WorldWideScience

Sample records for bacillus branched chain

  1. Branched-chain fatty acid biosynthesis in a branched-chain amino acid aminotransferase mutant of Staphylococcus carnosus

    DEFF Research Database (Denmark)

    Beck, Hans Christian

    2005-01-01

    Fatty acid biosynthesis by a mutant strain of Staphylococcus carnosus deficient in branched-chain amino acid aminotransferase (IlvE) activity was analysed. This mutant was unable to produce the appropriate branched-chain alpha-ketoacid precursors for branched-chain fatty acid biosynthesis from...... in rich medium and growth in defined medium supplemented with 2-methylpropanoic acid lead to extensive alteration of the fatty acid composition in the cell membrane. In rich medium, a change from 51.7% to 17.1% anteiso-C15:0, and from 3.6% to 33.9% iso-C14:0 fatty acids as compared to the wild-type strain...... for 2-methylpropanoic acid production, revealing that the IlvE protein plays an important, but not essential role in the biosynthesis of branched-chain fatty acids and secondary metabolites in S. carnosus....

  2. Branched chain amino acids maintain the molecular weight of poly(γ-glutamic acid) of Bacillus licheniformis ATCC 9945 during the fermentation.

    Science.gov (United States)

    Mitsunaga, Hitoshi; Meissner, Lena; Büchs, Jochen; Fukusaki, Eiichiro

    2016-10-01

    Poly(γ-glutamic acid) mainly produced by Bacillus spp. is an industrially important compound due to several useful features. Among them, molecular weight is an important characteristic affecting on the physical properties such as viscosities and negative charge densities. However, it is difficult to control the molecular size of PGA since it decreases during fermentation. Previous study reported that PGA produced in the media containing different carbon sources such as glucose and glycerol showed differences in molecular weight. Therefore in this study, the effect of carbon source on the PGA molecular weight was examined; with the aim of developing a strategy to maintain the high molecular weight of PGA during fermentation. Our result showed that the weight average molecular weight (Mw) of PGA of Bacillus licheniformis ATCC 9945 cultivated in the media containing PTS-sugars were higher than the medium containing glycerol (non-PTS). The result of metabolome analysis indicated the possibility of CodY (a global regulator protein) activation in the cells cultivated in the media containing PTS-sugars. To mimic this effect, branched-chain amino acids (BCAAs), which are activators of CodY, were added to a medium containing glycerol. As the result, the Mw of PGA in the BCAAs-supplemented media were maintained and high during the early production phase compared to the non BCAAs-supplemented medium. These results indicate that BCAAs can repress the PGA molecular weight reduction during fermentation in B. licheniformis ATCC 9945. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Branched-chain amino acids for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Koretz, R L; Kjaergard, L L

    2003-01-01

    Hepatic encephalopathy may be caused by a decreased plasma ratio of branched-chain amino acids (BCAA) to aromatic amino acids. Treatment with BCAA may therefore have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be caused by a decreased plasma ratio of branched-chain amino acids (BCAA) to aromatic amino acids. Treatment with BCAA may therefore have a beneficial effect on patients with hepatic encephalopathy....

  4. Simple model of inhibition of chain-branching combustion processes

    Science.gov (United States)

    Babushok, Valeri I.; Gubernov, Vladimir V.; Minaev, Sergei S.; Miroshnichenko, Taisia P.

    2017-11-01

    A simple kinetic model has been suggested to describe the inhibition and extinction of flame propagation in reaction systems with chain-branching reactions typical for hydrocarbon systems. The model is based on the generalised model of the combustion process with chain-branching reaction combined with the one-stage reaction describing the thermal mode of flame propagation with the addition of inhibition reaction steps. Inhibitor addition suppresses the radical overshoot in flame and leads to the change of reaction mode from the chain-branching reaction to a thermal mode of flame propagation. With the increase of inhibitor the transition of chain-branching mode of reaction to the reaction with straight-chains (non-branching chain reaction) is observed. The inhibition part of the model includes a block of three reactions to describe the influence of the inhibitor. The heat losses are incorporated into the model via Newton cooling. The flame extinction is the result of the decreased heat release of inhibited reaction processes and the suppression of radical overshoot with the further decrease of the reaction rate due to the temperature decrease and mixture dilution. A comparison of the results of modelling laminar premixed methane/air flames inhibited by potassium bicarbonate (gas phase model, detailed kinetic model) with the results obtained using the suggested simple model is presented. The calculations with the detailed kinetic model demonstrate the following modes of combustion process: (1) flame propagation with chain-branching reaction (with radical overshoot, inhibitor addition decreases the radical overshoot down to the equilibrium level); (2) saturation of chemical influence of inhibitor, and (3) transition to thermal mode of flame propagation (non-branching chain mode of reaction). The suggested simple kinetic model qualitatively reproduces the modes of flame propagation with the addition of the inhibitor observed using detailed kinetic models.

  5. Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Hansen, A M; Lauritsen, F R

    2004-01-01

    Staphylococcus xylosus is an important starter culture in the production of flavours from the branched-chain amino acids leucine, valine and isoleucine in fermented meat products. The sensorially most important flavour compounds are the branched-chain aldehydes and acids derived from the correspo......Staphylococcus xylosus is an important starter culture in the production of flavours from the branched-chain amino acids leucine, valine and isoleucine in fermented meat products. The sensorially most important flavour compounds are the branched-chain aldehydes and acids derived from...

  6. Additional chain-branching pathways in the low-temperature oxidation of branched alkanes

    KAUST Repository

    Wang, Zhandong

    2015-12-31

    Chain-branching reactions represent a general motif in chemistry, encountered in atmospheric chemistry, combustion, polymerization, and photochemistry; the nature and amount of radicals generated by chain-branching are decisive for the reaction progress, its energy signature, and the time towards its completion. In this study, experimental evidence for two new types of chain-branching reactions is presented, based upon detection of highly oxidized multifunctional molecules (HOM) formed during the gas-phase low-temperature oxidation of a branched alkane under conditions relevant to combustion. The oxidation of 2,5-dimethylhexane (DMH) in a jet-stirred reactor (JSR) was studied using synchrotron vacuum ultra-violet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS). Specifically, species with four and five oxygen atoms were probed, having molecular formulas of C8H14O4 (e.g., diketo-hydroperoxide/keto-hydroperoxy cyclic ether) and C8H16O5 (e.g., keto-dihydroperoxide/dihydroperoxy cyclic ether), respectively. The formation of C8H16O5 species involves alternative isomerization of OOQOOH radicals via intramolecular H-atom migration, followed by third O2 addition, intramolecular isomerization, and OH release; C8H14O4 species are proposed to result from subsequent reactions of C8H16O5 species. The mechanistic pathways involving these species are related to those proposed as a source of low-volatility highly oxygenated species in Earth\\'s troposphere. At the higher temperatures relevant to auto-ignition, they can result in a net increase of hydroxyl radical production, so these are additional radical chain-branching pathways for ignition. The results presented herein extend the conceptual basis of reaction mechanisms used to predict the reaction behavior of ignition, and have implications on atmospheric gas-phase chemistry and the oxidative stability of organic substances. © 2015 The Combustion Institute.

  7. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    Science.gov (United States)

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  8. Characterization of Potential Antimicrobial Targets in Bacillus spp. II. Branched-Chain Aminotransferase and Methionine Regeneration in B. cereus and B. anthracis

    National Research Council Canada - National Science Library

    Berger, B

    2002-01-01

    .... Four putative family III aminotransferases, two with homology to branched-chain amino acid aminotransferases and two with homology to D- amino acid aminotransferases, were cloned from B. cereus...

  9. Properties of Confined Star-Branched and Linear Chains. A Monte Carlo Simulation Study

    International Nuclear Information System (INIS)

    Romiszowski, P.; Sikorski, A.

    2004-01-01

    A model of linear and star-branched polymer chains confined between two parallel and impenetrable surfaces was built. The polymer chains were restricted to a simple cubic lattice. Two macromolecular architectures of the chain: linear and star branched (consisted of f = 3 branches of equal length) were studied. The excluded volume was the only potential introduced into the model (the athermal system). Monte Carlo simulations were carried out using a sampling algorithm based on chain's local changes of conformation. The simulations were carried out at different confinement conditions: from light to high chain's compression. The scaling of chain's size with the chain length was studied and discussed. The influence of the confinement and the macromolecular architecture on the shape of a chain was studied. The differences in the shape of linear and star-branched chains were pointed out. (author)

  10. Strain hardening in startup shear of long-chain branched polymer solutions.

    Science.gov (United States)

    Liu, Gengxin; Cheng, Shiwang; Lee, Hyojoon; Ma, Hongwei; Xu, Hongde; Chang, Taihyun; Quirk, Roderic P; Wang, Shi-Qing

    2013-08-09

    We show for the first time that entangled polymeric liquids containing long-chain branching can exhibit strain hardening upon startup shear. As the significant long-chain branching impedes chain disentanglement, Gaussian coils between entanglements can deform to reach the finite extensibility limit where the intrachain retraction force exceeds the value expected from the usual conformational entropy loss evaluated based on Gaussian chain statistics. The phenomenon is expected to lead to further theoretical understanding.

  11. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jingnan [Massachusetts Institute of Technology, Cambridge, MA (United States). Dept. of Chemistry; Brigham, Christopher J.; Gai, Claudia S. [Massachusetts Institute of Technology, Cambridge, MA (United States). Dept. of Biology; Sinskey, Anthony J. [Massachusetts Institute of Technology, Cambridge, MA (United States). Dept. of Biology; Massachusetts Institute of Technology, Cambridge, MA (United States). Div. of Health Sciences and Technology; Massachusetts Institute of Technology, Cambridge, MA (United States). Engineering Systems Div.

    2012-10-15

    Wild-type Ralstonia eutropha H16 produces polyhydroxybutyrate (PHB) as an intracellular carbon storage material during nutrient stress in the presence of excess carbon. In this study, the excess carbon was redirected in engineered strains from PHB storage to the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can directly substitute for fossil-based fuels and be employed within the current infrastructure. Various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, were employed for the biosynthesis of isobutanol and 3-methyl-1-butanol. Production of these branched-chain alcohols was initiated during nitrogen or phosphorus limitation in the engineered R. eutropha. One mutant strain not only produced over 180 mg/L branched-chain alcohols in flask culture, but also was significantly more tolerant of isobutanol toxicity than wild-type R. eutropha. After the elimination of genes encoding three potential carbon sinks (ilvE, bkdAB, and aceE), the production titer improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol. Semicontinuous flask cultivation was utilized to minimize the toxicity caused by isobutanol while supplying cells with sufficient nutrients. Under this semicontinuous flask cultivation, the R. eutropha mutant grew and produced more than 14 g/L branched-chain alcohols over the duration of 50 days. These results demonstrate that R. eutropha carbon flux can be redirected from PHB to branched-chain alcohols and that engineered R. eutropha can be cultivated over prolonged periods of time for product biosynthesis. (orig.)

  12. Influence of biopolymers on the solubility of branched-chain amino acids and stability of their solutions.

    Science.gov (United States)

    Hong, Chi Rac; Lee, Gyu Whan; Paik, Hyun-Dong; Chang, Pahn-Shick; Choi, Seung Jun

    2018-01-15

    This study confirmed the possibility of biopolymer-type stabilizers to increase the saturation concentration of branched-chain amino acids by preventing their crystallization/precipitation. Although microfluidization increased the initial solubility, it failed to increase the saturation concentration of the branched-chain amino acids. The saturation concentration of the branched-chain amino acids increased from 3.81% to 4.42% and 4.85% after the incorporation of food hydrocolloids and proteins, respectively. However, the branched-chain amino acids:stabilizer ratio did not affect the solubility. In the case of food hydrocolloid-based solutions, crystal formation and growth of branched-chain amino acids occurred during storage, resulting in the precipitation of branched-chain amino acid crystals. However, food proteins effectively increased the stability of the solubilized branched-chain amino acids. The improved solubility and stability of the solubilized branched-chain amino acids could be attributed to interactions between the functional groups (carboxyl, amine, sulfate, aliphatic, aromatic, etc.) of the stabilizer and the branched-chain amino acid molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Physiological covalent regulation of rat liver branched-chain alpha-ketoacid dehydrogenase

    International Nuclear Information System (INIS)

    Harris, R.A.; Powell, S.M.; Paxton, R.; Gillim, S.E.; Nagae, H.

    1985-01-01

    A radiochemical assay was developed for measuring branched-chain alpha-ketoacid dehydrogenase activity of Triton X-100 extracts of freeze-clamped rat liver. The proportion of active (dephosphorylated) enzyme was determined by measuring enzyme activities before and after activation of the complex with a broad-specificity phosphoprotein phosphatase. Hepatic branched-chain alpha-ketoacid dehydrogenase activity in normal male Wistar rats was 97% active but decreased to 33% active after 2 days on low-protein (8%) diet and to 13% active after 4 days on the same diet. Restricting protein intake of lean and obese female Zucker rats also caused inactivation of hepatic branched-chain alpha-ketoacid dehydrogenase complex. Essentially all of the enzyme was in the active state in rats maintained for 14 days on either 30 or 50% protein diets. This was also the case for rats maintained on a commercial chow diet (minimum 23% protein). However, maintaining rats on 20, 8, and 0% protein diets decreased the percentage of the active form of the enzyme to 58, 10, and 7% of the total, respectively. Fasting of chow-fed rats for 48 h had no effect on the activity state of hepatic branched-chain alpha-ketoacid dehydrogenase, i.e., 93% of the enzyme remained in the active state compared to 97% for chow-fed rats. However, hepatic enzyme of rats maintained on 8% protein diet was 10% active before starvation and 83% active after 2 days of starvation. Thus, dietary protein deficiency results in inactivation of hepatic branched-chain alpha-ketoacid dehydrogenase complex, presumably as a consequence of low hepatic levels of branched-chain alpha-ketoacids

  14. [Odd- and branched-chain fatty acids in milk fat--characteristic and health properties].

    Science.gov (United States)

    Adamska, Agata; Rutkowska, Jarosława

    2014-08-22

    This review analyzes the current state of knowledge on odd- and branched-chain fatty acids present in milk fat. Special attention is devoted to the characteristic, synthesis in ruminants, factors affecting their content in milk fat and pro-health properties of these compounds. The group of odd- and branched-chain fatty acids includes mainly saturated fatty acids with one or more methyl branches in the iso or anteiso position. These fatty acids are largely derived from ruminal bacteria and they have been transferred to ruminant tissue (milk and meat). For that reason they have been used as biomarkers of rumen fermentation. Odd- and branched-chain fatty acids are exogenous products for humans, and therefore have specific properties. The results of research from recent decades show that odd- and branched-chain fatty acids have anti-cancer activity. Branched-chain fatty acids may reduce the incidence of necrotizing enterocolitis. Additionally, these compounds have a beneficial effect on proper tissue function and on functioning and development of the infant gut, whereas odd-chain fatty acids are considered as biomarkers of milk fat intake by humans. So far, not all the mechanisms of activity of these compounds are known thoroughly. They should be more carefully studied for application of their biological effects in prevention and treatment.

  15. Effect of short-chain branching on interfacial polymer structure and dynamics under shear flow.

    Science.gov (United States)

    Jeong, Sohdam; Kim, Jun Mo; Cho, Soowon; Baig, Chunggi

    2017-11-22

    We present a detailed analysis on the effect of short-chain branches on the structure and dynamics of interfacial chains using atomistic nonequilibrium molecular dynamics simulations of confined polyethylene melts in a wide range of shear rates. The intrinsically fast random motions of the short branches constantly disturb the overall chain conformation, leading to a more compact and less deformed chain structure of the short-chain branched (SCB) polymer against the imposed flow field in comparison with the corresponding linear polymer. Moreover, such highly mobile short branches along the backbone of the SCB polymer lead to relatively weaker out-of-plane wagging dynamics of interfacial chains, with highly curvy backbone structures in the intermediate flow regime. In conjunction with the contribution of short branches (as opposed to that of the backbone) to the total interfacial friction between the chains and the wall, the SCB polymer shows a nearly constant behavior in the degree of slip (d s ) with respect to shear rate in the weak-to-intermediate flow regimes. On the contrary, in the strong flow regime where irregular chain rotation and tumbling dynamics occur via intensive dynamical collisions between interfacial chains and the wall, an enhancement effect on the chain detachment from the wall, caused by short branches, leads to a steeper increase in d s for the SCB polymer than for the linear polymer. Remarkably, the SCB chains at the interface exhibit two distinct types of rolling mechanisms along the backbone, with a half-dumbbell mesoscopic structure at strong flow fields, in addition to the typical hairpin-like tumbling behavior displayed by the linear chains.

  16. Odd- and branched-chain fatty acids in milk fat – characteristic and health properties

    Directory of Open Access Journals (Sweden)

    Agata Adamska

    2014-08-01

    Full Text Available This review analyzes the current state of knowledge on odd- and branched-chain fatty acids present in milk fat. Special attention is devoted to the characteristic, synthesis in ruminants, factors affecting their content in milk fat and pro-health properties of these compounds. The group of odd- and branched-chain fatty acids includes mainly saturated fatty acids with one or more methyl branches in the iso or anteiso position. These fatty acids are largely derived from ruminal bacteria and they have been transferred to ruminant tissue (milk and meat. For that reason they have been used as biomarkers of rumen fermentation. Odd- and branched-chain fatty acids are exogenous products for humans, and therefore have specific properties. The results of research from recent decades show that odd- and branched-chain fatty acids have anti-cancer activity. Branched-chain fatty acids may reduce the incidence of necrotizing enterocolitis. Additionally, these compounds have a beneficial effect on proper tissue function and on functioning and development of the infant gut, whereas odd-chain fatty acids are considered as biomarkers of milk fat intake by humans. So far, not all the mechanisms of activity of these compounds are known thoroughly. They should be more carefully studied for application of their biological effects in prevention and treatment.

  17. Developmental Defects of Caenorhabditis elegans Lacking Branched-chain α-Ketoacid Dehydrogenase Are Mainly Caused by Monomethyl Branched-chain Fatty Acid Deficiency.

    Science.gov (United States)

    Jia, Fan; Cui, Mingxue; Than, Minh T; Han, Min

    2016-02-05

    Branched-chain α-ketoacid dehydrogenase (BCKDH) catalyzes the critical step in the branched-chain amino acid (BCAA) catabolic pathway and has been the focus of extensive studies. Mutations in the complex disrupt many fundamental metabolic pathways and cause multiple human diseases including maple syrup urine disease (MSUD), autism, and other related neurological disorders. BCKDH may also be required for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs) from BCAAs. The pathology of MSUD has been attributed mainly to BCAA accumulation, but the role of mmBCFA has not been evaluated. Here we show that disrupting BCKDH in Caenorhabditis elegans causes mmBCFA deficiency, in addition to BCAA accumulation. Worms with deficiency in BCKDH function manifest larval arrest and embryonic lethal phenotypes, and mmBCFA supplementation suppressed both without correcting BCAA levels. The majority of developmental defects caused by BCKDH deficiency may thus be attributed to lacking mmBCFAs in worms. Tissue-specific analysis shows that restoration of BCKDH function in multiple tissues can rescue the defects, but is especially effective in neurons. Taken together, we conclude that mmBCFA deficiency is largely responsible for the developmental defects in the worm and conceivably might also be a critical contributor to the pathology of human MSUD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Dissociation of branched-chain alpha-keto acid dehydrogenase kinase (BDK) from branched-chain alpha-keto acid dehydrogenase complex (BCKDC) by BDK inhibitors.

    Science.gov (United States)

    Murakami, Taro; Matsuo, Masayuki; Shimizu, Ayako; Shimomura, Yoshiharu

    2005-02-01

    Branched-chain alpha-keto acid dehydrogenase kinase (BDK) phosphorylates and inactivates the branched-chain alpha-keto acid dehydrogenase complex (BCKDC), which is the rate-limiting enzyme in the branched-chain amino acid catabolism. BDK has been believed to be bound to the BCKDC. However, recent our studies demonstrated that protein-protein interaction between BDK and BCKDC is one of the factors to regulate BDK activity. Furthermore, only the bound form of BDK appears to have its activity. In the present study, we examined effects of BDK inhibitors on the amount of BDK bound to the BCKDC using rat liver extracts. The bound form of BDK in the extracts of liver from low protein diet-fed rats was measured by an immunoprecipitation pull down assay with or without BDK inhibitors. Among the BDK inhibitors. alpha-ketoisocaproate, alpha-chloroisocaproate, and a-ketoisovalerate released the BDK from the complex. Furthermore, the releasing effect of these inhibitors on the BDK appeared to depend on their inhibition constants. On the other hand, clofibric acid and thiamine pyrophosphate had no effect on the protein-protein interaction between two enzymes. These results suggest that the dissociation of the BDK from the BCKDC is one of the mechanisms responsible for the action of some inhibitors to BDK.

  19. Branched-Chain Amino Acids.

    Science.gov (United States)

    Yamamoto, Keisuke; Tsuchisaka, Atsunari; Yukawa, Hideaki

    Branched-chain amino acids (BCAAs), viz., L-isoleucine, L-leucine, and L-valine, are essential amino acids that cannot be synthesized in higher organisms and are important nutrition for humans as well as livestock. They are also valued as synthetic intermediates for pharmaceuticals. Therefore, the demand for BCAAs in the feed and pharmaceutical industries is increasing continuously. Traditional industrial fermentative production of BCAAs was performed using microorganisms isolated by random mutagenesis. A collection of these classical strains was also scientifically useful to clarify the details of the BCAA biosynthetic pathways, which are tightly regulated by feedback inhibition and transcriptional attenuation. Based on this understanding of the metabolism of BCAAs, it is now possible for us to pursue strains with higher BCAA productivity using rational design and advanced molecular biology techniques. Additionally, systems biology approaches using augmented omics information help us to optimize carbon flux toward BCAA production. Here, we describe the biosynthetic pathways of BCAAs and their regulation and then overview the microorganisms developed for BCAA production. Other chemicals, including isobutanol, i.e., a second-generation biofuel, can be synthesized by branching the BCAA biosynthetic pathways, which are also outlined.

  20. Bent and branched chains of nanoresonators

    Science.gov (United States)

    Melikhova, A. S.; Popov, I. Yu

    2014-10-01

    We study the spectral problem for bent and branched chains of weakly coupled conglobate resonators. At the joint points the δ-coupling is assumed. Our approach is based on the theory of self-adjoint extensions of symmetric operators and transfer matrix method. The structure of the spectrum is described. For the both cases it is proved that the Hamiltonian has negative eigenvalue for some values of the model parameters.

  1. Developmental changes in rat liver branched-chain 2-oxo acid dehydrogenase.

    OpenAIRE

    May, E E; May, M E; Aftring, R P; Buse, M G

    1982-01-01

    Branched-chain 2-oxo acid dehydrogenase catalyses the first irreversible step in the degradation of the branched-chain amino acids leucine, isoleucine and valine. With specifically labelled 4-methyl-2-oxo[1-14C]pentanoate as substrate, the enzyme's activity was measured in rat liver homogenates. Activity (per g wet wL of liver or per mg of protein) increased most rapidly during the perinatal period (2 days before to 1 day after birth), reaching approximately adult values by the time of weanin...

  2. Regulation of hepatic branched-chain alpha-keto acid dehydrogenase complex in rats fed a high-fat diet

    Science.gov (United States)

    Objective: Branched-chain alpha-keto acid dehydrogenase complex (BCKDC) regulates branched-chain amino acid (BCAA) metabolism at the level of branched chain alpha-ketoacid (BCKA) catabolism. It has been demonstrated that the activity of hepatic BCKDC is markedly decreased in type 2 diabetic animal...

  3. Branched-Chain Aminotransferases Control TORC1 Signaling in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Joanne M Kingsbury

    2015-12-01

    Full Text Available The conserved target of rapamycin complex 1 (TORC1 integrates nutrient signals to orchestrate cell growth and proliferation. Leucine availability is conveyed to control TORC1 activity via the leu-tRNA synthetase/EGOC-GTPase module in yeast and mammals, but the mechanisms sensing leucine remain only partially understood. We show here that both leucine and its α-ketoacid metabolite, α-ketoisocaproate, effectively activate the yeast TORC1 kinase via both EGOC GTPase-dependent and -independent mechanisms. Leucine and α-ketoisocaproate are interconverted by ubiquitous branched-chain aminotransferases (BCAT, which in yeast are represented by the mitochondrial and cytosolic enzymes Bat1 and Bat2, respectively. BCAT yeast mutants exhibit severely compromised TORC1 activity, which is partially restored by expression of Bat1 active site mutants, implicating both catalytic and structural roles of BCATs in TORC1 control. We find that Bat1 interacts with branched-chain amino acid metabolic enzymes and, in a leucine-dependent fashion, with the tricarboxylic acid (TCA-cycle enzyme aconitase. BCAT mutation perturbed TCA-cycle intermediate levels, consistent with a TCA-cycle block, and resulted in low ATP levels, activation of AMPK, and TORC1 inhibition. We propose the biosynthetic capacity of BCAT and its role in forming multicomplex metabolons connecting branched-chain amino acids and TCA-cycle metabolism governs TCA-cycle flux to activate TORC1 signaling. Because mammalian mitochondrial BCAT is known to form a supramolecular branched-chain α-keto acid dehydrogenase enzyme complex that links leucine metabolism to the TCA-cycle, these findings establish a precedent for understanding TORC1 signaling in mammals.

  4. Evolution of the biosynthesis of the branched-chain amino acids

    Science.gov (United States)

    Keefe, Anthony D.; Lazcano, Antonio; Miller, Stanley L.

    1995-01-01

    The origins of the biosynthetic pathways for the branched-chain amino acids cannot be understood in terms of the backwards development of the present acetolactate pathway because it contains unstable intermediates. We propose that the first biosynthesis of the branched-chain amino acids was by the reductive carboxylation of short branched chain fatty acids giving keto acids which were then transaminated. Similar reaction sequences mediated by nonspecific enzymes would produce serine and threomine from the abundant prebiotic compounds glycolic and lactic acids. The aromatic amino acids may also have first been synthesized in this way, e.g. tryptophan from indole acetic acid. The next step would have been the biosynthesis of leucine from alpha-ketoisovalerc acid. The acetolactate pathway developed subsequently. The first version of the Krebs cycle, which was used for amino acid biosynthesis, would have been assembled by making use fo the reductive carboxylation and leucine biosynthesis enzymes, and completed with the development of a single new enzyme, succinate dehydrogenase. This evolutionary scheme suggests that there may be limitations to inferring the origins of metabolism by a simple back extrapolation of current pathways.

  5. Electron beam curable branched chain polyurethane acrylates for magnetic media coatings

    International Nuclear Information System (INIS)

    Ukachi, Takashi; Haga, Kei-ichi; Matsumura, Yoshio

    1989-01-01

    Electron beam curable binder resins have been studied to realize the high quality magnetic coatings. It was supposed that resins with a higher crosslink density could lead to magnetic coatings with higher abrasion resistance. Branched chain polyurethane acrylates show a higher degree of cure by irradiation with an electron beam in comparison with linear polyurethane acrylates. This paper describes the potential wear resistance between properties of magnetic coatings and the physical properties of the cured unpigmented branched chain polyurethane acrylates that were used as the binder resins. (author)

  6. Impact of Branched-Chain Amino Acid Catabolism on Fatty Acid and Alkene Biosynthesis in Micrococcus luteus.

    Science.gov (United States)

    Surger, Maximilian J; Angelov, Angel; Stier, Philipp; Übelacker, Maria; Liebl, Wolfgang

    2018-01-01

    Micrococcus luteus naturally produces alkenes, unsaturated aliphatic hydrocarbons, and represents a promising host to produce hydrocarbons as constituents of biofuels and lubricants. In this work, we identify the genes for key enzymes of the branched-chain amino acid catabolism in M. luteus , whose first metabolic steps lead also to the formation of primer molecules for branched-chain fatty acid and olefin biosynthesis, and demonstrate how these genes can be used to manipulate the production of specific olefins in this organism. We constructed mutants of several gene candidates involved in the branched-chain amino acid metabolism or its regulation and investigated the resulting changes in the cellular fatty acid and olefin profiles by GC/MS. The gene cluster encoding the components of the branched-chain α-keto acid dehydrogenase (BCKD) complex was identified by deletion and promoter exchange mutagenesis. Overexpression of the BCKD gene cluster resulted in about threefold increased olefin production whereas deletion of the cluster led to a drastic reduction in branched-chain fatty acid content and a complete loss of olefin production. The specificities of the acyl-CoA dehydrogenases of the branched amino acid degradation pathways were deduced from the fatty acid and olefin profiles of the respective deletion mutant strains. In addition, growth experiments with branched amino acids as the only nitrogen source were carried out with the mutants in order to confirm our annotations. Both the deletion mutant of the BCKD complex, responsible for the further degradation of all three branched-chain amino acids, as well as the deletion mutant of the proposed isovaleryl-CoA dehydrogenase (specific for leucine degradation) were not able to grow on leucine in contrast to the parental strain. In conclusion, our experiments allow the unambigous assignment of specific functions to the genes for key enzymes of the branched-chain amino acid metabolism of M. luteus . We also show how

  7. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids

    OpenAIRE

    Zheng, Xiaojiao; Qiu, Yunping; Zhong, Wei; Baxter, Sarah; Su, Mingming; Li, Qiong; Xie, Guoxiang; Ore, Brandon M.; Qiao, Shanlei; Spencer, Melanie D.; Zeisel, Steven H.; Zhou, Zhanxiang; Zhao, Aihua; Jia, Wei

    2013-01-01

    Research in obesity and metabolic disorders that involve intestinal microbiota demands reliable methods for the precise measurement of the short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) concentration. Here, we report a rapid method of simultaneously determining SCFAs and BCAAs in biological samples using propyl chloroformate (PCF) derivatization followed by gas chromatography mass spectrometry (GC-MS) analysis. A one-step derivatization using 100 µL of PCF in a reactio...

  8. Orientational cross correlations between entangled branch polymers in primitive chain network simulations

    Science.gov (United States)

    Masubuchi, Yuichi; Pandey, Ankita; Amamoto, Yoshifumi; Uneyama, Takashi

    2017-11-01

    Although it has not been frequently discussed, contributions of the orientational cross-correlation (OCC) between entangled polymers are not negligible in the relaxation modulus. In the present study, OCC contributions were investigated for 4- and 6-arm star-branched and H-branched polymers by means of multi-chain slip-link simulations. Owing to the molecular-level description of the simulation, the segment orientation was traced separately for each molecule as well as each subchain composing the molecules. Then, the OCC was calculated between different molecules and different subchains. The results revealed that the amount of OCC between different molecules is virtually identical to that of linear polymers regardless of the branching structure. The OCC between constituent subchains of the same molecule is significantly smaller than the OCC between different molecules, although its intensity and time-dependent behavior depend on the branching structure as well as the molecular weight. These results lend support to the single-chain models given that the OCC effects are embedded into the stress-optical coefficient, which is independent of the branching structure.

  9. Whole-body nitrogen and tyrosine metabolism in surgical patients receiving branched-chain amino acid solutions

    International Nuclear Information System (INIS)

    Desai, S.P.; Bistrian, B.R.; Moldawer, L.L.; Blackburn, G.L.

    1985-01-01

    Fifteen patients undergoing gastric bypass surgery for morbid obesity received preoperatively a standard crystalline amino acid solution containing 15.6% branched-chain amino acids. During the first five postoperative days, the patients were randomized to receive one of three amino acid solutions of different branched-chain amino acid content. Whole-body amino acid appearance and oxidation were estimated using a continuous intravenous infusion of L-(U- 14 C)-tyrosine preoperatively and on the third postoperative day. This study suggests that an adequate nitrogen intake of a balanced amino acid mixture, as well as a solution enriched with branched-chain amino acids, maintains protein homeostasis and supports protein synthesis similarly in well-nourished patients following major abdominal surgery. A diet containing only branched-chain amino acids in isomolar ratios was as effective at maintaining protein retention and whole-body protein synthesis and albumin renewal postoperatively when compared with a standard amino acid formula

  10. Straight and branched-chain fatty acids in preorbital glands of sika deer, Cervus nippon.

    Science.gov (United States)

    Wood, William F

    2004-02-01

    Using GC-MS analysis, 11 major volatile compounds were found in the preorbital gland secretion from a female sika deer, Cervus nippon. These compounds are the C14 through C18 straight-chain fatty acids, (ZZ)-9,12-octadecadienoic acid, 12-methyltridecanoic acid, 13-methyltetradecanoic acid, 14-methylpentadecanoic acid, 14-methylhexadecanoic acid, and 15-methylhexadecanoic acid. The five branched-chain acids make up over 29% of the volatiles in the gland. This is the first time branched-chain carboxylic acids have been reported from ungulate preorbital glands.

  11. Identification of a Key Gene Involved in Branched-Chain Short Fatty Acids Formation in Natto by Transcriptional Analysis and Enzymatic Characterization in Bacillus subtilis.

    Science.gov (United States)

    Hong, Chenlu; Chen, Yangyang; Li, Lu; Chen, Shouwen; Wei, Xuetuan

    2017-03-01

    Natto as a fermented soybean product has many health benefits for human due to its rich nutritional and functional components. However, the unpleasant odor of natto, caused by the formation of branched-chain short fatty acids (BCFAs), prohibits the wide acceptance of natto products. This work is to identify the key gene of BCFAs formation and develop the guidance to reduce natto odor. Transcriptional analysis of BCFAs synthesis pathway genes was conducted in two Bacillus subtilis strains with obvious different BCFAs synthesis abilities. The transcriptional levels of bcd, bkdAA, and ptb in B. subtilis H-9 were 2.7-fold, 0.7-fold, and 8.9-fold higher than that of B. subtilis H-4, respectively. Therefore, the ptb gene with the highest transcriptional change was considered as the key gene in BCFAs synthesis. The ptb encoded enzyme Ptb was further characterized by inducible expression in Escherichia coli. The recombinant Ptb protein (about 32 kDa) was verified by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis analysis. The catalysis functions of Ptb were confirmed on substrates of isovaleryl-CoA and isobutyryl-CoA, and the higher catalysis efficiency of Ptb on isovaleryl-CoA explained the higher level of isovaleric acid in natto. The optimal activities of Ptb were observed at 50 °C and pH 8.0, and the enzymatic activity was inhibited by Ca 2+ , Zn 2+ , Ba 2+ , Mn 2+ , Cu 2+ , SDS, and EDTA. Collectively, this study reports a key gene responsible for BCFAs formation in natto fermentation and provides potential strategies to solve the odor problem.

  12. On the contraction factors of long-chain branched macromolecules

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, Pavel; Netopilík, Miloš

    2014-01-01

    Roč. 51, February (2014), s. 177-181 ISSN 0014-3057 R&D Projects: GA ČR GCP205/11/J043 Institutional support: RVO:61389013 Keywords : long- chain branching * contraction factor * radius of gyration Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.005, year: 2014

  13. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    International Nuclear Information System (INIS)

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-01-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH 4 Cl x 100 g body wt -1 x day -1 . Epitrochlearis muscles were incubated with L-[1- 14 C]-valine and L-[1- 14 C]leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain α-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain α-keto acid dehydrogenase

  14. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    Energy Technology Data Exchange (ETDEWEB)

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-06-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH/sub 4/Cl x 100 g body wt/sup -1/ x day/sup -1/. Epitrochlearis muscles were incubated with L-(1-/sup 14/C)-valine and L-(1-/sup 14/C)leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain ..cap alpha..-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain ..cap alpha..-keto acid dehydrogenase.

  15. Effect of alternative pathway therapy on branched chain amino acid metabolism in urea cycle disorder patients.

    Science.gov (United States)

    Scaglia, Fernando; Carter, Susan; O'Brien, William E; Lee, Brendan

    2004-04-01

    Urea cycle disorders (UCDs) are a group of inborn errors of hepatic metabolism caused by the loss of enzymatic activities that mediate the transfer of nitrogen from ammonia to urea. These disorders often result in life-threatening hyperammonemia and hyperglutaminemia. A combination of sodium phenylbutyrate and sodium phenylacetate/benzoate is used in the clinical management of children with urea cycle defects as a glutamine trap, diverting nitrogen from urea synthesis to alternatives routes of excretion. We have observed that patients treated with these compounds have selective branched chain amino acid (BCAA) deficiency despite adequate dietary protein intake. However, the direct effect of alternative therapy on the steady state levels of plasma branched chain amino acids has not been well characterized. We have measured steady state plasma branched chain and other essential non-branched chain amino acids in control subjects, untreated ornithine transcarbamylase deficiency females and treated null activity urea cycle disorder patients in the fed steady state during the course of stable isotope studies. Steady-state leucine levels were noted to be significantly lower in treated urea cycle disorder patients when compared to either untreated ornithine transcarbamylase deficiency females or control subjects (Purea cycle disorder patients. These findings suggest that better titration of protein restriction could be achieved with branched chain amino acid supplementation in patients with UCDs who are on alternative route therapy.

  16. Branched-chain amino acids in metabolic signaling and insulin resistance

    Science.gov (United States)

    Branched-chain amino acids (BCAAs) are important directly- and indirectly-acting nutrient signals. Frequently, their actions have been reported to be anti-obesity in nature, especially in rodent models. Yet, circulating BCAAs tend to be elevated in obesity, and even associated with poorer metaboli...

  17. Microbial synthesis of a branched-chain ester platform from organic waste carboxylates

    Directory of Open Access Journals (Sweden)

    Donovan S. Layton

    2016-12-01

    Full Text Available Processing of lignocellulosic biomass or organic wastes produces a plethora of chemicals such as short, linear carboxylic acids, known as carboxylates, derived from anaerobic digestion. While these carboxylates have low values and are inhibitory to microbes during fermentation, they can be biologically upgraded to high-value products. In this study, we expanded our general framework for biological upgrading of carboxylates to branched-chain esters by using three highly active alcohol acyltransferases (AATs for alcohol and acyl CoA condensation and modulating the alcohol moiety from ethanol to isobutanol in the modular chassis cell. With this framework, we demonstrated the production of an ester library comprised of 16 out of all 18 potential esters, including acetate, propionate, butanoate, pentanoate, and hexanoate esters, from the 5 linear, saturated C2-C6 carboxylic acids. Among these esters, 5 new branched-chain esters, including isobutyl acetate, isobutyl propionate, isobutyl butyrate, isobutyl pentanoate, and isobutyl hexanoate were synthesized in vivo. During 24 h in situ fermentation and extraction, one of the engineered strains, EcDL208 harnessing the SAAT of Fragaria ananassa produced ~63 mg/L of a mixture of butyl and isobutyl butyrates from glucose and butyrate co-fermentation and ~127 mg/L of a mixture of isobutyl and pentyl pentanoates from glucose and pentanoate co-fermentation, with high specificity. These butyrate and pentanoate esters are potential drop-in liquid fuels. This study provides better understanding of functional roles of AATs for microbial biosynthesis of branched-chain esters and expands the potential use of these esters as drop-in biofuels beyond their conventional flavor, fragrance, and solvent applications. Keywords: Carboxylate platform, Ester platform, Branched-chain ester, Modular cell, Biological upgrading, Organic waste, Lignocellulosic biomass, Isobutyl esters

  18. Branched-Chain Amino Acids

    Directory of Open Access Journals (Sweden)

    Matteo Ghiringhelli

    2015-07-01

    Full Text Available Our study is focused on evaluation and use of the most effective and correct nutrients. In particular, our attention is directed to the role of certain amino acids in cachectic patients. During parenteral nutrition in humans, physician already associates in the PN-bags different formulations including amino acids, lipids and glucose solutions or essential amino acids solution alone or exclusively branched-chain amino acids (BCAA. Studies investigated the effects of dietary BCAA ingestion on different diseases and conditions such as obesity and metabolic disorders, liver disease, muscle atrophy, cancer, impaired immunity or injuries (surgery, trauma, burns, and sepsis. BCAAs have been shown to affect gene expression, protein metabolism, apoptosis and regeneration of hepatocytes, and insulin resistance. They have also been shown to inhibit the proliferation of liver cancer cells in vitro, and are essential for lymphocyte proliferation and dendritic cell maturation. Oral or parenteral administration of these three amino acids will allow us to evaluate the real efficacy of these compounds during a therapy to treat malnutrition in subjects unable to feed themselves.

  19. Metabolism of branched-chain amino acids in leg muscles from tail-cast suspended intact and adrenalectomized rats

    Science.gov (United States)

    Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.

