valid publication of the name Bacillus axarquiensis predates the publication of the name Bacillus malacitensis, we propose that Bacillus malacitensis be reclassified as a synonym of Bacillus axarquiensis. In addition, we propose to reclassify Brevibacterium halotolerans as a synonym of Bacillus axarquiensis. An amended description of Bacillus axarquiensis is provided.

  12. Genome analysis shows Bacillus axarquiensis is not a later heterotypic synonym of Bacillus mojavensis; reclassification of Bacillus malacitensis and Brevibacterium halotolerans as heterotypic synonyms of Bacillus axarquiensis.

    Science.gov (United States)

    Dunlap, Christopher A; Bowman, Michael J; Schisler, David A; Rooney, Alejandro P

    2016-06-01

    Bacillus axarquiensis and Bacillus malacitensis were previously reported to be later heterotypic synonyms of Bacillus mojavensis, based primarily on DNA-DNA relatedness values. We have sequenced draft genomes of Bacillus axarquiensis NRRL B-41617T and Bacillus malacitensis NRRL B-41618T. Comparative genomics and DNA-DNA relatedness calculations showed that while Bacillus axarquiensis and Bacillus malacitensis are synonymous with each other, they are not synonymous with Bacillus mojavensis. In addition, a draft genome was completed for Brevibacterium halotolerans, a strain long suspected of being a Bacillus subtilis group member based on 16S rRNA similarities (99.8 % with Bacillus mojavensis). Comparative genomics and DNA-DNA relatedness calculations showed that Brevibacterium halotolerans is synonymous with Bacillus axarquiensis and Bacillus malacitensis. The pairwise in silico DNA-DNA hybridization values calculated in comparisons between the three conspecific strains were all greater than 92 %, which is well above the standard species threshold of 70 %. While the pairwise in silico DNA-DNA hybridization values calculated in comparisons of the three conspecific strains with Bacillus mojavensis were all less than 65 %. The combined results of our genotype and phenotype studies showed that Bacillus axarquiensis, Bacillus malacitensis and Brevibacterium halotolerans are conspecific and distinct from Bacillus mojavensis. Because the valid publication of the name Bacillus axarquiensis predates the publication of the name Bacillus malacitensis, we propose that Bacillus malacitensis be reclassified as a synonym of Bacillus axarquiensis. In addition, we propose to reclassify Brevibacterium halotolerans as a synonym of Bacillus axarquiensis. An amended description of Bacillus axarquiensis is provided. PMID:27030978

  13. Hydrophobic modification of jute fiber used for composite reinforcement via laccase-mediated grafting

    Science.gov (United States)

    Dong, Aixue; Yu, Yuanyuan; Yuan, Jiugang; Wang, Qiang; Fan, Xuerong

    2014-05-01

    Jute fiber is a lignocellulosic material which could be utilized for reinforcement of composites. To improve the compatibility of hydrophilic jute fiber with hydrophobic resin, surface hydrophobization of the fiber is often needed. In this study, the feasibility of laccase-mediated grafting dodecyl gallate (DG) on the jute fiber was investigated. First, the grafting products were characterized by FT-IR, XPS, SEM and AFM. And then the grafting percentage (Gp) and the DG content of the modified jute were determined in terms of weighting and saponification, respectively. The parameters of the enzymatic grafting process were optimized to the target application. Lastly, the hydrophobicity of the jute fabrics was estimated by means of contact angle and wetting time. The mechanical properties and the fracture section of the jute fabric/polypropylene (PP) composites were studied. The results revealed covalently coupling of DG to the jute substrates mediated by laccase. The enzymatic process reached the maximum grafting rate of 4.16% when the jute fabric was incubated in the 80/20 (v/v, %) pH 3 0.2 M acetate buffer/ethanol medium with 1.0 U/mL laccase and 5 mM DG at 50 °C for 4 h. The jute fabric modified with laccase and DG showed increased contact angle of 111.49° and wetting time of at least 30 min, indicating that the surface hydrophobicity of the jute fabric was increased after the enzymatic graft modification with hydrophobic DG. The breaking strength of the modified jute fiber/PP composite was also increased and the fracture section became neat and regular due to the laccase-assisted grafting with DG.

  14. Design of Laccase-Metal Organic Framework-Based Bioelectrodes for Biocatalytic Oxygen Reduction Reaction.

    Science.gov (United States)

    Patra, Snehangshu; Sene, Saad; Mousty, Christine; Serre, Christian; Chaussé, Annie; Legrand, Ludovic; Steunou, Nathalie

    2016-08-10

    Laccase in combination with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as a mediator is a well-known bioelectrocatalyst for the 4-electron oxygen reduction reactions (ORR). The present work deals with the first exploitation of mesoporous iron(III) trimesate-based metal organic frameworks (MOF) MIL-100(Fe) (MIL stands for materials from Institut Lavoisier) as a new and efficient immobilization matrix of laccase for the building up of biocathodes for ORR. First, the immobilization of ABTS in the pores of the MOF was studied by combining micro-Raman spectroscopy, X-ray powder diffraction (XRPD), and N2 porosimetry. The ABTS-MIL-100(Fe)-based modified electrode presents excellent properties in terms of charge transfer kinetics and ionic conductivity as well as a very stable and reproducible electrochemical response, showing that MIL-100(Fe) provides a suitable and stabilizing microenvironment for electroactive ABTS molecules. In a second step, laccase was further immobilized on the MIL-100(Fe)-ABTS matrix. The Lac-ABTS-MIL-100(Fe)-CIE bioelectrode presents a high electrocatalytic current density of oxygen reduction and a reproducible electrochemical response characterized by a high stability over a long period of time (3 weeks). These results constitute a significant advance in the field of laccase-based bioelectrocatalysts for ORR. According to our work, it appears that the high catalytic efficiency of Lac-ABTS-MIL-100(Fe) for ORR may result from a synergy of chemical and catalytic properties of MIL-100(Fe) and laccase.

  15. Biodegradation of 2,4-Dinitrophenol with Laccase Immobilized on Nano-Porous Silica Beads

    Directory of Open Access Journals (Sweden)

    Emad Dehghanifard

    2013-04-01

    Full Text Available Many organic hazardous pollutants, including 2,4-dinitrophenol (2,4-DNP, which are water soluble, toxic, and not easily biodegradable make concerns for environmental pollution worldwide. In the present study, degradation of nitrophenols-contained effluents by using laccase immobilized on the nano-porous silica beads was evaluated. 2,4-DNP was selected as the main constituent of industrial effluents containing nitrophenols. The performance of the system was characterized as a function of pH, contact time, temperature, pollutant, and mediator concentrations. The laccase-silica beads were employed in a mixed-batch reactor to determine the degradation efficiency after 12 h of enzyme treatment. The obtained data showed that the immobilized laccase degraded more than 90% of 2,4-DNP within 12 h treatment. The immobilization process improved the activity and sustainability of laccase for degradation of the pollutant. Temperatures more than 50°C reduced the enzyme activity to about 60%. However, pH and the mediator concentration could not affect the enzyme activity. The degradation kinetic was in accordance with a Michaelis–Menten equation with Vmax and Km obtained as 0.25–0.38 μmoles/min and 0.13–0.017 mM, respectively. The stability of the immobilized enzyme was maintained for more than 85% of its initial activity after 30 days. Based on the results, it can be concluded that high resistibility and reusability of immobilized laccase on CPC-silica beads make it considerable choice for wastewater treatment.

  16. Laccase immobilized on methylene blue modified mesoporous silica MCM-41/PVA

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xinhua, E-mail: xhxu@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Lu Ping; Zhou Yumei; Zhao Zhenzhen; Guo Meiqing [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2009-08-31

    The mesoporous silica sieve MCM-41 containing methylene blue (MB) provides a suitable immobilization of biomolecule matrix due to its uniform pore structure, high surface areas, good biocompatibility and nice conductivity. Based on this, a facilely fabricated amperometric biosensor by entrapping laccase into the MB modified MCM-41/PVA composite film has been developed. Laccase from Trametes versicolor is assembled on a composite film of MCM-41 containing MB/PVA modified Au electrode and the electrode is characterized with respect to transmission electron microscopy (TEM) and scanning electron microscopic (SEM), Cyclic voltammetry (CV), response time, detection limit, linear range and activity of laccase. The laccase modified electrode remains good redox behavior in pH 4.95 acetate buffer solution, at room temperature in present of 0.1 mM catechol. The response time (t{sub 90%}) of the modified electrode is less than 4 s for catechol. The detection limit is 0.331 {mu}M and the linear detect range is about from 4.0 {mu}M to 87.98 {mu}M for catechol with a correlation coefficient of 0.99913(S/N = 3). The apparent Michaelis-Menten (K{sub M}{sup app}) is estimated using the Lineweaver-Burk equation and the K{sub M}{sup app} value is about 0.256 mM. This work demonstrated that the mesoporous silica MCM-41 containing MB provides a novel support for laccase immobilization and the construction of biosensors with a faster response and better bioactivity.

  17. Structure and Biochemestry of Laccases from the Lignin-Degrading Basidiomycete, Ganoderma lucidum

    Energy Technology Data Exchange (ETDEWEB)

    C.A.Reddy, PI

    2005-06-30

    G. lucidum is one of the most important and widely distributed ligninolytic white rot fungi from habitats such as forest soils, agricultural soils, and tropical mangrove ecosystems and produce laccases as an important family of lignin modifying enzymes. Biochemically, laccases are blue multi copper oxidases that couple four electron reduction of molecular oxygen to water. There is a growing interest in the use of laccases for a variety of industrial applications such as bio-pulping and biobleaching as well as in their ability to detoxify a wide variety of toxic environmental pollutants. These key oxidative enzymes are found in all the three domains of life: Eukaryota. Prokarya, and Archaea. Ganoderma lucidum (strain no.103561) produces laccase with some of the highest activity (17,000 micro katals per mg of protein) reported for any laccases to date. Our results showed that this organism produces at least 11 different isoforms of laccase based on variation in mol. weight and/or PI. Our Studies showed that the presence of copper in the medium yields 15- to 20-fold greater levels of enzyme by G. lucidum. Dialysation of extra cellular fluid of G. lucidum against 10mM sodium tartrate (pH5.5) gave an additional 15 to 17 fold stimulation of activity with an observed specific activity of 17,000 {micro}katals/mg protein. Dialysis against acetate buffer gave five fold increase in activity while dialysis against glycine showed inhibition of activity. Purification by FPLC and preparative gel electrophoresis gave purified fractions that resolved into eleven isoforms as separated by isoelectric focusing, and the PI,s were 4.7, 4.6, 4.5, 4.3, 4.2, 4.1, 3.8, 3.7, 3.5, 3.4 and 3.3. Genomic clones of laccase were isolated using G. lucidum DNA as a template and using inverse PCR and forward/reverse primers corresponding to the sequences of the conserved copper binding region in the N-terminal domain of one of the laccases of this organism. Inverse PCR amplication of HindIII digested

  18. 牛栏山二锅头酒醅中芽孢杆菌分离鉴定及发酵风味分析%Identification of Bacillus from Niulanshan Erguotou fermented grain and analysis of flavor compounds in the fermentation

    Institute of Scientific and Technical Information of China (English)

    杨春霞; 廖永红; 刘峻雄; 胡建华; 胡佳音; 窦屾

    2012-01-01

    从牛栏山二锅头酒醅中分离筛选出5株产风味物质能力较好的芽孢杆菌,通过16SrDNA序列分析和构建系统发育树,5株细菌分别为地衣芽孢杆菌(Bacillus licheniformis)、蜡样芽孢杆菌(Bacillus cereus)、短小芽孢杆菌(Bacillus pumilus)和枯草芽孢杆菌(Bacillus subtilis)。分别对它们进行发酵风味分析,其发酵液经固相微萃取和GC-MS分析,并除去空白培养基中物质,地衣芽孢杆菌BL-1发酵液共检测得到14种风味物质,蜡样芽孢杆菌BC-1和短小芽孢杆菌BP-1发酵都得到12种风味物质,枯草芽孢杆菌BS-1好氧发酵共得到16种风味物质,枯草芽孢杆菌BS-2厌氧发酵共得到19种风味物质。除短小芽孢杆菌外,其他4株芽孢杆菌都含有较多数量的酯类化合物,且主要代谢风味物质都是3-羟基-2-丁酮,而短小芽孢杆菌BP-1则含有数量较多的烃类化合物,其主要风味物质是苯乙醇。%Five strains of bacillus which can produce flavor were screened from Niulanshan Erguotou fermented grain.Using the sequences analysis of 16S rDNA and phylogenetic tree construction,five strains were identified as Bacillus licheniformis,Bacillus cereus,Bacillus pumilus and Bacillus subtilis.The fermentation broth of five bacillus strains were analyzed by solid phase micro-extraction and chromatography-mass spectrometry.Removing the compounds of blank,a total of 14 flavor compounds in fermentation broth of Bacillus licheniformis BL-1,12 flavor compounds in fermentation broth of Bacillus cereus BC-1 and Bacillus pumilus BP-1,16 flavor compounds in fermentation broth of Bacillus subtilis BS-1,19 flavor compounds in fermentation broth of Bacillus subtilis BS-2.Except Bacillus pumilus,the fermentation of other four Bacillus strains mainly contained esters compound,and 3-hydroxy-2-butanone was the most important flavor compound.However,the fermentation of Bacillus pumilus BP-1 mainly comprised alkynes compound and

  19. Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance.