    1989-01-01

    The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.

  20. Mathematical Modeling of the Process for Microbial Production of Branched Chained Amino Acids

    Directory of Open Access Journals (Sweden)

    Todorov K.

    2009-12-01

    Full Text Available This article deals with modelling of branched chained amino acids production. One of important branched chained amino acid is L-valine. The aim of the article is synthesis of dynamic unstructured model of fed-batch fermentation process with intensive droppings for L-valine production. The presented approach of the investigation includes the following main procedures: description of the process by generalized stoichiometric equations; preliminary data processing and calculation of specific rates for main kinetic variables; identification of the specific rates takes into account the dissolved oxygen tension; establishment and optimisation of dynamic model of the process; simulation researches. MATLAB is used as a research environment.

  1. Nucleotide sequence of a cDNA for branched chain acyltransferase with analysis of the deduced protein structure

    International Nuclear Information System (INIS)

    Hummel, K.B.; Litwer, S.; Bradford, A.P.; Aitken, A.; Danner, D.J.; Yeaman, S.J.

    1988-01-01

    Nucleotide sequence was determined for a 1.6-kilobase human cDNA putative for the branched chain acyltransferase protein of the branched chain α-ketoacid dehydrogenase complex. Translation of the sequence reveals an open reading frame encoding a 315-amino acid protein of molecular weight 35,759 followed by 560 bases of 3'-untranslated sequence. Three repeats of the polyadenylation signal hexamer ATTAAA are present prior to the polyadenylate tail. Within the open reading frame is a 10-amino acid fragment which matches exactly the amino acid sequence around the lipoate-lysine residue in bovine kidney branched chain acyltransferase, thus confirming the identity of the cDNA. Analysis of the deduced protein structure for the human branched chain acyltransferase revealed an organization into domains similar to that reported for the acyltransferase proteins of the pyruvate and α-ketoglutarate dehydrogenase complexes. This similarity in organization suggests that a more detailed analysis of the proteins will be required to explain the individual substrate and multienzyme complex specificity shown by these acyltransferases

  2. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD.

    Science.gov (United States)

    S Sonnet, Davis; N O'Leary, Monique; A Gutierrez, Mark; M Nguyen, Steven; Mateen, Samiha; Hsu, Yuehmei; P Mitchell, Kylie; J Lopez, Antonio; Vockley, Jerry; K Kennedy, Brian; Ramanathan, Arvind

    2016-07-04

    Maple Syrup Urine Disease (MSUD) is an inherited disorder caused by the dysfunction in the branched chain keto-acid dehydrogenase (BCKDH) enzyme. This leads to buildup of branched-chain keto-acids (BCKA) and branched-chain amino acids (BCAA) in body fluids (e.g. keto-isocaproic acid from the BCAA leucine), leading to numerous clinical features including a less understood skeletal muscle dysfunction in patients. KIC is an inhibitor of mitochondrial function at disease relevant concentrations. A murine model of intermediate MSUD (iMSUD) shows significant skeletal muscle dysfunction as by judged decreased muscle fiber diameter. MSUD is an orphan disease with a need for novel drug interventions. Here using a 96-well plate (liquid chromatography- mass spectrometry (LC-MS) based drug-screening platform we show that Metformin, a widely used anti-diabetic drug, reduces levels of KIC in patient-derived fibroblasts by 20-50%. This Metformin-mediated effect was conserved in vivo; Metformin-treatment significantly reduced levels of KIC in the muscle (by 69%) and serum (by 56%) isolated from iMSUD mice, and restored levels of mitochondrial metabolites (e.g. AMP and other TCA). The drug also decreased the expression of mitochondrial branched chain amino transferase (BCAT) which produces KIC in skeletal muscle. This suggests that Metformin can restore skeletal muscle homeostasis in MSUD by decreasing mitochondrial KIC production.

  3. Strong, Weak and Branching Bisimulation for Transition Systems and Markov Reward Chains: A Unifying Matrix Approach

    Directory of Open Access Journals (Sweden)

    Nikola Trčka

    2009-12-01

    Full Text Available We first study labeled transition systems with explicit successful termination. We establish the notions of strong, weak, and branching bisimulation in terms of boolean matrix theory, introducing thus a novel and powerful algebraic apparatus. Next we consider Markov reward chains which are standardly presented in real matrix theory. By interpreting the obtained matrix conditions for bisimulations in this setting, we automatically obtain the definitions of strong, weak, and branching bisimulation for Markov reward chains. The obtained strong and weak bisimulations are shown to coincide with some existing notions, while the obtained branching bisimulation is new, but its usefulness is questionable.

  4. A pilot, short-term dietary manipulation of branched chain amino acids has modest influence on fasting levels of branched chain amino acids

    OpenAIRE

    Cavallaro, Nicole Landa; Garry, Jamie; Shi, Xu; Gerszten, Robert E.; Anderson, Ellen J.; Walford, Geoffrey A.

    2016-01-01

    Background: Elevated fasting levels of branched chain amino acids (BCAAs: valine, isoleucine, leucine) in venous blood are associated with a variety of metabolic impairments, including increased risk of type 2 diabetes (T2D). Fasting BCAA levels are influenced by non-dietary factors. However, it is unknown whether fasting BCAAs can be altered through manipulation of dietary intake alone.Objective: To test whether a specific dietary intervention, using differences in BCAA intake, alters fastin...

  5. The activity state of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues.

    OpenAIRE

    Wagenmakers, A J; Schepens, J T; Veldhuizen, J A; Veerkamp, J H

    1984-01-01

    An assay is described to define the proportion of the branched-chain 2-oxo acid dehydrogenase complex that is present in the active state in rat tissues. Activities are measured in homogenates in two ways: actual activities, present in tissues, by blocking both the kinase and phosphatase of the enzyme complex during homogenization, preincubation, and incubation with 1-14C-labelled branched-chain 2-oxo acid, and total activities by blocking only the kinase during the 5 min preincubation (neces...

  6. Effect of Supplementation of Branched Chain Fatty Acid on Colony of Ruminal Bacteria and Cell of Protozoa

    Directory of Open Access Journals (Sweden)

    W Suryapratama

    2009-05-01

    Full Text Available A study was conducted to evaluate the potential of branched-chain volatile fatty acids (isobutyric, α-methylbutyric and β-methylbutiric that supplemented into the diet on the colony of ruminal bacteria and the cell of protozoa population. Five progeny Friesian Holstein males with initial weight 348±29 kg were used in a 5x5 Latin square design (30-d periods. The basal diet composed of 55% forage and 45% concentrate containing 10.5 MJ ME/kg and 15% crude protein (CP. There were five dietary treatments where A: basal diet, B: A+139 mg urea/kg W0.75, C: B+28 mg CaSO4/kg W0.75, D: C+0.05 mM isobutyric acid+0.05 mM β-methylbutyric acid, and E: D+0.05 mM α-methylbutyric acid. Rearing period was 30 days, consists of feed adaptation period 20 days, then growth observation was done within the last 10 days. Collection of ruminal fluid was done within the last day of observation period, and took 3-4 h after the feeding. The results showed that supplementation branched chain volatile fatty acids did not significant affect on the number of colonies of bacteria and protozoa population, but the significant effect (P<0.05 on the concentration of branched chain volatile fatty acids in the rumen fluid. The supplementation of α-methylbutyric (P <0.05 decreased of concentration of isobutyric and isovaleric in rumen fluid than the other treatments. It is concluded that supplementation of branched chain volatile fatty acids not used by rumen bacteria for their growth but for the elongation of fatty acid synthesis. The supplementation of branched chain volatile fatty acids was 0.05 mM not enough strong influence on the growth of colony of rumen bacteria. (Animal Production 11(2: 129-134 (2009 Key Words: rumen fermentation, branched-chain fatty acid, ruminal bacteria, protozoa

  7. 2-ethylhydracrylic aciduria in short/branched-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Korman, Stanley H; Andresen, Brage S; Zeharia, Avraham

    2005-01-01

    BACKGROUND: Isolated excretion of 2-methylbutyrylglycine (2-MBG) is the hallmark of short/branched-chain acyl-CoA dehydrogenase deficiency (SBCADD), a recently identified defect in the proximal pathway of L-isoleucine oxidation. SBCADD might be underdiagnosed because detection and recognition...

  8. Branched-chain amino acid supplementation and the immune response of long-distance athletes.

    Science.gov (United States)

    Bassit, Reinaldo A; Sawada, Letícia A; Bacurau, Reury F P; Navarro, Franciso; Martins, Eivor; Santos, Ronaldo V T; Caperuto, Erico C; Rogeri, Patrícia; Costa Rosa, Luís F B P

    2002-05-01

    Intense long-duration exercise has been associated with immunosuppression, which affects natural killer cells, lymphokine-activated killer cells, and lymphocytes. The mechanisms involved, however, are not fully determined and seem to be multifactorial, including endocrine changes and alteration of plasma glutamine concentration. Therefore, we evaluated the effect of branched-chain amino acid supplementation on the immune response of triathletes and long-distance runners. Peripheral blood was collected prior to and immediately after an Olympic Triathlon or a 30k run. Lymphocyte proliferation, cytokine production by cultured cells, and plasma glutamine were measured. After the exercise bout, athletes from the placebo group presented a decreased plasma glutamine concentration that was abolished by branched-chain amino acid supplementation and an increased proliferative response in their peripheral blood mononuclear cells. Those cells also produced, after exercise, less tumor necrosis factor, interleukins-1 and -4, and interferon and 48% more interleukin-2. Supplementation stimulated the production of interleukin-2 and interferon after exercise and a more pronounced decrease in the production of interleukin-4, indicating a diversion toward a Th1 type immune response. Our results indicate that branched-chain amino acid (BCAA) supplementation recovers the ability of peripheral blood mononuclear cells proliferate in response to mitogens after a long distance intense exercise, as well as plasma glutamine concentration. The amino acids also modify the pattern of cytokine production leading to a diversion of the immune response toward a Th1 type of immune response.

  9. Branched chain enriched amino acid versus glucose treatment of hepatic encephalopathy. A double-blind study of 65 patients with cirrhosis

    DEFF Research Database (Denmark)

    Vilstrup, Hendrik; Gluud, C; Hardt, F

    1990-01-01

    We studied the effects of infusion of a branched chain enriched amino acid mixture versus glucose on acute hepatic encephalopathy in patients with cirrhosis. Sixty-five patients were randomly treated with 1 g/kg per day of an amino acid mixture with 40% branched chain contents (32 patients...

  10. Purification and characterization of a branched-chain amino acid aminotransferase from Lactobacillus paracasei subsp paracasei CHCC 2115

    DEFF Research Database (Denmark)

    Thage, B.V.; Rattray, F.P.; Laustsen, M.W.

    2004-01-01

    Purification and characterization of an aminotransferase (AT) specific for the degradation of branched-chain amino acids from Lactobacillus paracasei subsp. paracasei CHCC 2115. Methods and Results: The purification protocol consisted of anion exchange chromatography, affinity chromatography...... of other metal ions, thiol- and carbonyl-binding agents. The N-terminal sequence of the enzyme was SVNIDWNNLGFDYMQLPYRYVAHXKDGVXD, and had at the amino acid level, 60 and 53% identity to a branched-chain amino acid AT of Lact. plantarum and Lactococcus lactis, respectively. Conclusions: The results suggest...

  11. Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease

    Czech Academy of Sciences Publication Activity Database

    Lake, A.D.; Novák, Petr; Shipkova, P.; Aranibar, N.; Robertson, D.G.; Reily, M.D.; Lehman-McKeeman, L.D.; Vaillancourt, R.R.; Cherrington, N.J.

    2015-01-01

    Roč. 47, č. 3 (2015), s. 603-615 ISSN 0939-4451 Institutional support: RVO:60077344 Keywords : Branched chain amino acid * nonalcoholic fatty liver disease * nonalcoholic steatohepatitis * metabolomics and transcriptomics Subject RIV: CE - Biochemistry Impact factor: 3.196, year: 2015

  12. Process for the selective cracking of straight-chained and slightly branched hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gorring, R L; Shipman, G F

    1975-01-23

    The invention describes a method for the selective (hydro) cracking of petroleum materials, containing normal straight-chained and/or slightly branched-chained hydrocarbons. The mixture is brought into contact with a selective, crystalline alumino silicate zeolite cracking catalyst housing a silicon oxide/aluminum oxide ratio of at least about 12 and a constraint index of about 1 to 12 under cracking conditions. A zeolite catalyst with a crystal size of up to 0.05 ..mu.. is used. Solidification point and viscosity in particular of oils are to be lowered through the catalytic dewaxing.

  13. PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.

    Science.gov (United States)

    Hatazawa, Yukino; Tadaishi, Miki; Nagaike, Yuta; Morita, Akihito; Ogawa, Yoshihiro; Ezaki, Osamu; Takai-Igarashi, Takako; Kitaura, Yasuyuki; Shimomura, Yoshiharu; Kamei, Yasutomi; Miura, Shinji

    2014-01-01

    Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α) is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA) metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT) 2, branched-chain α-keto acid dehydrogenase (BCKDH), which catabolize BCAA. The expression of BCKDH kinase (BCKDK), which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

  14. Kinetics of thermophilic, anaerobic oxidation of straight and branched chain butyrate and valerate

    DEFF Research Database (Denmark)

    Batstone, Damien J.; Pind, Peter Frode; Angelidaki, Irini

    2003-01-01

    The degradation kinetics of normal and branched chain butyrate and valerate are important in protein-fed anaerobic systems, as a number of amino acids degrade to these organic acids. Including activated and primary wastewater sludge digesters, the majority of full-scale systems digest feeds...... is also addressed, extending previous pure-culture and batch studies. A previously published mathematical model was modified to allow competitive uptake of i-valerate, and used to model a thermophilic manure digester operated over 180 days. The digester was periodically pulsed with straight and branched...

  15. Branched-chain amino acid catabolism is a conserved regulator of physiological ageing.

    Science.gov (United States)

    Mansfeld, Johannes; Urban, Nadine; Priebe, Steffen; Groth, Marco; Frahm, Christiane; Hartmann, Nils; Gebauer, Juliane; Ravichandran, Meenakshi; Dommaschk, Anne; Schmeisser, Sebastian; Kuhlow, Doreen; Monajembashi, Shamci; Bremer-Streck, Sibylle; Hemmerich, Peter; Kiehntopf, Michael; Zamboni, Nicola; Englert, Christoph; Guthke, Reinhard; Kaleta, Christoph; Platzer, Matthias; Sühnel, Jürgen; Witte, Otto W; Zarse, Kim; Ristow, Michael

    2015-12-01

    Ageing has been defined as a global decline in physiological function depending on both environmental and genetic factors. Here we identify gene transcripts that are similarly regulated during physiological ageing in nematodes, zebrafish and mice. We observe the strongest extension of lifespan when impairing expression of the branched-chain amino acid transferase-1 (bcat-1) gene in C. elegans, which leads to excessive levels of branched-chain amino acids (BCAAs). We further show that BCAAs reduce a LET-363/mTOR-dependent neuro-endocrine signal, which we identify as DAF-7/TGFβ, and that impacts lifespan depending on its related receptors, DAF-1 and DAF-4, as well as ultimately on DAF-16/FoxO and HSF-1 in a cell-non-autonomous manner. The transcription factor HLH-15 controls and epistatically synergizes with BCAT-1 to modulate physiological ageing. Lastly and consistent with previous findings in rodents, nutritional supplementation of BCAAs extends nematodal lifespan. Taken together, BCAAs act as periphery-derived metabokines that induce a central neuro-endocrine response, culminating in extended healthspan.

  16. Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants

    KAUST Repository

    Chen, Hao; Saksa, Kristen; Zhao, Feiyi; Qiu, Joyce; Xiong, Liming

    2010-01-01

    The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants

  17. Topological analysis of long-chain branching patterns in polyolefins.

    Science.gov (United States)

    Bonchev, D; Markel, E; Dekmezian, A

    2001-01-01

    Patterns in molecular topology and complexity for long-chain branching are quantitatively described. The Wiener number, the topological complexity index, and a new index of 3-starness are used to quantify polymer structure. General formulas for these indices were derived for the cases of 3-arm star, H-shaped, and B-arm comb polymers. The factors affecting complexity in monodisperse polymer systems are ranked as follows: number of arms > arm length > arm central position approximately equal to arm clustering > total molecular weight approximately equal to backbone molecular weight. Topological indices change rapidly and then plateau as the molecular weight of branches on a polyolefin backbone increases from 0 to 5 kD. Complexity calculations relate 2-arm or 3-arm comb structures to the corresponding 3-arm stars of equivalent complexity but much higher molecular weight. In a subsequent paper, we report the application of topological analysis for developing structure/property relationships for monodisperse polymers. While the focus of the present work is on the description of monodisperse, well-defined architectures, the methods may be extended to the description of polydisperse systems.

  18. Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes

    OpenAIRE

    Zheng, Yan; Li, Yanping; Qi, Qibin; Hruby, Adela; Manson, JoAnn E; Willett, Walter C; Wolpin, Brian M; Hu, Frank B; Qi, Lu

    2016-01-01

    Background: Plasma branched-chain amino acids (BCAAs, including leucine, isoleucine and valine) were recently related to risk of type 2 diabetes (T2D). Dietary intake is the only source of BCAAs; however, little is known about whether habitual dietary intake of BCAAs affects risk of T2D.

  19. PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Yukino Hatazawa

    Full Text Available Peroxisome proliferator-activated receptor (PPAR γ coactivator 1α (PGC-1α is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT 2, branched-chain α-keto acid dehydrogenase (BCKDH, which catabolize BCAA. The expression of BCKDH kinase (BCKDK, which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

  20. The activity state of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues.

    Science.gov (United States)

    Wagenmakers, A J; Schepens, J T; Veldhuizen, J A; Veerkamp, J H

    1984-05-15

    An assay is described to define the proportion of the branched-chain 2-oxo acid dehydrogenase complex that is present in the active state in rat tissues. Activities are measured in homogenates in two ways: actual activities, present in tissues, by blocking both the kinase and phosphatase of the enzyme complex during homogenization, preincubation, and incubation with 1-14C-labelled branched-chain 2-oxo acid, and total activities by blocking only the kinase during the 5 min preincubation (necessary for activation). The kinase is blocked by 5 mM-ADP and absence of Mg2+ and the phosphatase by the simultaneous presence of 50 mM-NaF. About 6% of the enzyme is active in skeletal muscle of fed rats, 7% in heart, 20% in diaphragm, 47% in kidney, 60% in brain and 98% in liver. An entirely different assay, which measures activities in crude tissue extracts before and after treatment with a broad-specificity protein phosphatase, gave similar results for heart, liver and kidney. Advantages of our assay with homogenates are the presence of intact mitochondria, the simplicity, the short duration and the high sensitivity. The actual activities measured indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and kidney and is limited in skeletal muscle in the fed state.

  1. Branched-chain amino acids in metabolic signalling and insulin resistance

    Science.gov (United States)

    Lynch, Christopher J.; Adams, Sean H.

    2015-01-01

    Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM. PMID:25287287

  2. The Complex Role of Branched Chain Amino Acids in Diabetes and Cancer

    Directory of Open Access Journals (Sweden)

    Thomas M. O'Connell

    2013-10-01

    Full Text Available The obesity and diabetes epidemics are continuing to spread across the globe. There is increasing evidence that diabetes leads to a significantly higher risk for certain types of cancer. Both diabetes and cancer are characterized by severe metabolic perturbations and the branched chain amino acids (BCAAs appear to play a significant role in both of these diseases. These essential amino acids participate in a wide variety of metabolic pathways, but it is now recognized that they are also critical regulators of a number of cell signaling pathways. An elevation in branched chain amino acids has recently been shown to be significantly correlated with insulin resistance and the future development of diabetes. In cancer, the normal demands for BCAAs are complicated by the conflicting needs of the tumor and the host. The severe muscle wasting syndrome experience by many cancer patients, known as cachexia, has motivated the use of BCAA supplementation. The desired improvement in muscle mass must be balanced by the need to avoid providing materials for tumor proliferation. A better understanding of the complex functions of BCAAs could lead to their use as biomarkers of the progression of certain cancers in diabetic patients.

  3. Biological Functions of ilvC in Branched-Chain Fatty Acid Synthesis and Diffusible Signal Factor Family Production in Xanthomonas campestris

    OpenAIRE

    Kai-Huai Li; Yong-Hong Yu; Hui-Juan Dong; Wen-Bin Zhang; Jin-Cheng Ma; Hai-Hong Wang

    2017-01-01

    In bacteria, the metabolism of branched-chain amino acids (BCAAs) is tightly associated with branched-chain fatty acids (BCFAs) synthetic pathways. Although previous studies have reported on BCFAs biosynthesis, more detailed associations between BCAAs metabolism and BCFAs biosynthesis remain to be addressed. In this study, we deleted the ilvC gene, which encodes ketol-acid reductoisomerase in the BCAAs synthetic pathway, from the Xanthomonas campestris pv. campestris (Xcc) genome. We characte...

  4. Branched Chain Amino Acid Oxidation in Cultured Rat Skeletal Muscle Cells

    Science.gov (United States)

    Pardridge, William M.; Casanello-Ertl, Delia; Duducgian-Vartavarian, Luiza

    1980-01-01

    Leucine metabolism in skeletal muscle is linked to protein turnover. Since clofibrate is known both to cause myopathy and to decrease muscle protein content, the present investigations were designed to examine the effects of acute clofibrate treatment on leucine oxidation. Rat skeletal muscle cells in tissue culture were used in these studies because cultivated skeletal muscle cells, like muscle in vivo, have been shown to actively utilize branched chain amino acids and to produce alanine. The conversion of [1-14C]leucine to 14CO2 or to the [1-14C]keto-acid of leucine (α-keto-isocaproate) was linear for at least 2 h of incubation; the production of 14CO2 from [1-14C]leucine was saturable with a Km = 6.3 mM and a maximum oxidation rate (Vmax) = 31 nmol/mg protein per 120 min. Clofibric acid selectively inhibited the oxidation of [1-14C]leucine (Ki = 0.85 mM) and [U-14C]isoleucine, but had no effect on the oxidation of [U-14C]glutamate, -alanine, -lactate, or -palmitate. The inhibition of [1-14C]leucine oxidation by clofibrate was also observed in the rat quarter-diaphragm preparation. Clofibrate primarily inhibited the production of 14CO2 and had relatively little effect on the production of [1-14C]keto-acid of leucine. A physiological concentration—3.0 g/100 ml—of albumin, which actively binds clofibric acid, inhibited but did not abolish the effects of a 2-mM concentration of clofibric acid on leucine oxidation. Clofibrate treatment stimulated the net consumption of pyruvate, and inhibited the net production of alanine. The drug also increased the cytosolic NADH/NAD+ ratio as reflected by an increase in the lactate/pyruvate ratio, in association with a decrease in cell aspartate levels. The changes in pyruvate metabolism and cell redox state induced by the drug were delayed compared with the nearly immediate inhibition of leucine oxidation. These studies suggest that clofibric acid, in concentrations that approximate high therapeutic levels of the drug

  5. Diabetes and branched-chain amino acids: What is the link?

    Science.gov (United States)

    Bloomgarden, Zachary

    2018-05-01

    Branched-chain amino acids (BCAA) have increasingly been studied as playing a role in diabetes, with the PubMed search string "diabetes" AND "branched chain amino acids" showing particular growth in studies of the topic over the past decade (Fig. ). In the Young Finn's Study, BCAA and, to a lesser extent, the aromatic amino acids phenylalanine and tyrosine were associated with insulin resistance (IR) in men but not in women, whereas the gluconeogenic amino acids alanine, glutamine, or glycine, and several other amino acids (i.e. histidine, arginine, and tryptophan) did not show an association with IR. Obesity may track more strongly than metabolic syndrome and diabetes with elevated BCAA. In a study of 1302 people aged 40-79; higher levels of BCAA tracked with older age, male sex, and metabolic syndrome, as well as with obesity, cardiovascular risk, dyslipidemia, hypertension, and uric acid. Medium- and long-chain acylcarnitines, by-products of mitochondrial catabolism of BCAAs, as well as branched-chain keto acids and the BCAA themselves distinguished obese people having versus not having features of IR, and in a study of 898 patients with essential hypertension, the BCAA and tyrosine and phenylalanine were associated with metabolic syndrome and impaired fasting glucose. In a meta-analysis of three genome-wide association studies, elevations in BCAA and, to a lesser extent, in alanine tracked with IR, whereas higher levels of glutamine and glycine were associated with lesser likelihood of IR. Given these associations with IR, it is not surprising that a number of studies have shown higher BCAA levels in people with and prior to development of type 2 diabetes (T2D), although this has particularly been shown in Caucasian and Asian ethnic groups while not appearing to occur in African Americans. Similarly, higher BCAA levels track with cardiovascular disease. [Figure: see text] The metabolism of BCAA involves two processes: (i) a reversible process catalysed by a

  6. Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps.

    Science.gov (United States)

    Li, Chunrui; Ding, Daqian; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2016-07-07

    Synthesis of branched long-chain alkanes from renewable biomass has attracted intensive interest in recent years, but the feedstock for this synthesis is restricted to platform chemicals. Here, we develop an effective and energy-efficient process to convert raw lignocellulosic biomass (e.g., corncob) into branched diesel-range alkanes through three tandem steps for the first time. Furfural and isopropyl levulinate (LA ester) were prepared from hemicellulose and cellulose fractions of corncob in toluene/water biphasic system with added isopropanol, which was followed by double aldol condensation of furfural with LA ester into C15 oxygenates and the final hydrodeoxygenation of C15 oxygenates into branched long-chain alkanes. The core point of this tandem process is the addition of isopropanol in the first step, which enables the spontaneous transfer of levulinic acid (LA) into the toluene phase in the form of LA ester through esterification, resulting in LA ester co-existing with furfural in the same phase, which is the basis for double aldol condensation in the toluene phase. Moreover, the acidic aqueous phase and toluene can be reused and the residues, including lignin and humins in aqueous phase, can be separated and carbonized to porous carbon materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Interactions among the branched-chain amino acids and their effects on methionine utilization in growing pigs: effects on plasma amino- and keto-acid concentrations and branched-chain keto-acid dehydrogenase activity.

    Science.gov (United States)

    Langer, S; Scislowski, P W; Brown, D S; Dewey, P; Fuller, M F

    2000-01-01

    The present experiment was designed to elucidate the mechanism of the methionine-sparing effect of excess branched-chain amino acids (BCAA) reported in the previous paper (Langer & Fuller, 2000). Twelve growing gilts (30-35 kg) were prepared with arterial catheters. After recovery, they received for 7 d a semipurified diet with a balanced amino acid pattern. On the 7th day blood samples were taken before (16 h postabsorptive) and after the morning meal (4 h postprandial). The animals were then divided into three groups and received for a further 7 d a methionine-limiting diet (80% of requirement) (1) without any amino acid excess; (2) with excess leucine (50% over requirement); or (3) with excesses of all three BCAA (leucine, isoleucine, valine, each 50% over the requirement). On the 7th day blood samples were taken as in the first period, after which the animals were killed and liver and muscle samples taken. Plasma amino acid and branched-chain keto acid (BCKA) concentrations in the blood and branched-chain keto-acid dehydrogenase (BCKDH; EC 1.2.4.4) activity in liver and muscle homogenates were determined. Compared with those on the balanced diet, pigs fed on methionine-limiting diets had significantly lower (P < 0.05) plasma methionine concentrations in the postprandial but not in the postabsorptive state. There was no effect of either leucine or a mixture of all three BCAA fed in excess on plasma methionine concentrations. Excess dietary leucine reduced (P < 0.05) the plasma concentrations of isoleucine and valine in both the postprandial and postabsorptive states. Plasma concentrations of the BCKA reflected the changes in the corresponding amino acids. Basal BCKDH activity in the liver and total BCKDH activity in the biceps femoris muscle were significantly (P < 0.05) increased by excesses of leucine or all BCAA.

  8. Chemical synthesis of a dual branched malto-decaose: A potential substrate for alpha-amylases

    DEFF Research Database (Denmark)

    Damager, Iben; Jensen, Morten; Olsen, Carl Erik

    2005-01-01

    A convergent block strategy for general use in efficient synthesis of complex alpha-(1 -> 4)- and alpha-(1 -> 6)-malto-oligosaccharides is demonstrated with the first chemical synthesis of a malto-oligosaccharide, the decasoccharide 6,6""-bis(alpha-maltosyl)-maltohexaose, with two branch points....... Using this chemically defined branched oligosaccharide as a substrate, the cleavage pattern of seven different alpha-amylases were investigated. alpha-Amylases from human saliva, porcine pancreas, barley alpha-amylose 2 and recombinant barley alpha-amylase 1 all hydrolysed the decasaccharide selectively....... This resulted in a branched hexasaccharide and a branched tetrasoccharide. alpha-Amylases from Asperagillus oryzae, Bacillus licheniformis and Bacillus sp. cleaved the decasoccharide at two distinct sites, either producing two branched pentasoccharides, or a branched hexasoccharide and a branched...

  9. Expression of mitochondrial branched-chain aminotransferase and α-keto-acid dehydrogenase in rat brain: implications for neurotransmitter metabolism

    Science.gov (United States)

    Cole, Jeffrey T.; Sweatt, Andrew J.; Hutson, Susan M.

    2012-01-01

    In the brain, metabolism of the essential branched chain amino acids (BCAAs) leucine, isoleucine, and valine, is regulated in part by protein synthesis requirements. Excess BCAAs are catabolized or excreted. The first step in BCAA catabolism is catalyzed by the branched chain aminotransferase (BCAT) isozymes, mitochondrial BCATm and cytosolic BCATc. A product of this reaction, glutamate, is the major excitatory neurotransmitter and precursor of the major inhibitory neurotransmitter γ-aminobutyric acid (GABA). The BCATs are thought to participate in a α-keto-acid nitrogen shuttle that provides nitrogen for synthesis of glutamate from α-ketoglutarate. The branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC) catalyzes the second, irreversible step in BCAA metabolism, which is oxidative decarboxylation of the branched-chain α-keto acid (BCKA) products of the BCAT reaction. Maple Syrup Urine Disease (MSUD) results from genetic defects in BCKDC, which leads to accumulation of toxic levels of BCAAs and BCKAs that result in brain swelling. Immunolocalization of BCATm and BCKDC in rats revealed that BCATm is present in astrocytes in white matter and in neuropil, while BCKDC is expressed only in neurons. BCATm appears uniformly distributed in astrocyte cell bodies throughout the brain. The segregation of BCATm to astrocytes and BCKDC to neurons provides further support for the existence of a BCAA-dependent glial-neuronal nitrogen shuttle since the data show that BCKAs produced by glial BCATm must be exported to neurons. Additionally, the neuronal localization of BCKDC suggests that MSUD is a neuronal defect involving insufficient oxidation of BCKAs, with secondary effects extending beyond the neuron. PMID:22654736

  10. Cloning and inactivation of a branched-chain-amino-acid aminotransferase gene from Staphylococcus carnosus and characterization of the enzyme

    DEFF Research Database (Denmark)

    Madsen, Søren M; Beck, Hans Christian; Ravn, Peter

    2002-01-01

    Staphylococcus carnosus and Staphylococcus xylosus are widely used as aroma producers in the manufacture of dried fermented sausages. Catabolism of branched-chain amino acids (BCAAs) by these strains contributes to aroma formation by production of methyl-branched aldehydes and carboxy acids. The ...

  11. Modified solution calorimetry approach for determination of vaporization and sublimation enthalpies of branched-chain aliphatic and alkyl aromatic compounds at T = 298.15 K

    International Nuclear Information System (INIS)

    Varfolomeev, Mikhail A.; Novikov, Vladimir B.; Nagrimanov, Ruslan N.; Solomonov, Boris N.

    2015-01-01

    Highlights: • Solution enthalpies of 18 branching-chain alkyl aromatic and aliphatic compounds in cyclohexane were measured. • Group contributions to the enthalpy of solvation due to branching and substitution in carbon chain were evaluated. • Modified solution calorimetry based approach for determination of vaporization/sublimation enthalpies was proposed. • This approach provides vaporization/sublimation enthalpies directly at T = 298.15 K. • Vaporization/sublimation enthalpies of 35 branched-chain alkyl aromatic and aliphatic compounds were determined. - Abstract: The enthalpies of solution, solvation and vaporization/sublimation are interrelated values combined in the simplest thermodynamic circle. Hence, experimental determination of vaporization/sublimation enthalpy can be substituted by experimentally simpler determination of solution enthalpy when solvation enthalpy is known. Previously it was found that solvation enthalpies of a wide range of unbranched aliphatic and aromatic solutes in saturated hydrocarbons are in good linear correlation with their molar refraction values. This allows to estimate the vaporization/sublimation enthalpy of any unbranched organic compound from its solution enthalpy in saturated hydrocarbon and molar refraction. In the present work this approach was modified for determination of vaporization/sublimation enthalpy of branched-chain alkyl aromatic and aliphatic compounds. Group contributions to the enthalpy of solvation due to the branching of carbon chain were evaluated. Enthalpies of solution at infinite dilution of 18 branched-chain aliphatic and alkyl aromatic compounds were measured at T = 298.15 K. Vaporization/sublimation enthalpies for 35 branched aliphatic and alkyl aromatic compounds were determined by using modified solution calorimetry approach. These values are in good agreement with available literature data on vaporization/sublimation enthalpies obtained by conventional methods.

  12. Disappearance of criticality in branched-chain thermal explosion with heat loss

    International Nuclear Information System (INIS)

    Okoya, Samuel S.

    2003-09-01

    In the framework of the currently developed branched-chain thermal explosion theory, the equation governing leakage through a hole of a reaction vessel is given. The critical ignition, extinction and transition temperature excess, activation energy parameter and modified Semenov's number are estimated employing this equation. We calculated numerically and obtained analytically these non-dimensional parameters with and without initiation respectively. The similar solution for Semenov model appear as a limiting case of our solution. We also obtained the ignition times. (author)

  13. Regional myocardial extraction of a radioiodinated branched chain fatty acid during right ventricular pressure overload due to acute pulmonary hypertension

    International Nuclear Information System (INIS)

    Hurford, W.; Lowenstein, E.; Zapol, W.; Barlai-Kovach, M.; Livni, E.; Elmaleh, D.R.; Strauss, H.W.

    1985-01-01

    To determine whether branched chain fatty acid extraction is reduced during right ventricular (RV) dysfunction due to acute pulmonary artery hypertension, studies were done in 6 anesthetized dogs. Regional branched chain fatty acid extraction was measured by comparing the myocardial uptake of I-125 labeled 15-[p-(iodophenyl)]-3-methylpentadecanoic acid (I-PDA) to myocardial blood flow. Acute pulmonary hypertension was induced by incremental intravenous injection of 100 micron diameter glass beads into six pentobarbital anesthetized, mechanically ventilated dogs. Myocardial blood flow was measured by radiolabeled microspheres both under baseline conditions and during pulmonary hypertension. Mean RV pressure rose from 12 +- 2 (mean +- SEM) to 30 +-3mmHg resulting in a 225 +- 16% increase in RV stroke work. RV ejection fraction, as assessed by gated blood pool scans fell from 39 +- 2 to 18 +- 2%. Left ventricular (LV) pressures, stroke work and ejection fraction were unchanged. Myocardial blood flow increased 132 + 59% in the RV free wall and 67 +- 22% in the RV septum. LV blood flow was unchanged. Despite increased RV work and myocardial blood flow, no differences were noted in the branched chain fatty acid extraction ratios among LV or RV free walls or septum. The authors conclude that early RV dysfunction associated with pulmonary artery hypertension is not due to inadequate myocardial blood flow or branched chain fatty acid extraction

  14. Effects of a branched-chain amino acid-enriched diet on chronic hepatic encephalopathy in dogs

    NARCIS (Netherlands)

    Meyer, H. P.; Chamuleau, R. A.; Legemate, D. A.; Mol, J. A.; Rothuizen, J.

    1999-01-01

    A decreased ratio of branched-chain amino acids (BCAA) to aromatic amino acids (AAA) is considered an important pathogenetic factor in hepatic encephalopathy (HE). A relationship between the deranged BCAA/AAA ratio and dopaminergic dysfunction through the formation of "false" neurotransmitters has

  15. Mechanisms of activation of muscle branched-chain alpha-keto acid dehydrogenase during exercise in man

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; MacLean, D A; Saltin, B

    1996-01-01

    1. Exercise leads to activation (dephosphorylation) of the branched-chain alpha-keto acid dehydrogenase (BCKADH). Here we investigate the effect of low pre-exercise muscle glycogen content and of branched-chain amino acid (BCAA) ingestion on the activity of BCKADH at rest and after 90 min of one......-leg knee-extensor exercise at 65% maximal one-leg power output in five subjects. 2. Pre-exercise BCAA ingestion (308 mg BCAAs (kg body wt)-1) caused an increased muscle BCAA uptake, a higher intramuscular BCAA concentration and activation of BCKADH both at rest (9 +/- 1 versus 25 +/- 5% for the control...... and BCAA test, respectively) and after exercise (27 +/- 4 versus 54 +/- 7%). 3. At rest the percentage active BCKADH was not different, 6 +/- 2% versus 5 +/- 1%, in the normal and low glycogen content leg (392 +/- 21 and 147 +/- 34 mumol glycosyl units (g dry muscle)-1, respectively). The post...

  16. Novel metabolic and physiological functions of branched chain amino acids: a review

    OpenAIRE

    Zhang, Shihai; Zeng, Xiangfang; Ren, Man; Mao, Xiangbing; Qiao, Shiyan

    2017-01-01

    It is widely known that branched chain amino acids (BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA (isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the mTOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining ...

  17. Improving proton conduction pathways in di- and triblock copolymer membranes: Branched versus linear side chains

    Science.gov (United States)

    Dorenbos, G.

    2017-06-01

    Phase separation within a series of polymer membranes in the presence of water is studied by dissipative particle dynamics. Each polymer contains hydrophobic A beads and hydrophilic C beads. Three parent architectures are constructed from a backbone composed of connected hydrophobic A beads to which short ([C]), long ([A3C]), or symmetrically branched A5[AC][AC] side chains spring off. Three di-block copolymer derivatives are constructed by covalently bonding an A30 block to each parent architecture. Also three tri-blocks with A15 blocks attached to both ends of each parent architecture are modeled. Monte Carlo tracer diffusion calculations through the water containing pores for 1226 morphologies reveal that water diffusion for parent architectures is slowest and diffusion through the di-blocks is fastest. Furthermore, diffusion increases with side chain length and is highest for branched side chains. This is explained by the increase of water pore size with , which is the average number of bonds that A beads are separated from a nearest C bead. Optimization of within the amphiphilic parent architecture is expected to be essential in improving proton conduction in polymer electrolyte membranes.

  18. Expression of Mitochondrial Branched-Chain Aminotransferase and α-Keto-Acid Dehydrogenase in Rat Brain: Implications for Neurotransmitter Metabolism

    Directory of Open Access Journals (Sweden)

    Jeffrey Thomas Cole

    2012-05-01

    Full Text Available In the brain, metabolism of the essential branched chain amino acids (BCAAs leucine, isoleucine and valine, is regulated in part by protein synthesis requirements. Excess BCAAs are catabolized or excreted. The first step in BCAA catabolism is catalyzed by the branched chain aminotransferase (BCAT isozymes, mitochondrial BCATm and cytosolic BCATc. A product of this reaction, glutamate, is the major excitatory neurotransmitter and precursor of the major inhibitory neurotransmitter -aminobutyric acid (GABA. The BCATs are thought to participate in an α-keto-acid nitrogen shuttle that provides nitrogen for synthesis of glutamate from -ketoglutarate. The branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC catalyzes the second and first irreversible step in BCAA metabolism, which is oxidative decarboxylation of the branched-chain α-keto acid (BCKA products of the BCAT reaction. Maple Syrup Urine Disease (MSUD results from genetic defects in BCKDC, which leads to accumulation of toxic levels of BCAAs and BCKAs that result in brain swelling. Immunolocalization of BCATm and BCKDC in rats revealed that BCATm is present in astrocytes in white matter and in neuropil, while BCKDC is expressed only in neurons. BCATm appears uniformly distributed in astrocyte cell bodies throughout the brain. The segregation of BCATm to astrocytes and BCKDC to neurons provides further support for the existence of a BCAA-dependent glial-neuronal nitrogen shuttle since the data show that BCKAs produced by glial BCATm must be exported to neurons. Additionally, the neuronal localization of BCKDC suggests that MSUD is a neuronal defect involving insufficient oxidation of BCKAs, with secondary effects extending beyond the neuron.

  19. Biological Functions of ilvC in Branched-Chain Fatty Acid Synthesis and Diffusible Signal Factor Family Production in Xanthomonas campestris

    Directory of Open Access Journals (Sweden)

    Kai-Huai Li

    2017-12-01

    Full Text Available In bacteria, the metabolism of branched-chain amino acids (BCAAs is tightly associated with branched-chain fatty acids (BCFAs synthetic pathways. Although previous studies have reported on BCFAs biosynthesis, more detailed associations between BCAAs metabolism and BCFAs biosynthesis remain to be addressed. In this study, we deleted the ilvC gene, which encodes ketol-acid reductoisomerase in the BCAAs synthetic pathway, from the Xanthomonas campestris pv. campestris (Xcc genome. We characterized gene functions in BCFAs biosynthesis and production of the diffusible signal factor (DSF family signals. Disruption of ilvC caused Xcc to become auxotrophic for valine and isoleucine, and lose the ability to synthesize BCFAs via carbohydrate metabolism. Furthermore, ilvC mutant reduced the ability to produce DSF-family signals, especially branched-chain DSF-family signals, which might be the main reason for Xcc reduction of pathogenesis toward host plants. In this report, we confirmed that BCFAs do not have major functions in acclimatizing Xcc cells to low temperatures.

  20. Microbial production of branched-chain dicarboxylate 2-methylsuccinic acid via enoate reductase-mediated bioreduction.

    Science.gov (United States)

    Wang, Jian; Yang, Yaping; Zhang, Ruihua; Shen, Xiaolin; Chen, Zhenya; Wang, Jia; Yuan, Qipeng; Yan, Yajun

    2018-01-01

    2-Methylsuccinic acid (2-MSA) is a C5 branched-chain dicarboxylate that serves as an attractive synthon for the synthesis of polymers with extensive applications in coatings, cosmetic solvents and bioplastics. However, the lack of natural pathways for 2-MSA biosynthesis has limited its application as a promising bio-replacement. Herein, we conceived a non-natural three-step biosynthetic route for 2-MSA, via employing the citramalate pathway in combination with enoate reductase-mediated bioreduction of the pathway intermediate citraconate. First, over-expression of codon-optimized citramalate synthase variant CimA* from Methanococcus jannaschii, endogenous isopropylmalate isomerase EcLeuCD and enoate reductase YqjM from Bacillus subtilis allowed the production of 2-MSA in Escherichia coli for the first time, with a titer of 0.35g/L in shake flask experiments. Subsequent screening of YqjM-like enoate reductases of different bacterial origins enabled identification and characterization of a new NAD(P)H-dependent enoate reductase KpnER from Klebsiella pneumoniae, which exhibited higher activity towards citraconate than YqjM. Incorporation of KpnER into the 2-MSA biosynthetic pathway led to 2-MSA production improvement to a titer of 0.96g/L in aerobic condition. Subsequent optimizations including cofactor regeneration, microaerobic cultivation and host strain engineering, boosted 2-MSA titer to 3.61g/L with a molar yield of 0.36 in shake flask experiments. This work established a promising platform for 2-MSA bioproduction, which enabled the highest titer of 2-MSA production in microbial hosts so far. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. Branched-Chain Amino Acids and Insulin Metabolism: The Insulin Resistance Atherosclerosis Study (IRAS)

    OpenAIRE

    Lee, C. Christine; Watkins, Steve M.; Lorenzo, Carlos; Wagenknecht, Lynne E.; Il?yasova, Dora; Chen, Yii-Der I.; Haffner, Steven M.; Hanley, Anthony J.

    2016-01-01

    OBJECTIVE Recent studies using untargeted metabolomics approaches have suggested that plasma branched-chain amino acids (BCAAs) are associated with incident diabetes. However, little is known about the role of plasma BCAAs in metabolic abnormalities underlying diabetes and whether these relationships are consistent across ethnic populations at high risk for diabetes. We investigated the associations of BCAAs with insulin sensitivity (SI), acute insulin response (AIR), and metabolic clearance ...

  2. The Complex Role of Branched Chain Amino Acids in Diabetes and Cancer

    OpenAIRE

    O’Connell, Thomas M.

    2013-01-01

    The obesity and diabetes epidemics are continuing to spread across the globe. There is increasing evidence that diabetes leads to a significantly higher risk for certain types of cancer. Both diabetes and cancer are characterized by severe metabolic perturbations and the branched chain amino acids (BCAAs) appear to play a significant role in both of these diseases. These essential amino acids participate in a wide variety of metabolic pathways, but it is now recognized that they are also crit...

  3. Adipose Tissue Branched Chain Amino Acid (BCAA) Metabolism Modulates Circulating BCAA Levels*

    OpenAIRE

    Herman, Mark A.; She, Pengxiang; Peroni, Odile D.; Lynch, Christopher J.; Kahn, Barbara B.

    2010-01-01

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent obse...

  4. Metabolic reconstructions identify plant 3-methylglutaconyl-CoA hydratase that is crucial for branched-chain amino acid catabolism in mitochondria

    Science.gov (United States)

    The proteinogenic branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are essential nutrients for mammals. In plants, they double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates...

  5. Interplay between Lipids and Branched-Chain Amino Acids in Development of Insulin Resistance

    OpenAIRE

    Newgard, Christopher B.

    2012-01-01

    Fatty acids (FA) and FA-derived metabolites have long been implicated in the development of insulin resistance and type 2 diabetes. Surprisingly, application of metabolomics technologies has revealed that branched-chain amino acids (BCAA) and related metabolites are more strongly associated with insulin resistance than many common lipid species. Moreover, the BCAA-related signature is predictive of incident diabetes and intervention outcomes, and uniquely responsive to therapeutic interventio...

  6. Supplemental branched-chain amino acids improve performance and immune response of newly-received feedlot calves

    Science.gov (United States)

    Supplemental branched-chain AA (BCAA) improved N balance of steers during a simulated pathogen challenge. The objective of this study was to determine the effect of supplemental BCAA on growth and health of newly-received feedlot steers. Steers (n = 120; initial BW = 376 ± 5 kg) were blocked by BW a...

  7. Strong, weak and branching bisimulation for transition systems and Markov reward chains: A unifying matrix approach

    NARCIS (Netherlands)

    Trcka, N.; Andova, S.; McIver, A.; D'Argenio, P.; Cuijpers, P.J.L.; Markovski, J.; Morgan, C.; Núñez, M.

    2009-01-01

    We first study labeled transition systems with explicit successful termination. We establish the notions of strong, weak, and branching bisimulation in terms of boolean matrix theory, introducing thus a novel and powerful algebraic apparatus. Next we consider Markov reward chains which are

  8. Internal logistics as a part of supply chain : case : Nokia-China, Dongguang Branch

    OpenAIRE

    Tian, Ran

    2009-01-01

    Internal logistics is one of the most important sections within enterprises, especially in the large manufacturing companies. It manages, arranges, plans and delivers the finished products. It is an indispensable part of the supply chain, as well as reflects the result of implementation company strategy. This study focuses on finding the possible ways to improve the operation process of Nokia-China internal logistics by looking into Nokia-China’s internal logistics in Dongguan Branch- Su...

  9. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism

    OpenAIRE

    Yoon, Mee-Sup

    2016-01-01

    Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs) belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or...

  10. Effects of Branched-chain Amino Acids on Ruminal Fermentation of Wheat Straw

    OpenAIRE

    Hui Ling Zhang; Yong Chen; Xiao Li Xu; Yu Xia Yang

    2013-01-01

    This study investigates the effects of three branched-chain amino acids (BCAA; valine, leucine, and isoleucine) on the in vitro ruminal fermentation of wheat straw using batch cultures of mixed ruminal microorganisms. BCAA were added to the buffered ruminal fluid at a concentration of 0, 2, 4, 7, or 10 mmol/L. After 72 h of anaerobic incubation, pH, volatile fatty acids (VFA), and ammonia nitrogen (NH3-N) in the ruminal fluid were determined. Dry matter (DM) and neutral detergent fiber (NDF) ...

  11. Branched chain amino acids requirements and metabolism in pigs

    DEFF Research Database (Denmark)

    Assadi Soumeh, Elham

    2015-01-01

    There is an interest to reduce the dietary crude protein (CP) level to promote the gut health of piglets, eliminate the environmental nitrogen load from intensive pig farming, and to reduce diet costs. This is possible by estimating individual amino acid (AA) requirements and by optimizing the diet...... according to the ideal protein profile that is compatible with the animal AA demand for normal body function. During the past decades, it has been tried to understand and characterize branched chain amino acids (BCAA) requirements, biological importance, and mode of actions. This is interesting for two...... of the last “-omics”, is a global analysis and interpretation of metabolome in specific health or nutritional status. Non-targeted metabolomics is used for screening the metabolic profile, and the metabolic signature could be used for hypothesis generation. The results of a non-targeted LC-MS metabolomics...

  12. Branched-chain and aromatic amino acid profiles and diabetes risk in Chinese populations

    OpenAIRE

    Tianlu Chen; Yan Ni; Xiaojing Ma; Yuqian Bao; Jiajian Liu; Fengjie Huang; Cheng Hu; Guoxiang Xie; Aihua Zhao; Weiping Jia; Wei Jia

    2016-01-01

    Recent studies revealed strong evidence that branched-chain and aromatic amino acids (BCAAs and AAAs) are closely associated with the risk of developing type 2 diabetes in several Western countries. The aim of this study was to evaluate the potential role of BCAAs and AAAs in predicting the diabetes development in Chinese populations. The serum levels of valine, leucine, isoleucine, tyrosine, and phenylalanine were measured in a longitudinal and a cross sectional studies with a total of 429 C...

  13. Increase of Long-chain Branching by Thermo-oxidative Treatment of LDPE

    Science.gov (United States)

    Rolón-Garrido, Víctor H.; Luo, Jinji; Wagner, Manfred H.

    2011-07-01

    Low-density polyethylene (LDPE) was exposed to thermal and thermo-oxidative treatment at 170 °C, and subsequently characterized by linear-viscoelastic measurements and in uniaxial extension. The Molecular Stress Function (MSF) model was used to quantify the elongational viscosities measured. For the thermally treated samples, exposure times between 2 and 6 hours were applied. Formation of long-chain branching (LCB) was found to occur only during the first two hours of thermal treatment. At longer exposure times, no difference in the level of strain hardening was observed. This was quantified by use of the MSF model: the nonlinear parameter fmax2 increased from fmax2 = 14 for the virgin sample to fmax2 = 22 for the samples thermally treated between 2 and 6 hours. For the thermo-oxidatively treated samples, which were exposed to air during thermal treatment between 30 and 90 minutes, the level of strain hardening increases drastically up to fmax2 = 55 with increasing exposure times from 30 up to 75 min due to LCB formation, and then decreases for an exposure time of 90 minutes due to chain scission dominating LCB formation. The nonlinear parameter β of the MSF model was found to be β = 2 for all samples, indicating that the general type of the random branching structure remains the same under all thermal conditions. Consequently only the parameter fmax2 of the MSF model and the linear-viscoelastic spectra were required to describe quantitatively the experimental observations. The strain hardening index, which is sometimes used to quantify strain hardening, follows accurately the trend of the MSF model parameter fmax2.

  14. Branched-chain amino acid (BCAA) supplementation enhances adaptability to exercise training of mice with a muscle-specific defect in the control of BCAA catabolism.

    Science.gov (United States)

    Xu, Minjun; Kitaura, Yasuyuki; Shindo, Daichi; Shimomura, Yoshiharu

    2018-03-01

    Branched-chain α-keto acid dehydrogenase (BCKDH) kinase (BDK) suppresses the branched-chain amino acid (BCAA) catabolism by inactivation of the BCKDH complex. The muscle-specific BDK-deficient (BDK-mKO) mice showed accelerated BCAA oxidation in muscle and decreased endurance capacity after training (Xu et al. PLoS One. 12 (2017) e0180989). We here report that BCAA supplementation overcompensated endurance capacity in BDK-mKO mice after training.

  15. The effect of supplementation with branched-chain amino acids in patients with liver cirrhosis.

    Science.gov (United States)

    Urata, Yohei; Okita, Kosuke; Korenaga, Keiko; Uchida, Koichi; Yamasaki, Takahiro; Sakaida, Isao

    2007-07-01

    We investigated the effect of supplementation with branched-chain amino acids (BCAA) in patients with liver cirrhosis on the change of energy metabolism as well as glucose tolerance. Thirty liver cirrhosis patients underwent nutrient supervision by a dietician for one week. They were then prescribed oral supplementation with three packs of a BCAA nutrient (Livact 4.15 g/pack; Ajinomoto Pharma, Tokyo, Japan), taken three times a day: after breakfast, dinner and before sleep. The change in energy metabolism and glucose tolerance was examined using an indirect calorimeter and 75 g oral glucose tolerance test (75 g OGTT). Non-protein respiratory quotient (npRQ) as well as branched-chain amino acid/tyrosine ratio (BTR) showed significant improvement, especially in patients with a creatinine height index (CHI) greater than 80. There was also a significant correlation between npRQ after one week of BCAA supplementation and the CHI. The patients with CHI greater than 80 and those with borderline pattern assessed by 75 g OGTT showed significant improvement in impaired glucose tolerance. Liver cirrhosis patients with CHI greater than 80 are the first candidates for BCAA supplementation. These patients showed improvement not only in energy metabolism and BTR, but also glucose tolerance.

  16. Branched-Chain and Aromatic Amino Acids Are Predictors of Insulin Resistance in Young Adults

    OpenAIRE

    Würtz, Peter; Soininen, Pasi; Kangas, Antti J.; Rönnemaa, Tapani; Lehtimäki, Terho; Kähönen, Mika; Viikari, Jorma S.; Raitakari, Olli T.; Ala-Korpela, Mika

    2013-01-01

    OBJECTIVE Branched-chain and aromatic amino acids are associated with the risk for future type 2 diabetes; however, the underlying mechanisms remain elusive. We tested whether amino acids predict insulin resistance index in healthy young adults. RESEARCH DESIGN AND METHODS Circulating isoleucine, leucine, valine, phenylalanine, tyrosine, and six additional amino acids were quantified in 1,680 individuals from the population-based Cardiovascular Risk in Young Finns Study (baseline age 32 ± 5 y...

  17. Clofibric acid stimulates branched-chain amino acid catabolism by three mechanisms.

    Science.gov (United States)

    Kobayashi, Rumi; Murakami, Taro; Obayashi, Mariko; Nakai, Naoya; Jaskiewicz, Jerzy; Fujiwara, Yoko; Shimomura, Yoshiharu; Harris, Robert A

    2002-11-15

    Clofibrate promotes catabolism of branched-chain amino acids by increasing the activity of the branched-chain alpha-keto acid dehydrogenase [BCKDH] complex. Depending upon the sex of the rats, nutritional state, and tissue being studied, clofibrate can affect BCKDH complex activity by three different mechanisms. First, by directly inhibiting BCKDH kinase activity, clofibrate can increase the proportion of the BCKDH complex in the active, dephosphorylated state. This occurs in situations in which the BCKDH complex is largely inactive due to phosphorylation, e.g., in the skeletal muscle of chow-fed rats or in the liver of female rats late in the light cycle. Second, by increasing the levels at which the enzyme components of the BCKDH complex are expressed, clofibrate can increase the total enzymatic activity of the BCKDH complex. This is readily demonstrated in livers of rats fed a low-protein diet, a nutritional condition that induces a decrease in the level of expression of the BCKDH complex. Third, by decreasing the amount of BCKDH kinase expressed and therefore its activity, clofibrate induces an increase in the percentage of the BCKDH complex in the active, dephosphorylated state. This occurs in the livers of rats fed a low-protein diet, a nutritional condition that causes inactivation of the BCKDH complex due to upregulation of the amount of BCKDH kinase. WY-14,643, which, like clofibric acid, is a ligand for the peroxisome-proliferator-activated receptor alpha [PPARalpha], does not directly inhibit BCKDH kinase but produces the same long-term effects as clofibrate on expression of the BCKDH complex and its kinase. Thus, clofibrate is unique in its capacity to stimulate BCAA oxidation through inhibition of BCKDH kinase activity, whereas PPARalpha activators in general promote BCAA oxidation by increasing expression of components of the BCKDH complex and decreasing expression of the BCKDH kinase.

  18. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    OpenAIRE

    Lerin, Carles; Goldfine, Allison B.; Boes, Tanner; Liu, Manway; Kasif, Simon; Dreyfuss, Jonathan M.; De Sousa-Coelho, Ana Luisa; Daher, Grace; Manoli, Irini; Sysol, Justin R.; Isganaitis, Elvira; Jessen, Niels; Goodyear, Laurie J.; Beebe, Kirk; Gall, Walt

    2016-01-01

    Objective: Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. Methods: To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sen...

  19. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Directory of Open Access Journals (Sweden)

    Roze Ludmila V

    2010-08-01

    Full Text Available Abstract Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine; we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1 Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2 VeA coordinates the

  20. 1H NMR analysis of long-chain-branched strong polyelectrolytes obtained by vinyl/divinyl monomer copolymerization in aqueous medium

    Czech Academy of Sciences Publication Activity Database

    Podešva, Jiří; Spěváček, Jiří; Kratochvíl, Pavel; Netopilík, Miloš

    2013-01-01

    Roč. 18, č. 7 (2013), s. 557-565 ISSN 1023-666X Institutional support: RVO:61389013 Keywords : long-chain branching * NMR * polyelectrolytes Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.487, year: 2013

  1. Equivalent chain lengths of all C4-C23 saturated monomethyl branched fatty acid methyl esters on methylsilicone OV-1 stationary phase.

    Science.gov (United States)

    Kubinec, Róbert; Blaško, Jaroslav; Górová, Renáta; Addová, Gabriela; Ostrovský, Ivan; Amann, Anton; Soják, Ladislav

    2011-04-01

    Isomer mixtures of monomethyl branched saturated C7-C23 fatty acid methyl esters (FAME) were prepared by performing a methylene insertion reaction to the straight chain FAME and this study model was completed by using commercially available standards of C4-C7 FAME. The equivalent chain lengths (ECL) of all 220 C4-C23 monomethyl branched FAME on OV-1 stationary phase were measured, achieving an average repeatability of ±0.0004 ECL units. The monomethyl branched FAME was identified by GC on the basis of regularity of the fractional chain lengths (FCL) dependence on the number of carbon atoms (C(z)) of individual homologous series of methyl 2-, 3-, …, 21-FAME. The prediction of retention of the first homologues, having the new position of methyl group beginning at higher carbon atoms number, and analogously for the second, third, fourth, and other members of the homologous series, allowed the dependence FCL=f(C(z)) for the first and subsequent members of beginning homologous of monomethyl derivatives of FAME. The identification was confirmed by mass spectrometry. All of the methyl isomers of FAME, which could not be completely separated by gas chromatography due to having a methyl group in surroundings of the middle of the carbon chain, were resolved by mass spectrometry using deconvolution in a SIM-mode. Measured gas chromatographic and mass spectrometric data were applied for identification of the monomethyl branched saturated FAME in tongue coating. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Branched-chain amino acid supplementation: impact on signaling and relevance to critical illness.

    Science.gov (United States)

    Mattick, John S A; Kamisoglu, Kubra; Ierapetritou, Marianthi G; Androulakis, Ioannis P; Berthiaume, Francois

    2013-01-01

    The changes that occur in mammalian systems following trauma and sepsis, termed systemic inflammatory response syndrome, elicit major changes in carbohydrate, protein, and energy metabolism. When these events persist for too long they result in a severe depletion of lean body mass, multiple organ dysfunction, and eventually death. Nutritional supplementation has been investigated to offset the severe loss of protein, and recent evidence suggests that diets enriched in branched-chain amino acids (BCAAs) may be especially beneficial. BCAAs are metabolized in two major steps that are differentially expressed in muscle and liver. In muscle, BCAAs are reversibly transaminated to the corresponding α-keto acids. For the complete degradation of BCAAs, the α-keto acids must travel to the liver to undergo oxidation. The liver, in contrast to muscle, does not significantly express the branched-chain aminotransferase. Thus, BCAA degradation is under the joint control of both liver and muscle. Recent evidence suggests that in liver, BCAAs may perform signaling functions, more specifically via activation of mTOR (mammalian target of rapamycin) signaling pathway, influencing a wide variety of metabolic and synthetic functions, including protein translation, insulin signaling, and oxidative stress following severe injury and infection. However, understanding of the system-wide effects of BCAAs that integrate both metabolic and signaling aspects is currently lacking. Further investigation in this respect will help rationalize the design and optimization of nutritional supplements containing BCAAs for critically ill patients. Copyright © 2013 Wiley Periodicals, Inc.

  3. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization.

    Science.gov (United States)

    Ran-Ressler, Rinat R; Lawrence, Peter; Brenna, J Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223-229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C₃H₇), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME.

  4. RP-HPLC/MS-APCI Analysis of Branched Chain TAG Prepared by Precursor-Directed Biosynthesis with Rhodococcus erythropolis

    Czech Academy of Sciences Publication Activity Database

    Schreiberová, O.; Krulikovská, T.; Sigler, Karel; Čejková, A.; Řezanka, Tomáš

    2010-01-01

    Roč. 45, č. 8 (2010), s. 743-756 ISSN 0024-4201 R&D Projects: GA MŠk 2B08062 Institutional research plan: CEZ:AV0Z50200510 Keywords : Rhodococcus erythropolis * RP-HPLC/MS-APCI * Branched chain triacylglycerols Subject RIV: EE - Microbiology, Virology Impact factor: 2.151, year: 2010

  5. Effects of glucose, glucose plus branched-chain amino acids, or placebo on bike performance over 100 km

    DEFF Research Database (Denmark)

    Madsen, Klavs; MacLean, David A; Kiens, Bente

    1996-01-01

    This study was undertaken to determine the effects of ingesting either glucose (trial G) or glucose plus branched-chain amino acids (BCAA: trial B), compared with placebo (trial P), during prolonged exercise. Nine well-trained cyclists with a maximal oxygen uptake of 63.1 +/- 1.5 ml O2. min-1.kg-...

  6. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids.

    Science.gov (United States)

    Zheng, Xiaojiao; Qiu, Yunping; Zhong, Wei; Baxter, Sarah; Su, Mingming; Li, Qiong; Xie, Guoxiang; Ore, Brandon M; Qiao, Shanlei; Spencer, Melanie D; Zeisel, Steven H; Zhou, Zhanxiang; Zhao, Aihua; Jia, Wei

    2013-08-01

    Research in obesity and metabolic disorders that involve intestinal microbiota demands reliable methods for the precise measurement of the short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) concentration. Here, we report a rapid method of simultaneously determining SCFAs and BCAAs in biological samples using propyl chloroformate (PCF) derivatization followed by gas chromatography mass spectrometry (GC-MS) analysis. A one-step derivatization using 100 µL of PCF in a reaction system of water, propanol, and pyridine (v/v/v = 8:3:2) at pH 8 provided the optimal derivatization efficiency. The best extraction efficiency of the derivatized products was achieved by a two-step extraction with hexane. The method exhibited good derivatization efficiency and recovery for a wide range of concentrations with a low limit of detection for each compound. The relative standard deviations (RSDs) of all targeted compounds showed good intra- and inter-day (within 7 days) precision (< 10%), and good stability (< 20%) within 4 days at room temperature (23-25 °C), or 7 days when stored at -20 °C. We applied our method to measure SCFA and BCAA levels in fecal samples from rats administrated with different diet. Both univariate and multivariate statistics analysis of the concentrations of these target metabolites could differentiate three groups with ethanol intervention and different oils in diet. This method was also successfully employed to determine SCFA and BCAA in the feces, plasma and urine from normal humans, providing important baseline information of the concentrations of these metabolites. This novel metabolic profile study has great potential for translational research.

  7. Branched-Chain Amino Acid Levels Are Related with Surrogates of Disturbed Lipid Metabolism among Older Men

    OpenAIRE

    Urho M Kujala; Markku Peltonen; Merja K. Laine; Merja K. Laine; Jaakko Kaprio; Jaakko Kaprio; Jaakko Kaprio; Olli. J. Heinonen; Jouko Sundvall; Johan G. Eriksson; Johan G. Eriksson; Johan G. Eriksson; Antti Jula; Seppo Sarna; Heikki Kainulainen

    2016-01-01

    Aims/hypothesis Existing studies suggest that decreased branched-chain amino acid (BCAA) catabolism and thus elevated levels in blood are associated with metabolic disturbances. Based on such information we have developed a hypothesis how BCAA degradation mechanistically connects to tricarboxylic acid (TCA) cycle, intramyocellular lipid storage and oxidation thus allowing more efficient mitochondrial energy production from lipids as well as providing better metabolic health. We analyzed wheth...

  8. Quantification of branching in model three-arm star polyethylene

    KAUST Repository

    Ramachandran, Ramnath; Beaucage, Gregory B.; Rai, Durgesh K.; Lohse, David J.; Sun, Thomas; Tsou, Andy; Norman, Alexander Iain; Hadjichristidis, Nikolaos

    2012-01-01

    The versatility of a novel scaling approach in quantifying the structure of model well-defined 3-arm star polyethylene molecules is presented. Many commercial polyethylenes have long side branches, and the nature and quantity of these branches varies widely among the various forms. For instance, low-density polyethylene (LDPE) is typically a highly branched structure with broad distributions in branch content, branch lengths and branch generation (in hyperbranched structures). This makes it difficult to accurately quantify the structure and the inherent structure-property relationships. To overcome this drawback, model well-defined hydrogenated polybutadiene (HPB) structures have been synthesized via anionic polymerization and hydrogenation to serve as model analogues to long-chain branched polyethylene. In this article, model 3-arm star polyethylene molecules are quantified using the scaling approach. Along with the long-chain branch content in polyethylene, the approach also provides unique measurements of long-chain branch length and hyperbranch content. Such detailed description facilitates better understanding of the effect of branching on the physical properties of polyethylene. © 2012 American Chemical Society.

  9. Quantification of branching in model three-arm star polyethylene

    KAUST Repository

    Ramachandran, Ramnath

    2012-01-24

    The versatility of a novel scaling approach in quantifying the structure of model well-defined 3-arm star polyethylene molecules is presented. Many commercial polyethylenes have long side branches, and the nature and quantity of these branches varies widely among the various forms. For instance, low-density polyethylene (LDPE) is typically a highly branched structure with broad distributions in branch content, branch lengths and branch generation (in hyperbranched structures). This makes it difficult to accurately quantify the structure and the inherent structure-property relationships. To overcome this drawback, model well-defined hydrogenated polybutadiene (HPB) structures have been synthesized via anionic polymerization and hydrogenation to serve as model analogues to long-chain branched polyethylene. In this article, model 3-arm star polyethylene molecules are quantified using the scaling approach. Along with the long-chain branch content in polyethylene, the approach also provides unique measurements of long-chain branch length and hyperbranch content. Such detailed description facilitates better understanding of the effect of branching on the physical properties of polyethylene. © 2012 American Chemical Society.

  10. Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health

    Directory of Open Access Journals (Sweden)

    Luigi Fontana

    2016-07-01

    Full Text Available Protein-restricted (PR, high-carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Furthermore, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderate PR diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched-chain amino acids (BCAAs is sufficient to improve glucose tolerance and body composition equivalently to a PR diet via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino acids in the maintenance of metabolic health and suggest that diets specifically reduced in BCAAs, or pharmacological interventions in this pathway, may offer a translatable way to achieve many of the metabolic benefits of a PR diet.

  11. Effects of Branched-chain Amino Acids on Ruminal Fermentation of Wheat Straw

    Directory of Open Access Journals (Sweden)

    Hui Ling Zhang

    2013-04-01

    Full Text Available This study investigates the effects of three branched-chain amino acids (BCAA; valine, leucine, and isoleucine on the in vitro ruminal fermentation of wheat straw using batch cultures of mixed ruminal microorganisms. BCAA were added to the buffered ruminal fluid at a concentration of 0, 2, 4, 7, or 10 mmol/L. After 72 h of anaerobic incubation, pH, volatile fatty acids (VFA, and ammonia nitrogen (NH3-N in the ruminal fluid were determined. Dry matter (DM and neutral detergent fiber (NDF degradability were calculated after determining the DM and NDF in the original material and in the residue after incubation. The addition of valine, leucine, or isoleucine increased the total VFA yields (p≤0.001. However, the total VFA yields did not increase with the increase of BCAA supplement level. Total branched-chain VFA yields linearly increased as the supplemental amount of BCAA increased (p<0.001. The molar proportions of acetate and propionate decreased, whereas that of butyrate increased with the addition of valine and isoleucine (p<0.05. Moreover, the proportions of propionate and butyrate decreased (p<0.01 with the addition of leucine. Meanwhile, the molar proportions of isobutyrate were increased and linearly decreased (p<0.001 by valine and leucine, respectively. The addition of leucine or isoleucine resulted in a linear (p<0.001 increase in the molar proportions of isovalerate. The degradability of NDF achieved the maximum when valine or isoleucine was added at 2 mmol/L. The results suggest that low concentrations of BCAA (2 mmol/L allow more efficient regulation of ruminal fermentation in vitro, as indicated by higher VFA yield and NDF degradability. Therefore, the optimum initial dose of BCAA for in vitro ruminal fermentation is 2 mmol/L.

  12. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization[S

    Science.gov (United States)

    Ran-Ressler, Rinat R.; Lawrence, Peter; Brenna, J. Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223–229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C3H7), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME. PMID:22021637

  13. Branched-Chain Amino Acid Negatively Regulates KLF15 Expression via PI3K-AKT Pathway

    OpenAIRE

    Yunxia Liu; Weibing Dong; Jing Shao; Yibin Wang; Meiyi Zhou; Haipeng Sun

    2017-01-01

    Recent studies have linked branched-chain amino acid (BCAA) with numerous metabolic diseases. However, the molecular basis of BCAA's roles in metabolic regulation remains to be established. KLF15 (Krüppel-like factor 15) is a transcription factor and master regulator of glycemic, lipid, and amino acids metabolism. In the present study, we found high concentrations of BCAA suppressed KLF15 expression while BCAA starvation induced KLF15 expression, suggesting KLF15 expression is negatively cont...

  14. Endurance performance and energy metabolism during exercise in mice with a muscle-specific defect in the control of branched-chain amino acid catabolism.

    Science.gov (United States)

    Xu, Minjun; Kitaura, Yasuyuki; Ishikawa, Takuya; Kadota, Yoshihiro; Terai, Chihaya; Shindo, Daichi; Morioka, Takashi; Ota, Miki; Morishita, Yukako; Ishihara, Kengo; Shimomura, Yoshiharu

    2017-01-01

    It is known that the catabolism of branched-chain amino acids (BCAAs) in skeletal muscle is suppressed under normal and sedentary conditions but is promoted by exercise. BCAA catabolism in muscle tissues is regulated by the branched-chain α-keto acid (BCKA) dehydrogenase complex, which is inactivated by phosphorylation by BCKA dehydrogenase kinase (BDK). In the present study, we used muscle-specific BDK deficient mice (BDK-mKO mice) to examine the effect of uncontrolled BCAA catabolism on endurance exercise performance and skeletal muscle energy metabolism. Untrained control and BDK-mKO mice showed the same performance; however, the endurance performance enhanced by 2 weeks of running training was somewhat, but significantly less in BDK-mKO mice than in control mice. Skeletal muscle of BDK-mKO mice had low levels of glycogen. Metabolome analysis showed that BCAA catabolism was greatly enhanced in the muscle of BDK-mKO mice and produced branched-chain acyl-carnitine, which induced perturbation of energy metabolism in the muscle. These results suggest that the tight regulation of BCAA catabolism in muscles is important for homeostasis of muscle energy metabolism and, at least in part, for adaptation to exercise training.

  15. Endurance performance and energy metabolism during exercise in mice with a muscle-specific defect in the control of branched-chain amino acid catabolism.

    Directory of Open Access Journals (Sweden)

    Minjun Xu

    Full Text Available It is known that the catabolism of branched-chain amino acids (BCAAs in skeletal muscle is suppressed under normal and sedentary conditions but is promoted by exercise. BCAA catabolism in muscle tissues is regulated by the branched-chain α-keto acid (BCKA dehydrogenase complex, which is inactivated by phosphorylation by BCKA dehydrogenase kinase (BDK. In the present study, we used muscle-specific BDK deficient mice (BDK-mKO mice to examine the effect of uncontrolled BCAA catabolism on endurance exercise performance and skeletal muscle energy metabolism. Untrained control and BDK-mKO mice showed the same performance; however, the endurance performance enhanced by 2 weeks of running training was somewhat, but significantly less in BDK-mKO mice than in control mice. Skeletal muscle of BDK-mKO mice had low levels of glycogen. Metabolome analysis showed that BCAA catabolism was greatly enhanced in the muscle of BDK-mKO mice and produced branched-chain acyl-carnitine, which induced perturbation of energy metabolism in the muscle. These results suggest that the tight regulation of BCAA catabolism in muscles is important for homeostasis of muscle energy metabolism and, at least in part, for adaptation to exercise training.

  16. Association between plasma concentrations of branched-chain amino acids and adipokines in Japanese adults without diabetes

    OpenAIRE

    Katagiri, Ryoko; Goto, Atsushi; Budhathoki, Sanjeev; Yamaji, Taiki; Yamamoto, Hiroshi; Kato, Yumiko; Iwasaki, Motoki; Tsugane, Shoichiro

    2018-01-01

    Previous studies have consistently reported an association between circulating levels of branched-chain amino acids (BCAAs) or adipokines and insulin resistance; however, the association between BCAA and adipokine levels remains to be clarified. In this cross-sectional study involving 678 participants (435 men) without diabetes, plasma BCAA (valine, leucine, and isoleucine), adipokine (total and high molecular weight [HMW] adiponectin, leptin, and tumor necrosis factor-α [TNF-α]) concentratio...

  17. Regulation of adipose branched-chain amin acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Elevated blood branched-chain amin acids (BCAA)are often assoicated with insulin resistance and type2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metaboli...

  18. Regulation of adipose branched chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Elevated blood branched chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes. One possibility is that under these conditions there is a reduced cellular utilization and/or lower complete oxidation of BCAAs. White adipose tissue (WAT) has become appreciated as a...

  19. High-level iron mitigates fusaricidin-induced membrane damage and reduces membrane fluidity leading to enhanced drug resistance in Bacillus subtilis.

    Science.gov (United States)

    Yu, Wen-Bang; Ye, Bang-Ce

    2016-05-01

    Fusaricidins are a class of cyclic lipopeptide antibiotics that have strong antifungal activities against plant pathogenic fungi and excellent bactericidal activities against Gram-positive bacteria. The mechanism through which fusaricidin exerts its action is not yet entirely clear. To investigate the mode of action of fusaricidin, we determined the physiological and transcriptional responses of Bacillus subtilis to fusaricidin treatment by using a systems-level approach. Our data show that fusaricidin rapidly induced the expression of σ(W) regulon and caused membrane damage in B. subtilis. We further demonstrated that ferric ions play multiple roles in the action of fusaricidin on B. subtilis. Iron deprivation blocked the formation of hydroxyl radical in the cells and significantly inhibited the bactericidal activity of fusaricidin. Conversely, high levels of iron (>2 mM) repressed the expression of BkdR regulon, resulting in a smaller cellular pool of branched-chain precursors for iso- and anteiso-branched fatty acids, which in turn led to a decrease in the proportion of branched-chain fatty acids in the membrane of B. subtilis. This change in membrane composition reduced its bilayer fluidity and increased its resistance to antimicrobial agents. In conclusion, our experiments uncovered some novel interactions and a synergism between cellular iron levels and drug resistance in Gram-positive bacteria. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Interplay between lipids and branched-chain amino acids in development of insulin resistance

    Science.gov (United States)

    Newgard, Christopher B.

    2013-01-01

    Summary Fatty acids (FA) and FA-derived metabolites have long been implicated in the development of insulin resistance and type 2 diabetes. Surprisingly, application of metabolomics technologies has revealed that branched-chain amino acids (BCAA) and related metabolites are more strongly associated with insulin resistance than many common lipid species. Moreover, the BCAA-related signature is predictive of incident diabetes and intervention outcomes, and uniquely responsive to therapeutic interventions. Nevertheless, in animal feeding studies, BCAA supplementation requires the background of a high-fat diet to promote insulin resistance. This article develops a model to explain how lipids and BCAA may synergize to promote metabolic diseases. PMID:22560213

  1. Regulation of taste-active components of meat by dietary branched-chain amino acids; effects of branched-chain amino acid antagonism.

    Science.gov (United States)

    Imanari, M; Kadowaki, M; Fujimura, S

    2008-05-01

    1. The effects of dietary branched-chain amino acids (BCAAs) including leucine (Leu), isoleucine (Ile) and valine (Val) on taste-active components, especially free glutamate (Glu), in meat were investigated. 2. Broiler chickens (28 d old) were given varied dietary BCAA levels for 10 d before marketing. Dietary BCAA content ratios were either 100:100:100 (Low Leu group), 150:100:100 (Control group) or 150:150:150 (High Ile + Val group) for Leu:Ile:Val (% of each BCAA requirement according to NRC, 1994). Taste-related components of meat (free amino acids and ATP metabolites) and sensory scores of meat soup were estimated. 3. Free Glu content, the main taste-active component of meat, was significantly increased by dietary BCAA. Compared to the Control group, free Glu content increased by 30% in the High Ile + Val group. However, the inosine monophosphate (IMP) content in meat did not change among groups. 4. Sensory evaluation of meat soups showed that Control and High Ile + Val groups had different meat flavours. The sensory score of overall taste intensity was significantly higher in the High Ile + Val group. 5. These results suggest that dietary BCAA concentrations regulate free Glu in meat. Increasing dietary Ile + Val induces an increase in free Glu content of meat, improves meat taste and is more effective for increasing free Glu content in meat than decreasing dietary Leu level.

  2. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an "Operational Group B. amyloliquefaciens" within the B. subtilis Species Complex.

    Science.gov (United States)

    Fan, Ben; Blom, Jochen; Klenk, Hans-Peter; Borriss, Rainer

    2017-01-01

    The plant growth promoting model bacterium FZB42 T was proposed as the type strain of Bacillus amyloliquefaciens subsp. plantarum (Borriss et al., 2011), but has been recently recognized as being synonymous to Bacillus velezensis due to phylogenomic analysis (Dunlap C. et al., 2016). However, until now, majority of publications consider plant-associated close relatives of FZB42 still as " B. amyloliquefaciens ." Here, we reinvestigated the taxonomic status of FZB42 and related strains in its context to the free-living soil bacterium DSM7 T , the type strain of B. amyloliquefaciens . We identified 66 bacterial genomes from the NCBI data bank with high similarity to DSM7 T . Dendrograms based on complete rpoB nucleotide sequences and on core genome sequences, respectively, clustered into a clade consisting of three tightly linked branches: (1) B. amyloliquefaciens , (2) Bacillus siamensis , and (3) a conspecific group containing the type strains of B. velezensis, Bacillus methylotrophicus , and B. amyloliquefaciens subsp. plantarum . The three monophyletic clades shared a common mutation rate of 0.01 substitutions per nucleotide position, but were distantly related to Bacillus subtilis (0.1 substitutions per nucleotide position). The tight relatedness of the three clusters was corroborated by TETRA, dDDH, ANI, and AAI analysis of the core genomes, but dDDH and ANI values were found slightly below species level thresholds when B. amyloliquefaciens DSM7 T genome sequence was used as query sequence. Due to these results, we propose that the B. amyloliquefaciens clade should be considered as a taxonomic unit above of species level, designated here as "operational group B. amyloliquefaciens " consisting of the soil borne B. amyloliquefaciens , and plant associated B. siamensis and B. velezensis , whose members are closely related and allow identifying changes on the genomic level due to developing the plant-associated life-style.

  3. Bis(thienothiophenyl) diketopyrrolopyrrole-based conjugated polymers with various branched alkyl side chains and their applications in thin-film transistors and polymer solar cells.