    Science.gov (United States)

    Chang, Young-Cheol; Choi, Dubok; Takamizawa, Kazuhiro; Kikuchi, Shintaro

    2014-01-01

    Effective biological pretreatment method for enhancing cellulase performance was investigated. Two alkali lignin-degrading bacteria were isolated from forest soils in Japan and named CS-1 and CS-2. 16S rDNA sequence analysis indicated that CS-1 and CS-2 were Bacillus sp. Strains CS-1 and CS-2 displayed alkali lignin degradation capability. With initial concentrations of 0.05-2.0 g L(-1), at least 61% alkali lignin could be degraded within 48 h. High laccase activities were observed in crude enzyme extracts from the isolated strains. This result indicated that alkali lignin degradation was correlated with laccase activities. Judging from the net yields of sugars after enzymatic hydrolysis, the most effective pretreatment method for enhancing cellulase performance was a two-step processing procedure (pretreatment using Bacillus sp. CS-1 followed by lactic acid bacteria) at 68.6%. These results suggest that the two-step pretreatment procedure is effective at accelerating cellulase performance. PMID:24316485

  20. Enhanced lignin biodegradation by a laccase-overexpressed white-rot fungus Polyporus brumalis in the pretreatment of wood chips.

    Science.gov (United States)

    Ryu, Sun-Hwa; Cho, Myung-Kil; Kim, Myungkil; Jung, Sang-Min; Seo, Jin-Ho

    2013-11-01

    The laccase gene of Polyporus brumalis was genetically transformed to overexpress its laccase. The transformants exhibited increased laccase activity and effective decolorization of the dye Remazol Brilliant Blue R than the wild type. When the transformants were pretreated with wood chips from a red pine (softwood) and a tulip tree (hardwood) for 15 and 45 days, they showed higher lignin-degradation activity as well as higher wood-chip weight loss than the wild type. When the wood chips treated with the transformant were enzymatically saccharified, the highest sugar yields were found to be 32.5 % for the red pine wood and 29.5 % for the tulip tree wood, on the basis of the dried wood weights, which were 1.6-folds higher than those for the wild type. These results suggested that overexpression of the laccase gene from P. brumalis significantly contributed to the pretreatment of lignocellulose for increasing sugar yields. PMID:23975277

  1. Melanoidin-containing wastewaters induce selective laccase gene expression in the white-rot fungus Trametes sp. I-62.

    Science.gov (United States)

    González, Tania; Terrón, María Carmen; Yagüe, Susana; Junca, Howard; Carbajo, José María; Zapico, Ernesto Javier; Silva, Ricardo; Arana-Cuenca, Ainhoa; Téllez, Alejandro; González, Aldo Enrique

    2008-03-01

    Wastewaters generated from the production of ethanol from sugar cane molasses may have detrimental effects on the environment due to their high chemical oxygen demand and dark brown color. The color is mainly associated with the presence of melanoidins, which are highly recalcitrant to biodegradation. We report here the induction of laccases by molasses wastewaters and molasses melanoidins in the basidiomycetous fungus Trametes sp. I-62. The time course of effluent decolorization and laccase activity in the culture supernatant of the fungus were correlated. The expression of laccase genes lcc1 and lcc2 increased as a result of the addition of complete molasses wastewater and its high molecular weight fraction to fungal cultures. This is the first time differential laccase gene expression has been reported to occur upon exposure of fungal cultures to molasses wastewaters and their melanoidins. PMID:18248962

  2. Production of Levan by Bacillus licheniformis for Use as a Soil Sealant in Earthen Manure Storage Structures

    OpenAIRE

    Abdel E. Ghaly; F. Arab; N. S. Mahmoud; Higgins, J

    2007-01-01

    Manure application is not permitted on frozen land in Canada and therefore, manure management and storage are the primary issues facing the agri-food industry. Low-cost, effective and environmentally safe earthen manure storage (EMS) facilities will lower costs and help make the livestock industry more competitive and efficient. The goal of this study was to develop a biological sealing technology for earthen manure storages. The results showed that it is feasible to use a growing cultu...

  3. Stability Mechanisms of Laccase Isoforms using a Modified FoldX Protocol Applicable to Widely Different Proteins

    DEFF Research Database (Denmark)

    Christensen, Niels J.; Kepp, Kasper P.

    2013-01-01

    A recent computational protocol that accurately predicts and rationalizes protein multisite mutant stabilities has been extended to handle widely different isoforms of laccases. We apply the protocol to four isoenzymes of Trametes versicolor laccase (TvL) with variable lengths (498–503 residues) ......, and 245, or near substrate, mainly 265, are identified that contribute to stability-function trade-offs, of relevance to the search for new proficient and stable variants of these important industrial enzymes....

  4. LacSubPred: predicting subtypes of Laccases, an important lignin metabolism-related enzyme class, using in silico approaches

    OpenAIRE

    Weirick, Tyler; Sahu, Sitanshu S; Mahalingam, Ramamurthy; Kaundal, Rakesh

    2014-01-01

    Background Laccases (E.C. 1.10.3.2) are multi-copper oxidases that have gained importance in many industries such as biofuels, pulp production, textile dye bleaching, bioremediation, and food production. Their usefulness stems from the ability to act on a diverse range of phenolic compounds such as o-/p-quinols, aminophenols, polyphenols, polyamines, aryl diamines, and aromatic thiols. Despite acting on a wide range of compounds as a family, individual Laccases often exhibit distinctive and v...

  5. Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea

    OpenAIRE

    Molina-Guijarro, Jos?? M.; P??rez Torres, Juana; Mu??oz-Dorado, Jos??; Guill??n Carretero, Francisco; Moya Lobo, Raquel; Hern??ndez Cutuli, Manuel; Arias Fern??ndez, Mar??a Enriqueta

    2009-01-01

    A newly identified extracellular laccase produced by Streptomyces ipomoea CECT 3341 (SilA) was cloned and overexpressed, and its physicochemical characteristics assessed together with its capability to decolorize and detoxify an azotype dye. Molecular analysis of the deduced sequence revealed that SilA contains a TAT-type signal peptide at the N-terminus and only two cupredoxine domains; this is consistent with reports describing two other Streptomyces laccases but contrasts with ...

  6. Purification and Characterization of a Thermostable Laccase from Trametes trogii and Its Ability in Modification of Kraft Lignin.

    Science.gov (United States)

    Ai, Ming-Qiang; Wang, Fang-Fang; Huang, Feng

    2015-08-01

    A blue laccase was purified from a white rot fungus of Trametes trogii, which was a monomeric protein of 64 kDa as determined by SDS-PAGE. The enzyme acted optimally at a pH of 2.2 to 4.5 and a temperature of 70°C and showed high thermal stability, with a half-life of 1.6 h at 60°C. A broad range of substrates, including the non-phenolic azo dye methyl red, was oxidized by the laccase, and the laccase exhibited high affinity towards ABTS and syringaldazine. Moreover, the laccase was fairly metal-tolerant. A high-molecular-weight kraft lignin was effectively polymerized by the laccase, with a maximum of 6.4-fold increase in weight-average molecular weight, as demonstrated by gel permeation chromatography. Notable structural changes in the polymerized lignin were detected by Fourier transform infrared spectroscopy and 1H NMR spectroscopy. This revealed an increase in condensed structures as well as carbonyl and aliphatic hydroxyl groups. Simultaneously, phenolic hydroxyl and methoxy groups decreased. These results suggested the potential use of the laccase in lignin modification. PMID:25876603

  7. Cloning and characterization of a new laccase from Lactobacillus plantarum J16 CECT 8944 catalyzing biogenic amines degradation.

    Science.gov (United States)

    Callejón, S; Sendra, R; Ferrer, S; Pardo, I

    2016-04-01

    In our search for degrading activities of biogenic amines (BAs) in lactic acid bacteria, a protein annotated as laccase enzyme was identified in Lactobacillus plantarum J16 (CECT 8944). In this study, the gene of this new laccase was cloned and heterologously overexpressed in Escherichia coli. The recombinant laccase protein was purified and characterized biochemically. The purified laccase showed characteristic spectroscopic properties of blue multicopper oxidases. The enzyme has a molecular weight of ∼ 62.5 kDa and activity toward typical laccase substrates 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,6-dimethoxyphenol (2,6-DMP). The pH optima on ABTS and 2,6-DMP were 3.5 and 7.0, respectively. Kinetic constants Km and Vmax were of 0.21 mM and 0.54 U/mg for ABTS and 1.67 mM and 0.095 U/mg for 2,6-DMP, respectively. The highest oxidizing activity toward 2,6-DMP was obtained at 60 °C. However, after a preincubation step at 85 °C for 10 min, no residual activity was detected. It has been demonstrated that recombinant L. plantarum laccase oxidizes biogenic amines, mainly tyramine, and thus presents new biotechnological potential for the enzyme in eliminating toxic compounds present in fermented food and beverages. PMID:26590586

  8. Toward an understanding of the effects of agitation and aeration on growth and laccases production by Pleurotus ostreatus.

    Science.gov (United States)

    Tinoco-Valencia, Raunel; Gómez-Cruz, Cristina; Galindo, Enrique; Serrano-Carreón, Leobardo

    2014-05-10

    Mycelial growth and laccase production by Pleurotus ostreatus CP50 cultured in a 10-L mechanically agitated bioreactor were assessed through a 2(3) factorial experimental design. The main effects and interactions of three factors (agitation, aeration and copper induction) over five responses (μ, αLacc, βLacc, maximal volumetric laccase activity and maximal biomass concentration) were analyzed. P. ostreatus growth was significantly improved when culturing was conducted with high agitation (5.9kW/m(3)s) and aeration flow (0.5vvm) rates. Under the experimental conditions evaluated, no evidence of hydrodynamic stress affecting fungal growth was observed. However, the high agitation and aeration conditions were detrimental for the growth-associated laccase production constant (αLacc), leading to a very complex optimization of the process. The maximal laccase volumetric activity (1.2 and 3.8U/ml for non-induced and copper-induced cultures, respectively) was observed when the culturing was performed at a low agitation rate (0.9kW/m(3)s) and a high aeration flow rate (0.5vvm). Laccase proteolysis may explain the complex interactions observed between agitation and aeration and the effects of these factors on the laccase volumetric activity observed in the cultures.

  9. Genome-wide identification of multifunctional laccase gene family in cotton (Gossypium spp.); expression and biochemical analysis during fiber development

    Science.gov (United States)

    Balasubramanian, Vimal Kumar; Rai, Krishan Mohan; Thu, Sandi Win; Hii, Mei Mei; Mendu, Venugopal

    2016-01-01

    The single-celled cotton fibers, produced from seed coat epidermal cells are the largest natural source of textile fibers. The economic value of cotton fiber lies in its length and quality. The multifunctional laccase enzymes play important roles in cell elongation, lignification and pigmentation in plants and could play crucial role in cotton fiber quality. Genome-wide analysis of cultivated allotetraploid (G. hirsutum) and its progenitor diploid (G. arboreum and G. raimondii) cotton species identified 84, 44 and 46 laccase genes, respectively. Analysis of chromosomal location, phylogeny, conserved domain and physical properties showed highly conserved nature of laccases across three cotton species. Gene expression, enzymatic activity and biochemical analysis of developing cotton fibers was performed using G. arboreum species. Of the total 44, 40 laccases showed expression during different stages of fiber development. The higher enzymatic activity of laccases correlated with higher lignin content at 25 DPA (Days Post Anthesis). Further, analysis of cotton fiber phenolic compounds showed an overall decrease at 25 DPA indicating possible incorporation of these substrates into lignin polymer during secondary cell wall biosynthesis. Overall data indicate significant roles of laccases in cotton fiber development, and presents an excellent opportunity for manipulation of fiber development and quality. PMID:27679939

  10. Production of Trametes pubescens laccase under submerged and semi-solid culture conditions on agro-industrial wastes.

    Directory of Open Access Journals (Sweden)

    Juan C Gonzalez

    Full Text Available Laccases are copper-containing enzymes involved in the degradation of lignocellulosic materials and used in the treatment of phenol-containing wastewater. In this study we investigated the effect of culture conditions, i.e. submerged or semi-solid, and copper supplementation on laccase production by Trametespubescens grown on coffee husk, soybean pod husk, or cedar sawdust. The highest specific laccase activity was achieved when the culture was conducted under submerged conditions supplemented with copper (5 mM, and using coffee husk as substrate. The crude extracts presented two laccase isoforms with molecular mass of 120 (Lac1 and 60 kDa (Lac2. Regardless of the substrate, enzymatic crude extract and purified fractions behaved similarly at different temperatures and pHs, most of them presented the maximum activity at 55 °C and a pH range between 2 and 3. In addition, they showed similar stability and electro-chemical properties. At optimal culture conditions laccase activity was 7.69 ± 0.28 U mg(-1 of protein for the crude extract, and 0.08 ± 0.001 and 2.86 ± 0.05 U mg(-1 of protein for Lac1 and Lac2, respectively. In summary, these results show the potential of coffee husk as an important and economical growth medium to produce laccase, offering a new alternative use for this common agro-industrial byproduct.

  11. Production of Trametes pubescens laccase under submerged and semi-solid culture conditions on agro-industrial wastes.

    Science.gov (United States)

    Gonzalez, Juan C; Medina, Sandra C; Rodriguez, Alexander; Osma, Johann F; Alméciga-Díaz, Carlos J; Sánchez, Oscar F

    2013-01-01

    Laccases are copper-containing enzymes involved in the degradation of lignocellulosic materials and used in the treatment of phenol-containing wastewater. In this study we investigated the effect of culture conditions, i.e. submerged or semi-solid, and copper supplementation on laccase production by Trametespubescens grown on coffee husk, soybean pod husk, or cedar sawdust. The highest specific laccase activity was achieved when the culture was conducted under submerged conditions supplemented with copper (5 mM), and using coffee husk as substrate. The crude extracts presented two laccase isoforms with molecular mass of 120 (Lac1) and 60 kDa (Lac2). Regardless of the substrate, enzymatic crude extract and purified fractions behaved similarly at different temperatures and pHs, most of them presented the maximum activity at 55 °C and a pH range between 2 and 3. In addition, they showed similar stability and electro-chemical properties. At optimal culture conditions laccase activity was 7.69 ± 0.28 U mg(-1) of protein for the crude extract, and 0.08 ± 0.001 and 2.86 ± 0.05 U mg(-1) of protein for Lac1 and Lac2, respectively. In summary, these results show the potential of coffee husk as an important and economical growth medium to produce laccase, offering a new alternative use for this common agro-industrial byproduct. PMID:24019936

  12. Additive effects of CuSO4 and aromatic compounds on laccase production by Pleurotus sajor-caju PS-2001 using sucrose as a carbon source

    OpenAIRE

    F. Bettin; Q. Montanari; R. Calloni; T. A. Gaio; M. M. Silveira; A. J. P. Dillon

    2014-01-01

    Laccase enzymes are now commercially available, and a laccase/mediator combination is currently marketed for indigo dye bleaching in textile manufacturing; replacing traditional chemical-based processes with enzymatic technology reduces the need for effluent treatment. However, an inexpensive source of these enzymes will be needed to enable wider application of this technology. In the present work, the main objective was to increase laccase production by the mushroom Pleurotus sajor-caju stra...