    Science.gov (United States)

    Shin, Jicheol; Park, Gi Eun; Lee, Dae Hee; Um, Hyun Ah; Lee, Tae Wan; Cho, Min Ju; Choi, Dong Hoon

    2015-02-11

    New thienothiophene-flanked diketopyrrolopyrrole and thiophene-containing π-extended conjugated polymers with various branched alkyl side-chains were successfully synthesized. 2-Octyldodecyl, 2-decyltetradecyl, 2-tetradecylhexadecyl, 2-hexadecyloctadecyl, and 2-octadecyldocosyl groups were selected as the side-chain moieties and were anchored to the N-positions of the thienothiophene-flanked diketopyrrolopyrrole unit. All five polymers were found to be soluble owing to the bulkiness of the side chains. The thin-film transistor based on the 2-tetradecylhexadecyl-substituted polymer showed the highest hole mobility of 1.92 cm2 V(-1) s(-1) due to it having the smallest π-π stacking distance between the polymer chains, which was determined by grazing incidence X-ray diffraction. Bulk heterojunction polymer solar cells incorporating [6,6]-phenyl-C71-butyric acid methyl ester as the n-type molecule and the additive 1,8-diiodooctane (1 vol %) were also constructed from the synthesized polymers without thermal annealing; the device containing the 2-octyldodecyl-substituted polymer exhibited the highest power conversion efficiency of 5.8%. Although all the polymers showed similar physical properties, their device performance was clearly influenced by the sizes of the branched alkyl side-chain groups.

  4. Branched-Chain Amino Acids Are Required for the Survival and Virulence of Actinobacillus pleuropneumoniae in Swine▿

    OpenAIRE

    Subashchandrabose, Sargurunathan; LeVeque, Rhiannon M.; Wagner, Trevor K.; Kirkwood, Roy N.; Kiupel, Matti; Mulks, Martha H.

    2009-01-01

    In Actinobacillus pleuropneumoniae, which causes porcine pleuropneumonia, ilvI was identified as an in vivo-induced (ivi) gene and encodes the enzyme acetohydroxyacid synthase (AHAS) required for branched-chain amino acid (BCAA) biosynthesis. ilvI and 7 of 32 additional ivi promoters were upregulated in vitro when grown in chemically defined medium (CDM) lacking BCAA. Based on these observations, we hypothesized that BCAA would be found at limiting concentrations in pulmonary secretions and t...

  5. Amino acid metabolism during exercise in trained rats: the potential role of carnitine in the metabolic fate of branched-chain amino acids.

    Science.gov (United States)

    Ji, L L; Miller, R H; Nagle, F J; Lardy, H A; Stratman, F W

    1987-08-01

    The influence of endurance training and an acute bout of exercise on plasma concentrations of free amino acids and the intermediates of branched-chain amino acid (BCAA) metabolism were investigated in the rat. Training did not affect the plasma amino acid levels in the resting state. Plasma concentrations of alanine (Ala), aspartic acid (Asp), asparagine (Asn), arginine (Arg), histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), and valine (Val) were significantly lower, whereas glutamate (Glu), glycine (Gly), ornithine (Orn), tryptophan (Trp), tyrosine (Tyr), creatinine, urea, and ammonia levels were unchanged, after one hour of treadmill running in the trained rats. Plasma concentration of glutamine (Glu), the branched-chain keto acids (BCKA) and short-chain acyl carnitines were elevated with exercise. Ratios of plasma BCAA/BCKA were dramatically lowered by exercise in the trained rats. A decrease in plasma-free carnitine levels was also observed. These data suggest that amino acid metabolism is enhanced by exercise even in the trained state. BCAA may only be partially metabolized within muscle and some of their carbon skeletons are released into the circulation in forms of BCKA and short-chain acyl carnitines.

  6. Regulation of intestinal health by branched-chain amino acids.

    Science.gov (United States)

    Zhou, Hua; Yu, Bing; Gao, Jun; Htoo, John Khun; Chen, Daiwen

    2018-01-01

    Besides its primary role in the digestion and absorption of nutrients, the intestine also interacts with a complex external milieu, and is the first defense line against noxious pathogens and antigens. Dysfunction of the intestinal barrier is associated with enhanced intestinal permeability and development of various gastrointestinal diseases. The branched-chain amino acids (BCAAs) are important nutrients, which are the essential substrates for protein biosynthesis. Recently, emerging evidence showed that BCAAs are involved in maintaining intestinal barrier function. It has been reported that dietary supplementation with BCAAs promotes intestinal development, enhances enterocyte proliferation, increases intestinal absorption of amino acids (AA) and glucose, and improves the immune defenses of piglets. The underlying mechanism of these effects is mediated by regulating expression of genes and proteins associate with various signaling pathways. In addition, BCAAs promote the production of beneficial bacteria in the intestine of mice. Compelling evidence supports the notion that BCAAs play important roles in both nutrition and intestinal health. Therefore, as functional amino acids with various physiological effects, BCAAs hold key roles in promoting intestinal development and health in animals and humans. © 2017 Japanese Society of Animal Science.

  7. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an “Operational Group B. amyloliquefaciens” within the B. subtilis Species Complex

    Science.gov (United States)

    Fan, Ben; Blom, Jochen; Klenk, Hans-Peter; Borriss, Rainer

    2017-01-01

    The plant growth promoting model bacterium FZB42T was proposed as the type strain of Bacillus amyloliquefaciens subsp. plantarum (Borriss et al., 2011), but has been recently recognized as being synonymous to Bacillus velezensis due to phylogenomic analysis (Dunlap C. et al., 2016). However, until now, majority of publications consider plant-associated close relatives of FZB42 still as “B. amyloliquefaciens.” Here, we reinvestigated the taxonomic status of FZB42 and related strains in its context to the free-living soil bacterium DSM7T, the type strain of B. amyloliquefaciens. We identified 66 bacterial genomes from the NCBI data bank with high similarity to DSM7T. Dendrograms based on complete rpoB nucleotide sequences and on core genome sequences, respectively, clustered into a clade consisting of three tightly linked branches: (1) B. amyloliquefaciens, (2) Bacillus siamensis, and (3) a conspecific group containing the type strains of B. velezensis, Bacillus methylotrophicus, and B. amyloliquefaciens subsp. plantarum. The three monophyletic clades shared a common mutation rate of 0.01 substitutions per nucleotide position, but were distantly related to Bacillus subtilis (0.1 substitutions per nucleotide position). The tight relatedness of the three clusters was corroborated by TETRA, dDDH, ANI, and AAI analysis of the core genomes, but dDDH and ANI values were found slightly below species level thresholds when B. amyloliquefaciens DSM7T genome sequence was used as query sequence. Due to these results, we propose that the B. amyloliquefaciens clade should be considered as a taxonomic unit above of species level, designated here as “operational group B. amyloliquefaciens” consisting of the soil borne B. amyloliquefaciens, and plant associated B. siamensis and B. velezensis, whose members are closely related and allow identifying changes on the genomic level due to developing the plant-associated life-style. PMID:28163698

  8. Arabidopsis and Maize RidA Proteins Preempt Reactive Enamine/Imine Damage to Branched-Chain Amino Acid Biosynthesis in Plastids[C][W][OPEN

    Science.gov (United States)

    Niehaus, Thomas D.; Nguyen, Thuy N.D.; Gidda, Satinder K.; ElBadawi-Sidhu, Mona; Lambrecht, Jennifer A.; McCarty, Donald R.; Downs, Diana M.; Cooper, Arthur J.L.; Fiehn, Oliver; Mullen, Robert T.; Hanson, Andrew D.

    2014-01-01

    RidA (for Reactive Intermediate Deaminase A) proteins are ubiquitous, yet their function in eukaryotes is unclear. It is known that deleting Salmonella enterica ridA causes Ser sensitivity and that S. enterica RidA and its homologs from other organisms hydrolyze the enamine/imine intermediates that Thr dehydratase forms from Ser or Thr. In S. enterica, the Ser-derived enamine/imine inactivates a branched-chain aminotransferase; RidA prevents this damage. Arabidopsis thaliana and maize (Zea mays) have a RidA homolog that is predicted to be plastidial. Expression of either homolog complemented the Ser sensitivity of the S. enterica ridA mutant. The purified proteins hydrolyzed the enamines/imines formed by Thr dehydratase from Ser or Thr and protected the Arabidopsis plastidial branched-chain aminotransferase BCAT3 from inactivation by the Ser-derived enamine/imine. In vitro chloroplast import assays and in vivo localization of green fluorescent protein fusions showed that Arabidopsis RidA and Thr dehydratase are chloroplast targeted. Disrupting Arabidopsis RidA reduced root growth and raised the root and shoot levels of the branched-chain amino acid biosynthesis intermediate 2-oxobutanoate; Ser treatment exacerbated these effects in roots. Supplying Ile reversed the root growth defect. These results indicate that plastidial RidA proteins can preempt damage to BCAT3 and Ile biosynthesis by hydrolyzing the Ser-derived enamine/imine product of Thr dehydratase. PMID:25070638

  9. Slc3a2 Mediates Branched-Chain Amino-Acid-Dependent Maintenance of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Kayo Ikeda

    2017-11-01

    Full Text Available Summary: Foxp3+ regulatory T (Treg cells, which suppress immune responses, are highly proliferative in vivo. However, it remains unclear how the active replication of Treg cells is maintained in vivo. Here, we show that branched-chain amino acids (BCAAs, including isoleucine, are required for maintenance of the proliferative state of Treg cells via the amino acid transporter Slc3a2-dependent metabolic reprogramming. Mice fed BCAA-reduced diets showed decreased numbers of Foxp3+ Treg cells with defective in vivo proliferative capacity. Mice lacking Slc3a2 specifically in Foxp3+ Treg cells showed impaired in vivo replication and decreased numbers of Treg cells. Slc3a2-deficient Treg cells showed impaired isoleucine-induced activation of the mTORC1 pathway and an altered metabolic state. Slc3a2 mutant mice did not show an isoleucine-induced increase of Treg cells in vivo and exhibited multi-organ inflammation. Taken together, these findings demonstrate that BCAA controls Treg cell maintenance via Slc3a2-dependent metabolic regulation. : Treg cells regulate excess immune responses and are highly proliferative in vivo. Ikeda et al. find that branched-chain amino acids (BCAAs are essentially required to maintain expansion and the suppressive capacity of Treg cells via Slc3a2 and mTORC1. Keywords: Treg cells, amino acids, immunometabolism, immune regulation, transporter

  10. Identification and quantification of even and odd chained 5-n alkylresorcinols, branched chain-alkylresorcinols and methylalkylresorcinols in Quinoa (Chenopodium quinoa).

    Science.gov (United States)

    Ross, Alastair B; Svelander, Cecilia; Karlsson, Göran; Savolainen, Otto I

    2017-04-01

    Quinoa is a pseudocereal grown in the Andean region of South America that is of increasing interest worldwide as an alternative staple food. We have detected a complex mixture of both odd- and even-alkyl chain alkylresorcinols (AR), branched-chain alkylresorcinols (bcAR) and methylalkylresorcinols (mAR) in ethyl acetate extracts of quinoa. We quantified the content of AR in 17 commercial samples of quinoa, and found that the mean±SD content of AR was 58±16μg/g, bcAR was 182±52μg/g, and mAR was 136±40μg/g. AR from quinoa could also be detected in plasma after eating quinoa, indicating that some of these unique AR could be used as biomarkers of quinoa intake in humans. Further work is required to understand the role of these ARs in the quinoa plant and whether any of the novel ARs may be of particular interest in human nutrition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Branched-chain aminoacids and retraining of patients with chronic obstructive lung disease.

    Science.gov (United States)

    Menier, R; Talmud, J; Laplaud, D; Bernard, M P

    2001-12-01

    The aim of this work was to improve the efficacy of rehabilitation by retraining, by oral supply in branched-chain aminoacids (BCAA). Patients with chronic respiratory insufficiency mainly suffer from obstructive bronchitis due to tobacco or asthma. Nutritional assessment is one of the components of respiratory rehabilitation, with retraining. Intense physical training for several days negativates the nitrogen balance, the beginning of a training programme for sedentary patients increases their need in proteins. An additional supply in branched-chain aminoacids increases proteic anabolism, by synthesis increase and catabolism slackening of proteins. Moreover it is known that exposure to high altitude reduces lean mass by inducing a muscular atrophy, which can be avoided by the BCAA provided. This leads to wonder if extra supply of BCAA could play similar role in muscular mass loss induced by pathological chronic hypoxia. The prospective and comparative survey carried out in Toki-Eder (private hospital in Cambo) consisted in supplying (during five weeks or more) 30 retrained patients suffering from chronic obstructive bronchitis, and in matching them with 30 witnesses (obstructive patients retrained without additional supply in BCAA). Their mean hypoxemia amounted to 7 torr for age. Each of them improved their reached maximal power, and their VO2 SL, very highly significantly. Each of them developed a moderate metabolic acidosis (whose possible mechanisms are discussed) and slightly increased their ventilation at rest. On the other hand only the supplied patients improved their PaO2 at rest highly significantly, a result which poses the question of the responsible mechanism, most likely a decrease of pulmonary shunt effect. The hypotheses concerning the acid load due to BCAA ingestion are discussed. Only the supplied patients developed hypocapnia expressing a gaseous alkalosis which might be due to a direct effect of BCAA on the respiratory centers. This observation

  12. Dynamic Properties of Star-Branched Polymer Brushes

    International Nuclear Information System (INIS)

    Sikorski, A.; Romiszowski, P.

    2004-01-01

    We studied a simplified model of a polymer brush. It consisted of star-branched chains, which were restricted to a simple cubic lattice. Each star-branched macromolecule consisted of three linear arms of equal length emanating from a common origin (the branching point). The chains were grafted to an impenetrable surface, i.e. they were terminally attached to the surface with one arm. The number of chains was varied from low to high grafting density. The model system was studied at good solvent conditions because the excluded volume effect was the only potential of interaction included in the model. The properties of this model system were studied by means of Monte Carlo simulation. The sampling algorithm was based on local changes of chain conformations. The dynamic properties of the polymer brush were studied and correlated with its structure. The differences in relaxation times of particular star arms were shown. The short-time mobility of polymer layers was analyzed. The lateral self-diffusion of chains was also studied and discussed. (author)

  13. INVERSION SYMMETRY, ARCHITECTURE AND DISPERSITY, AND THEIR EFFECTS ON THERMODYNAMICS IN BULK AND CONFINED REGIONS: FROM RANDOMLY BRANCHED POLYMERS TO LINEAR CHAINS, STARS AND DENDRIMERS

    Directory of Open Access Journals (Sweden)

    P.D.Gujrati

    2002-01-01

    Full Text Available Theoretical evidence is presented in this review that architectural aspects can play an important role, not only in the bulk but also in confined geometries by using our recursive lattice theory, which is equally applicable to fixed architectures (regularly branched polymers, stars, dendrimers, brushes, linear chains, etc. and variable architectures, i.e. randomly branched structures. Linear chains possess an inversion symmetry (IS of a magnetic system (see text, whose presence or absence determines the bulk phase diagram. Fixed architectures possess the IS and yield a standard bulk phase diagram in which there exists a theta point at which two critical lines C and C' meet and the second virial coefficient A2 vanishes. The critical line C appears only for infinitely large polymers, and an order parameter is identified for this criticality. The critical line C' exists for polymers of all sizes and represents phase separation criticality. Variable architectures, which do not possess the IS, give rise to a topologically different phase diagram with no theta point in general. In confined regions next to surfaces, it is not the IS but branching and monodispersity, which becomes important in the surface regions. We show that branching plays no important role for polydisperse systems, but become important for monodisperse systems. Stars and linear chains behave differently near a surface.

  14. Branched chain amino acid profile in early chronic kidney disease

    Directory of Open Access Journals (Sweden)

    M Anil Kumar

    2012-01-01

    Full Text Available The nutritional status in chronic kidney disease (CKD patients is a predictor of prognosis during the first period of dialysis. Serum albumin is the most commonly used nutritional marker. Another index is plasma amino acid profile. Of these, the plasma levels of branched chain amino acids (BCAA, especially valine and leucine, correlate well with nutritional status. Plasma BCAAs were evaluated along with albumin and C-reactive protein in 15 patients of early stages of CKD and 15 age- and sex-matched healthy controls. A significant decrease in plasma valine, leucine and albumin levels was observed in CKD patients when compared with the controls (P <0.05. No significant difference in C-reactive protein (CRP levels was observed between the two groups. Malnutrition seen in our CKD patients in the form of hypoalbuminemia and decreased concentrations of BCAA points to the need to evaluate the nutritional status in the early stages itself. Simple measures in the form of amino acid supplementation should be instituted early to decrease the morbidity and mortality before start of dialysis in these patients.

  15. Bio-based phenolic-branched-chain fatty acid isomers synthesized from vegetable oils and natural monophenols using modified h+-ferrierite zeolite

    Science.gov (United States)

    A new group of phenolic branched-chain fatty acids (n-PBC-FA), hybrid molecules of natural monophenols (i.e., thymol, carvacrol and creosote) and mixed fatty acid (i.e., derived from soybean and safflower oils), were efficiently produced through a process known as arylation. The reaction involves a...

  16. The influence of flexible branches in flexible polymers

    International Nuclear Information System (INIS)

    Wescott, J.T.

    1998-06-01

    In this work the influence of branches in flexible polymer systems has been investigated by consideration of (1) the behaviour of isolated poly-α-olefin chains and (2) the p -T phase behaviour of poly(4-methylpentene-1)(P4MP1). Molecular dynamics simulations of isolated poly-α-olefins were performed in order to gauge directly the effect of molecular structure on chain dimensions, flexibility (via the persistence length) and shape. Under Θ-conditions the addition of short linear branches was shown to increase the flexibility of the backbone. In conditions of good solvent, however, the effect of longer and bulkier branches was to increase the persistence length and average size of the coil with the arrangement of side chain atoms making a small difference. The side branches themselves also affected the solvent conditions experienced by the backbone, behaving much like bound solvent. Consideration of ethylene-α-olefin copolymers, where the branch content was varied from 0-50%, showed that under good solvent conditions the branches increased the chain stiffness only when the gap between side branches was less than five backbone carbon atoms. The backbone torsions were also shown to play an important role in determining these trends. For comparison with the above simulations, persistence length values for polyethylene (= 7.3±0.2A) and P4MP1 (=7.6±0.3A) were measured experimentally by neutron scattering in dilute solution. A value of 6.7±0.5 for the characteristic ratio of PE was also calculated. To investigate the role of a bulky side group in crystalline phases, wide angle X-ray diffraction experiments using a Hikosaka pressure cell were performed on P4MP1. Computer modelling, utilising the experimental data obtained, determined the structure of a disordered phase produced at room temperature and a new high pressure/high temperature phase. The disordered phase was found to be due to a collapse of the backbone combined with some disordering of the side chains

  17. Analysis of the LIV system of Campylobacter jejuni reveals alternative roles for LivJ and LivK in commensalism beyond branched-chain amino acid transport.

    Science.gov (United States)

    Ribardo, Deborah A; Hendrixson, David R

    2011-11-01

    Campylobacter jejuni is a leading cause of diarrheal disease in humans and an intestinal commensal in poultry and other agriculturally important animals. These zoonotic infections result in significant amounts of C. jejuni present in the food supply to contribute to disease in humans. We previously found that a transposon insertion in Cjj81176_1038, encoding a homolog of the Escherichia coli LivJ periplasmic binding protein of the leucine, isoleucine, and valine (LIV) branched-chain amino acid transport system, reduced the commensal colonization capacity of C. jejuni 81-176 in chicks. Cjj81176_1038 is the first gene of a six-gene locus that encodes homologous components of the E. coli LIV system. By analyzing mutants with in-frame deletions of individual genes or pairs of genes, we found that this system constitutes a LIV transport system in C. jejuni responsible for a high level of leucine acquisition and, to a lesser extent, isoleucine and valine acquisition. Despite each LIV protein being required for branched-chain amino acid transport, only the LivJ and LivK periplasmic binding proteins were required for wild-type levels of commensal colonization of chicks. All LIV permease and ATPase components were dispensable for in vivo growth. These results suggest that the biological functions of LivJ and LivK for colonization are more complex than previously hypothesized and extend beyond a role for binding and acquiring branched-chain amino acids during commensalism. In contrast to other studies indicating a requirement and utilization of other specific amino acids for colonization, acquisition of branched-chain amino acids does not appear to be a determinant for C. jejuni during commensalism.

  18. Prospective randomized double-blind trial of branched chain amino acid enriched versus standard parenteral nutrition solutions in traumatized and septic patients

    NARCIS (Netherlands)

    Vente, J. P.; Soeters, P. B.; von Meyenfeldt, M. F.; Rouflart, M. M.; van der Linden, C. J.; Gouma, D. J.

    1991-01-01

    The addition of branched chain amino acids (BCAA) to total parenteral nutrition (TPN) solutions of balanced aminoacid composition has been reported to result in improved nitrogen balance, preservation of plasma protein levels, and improved immune function; however, only a few large clinical studies

  19. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease

    OpenAIRE

    Sunny, Nishanth E.; Kalavalapalli, Srilaxmi; Bril, Fernando; Garrett, Timothy J.; Nautiyal, Manisha; Mathew, Justin T.; Williams, Caroline M.; Cusi, Kenneth

    2015-01-01

    Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperin...

  20. Characterization of a novel debranching enzyme from Nostoc punctiforme possessing a high specificity for long branched chains

    International Nuclear Information System (INIS)

    Choi, Ji-Hye; Lee, Heeseob; Kim, Young-Wan; Park, Jong-Tae; Woo, Eui-Jeon; Kim, Myo-Jeong; Lee, Byong-Hoon; Park, Kwan-Hwa

    2009-01-01

    A novel debranching enzyme from Nostoc punctiforme PCC73102 (NPDE) exhibits hydrolysis activity toward both α-(1,6)- and α-(1,4)-glucosidic linkages. The action patterns of NPDE revealed that branched chains are released first, and the resulting maltooligosaccharides are then hydrolyzed. Analysis of the reaction with maltooligosaccharide substrates labeled with 14 C-glucose at the reducing end shows that NPDE specifically liberates glucose from the reducing end. Kinetic analyses showed that the hydrolytic activity of NPDE is greatly affected by the length of the substrate. The catalytic efficiency of NPDE increased considerably upon using substrates that can occupy at least eight glycone subsites such as maltononaose and maltooctaosyl-α-(1,6)-β-cyclodextrin. These results imply that NPDE has a unique subsite structure consisting of -8 to +1 subsites. Given its unique subsite structure, side chains shorter than maltooctaose in amylopectin were resistant to hydrolysis by NPDE, and the population of longer side chains was reduced.

  1. Effects of infusion of branched chain amino-acids enriched TPN solutions on plasma amino-acid profiles in sepsis and trauma patients

    NARCIS (Netherlands)

    Vente, J. P.; von Meyenfeldt, M. F.; van Eijk, H. M.; van Berlo, C. L.; Gouma, D. J.; van der Linden, C. J.; Soeters, P. B.

    1990-01-01

    Total parenteral nutrition with branched chain amino-acids enriched solutions has been advocated in patients with sepsis and stress because of favourable effects on nitrogen balance, protein synthesis and immune competence. The rationale for the use of BCAA-enriched solutions is based on their

  2. Branched-chain amino acids alter neurobehavioral function in rats

    Science.gov (United States)

    Coppola, Anna; Wenner, Brett R.; Ilkayeva, Olga; Stevens, Robert D.; Maggioni, Mauro; Slotkin, Theodore A.; Levin, Edward D.

    2013-01-01

    Recently, we have described a strong association of branched-chain amino acids (BCAA) and aromatic amino acids (AAA) with obesity and insulin resistance. In the current study, we have investigated the potential impact of BCAA on behavioral functions. We demonstrate that supplementation of either a high-sucrose or a high-fat diet with BCAA induces anxiety-like behavior in rats compared with control groups fed on unsupplemented diets. These behavioral changes are associated with a significant decrease in the concentration of tryptophan (Trp) in brain tissues and a consequent decrease in serotonin but no difference in indices of serotonin synaptic function. The anxiety-like behaviors and decreased levels of Trp in the brain of BCAA-fed rats were reversed by supplementation of Trp in the drinking water but not by administration of fluoxetine, a selective serotonin reuptake inhibitor, suggesting that the behavioral changes are independent of the serotonergic pathway of Trp metabolism. Instead, BCAA supplementation lowers the brain levels of another Trp-derived metabolite, kynurenic acid, and these levels are normalized by Trp supplementation. We conclude that supplementation of high-energy diets with BCAA causes neurobehavioral impairment. Since BCAA are elevated spontaneously in human obesity, our studies suggest a potential mechanism for explaining the strong association of obesity and mood disorders. PMID:23249694

  3. Converging from branching to linear metrics on Markov chains

    DEFF Research Database (Denmark)

    Bacci, Giorgio; Bacci, Giovanni; Larsen, Kim G.

    2017-01-01

    -approximant is computable in polynomial time in the size of the MC. The upper-approximants are bisimilarity-like pseudometrics (hence, branching-time distances) that converge point-wise to the linear-time metrics. This convergence is interesting in itself, because it reveals a nontrivial relation between branching...

  4. Converging from Branching to Linear Metrics on Markov Chains

    DEFF Research Database (Denmark)

    Bacci, Giorgio; Bacci, Giovanni; Larsen, Kim Guldstrand

    2015-01-01

    time in the size of the MC. The upper-approximants are Kantorovich-like pseudometrics, i.e. branching-time distances, that converge point-wise to the linear-time metrics. This convergence is interesting in itself, since it reveals a nontrivial relation between branching and linear-time metric...

  5. Analysis of the LIV System of Campylobacter jejuni Reveals Alternative Roles for LivJ and LivK in Commensalism beyond Branched-Chain Amino Acid Transport ▿

    Science.gov (United States)

    Ribardo, Deborah A.; Hendrixson, David R.

    2011-01-01

    Campylobacter jejuni is a leading cause of diarrheal disease in humans and an intestinal commensal in poultry and other agriculturally important animals. These zoonotic infections result in significant amounts of C. jejuni present in the food supply to contribute to disease in humans. We previously found that a transposon insertion in Cjj81176_1038, encoding a homolog of the Escherichia coli LivJ periplasmic binding protein of the leucine, isoleucine, and valine (LIV) branched-chain amino acid transport system, reduced the commensal colonization capacity of C. jejuni 81-176 in chicks. Cjj81176_1038 is the first gene of a six-gene locus that encodes homologous components of the E. coli LIV system. By analyzing mutants with in-frame deletions of individual genes or pairs of genes, we found that this system constitutes a LIV transport system in C. jejuni responsible for a high level of leucine acquisition and, to a lesser extent, isoleucine and valine acquisition. Despite each LIV protein being required for branched-chain amino acid transport, only the LivJ and LivK periplasmic binding proteins were required for wild-type levels of commensal colonization of chicks. All LIV permease and ATPase components were dispensable for in vivo growth. These results suggest that the biological functions of LivJ and LivK for colonization are more complex than previously hypothesized and extend beyond a role for binding and acquiring branched-chain amino acids during commensalism. In contrast to other studies indicating a requirement and utilization of other specific amino acids for colonization, acquisition of branched-chain amino acids does not appear to be a determinant for C. jejuni during commensalism. PMID:21949065

  6. All solid-state polymer electrolytes prepared from a hyper-branched graft polymer using atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Higa, Mitsuru; Fujino, Yukiko; Koumoto, Taihei; Kitani, Ryousuke; Egashira, Satsuki

    2005-01-01

    We propose an all solid-state (liquid free) polymer electrolyte (SPE) prepared from a hyper-branched graft copolymer. The graft copolymer consisting of a poly(methyl methacrylate) main chain and poly(ethylene glycol) methyl ether methacrylate side chains was synthesized by atom transfer radical polymerization changing the average chain distance between side chains, side chain length and branched chain length of the proposed structure of the graft copolymer. The ionic conductivity of the SPEs increases with increasing the side chain length, branched chain length and/or average distance between the side chains. The ionic conductivity of the SPE prepared from POEM 9 whose POEM content = 51 wt% shows 2 x 10 -5 S/cm at 30 deg. C. The tensile strength of the SPEs decreases with increases the side chain length, branched chain length and/or average distance between the side chains. These results indicate that a SPE prepared from the hyper-branched graft copolymer has potential to be applied to an all-solid polymer electrolyte

  7. Effects of Leucine Supplementation and Serum Withdrawal on Branched-Chain Amino Acid Pathway Gene and Protein Expression in Mouse Adipocytes

    Science.gov (United States)

    Vivar, Juan C.; Knight, Megan S.; Pointer, Mildred A.; Gwathmey, Judith K.; Ghosh, Sujoy

    2014-01-01

    The essential branched-chain amino acids (BCAA), leucine, valine and isoleucine, are traditionally associated with skeletal muscle growth and maintenance, energy production, and generation of neurotransmitter and gluconeogenic precursors. Recent evidence from human and animal model studies has established an additional link between BCAA levels and obesity. However, details of the mechanism of regulation of BCAA metabolism during adipogenesis are largely unknown. We interrogated whether the expression of genes and proteins involved in BCAA metabolism are sensitive to the adipocyte differentiation process, and responsive to nutrient stress from starvation or BCAA excess. Murine 3T3-L1 preadipocytes were differentiated to adipocytes under control conditions and under conditions of L-leucine supplementation or serum withdrawal. RNA and proteins were isolated at days 0, 4 and 10 of differentiation to represent pre-differentiation, early differentiation and late differentiation stages. Expression of 16 BCAA metabolism genes was quantified by quantitative real-time PCR. Expression of the protein levels of branched-chain amino acid transaminase 2 (Bcat2) and branched-chain alpha keto acid dehydrogenase (Bckdha) was quantified by immunoblotting. Under control conditions, all genes displayed induction of gene expression during early adipogenesis (Day 4) compared to Day 0. Leucine supplementation resulted in an induction of Bcat2 and Bckdha genes during early and late differentiation. Western blot analysis demonstrated condition-specific concordance between gene and protein expression. Serum withdrawal resulted in undetectable Bcat2 and Bckdha protein levels at all timepoints. These results demonstrate that the expression of genes related to BCAA metabolism are regulated during adipocyte differentiation and influenced by nutrient levels. These results provide additional insights on how BCAA metabolism is associated with adipose tissue function and extends our understanding of

  8. Effects of leucine supplementation and serum withdrawal on branched-chain amino acid pathway gene and protein expression in mouse adipocytes.

    Directory of Open Access Journals (Sweden)

    Abderrazak Kitsy

    Full Text Available The essential branched-chain amino acids (BCAA, leucine, valine and isoleucine, are traditionally associated with skeletal muscle growth and maintenance, energy production, and generation of neurotransmitter and gluconeogenic precursors. Recent evidence from human and animal model studies has established an additional link between BCAA levels and obesity. However, details of the mechanism of regulation of BCAA metabolism during adipogenesis are largely unknown. We interrogated whether the expression of genes and proteins involved in BCAA metabolism are sensitive to the adipocyte differentiation process, and responsive to nutrient stress from starvation or BCAA excess. Murine 3T3-L1 preadipocytes were differentiated to adipocytes under control conditions and under conditions of L-leucine supplementation or serum withdrawal. RNA and proteins were isolated at days 0, 4 and 10 of differentiation to represent pre-differentiation, early differentiation and late differentiation stages. Expression of 16 BCAA metabolism genes was quantified by quantitative real-time PCR. Expression of the protein levels of branched-chain amino acid transaminase 2 (Bcat2 and branched-chain alpha keto acid dehydrogenase (Bckdha was quantified by immunoblotting. Under control conditions, all genes displayed induction of gene expression during early adipogenesis (Day 4 compared to Day 0. Leucine supplementation resulted in an induction of Bcat2 and Bckdha genes during early and late differentiation. Western blot analysis demonstrated condition-specific concordance between gene and protein expression. Serum withdrawal resulted in undetectable Bcat2 and Bckdha protein levels at all timepoints. These results demonstrate that the expression of genes related to BCAA metabolism are regulated during adipocyte differentiation and influenced by nutrient levels. These results provide additional insights on how BCAA metabolism is associated with adipose tissue function and extends our

  9. Effects of Branched-chain Amino Acids on In vitro Ruminal Fermentation of Wheat Straw

    Science.gov (United States)

    Zhang, Hui Ling; Chen, Yong; Xu, Xiao Li; Yang, Yu Xia

    2013-01-01

    This study investigates the effects of three branched-chain amino acids (BCAA; valine, leucine, and isoleucine) on the in vitro ruminal fermentation of wheat straw using batch cultures of mixed ruminal microorganisms. BCAA were added to the buffered ruminal fluid at a concentration of 0, 2, 4, 7, or 10 mmol/L. After 72 h of anaerobic incubation, pH, volatile fatty acids (VFA), and ammonia nitrogen (NH3-N) in the ruminal fluid were determined. Dry matter (DM) and neutral detergent fiber (NDF) degradability were calculated after determining the DM and NDF in the original material and in the residue after incubation. The addition of valine, leucine, or isoleucine increased the total VFA yields (p≤0.001). However, the total VFA yields did not increase with the increase of BCAA supplement level. Total branched-chain VFA yields linearly increased as the supplemental amount of BCAA increased (p<0.001). The molar proportions of acetate and propionate decreased, whereas that of butyrate increased with the addition of valine and isoleucine (p<0.05). Moreover, the proportions of propionate and butyrate decreased (p<0.01) with the addition of leucine. Meanwhile, the molar proportions of isobutyrate were increased and linearly decreased (p<0.001) by valine and leucine, respectively. The addition of leucine or isoleucine resulted in a linear (p<0.001) increase in the molar proportions of isovalerate. The degradability of NDF achieved the maximum when valine or isoleucine was added at 2 mmol/L. The results suggest that low concentrations of BCAA (2 mmol/L) allow more efficient regulation of ruminal fermentation in vitro, as indicated by higher VFA yield and NDF degradability. Therefore, the optimum initial dose of BCAA for in vitro ruminal fermentation is 2 mmol/L. PMID:25049818

  10. Branched-chain dicationic ionic liquids for fatty acid methyl ester assessment by gas chromatography.

    Science.gov (United States)

    Talebi, Mohsen; Patil, Rahul A; Sidisky, Leonard M; Berthod, Alain; Armstrong, Daniel W

    2017-12-06

    Twelve bis- or dicationic ionic liquids (ILs) including eight based on imidazolium, a single one based on phosphonium, and three based on pyrrolidinium cationic units were prepared with the bis(trifluoromethyl sulfonyl) imide anion. The two identical cationic moieties were attached by different alkyl spacers having three or five carbons and differing alkyl substituents attached to the spacer. The SLB-IL111 column, as the most polar commercial stationary phase known, was included in the study for comparison. Isothermal separations of a rapeseed oil fatty acid methyl ester (FAME) sample were used to study and compare the 12 IL-based column performances and selectivities. The retention times of the most retained methyl esters of lignoceric (C24:0) and erucic (C22:1) acids were used to estimate the IL polarity. The phosphonium dicationic IL column was, by far, the least polar. Imidazolium-based dicationic IL columns were the most polar. Polarity and selectivity for the FAME separation were somewhat related. The separation of a 37-FAME standard mixture allowed the investigation of selectivity variations observed on the 12 IL-based columns under temperature gradients up to 230 °C. The remarkable selectivity of the IL-based columns is demonstrated by the detailed analysis of the cis/trans C18:1 isomers of a partially hydrogenated vegetable oil sample on 30-m columns, separations competing with that done following an "official method" performed on a 100-m column. Graphical abstract Separation of fatty acid methyl esters on a 30-m 3m 2 C 5 (mpy) 2 . 2NTf 2 branched-chain dicationic IL-based column. Branched chain dicationic ILs show great selectivity for separation of cis/trans, ω-3/ω-6, and detailed analysis of cis/trans fats.

  11. Branched Chain Amino Acids Are Associated with Insulin Resistance Independent of Leptin and Adiponectin in Subjects with Varying Degrees of Glucose Tolerance

    NARCIS (Netherlands)

    Connelly, Margery A.; Wolak-Dinsmore, Justyna; Dullaart, Robin P. F.

    Background: Branched chain amino acids (BCAA) may be involved in the pathogenesis of insulin resistance and are associated with type 2 diabetes mellitus (T2DM) development. Adipokines such as leptin and adiponectin influence insulin resistance and reflect adipocyte dysfunction. We examined the

  12. Peroxisome protein transportation affects metabolism of branched-chain fatty acids that critically impact growth and development of C. elegans.

    Directory of Open Access Journals (Sweden)

    Rencheng Wang

    Full Text Available The impact of specific lipid molecules, including fatty acid variants, on cellular and developmental regulation is an important research subject that remains under studied. Monomethyl branched-chain fatty acids (mmBCFAs are commonly present in multiple organisms including mammals, however our understanding of mmBCFA functions is very limited. C. elegans has been the premier model system to study the functions of mmBCFAs and their derived lipids, as mmBCFAs have been shown to play essential roles in post-embryonic development in this organism. To understand more about the metabolism of mmBCFAs in C. elegans, we performed a genetic screen for suppressors of the L1 developmental arrest phenotype caused by mmBCFA depletion. Extensive characterization of one suppressor mutation identified prx-5, which encodes an ortholog of the human receptor for the type-1 peroxisomal targeting signal protein. Our study showed that inactivating prx-5 function compromised the peroxisome protein import, resulting in an increased level of branched-chain fatty acid C17ISO in animals lacking normal mmBCFA synthesis, thereby restoring wild-type growth and development. This work reveals a novel connection between peroxisomal functions and mmBCFA metabolism.

  13. KEJADIAN INDEL SIMULTAN PADA INTRON 7 GEN BRANCHED-CHAIN Α-KETOACID DEHYDROGENASE E1A (BCKDHA PADA SAPI MADURA

    Directory of Open Access Journals (Sweden)

    Asri Febriana

    2015-08-01

    Full Text Available Madura cattle is one of the Indonesian local cattle breeds derived from crossing between Zebu cattle (Bos indicus and banteng (Bos javanicus. Branched-chain α-ketoacid dehydrogenase (BCKDH is one of the main enzyme complexes in the inner mitochondrial membrane that metabolizes branched chain amino acid (BCAA, ie valine, leucine, and isoleucine. The diversity of the nucleotide sequences of the genes largely determine the efficiency of enzyme encoded. This paper aimed to determine the nucleotide variation contained in section intron 7, exon 8, and intron 8 genes BCKDHA on Madura cattle. This study was conducted on three Madura cattle that used as bull race (karapan, beauty contest (sonok, and beef cattle. The analysis showed that the variation in intron higher than occurred in the exon. Simultaneous indel found at base position 34 and 68 in sonok cattle. In addition, the C266T variant found in beef cattle. These variants do not cause significant changes in amino acids. There was no specific mutation in intron 7, exon 8, and intron 8 were found in Madura cattle designation. This indicated the absence of differentiation Madura cattle designation of selection pressure of BCKDHA gene.

  14. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    Directory of Open Access Journals (Sweden)

    Scott B Crown

    Full Text Available The branched chain amino acids (BCAA valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0 and odd chain length (C15:0 and C17:0 fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.

  15. 1H-NMR/13C-NMR studies of branched structures in PVC obtained at atmospheric pressure

    International Nuclear Information System (INIS)

    Braun, D.; Holzer, G.; Hjertberg, T.

    1981-01-01

    The 1 H-NMR-spectra of raw poly (vinyl cloride) obtained at atmospheric pressure (U-PVC) have revealed the presence of high concentrations of branches. The content of labile chlorine was determined by reaction with phenole in order to estimate the branch points with tertiary chlorine. The branch length of reductively dehalogenated U-PVC by 13 C-NMR analysis have provided evidence for both short chain branches including chloromethyl groups and 2.4-dichloro-n-butyl groups and long chain branching. For a number of U-polymers the total amount of branching ranges from 7.5 to 13.5/1000 C. The 13 C-NMR measurements point to a ratio of methyl/butyl branches of 1:1 and short chains/long chains of 6:1. (orig.)

  16. Reversal of an Epigenetic Switch Governing Cell Chaining in Bacillus subtilis by Protein Instability

    Science.gov (United States)

    Chai, Yunrong; Kolter, Roberto; Losick, Richard

    2010-01-01

    Bacillus subtilis forms long chains of cells during growth and biofilm formation. Cell separation is mediated by autolysins, whose genes are under the negative control of a heteromeric complex composed of the proteins SinR and SlrR. Formation of the SinR•SlrR complex is governed by a self-reinforcing, double-negative feedback loop in which SinR represses the gene for SlrR and SlrR, by forming the SinR•SlrR complex, titrates SinR and prevents it from repressing slrR. The loop is a bistable switch and exists in a SlrRLOW state in which autolysin genes are on, and a SlrRHIGH state in which autolysin genes are repressed by SinR•SlrR. Cells in the SlrRLOW state are driven into the SlrRHIGH state by SinI, an antirepressor that binds to and inhibits SinR. However, the mechanism by which cells in the SlrRHIGH state revert back to the SlrRLOW state is unknown. We report that SlrR is proteolytically unstable and present evidence that self-cleavage via a LexA-like autopeptidase and ClpC contribute to its degradation. Cells producing a self-cleavage-resistant mutant of SlrR exhibited more persistent chaining during growth and yielded biofilms with enhanced structural complexity. We propose that degradation of SlrR allows cells to switch from the SlrRHIGH to the SlrRLOW state. PMID:20923420

  17. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction.

    Science.gov (United States)

    Wang, Wei; Zhang, Fuyang; Xia, Yunlong; Zhao, Shihao; Yan, Wenjun; Wang, Helin; Lee, Yan; Li, Congye; Zhang, Ling; Lian, Kun; Gao, Erhe; Cheng, Hexiang; Tao, Ling

    2016-11-01

    Cardiac metabolic remodeling is a central event during heart failure (HF) development following myocardial infarction (MI). It is well known that myocardial glucose and fatty acid dysmetabolism contribute to post-MI cardiac dysfunction and remodeling. However, the role of amino acid metabolism in post-MI HF remains elusive. Branched chain amino acids (BCAAs) are an important group of essential amino acids and function as crucial nutrient signaling in mammalian animals. The present study aimed to determine the role of cardiac BCAA metabolism in post-MI HF progression. Utilizing coronary artery ligation-induced murine MI models, we found that myocardial BCAA catabolism was significantly impaired in response to permanent MI, therefore leading to an obvious elevation of myocardial BCAA abundance. In MI-operated mice, oral BCAA administration further increased cardiac BCAA levels, activated the mammalian target of rapamycin (mTOR) signaling, and exacerbated cardiac dysfunction and remodeling. These data demonstrate that BCAAs act as a direct contributor to post-MI cardiac pathologies. Furthermore, these BCAA-mediated deleterious effects were improved by rapamycin cotreatment, revealing an indispensable role of mTOR in BCAA-mediated adverse effects on cardiac function/structure post-MI. Of note, pharmacological inhibition of branched chain ketoacid dehydrogenase kinase (BDK), a negative regulator of myocardial BCAA catabolism, significantly improved cardiac BCAA catabolic disorders, reduced myocardial BCAA levels, and ameliorated post-MI cardiac dysfunction and remodeling. In conclusion, our data provide the evidence that impaired cardiac BCAA catabolism directly contributes to post-MI cardiac dysfunction and remodeling. Moreover, improving cardiac BCAA catabolic defects may be a promising therapeutic strategy against post-MI HF. Copyright © 2016 the American Physiological Society.

  18. Effects of branched-chain amino acids supplementation on both plasma amino acids concentration and muscle energetics changes resulting from muscle damage: A randomized placebo controlled trial.

    Science.gov (United States)

    Fouré, Alexandre; Nosaka, Kazunori; Gastaldi, Marguerite; Mattei, Jean-Pierre; Boudinet, Hélène; Guye, Maxime; Vilmen, Christophe; Le Fur, Yann; Bendahan, David; Gondin, Julien

    2016-02-01

    Branched-chain amino acids promote muscle-protein synthesis, reduce protein oxidation and have positive effects on mitochondrial biogenesis and reactive oxygen species scavenging. The purpose of the study was to determine the potential benefits of branched-chain amino acids supplementation on changes in force capacities, plasma amino acids concentration and muscle metabolic alterations after exercise-induced muscle damage. (31)P magnetic resonance spectroscopy and biochemical analyses were used to follow the changes after such damage. Twenty six young healthy men were randomly assigned to supplemented branched-chain amino acids or placebo group. Knee extensors maximal voluntary isometric force was assessed before and on four days following exercise-induced muscle damage. Concentrations in phosphocreatine [PCr], inorganic phosphate [Pi] and pH were measured during a standardized rest-exercise-recovery protocol before, two (D2) and four (D4) days after exercise-induced muscle damage. No significant difference between groups was found for changes in maximal voluntary isometric force (-24% at D2 and -21% at D4). Plasma alanine concentration significantly increased immediately after exercise-induced muscle damage (+25%) in both groups while concentrations in glycine, histidine, phenylalanine and tyrosine decreased. No difference between groups was found in the increased resting [Pi] (+42% at D2 and +34% at D4), decreased resting pH (-0.04 at D2 and -0.03 at D4) and the slower PCr recovery rate (-18% at D2 and -24% at D4). The damaged muscle was not able to get benefits out of the increased plasma branched-chain amino acids availability to attenuate changes in indirect markers of muscle damage and muscle metabolic alterations following exercise-induced muscle damage. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. Bacillus beijingensis sp. nov. and Bacillus ginsengi sp. nov., isolated from ginseng root.

    Science.gov (United States)

    Qiu, Fubin; Zhang, Xiaoxia; Liu, Lin; Sun, Lei; Schumann, Peter; Song, Wei

    2009-04-01

    Four alkaligenous, moderately halotolerant strains, designated ge09, ge10(T), ge14(T) and ge15, were isolated from the internal tissue of ginseng root and their taxonomic positions were investigated by using a polyphasic approach. Cells of the four strains were Gram-positive-staining, non-motile, short rods. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains ge09 and ge10(T) formed one cluster and strains ge14(T) and ge15 formed another separate cluster within the genus Bacillus. 16S rRNA gene sequence similarities with type strains of other Bacillus species were less than 97 %. Levels of DNA-DNA relatedness among the four strains showed that strains ge09 and ge10(T) and strains ge14(T) and ge15 belonged to two separate species; the mean level of DNA-DNA relatedness between ge10(T) and ge14(T) was only 28.7 %. Their phenotypic and physiological properties supported the view that the two strains represent two different novel species of the genus Bacillus. The DNA G+C contents of strains ge10(T) and ge14(T) were 49.9 and 49.6 mol%, respectively. Strains ge10(T) and ge14(T) showed the peptidoglycan type A4alpha l-Lys-d-Glu. The lipids present in strains ge10(T) and ge14(T) were diphosphatidylglycerol, phosphatidylglycerol, a minor amount of phosphatidylcholine and two unknown phospholipids. Their predominant respiratory quinone was MK-7. The fatty acid profiles of the four novel strains contained large quantities of branched and saturated fatty acids. The predominant cellular fatty acids were iso-C(15 : 0) (42.5 %), anteiso-C(15 : 0) (22.2 %), anteiso-C(17 : 0) (7.3 %) and C(16 : 1)omega7c alcohol (5.7 %) in ge10(T) and iso-C(15 : 0) (50.7 %) and anteiso-C(15 : 0) (20.1 %) in ge14(T). On the basis of their phenotypic properties and phylogenetic distinctiveness, two novel species of the genus Bacillus are proposed, Bacillus beijingensis sp. nov. (type strain ge10(T) =DSM 19037(T) =CGMCC 1.6762(T)) and Bacillus ginsengi sp. nov. (type strain ge14

  20. Associations among circulating branched-chain amino acids and tyrosine with muscle volume and glucose metabolism in individuals without diabetes

    OpenAIRE

    Honda, Tatsuro

    2016-01-01

    Background and Aims: Amino acid metabolites including branched chain amino acids (BCAA) and tyrosine (Tyr) affect glucose metabolism. The effects of BCAA on insulin resistance in patients with diabetes seem to conflict with mechanisms determined in animal models and cultured cells. We investigated the physiological effects of BCAA and Tyr on glucose metabolism among healthy community dwellers to clarify the controversy surrounding the effects of BCAA. Participant and methods: We investigated ...

  1. Branched-chain amino acids increase arterial blood ammonia in spite of enhanced intrinsic muscle ammonia metabolism in patients with cirrhosis and healthy subjects

    DEFF Research Database (Denmark)

    Dam, Gitte; Keiding, Susanne; Munk, Ole Lajord

    2011-01-01

    Branched-chain amino acids (BCAA) are used in attempts to reduce blood ammonia in patients with cirrhosis and intermittent hepatic encephalopathy based on the hypothesis that BCAA stimulate muscle ammonia detoxification. We studied the effects of an oral dose of BCAA on the skeletal muscle...

  2. Influence of chain topology and bond potential on the glass transition of polymer chains simulated with the bond fluctuation model

    International Nuclear Information System (INIS)

    Freire, J J

    2008-01-01

    The bond fluctuation model with a bond potential has been applied to investigation of the glass transition of linear chains and chains with a regular disposition of small branches. Cooling and subsequent heating curves are obtained for the chain energies and also for the mean acceptance probability of a bead jump. In order to mimic different trends to vitrification, a factor B gauging the strength of the bond potential with respect to the long-range potential (i.e. the intramolecular or intermolecular potential between indirectly bonded beads) has been introduced. (A higher value of B leads to a preference for the highest bond lengths and a higher total energy, implying a greater tendency to vitrify.) Different cases have been considered for linear chains: no long-range potential, no bond potential and several choices for B. Furthermore, two distinct values of B have been considered for alternate bonds in linear chains. In the case of the branched chains, mixed models with different values of B for bonds in the main chain and in the branches have also been investigated. The possible presence of ordering or crystallization has been characterized by calculating the collective light scattering function of the different samples after annealing at a convenient temperature below the onset of the abrupt change in the curves associated with a thermodynamic transition. It is concluded that ordering is inherited more efficiently in the systems with branched chains and also for higher values of B. The branched molecules with the highest B values in the main chain bonds exhibit two distinct transitions in the heating curves, which may be associated with two glass transitions. This behavior has been detected experimentally for chains with relatively long flexible branches

  3. Influence of chain topology and bond potential on the glass transition of polymer chains simulated with the bond fluctuation model

    Energy Technology Data Exchange (ETDEWEB)

    Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), Senda del Rey 9, 28040 Madrid (Spain)], E-mail: jfreire@invi.uned.es

    2008-07-16

    The bond fluctuation model with a bond potential has been applied to investigation of the glass transition of linear chains and chains with a regular disposition of small branches. Cooling and subsequent heating curves are obtained for the chain energies and also for the mean acceptance probability of a bead jump. In order to mimic different trends to vitrification, a factor B gauging the strength of the bond potential with respect to the long-range potential (i.e. the intramolecular or intermolecular potential between indirectly bonded beads) has been introduced. (A higher value of B leads to a preference for the highest bond lengths and a higher total energy, implying a greater tendency to vitrify.) Different cases have been considered for linear chains: no long-range potential, no bond potential and several choices for B. Furthermore, two distinct values of B have been considered for alternate bonds in linear chains. In the case of the branched chains, mixed models with different values of B for bonds in the main chain and in the branches have also been investigated. The possible presence of ordering or crystallization has been characterized by calculating the collective light scattering function of the different samples after annealing at a convenient temperature below the onset of the abrupt change in the curves associated with a thermodynamic transition. It is concluded that ordering is inherited more efficiently in the systems with branched chains and also for higher values of B. The branched molecules with the highest B values in the main chain bonds exhibit two distinct transitions in the heating curves, which may be associated with two glass transitions. This behavior has been detected experimentally for chains with relatively long flexible branches.

  4. Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thin-film transistors with mobility of up to 3.50 cm² V(-1) s(-1).

    Science.gov (United States)

    Zhang, Fengjiao; Hu, Yunbin; Schuettfort, Torben; Di, Chong-an; Gao, Xike; McNeill, Christopher R; Thomsen, Lars; Mannsfeld, Stefan C B; Yuan, Wei; Sirringhaus, Henning; Zhu, Daoben

    2013-02-13

    Substituted side chains are fundamental units in solution processable organic semiconductors in order to achieve a balance of close intermolecular stacking, high crystallinity, and good compatibility with different wet techniques. Based on four air-stable solution-processed naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene)malononitrile groups (NDI-DTYM2) that bear branched alkyl chains with varied side-chain length and different branching position, we have carried out systematic studies on the relationship between film microstructure and charge transport in their organic thin-film transistors (OTFTs). In particular synchrotron measurements (grazing incidence X-ray diffraction and near-edge X-ray absorption fine structure) are combined with device optimization studies to probe the interplay between molecular structure, molecular packing, and OTFT mobility. It is found that the side-chain length has a moderate influence on thin-film microstructure but leads to only limited changes in OTFT performance. In contrast, the position of branching point results in subtle, yet critical changes in molecular packing and leads to dramatic differences in electron mobility ranging from ~0.001 to >3.0 cm(2) V(-1) s(-1). Incorporating a NDI-DTYM2 core with three-branched N-alkyl substituents of C(11,6) results in a dense in-plane molecular packing with an unit cell area of 127 Å(2), larger domain sizes of up to 1000 × 3000 nm(2), and an electron mobility of up to 3.50 cm(2) V(-1) s(-1), which is an unprecedented value for ambient stable n-channel solution-processed OTFTs reported to date. These results demonstrate that variation of the alkyl chain branching point is a powerful strategy for tuning of molecular packing to enable high charge transport mobilities.

  5. Equilibrium polymerization of cyclic carbonate oligomers. III. Chain branching and the gel transition

    Science.gov (United States)

    Ballone, P.; Jones, R. O.

    2002-10-01

    Ring-opening polymerization of cyclic polycarbonate oligomers, where monofunctional active sites act on difunctional monomers to produce an equilibrium distribution of rings and chains, leads to a "living polymer." Monte Carlo simulations [two-dimensional (2D) and three-dimensional (3D)] of the effects of single [J. Chem. Phys. 115, 3895 (2001)] and multiple active sites [J. Chem. Phys. 116, 7724 (2002)] are extended here to trifunctional active sites that lead to branching. Low concentrations of trifunctional particles c3 reduce the degree of polymerization significantly in 2D, and higher concentrations (up to 32%) lead to further large changes in the phase diagram. Gel formation is observed at high total density and sizable c3 as a continuous transition similar to percolation. Polymer and gel are much more stable in 3D than in 2D, and both the total density and the value of c3 required to produce high molecular weight aggregates are reduced significantly. The degree of polymerization in high-density 3D systems is increased by the addition of trifunctional monomers and reduced slightly at low densities and low c3. The presence of branching makes equilibrium states more sensitive (in 2D and 3D) to changes in temperature T. The stabilities of polymer and gel are enhanced by increasing T, and—for sufficiently high values of c3—there is a reversible polymer-gel transformation at a density-dependent floor temperature.

  6. Insulinotropic and Muscle Protein Synthetic Effects of Branched-Chain Amino Acids: Potential Therapy for Type 2 Diabetes and Sarcopenia

    OpenAIRE

    Darren G. Candow; Scott C. Forbes; Jonathan P. Little; Ralph J. Manders

    2012-01-01

    The loss of muscle mass and strength with aging (i.e., sarcopenia) has a negative effect on functional independence and overall quality of life. One main contributing factor to sarcopenia is the reduced ability to increase skeletal muscle protein synthesis in response to habitual feeding, possibly due to a reduction in postprandial insulin release and an increase in insulin resistance. Branched-chain amino acids (BCAA), primarily leucine, increases the activation of pathways involved in muscl...

  7. Effect of a high-protein, high-fiber diet plus supplementation with branched-chain amino acids on the nutritional status of patients with cirrhosis

    Directory of Open Access Journals (Sweden)

    A. Ruiz-Margáin

    2018-01-01

    Conclusion: Supplementation with branched-chain amino acids plus a high-fiber, high-protein diet is a safe intervention in patients with cirrhosis. It helps increase muscle mass and does not raise the levels of ammonia or glucose, nor is it associated with the development of hepatic encephalopathy.

  8. Chain-modified radioiodinated fatty acids

    International Nuclear Information System (INIS)

    Otto, C.A.

    1987-01-01

    Several carbon chain manipulations have been studied in terms of their effects on myocardial activity levels and residence time. The manipulations examined included: chain length, chain branching, chain unsaturation, and carbon-iodine bond stabilization. It was found that chain length affects myocardial activity levels for both straight-chain alkyl acids and branched chain alkyl and aryl acids. Similar results have been reported for the straight-chain aryl acids. Generally, the longer chain lengths correlated with higher myocardial activity levels and longer residence times. This behavior is attributed to storage as triglycerides. Branched chain acids are designed to be anti-metabolites but only the aryl β-methyl acids possessed the expected time course of constant or very slowly decreasing activity levels. The alkyl β-methyl acids underwent rapid deiodination - a process apparently independent of β-oxidation. Inhibition of β-oxidation by incorporation of carbon-carbon double and triple bonds was studied. Deiodination of ω-iodo alkyl fatty acids prevented an assessment of suicide inhibition using an unsaturated alkynoic acid. Stabilization of the carbon-iodine bond by attachment of iodine to a vinylic or aryl carbon was studied. The low myocardial values and high blood values observed for an eleven carbon ω-iodo vinylic fatty acid were not encouraging but ω-iodo aryl fatty acids appear to avoid the problems of rapid deiodination. (Auth.)

  9. A pilot, short-term dietary manipulation of branched chain amino acids has modest influence on fasting levels of branched chain amino acids.

    Science.gov (United States)

    Cavallaro, Nicole Landa; Garry, Jamie; Shi, Xu; Gerszten, Robert E; Anderson, Ellen J; Walford, Geoffrey A

    2016-01-01

    Elevated fasting levels of branched chain amino acids (BCAAs: valine, isoleucine, leucine) in venous blood are associated with a variety of metabolic impairments, including increased risk of type 2 diabetes (T2D). Fasting BCAA levels are influenced by non-dietary factors. However, it is unknown whether fasting BCAAs can be altered through manipulation of dietary intake alone. To test whether a specific dietary intervention, using differences in BCAA intake, alters fasting BCAA levels independent of other factors. Five healthy male volunteers underwent 4 days of a low and 4 days of a high BCAA content dietary intervention (ClinicalTrials.gov [NCT02110602]). All food and supplements were provided. Fasting BCAAs were measured from venous blood samples by mass spectrometry at baseline and after each intervention. Diets were isocaloric; contained equal percentages of calories from carbohydrate, fats, and protein; and differed from each other in BCAA content (1.5±0.1 vs. 14.0±0.6 g for valine; 4.5±0.9 g vs. 13.8±0.5 g for isoleucine; 2.1±0.2 g vs. 27.1±1.0 g for leucine; pBCAA content vs. the high BCAA content diet levels. The inter-individual response to the dietary interventions was variable and not explained by adherence. Short-term dietary manipulation of BCAA intake led to modest changes in fasting levels of BCAAs. The approach from our pilot study can be expanded to test the metabolic implications of dietary BCAA manipulation.

  10. Short/branched-chain acyl-CoA dehydrogenase deficiency due to an IVS3+3A>G mutation that causes exon skipping

    DEFF Research Database (Denmark)

    Madsen, Pia Pinholt

    2006-01-01

    Short/branched-chain acyl-CoA dehydrogenase deficiency (SBCADD) is an autosomal recessive disorder of L: -isoleucine catabolism. Little is known about the clinical presentation associated with this enzyme defect, as it has been reported in only a limited number of patients. Because the presence...... is relevant to the interpretation of the functional consequences of this type of mutation in other disease genes....

  11. Nontargeted LC–MS Metabolomics Approach for Metabolic Profiling of Plasma and Urine from Pigs Fed Branched Chain Amino Acids for Maximum Growth Performance

    DEFF Research Database (Denmark)

    Assadi Soumeh, Elham; Hedemann, Mette Skou; Poulsen, Hanne Damgaard

    2016-01-01

    The metabolic response in plasma and urine of pigs when feeding an optimum level of branched chain amino acids (BCAAs) for best growth performance is unknown. The objective of the current study was to identify the metabolic phenotype associated with the BCAAs intake level that could be linked to ...

  12. Measuring hydroperoxide chain-branching agents during n-pentane low-temperature oxidation

    KAUST Repository

    Rodriguez, Anne

    2016-06-23

    The reactions of chain-branching agents, such as HO and hydroperoxides, have a decisive role in the occurrence of autoignition. The formation of these agents has been investigated in an atmospheric-pressure jet-stirred reactor during the low-temperature oxidation of n-pentane (initial fuel mole fraction of 0.01, residence time of 2s) using three different diagnostics: time-of-flight mass spectrometry combined with tunable synchrotron photoionization, time-of-flight mass spectrometry combined with laser photoionization, and cw-cavity ring-down spectroscopy. These three diagnostics enable a combined analysis of HO, C-C, and C alkylhydroperoxides, C-C alkenylhydroperoxides, and C alkylhydroperoxides including a carbonyl function (ketohydroperoxides). Results using both types of mass spectrometry are compared for the stoichiometric mixture. Formation data are presented at equivalence ratios from 0.5 to 2 for these peroxides and of two oxygenated products, ketene and pentanediones, which are not usually analyzed during jet-stirred reactor oxidation. The formation of alkenylhydroperoxides during alkane oxidation is followed for the first time. A recently developed model of n-pentane oxidation aids discussion of the kinetics of these products and of proposed pathways for C-C alkenylhydroperoxides and the pentanediones.

  13. DNA fingerprinting of spore-forming bacterial isolates, using Bacillus ...

    African Journals Online (AJOL)

    Bc-repetitive extragenic palindromic polymerase chain reaction (Bc-Rep PCR) analysis was conducted on seven Bacillus thuringiensis isolates accessed from the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) culture collection and on five local isolates of entomopathogenic spore-forming bacteria.

  14. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model.

    Science.gov (United States)

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A; Illman, Walter A

    2015-01-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells.

    Science.gov (United States)

    Lu, Gang; Sun, Haipeng; She, Pengxiang; Youn, Ji-Youn; Warburton, Sarah; Ping, Peipei; Vondriska, Thomas M; Cai, Hua; Lynch, Christopher J; Wang, Yibin

    2009-06-01

    The branched-chain amino acids (BCAA) are essential amino acids required for protein homeostasis, energy balance, and nutrient signaling. In individuals with deficiencies in BCAA, these amino acids can be preserved through inhibition of the branched-chain-alpha-ketoacid dehydrogenase (BCKD) complex, the rate-limiting step in their metabolism. BCKD is inhibited by phosphorylation of its E1alpha subunit at Ser293, which is catalyzed by BCKD kinase. During BCAA excess, phosphorylated Ser293 (pSer293) becomes dephosphorylated through the concerted inhibition of BCKD kinase and the activity of an unknown intramitochondrial phosphatase. Using unbiased, proteomic approaches, we have found that a mitochondrial-targeted phosphatase, PP2Cm, specifically binds the BCKD complex and induces dephosphorylation of Ser293 in the presence of BCKD substrates. Loss of PP2Cm completely abolished substrate-induced E1alpha dephosphorylation both in vitro and in vivo. PP2Cm-deficient mice exhibited BCAA catabolic defects and a metabolic phenotype similar to the intermittent or intermediate types of human maple syrup urine disease (MSUD), a hereditary disorder caused by defects in BCKD activity. These results indicate that PP2Cm is the endogenous BCKD phosphatase required for nutrient-mediated regulation of BCKD activity and suggest that defects in PP2Cm may be responsible for a subset of human MSUD.

  16. A randomized controlled trial: branched-chain amino acid levels and glucose metabolism in patients with obesity and sleep apnea.

    Science.gov (United States)

    Barceló, Antonia; Morell-Garcia, Daniel; Salord, Neus; Esquinas, Cristina; Pérez, Gerardo; Pérez, Antonio; Monasterio, Carmen; Gasa, Merce; Fortuna, Ana Maria; Montserrat, Josep Maria; Mayos, Mercedes

    2017-12-01

    There is evidence that changes in branched-chain amino acid (BCAA) levels may correlate with the efficacy of therapeutic interventions for affecting improvement in metabolic control. The objective of this study was to evaluate whether serum concentrations of BCAAs (leucine, isoleucine, valine) could mediate in insulin sensitivity and glucose tolerance after continuous positive airway pressure (CPAP) treatment in patients with obstructive sleep apnea (OSA). A prospective randomized controlled trial of OSA patients with morbid obesity was conducted. Eighty patients were randomized into two groups: 38 received conservative treatment and 42 received CPAP treatment for 12 weeks. Plasma levels of BCAA, glucose tolerance and insulin resistance were evaluated at baseline and after treatment. After treatment, significant decreases of leucine levels were observed in both groups when compared with baseline levels (P fasting plasma glucose and glycosylated haemoglobin values only in the conservative group (P < 0.05). In summary, we found that the treatment with CPAP for 12 weeks caused similar changes in circulating BCAAs concentrations to conservative treatment and a differential metabolic response of CPAP and conservative treatment was observed between the relationship of BCAAs and glucose homeostasis. Additional studies are needed to determine the interplay between branched-chain amino acids and glucose metabolism in patients with sleep apnea. © 2017 European Sleep Research Society.

  17. Solid-State Organization and Ambipolar Field-Effect Transistors of Benzothiadiazole-Cyclopentadithiophene Copolymer with Long Branched Alkyl Side Chains

    Directory of Open Access Journals (Sweden)

    Martin Baumgarten

    2013-06-01

    Full Text Available The solid-state organization of a benzothiadiazole-cyclopentadithiophene copolymer with long, branched decyl-tetradecyl side chains (CDT-BTZ-C14,10 is investigated. The C14,10 substituents are sterically demanding and increase the π-stacking distance to 0.40 nm from 0.37 nm for the same polymer with linear hexadecyls (C16. Despite the bulkiness, the C14,10 side chains tend to crystallize, leading to a small chain-to-chain distance between lamellae stacks and to a crystal-like microstructure in the thin film. Interestingly, field-effect transistors based on solution processed layers of CDT-BTZ-C14,10 show ambipolar behavior in contrast to CDT-BTZ-C16 with linear side chains, for which hole transport was previously observed. Due to the increased π-stacking distance, the mobilities are only 6 × 10−4 cm²/Vs for electrons and 6 × 10−5 cm²/Vs for holes, while CDT-BTZ-C16 leads to values up to 5.5 cm²/Vs. The ambipolarity is attributed to a lateral shift between stacked backbones provoked by the bulky C14,10 side chains. This reorganization is supposed to change the transfer integrals between the C16 and C14,10 substituted polymers. This work shows that the electronic behavior in devices of one single conjugated polymer (in this case CDT-BTZ can be controlled by the right choice of the substituents to place the backbones in the desired packing.

  18. Poisson branching point processes

    International Nuclear Information System (INIS)

    Matsuo, K.; Teich, M.C.; Saleh, B.E.A.

    1984-01-01

    We investigate the statistical properties of a special branching point process. The initial process is assumed to be a homogeneous Poisson point process (HPP). The initiating events at each branching stage are carried forward to the following stage. In addition, each initiating event independently contributes a nonstationary Poisson point process (whose rate is a specified function) located at that point. The additional contributions from all points of a given stage constitute a doubly stochastic Poisson point process (DSPP) whose rate is a filtered version of the initiating point process at that stage. The process studied is a generalization of a Poisson branching process in which random time delays are permitted in the generation of events. Particular attention is given to the limit in which the number of branching stages is infinite while the average number of added events per event of the previous stage is infinitesimal. In the special case when the branching is instantaneous this limit of continuous branching corresponds to the well-known Yule--Furry process with an initial Poisson population. The Poisson branching point process provides a useful description for many problems in various scientific disciplines, such as the behavior of electron multipliers, neutron chain reactions, and cosmic ray showers

  19. A novel branched side-chain-type sulfonated polyimide membrane with flexible sulfoalkyl pendants and trifluoromethyl groups for vanadium redox flow batteries

    Science.gov (United States)

    Li, Jinchao; Liu, Suqin; He, Zhen; Zhou, Zhi

    2017-04-01

    A novel branched side-chain-type sulfonated polyimide (6F-s-bSPI) membrane with accessible branching agents of melamine, hydrophobic trifluoromethyl groups (sbnd CF3), and flexible sulfoalkyl pendants is prepared by a high-temperature polycondensation and post-sulfonation method for use in vanadium redox flow batteries (VRFBs). The chemical structure of the 6F-s-bSPI membrane is confirmed by ATR-FTIR and 1H NMR spectra. The physico-chemical properties of the as-prepared 6F-s-bSPI membrane are systematically investigated and found to be strongly related to the specially designed structure. The 6F-s-bSPI membrane offers a reduced cost and possesses a significantly lowered vanadium ion permeability (1.18 × 10-7 cm2 min-1) compared to the linear SPI (2.25 × 10-7 cm2 min-1) and commercial Nafion 115 (1.36 × 10-6 cm2 min-1) membranes, prolonging the self-discharge duration of the VRFBs. In addition, the VRFB assembled with a 6F-s-bSPI membrane shows higher coulombic (98.3%-99.7%) and energy efficiencies (88.4%-66.12%) than that with a SPI or Nafion 115 membrane under current densities ranging from 20 to 100 mA cm-2. Moreover, the VRFB with a 6F-s-bSPI membrane delivers a stable cycling performance over 100 cycles with no decline in coulombic and energy efficiencies. These results show that the branched side-chain-type structure is a promising design to prepare excellent proton conductive membranes.

  20. Impaired growth and neurological abnormalities in branched-chain α-keto acid dehydrogenase kinase-deficient mice

    Science.gov (United States)

    Joshi, Mandar A.; Jeoung, Nam Ho; Obayashi, Mariko; Hattab, Eyas M.; Brocken, Eric G.; Liechty, Edward A.; Kubek, Michael J.; Vattem, Krishna M.; Wek, Ronald C.; Harris, Robert A.

    2006-01-01

    The BCKDH (branched-chain α-keto acid dehydrogenase complex) catalyses the rate-limiting step in the oxidation of BCAAs (branched-chain amino acids). Activity of the complex is regulated by a specific kinase, BDK (BCKDH kinase), which causes inactivation, and a phosphatase, BDP (BCKDH phosphatase), which causes activation. In the present study, the effect of the disruption of the BDK gene on growth and development of mice was investigated. BCKDH activity was much greater in most tissues of BDK−/− mice. This occurred in part because the E1 component of the complex cannot be phosphorylated due to the absence of BDK and also because greater than normal amounts of the E1 component were present in tissues of BDK−/− mice. Lack of control of BCKDH activity resulted in markedly lower blood and tissue levels of the BCAAs in BDK−/− mice. At 12 weeks of age, BDK−/− mice were 15% smaller than wild-type mice and their fur lacked normal lustre. Brain, muscle and adipose tissue weights were reduced, whereas weights of the liver and kidney were greater. Neurological abnormalities were apparent by hind limb flexion throughout life and epileptic seizures after 6–7 months of age. Inhibition of protein synthesis in the brain due to hyperphosphorylation of eIF2α (eukaryotic translation initiation factor 2α) might contribute to the neurological abnormalities seen in BDK−/− mice. BDK−/− mice show significant improvement in growth and appearance when fed a high protein diet, suggesting that higher amounts of dietary BCAA can partially compensate for increased oxidation in BDK−/− mice. Disruption of the BDK gene establishes that regulation of BCKDH by phosphorylation is critically important for the regulation of oxidative disposal of BCAAs. The phenotype of the BDK−/− mice demonstrates the importance of tight regulation of oxidative disposal of BCAAs for normal growth and neurological function. PMID:16875466

  1. Rapid and Precise Measurement of Serum Branched-Chain and Aromatic Amino Acids by Isotope Dilution Liquid Chromatography Tandem Mass Spectrometry

    OpenAIRE

    Yang, Ruiyue; Dong, Jun; Guo, Hanbang; Li, Hongxia; Wang, Shu; Zhao, Haijian; Zhou, Weiyan; Yu, Songlin; Wang, Mo; Chen, Wenxiang

    2013-01-01

    BACKGROUND: Serum branched-chain and aromatic amino acids (BCAAs and AAAs) have emerged as predictors for the future development of diabetes and may aid in diabetes risk assessment. However, the current methods for the analysis of such amino acids in biological samples are time consuming. METHODS: An isotope dilution liquid chromatography tandem mass spectrometry (ID-LC/MS/MS) method for serum BCAAs and AAAs was developed. The serum was mixed with isotope-labeled BCAA and AAA internal standar...

  2. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Fouad M. F. Elshaghabee

    2017-08-01

    Full Text Available Spore-forming bacilli are being explored for the production and preservation of food for many centuries. The inherent ability of production of large number of secretory proteins, enzymes, antimicrobial compounds, vitamins, and carotenoids specifies the importance of bacilli in food chain. Additionally, Bacillus spp. are gaining interest in human health related functional food research coupled with their enhanced tolerance and survivability under hostile environment of gastrointestinal tract. Besides, bacilli are more stable during processing and storage of food and pharmaceutical preparations, making them more suitable candidate for health promoting formulations. Further, Bacillus strains also possess biotherapeutic potential which is connected with their ability to interact with the internal milieu of the host by producing variety of antimicrobial peptides and small extracellular effector molecules. Nonetheless, with proposed scientific evidences, commercial probiotic supplements, and functional foods comprising of Bacillus spp. had not gained much credential in general population, since the debate over probiotic vs pathogen tag of Bacillus in the research and production terrains is confusing consumers. Hence, it’s important to clearly understand the phenotypic and genotypic characteristics of selective beneficial Bacillus spp. and their substantiation with those having GRAS status, to reach a consensus over the same. This review highlights the probiotic candidature of spore forming Bacillus spp. and presents an overview of the proposed health benefits, including application in food and pharmaceutical industry. Moreover, the growing need to evaluate the safety of individual Bacillus strains as well as species on a case by case basis and necessity of more profound analysis for the selection and identification of Bacillus probiotic candidates are also taken into consideration.

  3. The influence of the side-chain sequence on the structure-activity correlations of immunomodulatory branched polypeptides. Synthesis and conformational analysis of new model polypeptides.

    Science.gov (United States)

    Mezö, G; Hudecz, F; Kajtár, J; Szókán, G; Szekerke, M

    1989-10-01

    New branched polypeptides were synthesized for a detailed study of the influence of the side-chain structure on the conformation and biological properties. The first subset of polypeptides were prepared by coupling of tetrapeptides to poly[L-Lys]. These polymers contain either DL-Ala3-X [poly[Lys-(X-DL-Ala3)n

  4. Evaluation of branched chain fatty acid, BMIPP [β-methyl-ω-(p-iodophenyl)-pentadecanoic acid] for the myocardial imaging

    International Nuclear Information System (INIS)

    Kawamura, Yasuaki; Morishita, Takeshi; Yamazaki, Junichi

    1988-01-01

    Iodine-123 labeled branched chain fatty acid BMIPP [ β -methyl-ω-(p-iodophenyl)-pentadecanoic acid] was evaluated for the myocardial imaging experimentally. 123 I-BMIPP was accumulated in the heart at 2 - 4 minutes after injection and retention in the heart was remarkable at 30 minutes. In the acute canine infarction model, infarcted area was recognized as a defect. Furthermore, in comparison between 123 I-BMIPP and 201 Tl-Cl, discrepancy between these images was recognized in the ischemic and infarcted area. BMIPP is of use in not only cardiomyopathy and hypertension, but ischemic heart desease. (author)

  5. Growth-Environment Dependent Modulation of Staphylococcus aureus Branched-Chain to Straight-Chain Fatty Acid Ratio and Incorporation of Unsaturated Fatty Acids.

    Science.gov (United States)

    Sen, Suranjana; Sirobhushanam, Sirisha; Johnson, Seth R; Song, Yang; Tefft, Ryan; Gatto, Craig; Wilkinson, Brian J

    2016-01-01

    The fatty acid composition of membrane glycerolipids is a major determinant of Staphylococcus aureus membrane biophysical properties that impacts key factors in cell physiology including susceptibility to membrane active antimicrobials, pathogenesis, and response to environmental stress. The fatty acids of S. aureus are considered to be a mixture of branched-chain fatty acids (BCFAs), which increase membrane fluidity, and straight-chain fatty acids (SCFAs) that decrease it. The balance of BCFAs and SCFAs in USA300 strain JE2 and strain SH1000 was affected considerably by differences in the conventional laboratory medium in which the strains were grown with media such as Mueller-Hinton broth and Luria broth resulting in high BCFAs and low SCFAs, whereas growth in Tryptic Soy Broth and Brain-Heart Infusion broth led to reduction in BCFAs and an increase in SCFAs. Straight-chain unsaturated fatty acids (SCUFAs) were not detected. However, when S. aureus was grown ex vivo in serum, the fatty acid composition was radically different with SCUFAs, which increase membrane fluidity, making up a substantial proportion of the total (37%) and BCFAs (>36%) making up the rest. Staphyloxanthin, an additional major membrane lipid component unique to S. aureus, tended to be greater in content in cells with high BCFAs or SCUFAs. Cells with high staphyloxanthin content had a lower membrane fluidity that was attributed to increased production of staphyloxanthin. S. aureus saves energy and carbon by utilizing host fatty acids for part of its total fatty acids when growing in serum, which may impact biophysical properties and pathogenesis given the role of SCUFAs in virulence. The nutritional environment in which S. aureus is grown in vitro or in vivo in an infection is likely to be a major determinant of membrane fatty acid composition.

  6. Branched-chain fatty acids in the neonatal gut and estimated dietary intake in infancy and adulthood.

    Science.gov (United States)

    Ran-Ressler, Rinat R; Glahn, Raymond P; Bae, SangEun; Brenna, J Thomas

    2013-01-01

    Branched-chain fatty acids (BCFA) are primarily saturated fatty acids (FA) with a methyl branch, usually near the terminal methyl group. BCFA are abundant in bacteria, skin, and vernix caseosa but have seldom been studied with respect to human nutrition. They are constituents of the term newborn infant gut lumen, being swallowed as vernix particulate components of amniotic fluid in the last trimester of normal pregnancy. We recently showed that BCFA protect against necrotizing enterocolitis (NEC) in the rat pup model. Dietary BCFA at levels similar to those found in human vernix reduced NEC incidence by more than 50%, increased the abundance of BCFA-containing bacteria, and increased the expression of ileal anti-inflammatory IL-10. The few published reports of BCFA in human milk enable an estimate that breastfed infants consume 19 mg BCFA per 100 ml milk. Dietary BCFA consumption from milk fat and other ruminant products, the main sources of dietary BCFA, is more than 400 mg BCFA per day in adult Americans. This estimate exceeds by severalfold the average dietary intake of bioactive FA, such as docosahexaenoic acid. BCFA are bioactive, abundant but neglected components of the human food supply. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  7. A pilot, short-term dietary manipulation of branched chain amino acids has modest influence on fasting levels of branched chain amino acids

    Directory of Open Access Journals (Sweden)

    Nicole Landa Cavallaro

    2016-01-01

    Full Text Available Background: Elevated fasting levels of branched chain amino acids (BCAAs: valine, isoleucine, leucine in venous blood are associated with a variety of metabolic impairments, including increased risk of type 2 diabetes (T2D. Fasting BCAA levels are influenced by non-dietary factors. However, it is unknown whether fasting BCAAs can be altered through manipulation of dietary intake alone. Objective: To test whether a specific dietary intervention, using differences in BCAA intake, alters fasting BCAA levels independent of other factors. Design: Five healthy male volunteers underwent 4 days of a low and 4 days of a high BCAA content dietary intervention (ClinicalTrials.gov [NCT02110602]. All food and supplements were provided. Fasting BCAAs were measured from venous blood samples by mass spectrometry at baseline and after each intervention. Results: Diets were isocaloric; contained equal percentages of calories from carbohydrate, fats, and protein; and differed from each other in BCAA content (1.5±0.1 vs. 14.0±0.6 g for valine; 4.5±0.9 g vs. 13.8±0.5 g for isoleucine; 2.1±0.2 g vs. 27.1±1.0 g for leucine; p<0.0001 for all. Fasting valine was significantly lower (p=0.02 and fasting isoleucine and leucine were numerically lower following the low BCAA content vs. the high BCAA content diet levels. The inter-individual response to the dietary interventions was variable and not explained by adherence. Conclusion: Short-term dietary manipulation of BCAA intake led to modest changes in fasting levels of BCAAs. The approach from our pilot study can be expanded to test the metabolic implications of dietary BCAA manipulation.

  8. Associations between branched chain amino acid intake and biomarkers of adiposity and cardiometabolic health independent of genetic factors: A twin study ?

    OpenAIRE

    Jennings, Amy; MacGregor, Alex; Pallister, Tess; Spector, Tim; Cassidy, Aed?n

    2016-01-01

    Background: Conflicting data exist on the impact of dietary and circulating levels of branched chain amino acids (BCAA) on cardiometabolic health and it is unclear to what extent these relations are mediated by genetics. Methods: In a cross-sectional study of 1997 female twins we examined associations between BCAA intake, measured using food frequency-questionnaires, and a range of markers of cardiometabolic health, including DXA-measured body fat, blood pressure, HOMA-IR, highsensitivity C-r...