  13. Bacillus thuringiensis (Bt)

    Science.gov (United States)

    2004-01-01

    Bacillus thuringiensis (Bt), a natural bacteria found all over the Earth, has a fairly novel way of getting rid of unwanted insects. Bt forms a protein substance (shown on the right) that is not harmful to humans, birds, fish or other vertebrates. When eaten by insect larvae the protein causes a fatal loss of appetite. For over 25 years agricultural chemical companies have relied heavily upon safe Bt pesticides. New space based research promises to give the insecticide a new dimension in effectiveness and applicability. Researchers from the Consortium for Materials Development in Space along with industrial affiliates such as Abott Labs and Pern State University flew Bt on a Space Shuttle mission in the fall of 1996. Researchers expect that the Shuttle's microgravity environment will reveal new information about the protein that will make it more effective against a wider variety of pests.

  14. Cloning and Expression Analysis of Vvlcc3, a Novel and Functional Laccase Gene Possibly Involved in Stipe Elongation

    Directory of Open Access Journals (Sweden)

    Yuanping Lu

    2015-12-01

    Full Text Available Volvariella volvacea, usually harvested in its egg stage, is one of the most popular mushrooms in Asia. The rapid transition from the egg stage to elongation stage, during which the stipe stretches to almost full length leads to the opening of the cap and rupture of the universal veil, and is considered to be one of the main factors that negatively impacts the yield and value of V. volvacea. Stipe elongation is a common phenomenon in mushrooms; however, the mechanisms, genes and regulation involved in stipe elongation are still poorly understood. In order to study the genes related to the stipe elongation, we analyzed the transcription of laccase genes in stipe tissue of V. volvacea, as some laccases have been suggested to be involved in stipe elongation in Flammulina velutipes. Based on transcription patterns, the expression of Vvlcc3 was found to be the highest among the 11 laccase genes. Moreover, phylogenetic analysis showed that VvLCC3 has a high degree of identity with other basidiomycete laccases. Therefore, we selected and cloned a laccase gene, named Vvlcc3, a cDNA from V. volvacea, and expressed the cDNA in Pichia pastoris. The presence of the laccase signature L1-L4 on the deduced protein sequence indicates that the gene encodes a laccase. Phylogenetic analysis showed that VvLCC3 clusters with Coprinopsis cinerea laccases. The ability to catalyze ABTS (2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid oxidation proved that the product of the Vvlcc3 gene was a functional laccase. We also found that the expression of the Vvlcc3 gene in V. volvacea increased during button stage to the elongation stage; it reached its peak in the elongation stage, and then decreased in the maturation stage, which was similar to the trend in the expression of Fv-lac3 and Fv-lac5 in F. velutipes stipe tissue. The similar trend in expression level of these laccase genes of F. velutipes suggested that this gene could be involved in stipe elongation in V

  15. Isolation and identification of bacillus species from soil samples in anthrax epidemic area%炭疽高发地区土壤样本中常见芽胞杆菌的分离及鉴定

    Institute of Scientific and Technical Information of China (English)

    张慧娟; 魏建春; 张恩民; 张建华

    2012-01-01

    Objective To isolate and identify bacillus species in soil samples in anthrax epidemic area and evaluate the disinfection effect and understand the distributions of common bacillus species in the area. Methods Sixty soil samples were collected from the anthrax epidemic area to isolate and identify related bacillus species with PCR assay. Results No Bacillus anthracis was identified, but 13 strains of Bacillus licheniformis, 8 strains of Bacillus subtilis, 11 strains of Bacillus pumilus and 1 strain of Bacillus cereus were identified in 33 gene fragments from 48 clones by sequencing and blast alignment. The specificities of the primers for Bacillus megatherium and Bacillus circulans were not high. Conclusion The disinfection effect in the anthrax epidemic area was good. The related bacillus species exist widely in the soil, suggesting that their identifications are needed in anthrax surveillance by specific genes amplification%目的 通过分离鉴定炭疽可疑污染土壤样本的芽胞杆菌,评价消毒效果和了解监测地区土壤中的芽胞杆菌分布情况.方法 采集炭疽监测点土壤样本60份,对炭疽芽胞杆菌和其他芽胞杆菌进行分离培养和聚合酶链反应扩增鉴定.结果 在可疑污染土壤样本中未分离到炭疽芽胞杆菌;从分离到的48个单克隆菌落中扩增到33个目的片段,经测序和blast比对,确定得到地衣芽胞杆菌13株,枯草芽胞杆菌8株,短小芽胞杆菌扩增11株,蜡样芽胞杆菌扩增到1株,巨大芽胞杆菌引物和环状芽胞杆菌引物特异性不好.结论 本研究提示该监测点炭疽疫情消毒效果可信,但需要进一步研究验证;几种芽胞杆菌在土壤中广泛存在,在炭疽监测工作中进行病原体分离时需要加以鉴别,可通过特异基因扩增来辅助检验.

  16. Effects of Treating with Laccase on Properties of Dyed Cotton Fabric

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; FAN Xue-rong; CUI Li; WANG Qiang

    2008-01-01

    A laecase (Denilite IIS) was used to treat reactive dyes. The results indicated that the laecase could remove the loosely adhering, unfixed or hydrolyzed dyes from the dyed fabric efficiently, which led to obvious improvements of color fastness. Furthermore, the wavelength of maximum absorbanee of the residual solution of dyeing laccase-treated was different from that of the detergent-treated, which implied the laccase could accelerate structural changes of the adhering or hydrolyzed dyes from fabric in treating, resulting in obvious color changes of the residual solution. In addition, excessive iaccase also could decolorize a few fixed reactive dyes from the dyed fabric, with a decrease of color strength and less further improvements of color fastness.

  17. Immobilization of a Pleurotus ostreatus laccase mixture on perlite and its application to dye decolourisation.

    Science.gov (United States)

    Pezzella, Cinzia; Russo, Maria Elena; Marzocchella, Antonio; Salatino, Piero; Sannia, Giovanni

    2014-01-01

    In the present study, a crude laccase preparation from Pleurotus ostreatus was successfully immobilized on perlite, a cheap porous silica material, and tested for Remazol Brilliant Blue R (RBBR) decolourisation in a fluidized bed recycle reactor. Results showed that RBBR decolourisation is mainly due to enzyme action despite the occurrence of dye adsorption-related enzyme inhibition. Fine tuning of immobilization conditions allowed balancing the immobilization yield and the resulting rate of decolourisation, with the adsorption capacity of the solid biocatalyst. In the continuous lab scale reactor, a maximum conversion degree of 56.1% was achieved at reactor space-time of 4.2 h. Stability and catalytic parameters of the immobilized laccases were also assessed in comparison with the soluble counterparts, revealing an increase in stability, despite a reduction of the catalytic performances. Both effects are most likely ascribable to the occurrence of multipoint attachment phenomena.

  18. Polymerization of Various Lignins via Immobilized Myceliophthora thermophila Laccase (MtL

    Directory of Open Access Journals (Sweden)

    Daniela Huber

    2016-08-01

    Full Text Available Enzymatic polymerization of lignin is an environmentally-friendly and sustainable method that is investigated for its potential in opening-up new applications of one of the most abundant biopolymers on our planet. In this work, the laccase from Myceliophthora thermophila was successfully immobilized onto Accurel MP1000 beads (67% of protein bound to the polymeric carrier and the biocatalyzed oxidation of Kraft lignin (KL and lignosulfonate (LS were carried out. Fluorescence intensity determination, phenol content analysis and size exclusion chromatography were performed in order to elucidate the extent of the polymerization reaction. The collected results show an 8.5-fold decrease of the LS samples’ fluorescence intensity after laccase-mediated oxidation and a 12-fold increase of the weight average molecular weight was obtained.

  19. Role of Laccase and Low Molecular Weight Metabolites from Trametes versicolor in Dye Decolorization

    Directory of Open Access Journals (Sweden)

    Diego Moldes

    2012-01-01

    Full Text Available The studies regarding decolorization of dyes by laccase may not only inform about the possible application of this enzyme for environmental purposes, but also may provide important information about its reaction mechanism and the influence of several factors that could be involved. In this paper, decolorization of crystal violet and phenol red was carried out with different fractions of extracellular liquids from Trametes versicolor cultures, in order to describe the role of laccase in this reaction. Moreover, the possible role of the low molecular weight metabolites (LMWMs also produced by the fungus was evaluated. The results confirm the existence of a nonenzymatic decolorization factor, since the nonprotein fraction of the extracellular liquids from cultures of T. versicolor has shown decolorization capability. Several experiments were performed in order to identify the main compounds related to this ability, which are probably low molecular weight peroxide compounds.

  20. DESCRIPTION OF A LACCASE GENE FROM PLEUROTUS OSTREATUS EXPRESSED UNDER SUBMERGED FERMENTATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Maura Téllez-Téllez,

    2012-02-01

    Full Text Available In this work, a gene (lacP83 encoding a Pleurotus ostreatus laccase isoenzyme expressed in submerged fermentation conditions is described. A 2,887 bp sequence was obtained from a genomic library of P. ostreatus by using a PCR inverse strategy. The coding sequence, 1,527 bp long, showed 17 exons and encoded a protein of 509 amino acids, with a putative signal peptide and conserved copper binding domains. The promoter region of the lacP83 gene (466 bp upstream of ATG contains putative binding transcription factors such as MRE, XRE, a defense response element, and a stress response element. The protein and gene sequences of lacP83 showed, respectively, 90 to 96% and 78 to 92% of similarity to laccases of Pleurotus previously reported. However, it showed differences in its apparent molecular weight and promoter sequence.

  1. Immobilization of Laccase in Alginate-Gelatin Mixed Gel and Decolorization of Synthetic Dyes

    Science.gov (United States)

    Mogharabi, Mehdi; Nassiri-Koopaei, Nasser; Bozorgi-Koushalshahi, Maryam; Nafissi-Varcheh, Nastaran; Bagherzadeh, Ghodsieh; Faramarzi, Mohammad Ali

    2012-01-01

    Alginate-gelatin mixed gel was applied to immobilized laccase for decolorization of some synthetic dyes including crystal violet. The immobilization procedure was accomplished by adding alginate to a gelatin solution containing the enzyme and the subsequent dropwise addition of the mixture into a stirred CaCl2 solution. The obtained data showed that both immobilized and free enzymes acted optimally at 50°C for removal of crystal violet, but the entrapped enzyme showed higher thermal stability compared to the free enzyme. The immobilized enzyme represented optimum decolorization at pH 8. Reusability of the entrapped laccase was also studied and the results showed that ca. 85% activity was retained after five successive cycles. The best removal condition was applied for decolorization of seven other synthetic dyes. Results showed that the maximum and minimum dye removal was related to amido black 10B and eosin, respectively. PMID:22899898

  2. Immobilization of Laccase in Alginate-Gelatin Mixed Gel and Decolorization of Synthetic Dyes

    Directory of Open Access Journals (Sweden)

    Mehdi Mogharabi

    2012-01-01

    Full Text Available Alginate-gelatin mixed gel was applied to immobilized laccase for decolorization of some synthetic dyes including crystal violet. The immobilization procedure was accomplished by adding alginate to a gelatin solution containing the enzyme and the subsequent dropwise addition of the mixture into a stirred CaCl2 solution. The obtained data showed that both immobilized and free enzymes acted optimally at 50°C for removal of crystal violet, but the entrapped enzyme showed higher thermal stability compared to the free enzyme. The immobilized enzyme represented optimum decolorization at pH 8. Reusability of the entrapped laccase was also studied and the results showed that ca. 85% activity was retained after five successive cycles. The best removal condition was applied for decolorization of seven other synthetic dyes. Results showed that the maximum and minimum dye removal was related to amido black 10B and eosin, respectively.

  3. A novel approach for grafting of β-cyclodextrin onto wool via laccase/TEMPO oxidation.

    Science.gov (United States)

    Yu, Yuanyuan; Wang, Qiang; Yuan, Jiugang; Fan, Xuerong; Wang, Ping

    2016-11-20

    This study demonstrated a new enzymatic methodology to graft β-cyclodextrin onto wool. The primary hydroxyl groups in β-cyclodextrin were oxidized to aldehyde groups using laccase/2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), which reacted with the amino groups of wool to form Schiff bases. The effects of treatment conditions (treatment temperature, laccase dosage, TEMPO dosage, treatment time) on the aldehyde and carboxyl contents in β-cyclodextrin were studied. FTIR spectrum of oxidized β-cyclodextrin showed the presence of aldehyde and carboxyl groups. Results of MALDI-TOF mass spectroscopy confirmed the coupling of β-cyclodextrin to tyrosine, which was used as a model compound for wool. ATR-FTIR spectroscopy of the grafted wool confirmed the presence of β-cyclodextrin in grafted wool and the formation of a Schiff base between β-cyclodextrin and wool. PMID:27561518

  4. Immobilization of a Pleurotus ostreatus Laccase Mixture on Perlite and Its Application to Dye Decolourisation

    Directory of Open Access Journals (Sweden)

    Cinzia Pezzella

    2014-01-01

    Full Text Available In the present study, a crude laccase preparation from Pleurotus ostreatus was successfully immobilized on perlite, a cheap porous silica material, and tested for Remazol Brilliant Blue R (RBBR decolourisation in a fluidized bed recycle reactor. Results showed that RBBR decolourisation is mainly due to enzyme action despite the occurrence of dye adsorption-related enzyme inhibition. Fine tuning of immobilization conditions allowed balancing the immobilization yield and the resulting rate of decolourisation, with the adsorption capacity of the solid biocatalyst. In the continuous lab scale reactor, a maximum conversion degree of 56.1% was achieved at reactor space-time of 4.2 h. Stability and catalytic parameters of the immobilized laccases were also assessed in comparison with the soluble counterparts, revealing an increase in stability, despite a reduction of the catalytic performances. Both effects are most likely ascribable to the occurrence of multipoint attachment phenomena.