  9. Branched chain amino acid suppressed insulin-initiated proliferation of human cancer cells through induction of autophagy.

    Science.gov (United States)

    Wubetu, Gizachew Yismaw; Utsunomiya, Tohru; Ishikawa, Daichi; Ikemoto, Tetsuya; Yamada, Shinichiro; Morine, Yuji; Iwahashi, Shuichi; Saito, Yu; Arakawa, Yusuke; Imura, Satoru; Arimochi, Hideki; Shimada, Mitsuo

    2014-09-01

    Branched chain amino acid (BCAA) dietary supplementation inhibits activation of the insulin-like growth factor (IGF)/IGF-I receptor (IGF-IR) axis in diabetic animal models. However, the in vitro effect of BCAA on human cancer cell lines under hyper-insulinemic conditions remains unclear. Colon (HCT-116) and hepatic (HepG2) tumor cells were treated with varying concentrations of BCAA with or without fluorouracil (5-FU). The effect of BCAA on insulin-initiated proliferation was determined. Gene and protein expression was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. BCAA supplementation had no significant effect on cell proliferation and did not show significant synergistic or antagonistic effects with 5-FU. However, BCAA significantly decreased insulin-initiated proliferation of human colon and hepatic cancer cell lines in vitro. BCAA supplementation caused a marked decrease in activated IGF-IR expression and significantly enhanced both mRNA and protein expression of LC3-II and BECN1 (BECLIN-1). BCAA could be a useful chemopreventive modality for cancer in hyperinsulinemic conditions. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis Bioacumulação de cobre, zinco, cádmio e chumbo por Bacillus sp., Bacillus cereus, Bacillus sphaericus e Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Augusto da Costa

    2001-03-01

    Full Text Available This work presents some results on the use of microbes from the genus Bacillus for uptake of cadmium, zinc, copper and lead ions. Maximum copper bioaccumulations were 5.6 mol/g biomass for B. sphaericus, 5.9 mol/g biomass for B. cereus and B. subtilis, and 6.4 mol/g biomass for Bacillus sp. Maximum zinc bioaccumulations were 4.3 mol/g biomass for B. sphaericus, 4.6 mol/g biomass for B. cereus, 4.8 mol/g biomass for Bacillus sp. and 5.0 mol/g biomass for B. subtilis. Maximum cadmium bioaccumulations were 8.0 mol/g biomass for B. cereus, 9.5 mol/g biomass for B. subtilis, 10.8 mol/g biomass for Bacillus sp. and 11.8 mol/g biomass for B. sphaericus. Maximum lead biomaccumulations were 0.7 mol/g biomass for B. sphaericus, 1.1 mol/g biomass for B. cereus, 1.4 mol/g biomass for Bacillus sp. and 1.8 mol/g biomass for B. subtilis. The different Bacillus strains tested presented distinct uptake capacities, and the best results were obtained for B. subtilis and B. cereus.Este trabalho apresenta resultados de acumulação dos íons metálicos cádmio, zinco, cobre e chumbo por bactérias do gênero Bacillus. A bioacumulação máxima de cobre foi 5,6 mol/g biomassa para B. sphaericus, 5,9 mol/g biomassa para B. cereus e B. subtilis, e 6,4 mol/g biomassa para Bacillus sp.. A bioacumulação máxima de zinco foi 4,3 mol/g biomassa para B. sphaericus, 4,6 mol/g biomassa para B. cereus, 4,8 mol/g biomassa para Bacillus sp. e 5,0 mol/g biomassa para B. subtilis. A bioacumulação máxima de cádmio foi 8,0 mol/g biomassa para B. cereus, 9,5 mol/g biomassa para B. subtilis, 10,8 mol/g biomassa para Bacillus sp. e 11,8 mol/g biomassa para B. sphaericus. A bioacumulação máxima de chumbo foi 0,7 mol/g biomassa para B. sphaericus, 1,1 mol/g biomassa para B. cereus, 1,4 mol/g biomassa para Bacillus sp. e 1,8 mol/g biomassa para B. subtilis. As distintas linhagens de Bacillus testadas apresentaram variáveis capacidades de carregamento de íons metálicos, sendo os

  11. Effect of branched chain amino acid enrichment of total parenteral nutrition on nitrogen sparing and clinical outcome of sepsis and trauma: a prospective randomized double blind trial

    NARCIS (Netherlands)

    von Meyenfeldt, M. F.; Soeters, P. B.; Vente, J. P.; van Berlo, C. L.; Rouflart, M. M.; de Jong, K. P.; van der Linden, C. J.; Gouma, D. J.

    1990-01-01

    Administration of extra branched chain amino acids (BCAA) has been associated with a nitrogen sparing effect in septic and traumatized patients. Whether nitrogen sparing is associated with decreased morbidity and mortality rates is unknown. We therefore undertook a prospective, randomized, double

  12. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism

    Directory of Open Access Journals (Sweden)

    Mee-Sup Yoon

    2016-07-01

    Full Text Available Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or type 2 diabetes mellitus (T2DM. The activation of mammalian target of rapamycin complex 1 (mTORC1 by BCAAs has been suggested to cause insulin resistance. In addition, defective BCAA oxidative metabolism might occur in obesity, leading to a further accumulation of BCAAs and toxic intermediates. This review provides the current understanding of the mechanism of BCAA-induced mTORC1 activation, as well as the effect of mTOR activation on metabolic health in terms of insulin sensitivity. Furthermore, the effects of impaired BCAA metabolism will be discussed in detail.

  13. Direct evidence for the inactivation of branched-chain oxo-acid dehydrogenase by enzyme phosphorylation

    International Nuclear Information System (INIS)

    Odessey, R.

    1980-01-01

    The branched-chain 2-oxo-acid dehydrogenase (BCOAD) from mitochondria of several different rat tissues is inactivated by ATP and can be reactivated by incubation in Mg 2+ -containing buffers. Work carried out on the system from skeletal muscle mitochondria has shown that inactivation requires the cleavage of the γ-phosphate group of ATP and that modification is covalent. The non-metabolized ATP analog, p[NH]ppA, can block the inhibitory effect of ATP when added prior to ATP addition, but cannot reverse the inhibition of the inactivated dehydrogenase. These and other data raise the possibility that BCOAD may be regulated by enzyme phosphorylation. This hypothesis is supported by the finding that various procedures which separate the enzyme from its mitochondrial environment (e.g. detergent treatment, ammonium sulfate precipitation and freeze-thawing) do not alter the degree of inhibition induced by ATP in the mitochondrial preincubation. These experiments suggested the feasibility of labelling the enzyme with 32 P and purifying it. (Auth.)

  14. Long branch-chains of amylopectin with B-type crystallinity in rice seed with inhibition of starch branching enzyme I and IIb resist in situ degradation and inhibit plant growth during seedling development : Degradation of rice starch with inhibition of SBEI/IIb during seedling development.

    Science.gov (United States)

    Pan, Ting; Lin, Lingshang; Wang, Juan; Liu, Qiaoquan; Wei, Cunxu

    2018-01-08

    Endosperm starch provides prime energy for cereal seedling growth. Cereal endosperm with repression of starch branching enzyme (SBE) has been widely studied for its high resistant starch content and health benefit. However, in barley and maize, the repression of SBE changes starch component and amylopectin structure which affects grain germination and seedling establishment. A high resistant starch rice line (TRS) has been developed through inhibiting SBEI/IIb, and its starch has very high resistance to in vitro hydrolysis and digestion. However, it is unclear whether the starch resists in situ degradation in seed and influences seedling growth after grain germination. In this study, TRS and its wild-type rice cultivar Te-qing (TQ) were used to investigate the seedling growth, starch property changes, and in situ starch degradation during seedling growth. The slow degradation of starch in TRS seed restrained the seedling growth. The starch components including amylose and amylopectin were simultaneously degraded in TQ seeds during seedling growth, but in TRS seeds, the amylose was degraded faster than amylopectin and the amylopectin long branch-chains with B-type crystallinity had high resistance to in situ degradation. TQ starch was gradually degraded from the proximal to distal region of embryo and from the outer to inner in endosperm. However, TRS endosperm contained polygonal, aggregate, elongated and hollow starch from inner to outer. The polygonal starch similar to TQ starch was completely degraded, and the other starches with long branch-chains of amylopectin and B-type crystallinity were degraded faster at the early stage of seedling growth but had high resistance to in situ degradation during TRS seedling growth. The B-type crystallinity and long branch-chains of amylopectin in TRS seed had high resistance to in situ degradation, which inhibited TRS seedling growth.

  15. Effects of clofibric acid on the activity and activity state of the hepatic branched-chain 2-oxo acid dehydrogenase complex.

    Science.gov (United States)

    Zhao, Y; Jaskiewicz, J; Harris, R A

    1992-01-01

    Feeding clofibric acid to rats caused little or no change in total activity of the liver branched-chain 2-oxo acid dehydrogenase complex (BCODC). No change in mass of liver BCODC was detected by immunoblot analysis in response to dietary clofibric acid. No changes in abundance of mRNAs for the BCODC E1 alpha, E1 beta and E2 subunits were detected by Northern-blot analysis. Likewise, dietary clofibric acid had no effect on the activity state of liver BCODC (percentage of enzyme in the dephosphorylated, active, form) of rats fed on a chow diet. However, dietary clofibric acid greatly increased the activity state of liver BCODC of rats fed on a diet deficient in protein. No stable change in liver BCODC kinase activity was found in response to clofibric acid in either chow-fed or low-protein-fed rats. Clofibric acid had a biphasic effect on flux through BCODC in hepatocytes prepared from low-protein-fed rats. Stimulation of BCODC flux at low concentrations was due to clofibric acid inhibition of BCODC kinase, which in turn allowed activation of BCODC by BCODC phosphatase. Inhibition of BCODC flux at high concentrations was due to direct inhibition of BCODC by clofibric acid. The results suggest that the effects of clofibric acid in vivo on branched-chain amino acid metabolism can be explained by the inhibitory effects of this drug on BCODC kinase. Images Fig. 2. Fig. 3. PMID:1637295

  16. Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model.

    Science.gov (United States)

    Scaini, Giselli; Comim, Clarissa M; Oliveira, Giovanna M T; Pasquali, Matheus A B; Quevedo, João; Gelain, Daniel P; Moreira, José Cláudio F; Schuck, Patrícia F; Ferreira, Gustavo C; Bogo, Maurício R; Streck, Emilio L

    2013-09-01

    Maple syrup urine disease (MSUD) is a neurometabolic disorder that leads to the accumulation of branched-chain amino acids (BCAAs) and their α-keto branched-chain by-products. Because the neurotoxic mechanisms of MSUD are poorly understood, this study aimed to evaluate the effects of chronic administration of a BCAA pool (leucine, isoleucine and valine). This study examined the effects of BCAA administration on spatial memory and the levels of brain-derived neurotrophic factor (BNDF). We examined both pro-BDNF and bdnf mRNA expression levels after administration of BCAAs. Furthermore, this study examined whether antioxidant treatment prevented the alterations induced by BCAA administration. Our results demonstrated an increase in BDNF in the hippocampus and cerebral cortex, accompanied by memory impairment in spatial memory tasks. Additionally, chronic administration of BCAAs did not induce a detectable change in pro-BDNF levels. Treatment with N-acetylcysteine and deferoxamine prevented both the memory deficit and the increase in the BDNF levels induced by BCAA administration. In conclusion, these results suggest that when the brain is chronically exposed to high concentrations of BCAA (at millimolar concentrations) an increase in BDNF levels occurs. This increase in BDNF may be related to the impairment of spatial memory. In addition, we demonstrated that antioxidant treatment prevented the negative consequences related to BCAA administration, suggesting that oxidative stress might be involved in the pathophysiological mechanism(s) underlying the brain damage observed in MSUD.

  17. Genetic predisposition to an impaired metabolism of the branched chain amino acids and risk of type 2 diabetes: A Mendelian randomisation analysis

    OpenAIRE

    Lotta, LA; Scott, RA; Sharp, SJ; Burgess, S; Luan, J; Tillin, T; Schmidt, AF; Imamura, F; Stewart, ID; Perry, JRB; Marney, L; Koulman, A; Karoly, ED; Forouhi, NG; Sjögren, RJO

    2016-01-01

    $\\textbf{BACKGROUND}$: Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question. $\\textbf{METHODS AND FINDINGS}$: Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < ...

  18. Analytic study of the chain dark decomposition reaction of iodides - atomic iodine donors - in the active medium of a pulsed chemical oxygen-iodine laser: 1. Criteria for the development of the branching chain dark decomposition reaction of iodides

    International Nuclear Information System (INIS)

    Andreeva, Tamara L; Kuznetsova, S V; Maslov, Aleksandr I; Sorokin, Vadim N

    2009-01-01

    The scheme of chemical processes proceeding in the active medium of a pulsed chemical oxygen-iodine laser (COIL) is analysed. Based on the analysis performed, the complete system of differential equations corresponding to this scheme is replaced by a simplified system of equations describing in dimensionless variables the chain dark decomposition of iodides - atomic iodine donors, in the COIL active medium. The procedure solving this system is described, the basic parameters determining the development of the chain reaction are found and its specific time intervals are determined. The initial stage of the reaction is analysed and criteria for the development of the branching chain decomposition reaction of iodide in the COIL active medium are determined. (active media)

  19. Effects of clofibric acid on the activity and activity state of the hepatic branched-chain 2-oxo acid dehydrogenase complex.

    OpenAIRE

    Zhao, Y; Jaskiewicz, J; Harris, R A

    1992-01-01

    Feeding clofibric acid to rats caused little or no change in total activity of the liver branched-chain 2-oxo acid dehydrogenase complex (BCODC). No change in mass of liver BCODC was detected by immunoblot analysis in response to dietary clofibric acid. No changes in abundance of mRNAs for the BCODC E1 alpha, E1 beta and E2 subunits were detected by Northern-blot analysis. Likewise, dietary clofibric acid had no effect on the activity state of liver BCODC (percentage of enzyme in the dephosph...

  20. Novel metabolic and physiological functions of branched chain amino acids: a review

    Institute of Scientific and Technical Information of China (English)

    Shihai Zhang; Xiangfang Zeng; Man Ren; Xiangbing Mao; Shiyan Qiao

    2017-01-01

    It is widely known that branched chain amino acids (BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans.BCAA (isoleucine,leucine and valine) regulate many key signaling pathways,the most classic of which is the activation of the mTOR signaling pathway.This signaling pathway connects many diverse physiological and metabolic roles.Recent years have witnessed many striking developments in determining the novel functions of BCAA including:(1) Insufficient or excessive levels of BCAA in the diet enhances lipolysis.(2) BCAA,especially isoleucine,play a major role in enhancing glucose consumption and utilization by up-regulating intestinal and muscular glucose transporters.(3)Supplementation of leucine in the diet enhances meat quality in finishing pigs.(4) BCAA are beneficial for mammary health,milk quality and embryo growth.(5) BCAA enhance intestinal development,intestinal amino acid transportation and mucin production.(6) BCAA participate in up-regulating innate and adaptive immune responses.In addition,abnormally elevated BCAA levels in the blood (decreased BCAA catabolism) are a good biomarker for the early detection of obesity,diabetes and other metabolic diseases.This review will provide some insights into these novel metabolic and physiological functions of BCAA.

  1. Novel metabolic and physiological functions of branched chain amino acids: a review.

    Science.gov (United States)

    Zhang, Shihai; Zeng, Xiangfang; Ren, Man; Mao, Xiangbing; Qiao, Shiyan

    2017-01-01

    It is widely known that branched chain amino acids (BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA (isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the mTOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining the novel functions of BCAA including: (1) Insufficient or excessive levels of BCAA in the diet enhances lipolysis. (2) BCAA, especially isoleucine, play a major role in enhancing glucose consumption and utilization by up-regulating intestinal and muscular glucose transporters. (3) Supplementation of leucine in the diet enhances meat quality in finishing pigs. (4) BCAA are beneficial for mammary health, milk quality and embryo growth. (5) BCAA enhance intestinal development, intestinal amino acid transportation and mucin production. (6) BCAA participate in up-regulating innate and adaptive immune responses. In addition, abnormally elevated BCAA levels in the blood (decreased BCAA catabolism) are a good biomarker for the early detection of obesity, diabetes and other metabolic diseases. This review will provide some insights into these novel metabolic and physiological functions of BCAA.

  2. Synthesis and characterization of an exact comb polyisoprene with three branches having the middle branch twice the molecular weight of the other two identical external branches

    KAUST Repository

    Ratkanthwar, Kedar

    2013-01-01

    An exact comb polyisoprene (PI) with three branches, with the middle branch having twice the molecular weight of the two other identical external branches, was synthesized by using anionic polymerization high vacuum techniques and appropriate chlorosilane chemistry. The synthetic approach involves (a) the selective replacement of the two chlorines of 4-(dichloromethylsilyl) diphenylethylene (DCMSDPE, key molecule) with identical PI chains by titration with PILi, (b) the addition of sec-BuLi to the double bond of DPE followed by the polymerization of isoprene from the newly created anionic site to form a 3-arm living star PI, (c) the selective replacement of the two chlorines of trichloromethylsilane with 3-arm star PI to form an H-shape intermediate, and (d) the replacement of the remaining chlorine of trichloromethylsilane by linear PI chains with double the molecular weight. All intermediate and final products were characterized via size exclusion chromatography, temperature gradient interaction chromatography and 1H-NMR spectroscopy. As expected, due to the inability to control the exact stoichiometry of the linking reactants, the main product (exact comb PI) is contaminated by a few by-products, despite the fact that anionic polymerization is the most efficient way to produce well-defined polymers. © 2013 The Royal Society of Chemistry.

  3. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Sunny, Nishanth E; Kalavalapalli, Srilaxmi; Bril, Fernando; Garrett, Timothy J; Nautiyal, Manisha; Mathew, Justin T; Williams, Caroline M; Cusi, Kenneth

    2015-08-15

    Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperinsulinemic clamps (insulin stimulation) were measured in 94 human subjects with varying degrees of insulin sensitivity to identify their relationships with insulin resistance. Furthermore, the impact of elevated BCAA on hepatic TCA cycle was determined in a diet-induced mouse model of NAFLD, utilizing targeted metabolomics and nuclear magnetic resonance (NMR)-based metabolic flux analysis. Insulin stimulation revealed robust relationships between human plasma BCAA and indices of insulin resistance, indicating chronic metabolic overload from BCAA. Human plasma BCAA and long-chain acylcarnitines also showed a positive correlation, suggesting modulation of mitochondrial metabolism by BCAA. Concurrently, mice with NAFLD failed to optimally induce hepatic mTORC1, plasma ketones, and hepatic long-chain acylcarnitines, following acute elevation of plasma BCAA. Furthermore, elevated BCAA failed to induce multiple fluxes through hepatic TCA cycle in mice with NAFLD. Our data suggest that BCAA are essential to mediate efficient channeling of carbon substrates for oxidation through mitochondrial TCA cycle. Impairment of BCAA-mediated upregulation of the TCA cycle could be a significant contributor to mitochondrial dysfunction in NAFLD.

  4. Improvement in carrier mobility and photovoltaic performance through random distribution of segments of linear and branched side chains

    Energy Technology Data Exchange (ETDEWEB)

    Egbe, Daniel A.M.; Adam, Getachew; Pivrikas, Almantas; Ulbricht, Christoph; Ramil, Alberto M.; Sariciftci, Niyazi Serdar [Johannes Kepler Univ., Linz (AT). Linz Inst. for Organic Solar Cells (LIOS); Hoppe, Harald [Technische Univ. Ilmenau (Germany). Inst. of Physics and Inst. of Micro- and Nanotechnologies; Rathgeber, Silke [Mainz Univ. (Germany). Inst. of Physics

    2010-07-01

    The random distribution of segments of linear octyloxy side chains and of branched 2-ethylhexyloxy side chains, on the backbone of anthracene containing poly(p-phenylene-ethynylene)-alt-poly(p-phenylene-vinylene) (PPE-PPV) has resulted in a side chain based statistical copolymer, denoted AnE-PVstat, showing optimized features as compared to the well defined homologues AnE-PVaa, -ab, -ba and -bb, whose constitutional units are incorporated into its backbone. WAXS studies on AnE-P's demonstrate the highest degree of order at the self-assembly state of AnE-PVstat, which is confirmed by its highly structured thin film absorption band. Electric field independent charge carrier mobility ({mu}{sub hole}) for AnE-PVstat was demonstrated by CELIV and OFET measurements, both methods resulting in similar {mu}{sub hole} values of up to 5.43 x 10{sup -4} cm{sup 2}/Vs. Upon comparison, our results show that charge carrier mobility as measured by CELIV technique is predominantly an intrachain process and less an interchain one, which is in line with past photoconductivity results from PPE-PPV based materials. The present side chain distribution favors efficient solar cell active layer phase separation. As a result, a smaller amount of PC{sub 60}BM is needed to achieve relatively high energy conversion efficiencies above 3 %. The efficiency of {eta}{sub AM1.5} {approx} 3.8 % obtained for AnE-PVstat:PC{sub 60}BM blend is presently the state-of-art value for PPV-based materials. (orig.)

  5. Branched-chain alpha-keto acid catabolism via the gene products of the bkd operon in Enterococcus faecalis: a ne, secreted metabolite serving as a temporary redox sink.

    NARCIS (Netherlands)

    Ward, D.E.; van der Weijden, C.C.; van der Merwe, M.J.; Westerhoff, H.V.; Claiborne, A.; Snoep, J.L.

    2000-01-01

    Recently the bkd gene cluster from Enterococcus faecalis was sequenced, and it was shown that the gene products constitute a pathway for the catabolism of branched-chain α-keto acids. We have now investigated the regulation and physiological role of this pathway. Primer extension analysis identified

  6. Potential therapeutic effects of branched-chain amino acids supplementation on resistance exercise-based muscle damage in humans

    Directory of Open Access Journals (Sweden)

    da Luz Claudia R

    2011-12-01

    Full Text Available Abstract Branched-chain amino acids (BCAA supplementation has been considered an interesting nutritional strategy to improve skeletal muscle protein turnover in several conditions. In this context, there is evidence that resistance exercise (RE-derived biochemical markers of muscle soreness (creatine kinase (CK, aldolase, myoglobin, soreness, and functional strength may be modulated by BCAA supplementation in order to favor of muscle adaptation. However, few studies have investigated such effects in well-controlled conditions in humans. Therefore, the aim of this short report is to describe the potential therapeutic effects of BCAA supplementation on RE-based muscle damage in humans. The main point is that BCAA supplementation may decrease some biochemical markers related with muscle soreness but this does not necessarily reflect on muscle functionality.

  7. Comparative metabolism of branched-chain amino acids to precursors of juvenile hormone biogenesis in corpora allata of lepidopterous versus nonlepidopterous insects

    Energy Technology Data Exchange (ETDEWEB)

    Brindle, P.A.; Schooley, D.A.; Tsai, L.W.; Baker, F.C.

    1988-08-05

    Comparative studies were performed on the role of branched-chain amino acids (BCAA) in juvenile hormone (JH) biosynthesis using several lepidopterous and nonlepidopterous insects. Corpora cardiaca-corpora allata complexes (CC-CA, the corpora allata being the organ of JH biogenesis) were maintained in culture medium containing a uniformly /sup 14/C-labeled BCAA, together with (methyl-/sup 3/H)methionine as mass marker for JH quantification. BCAA catabolism was quantified by directly analyzing the medium for the presence of /sup 14/C-labeled propionate and/or acetate, while JHs were extracted, purified by liquid chromatography, and subjected to double-label liquid scintillation counting. Our results indicate that active BCAA catabolism occurs within the CC-CA of lepidopterans, and this efficiently provides propionyl-CoA (from isoleucine or valine) for the biosynthesis of the ethyl branches of JH I and II. Acetyl-CoA, formed from isoleucine or leucine catabolism, is also utilized by lepidopteran CC-CA for biosynthesizing JH III and the acetate-derived portions of the ethyl-branched JHs. In contrast, CC-CA of nonlepidopterans fail to catabolize BCAA. Consequently, exogenous isoleucine or leucine does not serve as a carbon source for the biosynthesis of JH III by these glands, and no propionyl-CoA is produced for genesis of ethyl-branched JHs. This is the first observation of a tissue-specific metabolic difference which in part explains why these novel homosesquiterpenoids exist in lepidopterans, but not in nonlepidopterans.

  8. Comparative metabolism of branched-chain amino acids to precursors of juvenile hormone biogenesis in corpora allata of lepidopterous versus nonlepidopterous insects

    International Nuclear Information System (INIS)

    Brindle, P.A.; Schooley, D.A.; Tsai, L.W.; Baker, F.C.

    1988-01-01

    Comparative studies were performed on the role of branched-chain amino acids (BCAA) in juvenile hormone (JH) biosynthesis using several lepidopterous and nonlepidopterous insects. Corpora cardiaca-corpora allata complexes (CC-CA, the corpora allata being the organ of JH biogenesis) were maintained in culture medium containing a uniformly 14 C-labeled BCAA, together with [methyl- 3 H]methionine as mass marker for JH quantification. BCAA catabolism was quantified by directly analyzing the medium for the presence of 14 C-labeled propionate and/or acetate, while JHs were extracted, purified by liquid chromatography, and subjected to double-label liquid scintillation counting. Our results indicate that active BCAA catabolism occurs within the CC-CA of lepidopterans, and this efficiently provides propionyl-CoA (from isoleucine or valine) for the biosynthesis of the ethyl branches of JH I and II. Acetyl-CoA, formed from isoleucine or leucine catabolism, is also utilized by lepidopteran CC-CA for biosynthesizing JH III and the acetate-derived portions of the ethyl-branched JHs. In contrast, CC-CA of nonlepidopterans fail to catabolize BCAA. Consequently, exogenous isoleucine or leucine does not serve as a carbon source for the biosynthesis of JH III by these glands, and no propionyl-CoA is produced for genesis of ethyl-branched JHs. This is the first observation of a tissue-specific metabolic difference which in part explains why these novel homosesquiterpenoids exist in lepidopterans, but not in nonlepidopterans

  9. Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis

    Science.gov (United States)

    Lotta, Luca A.; Scott, Robert A.; Luan, Jian’an; Tillin, Therese; Stewart, Isobel D.; Perry, John R. B.; Karoly, Edward D.; Forouhi, Nita G.; Zierath, Juleen R.; Savage, David B.; Griffin, Julian L.; Hingorani, Aroon D.; Khaw, Kay-Tee; O’Rahilly, Stephen; Langenberg, Claudia

    2016-01-01

    Background Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question. Methods and Findings Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26–1.65, p = 9.5 × 10−8) for isoleucine, 1.85 (95% CI 1.41–2.42, p = 7.3 × 10−6) for leucine, and 1.54 (95% CI 1.28–1.84, p = 4.2 × 10−6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in type 2 diabetes. Conclusions Evidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the

  10. Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis.

    Directory of Open Access Journals (Sweden)

    Luca A Lotta

    2016-11-01

    Full Text Available Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question.Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 × 10-8. The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 × 10-25, encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 × 10-8 for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 × 10-6 for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 × 10-6 for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are

  11. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  12. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana.

    Science.gov (United States)

    Huang, Tengfang; Jander, Georg

    2017-10-01

    Whereas proline accumulates through de novo biosynthesis in plants subjected to osmotic stress, leucine, isoleucine, and valine accumulation in drought-stressed Arabidopsis thaliana is caused by abscisic acid-regulated protein degradation. In response to several kinds of abiotic stress, plants greatly increase their accumulation of free amino acids. Although stress-induced proline increases have been studied the most extensively, the fold-increase of other amino acids, in particular branched-chain amino acids (BCAAs; leucine, isoleucine, and valine), is often higher than that of proline. In Arabidopsis thaliana (Arabidopsis), BCAAs accumulate in response to drought, salt, mannitol, polyethylene glycol, herbicide treatment, and nitrogen starvation. Plants that are deficient in abscisic acid signaling accumulate lower amounts of BCAAs, but not proline and most other amino acids. Previous bioinformatic studies had suggested that amino acid synthesis, rather than protein degradation, is responsible for the observed BCAA increase in osmotically stressed Arabidopsis. However, whereas treatment with the protease inhibitor MG132 decreased drought-induced BCAA accumulation, inhibition of BCAA biosynthesis with the acetolactate synthase inhibitors chlorsulfuron and imazapyr did not. Additionally, overexpression of BRANCHED-CHAIN AMINO ACID TRANSFERASE2 (BCAT2), which is upregulated in response to osmotic stress and functions in BCAA degradation, decreased drought-induced BCAA accumulation. Together, these results demonstrate that BCAA accumulation in osmotically stressed Arabidopsis is primarily the result of protein degradation. After relief of the osmotic stress, BCAA homeostasis is restored over time by amino acid degradation involving BCAT2. Thus, drought-induced BCAA accumulation is different from that of proline, which is accumulated due to de novo synthesis in an abscisic acid-independent manner and remains elevated for a more prolonged period of time after removal of

  13. Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis.

    OpenAIRE

    Lotta, L. A.; Scott, R. A.; Sharp, S. J.; Burgess, S.; Luan, J.; Tillin, T.; Schmidt, A. F.; Imamura, F.; Stewart, I. D.; Perry, J. R.; Marney, L.; Koulman, A.; Karoly, E. D.; Forouhi, N. G.; Sjögren, R. J.

    2016-01-01

    BACKGROUND: Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question. METHODS AND FINDINGS: Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 × 10-8). The strongest si...

  14. Molecular detection of TasA gene in endophytic Bacillus species ...

    African Journals Online (AJOL)

    hope&shola

    2012-03-20

    Mar 20, 2012 ... formation in Bacillus species was detected in the endophytic bacteria by polymerase chain reaction. (PCR) amplification. In ten endophytic ... confer a competitive advantage to the spore from the onset of sporulation and later, ... possessing TasA gene (Chen et al., 2007; Gioia et al.,. 2007; Kunst et al., 1997; ...

  15. Transamination of branched chain amino acids (BCAA) in rat adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Frick, G.P.; Goodman, H.M.

    1986-03-05

    Like most extrahepatic tissues, adipose tissue can transaminate the BCAA faster than they are oxidized. Catabolism of the BCAA by adipose tissue appears to be limited by the activity of branched chain ..cap alpha..-keto acid dehydrogenase (BCDH). Conditions which stimulate the activity of this intramitochondrial enzyme in tissue extracts also increase the rate at which (1-/sup 14/C)leucine (L) and (1-/sup 14/C)valine (V) are oxidized by tissue segments. However, when maximum rates of oxidation were measured, 10 mM L was oxidized to /sup 14/CO/sub 2/ 5 times faster than 10 mM V (30 +/- 2 vs. 6 +/- 1 nmol min/sup -1/ g tis/sup -1/). In contrast, the ..cap alpha..-keto analogs of L and V were oxidized by tissue segments at nearly equal rates which slightly exceeded the rate of L oxidation. These results suggested that transamination might limit the catabolism of V, perhaps due to its inaccessibility to transaminase. The distribution of transaminase activity in tissue extracts was determined after centrifugation to obtain mitochondrial and cytosolic fractions. L and V were transaminated at similar rates by enzymes in both fractions. Transaminase activity in the mitochondrial fraction was greater than that of the cytosol and exceeded the capacity of the tissue to oxidize L. Catabolism of BCAA may depend upon intramitochondrial transamination and oxidation of V may be slower than that of L because uptake of V by mitochondria may be slower than that of L.

  16. Transamination of branched chain amino acids (BCAA) in rat adipose tissue

    International Nuclear Information System (INIS)

    Frick, G.P.; Goodman, H.M.

    1986-01-01

    Like most extrahepatic tissues, adipose tissue can transaminate the BCAA faster than they are oxidized. Catabolism of the BCAA by adipose tissue appears to be limited by the activity of branched chain α-keto acid dehydrogenase (BCDH). Conditions which stimulate the activity of this intramitochondrial enzyme in tissue extracts also increase the rate at which [1- 14 C]leucine (L) and [1- 14 C]valine (V) are oxidized by tissue segments. However, when maximum rates of oxidation were measured, 10 mM L was oxidized to 14 CO 2 5 times faster than 10 mM V (30 +/- 2 vs. 6 +/- 1 nmol min -1 g tis -1 ). In contrast, the α-keto analogs of L and V were oxidized by tissue segments at nearly equal rates which slightly exceeded the rate of L oxidation. These results suggested that transamination might limit the catabolism of V, perhaps due to its inaccessibility to transaminase. The distribution of transaminase activity in tissue extracts was determined after centrifugation to obtain mitochondrial and cytosolic fractions. L and V were transaminated at similar rates by enzymes in both fractions. Transaminase activity in the mitochondrial fraction was greater than that of the cytosol and exceeded the capacity of the tissue to oxidize L. Catabolism of BCAA may depend upon intramitochondrial transamination and oxidation of V may be slower than that of L because uptake of V by mitochondria may be slower than that of L

  17. The CodY-dependent clhAB2 operon is involved in cell shape, chaining and autolysis in Bacillus cereus ATCC 14579.

    Science.gov (United States)

    Huillet, Eugénie; Bridoux, Ludovic; Wanapaisan, Pagakrong; Rejasse, Agnès; Peng, Qi; Panbangred, Watanalai; Lereclus, Didier

    2017-01-01

    The Gram-positive pathogen Bacillus cereus is able to grow in chains of rod-shaped cells, but the regulation of chaining remains largely unknown. Here, we observe that glucose-grown cells of B. cereus ATCC 14579 form longer chains than those grown in the absence of glucose during the late exponential and transition growth phases, and identify that the clhAB2 operon is required for this chain lengthening phenotype. The clhAB2 operon is specific to the B. cereus group (i.e., B. thuringiensis, B. anthracis and B. cereus) and encodes two membrane proteins of unknown function, which are homologous to the Staphylococcus aureus CidA and CidB proteins involved in cell death control within glucose-grown cells. A deletion mutant (ΔclhAB2) was constructed and our quantitative image analyses show that ΔclhAB2 cells formed abnormal short chains regardless of the presence of glucose. We also found that glucose-grown cells of ΔclhAB2 were significantly wider than wild-type cells (1.47 μm ±CI95% 0.04 vs 1.19 μm ±CI95% 0.03, respectively), suggesting an alteration of the bacterial cell wall. Remarkably, ΔclhAB2 cells showed accelerated autolysis under autolysis-inducing conditions, compared to wild-type cells. Overall, our data suggest that the B. cereus clhAB2 operon modulates peptidoglycan hydrolase activity, which is required for proper cell shape and chain length during cell growth, and down-regulates autolysin activity. Lastly, we studied the transcription of clhAB2 using a lacZ transcriptional reporter in wild-type, ccpA and codY deletion-mutant strains. We found that the global transcriptional regulatory protein CodY is required for the basal level of clhAB2 expression under all conditions tested, including the transition growth phase while CcpA, the major global carbon regulator, is needed for the high-level expression of clhAB2 in glucose-grown cells.

  18. Distribution of the branched-chain α-ketoacid dehydrogenase complex E1α subunit and glutamate dehydrogenase in the human brain and their role in neuro-metabolism.

    Science.gov (United States)

    Hull, Jonathon; Usmari Moraes, Marcela; Brookes, Emma; Love, Seth; Conway, Myra E

    2018-01-01

    Glutamate is the major excitatory neurotransmitter of the central nervous system, with the branched-chain amino acids (BCAAs) acting as key nitrogen donors for de novo glutamate synthesis. Despite the importance of these major metabolites, their metabolic pathway in the human brain is still not well characterised. The metabolic pathways that influence the metabolism of BCAAs have been well characterised in rat models. However, the expression of key proteins such as the branched-chain α-ketoacid dehydrogenase (BCKD) complex and glutamate dehydrogenase isozymes (GDH) in the human brain is still not well characterised. We have used specific antibodies to these proteins to analyse their distribution within the human brain and report, for the first time, that the E1α subunit of the BCKD is located in both neurons and vascular endothelial cells. We also demonstrate that GDH is localised to astrocytes, although vascular immunolabelling does occur. The labelling of GDH was most intense in astrocytes adjacent to the hippocampus, in keeping with glutamatergic neurotransmission in this region. GDH was also present in astrocyte processes abutting vascular endothelial cells. Previously, we demonstrated that the branched-chain aminotransferase (hBCAT) proteins were most abundant in vascular cells (hBCATm) and neurons (hBCATc). Present findings are further evidence that BCAAs are metabolised within both the vasculature and neurons in the human brain. We suggest that GDH, hBCAT and the BCKD proteins operate in conjunction with astrocytic glutamate transporters and glutamine synthetase to regulate the availability of glutamate. This has important implications given that the dysregulation of glutamate metabolism, leading to glutamate excitotoxicity, is an important contributor to the pathogenesis of several neurodegenerative conditions such as Alzheimer's disease. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  19. Interventions Targeting Glucocorticoid-Krüppel-like Factor 15-Branched-Chain Amino Acid Signaling Improve Disease Phenotypes in Spinal Muscular Atrophy Mice

    Directory of Open Access Journals (Sweden)

    Lisa M. Walter

    2018-05-01

    Full Text Available The circadian glucocorticoid-Krüppel-like factor 15-branched-chain amino acid (GC-KLF15-BCAA signaling pathway is a key regulatory axis in muscle, whose imbalance has wide-reaching effects on metabolic homeostasis. Spinal muscular atrophy (SMA is a neuromuscular disorder also characterized by intrinsic muscle pathologies, metabolic abnormalities and disrupted sleep patterns, which can influence or be influenced by circadian regulatory networks that control behavioral and metabolic rhythms. We therefore set out to investigate the contribution of the GC-KLF15-BCAA pathway in SMA pathophysiology of Taiwanese Smn−/−;SMN2 and Smn2B/− mouse models. We thus uncover substantial dysregulation of GC-KLF15-BCAA diurnal rhythmicity in serum, skeletal muscle and metabolic tissues of SMA mice. Importantly, modulating the components of the GC-KLF15-BCAA pathway via pharmacological (prednisolone, genetic (muscle-specific Klf15 overexpression and dietary (BCAA supplementation interventions significantly improves disease phenotypes in SMA mice. Our study highlights the GC-KLF15-BCAA pathway as a contributor to SMA pathogenesis and provides several treatment avenues to alleviate peripheral manifestations of the disease. The therapeutic potential of targeting metabolic perturbations by diet and commercially available drugs could have a broader implementation across other neuromuscular and metabolic disorders characterized by altered GC-KLF15-BCAA signaling. Keywords: Spinal muscular atrophy, KLF15, Glucocorticoids, Branched-chain amino acids, Metabolism, Therapy

  20. Branched-chain Amino Acid Biosensing Using Fluorescent Modified Engineered Leucine/Isoleucine/Valine Binding Protein

    Directory of Open Access Journals (Sweden)

    Koji Sode

    2007-06-01

    Full Text Available A novel fluorescence sensing system for branched-chain amino acids (BCAAswas developed based on engineered leucine/isoleucine/valine-binding proteins (LIVBPsconjugated with environmentally sensitive fluorescence probes. LIVBP was cloned fromEscherichia coli and Gln149Cys, Gly227Cys, and Gln254Cys mutants were generated bygenetic engineering. The mutant LIVBPs were then modified with environmentallysensitive fluorophores. Based on the fluorescence intensity change observed upon thebinding of the ligands, the MIANS-conjugated Gln149Cys mutant (Gln149Cys-M showedthe highest and most sensitive response. The BCAAs Leu, Ile, and Val can each bemonitored at the sub-micromolar level using Gln149Cys-M. Measurements were alsocarried out on a mixture of BCAFAs and revealed that Gln149Cys-M-based measurementis not significantly affected by the change in the molar ratio of Leu, Ile and Val in thesample. Its high sensitivity and group-specific molecular recognition ability make the newsensing system ideally suited for the measurement of BCAAs and the determination of theFischer ratio, an indicator of hepatic disease involving metabolic dysfunction.

  1. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus

    Science.gov (United States)

    The rhizosphere isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of comm...

  2. Branched-chain amino acid supplementation promotes aerobic growth of Salmonella Typhimurium under nitrosative stress conditions.