  5. Immobilization of a Pleurotus ostreatus laccase mixture on perlite and its application to dye decolourisation.

    Science.gov (United States)

    Pezzella, Cinzia; Russo, Maria Elena; Marzocchella, Antonio; Salatino, Piero; Sannia, Giovanni

    2014-01-01

    In the present study, a crude laccase preparation from Pleurotus ostreatus was successfully immobilized on perlite, a cheap porous silica material, and tested for Remazol Brilliant Blue R (RBBR) decolourisation in a fluidized bed recycle reactor. Results showed that RBBR decolourisation is mainly due to enzyme action despite the occurrence of dye adsorption-related enzyme inhibition. Fine tuning of immobilization conditions allowed balancing the immobilization yield and the resulting rate of decolourisation, with the adsorption capacity of the solid biocatalyst. In the continuous lab scale reactor, a maximum conversion degree of 56.1% was achieved at reactor space-time of 4.2 h. Stability and catalytic parameters of the immobilized laccases were also assessed in comparison with the soluble counterparts, revealing an increase in stability, despite a reduction of the catalytic performances. Both effects are most likely ascribable to the occurrence of multipoint attachment phenomena. PMID:24895564

  6. Oxidative polymerization of lignins by laccase in water-acetone mixture.

    Science.gov (United States)

    Fiţigău, Ionița Firuța; Peter, Francisc; Boeriu, Carmen Gabriela

    2013-01-01

    The enzymatic oxidative polymerization of five technical lignins with different molecular properties, i.e. Soda Grass/Wheat straw Lignin, Organosolv Hardwood Lignin, Soda Wheat straw Lignin, Alkali pretreated Wheat straw Lignin, and Kraft Softwood was studied. All lignins were previously fractionated by acetone/water 50:50 (v/v) and the laccase-catalyzed polymerization of the low molecular weight fractions (Mw bioplastics, adhesives and as polymeric dispersants. PMID:24432339

  7. Influence of treatment conditions on the oxidation of micropollutants by Trametes versicolor laccase.

    Science.gov (United States)

    Margot, Jonas; Maillard, Julien; Rossi, Luca; Barry, D A; Holliger, Christof

    2013-09-25

    Many organic compounds present at low concentrations in municipal wastewater, such as various pharmaceuticals and biocides, are recalcitrant in conventional wastewater treatment plants (WWTPs). To improve their biodegradation, oxidoreductase enzymes such as laccases were tested. The goal was to find optimal conditions for the transformation of two anti-inflammatory pharmaceuticals (diclofenac (DFC) and mefenamic acid (MFA)), one biocide (triclosan (TCN)) and one plastic additive (bisphenol A (BPA)) by Trametes versicolor laccase. Experiments were conducted in spiked solutions at different pH values (from 3 to 9), enzyme concentrations (70-1400 Ul(-1)), reaction times (0-26 hours) and temperatures (10, 25 and 40°C) following a Doehlert experimental design. A semi-empirical model was developed to understand better the combined effects of the four factors and to determine optimal values. This model was able to fit well the experimental data (R(2)>0.97) and showed good predictive ability. All four factors had a significant effect on the micropollutant oxidation with the greatest influence shown by pH. Results for single compounds were different from those obtained for mixtures of micropollutants. For instance, DFC transformation occurred at much higher rates in mixtures under alkaline conditions. Optimal conditions were compound-dependent, but were found to be between pH 4.5 to 6.5 and between 25°C to more than 40°C. A laccase concentration of 730 Ul(-1) was sufficient to obtain a high removal rate (>90%) of the four individual compounds (range of times: 40 min to 5 hours), showing the potential of laccases to improve biodegradation of environmentally persistent compounds. PMID:23831273

  8. Synthesis of Polydopamine Functionalized Reduced Graphene Oxide-Palladium Nanocomposite for Laccase Based Biosensor

    OpenAIRE

    Da-Wei Li; Lei Luo; Peng-Fei Lv; Qing-Qing Wang; Ke-Yu Lu; An-Fang Wei; Qu-Fu Wei

    2016-01-01

    Graphene based 2D nanomaterials have attracted increasing attention in biosensing application due to the outstanding physicochemical properties of graphene. In this work, palladium nanoparticles (Pd) loaded reduced graphene oxide (rGO) hybrid (rGO-Pd) was synthesized through a facile method. Laccase (Lac) was immobilized on rGO-Pd by utilizing the self-polymerization of dopamine, which generated polydopamine (PDA). The PDA-Lac-rGO-Pd nanocomposites were further modified on electrode surface t...

  9. Development of a laccase biosensor for determination of Phenolic micropollutants in surface waters

    OpenAIRE

    Souza Gil, Eric de; Rezende, Stefani Garcia; Júnior, Eli José Miranda Ribeiro; Barcelos, Hernane Toledo; Scalize, Paulo Sérgio; Santiago, Mariangela Fontes; Quintino, Michelle Pereira; Somerset, Vernon Sydwill

    2014-01-01

    Laccase is a poliphenoloxidase enzyme that catalyzes the oxidation of phenolic compounds in the corresponding quinones. The current obtained in this redox process can be used for quantitative analysis. In this work, a carbon paste biosensor modified gluteraldehyde functionalized silica and an enzymatic extract of the Pycnoporus sanguineus fungi as a lacase source is proposed for phenol determination. The effect of carbon paste and electrolyte composition, pH from 3.0 to 8.0, start potentia...

  10. Different recombinant forms of polyphenol oxidase A, a laccase from Marinomonas mediterranea.

    Science.gov (United States)

    Tonin, Fabio; Rosini, Elena; Piubelli, Luciano; Sanchez-Amat, Antonio; Pollegioni, Loredano

    2016-07-01

    Polyphenol oxidase from the marine bacterium Marinomonas mediterranea (MmPPOA) is a membrane-bound, blue, multi-copper laccase of 695 residues. It possesses peculiar properties that distinguish it from known laccases, such as a broad substrate specificity (common to tyrosinases) and a high redox potential. In order to push the biotechnological application of this laccase, the full-length enzyme was overexpressed in Escherichia coli cells with and without a C-terminal His-tag. The previous form, named rMmPPOA-695-His, was purified to homogeneity by HiTrap chelating chromatography following solubilization by 1% SDS in the lysis buffer with an overall yield of ≈1 mg/L fermentation broth and a specific activity of 1.34 U/mg protein on 2,6-dimethoxyphenol as substrate. A truncated enzyme form lacking 58 residues at the N-terminus encompassing the putative membrane binding region, namely rMmPPOA-637-His, was successfully expressed in E. coli as soluble protein and was purified by using the same procedure set-up as for the full-length enzyme. Elimination of the N-terminal sequence decreased the specific activity 15-fold (which was partially restored in the presence of 1 M NaCl) and altered the secondary and tertiary structures and the pH dependence of optimal stability. The recombinant rMmPPOA-695-His showed kinetic properties on catechol higher than for known laccases, a very high thermal stability, and a strong resistance to NaCl, DMSO, and Tween-80, all properties that are required for specific, targeted industrial applications. PMID:27050199

  11. Multicopper oxidase-3 is a laccase associated with the peritrophic matrix of Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Minglin Lang

    Full Text Available The multicopper oxidase (MCO family of enzymes includes laccases, which oxidize a broad range of substrates including polyphenols and phenylendiamines; ferroxidases, which oxidize ferrous iron; and several other oxidases with specific substrates such as ascorbate, bilirubin or copper. The genome of Anopheles gambiae, a species of mosquito, encodes five putative multicopper oxidases. Of these five, only AgMCO2 has known enzymatic and physiological functions: it is a highly conserved laccase that functions in cuticle pigmentation and tanning by oxidizing dopamine and dopamine derivatives. AgMCO3 is a mosquito-specific gene that is expressed predominantly in adult midguts and Malpighian tubules. To determine its enzymatic function, we purified recombinant AgMCO3 and analyzed its activity. AgMCO3 oxidized hydroquinone (a p-diphenol, the five o-diphenols tested, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS, and p-phenylenediamine, but not ferrous iron. The catalytic efficiencies of AgMCO3 were similar to those of cuticular laccases (MCO2 orthologs, except that AgMCO3 oxidized all of the phenolic substrates with similar efficiencies whereas the MCO2 isoforms were less efficient at oxidizing catechol or dopa. These results demonstrate that AgMCO3 can be classified as a laccase and suggest that AgMCO3 has a somewhat broader substrate specificity than MCO2 orthologs. In addition, we observed AgMCO3 immunoreactivity in the peritrophic matrix, which functions as a selective barrier between the blood meal and midgut epithelial cells, protecting the midgut from mechanical damage, pathogens, and toxic molecules. We propose that AgMCO3 may oxidize toxic molecules in the blood meal leading to detoxification or to cross-linking of the molecules to the peritrophic matrix, thus targeting them for excretion.

  12. Bioconversion of Biomass-Derived Phenols Catalyzed by Myceliophthora thermophila Laccase

    OpenAIRE

    Anastasia Zerva; Nikolaos Manos; Stamatina Vouyiouka; Paul Christakopoulos; Evangelos Topakas

    2016-01-01

    Biomass-derived phenols have recently arisen as an attractive alternative for building blocks to be used in synthetic applications, due to their widespread availability as an abundant renewable resource. In the present paper, commercial laccase from the thermophilic fungus Myceliophthora thermophila was used to bioconvert phenol monomers, namely catechol, pyrogallol and gallic acid in water. The resulting products from catechol and gallic acid were polymers that were partially characterized i...

  13. Application of laccase-based systems for biobleaching and functionalization of sisal fibres

    OpenAIRE

    Aracri, Elisabetta

    2012-01-01

    This research project originated from interest in assessing the potential of enzyme technology (particularly laccase-based systems) for the biomodification of sisal specialty fibres by using environmentally friendly processes. This doctoral work focused on two different research lines, namely: biobleaching and enzymatic functionalization of sisal pulp fibres. The study was started by assessing the use of natural, potentially cost-effective phenolic compounds as substitutes for expensive, po...

  14. A High Redox Potential Laccase from Pycnoporus sanguineus RP15: Potential Application for Dye Decolorization

    Directory of Open Access Journals (Sweden)

    Ana L. R. L. Zimbardi

    2016-05-01

    Full Text Available Laccase production by Pycnoporus sanguineus RP15 grown in wheat bran and corncob under solid-state fermentation was optimized by response surface methodology using a Central Composite Rotational Design. A laccase (Lacps1 was purified and characterized and the potential of the pure Lacps1 and the crude culture extract for synthetic dye decolorization was evaluated. At optimal conditions (eight days, 26 °C, 18% (w/w milled corncob, 0.8% (w/w NH4Cl and 50 mmol·L−1 CuSO4, initial moisture 4.1 mL·g−1, the laccase activity reached 138.6 ± 13.2 U·g−1. Lacps1 was a monomeric glycoprotein (67 kDa, 24% carbohydrate. Optimum pH and temperature for the oxidation of 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonate (ABTS were 4.4 and 74.4 °C, respectively. Lacps1 was stable at pH 3.0–8.0, and after two hours at 55–60 °C, presenting high redox potential (0.747 V vs. NHE. ABTS was oxidized with an apparent affinity constant of 147.0 ± 6.4 μmol·L−1, maximum velocity of 413.4 ± 21.2 U·mg−1 and catalytic efficiency of 3140.1 ± 149.6 L·mmol−1·s−1. The maximum decolorization percentages of bromophenol blue (BPB, remazol brilliant blue R and reactive blue 4 (RB4, at 25 or 40 °C without redox mediators, reached 90%, 80% and 60%, respectively, using either pure Lacps1 or the crude extract. This is the first study of the decolorization of BPB and RB4 by a P. sanguineus laccase. The data suggested good potential for treatment of industrial dye-containing effluents.

  15. Genome Differences That Distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis

    OpenAIRE

    Radnedge, Lyndsay; Agron, Peter G.; Hill, Karen K.; Jackson, Paul J.; Ticknor, Lawrence O; Keim, Paul; Andersen, Gary L.

    2003-01-01

    The three species of the group 1 bacilli, Bacillus anthracis, B. cereus, and B. thuringiensis, are genetically very closely related. All inhabit soil habitats but exhibit different phenotypes. B. anthracis is the causative agent of anthrax and is phylogenetically monomorphic, while B. cereus and B. thuringiensis are genetically more diverse. An amplified fragment length polymorphism analysis described here demonstrates genetic diversity among a collection of non-anthrax-causing Bacillus speci...

  16. Excretion of laccase by sycamore (Acer pseudoplatanus L.) cells. Purification and properties of the enzyme.

    Science.gov (United States)

    Bligny, R; Douce, R

    1983-02-01

    A laccase-type polyphenol oxidase is excreted by sycamore cells (Acer pseudoplatanus L.) cells. The enzyme has been purified by classical purification techniques. It is a blue copper protein of Mr 97 000, containing 45% carbohydrate and 0.24% copper. This protein consists of one single unit and the copper content corresponds to four copper atoms per protein molecule. The specific activity of the purified extracellular sycamore-cell laccase measured at pH 6.6 (optimum pH) and in the presence of 20mM-4-methhylcatechol (optimum substrate conditions) corresponded to an oxygen uptake of 32 000 nmol of O2/min per mg of protein. Under these conditions, the catalytic-centre activity of the enzyme reached 100 s-1. The excretion of laccase by sycamore cells is significant, being about 2% of the total protein synthesized by the cells during the exponential phase of growth, and is independent of cell growth. The physiological significance and the problems raised by the passage of this protein across the cytoplasmic membrane are discussed.

  17. Utilization of rice straw for laccase production by Streptomyces psammoticus in solid-state fermentation.

    Science.gov (United States)

    Niladevi, Kizhakkedathu Narayanan; Sukumaran, Rajeev Kumar; Prema, Parukuttyamma

    2007-10-01

    Laccase production from a novel actinobacterial strain, Streptomyces psammoticus, MTCC 7334 was optimized in solid-state fermentation. The process parameters were initially optimized by the conventional "one factor at a time" approach, and the optimal levels of the factors that had considerable influence on enzyme production were identified by response surface methodology. Rice straw was identified as a suitable substrate for laccase production (17.3 U/g), followed by coffee pulp (15.8 U/g). Other optimized conditions were particle size, 500-1,000 mum (21.2 U/g); initial moisture content, 65% (26.8 U/g); pH of moistening solution, 8.0 (26.9 U/g); incubation temperature, 32 degrees C (27.6 U/g) and inoculum size, 1.5 x 10(7) CFU (33.8 U/g). Yeast extract served as the best nitrogen source (34.8 U/g). No enhancement in enzyme yield was observed with carbon supplementation. The level of yeast extract, inoculum size and copper sulphate were optimized statistically. Statistical optimization performed using a central composite design resulted in threefold increase in laccase activity (55.4 U/g) as compared to the unoptimized medium (17.3 U/g). The upgrading of fermented rice straw for fodder enhancement is also discussed briefly.

  18. Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Tamayo-Ramos Juan Antonio

    2012-12-01

    Full Text Available Abstract Background Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and McoB and ascomycete laccase McoG was investigated. Results The laccase-like multicopper oxidases McoA, McoB and McoG from the commonly used cell factory Aspergillus niger were homologously expressed, purified and analyzed for their biocatalytic potential. All three recombinant enzymes were monomers with apparent molecular masses ranging from 80 to 110 kDa. McoA and McoG resulted to be blue, whereas McoB was yellow. The newly obtained oxidases displayed strongly different activities towards aromatic compounds and synthetic dyes. McoB exhibited high catalytic efficiency with N,N-dimethyl-p-phenylenediamine (DMPPDA and 2,2-azino-di(3-ethylbenzthiazoline sulfonic acid (ABTS, and appeared to be a promising biocatalyst. Besides oxidizing a variety of phenolic compounds, McoB catalyzed successfully the decolorization and detoxification of the widely used textile dye malachite green. Conclusions The A. niger McoA, McoB, and McoG enzymes showed clearly different catalytic properties. Yellow McoB showed broad substrate specificity, catalyzing the oxidation of several phenolic compounds commonly present in different industrial effluents. It also harbored high decolorization and detoxification activity with the synthetic dye malachite green, showing to have an interesting potential as a new industrial biocatalyst.

  19. Transcriptional profiles of laccase genes in the brown rot fungus Postia placenta MAD-R-698.

    Science.gov (United States)

    An, Hongde; Wei, Dongsheng; Xiao, Tingting

    2015-09-01

    One of the laccase isoforms in the brown rot fungus Postia placenta is thought to contribute to the production of hydroxyl radicals, which play an important role in lignocellulose degradation. However, the presence of at least two laccase isoforms in this fungus makes it difficult to understand the details of this mechanism. In this study, we systematically investigated the transcriptional patterns of two laccase genes, Pplcc1 and Pplcc2, by quantitative PCR (qPCR) to better understand the mechanism. The qPCR results showed that neither of the two genes was expressed constitutively throughout growth in liquid culture or during the degradation of a woody substrate. Transcription of Pplcc1 was upregulated under nitrogen depletion and in response to a high concentration of copper in liquid culture, and during the initial colonization of intact aspen wafer. However, it was subject to catabolite repression by a high concentration of glucose. Transcription of Pplcc2 was upregulated by stresses caused by ferulic acid, 2, 6-dimethylbenzoic acid, and ethanol, and under osmotic stress in liquid culture. However, the transcription of Pplcc2 was downregulated upon contact with the woody substrate in solid culture. These results indicate that Pplcc1 and Pplcc2 are differentially regulated in liquid and solid cultures. Pplcc1 seems to play the major role in producing hydroxyl radicals and Pplcc2 in the stress response during the degradation of a woody substrate. PMID:26231371

  20. Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases.

    Science.gov (United States)

    Ulčnik, A; Kralj Cigić, I; Pohleven, F

    2013-12-01

    The ability of two white-rot fungi (Trametes versicolor and Pleurotus ostreatus) and one brown-rot fungus (Gloeophyllum trabeum) to degrade two organochlorine insecticides, lindane and endosulfan, in liquid cultures was studied and dead fungal biomass was examined for adsorption of both insecticides from liquid medium. Lindane and endosulfan were also treated with fungal laccase and bacterial protein CotA, which has laccase activities. The amount of degraded lindane and endosulfan increased with their exposure period in the liquid cultures of both examined white-rot fungi. Endosulfan was transformed to endosulfan sulphate by T. versicolor and P. ostreatus. A small amount of endosulfan ether was also detected and its origin was examined. Degradation of lindane and endosulfan by a brown rot G. trabeum did not occur. Mycelial biomasses of all examined fungi have been found to adsorb lindane and endosulfan and adsorption onto fungal biomass should therefore be considered as a possible mechanism of pollutant removal when fungal degradation potentials are studied. Bacterial protein CotA performed more efficient degradation of lindane and endosulfan than fungal laccase and has shown potential for bioremediation of organic pollutants. PMID:23736895

  1. Laccase-catalyzed decolorization of malachite green: performance optimization and degradation mechanism.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available Malachite green (MG was decolorized by laccase (LacA of white-rot fungus Cerrena sp. with strong decolorizing ability. Decolorization conditions were optimized with response surface methodology. A highly significant quadratic model was developed to investigate MG decolorization with LacA, and the maximum MG decolorization ratio of 91.6% was predicted under the conditions of 2.8 U mL(-1 LacA, 109.9 mg L(-1 MG and decolorization for 172.4 min. Kinetic studies revealed the Km and kcat values of LacA toward MG were 781.9 mM and 9.5 s(-1, respectively. UV-visible spectra confirmed degradation of MG, and the degradation mechanism was explored with liquid chromatography-mass spectrometry (LC-MS analysis. Based on the LC-MS spectra of degradation products, LacA catalyzed MG degradation via two simultaneous pathways. In addition, the phytotoxicity of MG, in terms of inhibition on seed germination and seedling root elongation of Nicotiana tabacum and Lactuca sativa, was reduced after laccase treatment. These results suggest that laccase of Cerrena was effective in decolorizing MG and promising in bioremediation of wastewater in food and aquaculture industries.

  2. Screening of Lignocellulose-Degrading Superior Mushroom Strains and Determination of Their CMCase and Laccase Activity

    Directory of Open Access Journals (Sweden)

    Li Fen

    2014-01-01

    Full Text Available In order to screen lignocellulose-degrading superior mushroom strains ten strains of mushrooms (Lentinus edodes939, Pholiota nameko, Lentinus edodes868, Coprinus comatus, Macrolepiota procera, Auricularia auricula, Hericium erinaceus, Grifola frondosa, Pleurotus nebrodensis, and Shiraia bambusicola were inoculated onto carboxymethylcellulose agar-Congo red plates to evaluate their ability to produce carbomethyl cellulase (CMCase. The results showed that the ratio of transparent circle to mycelium circle of Hericium erinaceus was 8.16 (P<0.01 higher than other strains. The filter paper culture screening test showed that Hericium erinaceus and Macrolepiota procera grew well and showed extreme decomposition of the filter paper. When cultivated in guaiacol culture medium to detect their abilities to secrete laccase, Hericium erinaceus showed the highest ability with the largest reddish brown circles of 4.330 cm. CMCase activity determination indicated that Coprinus comatus and Hericium erinaceus had the ability to produce CMCase with 33.92 U/L on the 9th day and 22.58 U/L on the 10th day, respectively, while Coprinus comatus and Pleurotus nebrodensis had the ability to produce laccase with 496.67 U/L and 489.17 U/L on the 16th day and 18th day. Based on the results, Coprinus comatus might be the most promising lignocellulose-degrading strain to produce both CMCase and laccase at high levels.

  3. Laccase Gene Expression and Vinasse Biodegradation by Trametes hirsuta Strain Bm-2

    Directory of Open Access Journals (Sweden)

    Raúl Tapia-Tussell

    2015-08-01

    Full Text Available Vinasse is the dark-colored wastewater that is generated by bioethanol distilleries from feedstock molasses. The vinasse that is generated from molasses contains high amounts of pollutants, including phenolic compounds and melanoindin. The goal of this work was to study the expression of laccase genes in the Trametes hirsuta strain Bm-2, isolated in Yucatan, Mexico, in the presence of phenolic compounds, as well as its effectiveness in removing colorants from vinasse. In the presence of all phenolic compounds tested (guaiacol, ferulic acid, and vanillic acid, increased levels of laccase-encoding mRNA were observed. Transcript levels in the presence of guaiacol were 40 times higher than those in the control. The lcc1 and lcc2 genes of T. hirsuta were differentially expressed; guaiacol and vanillin induced the expression of both genes, whereas ferulic acid only induced the expression of lcc2. The discoloration of vinasse was concomitant with the increase in laccase activity. The highest value of enzyme activity (2543.7 U/mL was obtained in 10% (v/v vinasse, which corresponded to a 69.2% increase in discoloration. This study demonstrates the potential of the Bm-2 strain of T. hirsuta for the biodegradation of vinasse.

  4. ABTS-Modified Silica Nanoparticles as Laccase Mediators for Decolorization of Indigo Carmine Dye

    Directory of Open Access Journals (Sweden)

    Youxun Liu

    2015-01-01

    Full Text Available Efficient reuse and regeneration of spent mediators are highly desired for many of the laccases’ biotechnology applications. This investigation demonstrates that a redox mediator 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS covalently attached to silica nanoparticles (SNPs effectively mediated dye decolorization catalyzed by laccase. Characteristics of ABTS-modified silica nanoparticles (ABTS-SNPs were researched by scanning electron microscopy and Fourier-transformed infrared spectroscopy. When ABTS and ABTS-SNPs were used as laccase mediators, the decolorization yields of 96 and 95% were, respectively, obtained for indigo carmine dye. The results suggest that ABTS immobilized on SNPs can be used as laccase mediators as they retain almost the same efficiency as the free ABTS. The oxidized ABTS-SNPs were regenerated by their reduction reaction with ascorbic acid. Decolorization efficiency of regenerated ABTS-SNPs and their initial forms were found to be almost equivalent. Six reuse cycles for spent ABTS-SNPs were run for the treatment of indigo carmine, providing decolorization yields of 96–77%. Compared with free mediator, the immobilized mediators have the advantage of being easily recovered, regenerated, and reused making the whole process environmentally friendly.

  5. Efficient immobilization of a fungal laccase and its exploitation in fruit juice clarification.

    Science.gov (United States)

    Lettera, Vincenzo; Pezzella, Cinzia; Cicatiello, Paola; Piscitelli, Alessandra; Giacobelli, Valerio Guido; Galano, Eugenio; Amoresano, Angela; Sannia, Giovanni

    2016-04-01

    The clarification step represents, in fruit juices industries, a bottleneck process because residual phenols cause severe haze formation affecting juice quality and impairing customers acceptance. An enzymatic step can be efficiently integrated in the process, and use of immobilized enzymes entails an economical advantage. In this work, covalent immobilization of recombinant POXA1b laccase from Pleurotus ostreatus on epoxy activated poly(methacrylate) beads was optimized thanks to a Response Surface Methodologies approach. Through regression analysis the process was well fitted by a quadratic polynomial equation (R(2)=0.9367, adjusted R(2)=0.8226) under which laccase activity reached 2000 ± 100 Ug(-1) of beads, with an immobilization efficiency of 98%. The immobilized biocatalyst was characterized and then tested in fruit juice clarification reaching up to 45% phenol reduction, without affecting health-effective flavanones content. Furthermore, laccase treated juice displays an improved sensory profile, due to the reduction of vinyl guaiacol, a potent off-flavor possessing a peppery/spicy aroma. PMID:26593616

  6. Preliminary studies of new strains of Trametes sp. from Argentina for laccase production ability

    Directory of Open Access Journals (Sweden)

    María Isabel Fonseca

    2016-06-01

    Full Text Available Abstract Oxidative enzymes secreted by white rot fungi can be applied in several technological processes within the paper industry, biofuel production and bioremediation. The discovery of native strains from the biodiverse Misiones (Argentina forest can provide useful enzymes for biotechnological purposes. In this work, we evaluated the laccase and manganese peroxidase secretion abilities of four newly discovered strains of Trametes sp. that are native to Misiones. In addition, the copper response and optimal pH and temperature for laccase activity in culture supernatants were determined.The selected strains produced variable amounts of laccase and MnP; when Cu2+ was added, both enzymes were significantly increased. Zymograms showed that two isoenzymes were increased in all strains in the presence of Cu2+. Strain B showed the greatest response to Cu2+ addition, whereas strain A was more stable at the optimal temperature and pH. Strain A showed interesting potential for future biotechnological approaches due to the superior thermo-stability of its secreted enzymes.