    Science.gov (United States)

    Park, Yoon Mee; Lee, Hwa Jeong; Jeong, Jae-Ho; Kook, Joong-Ki; Choy, Hyon E; Hahn, Tae-Wook; Bang, Iel Soo

    2015-12-01

    Nitric oxide (NO) inactivates iron-sulfur enzymes in bacterial amino acid biosynthetic pathways, causing amino acid auxotrophy. We demonstrate that exogenous supplementation with branched-chain amino acids (BCAA) can restore the NO resistance of hmp mutant Salmonella Typhimurium lacking principal NO-metabolizing enzyme flavohemoglobin, and of mutants further lacking iron-sulfur enzymes dihydroxy-acid dehydratase (IlvD) and isopropylmalate isomerase (LeuCD) that are essential for BCAA biosynthesis, in an oxygen-dependent manner. BCAA supplementation did not affect the NO consumption rate of S. Typhimurium, suggesting the BCAA-promoted NO resistance independent of NO metabolism. BCAA supplementation also induced intracellular survival of ilvD and leuCD mutants at wild-type levels inside RAW 264.7 macrophages that produce constant amounts of NO regardless of varied supplemental BCAA concentrations. Our results suggest that the NO-induced BCAA auxotrophy of Salmonella, due to inactivation of iron-sulfur enzymes for BCAA biosynthesis, could be rescued by bacterial taking up exogenous BCAA available in oxic environments.

  3. Is administrating branched-chain amino acid-enriched nutrition achieved symptom-free in malnourished cirrhotic patients?

    Science.gov (United States)

    Tsuda, Yasuhiro; Fukui, Hideo; Sujishi, Tetsuya; Ohama, Hideko; Tsuchimoto, Yusuke; Asai, Akira; Fukunisi, Shinya; Higuchi, Kazuhide

    2014-01-01

    Administration of branched-chain amino acids (BCAA) has been reported to improve liver function, quality of life (QOL). However, in some malnourished patients, serum albumin levels do not improve in response to BCAA granules. In this study, we examined the effects of BCAA-enriched enteral nutrition in patients unresponsive to BCAA granules. Thirty-two decompensated cirrhotic patients at Osaka Medical College were enrolled in this study. Since all patients showed no improvement in serum albumin levels despite 3 months of BCAA granule administration, they were administered 50 g of a flavored BCAA-enriched enteral nutrient twice daily, i.e., during the daytime and late evening. Serum albumin levels and major cirrhotic symptoms were examined 1, 3, and 5 months after treatment initiation. Serum albumin levels improved significantly 3 months after treatment initiation (3.14 ± 0.32 g/dl vs 3.5 ± 0.31 g/dl, pBCAA-enriched nutrients improves QOL of cirrhotic patients unresponsive to BCAA granules.

  4. Study on color identification for monitoring and controlling fermentation process of branched chain amino acid

    Science.gov (United States)

    Ma, Lei; Wang, Yizhong; Chen, Ning; Liu, Tiegen; Xu, Qingyang; Kong, Fanzhi

    2008-12-01

    In this paper, a new method for monitoring and controlling fermentation process of branched chain amino acid (BCAA) was proposed based on color identification. The color image of fermentation broth of BCAA was firstly taken by a CCD camera. Then, it was changed from RGB color model to HIS color model. Its histograms of hue H and saturation S were calculated, which were used as the input of a designed BP network. The output of the BP network was the description of the color of fermentation broth of BCAA. After training, the color of fermentation broth was identified by the BP network according to the histograms of H and S of a fermentation broth image. Along with other parameters, the fermentation process of BCAA was monitored and controlled to start the stationary phase of fermentation soon. Experiments were conducted with satisfied results to show the feasibility and usefulness of color identification of fermentation broth in fermentation process control of BCAA.

  5. The effects of high-fat diet, branched-chain amino acids and exercise on female C57BL/6 mouse Achilles tendon biomechanical properties

    OpenAIRE

    Boivin, G. P.; Platt, K. M.; Corbett, J.; Reeves, J.; Hardy, A. L.; Elenes, E. Y.; Charnigo, R. J.; Hunter, S. A.; Pearson, K. J.

    2013-01-01

    Objectives The goals of this study were: 1) to determine if high-fat diet (HFD) feeding in female mice would negatively impact biomechanical and histologic consequences on the Achilles tendon and quadriceps muscle; and 2) to investigate whether exercise and branched-chain amino acid (BCAA) supplementation would affect these parameters or attenuate any negative consequences resulting from HFD consumption. Methods We examined the effects of 16 weeks of 60% HFD feeding, voluntary exercise (free ...

  6. Evaluation of the Branched-Chain DNA Assay for Measurement of RNA in Formalin-Fixed Tissues

    Science.gov (United States)

    Knudsen, Beatrice S.; Allen, April N.; McLerran, Dale F.; Vessella, Robert L.; Karademos, Jonathan; Davies, Joan E.; Maqsodi, Botoul; McMaster, Gary K.; Kristal, Alan R.

    2008-01-01

    We evaluated the branched-chain DNA (bDNA) assay QuantiGene Reagent System to measure RNA in formalin-fixed, paraffin-embedded (FFPE) tissues. The QuantiGene Reagent System does not require RNA isolation, avoids enzymatic preamplification, and has a simple workflow. Five selected genes were measured by bDNA assay; quantitative polymerase chain reaction (qPCR) was used as a reference method. Mixed-effect statistical models were used to partition the overall variance into components attributable to xenograft, sample, and assay. For FFPE tissues, the coefficients of reliability were significantly higher for the bDNA assay (93–100%) than for qPCR (82.4–95%). Correlations between qPCRFROZEN, the gold standard, and bDNAFFPE ranged from 0.60 to 0.94, similar to those from qPCRFROZEN and qPCRFFPE. Additionally, the sensitivity of the bDNA assay in tissue homogenates was 10-fold higher than in purified RNA. In 9- to 13-year-old blocks with poor RNA quality, the bDNA assay allowed the correct identification of the overexpression of known cancer genes. In conclusion, the QuantiGene Reagent System is considerably more reliable, reproducible, and sensitive than qPCR, providing an alternative method for the measurement of gene expression in FFPE tissues. It also appears to be well suited for the clinical analysis of FFPE tissues with diagnostic or prognostic gene expression biomarker panels for use in patient treatment and management. PMID:18276773

  7. Impact of the branched-chain amino acid to tyrosine ratio and branched-chain amino acid granule therapy in patients with hepatocellular carcinoma: A propensity score analysis.

    Science.gov (United States)

    Tada, Toshifumi; Kumada, Takashi; Toyoda, Hidenori; Kiriyama, Seiki; Tanikawa, Makoto; Hisanaga, Yasuhiro; Kanamori, Akira; Kitabatake, Shusuke; Yama, Tsuyoki

    2015-09-01

    It has been reported that the branched-chain amino acid (BCAA) to tyrosine ratio (BTR) is a useful indicator of liver function and BCAA therapy is associated with a decreased incidence of hepatocellular carcinoma (HCC). However, there has not been sufficient research on the relationship between BTR and the effects of BCAA therapy after initial treatment of HCC. We investigated the impact of BTR and BCAA therapy on survival in patients with HCC. A total of 315 patients with HCC who were treated (n = 66) or not treated (n = 249) with BCAA were enrolled; of these, 66 were selected from each group using propensity score matching. Survival from liver-related mortality was analyzed. In patients who did not receive BCAA therapy (n = 249), multivariate analysis for factors associated with survival indicated that low BTR (≤ 4.4) was independently associated with poor prognosis in patients with HCC (hazard ratio, 1.880; 95% confidence interval, 1.125-3.143; P = 0.016). In addition, among patients selected by propensity score matching (n = 132), multivariate analysis indicated that BCAA therapy was independently associated with good prognosis in patients with HCC (hazard ratio, 0.524; 95% confidence interval, 0.282-0.973; P = 0.041). BTR was not significantly associated with survival. Intervention involving BCAA therapy improved survival in patients with HCC versus untreated controls, regardless of BTR. In addition, low BTR was associated with poor prognosis in patients who did not receive BCAA therapy. © 2015 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  8. Whey protein supplementation does not alter plasma branched-chained amino acid profiles but results in unique metabolomics patterns in obese women enrolled in an 8-week weight loss trial

    Science.gov (United States)

    Background: It has been suggested that perturbations in branched-chain amino acid (BCAA) catabolism are associated with insulin resistance and contribute to elevated systemic BCAAs. Evidence in rodents suggests dietary protein rich in BCAAs can increase BCAA catabolism, but there is limited evidence...

  9. Color identification and fuzzy reasoning based monitoring and controlling of fermentation process of branched chain amino acid

    Science.gov (United States)

    Ma, Lei; Wang, Yizhong; Xu, Qingyang; Huang, Huafang; Zhang, Rui; Chen, Ning

    2009-11-01

    The main production method of branched chain amino acid (BCAA) is microbial fermentation. In this paper, to monitor and to control the fermentation process of BCAA, especially its logarithmic phase, parameters such as the color of fermentation broth, culture temperature, pH, revolution, dissolved oxygen, airflow rate, pressure, optical density, and residual glucose, are measured and/or controlled and/or adjusted. The color of fermentation broth is measured using the HIS color model and a BP neural network. The network's input is the histograms of hue H and saturation S, and output is the color description. Fermentation process parameters are adjusted using fuzzy reasoning, which is performed by inference rules. According to the practical situation of BCAA fermentation process, all parameters are divided into four grades, and different fuzzy rules are established.

  10. A Canonical Biotin Synthesis Enzyme, 8-Amino-7-Oxononanoate Synthase (BioF), Utilizes Different Acyl Chain Donors in Bacillus subtilis and Escherichia coli.

    Science.gov (United States)

    Manandhar, Miglena; Cronan, John E

    2018-01-01

    BioF (8-amino-7-oxononanoate synthase) is a strictly conserved enzyme that catalyzes the first step in assembly of the fused heterocyclic rings of biotin. The BioF acyl chain donor has long been thought to be pimeloyl-CoA. Indeed, in vitro the Escherichia coli and Bacillus sphaericus enzymes have been shown to condense pimeloyl-CoA with l-alanine in a pyridoxal 5'-phosphate-dependent reaction with concomitant CoA release and decarboxylation of l-alanine. However, recent in vivo studies of E. coli and Bacillus subtilis suggested that the BioF proteins of the two bacteria could have different specificities for pimelate thioesters in that E. coli BioF may utilize either pimeloyl coenzyme A (CoA) or the pimelate thioester of the acyl carrier protein (ACP) of fatty acid synthesis. In contrast, B. subtilis BioF seemed likely to be specific for pimeloyl-CoA and unable to utilize pimeloyl-ACP. We now report genetic and in vitro data demonstrating that B. subtilis BioF specifically utilizes pimeloyl-CoA. IMPORTANCE Biotin is an essential vitamin required by mammals and birds because, unlike bacteria, plants, and some fungi, these organisms cannot make biotin. Currently, the biotin included in vitamin tablets and animal feeds is made by chemical synthesis. This is partly because the biosynthetic pathways in bacteria are incompletely understood. This paper defines an enzyme of the Bacillus subtilis pathway and shows that it differs from that of Escherichia coli in the ability to utilize specific precursors. These bacteria have been used in biotin production and these data may aid in making biotin produced by biotechnology commercially competitive with that produced by chemical synthesis. Copyright © 2017 American Society for Microbiology.

  11. Maintenance of plasma branched-chain amino acid concentrations during glucose infusion directs essential amino acids to extra-mammary tissues in lactating dairy cows.

    Science.gov (United States)

    Curtis, Richelle V; Kim, Julie J M; Doelman, John; Cant, John P

    2018-05-01

    The objectives of this study were to investigate the effects of branched-chain AA (BCAA) supplementation when glucose is infused postruminally into lactating dairy cows consuming a diet low in crude protein (CP) and to test the hypothesis that low BCAA concentrations are responsible for the poor stimulation of milk protein yield by glucose. Twelve early-lactation Holstein cows were randomly assigned to 15% and 12% CP diets in a switchback design of 6-wk periods. Cows consuming the 12% CP diet received 96-h continuous jugular infusions of saline and 1 kg/d of glucose with 0, 75, or 150 g/d of BCAA in a Latin square sequence of treatments. Compared with saline, glucose infusion did not affect dry matter intake but increased milk yield by 2.2 kg/d and milk protein and lactose yields by 63 and 151 g/d, respectively. Mammary plasma flow increased 36% during glucose infusion compared with saline infusion, possibly because of a 31% decrease in total acetate plus β-hydroxybutyrate concentrations. Circulating concentrations of total essential AA and BCAA decreased 19 and 31%, respectively, during infusion of glucose, yet net mammary uptakes of AA remained unchanged compared with saline infusion. The addition of 75 and 150 g/d of BCAA to glucose infusions increased arterial concentrations of BCAA to 106 and 149%, respectively, of the concentrations in saline-infused cows, but caused a decrease in concentrations of non-branched-chain essential AA in plasma, as well as their mammary uptakes and milk protein yields. Plasma urea concentration was not affected by BCAA infusion, indicating no change in catabolism of AA. The lack of mammary and catabolic effects leads us to suggest that BCAA exerted their effects on plasma concentrations of the other essential AA by stimulating utilization in skeletal muscle for protein accretion. Results indicate that the glucose effect on milk protein yield was not limited by low BCAA concentrations, and that a stimulation of extra-mammary use

  12. Extended genetic analysis of Brazilian isolates of Bacillus cereus and Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Viviane Zahner

    2013-02-01

    Full Text Available Multiple locus sequence typing (MLST was undertaken to extend the genetic characterization of 29 isolates of Bacillus cereus and Bacillus thuringiensis previously characterized in terms of presence/absence of sequences encoding virulence factors and via variable number tandem repeat (VNTR. Additional analysis involved polymerase chain reaction for the presence of sequences (be, cytK, inA, pag, lef, cya and cap, encoding putative virulence factors, not investigated in the earlier study. MLST analysis ascribed novel and unique sequence types to each of the isolates. A phylogenetic tree was constructed from a single sequence of 2,838 bp of concatenated loci sequences. The strains were not monophyletic by analysis of any specific housekeeping gene or virulence characteristic. No clear association in relation to source of isolation or to genotypic profile based on the presence or absence of putative virulence genes could be identified. Comparison of VNTR profiling with MLST data suggested a correlation between these two methods of genetic analysis. In common with the majority of previous studies, MLST was unable to provide clarification of the basis for pathogenicity among members of the B. cereus complex. Nevertheless, our application of MLST served to reinforce the notion that B. cereus and B. thuringiensis should be considered as the same species.

  13. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Lackey, Denise E.; Lynch, Christopher J.; Olson, Kristine C.; Mostaedi, Rouzbeh; Ali, Mohamed; Smith, William H.; Karpe, Fredrik; Humphreys, Sandy; Bedinger, Daniel H.; Dunn, Tamara N.; Thomas, Anthony P.; Oort, Pieter J.; Kieffer, Dorothy A.; Amin, Rajesh; Bettaieb, Ahmed; Haj, Fawaz G.; Permana, Paska; Anthony, Tracy G.

    2013-01-01

    Elevated blood branched-chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metabolism. We tested if expression of the mitochondrial BCAA oxidation checkpoint, branched-chain α-ketoacid dehydrogenase (BCKD) complex, is reduced in obese WAT and regulated by metabolic signals. WAT BCKD protein (E1α subunit) was significantly reduced by 35–50% in various obesity models (fa/fa rats, db/db mice, diet-induced obese mice), and BCKD component transcripts significantly lower in subcutaneous (SC) adipocytes from obese vs. lean Pima Indians. Treatment of 3T3-L1 adipocytes or mice with peroxisome proliferator-activated receptor-γ agonists increased WAT BCAA catabolism enzyme mRNAs, whereas the nonmetabolizable glucose analog 2-deoxy-d-glucose had the opposite effect. The results support the hypothesis that suboptimal insulin action and/or perturbed metabolic signals in WAT, as would be seen with insulin resistance/type 2 diabetes, could impair WAT BCAA utilization. However, cross-tissue flux studies comparing lean vs. insulin-sensitive or insulin-resistant obese subjects revealed an unexpected negligible uptake of BCAA from human abdominal SC WAT. This suggests that SC WAT may not be an important contributor to blood BCAA phenotypes associated with insulin resistance in the overnight-fasted state. mRNA abundances for BCAA catabolic enzymes were markedly reduced in omental (but not SC) WAT of obese persons with metabolic syndrome compared with weight-matched healthy obese subjects, raising the possibility that visceral WAT contributes to the BCAA metabolic phenotype of metabolically compromised individuals. PMID:23512805

  14. Excess molar volumes of (an alkanol plus a branched chain ether) at the temperature 298.15 K and the application of the ERAS model

    CSIR Research Space (South Africa)

    Letcher, TM

    1997-12-01

    Full Text Available Phase Equilibria 140 (1997) 207-220 The excess molar the temperature volumes of (an alkanol + a branched chain ether) at 298.15 K and the application of the ERAS model Trevor M. Letcher * , Penny U. Govender ? Drpartnwnt... V,,? results presented here, together with the previously reported data for the molar excess enthalpy Hi, has been used to test the Extended Real Associated Solution (ERAS) model. 0 1997 Elsevier Science B.V. Ke...

  15. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export

    OpenAIRE

    White, Phillip J.; Lapworth, Amanda L.; An, Jie; Wang, Liping; McGarrah, Robert W.; Stevens, Robert D.; Ilkayeva, Olga; George, Tabitha; Muehlbauer, Michael J.; Bain, James R.; Trimmer, Jeff K.; Brosnan, M. Julia; Rolph, Timothy P.; Newgard, Christopher B.

    2016-01-01

    Objective: A branched-chain amino acid (BCAA)-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Methods: Zucker-lean rats (ZLR) and Zucker-fatty rats (Z...

  16. Branched-chain and aromatic amino acid profiles and diabetes risk in Chinese populations

    Science.gov (United States)

    Chen, Tianlu; Ni, Yan; Ma, Xiaojing; Bao, Yuqian; Liu, Jiajian; Huang, Fengjie; Hu, Cheng; Xie, Guoxiang; Zhao, Aihua; Jia, Weiping; Jia, Wei

    2016-01-01

    Recent studies revealed strong evidence that branched-chain and aromatic amino acids (BCAAs and AAAs) are closely associated with the risk of developing type 2 diabetes in several Western countries. The aim of this study was to evaluate the potential role of BCAAs and AAAs in predicting the diabetes development in Chinese populations. The serum levels of valine, leucine, isoleucine, tyrosine, and phenylalanine were measured in a longitudinal and a cross sectional studies with a total of 429 Chinese participants at different stages of diabetes development, using an ultra-performance liquid chromatography triple quadruple mass spectrometry platform. The alterations of the five AAs in Chinese populations are well in accordance with previous reports. Early elevation of the five AAs and their combined score was closely associated with future development of diabetes, suggesting an important role of these metabolites as early markers of diabetes. On the other hand, the five AAs were not as good as existing clinical markers in differentiating diabetic patients from their healthy counterparts. Our findings verified the close correlation of BCAAs and AAAs with insulin resistance and future development of diabetes in Chinese populations and highlighted the predictive value of these markers for future development of diabetes. PMID:26846565

  17. Gravitating monopole-antimonopole chains and vortex rings

    International Nuclear Information System (INIS)

    Kleihaus, Burkhard; Kunz, Jutta; Shnir, Yasha

    2005-01-01

    We construct monopole-antimonopole chain and vortex solutions in Yang-Mills-Higgs theory coupled to Einstein gravity. The solutions are static, axially symmetric, and asymptotically flat. They are characterized by two integers (m,n) where m is related to the polar angle and n to the azimuthal angle. Solutions with n=1 and n=2 correspond to chains of m monopoles and antimonopoles. Here the Higgs field vanishes at m isolated points along the symmetry axis. Larger values of n give rise to vortex solutions, where the Higgs field vanishes on one or more rings, centered around the symmetry axis. When gravity is coupled to the flat space solutions, a branch of gravitating monopole-antimonopole chain or vortex solutions arises and merges at a maximal value of the coupling constant with a second branch of solutions. This upper branch has no flat space limit. Instead in the limit of vanishing coupling constant it either connects to a Bartnik-McKinnon or generalized Bartnik-McKinnon solution, or, for m>4, n>4, it connects to a new Einstein-Yang-Mills solution. In this latter case further branches of solutions appear. For small values of the coupling constant on the upper branches, the solutions correspond to composite systems, consisting of a scaled inner Einstein-Yang-Mills solution and an outer Yang-Mills-Higgs solution

  18. [Impact of glutamine, eicosapntemacnioc acid, branched-chain amino acid supplements on nutritional status and treatment compliance of esophageal cancer patients on concurrent chemoradiotherapy and gastric cancer patients on chemotherapy].

    Science.gov (United States)

    Cong, Minghua; Song, Chenxin; Zou, Baohua; Deng, Yingbing; Li, Shuluan; Liu, Xuehui; Liu, Weiwei; Liu, Jinying; Yu, Lei; Xu, Binghe

    2015-03-17

    To explore the effects of glutamine, eicosapntemacnioc acid (EPA) and branched-chain amino acids supplements in esophageal cancer patients on concurrent chemoradiotherapy and gastric cancer patients on chemotherapy. From April 2013 to April 2014, a total of 104 esophageal and gastric carcinoma patients on chemotherapy or concurrent chemoradiotherapy were recruited and randomly divided into experimental and control groups. Both groups received dietary counseling and routine nutritional supports while only experimental group received supplements of glutamine (20 g/d), EPA (3.3 g/d) and branched-chain amino acids (8 g/d). And body compositions, blood indicators, incidence of complications and completion rates of therapy were compared between two groups. After treatment, free fat mass and muscle weight increased significantly in experiment group while decreased in control group (P nutrition status, decrease the complications and improve compliance for esophageal cancer patients on concurrent chemo-radiotherapy and gastric cancer patients on postoperative adjuvant chemotherapy.

  19. Ingestion of branched-chain amino acids and tryptophan during sustained exercise in man: failure to affect performance

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Raaymakers, J S; Saris, W H

    1995-01-01

    1. An increased uptake of tryptophan in the brain may increase serotoninergic activity and recently has been suggested to be a cause of fatigue during prolonged exercise. The present study, therefore, investigates whether ingestion of tryptophan or the competing branched-chain amino acids (BCAAs......) affect performance. Ten endurance-trained male athletes were studied during cycle exercise at 70-75% maximal power output, while ingesting, ad random and double-blind, drinks that contained 6% sucrose (control) or 6% sucrose supplemented with (1) tryptophan (3 g l-1), (2) a low dose of BCAA (6 g l-1...... tryptophan ingestion caused a 7- to 20-fold increase. Exercise time to exhaustion was not different between treatments (122 +/- 3 min). 3. The data suggest that manipulation of tryptophan supply to the brain either has no additional effect upon serotoninergic activity during prolonged exhaustive exercise...

  20. Does Branched-Chain Amino Acids Supplementation Modulate Skeletal Muscle Remodeling through Inflammation Modulation? Possible Mechanisms of Action

    Directory of Open Access Journals (Sweden)

    Humberto Nicastro

    2012-01-01

    Full Text Available Skeletal muscle protein turnover is modulated by intracellular signaling pathways involved in protein synthesis, degradation, and inflammation. The proinflammatory status of muscle cells, observed in pathological conditions such as cancer, aging, and sepsis, can directly modulate protein translation initiation and muscle proteolysis, contributing to negative protein turnover. In this context, branched-chain amino acids (BCAAs, especially leucine, have been described as a strong nutritional stimulus able to enhance protein translation initiation and attenuate proteolysis. Furthermore, under inflammatory conditions, BCAA can be transaminated to glutamate in order to increase glutamine synthesis, which is a substrate highly consumed by inflammatory cells such as macrophages. The present paper describes the role of inflammation on muscle remodeling and the possible metabolic and cellular effects of BCAA supplementation in the modulation of inflammatory status of skeletal muscle and the consequences on protein synthesis and degradation.

  1. Attenuation of the protein wasting associated with bed rest by branched-chain amino acids

    Science.gov (United States)

    Stein, T. P.; Schluter, M. D.; Leskiw, M. J.; Boden, G.

    1999-01-01

    Bed rest is generally accepted as being an appropriate ground-based model for human spaceflight. The objectives of this study were to test the hypothesis that increasing the amount of branched-chain amino acids (BCAAs) in the diet could attenuate the protein loss associated with bed rest. Nineteen healthy subjects were randomized into two groups according to diet. During the 6 d of bed rest, the diets were supplemented with either 30 mmol/d each of three non-essential amino acids, glycine, serine, and alanine (control group), or with 30 mmol/d each of the BCAAs, leucine, isoleucine, and valine (BCAA group). Nutrition was supplied as a commercially available defined formula diet at a rate of 1.3 x REE. Nitrogen (N) balance and urinary 3-MeH excretion were determined for the 6 d. In our results, the urine-based estimate of N balance was 22.2 +/- 14.4 (n = 9) mg N.kg-1.d-1 and 60.5 +/- 10.1 mg (n = 8) N.kg-1.d-1 for the control and BCAA-supplemented groups, respectively (P BCAA supplementation attenuates the N loss during short-term bed rest.

  2. Toxin production ability of Bacillus cereus strains from food product of Ukraine

    Directory of Open Access Journals (Sweden)

    I. Pylypenko

    2017-10-01

    Full Text Available Potential pathogens of foodborne toxic infections – bacterial contaminants Bacillus cereus isolated from plant raw materials and food products from the Ukrainian region were investigated. When determining of the proportion of isolated bacilli from the plant samples, it was established that the epidemiologically significant microorganisms of Bacillus cereus as agents of food poisoning are the second largest. The average value of contaminated samples of Ukrainian plant raw materials and processed products with Bacillus cereus is 36,2 %. The ability of Bacillus cereus strains identified by a complex of morphological, tinctorial, cultural and biochemical properties, to produce specific emetic and enterotoxins was studied. Molecular genetic diagnosis and detection of the toxin-producing ability of isolated 42 Bacillus cereus strains showed both the possibility of their rapid identification and the presence of specific toxicity genes. Multiplex polymerase chain reaction (PCR was carried out with specific primers to detect toxicity determined of various bacilli genes: nheA, hblD, cytK, cesВ. The distribution of toxigenic genes is significantly different among the Bacillus cereus isolates from various sources. The nheA, hblD and cytK enterotoxin genes were detected in 100, 83,3 and 61,9 % of the investigated strains of Bacillus cereus, respectively. The cesB gene encoding emetic toxin was detected in 4,8 % of  strains. Molecular-genetic PCR-method confirmed that all the isolated strains belong to the Bacillus cereus group, and the ability to produce toxins can be attributed to five groups. The main toxins that produce the investigated Bacillus cereus strains were nhe and hbl enterotoxins encoded by the corresponding genes of nheA and hblD. The enterotoxic type of Bacillus cereus was predominant in Ukrainian region.  Studies of domestic plant food raw materials and products have confirmed the need to improve microbiological control of product safety

  3. Importance of the Long-Chain Fatty Acid Beta-Hydroxylating Cytochrome P450 Enzyme YbdT for Lipopeptide Biosynthesis in Bacillus subtilis Strain OKB105

    Directory of Open Access Journals (Sweden)

    Michael J. McInerney

    2011-03-01

    Full Text Available Bacillus species produce extracellular, surface-active lipopeptides such as surfactin that have wide applications in industry and medicine. The steps involved in the synthesis of 3-hydroxyacyl-coenzyme A (CoA substrates needed for surfactin biosynthesis are not understood. Cell-free extracts of Bacillus subtilis strain OKB105 synthesized lipopeptide biosurfactants in presence of L-amino acids, myristic acid, coenzyme A, ATP, and H2O2, which suggested that 3-hydroxylation occurs prior to CoA ligation of the long chain fatty acids (LCFAs. We hypothesized that YbdT, a cytochrome P450 enzyme known to beta-hydroxylate LCFAs, functions to form 3-hydroxy fatty acids for lipopeptide biosynthesis. An in-frame mutation of ybdT was constructed and the resulting mutant strain (NHY1 produced predominantly non-hydroxylated lipopeptide with diminished biosurfactant and beta-hemolytic activities. Mass spectrometry showed that 95.6% of the fatty acids in the NHY1 biosurfactant were non-hydroxylated compared to only ~61% in the OKB105 biosurfactant. Cell-free extracts of the NHY1 synthesized surfactin containing 3-hydroxymyristic acid from 3-hydroxymyristoyl-CoA at a specific activity similar to that of the wild type (17 ± 2 versus 17.4 ± 6 ng biosurfactant min−1·ng·protein−1, respectively. These results showed that the mutation did not affect any function needed to synthesize surfactin once the 3-hydroxyacyl-CoA substrate was formed and that YbdT functions to supply 3-hydroxy fatty acid for surfactin biosynthesis. The fact that YbdT is a peroxidase could explain why biosurfactant production is rarely observed in anaerobically grown Bacillus species. Manipulation of LCFA specificity of YbdT could provide a new route to produce biosurfactants with activities tailored to specific functions.

  4. N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes.

    OpenAIRE

    Kuhn, H; Fietzek, P P; Lampen, J O

    1982-01-01

    The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis.

  5. Prognostic Impact of Visceral Fat Amount and Branched-Chain Amino Acids (BCAA) in Hepatocellular Carcinoma.

    Science.gov (United States)

    Higashi, Takaaki; Hayashi, Hiromitsu; Kaida, Takayoshi; Arima, Kota; Takeyama, Hideaki; Taki, Katsunobu; Izumi, Daisuke; Tokunaga, Ryuma; Kosumi, Keisuke; Nakagawa, Shigeki; Okabe, Hirohisa; Imai, Katsunobu; Nitta, Hidetoshi; Hashimoto, Daisuke; Chikamoto, Akira; Beppu, Toru; Baba, Hideo

    2015-12-01

    Dysregulation of lipid and amino acid metabolism in patients with liver diseases results in obesity-related carcinogenesis and decreased levels of branched-chain amino acids (BCAA), respectively. This study assessed the clinical and prognostic impact of visceral fat amount (VFA) and its association with amino acid metabolism in patients with hepatocellular carcinoma (HCC). In this study, 215 patients who underwent hepatic resection for HCC were divided into two groups based on VFA criteria for metabolic abnormalities in Japan. Computed tomography was used to measure VFA at the third lumbar vertebra in the inferior direction. Of the 215 patients, 132 had high and 83 had low VFA. High VFA was significantly associated with older age and higher body mass index (BMI), subcutaneous fat amount, and BCAA, but not with liver function, nutrient status, or tumoral factors. VFA was positively correlated with BMI (P BCAA levels (P BCAA, serum albumin, and prognostic nutritional index were not. High VFA was associated with a high BCAA level, with high VFA prognostic of improved overall survival in Japanese patients with HCC.

  6. Impairment of innate immune responses in cirrhotic patients and treatment by branched-chain amino acids

    Science.gov (United States)

    Nakamura, Ikuo

    2014-01-01

    It has been reported that host defense responses, such as phagocytic function of neutrophils and natural killer (NK) cell activity of lymphocytes, are impaired in cirrhotic patients. This review will concentrate on the impairment of innate immune responses in decompensated cirrhotic patients and the effect of the treatment by branched-chain amino acids (BCAA) on innate immune responses. We already reported that phagocytic function of neutrophils was significantly improved by 3-mo BCAA supplementation. In addition, the changes of NK activity were also significant at 3 mo of supplementation compared with before supplementation. Also, Fisher’s ratios were reported to be significantly increased at 3 mo of BCAA supplementation compared with those before oral supplementation. Therefore, administration of BCAA could reduce the risk of bacterial and viral infection in patients with decompensated cirrhosis by restoring impaired innate immune responses of the host. In addition, it was also revealed that BCAA oral supplementation could reduce the risk of development of hepatocellular carcinoma in cirrhotic patients. The mechanisms of the effects will also be discussed in this review article. PMID:24966600

  7. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics.

    Science.gov (United States)

    Dunlap, Christopher A; Kim, Soo-Jin; Kwon, Soon-Wo; Rooney, Alejandro P

    2016-03-01

    Bacillus velezensis was previously reported to be a later heterotypic synonym of Bacillus amyloliquefaciens , based primarily on DNA-DNA relatedness values. We have sequenced a draft genome of B. velezensis NRRL B-41580 T . Comparative genomics and DNA-DNA relatedness calculations show that it is not a synonym of B. amyloliquefaciens. It was instead synonymous with Bacillus methylotrophicus. ' Bacillus oryzicola ' is a recently described species that was isolated as an endophyte of rice ( Oryza sativa ). The strain was demonstrated to have plant-pathogen antagonist activity in greenhouse assays, and the 16S rRNA gene was reported to have 99.7 % sequence similarity with Bacillus siamensis and B. methylotrophicus , which are both known for their plant pathogen antagonism. To better understand the phylogenetics of these closely related strains, we sequenced the genome of ' B . oryzicola ' KACC 18228. Comparative genomic analysis showed only minor differences between this strain and the genomes of B. velezensis NRRL B-41580 T , B. methylotrophicus KACC 13015 T and Bacillus amyloliquefaciens subsp. plantarum FZB42 T . The pairwise in silico DNA-DNA hybridization values calculated in comparisons between the strains were all greater than 84 %, which is well above the standard species threshold of 70 %. The results of morphological, physiological, chemotaxonomic and phylogenetic analyses indicate that the strains share phenotype and genotype coherence. Therefore, we propose that B. methylotrophicus KACC 13015 T , B. amyloliquefaciens subsp. plantarum FZB42 T , and ' B. oryzicola' KACC 18228 should be reclassified as later heterotypic synonyms of B. velezensis NRRL B-41580 T , since the valid publication date of B. velezensis precedes the other three strains.

  8. Efforts to identify spore forming bacillus

    Energy Technology Data Exchange (ETDEWEB)

    Zuleiha, M.S.; Hilmy, N. (National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre)

    1982-04-01

    Efforts to identify 47 species of radioresistant spore forming bacillus sp. isolated from locally produced medical devices have been carried out. The identifications was conducted using 19 kinds of biochemical tests and compared to species to bacillus subtilis W. T.; bacillus pumilus E 601 and bacillus sphaericus Csub(I)A. The results showed that bacillus sp. examined could be divided into 6 groups, i.e. bacillus cereus; bacillus subtilis; bacillus stearothermophylus; bacillus coagulans; bacillus sphaericus and bacillus circulans.

  9. Efforts to identify spore forming bacillus

    International Nuclear Information System (INIS)

    Zuleiha, M.S.; Hilmy, Nazly

    1982-01-01

    Efforts to identify 47 species of radioresistant spore forming bacillus sp. isolated from locally produced medical devices have been carried out. The identifications was conducted using 19 kinds of biochemical tests and compared to species to bacillus subtilis W. T.; bacillus pumilus E 601 and bacillus sphaericus Csub(I)A. The results showed that bacillus sp. examined could be divided into 6 groups, i.e. bacillus cereus; bacillus subtilis; bacillus stearothermophylus; bacillus coagulans; bacillus sphaericus and bacillus circulans. (author)

  10. Roux-en-Y Gastric Bypass Surgery, but Not Calorie Restriction, Reduces Plasma Branched-Chain Amino Acids in Obese Women Independent of Weight Loss or the Presence of Type 2 Diabetes

    NARCIS (Netherlands)

    Lips, M.A.; Klinken, J.B. van; Harmelen, V. van; Dharuri, H.K.; Hoen, P.A.C. 't; Laros, J.F.; Ommen, G.J.B. van; Janssen, I.M; Ramshorst, B. van; Wagensveld, B.A. van; Swank, D.J.; Dielen, F. Van; Dane, A.; Harms, A.; Vreeken, R.; Hankemeier, T.; Smit, J.W.A.; Pijl, H.; Dijk, K van

    2014-01-01

    OBJECTIVE: Obesity and type 2 diabetes mellitus (T2DM) have been associated with increased levels of circulating branched-chain amino acids (BCAAs) that may be involved in the pathogenesis of insulin resistance. However, weight loss has not been consistently associated with the reduction of BCAA

  11. Branched-chain amino acid supplementation during bed rest: effect on recovery

    Science.gov (United States)

    Stein, T. P.; Donaldson, M. R.; Leskiw, M. J.; Schluter, M. D.; Baggett, D. W.; Boden, G.

    2003-01-01

    Bed rest is associated with a loss of protein from the weight-bearing muscle. The objectives of this study are to determine whether increasing dietary branched-chain amino acids (BCAAs) during bed rest improves the anabolic response after bed rest. The study consisted of a 1-day ambulatory period, 14 days of bed rest, and a 4-day recovery period. During bed rest, dietary intake was supplemented with either 30 mmol/day each of glycine, serine, and alanine (group 1) or with 30 mmol/day each of the three BCAAs (group 2). Whole body protein synthesis was determined with U-(15)N-labeled amino acids, muscle, and selected plasma protein synthesis with l-[(2)H(5)]phenylalanine. Total glucose production and gluconeogenesis from alanine were determined with l-[U-(13)C(3)]alanine and [6,6-(2)H(2)]glucose. During bed rest, nitrogen (N) retention was greater with BCAA feeding (56 +/- 6 vs. 26 +/- 12 mg N. kg(-1). day(-1), P BCAA supplementation on either whole body, muscle, or plasma protein synthesis or the rate of 3-MeH excretion. Muscle tissue free amino acid concentrations were increased during bed rest with BCAA (0.214 +/- 0.066 vs. 0.088 +/- 0.12 nmol/mg protein, P BCAA group in the recovery phase. In conclusion, the improved N retention during bed rest is due, at least in part, to accretion of amino acids in the tissue free amino acid pools. The amount accreted is not enough to impact protein kinetics in the recovery phase but does improve N retention by providing additional essential amino acids in the early recovery phase.

  12. Cylindrical polymer brushes with dendritic side chains by iterative anionic reactions

    KAUST Repository

    Zhang, Hefeng

    2015-05-01

    We report in this paper an easy method for the synthesis of cylindrical polymer brushes with dendritic side chains through anionic reaction. The synthesis is accomplished by iteratively grafting a living block copolymer, polyisoprene-. b-polystyrenyllithium (PI-. b-PSLi), to the main chain and subsequently to the branches in a divergent way. PI segment is short and serves as a precursor for multifunctional branching unit. The grafting reaction involves two successive steps: i) epoxidation of internal double bonds of PI segments, either in main chain or side chains; ii) ring-opening addition to the resulting epoxy group by the living PI-. b-PSLi. Repeating the two steps affords a series of cylindrical polymer brushes with up to 3rd generation and extremely high molecular weight. The branching multiplicity depends on the average number of oxirane groups per PI segment, usually ca. 8 in the present work. The high branching multiplicity leads to tremendous increase in molecular weights of the cylindrical products with generation growth. Several series of cylindrical polymer brushes with tunable aspect ratios are prepared using backbones and branches with controlled lengths. Shape anisotropy is investigated in dilute solution using light scattering technique. Worm-like single molecular morphology with large persistence length is observed on different substrates by atomic force microscopy.

  13. Bacillus Coagulans

    Science.gov (United States)

    Bacillus coagulans is a type of bacteria. It is used similarly to lactobacillus and other probiotics as "beneficial" bacteria. People take Bacillus coagulans for diarrhea, including infectious types such as rotaviral ...

  14. Detection of biosurfactants in Bacillus species: genes and products identification.

    Science.gov (United States)

    Płaza, G; Chojniak, J; Rudnicka, K; Paraszkiewicz, K; Bernat, P

    2015-10-01

    To screen environmental Bacillus strains for detection of genes encoding the enzymes involved in biosurfactant synthesis and to evaluate their products e.g. surfactin, iturin and fengycin. The taxonomic identification of isolated from the environment Bacillus strains was performed by Microgene ID Bacillus panel and GEN III Biolog system. The polymerase chain reaction (PCR) strategy for screening of genes in Bacillus strains was set up. Liquid chromatography-mass spectrometry (LC-MS/MS) method was used for the identification of lipopeptides (LPs). All studied strains exhibited the presence of srfAA gene and produced surfactin mostly as four homologues (C13 to C16). Moreover, in 2 strains (KP7, T'-1) simultaneous co-production of 3 biosurfactants: surfactin, iturin and fengycin was observed. Additionally, it was found out that isolate identified as Bacillus subtilis ssp. subtilis (KP7), beside LPs co-production, synthesizes surfactin with the efficiency much higher than other studied strains (40·2 mg l(-1) ) and with the yield ranging from 0·8 to 8·3 mg l(-1) . We showed that the combined methodology based on PCR and LC-MS/MS technique is an optimal tool for the detection of genes encoding enzymes involved in biosurfactant synthesis as well as their products, e.g. surfactin, iturin and fengycin. This approach improves the screening and the identification of environmental Bacillus co-producing biosurfactants-stimulating and facilitating the development of this area of science. The findings of this work will help to improve screening of biosurfactant producers. Discovery of novel biosurfactants and biosurfactants co-production ability has shed light on their new application fields and for the understanding of their interactions and properties. © 2015 The Society for Applied Microbiology.