  7. Digestibility of β-lactoglobulin following cross-linking by Trametes versicolor laccase and apple polyphenols

    Directory of Open Access Journals (Sweden)

    DRAGANA STANIĆ-VUČINIĆ

    2011-06-01

    Full Text Available β-Lactoglobulin (BLG is an important nutrient of dairy products and an important allergen in cow’s milk allergy. The aim of this study was to investigate the potential of laccase to cross-link BLG in the presence of an apple phenolic extract (APE and to characterize the obtained products for their digestibility by pepsin and pancreatin. The composition of the apple phenolics used for cross-linking was determined by liquid chromatography–electrospray ionization-mass spectrometry (LC–ESI-MS. The apple phenolic extract contained significant amounts of quercetin glycosides, catechins and chlorogenic acid. The laccase cross-linked BLG in the presence of apple phenolics. The polymerization rendered the protein insoluble in the reaction mixture. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE analysis of the cross-linking reaction mixture revealed a heterogeneous mixture of high molecular masses (cross-linked BLG, with a fraction of the BLG remaining monomeric. Enzymatic processing of BLG by laccase and apple polyphenols as mediators can decrease the biphasal pepsin–pancreatin digestibility of the monomeric and cross-linked protein, thus decreasing its nutritional value. In addition, reduced BLG digestibility can decrease its allergenic potential. Apple polyphenols can find usage in the creation of new, more functional food products, designed to prevent obesity and hypersensitivity-related disorders.

  8. Complete biodegradation of chlorpyrifos by engineered Pseudomonas putida cells expressing surface-immobilized laccases.

    Science.gov (United States)

    Liu, Jin; Tan, Luming; Wang, Jing; Wang, Zhiyong; Ni, Hong; Li, Lin

    2016-08-01

    The long-term abuse use of chlorpyrifos-like pesticides in agriculture and horticulture has resulted in significant soil or water contamination and a worldwide ecosystem threat. In this study, the ability of a solvent-tolerant bacterium, Pseudomonas putida MB285, with surface-displayed bacterial laccase, to biodegrade chlorpyrifos was investigated. The results of compositional analyses of the degraded products demonstrate that the engineered MB285 was capable of completely eliminating chlorpyrifos via direct biodegradation, as determined by high-performance liquid chromatography and gas chromatography-mass spectrometry assays. Two intermediate metabolites, namely 3,5,6-trichloro-2-pyridinol (TCP) and diethyl phosphate, were temporarily detectable, verifying the joint and stepwise degradation of chlorpyrifos by surface laccases and certain cellular enzymes, whereas the purified free laccase incompletely degraded chlorpyrifos into TCP. The degradation reaction can be conducted over a wide range of pH values (2-7) and temperatures (5-55 °C) without the need for Cu(2+). Bioassays using Caenorhabditis elegans as an indicator organism demonstrated that the medium was completely detoxified of chlorpyrifos by degradation. Moreover, the engineered cells exhibited a high capacity of repeated degradation and good performance in continuous degradation cycles, as well as a high capacity to degrade real effluents containing chlorpyrifos. Therefore, the developed system exhibited a high degradation capacity and performance and constitutes an improved approach to address chlorpyrifos contamination in chlorpyrifos-remediation practice. PMID:27231878

  9. Identification of a laccase from Ganoderma lucidum CBS 229.93 having potential for enhancing cellulase catalyzed lignocellulose degradation.

    Science.gov (United States)

    Sitarz, Anna K; Mikkelsen, Jørn D; Højrup, Peter; Meyer, Anne S

    2013-12-10

    Based on a differential pre-screening of 44 white-rot fungi on a lignocellulose-supplemented minimal medium, four basidiomycetes were selected for further study: Ganoderma lucidum, Polyporus brumalis, Polyporus ciliatus and Trametes versicolor. Only G. lucidum was able to grow vividly on malt extract or minimal media supplemented with alkali lignin. When grown on malt extract or minimal medium supplemented with lignocellulose (sugar cane bagasse), the crude G. lucidum protein extract exhibited high laccase activity, ∼3U/mL toward syringaldazine. This activity was 13-17 fold higher than the corresponding activities of the crude protein extracts of P. brumalis, P. ciliatus and T. versicolor. Native PAGE electrophoresis of the crude G. lucidum extract confirmed the presence of an active laccase. The G. lucidum laccase had a molecular weight of ∼62.5kDa, and a Km value of 0.107mM (determined on ABTS). A partial amino acid sequence analysis of four short de novo sequenced peptides, defined after trypsin digest analysis using MALDI-TOF MS/MS analysis, revealed 64-100% homology to sequences in related laccases in the UniProt database, but also indicated that certain sequence stretches had low homology. Addition of the laccase-rich G. lucidum broth to lignocellulosic biomass (pretreated sugar cane bagasse) together with a state-of-the-art cellulase enzyme preparation (Cellic™CTec1) produced significantly increased cellulolytic yields, which were also better than those obtained with a T. versicolor laccase addition, indicating that the laccase from G. lucidum has unique properties that may be momentous in lignocellulosic biomass conversion.

  10. Immune modulation mediated by cryptococcal laccase promotes pulmonary growth and brain dissemination of virulent Cryptococcus neoformans in mice.

    Directory of Open Access Journals (Sweden)

    Yafeng Qiu

    Full Text Available C. neoformans is a leading cause of fatal mycosis linked to CNS dissemination. Laccase, encoded by the LAC1 gene, is an important virulence factor implicated in brain dissemination yet little is known about the mechanism(s accounting for this observation. Here, we investigated whether the presence or absence of laccase altered the local immune response in the lungs by comparing infections with the highly virulent strain, H99 (which expresses laccase and mutant strain of H99 deficient in laccase (lac1Δ in a mouse model of pulmonary infection. We found that LAC1 gene deletion decreased the pulmonary fungal burden and abolished CNS dissemination at weeks 2 and 3. Furthermore, LAC1 deletion lead to: 1 diminished pulmonary eosinophilia; 2 increased accumulation of CD4+ and CD8+ T cells; 3 increased Th1 and Th17 cytokines yet decreased Th2 cytokines; and 4 lung macrophage shifting of the lung macrophage phenotype from M2- towards M1-type activation. Next, we used adoptively transferred CD4+ T cells isolated from pulmonary lymph nodes of mice infected with either lac1Δ or H99 to evaluate the role of laccase-induced immunomodulation on CNS dissemination. We found that in comparison to PBS treated mice, adoptively transferred CD4+ T cells isolated from lac1Δ-infected mice decreased CNS dissemination, while those isolated from H99-infected mice increased CNS dissemination. Collectively, our findings reveal that immune modulation away from Th1/Th17 responses and towards Th2 responses represents a novel mechanism through which laccase can contribute to cryptococcal virulence. Furthermore, our data support the hypothesis that laccase-induced changes in polarization of CD4+ T cells contribute to CNS dissemination.

  11. Production of Cellulases, Xylanase, Pectinase, alpha-amylase and Protease Enzymes Cocktail by Bacillus spp. and Their Mixed Cultures with Candida tropicalis and Rhodotorula glutinis under Solid State Fermentation

    International Nuclear Information System (INIS)

    A group of twelve locally isolated Bacillus species, B.megaterium (MAI and MA II), B.licheniformis (MLI and ML II); B. circulans, B. stearothermophilis, B.cereus, B.sphaericus, B. pumilus, B. laterosporus, B. coagulans and B. pantothenticus, were examined for the production of cellulases, xylanase, pectinase, alpha-amylase and protease enzymes cocktail on wheat bran under solid state fermentation (SSF). All species were found to be potent hydrolyzing enzymes producers and the superior producing species were B. megaterium MAI and B. licheniformis. On the other hand, both of them still produced highest enzyme titres when mixed with Candida tropicalis or Rhodotorula glutinis, yeast strains. The two superior bacterial strains produced the highest enzymatic activities when coculturing with C. tropicalis compared with coculturing with R. glutinis only or with both C. tropicalis and R. glutinis in combination. The inferior activities of cocultures (B. megaterinm MAI and R. glutinis) were enhanced in carboxymethyl cellulase (CMCase), filter paper cellulase (FPase), avecilase, xylanase, pectinase, -amylase and protease by gamma irradiation at dose 1.0 kGy with percent increase 8 %, 20 %, 10 %, 4 %, 31 %, 22 % and 34 %, respectively as compared with un-irradiated cocultures

  12. Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2012-06-01

    Full Text Available Abstract Background Microbial laccases are highly useful in textile effluent dye biodegradation. However, the bioavailability of cellularly expressed or purified laccases in continuous operations is usually limited by mass transfer impediment or enzyme regeneration difficulty. Therefore, this study develops a regenerable bacterial surface-displaying system for industrial synthetic dye decolorization, and evaluates its effects on independent and continuous operations. Results A bacterial laccase (WlacD was engineered onto the cell surface of the solvent-tolerant bacterium Pseudomonas putida to construct a whole-cell biocatalyst. Ice nucleation protein (InaQ anchor was employed, and the ability of 1 to 3 tandemly aligned N-terminal repeats to direct WlacD display were compared. Immobilized WlacD was determined to be surface-displayed in functional form using Western blot analysis, immunofluorescence microscopy, flow cytometry, and whole-cell enzymatic activity assay. Engineered P. putida cells were then applied to decolorize the anthraquinone dye Acid Green (AG 25 and diazo-dye Acid Red (AR 18. The results showed that decolorization of both dyes is Cu2+- and mediator-independent, with an optimum temperature of 35°C and pH of 3.0, and can be stably performed across a temperature range of 15°C to 45°C. A high activity toward AG25 (1 g/l with relative decolorization values of 91.2% (3 h and 97.1% (18 h, as well as high activity to AR18 (1 g/l by 80.5% (3 h and 89.0% (18 h, was recorded. The engineered system exhibited a comparably high activity compared with those of separate dyes in a continuous three-round shake-flask decolorization of AG25/AR18 mixed dye (each 1 g/l. No significant decline in decolorization efficacy was noted during first two-rounds but reaction equilibriums were elongated, and the residual laccase activity eventually decreased to low levels. However, the decolorizing capacity of the system was easily retrieved

  13. Voltammetry and single-molecule in situ scanning tunneling microscopy of laccases and bilirubin oxidase in electrocatalytic dioxygen reduction on Au(111) single-crystal electrodes

    DEFF Research Database (Denmark)

    Climent, Victor; Zhang, Jingdong; Friis, Esben Peter;

    2012-01-01

    Laccases (E.C. 1.10.3.2) are multicopper oxidases catalytically active in the oxidation of diphenolics and related compounds by molecular dioxygen. The laccases contain a single-copper type I center and a trinuclear cluster of a single-copper type II and a dinuclear type III center. The oxidation...

  14. Purification and characterization of the extracellular laccase produced by Trametes polyzona WR710-1 under solid-state fermentation.

    Science.gov (United States)

    Chairin, Thanunchanok; Nitheranont, Thitinard; Watanabe, Akira; Asada, Yasuhiko; Khanongnuch, Chartchai; Lumyong, Saisamorn

    2014-01-01

    Laccase from Trametes polyzona WR710-1 was produced under solid-state fermentation using the peel from the Tangerine orange (Citrus reticulata Blanco) as substrate, and purified to homogeneity. This laccase was found to be a monomeric protein with a molecular mass of about 71 kDa estimated by SDS-PAGE. The optimum pH was 2.0 for ABTS, 4.0 for L-DOPA, guaiacol, and catechol, and 5.0 for 2,6-DMP. The K(m) value of the enzyme for the substrate ABTS was 0.15 mM, its corresponding V(max) value was 1.84 mM min(-1), and the k(cat)/K(m) value was about 3960 s(-1)  mM(-1). The enzyme activity was stable between pH 6.0 and 8.0, at temperatures of up to 40 °C. The laccase was inhibited by more than 50% in the presence of 20 mM NaCl, by 95% at 5 mM of Fe(2+), and it was completely inhibited by 0.1 mM NaN(3). The N-terminal amino acid sequence of this laccase is AVTPVADLQISNAGISPDTF, which is highly similar to those of laccases from other white-rot basidiomycetes. PMID:23775771

  15. Performance of an alkalophilic and halotolerant laccase from gamma-proteobacterium JB in the presence of industrial pollutants.

    Science.gov (United States)

    Singh, Gursharan; Sharma, Prince; Capalash, Neena

    2009-08-01

    An alkalophilic and halotolerant laccase from gamma-proteobacterium JB catalyzed in high concentrations of organic solvents and various salts. The enzyme retained 80-100% activity in 10% concentration of dimethylsulfoxide (DMSO), ethanol, acetone or methanol; 100, 85 and 50% activity in 20 mM MgCl(2), 5.0 mM MnCl(2) and 0.1 mM CuCl(2); 140, 120 and 110% activity in 5.0 mM MnSO(4), 10 mM MgSO(4) and 1mM CaSO(4), respectively. Sodium halides inhibited the enzyme in the order: F(-)> Br(-)> I(-)> Cl(-). In 0.5 M NaCl, pH 6.0, laccase was approximately 60% active. Decolorization of indigo carmine by laccase at pH 9.0 was not inhibited even in the presence of 0.5 M NaCl. Release of chromophoric, reducing and hydrophobic compounds during biobleaching of straw rich-soda pulp by laccase was not inhibited when the enzyme was applied in the presence of 1 M NaCl at pH 8.0. Laccase retained 50% residual activity even when incubated with 5% calcium hypochlorite for 30 min.

  16. Fungal laccase, cellobiose dehydrogenase, and chemical mediators: combined actions for the decolorization of different classes of textile dyes.

    Science.gov (United States)

    Ciullini, Ilaria; Tilli, Silvia; Scozzafava, Andrea; Briganti, Fabrizio

    2008-10-01

    Dyes belonging to the mono-, di-, tri- and poly-azo as well as anthraquinonic and mono-azo Cr-complexed classes, chosen among the most utilized in textile applications, were employed for a comparative enzymatic decolorization study using the extracellular crude culture extracts from the white rot fungus Funalia (Trametes) trogii grown on different culture media and activators able to trigger different levels of expression of oxidizing enzymes: laccase and cellobiose dehydrogenase. Laccase containing extracts were capable to decolorize some dyes from all the different classes analyzed, whereas the recalcitrant dyes were subjected to the combined action of laccase and the chemical mediator HBT, or laccase plus cellobiose dehydrogenase. Correlations among the decolorization degree of the various dyes and their electronic and structural diversities were rationalized and discussed. The utilization of cellobiose dehydrogenase in support to the activity of laccase for the decolorization of azo textile dyes resulted in substantial increases in decolorization for all the refractory dyes proving to be a valid alternative to more expensive and less environmentally friendly chemical treatments of textile dyes wastes.

  17. Long term storage of Pleurotus ostreatus and Trametes versicolor isolates using different cryopreservation techniques and its impact on laccase activity.

    Science.gov (United States)

    Eichlerová, Ivana; Homolka, Ladislav; Tomšovský, Michal; Lisá, Ludmila

    2015-12-01

    The strain Pleurotus ostreatus Florida f6, its 45 basidiospore-derived isolates (both monokaryons and dikaryons prepared in our laboratory), Trametes versicolor strain CCBAS 614 and 22 other T. versicolor isolates obtained from the sporocarps collected in distant localities were successfully preserved for 12 y using perlite and straw cryopreservation protocols. All tested isolates survived a 12-year storage in liquid nitrogen (LN) and their laccase production and Poly B411 decolorization capacity was preserved. Also mycelium extension rate and the types of colony appearance of individual isolates remained unchanged. Different cryopreservation techniques were also tested for the short time (24 h) and the long time (6 m) storage of the culture liquid with extracellular laccase produced by T. versicolor strain CCBAS 614. The results showed that 10 % glycerol was the most suitable cryopreservant. The absence of the cryopreservant did not cause high loss of laccase activity in the samples; the presence of DMSO (5 or 10 %) in LN-stored samples caused mostly a decrease of laccase activity. For the preservation of laccase activity in the liquid culture the storage in the freezer at -80 °C is more convenient than the storage in liquid nitrogen.

  18. STUDIES ON XYLANASE AND LACCASE ENZYMATIC PREBLEACHING TO REDUCE CHLORINE-BASED CHEMICALS DURING CEH AND ECF BLEACHING

    Directory of Open Access Journals (Sweden)

    Vasanta V. Thakur,

    2012-02-01

    Full Text Available The biobleaching efficiency of xylanase and laccase enzymes was studied on kraft pulps from wood and nonwood based raw materials employed in the Indian paper industry. Treatment of these pulps with xylanase enzyme could result in improved properties, showing 2.0% ISO gain in pulp brightness and/or reducing the demand of chlorine-based bleach chemicals by up to 15% with simultaneous reduction of 20 to 25% in AOX generation in bleach effluents. Further, mill-scale trial results revealed that enzymatic prebleaching can be successfully employed with xylanases to reach the same bleach boosting efficacy. Laccase bleaching was also studied on hardwood pulp at a pH around 8.0, where most of the pulp mills in India are operating, in contrast to earlier studies on laccase enzyme bleaching, which were conducted at acidic pHs, i.e. 4.0 to 5.0. In case of laccase bleaching, interesting results were found wherein a bleach-boosting effect was observed even at pH 8.0. Further studies carried out with HOBT as mediator in comparison to the commonly used and expensive ABTS laccase mediator system (LMS resulted in improvement of the bleaching efficiency with reduction in demand of chlorine dioxide by more than 35%. Potential for further reduction was indicated by the brightness gain, when compared with a control using the DE(pD bleach sequence.

  19. Peanut protein structure, polyphenol content and immune response to peanut proteins in vivo are modulated by laccase.

    Science.gov (United States)

    Mihajlovic, L; Radosavljevic, J; Nordlund, E; Krstic, M; Bohn, T; Smit, J; Buchert, J; Cirkovic Velickovic, T

    2016-05-18

    Food texture can be improved by enzyme-mediated covalent cross-linking of different food components, such as proteins and carbohydrates. Cross-linking changes the biological and immunological properties of proteins and may change the sensitizing potential of food allergens. In this study we applied a microbial polyphenol oxidase, laccase, to cross-link peanut proteins. The size and morphology of the obtained cross-linked proteins were analyzed by electrophoresis and electron microscopy. Structural changes in proteins were analyzed by CD spectroscopy and by using specific antibodies to major peanut allergens. The bioavailability of peanut proteins was analyzed using a Caco-2 epithelial cell model. The in vivo sensitizing potential of laccase-treated peanut proteins was analyzed using a mouse model of food allergy. Finally, peanut polyphenols were analyzed by UHPLC-MS/MS, before and after the enzymatic reaction with laccase. Laccase treatment of peanut proteins yielded a covalently cross-linked material, with the modified tertiary structure of peanut proteins, improved bioavailability of Ara h 2 (by 70 fold, p isorhamnetin derivatives and procyanidin dimer B-type in detectable amounts. Treatment of complex food extracts rich in polyphenols with laccase results in both protein cross-linking and modification of polyphenol compounds. These extensively cross-linked proteins have unchanged potency to induce allergic sensitization in vivo, but certain immunomodulatory changes were observed. PMID:27138276

  20. Simultaneous production of laccase and decolouration of the diazo dye Reactive Black 5 in a fixed-bed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Enayatzamir, Kheirghadam [Department of Chemical Engineering, Rovira i Virgili University, Av. Paisos Catalans 26, 43007 Tarragona (Spain); Department of Soil Science Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Alikhani, Hossein A. [Department of Soil Science Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Rodriguez Couto, Susana [Department of Chemical Engineering, Rovira i Virgili University, Av. Paisos Catalans 26, 43007 Tarragona (Spain)], E-mail: susana.rodriguez@urv.cat

    2009-05-15

    In this paper the production of laccase and the decolouration of the recalcitrant diazo dye Reactive Black 5 (RB5) by the white-rot fungus Trametes pubescens immobilised on stainless steel sponges in a fixed-bed reactor were studied. Laccase production was increased by 10-fold in the presence of RB5 and reached a maximum value of 1025 U/l. Enhanced laccase production in the presence of RB5 in this fungus is an added advantage during biodegradation of RB5-containing effluents. The decolouration of RB5 was due to two processes: dye adsorption onto the fungal mycelium and dye degradation by the laccase enzymes produced by the fungus. RB5 decolouration was performed during four successive batches obtaining high decolouration percentages (74%, 43% and 52% in 24 h for the first, third and four batch, respectively) without addition of redox mediators. Also, the in vitro decolouration of RB5 by the concentrated culture extract, containing mainly laccase, produced in the above bioreactor was studied. The decolouration percentages obtained were considerably lower (around 20% in 24 h) than that attained with the whole culture.

  1. Effect of metal ions and redox mediators on decolorization of synthetic dyes by crude laccase from a novel white rot fungus Peniophora sp. (NFCCI-2131).

    Science.gov (United States)

    Shankar, Shiv; Shikha; Nill, Shikha

    2015-01-01

    The effect of different metal ions and two redox mediators on laccase activity and laccase-catalyzed decolorization of five synthetic dyes was investigated in vitro using crude laccase from a novel white rot fungus Peniophora sp. (NFCCI-2131). The fungus effectively decolorized crystal violet and brilliant green on malt extract agar medium. Laccase activity was enhanced by metal ions such as Cd(2+), Mn(2+), Ni(2+), Co(2+), Na(+) Ca(2+), and Cu(2+). Among the different dyes tested, highest decolorization of crystal violet (96.30 %) was obtained in the presence of 1 mM ABTS followed by 86.01 % by HBT. The results conspicuously indicated that laccase from Peniophora sp. has the potential for color removal from textile dye effluent even in the presence of toxic metal ions.

  2. Selective natural induction of laccases in Pleurotus sajor-caju, suitable for application at a biofuel cell cathode at neutral pH.

    Science.gov (United States)

    Fokina, Oleksandra; Eipper, Jens; Kerzenmacher, Sven; Fischer, Reinhard

    2016-10-01

    Laccases are multicopper oxidoreductases with broad substrate specificity and are applied in biofuel cells at the cathode to improve its oxygen reduction performance. However, the production of laccases by e.g. fungi is often accompanied by the need of synthetic growth supplements for increased enzyme production. In this study we present a strategy for the white-rot fungus Pleurotus sajor-caju for natural laccase activity induction using lignocellulose substrates and culture supernatant of Aspergillus nidulans. P. sajor-caju laccases were secreted into the supernatant, which was directly used at a carbon-nanotube buckypaper cathode in a biofuel cell. Maximal current densities of -148±3μAcm(-2) and -102±9μAcm(-2) at 400mV were achieved at pH 5 and 7, respectively. Variations in cathode performance were observed with culture supernatants produced under different conditions due to the induction of specific laccases. PMID:27393835

  3. NCBI nr-aa BLAST: CBRC-TGUT-17-0007 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TGUT-17-0007 ref|YP_078884.1| cytochrome caa3 oxidase (subunit I) [Bacillus lichen...iformis ATCC 14580] ref|YP_091296.1| CtaD [Bacillus licheniformis ATCC 14580] gb|AAU23246.1| cytochrome ...caa3 oxidase (subunit I) [Bacillus licheniformis ATCC 14580] gb|AAU40603.1| CtaD [Bacillus licheniformis DSM 13] YP_078884.1 0.12 29% ...

  4. NCBI nr-aa BLAST: CBRC-AGAM-02-0116 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-AGAM-02-0116 ref|YP_081361.1| gluconate permease [Bacillus licheniformis ATCC ...14580] ref|YP_093794.1| GntP [Bacillus licheniformis ATCC 14580] gb|AAU25723.1| gluconate permease [Bacillus lichen...iformis ATCC 14580] gb|AAU43101.1| GntP [Bacillus licheniformis DSM 13] YP_081361.1 1.8 41% ...

  5. Separation of phenolic acids from monosaccharides by low-pressure nanofiltration integrated with laccase pre-treatments

    DEFF Research Database (Denmark)

    Luo, Jianquan; Zeuner, Birgitte; Morthensen, Sofie Thage;

    2015-01-01

    (e.g. dimers and trimers) were mainly responsible for the adsorption fouling. Free laccase treatment was preferred since it was prone to produce large polymeric products while the biocatalytic membrane with immobilized laccase was not suitable as it generated smaller polymers by in-situ product...... monosaccharides (xylose, arabinose, glucose). Four commercial NF membranes (NF270, NP030, NTR7450 and NP010) were evaluated at different pH values and with various laccase pre-treatments (for polymerization of phenolic acids). The results showed that with increasing pH, the retentions of phenolic acids by NF...... removal. Furthermore, the NF membranes with more charge and higher hydrophilicity were more resistant to the irreversible fouling caused by hydrophobic adsorption of phenolic acids and their polymers. This work not only provides fundamental data for removal of phenolic acids from lignocellulosic...

  6. Laccase gene expression as a possible key adaptation for herbivorous niche expansion in the attine fungus-growing ants

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    is differentially expressed in the modified hyphal tips (gongylidia) that the fungal symbiont produces. We can also show that this laccase enzyme passes through the ant gut to be expressed in the fecal droplets that the ants mix with their chewed-up fresh leaf forage, providing strong indications for an adaptive......Fungus garden enzyme activity is crucial for sustaining societies of attine ants. The evolutionary diversification of this clade has likely been influenced by enzymatic specialization in connection to changes in foraging niche, particularly when the ancestral leaf-cutting ants shifted from a diet...... generalist functional herbivores. Laccases are polyphenol oxidase enzymes (PPOs) that are best known for their ability to degrade lignin in saprophytic and wood-pathogenic fungi. We found that laccase activity was primarily expressed in newly constructed garden sections where secondary leaf compounds...

  7. Identification of a laccase from Ganoderma lucidum CBS 229.93 having potential for enhancing cellulase catalyzed lignocellulose degradation

    DEFF Research Database (Denmark)

    Sitarz, Anna Katarzyna; Mikkelsen, Jørn Dalgaard; Højrup, Peter;

    2013-01-01

    Based on a differential pre-screening of 44 white-rot fungi on a lignocellulose-supplemented minimal medium, four basidiomycetes were selected for further study: Ganoderma lucidum, Polyporus brumalis, Polyporus ciliatus and Trametes versicolor. Only G. lucidum was able to grow vividly on malt...... extract or minimal media supplemented with alkali lignin. When grown on malt extract or minimal medium supplemented with lignocellulose (sugar cane bagasse), the crude G. lucidum protein extract exhibited high laccase activity, ∼3U/mL toward syringaldazine. This activity was 13–17 fold higher than...... the corresponding activities of the crude protein extracts of P. brumalis, P. ciliatus and T. versicolor. Native PAGE electrophoresis of the crude G. lucidum extract confirmed the presence of an active laccase. The G. lucidum laccase had a molecular weight of ∼62.5kDa, and a Km value of 0.107mM (determined on ABTS...

  8. Enhanced laccase production in white-rot fungus Rigidoporus lignosus by the addition of selected phenolic and aromatic compounds.

    Science.gov (United States)

    Cambria, Maria Teresa; Ragusa, Santa; Calabrese, Vittorio; Cambria, Antonio

    2011-02-01

    The white rot fungus Rigidoporus lignosus produces substantial amounts of extracellular laccase, a multicopper blue oxidase which is capable of oxidizing a wide range of organic substrates. Laccase production can be greatly enhanced in liquid cultures supplemented with various aromatic and phenolic compounds. The maximum enzyme activity was reached at the 21st or 24th day of fungal cultivation after the addition of inducers. The zymograms of extracellular fluid of culture preparation in the presence of inducers, at maximum activity day, revealed two bands with enzymatic activity, called Lac1 and Lac2, having different intensities. Lac2 band shows the higher intensity which changed with the different inducers. Laccase induction can be also obtained by adding to the culture medium olive mill wastewaters, which shows a high content of phenolic compounds.

  9. Effect of Natural Phenolic and Lignin rich Inducers on the Production of Laccases by Streptomyces griseus MTCC 4734

    Directory of Open Access Journals (Sweden)

    M.V.Sampoorna Laxmi

    2010-06-01

    Full Text Available The production of laccase by Streptomyces griseus grown in submerged cultures in the presence of different natural phenolic and lignin rich sources was studied in comparison to aromatic inducers which are traditionally used. Among the different inducers studied, Spirulina was shown to enhance the laccase production to a greater extent more than the aromatic inducers (190 Ug-1 in the presence of Spirulina and (132 Ug-1 in the presence of Tween 80. Bajra and grapes also showed a significant rise in laccase activities. The optimum pH and temperature for the partially purified enzyme from this strain were found to be 4.5 and 30oC. The enzyme obtained was stable at highpH and temperatures.

  10. Production of laccase by Coriolus versicolor and its application in decolorization of dyestuffs: (Ⅱ) Decolorization of dyes by laccase containing fermentation broth with or without self-immobilized mycelia

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The capability of decolorization for commercial dyes byCoriolus versicolor fermentation broth containing laccase with orwithout immobilized mycelium was evaluated. With cell-freefermentation broth containing laccase, high decolorization ratiowas achieved for acid orange 7, but not for the other dyesconcerned. The immobilized mycelium was proved to be more efficientthan the cell-free system. All the four dyestuffs studied werefound being decolourized with certain extent by immobilizedmycelium. The repeated-batch decolorization was carried out withsatisfactory results. The experimental data showed that thecontinuous decolorization of wastewater from a printing and dyeingindustry was possible by using the self-immobilized C. Versicolor.

  11. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    Directory of Open Access Journals (Sweden)

    Annika Gillis

    2014-07-01

    Full Text Available Many bacteriophages (phages have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here.

  12. Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: past, present and future.

    Science.gov (United States)

    Gillis, Annika; Mahillon, Jacques

    2014-07-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here. PMID:25010767

  13. Enzymatic removal of estrogenic activity of nonylphenol and octylphenol aqueous solutions by immobilized laccase from Trametes versicolor

    Energy Technology Data Exchange (ETDEWEB)

    Catapane, Maria [Institute of Genetics and Biophysics “ABT”, Via P. Castellino, 111, 80131 Naples (Italy); National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d’Oro, 305, 00136 Rome (Italy); Nicolucci, Carla; Menale, Ciro; Mita, Luigi [National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d’Oro, 305, 00136 Rome (Italy); Department of Experimental Medicine, Second University of Naples, Via S. M. di Costantinopoli, 16, 80138 Naples (Italy); Rossi, Sergio [Institute of Genetics and Biophysics “ABT”, Via P. Castellino, 111, 80131 Naples (Italy); Mita, Damiano G., E-mail: mita@igb.cnr.it [Institute of Genetics and Biophysics “ABT”, Via P. Castellino, 111, 80131 Naples (Italy); National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d’Oro, 305, 00136 Rome (Italy); Department of Experimental Medicine, Second University of Naples, Via S. M. di Costantinopoli, 16, 80138 Naples (Italy); Diano, Nadia [Institute of Genetics and Biophysics “ABT”, Via P. Castellino, 111, 80131 Naples (Italy); National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d’Oro, 305, 00136 Rome (Italy); Department of Experimental Medicine, Second University of Naples, Via S. M. di Costantinopoli, 16, 80138 Naples (Italy)

    2013-03-15

    Highlights: ► Endocrine disruptors cause adverse effects in living organisms. ► Nonylphenol and Octylphenol are alkylphenols recognized as endocrine disruptors. ► It is necessary to remove or reduce their presence in the environment. ► Waters polluted by these pollutants have been bioremediated by immobilized laccase from Trametes versicolor. ► Laccase treated solutions were found to have lost any estrogenic activity. -- Abstract: A fluidized bed reactor, filled with laccase-based beads, has been employed to bioremediate aqueous solutions polluted by endocrine disruptors belonging to the alkylphenols (APs) class. In particular Octylphenol and Nonylphenol have been studied. The catalytic activity of free and immobilized laccase from Trametes versicolor has been characterized as a function of pH, temperature and substrate concentration in the reaction medium. In view of practical applications for each substrate concentration the removal efficiency (RE), the time to halve the initial concentration (τ{sub 50}), and the t{sub c=0}, i.e. the time to reach complete pollutant removal, have been calculated. The immobilized laccase exhibited a lower affinity for octylphenol (K{sub m} = 1.11 mM) than for Nonylphenol (K{sub m} = 0.72 mM), but all the other parameters of applicative interest resulted more significant for octylphenol. For example, the times to reach the complete removal of octylphenol compared to those for nonylphenol at the same concentration is shorter of about 15% (at low concentrations) up to 40% (at high concentrations). The study of cell proliferation with MPP89 cells, a human mesothelioma cell line, and the assay with the YES test indicated the loss of estrogenic activity of the APs solutions after laccase treatment.

  14. Development of biosensors containing laccase and imidazolium bis(trifluoromethylsulfonyl)imide ionic liquid for the determination of rutin

    Energy Technology Data Exchange (ETDEWEB)

    Franzoi, Ana Cristina [Departamento de Quimica, Laboratorio de Biossensores, Universidade Federal de Santa Catarina, 88040-970 Florianopolis, SC (Brazil); Migowski, Pedro; Dupont, Jairton [Departamento de Quimica Organica, Laboratorio de Catalise Molecular, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS (Brazil); Cruz Vieira, Iolanda, E-mail: iolanda@qmc.ufsc.br [Departamento de Quimica, Laboratorio de Biossensores, Universidade Federal de Santa Catarina, 88040-970 Florianopolis, SC (Brazil)

    2009-04-20

    Biosensors based on hydrophobic ionic liquids (ILs) derived from the bis(trifluoromethylsulfonyl)imide [(CF{sub 3}SO{sub 2}){sub 2}N{sup -} = Tf{sub 2}N{sup -}] anion associated with three different imidazolium cations: 1-butyl-3-methylimidazolium (BMI.Tf{sub 2}N), 1-decyl-3-methylimidazolium (DMI.Tf{sub 2}N) and 1-tetradecyl-3-methylimidazolium (TDMI.Tf{sub 2}N), along with laccase from Aspergillus oryzae, were constructed and optimized for determination of rutin. The laccase catalyzes the oxidation of rutin to the corresponding o-quinone, which is electrochemically reduced back to rutin. The best performance was obtained with 50:20:15:15% (w/w/w/w) as the graphite powder:laccase:Nujol:ILs composition in 0.1 mol L{sup -1} acetate buffer solution (pH 5.0). The parameters for the square-wave voltammetry experiments and scanning electron microscopy images of the biosensors were studied. Under the selected conditions, the cathodic peak current increased linearly in the rutin concentration ranges of 4.77 x 10{sup -6} to 4.62 x 10{sup -5} mol L{sup -1}, 5.84 x 10{sup -6} to 5.36 x 10{sup -5} mol L{sup -1} and 5.84 x 10{sup -6} to 5.36 x 10{sup -5} mol L{sup -1} using the (I) BMI.Tf{sub 2}N-laccase, (II) DMI.Tf{sub 2}N-laccase and (III) TDMI.Tf{sub 2}N-laccase, respectively. The rutin contents of commercial samples of pharmaceuticals were successfully determined by the biosensors and the results compared well with those obtained using the official method. The studies on rutin recovery from these samples gave values of 96.9-104.6%.

  15. Laccase-initiated cross-linking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor.

    Science.gov (United States)

    Elegir, G; Bussini, D; Antonsson, S; Lindström, M E; Zoia, L

    2007-12-01

    In this work, the effect of Trametes pubescens laccase (TpL) used in combination with a low-molecular-weight ultra-filtered lignin (UFL) to improve mechanical properties of kraft liner pulp and chemi-thermo-mechanical pulp was studied. UFL was isolated by ultra-filtration from the kraft cooking black liquor obtained from softwood pulping. This by-product from the pulp industry contains an oligomeric lignin with almost twice the amount of free phenolic moieties than residual kraft pulp lignin. The reactivity of TpL on UFL and kraft pulp was studied by nuclear magnetic resonance spectroscopy and size exclusion chromatography. Laccase was shown to polymerise UFL and residual kraft pulp lignin in the fibres, seen by the increase in their average molecular weight and in the case of UFL as a decrease in the amount of phenolic hydroxyls. The laccase initiated cross-linking of lignin, mediated by UFL, which gives rise to more than a twofold increase in wet strength of kraft liner pulp handsheets without loosing other critical mechanical properties. Hence, this could be an interesting path to decrease mechano-sorptive creep that has been reported to lessen in extent as wet strength is given to papers. The laccase/2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) mediator system showed a greater increase in wet tensile strength of the resulting pulp sheets than the laccase/UFL system. However, other mechanical properties such as dry tensile strength, compression strength and Scott Bond internal strength were negatively affected by the laccase/ABTS system. PMID:17955195

  16. Oxygen cathode based on a layer-by-layer self-assembled laccase and osmium redox mediator

    Energy Technology Data Exchange (ETDEWEB)

    Szamocki, R.; Flexer, V. [INQUIMAE-DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Levin, L.; Forchiasin, F. [Micologia Experimental, Departamento de Biodiversidad y Biologia Experimental. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Calvo, E.J. [INQUIMAE-DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)], E-mail: calvo@qi.fcen.uba.ar

    2009-02-28

    Trametes trogii laccase has been studied as biocatalyst for the oxygen electro-reduction in three different systems: (i) soluble laccase was studied in solution; (ii) an enzyme monolayer was tethered to a gold surface by dithiobis N-succinimidyl propionate (DTSP), with a soluble osmium pyridine-bipyridine redox mediator in both cases. The third case (iii) consisted in the sequential immobilization of laccase and the osmium complex derivatized poly(allylamine) self-assembled layer-by-layer (LbL) on mercaptopropane sulfonate modified gold to produce an all integrated and wired enzymatic oxygen cathode. The polycation was the same osmium complex covalently bound to poly-(ally-lamine) backbone (PAH-Os), the polyanion was the enzyme adsorbed from a solution of a suitable pH so that the protein carries a net negative charge. The adsorption of laccase was studied by monitoring the mass uptake with a quartz crystal microbalance and the oxygen reduction electrocatalysis was studied by linear scan voltammetry. While for the three cases, oxygen electrocatalysis mediated by the osmium complex was observed, for tethered laccase direct electron transfer in the absence of redox mediator was also apparent but no electrocatalysis for the oxygen reduction was recorded in the absence of mediator in solution. For the fully integrated LbL self-assembled laccase and redox mediator (case iii) a catalytic reduction of oxygen could be recorded at different oxygen partial pressures and different electrolyte pH. The tolerance of the reaction to methanol and chloride was also investigated.

  17. Encapsulated Laccases for the Room-Temperature Oxidation of Aromatics: Towards Synthetic Low-Molecular-Weight Lignins.

    Science.gov (United States)

    Pistone, Lucia; Ottolina, Gianluca; De, Sudipta; Romero, Antonio A; Martins, Lígia O; Luque, Rafael

    2016-04-01

    A new approach for the encapsulation of laccases with enhanced activity and stability by biomimetic silica mineralisation is reported. A range of lignin model compounds, which includes syringol, syringyl acid, 4-vinylphenol, gallic acid, vanillic acid and guaiacol, was oxidised to lignin-type polymers by the silica-immobilised laccase systems at room temperature. The oxidation rate of the immobilised systems was lower than that of the free enzyme counterparts, but interesting products were observed with the new bio-catalytic materials, which showed reusability and good stability.

  18. Effect of the L499M mutation of the ascomycetous Botrytis aclada laccase on redox potential and catalytic properties

    OpenAIRE

    Osipov, Evgeny; Polyakov, Konstantin; Kittl, Roman; Shleev, Sergey; Dorovatovsky, Pavel; Tikhonova, Tamara; Hann, Stephan; Ludwig, Roland; Popov, Vladimir

    2014-01-01

    Laccases are members of a large family of multicopper oxidases that catalyze the oxidation of a wide range of organic and inorganic substrates accompanied by the reduction of dioxygen to water. These enzymes contain four Cu atoms per molecule organized into three sites: T1, T2 and T3. In all laccases, the T1 copper ion is coordinated by two histidines and one cysteine in the equatorial plane and is covered by the side chains of hydrophobic residues in the axial positions. The redox potential ...

  19. Discrimination of press fit candidate microorganism (Enterobacter cloacae, Bacillus licheniformis) by restriction fragment length polymorphic analysis of the 16SrRNA gene; 16S rRNA idenshi no sengen danpen kchotakei kaiseki niyoru atsunyukoho biseibutsu (Enterobacter cloacae, Bacillus licheni-formis) no shikibetsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Kazuhiro; Tanaka, Shinji; Otsuka, Makiko; Ichimura, Naoya; Yonebayashi, Eiji; Enomoto, Heiji

    1999-09-01

    In MeOH viewed as one of the improvement method for recovery of the petroleum with hope, the development of discrimination technique of press fit candidate microorganism and oil reservoir resident microorganism which exists in the test object oil reservoir was tried in order to monitor the survival situation of the microorganism which inserted in the oil reservoir under pressure. 16S rRNA amplified by the PCR using the universal primer The microorganism that it cut off the gene at restriction enzyme HhaI,MspI, AluI and inhabits oil reservoir water and oil reservoir rock in the object oil reservoir by ( necessarily TaqI ) and restriction fragment length polymorphic analysis was classified. As the result, the effectiveness of the this PCR-RFLP method was indicated the microorganism which showed RFLP pattern which is identical with the press fit candidate microorganism in the oil reservoir resident microorganism for the discrimination of the press fit candidate microorganism without existing. And, it was indicated that the this PCR-RFLP method was effective for the investigation of oil reservoir resident microbial community which can positively utilize source of nutrition inserted to oil reservoir with the press fit candidate microorganism under pressure, and it was possible to grasp oil reservoir resident microorganism to be especially considered in MEOR. (translated by NEDO)

  20. NCBI nr-aa BLAST: CBRC-DDIS-03-0023 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DDIS-03-0023 ref|YP_080913.1| Sugar transporter YwtG [Bacillus licheniformis A...TCC 14580] ref|YP_093341.1| YwtG [Bacillus licheniformis ATCC 14580] gb|AAU42648.1| YwtG [Bacillus licheniformis DSM 13] YP_080913.1 3e-51 35% ...