  15. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism.

    Science.gov (United States)

    Lerin, Carles; Goldfine, Allison B; Boes, Tanner; Liu, Manway; Kasif, Simon; Dreyfuss, Jonathan M; De Sousa-Coelho, Ana Luisa; Daher, Grace; Manoli, Irini; Sysol, Justin R; Isganaitis, Elvira; Jessen, Niels; Goodyear, Laurie J; Beebe, Kirk; Gall, Walt; Venditti, Charles P; Patti, Mary-Elizabeth

    2016-10-01

    Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (SI, 0.49 to 14.28). We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.

  16. Comparative genome analysis of Bacillus cereus group genomes withBacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D' Souza, Mark; Larsen, Niels; Pusch,Gordon; Liolios, Konstantinos; Grechkin, Yuri; Lapidus, Alla; Goltsman,Eugene; Chu, Lien; Fonstein, Michael; Ehrlich, S. Dusko; Overbeek, Ross; Kyrpides, Nikos; Ivanova, Natalia

    2005-09-14

    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.

  17. Extraction of plutonium(IV) by bis(2-ethylhexyl) sulfoxide: a novel branched-chain extractant (Preprint No. ST.23)

    International Nuclear Information System (INIS)

    Shukla, J.P.; Kedari, C.S.

    1989-01-01

    Di-n-alkyl sulfoxides offer certain distint advantages over other common extractants for use in actinides separation particularly in the presence of high radiation fields. Despite widespread interest in these extractants, practical applications of such sulfoxides in nuclear fuel reprocessing have been seriously hampered owing to their poor solubility in common aliphatic hydrocarbon diluents. Recently a promising new branched-chain sulfoxide extractant, bis( 2-ethylhexyl) sulfoxide (BESO) has been introduced as a novel extracting agent for uranium. It possesses almost all the advantages of other sulfoxides, but excels the rest in terms of its complete miscibility with dodecane and the highest Ksub(H) value reported for any sulfoxide. As a part of comprehensive program to explore its analytical usefulness, data concerning preliminary studies on the extraction of plutonium with BESO form nitric acid solutions are reported. (author)

  18. Identification of branched-chain amino acid aminotransferases active towards (R)-(+)-1-phenylethylamine among PLP fold type IV transaminases.

    Science.gov (United States)

    Bezsudnova, Ekaterina Yu; Dibrova, Daria V; Nikolaeva, Alena Yu; Rakitina, Tatiana V; Popov, Vladimir O

    2018-04-10

    New class IV transaminases with activity towards L-Leu, which is typical of branched-chain amino acid aminotransferases (BCAT), and with activity towards (R)-(+)-1-phenylethylamine ((R)-PEA), which is typical of (R)-selective (R)-amine:pyruvate transaminases, were identified by bioinformatics analysis, obtained in recombinant form, and analyzed. The values of catalytic activities in the reaction with L-Leu and (R)-PEA are comparable to those measured for characteristic transaminases with the corresponding specificity. Earlier, (R)-selective class IV transaminases were found to be active, apart from (R)-PEA, only with some other (R)-primary amines and D-amino acids. Sequences encoding new transaminases with mixed type of activity were found by searching for changes in the conserved motifs of sequences of BCAT by different bioinformatics tools. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Lawrence P., E-mail: mcintosh@chem.ubc.ca; Naito, Daigo; Baturin, Simon J.; Okon, Mark; Joshi, Manish D. [University of British Columbia, Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, Life Sciences Centre (Canada); Nielsen, Jens E. [University College Dublin, School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, UCD Conway Institute (Ireland)

    2011-09-15

    NMR-monitored pH titration curves of proteins provide a rich source of structural and electrostatic information. Although relatively straightforward to measure, interpreting pH-dependent chemical shift changes to obtain site-specific acid dissociation constants (pK{sub A} values) is challenging. In order to analyze the biphasic titrations exhibited by the side chain {sup 13}C{sup {gamma}} nuclei of the nucleophilic Glu78 and general acid/base Glu172 in Bacillus circulans xylanase, we have revisited the formalism for the ionization equilibria of two coupled acidic residues. In general, fitting NMR-monitored pH titration curves for such a system will only yield the two macroscopic pK{sub A} values that reflect the combined effects of both deprotonation reactions. However, through the use of mutations complemented with ionic strength-dependent measurements, we are able to extract the four microscopic pK{sub Ai} values governing the branched acid/base equilibria of Glu78 and Glu172 in BcX. These data, confirmed through theoretical calculations, help explain the pH-dependent mechanism of this model GH11 xylanase by demonstrating that the kinetically determined pK{sub A} values and hence catalytic roles of these two residues result from their electrostatic coupling.

  20. Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations

    International Nuclear Information System (INIS)

    McIntosh, Lawrence P.; Naito, Daigo; Baturin, Simon J.; Okon, Mark; Joshi, Manish D.; Nielsen, Jens E.

    2011-01-01

    NMR-monitored pH titration curves of proteins provide a rich source of structural and electrostatic information. Although relatively straightforward to measure, interpreting pH-dependent chemical shift changes to obtain site-specific acid dissociation constants (pK A values) is challenging. In order to analyze the biphasic titrations exhibited by the side chain 13 C γ nuclei of the nucleophilic Glu78 and general acid/base Glu172 in Bacillus circulans xylanase, we have revisited the formalism for the ionization equilibria of two coupled acidic residues. In general, fitting NMR-monitored pH titration curves for such a system will only yield the two macroscopic pK A values that reflect the combined effects of both deprotonation reactions. However, through the use of mutations complemented with ionic strength-dependent measurements, we are able to extract the four microscopic pK Ai values governing the branched acid/base equilibria of Glu78 and Glu172 in BcX. These data, confirmed through theoretical calculations, help explain the pH-dependent mechanism of this model GH11 xylanase by demonstrating that the kinetically determined pK A values and hence catalytic roles of these two residues result from their electrostatic coupling.

  1. The relationship between odd- and branched-chain fatty acids and microbial nucleic acid bases in rumen

    Directory of Open Access Journals (Sweden)

    Keyuan Liu

    2017-11-01

    Full Text Available Objective This study aims to identify the relationship between odd- and branched-chain fatty acids (OBCFAs and microbial nucleic acid bases in the rumen, and to establish a model to accurately predict microbial protein flow by using OBCFA. Methods To develop the regression equations, data on the rumen contents of individual cows were obtained from 2 feeding experiments. In the first experiment, 3 rumen-fistulated dry dairy cows arranged in a 3×3 Latin square were fed diets of differing forage to concentration ratios (F:C. The second experiment consisted of 9 lactating Holstein dairy cows of similar body weights at the same stage of pregnancy. For each lactation stage, 3 cows with similar milk production were selected. The rumen contents were sampled at 4 time points of every two hours after morning feeding 6 h, and then to analyse the concentrations of OBCFA and microbial nucleic acid bases in the rumen samples. Results The ruminal bacteria nucleic acid bases were significantly influenced by feeding diets of differing forge to concentration ratios and lactation stages of dairy cows (p<0.05. The concentrations of OBCFAs, especially odd-chain fatty acids and C15:0 isomers, strongly correlated with the microbial nucleic acid bases in the rumen (p<0.05. The equations of ruminal microbial nucleic acid bases established by ruminal OBCFAs contents showed a good predictive capacity, as indicated by reasonably low standard errors and high R-squared values. Conclusion This finding suggests that the rumen OBCFA composition could be used as an internal marker of rumen microbial matter.

  2. Attenuation of the protein wasting associated with bed rest by branched-chain amino acids

    Science.gov (United States)

    Stein, T. P.; Schluter, M. D.; Leskiw, M. J.; Boden, G.

    1999-01-01

    Bed rest is generally accepted as being an appropriate ground-based model for human spaceflight. The objectives of this study were to test the hypothesis that increasing the amount of branched-chain amino acids (BCAAs) in the diet could attenuate the protein loss associated with bed rest. Nineteen healthy subjects were randomized into two groups according to diet. During the 6 d of bed rest, the diets were supplemented with either 30 mmol/d each of three non-essential amino acids, glycine, serine, and alanine (control group), or with 30 mmol/d each of the BCAAs, leucine, isoleucine, and valine (BCAA group). Nutrition was supplied as a commercially available defined formula diet at a rate of 1.3 x REE. Nitrogen (N) balance and urinary 3-MeH excretion were determined for the 6 d. In our results, the urine-based estimate of N balance was 22.2 +/- 14.4 (n = 9) mg N.kg-1.d-1 and 60.5 +/- 10.1 mg (n = 8) N.kg-1.d-1 for the control and BCAA-supplemented groups, respectively (P < 0.05). Urinary 3-MeH excretion was unchanged in both groups with bed rest. We conclude that BCAA supplementation attenuates the N loss during short-term bed rest.

  3. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels.

    Science.gov (United States)

    Herman, Mark A; She, Pengxiang; Peroni, Odile D; Lynch, Christopher J; Kahn, Barbara B

    2010-04-09

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.

  4. Branched-chain amino acids and ammonia metabolism in liver disease: therapeutic implications.

    Science.gov (United States)

    Holecek, Milan

    2013-10-01

    The rationale for recommendation of branched-chain amino acids (BCAA; valine, leucine, and isoleucine) in treatment of liver failure is based on their unique pharmacologic properties, stimulatory effect on ammonia detoxification to glutamine (GLN), and decreased concentrations in liver cirrhosis. Multiple lines of evidence have shown that the main cause of the BCAA deficiency in liver cirrhosis is their consumption in skeletal muscle for synthesis of glutamate, which acts as a substrate for ammonia detoxification to GLN and that the BCAA administration to patients with liver failure may exert a number of positive effects that may be more pronounced in patients with marked depression of BCAA levels. On the other hand, due to the stimulatory effect of BCAA on GLN synthesis, BCAA supplementation may lead to enhanced ammonia production from GLN breakdown in the intestine and the kidneys and thus exert harmful effects on the development of hepatic encephalopathy. Therefore, to enhance therapeutic effectiveness of the BCAA in patients with liver injury, their detrimental effect on ammonia production, which is negligible in healthy people and/or patients with other disorders, should be avoided. In treatment of hepatic encephalopathy, simultaneous administration of the BCAA (to correct amino acid imbalance and promote ammonia detoxification to GLN) with α-ketoglutarate (to inhibit GLN breakdown to ammonia in enterocytes) and/or phenylbutyrate (to enhance GLN excretion by the kidneys) is suggested. Attention should be given to the type of liver injury, gastrointestinal bleeding, signs of inflammation, and the dose of BCAA. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Branched-chain amino acid supplementation during bed rest: effect on recovery

    Science.gov (United States)

    Stein, T. P.; Donaldson, M. R.; Leskiw, M. J.; Schluter, M. D.; Baggett, D. W.; Boden, G.

    2003-01-01

    Bed rest is associated with a loss of protein from the weight-bearing muscle. The objectives of this study are to determine whether increasing dietary branched-chain amino acids (BCAAs) during bed rest improves the anabolic response after bed rest. The study consisted of a 1-day ambulatory period, 14 days of bed rest, and a 4-day recovery period. During bed rest, dietary intake was supplemented with either 30 mmol/day each of glycine, serine, and alanine (group 1) or with 30 mmol/day each of the three BCAAs (group 2). Whole body protein synthesis was determined with U-(15)N-labeled amino acids, muscle, and selected plasma protein synthesis with l-[(2)H(5)]phenylalanine. Total glucose production and gluconeogenesis from alanine were determined with l-[U-(13)C(3)]alanine and [6,6-(2)H(2)]glucose. During bed rest, nitrogen (N) retention was greater with BCAA feeding (56 +/- 6 vs. 26 +/- 12 mg N. kg(-1). day(-1), P < 0.05). There was no effect of BCAA supplementation on either whole body, muscle, or plasma protein synthesis or the rate of 3-MeH excretion. Muscle tissue free amino acid concentrations were increased during bed rest with BCAA (0.214 +/- 0.066 vs. 0.088 +/- 0.12 nmol/mg protein, P < 0.05). Total glucose production and gluconeogenesis from alanine were unchanged with bed rest but were significantly reduced (P < 0.05) with the BCAA group in the recovery phase. In conclusion, the improved N retention during bed rest is due, at least in part, to accretion of amino acids in the tissue free amino acid pools. The amount accreted is not enough to impact protein kinetics in the recovery phase but does improve N retention by providing additional essential amino acids in the early recovery phase.

  6. Branched-Chain Amino Acid Supplementation Reduces Oxidative Stress and Prolongs Survival in Rats with Advanced Liver Cirrhosis

    Science.gov (United States)

    Mifuji-Moroka, Rumi; Hara, Nagisa; Miyachi, Hirohide; Sugimoto, Ryosuke; Tanaka, Hideaki; Fujita, Naoki; Gabazza, Esteban C.; Takei, Yoshiyuki

    2013-01-01

    Long-term supplementation with branched-chain amino acids (BCAA) is associated with prolonged survival and decreased frequency of development of hepatocellular carcinoma (HCC) in patients with liver cirrhosis. However, the pharmaceutical mechanism underlying this association is still unclear. We investigated whether continuous BCAA supplementation increases survival rate of rats exposed to a fibrogenic agent and influences the iron accumulation, oxidative stress, fibrosis, and gluconeogenesis in the liver. Further, the effects of BCAA on gluconeogenesis in cultured cells were also investigated. A significant improvement in cumulative survival was observed in BCAA-supplemented rats with advanced cirrhosis compared to untreated rats with cirrhosis (PBCAA supplementation was associated with reduction of iron contents, reactive oxygen species production and attenuated fibrosis in the liver. In addition, BCAA ameliorated glucose metabolism by forkhead box protein O1 pathway in the liver. BCAA prolongs survival in cirrhotic rats and this was likely the consequences of reduced iron accumulation, oxidative stress and fibrosis and improved glucose metabolism in the liver. PMID:23936183

  7. Predictive modeling of Bacillus cereus spores in farm tank milk during grazing and housing periods

    NARCIS (Netherlands)

    Vissers, M.M.M.; Giffel, M.C.T.; Driehuis, F.; Jong, de P.; Lankveld, J.M.G.

    2007-01-01

    The shelf life of pasteurized dairy products depends partly on the concentration of Bacillus cereus spores in raw milk. Based on a translation of contamination pathways into chains of unit-operations, 2 simulation models were developed to quantitatively identify factors that have the greatest effect

  8. Insulinotropic and Muscle Protein Synthetic Effects of Branched-Chain Amino Acids: Potential Therapy for Type 2 Diabetes and Sarcopenia

    Directory of Open Access Journals (Sweden)

    Darren G. Candow

    2012-11-01

    Full Text Available The loss of muscle mass and strength with aging (i.e., sarcopenia has a negative effect on functional independence and overall quality of life. One main contributing factor to sarcopenia is the reduced ability to increase skeletal muscle protein synthesis in response to habitual feeding, possibly due to a reduction in postprandial insulin release and an increase in insulin resistance. Branched-chain amino acids (BCAA, primarily leucine, increases the activation of pathways involved in muscle protein synthesis through insulin-dependent and independent mechanisms, which may help counteract the “anabolic resistance” to feeding in older adults. Leucine exhibits strong insulinotropic characteristics, which may increase amino acid availability for muscle protein synthesis, reduce muscle protein breakdown, and enhance glucose disposal to help maintain blood glucose homeostasis.

  9. Transcriptional regulation of the Bacillus subtilis menp1 promoter.

    OpenAIRE

    Qin, X; Taber, H W

    1996-01-01

    The Bacillus subtilis men genes encode biosynthetic enzymes for formation of the respiratory chain component menaquinone. The menp1 promoter previously was shown to be the primary cis element for menFD gene expression. In the present work, it was found that either supplementation with nonfermentable carbon sources or reutilization of glycolytic end products increased menp1 activity in the late postexponential phase. The effect on menp1 activity by a particular end product (such as acetoin or ...

  10. Direct RNA detection without nucleic acid purification and PCR: Combining sandwich hybridization with signal amplification based on branched hybridization chain reaction.

    Science.gov (United States)

    Xu, Yao; Zheng, Zhi

    2016-05-15

    We have developed a convenient, robust and low-cost RNA detection system suitable for high-throughput applications. This system uses a highly specific sandwich hybridization to capture target RNA directly onto solid support, followed by on-site signal amplification via 2-dimensional, branched hybridizing chain polymerization through toehold-mediated strand displacement reaction. The assay uses SYBR Green to detect targets at concentrations as low as 1 pM, without involving nucleic acid purification or any enzymatic reaction, using ordinary oligonucleotides without modification or labeling. The system was demonstrated in the detection of malaria RNA in blood and GAPDH gene expression in cell lysate. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    Directory of Open Access Journals (Sweden)

    Carles Lerin

    2016-10-01

    Full Text Available Objective: Plasma levels of branched-chain amino acids (BCAA are consistently elevated in obesity and type 2 diabetes (T2D and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. Methods: To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (SI, 0.49 to 14.28. We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. Results: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. Conclusions: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D. Keywords: Insulin sensitivity, BCAA, Fatty acid oxidation, TCA cycle

  12. Branched-chain amino acids enhance cyst development in autosomal dominant polycystic kidney disease.

    Science.gov (United States)

    Yamamoto, Junya; Nishio, Saori; Hattanda, Fumihiko; Nakazawa, Daigo; Kimura, Toru; Sata, Michio; Makita, Minoru; Ishikawa, Yasunobu; Atsumi, Tatsuya

    2017-08-01

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the progressive development of kidney and liver cysts. The mammalian target of rapamycin (mTOR) cascade is one of the important pathways regulating cyst growth in ADPKD. Branched-chain amino acids (BCAAs), including leucine, play a crucial role to activate mTOR pathway. Therefore, we administered BCAA dissolved in the drinking water to Pkd1 flox/flox :Mx1-Cre (cystic) mice from four to 22 weeks of age after polyinosinic-polycytidylic acid-induced conditional Pkd1 knockout at two weeks of age. The BCAA group showed significantly greater kidney/body weight ratio and higher cystic index in both the kidney and liver compared to the placebo-treated mice. We found that the L-type amino acid transporter 1 that facilitates BCAA entry into cells is strongly expressed in cells lining the cysts. We also found increased cyst-lining cell proliferation and upregulation of mTOR and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways in the BCAA group. In vitro, we cultured renal epithelial cell lines from Pkd1 null mice with or without leucine. Leucine was found to stimulate cell proliferation, as well as activate mTOR and MAPK/ERK pathways in these cells. Thus, BCAA accelerated disease progression by mTOR and MAPK/ERK pathways. Hence, BCAA may be harmful to patients with ADPKD. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  13. Analysis of the LIV System of Campylobacter jejuni Reveals Alternative Roles for LivJ and LivK in Commensalism beyond Branched-Chain Amino Acid Transport ▿

    OpenAIRE

    Ribardo, Deborah A.; Hendrixson, David R.

    2011-01-01

    Campylobacter jejuni is a leading cause of diarrheal disease in humans and an intestinal commensal in poultry and other agriculturally important animals. These zoonotic infections result in significant amounts of C. jejuni present in the food supply to contribute to disease in humans. We previously found that a transposon insertion in Cjj81176_1038, encoding a homolog of the Escherichia coli LivJ periplasmic binding protein of the leucine, isoleucine, and valine (LIV) branched-chain amino aci...

  14. Levan from Bacillus subtilis Natto: its effects in normal and in streptozotocin-diabetic rats

    Directory of Open Access Journals (Sweden)

    Fernando Cesar Bazani Cabral de Melo

    2012-12-01

    Full Text Available Levan is an exopolysaccharide of fructose primarily linked by β-(2→6 glycosidic bonds with some β-(2→1 branched chains. Due to its chemical properties, levan has possible applications in both the food and pharmaceutical industries. Bacillus subtilis is a promising industrial levan producer, as it ferments sucrose and has a high levan-formation capacity. A new strain of B. subtilis was recently isolated from Japanese food natto, and it has produced levan in large quantities. For future pharmaceutical applications, this study aimed to investigate the effects of levan produced by B. subtilis Natto, mainly as potential hypoglycemic agent, (previously optimized with a molecular weight equal to 72.37 and 4,146 kDa in Wistar male rats with diabetes induced by streptozotocin and non-diabetic rats and to monitor their plasma cholesterol and triacylglycerol levels. After 15 days of experimentation, the animals were sacrificed, and their blood samples were analyzed. The results, compared using analysis of variance, demonstrated that for this type of levan, a hypoglycemic effect was not observed, as there was no improvement of diabetes symptoms during the experiment. However, levan did not affect any studied parameters in normal rats, indicating that the exopolysaccharide can be used for other purposes.

  15. Metabolomic Profiles of Aspergillus oryzae and Bacillus amyloliquefaciens During Rice Koji Fermentation

    Directory of Open Access Journals (Sweden)

    Da Eun Lee

    2016-06-01

    Full Text Available Rice koji, used early in the manufacturing process for many fermented foods, produces diverse metabolites and enzymes during fermentation. Using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS, ultrahigh-performance liquid chromatography linear trap quadrupole ion trap tandem mass spectrometry (UHPLC-LTQ-IT-MS/MS, and multivariate analysis we generated the metabolite profiles of rice koji produced by fermentation with Aspergillus oryzae (RK_AO or Bacillus amyloliquefaciens (RK_BA for different durations. Two principal components of the metabolomic data distinguished the rice koji samples according to their fermenter species and fermentation time. Several enzymes secreted by the fermenter species, including α-amylase, protease, and β-glucosidase, were assayed to identify differences in expression levels. This approach revealed that carbohydrate metabolism, serine-derived amino acids, and fatty acids were associated with rice koji fermentation by A. oryzae, whereas aromatic and branched chain amino acids, flavonoids, and lysophospholipids were more typical in rice koji fermentation by B. amyloliquefaciens. Antioxidant activity was significantly higher for RK_BA than for RK_AO, as were the abundances of flavonoids, including tricin, tricin glycosides, apigenin glycosides, and chrysoeriol glycosides. In summary, we have used MS-based metabolomics and enzyme activity assays to evaluate the effects of using different microbial species and fermentation times on the nutritional profile of rice koji.

  16. Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution

    DEFF Research Database (Denmark)

    Maida, Adriano; Chan, Jessica S K; Sjøberg, Kim Anker

    2017-01-01

    OBJECTIVE: Dietary protein dilution (PD) has been associated with metabolic advantages such as improved glucose homeostasis and increased energy expenditure. This phenotype involves liver-induced release of FGF21 in response to amino acid insufficiency; however, it has remained unclear whether...... dietary dilution of specific amino acids (AAs) is also required. Circulating branched chain amino acids (BCAAs) are sensitive to protein intake, elevated in the serum of obese humans and mice and thought to promote insulin resistance. We tested whether replenishment of dietary BCAAs to an AA-diluted (AAD......) diet is sufficient to reverse the glucoregulatory benefits of dietary PD. METHODS: We conducted AA profiling of serum from healthy humans and lean and high fat-fed or New Zealand obese (NZO) mice following dietary PD. We fed wildtype and NZO mice one of three amino acid defined diets: control, total...

  17. Effect of branched-chain fatty acids, 3-methylindole and 4-methylphenol on consumer sensory scores of grilled lamb meat.

    Science.gov (United States)

    Watkins, P J; Kearney, G; Rose, G; Allen, D; Ball, A J; Pethick, D W; Warner, R D

    2014-02-01

    Tenderness, flavour, overall liking and odour are important components of sheepmeat eating quality. Consumer assessment of these attributes has been made for carcasses from the Information Nucleus Flock (INF) of the Cooperative Research Centre for Sheep Industry Innovation. The concentrations of three branched chain fatty acids, 4-methyloctanoic (MOA), 4-ethyloctanoic (EOA) and 4-methylnonanoic acids (compounds related to 'mutton flavour' in cooked sheepmeat) and 3-methylindole and 4-methylphenol (compounds related to 'pastoral' flavour) were determined for 178 fat samples taken from INF carcasses. Statistical modelling revealed that both MOA and EOA impacted on the 'Like Smell' consumer sensory score of the cooked meat product (Plamb will improve consumer acceptance of the cooked product but other factors affecting the eating quality also need to be considered. Copyright © 2012 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Increased Incretin But Not Insulin Response after Oral versus Intravenous Branched Chain Amino Acids.

    Science.gov (United States)

    Gojda, Jan; Straková, Radka; Plíhalová, Andrea; Tůma, Petr; Potočková, Jana; Polák, Jan; Anděl, Michal

    2017-01-01

    Branched chain amino acids (BCAAs) are known to exert an insulinotropic effect. Whether this effect is mediated by incretins (glucagon like peptide 1 [GLP-1] or glucose-dependent insulinotropic peptide [GIP]) is not known. The aim of this study was to show whether an equivalent dose of BCAA elicits a greater insulin and incretin response when administered orally than intravenously (IV). Eighteen healthy, male subjects participated in 3 tests: IV application of BCAA solution, oral ingestion of BCAA and placebo in an equivalent dose (30.7 ± 1.1 g). Glucose, insulin, C-peptide, glucagon, GLP-1, GIP, valine, leucine and isoleucine concentrations were measured. Rise in serum BCAA was achieved in both BCAA tests, with incremental areas under the curve (iAUC) being 2.1 times greater for IV BCAA compared with those of the oral BCAA test (p BCAA induced comparable insulin response greater than placebo (240 min insulin iAUC: oral 3,411 ± 577 vs. IV 2,361 ± 384 vs. placebo 961.2 ± 175 pmol/L, p = 0.0006). Oral BCAA induced higher GLP-1 (p BCAA tests with no change in the placebo group. An equivalent dose of BCAA elicited a comparable insulin and greater incretin response when administered orally and not when administered through IV. We conclude that insulinotropic effects of BCAA are partially incretin dependent. © 2017 S. Karger AG, Basel.

  19. Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions

    Science.gov (United States)

    Abraham, Alex; Chatterji, Apratim

    2018-04-01

    We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.

  20. Stabilization of bacterially expressed erythropoietin by single site-specific introduction of short branched PEG chains at naturally occurring glycosylation sites.

    Science.gov (United States)

    Hoffmann, E; Streichert, K; Nischan, N; Seitz, C; Brunner, T; Schwagerus, S; Hackenberger, C P R; Rubini, M

    2016-05-24

    The covalent attachment of polyethylene glycol (PEG) to therapeutic proteins can improve their physicochemical properties. In this work we utilized the non-natural amino acid p-azidophenylalanine (pAzF) in combination with the chemoselective Staudinger-phosphite reaction to install branched PEG chains to recombinant unglycosylated erythropoietin (EPO) at each single naturally occurring glycosylation site. PEGylation with two short 750 or 2000 Da PEG units at positions 24, 38, or 83 significantly decreased unspecific aggregation and proteolytic degradation while biological activity in vitro was preserved or even increased in comparison to full-glycosylated EPO. This site-specific bioconjugation approach permits to analyse the impact of PEGylation at single positions. These results represent an important step towards the engineering of site-specifically modified EPO variants from bacterial expression with increased therapeutic efficacy.

  1. Two novel mutations in the BCKDK (branched-chain keto-acid dehydrogenase kinase) gene are responsible for a neurobehavioral deficit in two pediatric unrelated patients.

    Science.gov (United States)

    García-Cazorla, Angels; Oyarzabal, Alfonso; Fort, Joana; Robles, Concepción; Castejón, Esperanza; Ruiz-Sala, Pedro; Bodoy, Susanna; Merinero, Begoña; Lopez-Sala, Anna; Dopazo, Joaquín; Nunes, Virginia; Ugarte, Magdalena; Artuch, Rafael; Palacín, Manuel; Rodríguez-Pombo, Pilar; Alcaide, Patricia; Navarrete, Rosa; Sanz, Paloma; Font-Llitjós, Mariona; Vilaseca, Ma Antonia; Ormaizabal, Aida; Pristoupilova, Anna; Agulló, Sergi Beltran

    2014-04-01

    Inactivating mutations in the BCKDK gene, which codes for the kinase responsible for the negative regulation of the branched-chain α-keto acid dehydrogenase complex (BCKD), have recently been associated with a form of autism in three families. In this work, two novel exonic BCKDK mutations, c.520C>G/p.R174G and c.1166T>C/p.L389P, were identified at the homozygous state in two unrelated children with persistently reduced body fluid levels of branched-chain amino acids (BCAAs), developmental delay, microcephaly, and neurobehavioral abnormalities. Functional analysis of the mutations confirmed the missense character of the c.1166T>C change and showed a splicing defect r.[520c>g;521_543del]/p.R174Gfs1*, for c.520C>G due to the presence of a new donor splice site. Mutation p.L389P showed total loss of kinase activity. Moreover, patient-derived fibroblasts showed undetectable (p.R174Gfs1*) or barely detectable (p.L389P) levels of BCKDK protein and its phosphorylated substrate (phospho-E1α), resulting in increased BCKD activity and the very rapid BCAA catabolism manifested by the patients' clinical phenotype. Based on these results, a protein-rich diet plus oral BCAA supplementation was implemented in the patient homozygous for p.R174Gfs1*. This treatment normalized plasma BCAA levels and improved growth, developmental and behavioral variables. Our results demonstrate that BCKDK mutations can result in neurobehavioral deficits in humans and support the rationale for dietary intervention. © 2014 WILEY PERIODICALS, INC.

  2. Leucine-induced activation of translational initiation is partly regulated by the branched-chain α-keto acid dehydrogenase complex in C2C12 cells

    International Nuclear Information System (INIS)

    Nakai, Naoya; Shimomura, Yoshiharu; Tamura, Tomohiro; Tamura, Noriko; Hamada, Koichiro; Kawano, Fuminori; Ohira, Yoshinobu

    2006-01-01

    Branched-chain amino acid leucine has been shown to activate the translational regulators through the mammalian target of rapamycin. However, the leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway. The irreversible and rate-limiting step in the leucine oxidation pathway is catalyzed by the branched-chain α-keto acid dehydrogenase (BCKDH) complex. The complex contains E1 (α2β2), E2, and E3 subunits, and its activity is abolished by phosphorylation of the E1α subunit by BCKDH kinase. The relationship between the activity of BCKDH complex and leucine-mediated activation of the protein translation was investigated using the technique of RNA interference. The activity of BCKDH complex in C2C12 cell was modulated by transfection of small interfering RNA (siRNA) for BCKDH E2 subunit or BCKDH kinase. Transfection of siRNAs decreased the mRNA expression and protein amount of corresponding gene. Suppression of either E2 subunit or kinase produced opposite effects on the cell proliferation and the activation of translational regulators by leucine. Suppression of BCKDH kinase for 48 h resulted in decreasing cell proliferation. In contrast, E2 suppression led to increased amount of total cellular protein. The phosphorylation of p70 S6 kinase by leucine was increased in E2-siRNA transfected C2C12 cells, whereas the leucine's effect was diminished in kinase-siRNA transfected cells. These results suggest that the activation of the translational regulators by leucine was partly regulated by the activity of BCKDH complex

  3. Branched-Chain Amino Acid Negatively Regulates KLF15 Expression via PI3K-AKT Pathway.

    Science.gov (United States)

    Liu, Yunxia; Dong, Weibing; Shao, Jing; Wang, Yibin; Zhou, Meiyi; Sun, Haipeng

    2017-01-01

    Recent studies have linked branched-chain amino acid (BCAA) with numerous metabolic diseases. However, the molecular basis of BCAA's roles in metabolic regulation remains to be established. KLF15 (Krüppel-like factor 15) is a transcription factor and master regulator of glycemic, lipid, and amino acids metabolism. In the present study, we found high concentrations of BCAA suppressed KLF15 expression while BCAA starvation induced KLF15 expression, suggesting KLF15 expression is negatively controlled by BCAA.Interestingly, BCAA starvation induced PI3K-AKT signaling. KLF15 induction by BCAA starvation was blocked by PI3K and AKT inhibitors, indicating the activation of PI3K-AKT signaling pathway mediated the KLF15 induction. BCAA regulated KLF15 expression at transcriptional level but not post-transcriptional level. However, BCAA starvation failed to increase the KLF15-promoter-driven luciferase expression, suggesting KLF15 promoter activity was not directly controlled by BCAA. Finally, fasting reduced BCAA abundance in mice and KLF15 expression was dramatically induced in muscle and white adipose tissue, but not in liver. Together, these data demonstrated BCAA negatively regulated KLF15 expression, suggesting a novel molecular mechanism underlying BCAA's multiple functions in metabolic regulation.

  4. Branched-Chain Amino Acid Negatively Regulates KLF15 Expression via PI3K-AKT Pathway

    Directory of Open Access Journals (Sweden)

    Yunxia Liu

    2017-10-01

    Full Text Available Recent studies have linked branched-chain amino acid (BCAA with numerous metabolic diseases. However, the molecular basis of BCAA's roles in metabolic regulation remains to be established. KLF15 (Krüppel-like factor 15 is a transcription factor and master regulator of glycemic, lipid, and amino acids metabolism. In the present study, we found high concentrations of BCAA suppressed KLF15 expression while BCAA starvation induced KLF15 expression, suggesting KLF15 expression is negatively controlled by BCAA.Interestingly, BCAA starvation induced PI3K-AKT signaling. KLF15 induction by BCAA starvation was blocked by PI3K and AKT inhibitors, indicating the activation of PI3K-AKT signaling pathway mediated the KLF15 induction. BCAA regulated KLF15 expression at transcriptional level but not post-transcriptional level. However, BCAA starvation failed to increase the KLF15-promoter-driven luciferase expression, suggesting KLF15 promoter activity was not directly controlled by BCAA. Finally, fasting reduced BCAA abundance in mice and KLF15 expression was dramatically induced in muscle and white adipose tissue, but not in liver. Together, these data demonstrated BCAA negatively regulated KLF15 expression, suggesting a novel molecular mechanism underlying BCAA's multiple functions in metabolic regulation.

  5. Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise

    DEFF Research Database (Denmark)

    Moberg, Marcus; Apró, William; Ekblom, Björn

    2016-01-01

    Protein synthesis is stimulated by resistance exercise and intake of amino acids, in particular leucine. Moreover, activation of mammalian target of rapamycin complex 1 (mTORC1) signaling by leucine is potentiated by the presence of other essential amino acids (EAA). However, the contribution...... of the branched-chain amino acids (BCAA) to this effect is yet unknown. Here we compare the stimulatory role of leucine, BCAA, and EAA ingestion on anabolic signaling following exercise. Accordingly, eight trained volunteers completed four sessions of resistance exercise during which they ingested either placebo...

  6. High Glucose-Induced Cardiomyocyte Death May Be Linked to Unbalanced Branched-Chain Amino Acids and Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2018-04-01

    Full Text Available High glucose-induced cardiomyocyte death is a common symptom in advanced-stage diabetic patients, while its metabolic mechanism is still poorly understood. The aim of this study was to explore metabolic changes in high glucose-induced cardiomyocytes and the heart of streptozotocin-induced diabetic rats by 1H-NMR-based metabolomics. We found that high glucose can promote cardiomyocyte death both in vitro and in vivo studies. Metabolomic results show that several metabolites exhibited inconsistent variations in vitro and in vivo. However, we also identified a series of common metabolic changes, including increases in branched-chain amino acids (BCAAs: leucine, isoleucine and valine as well as decreases in aspartate and creatine under high glucose condition. Moreover, a reduced energy metabolism could also be a common metabolic characteristic, as indicated by decreases in ATP in vitro as well as AMP, fumarate and succinate in vivo. Therefore, this study reveals that a decrease in energy metabolism and an increase in BCAAs metabolism could be implicated in high glucose-induced cardiomyocyte death.

  7. Electrochemical Branched-DNA Assay for Polymerase Chain Reaction-Free Detection and Quantification of Oncogenes in Messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ai Cheng; Dai, Ziyu; Chen, Baowei; Wu, Hong; Wang, Jun; Zhang, Aiguo; Zhang, Lurong; Lim, Tit-Meng; Lin, Yuehe

    2008-12-01

    We describe a novel electrochemical branched-DNA (bDNA) assay for polymerase chain reaction (PCR)-free detection and quantification of p185 BCR-ABL leukemia fusion transcript in the population of messenger RNA (mRNA) extracted from cell lines. The bDNA amplifier carrying high loading of alkaline phosphatase (ALP) tracers was used to amplify targets signal. The targets were captured on microplate well surfaces through cooperative sandwich hybridization prior to the labeling of bDNA. The activity of captured ALP was monitored by square-wave voltammetric (SWV) analysis of the electroactive enzymatic product in the presence of 1-napthyl-phosphate. The specificity and sensitivity of assay enabled direct detection of target transcript in as little as 4.6 ng mRNA without PCR amplification. In combination with the use of a well-quantified standard, the electrochemical bDNA assay was capable of direct use for a PCR-free quantitative analysis of target transcript in total mRNA population. The approach thus provides a simple, sensitive, accurate and quantitative tool alternate to the RQ-PCR for early disease diagnosis.

  8. NUTRITIONAL INTERACTIONS BETWEEN ZINC AND BRANCHED CHAIN AMINO ACID (BCAA SUPPLEMENT IN RATS: A MULTICOMPARTMENT MODELING APPROACH

    Directory of Open Access Journals (Sweden)

    JAIR RODRIGUES GARCIA-JÊNIOR

    2009-07-01

    Full Text Available

    The influence of supplementary-branched chain amino acids (BCAA on 65Zn metabolism in rats was investigated in this study. Nutritional indicators of Zn, as absorption, body retention and secretion, were estimated using a multicompartment model. Two groups of eight male rats were force-fed a zinc-adequate diet (control group and a zinc-adequate diet plus 0.52 9 BCAA/kg diet during 15 days. There was no significant difference for intake of Zn, absorption (34%, intestinal transit (tso and the leveI of Zn in the intravascular compartment (plasma. On the other hand the extravascular compartment (organs and specific concentration of Zn per 9 of tissue decreased after experimental period (p < 0.05 The rats supplememted with BCAA secreted Zn by urine twice faster than controls, but the secrotion of zinc by endogen feces were not decreased in this group. Thus, BCAA supplement changed the kinetic of Zn, increasing the urinary secretion and the loss of Zn from the body.

  9. Branched-chain amino acid supplementation reduces oxidative stress and prolongs survival in rats with advanced liver cirrhosis.

    Directory of Open Access Journals (Sweden)

    Motoh Iwasa

    Full Text Available Long-term supplementation with branched-chain amino acids (BCAA is associated with prolonged survival and decreased frequency of development of hepatocellular carcinoma (HCC in patients with liver cirrhosis. However, the pharmaceutical mechanism underlying this association is still unclear. We investigated whether continuous BCAA supplementation increases survival rate of rats exposed to a fibrogenic agent and influences the iron accumulation, oxidative stress, fibrosis, and gluconeogenesis in the liver. Further, the effects of BCAA on gluconeogenesis in cultured cells were also investigated. A significant improvement in cumulative survival was observed in BCAA-supplemented rats with advanced cirrhosis compared to untreated rats with cirrhosis (P<0.05. The prolonged survival due to BCAA supplementation was associated with reduction of iron contents, reactive oxygen species production and attenuated fibrosis in the liver. In addition, BCAA ameliorated glucose metabolism by forkhead box protein O1 pathway in the liver. BCAA prolongs survival in cirrhotic rats and this was likely the consequences of reduced iron accumulation, oxidative stress and fibrosis and improved glucose metabolism in the liver.

  10. Branched-chain amino acid-rich diet improves skeletal muscle wasting caused by cigarette smoke in rats.

    Science.gov (United States)

    Tomoda, Koichi; Kubo, Kaoru; Hino, Kazuo; Kondoh, Yasunori; Nishii, Yasue; Koyama, Noriko; Yamamoto, Yoshifumi; Yoshikawa, Masanori; Kimura, Hiroshi

    2014-04-01

    Cigarette smoke induces skeletal muscle wasting by a mechanism not yet fully elucidated. Branched-chain amino acids (BCAA) in the skeletal muscles are useful energy sources during exercise or systemic stresses. We investigated the relationship between skeletal muscle wasting caused by cigarette smoke and changes in BCAA levels in the plasma and skeletal muscles of rats. Furthermore, the effects of BCAA-rich diet on muscle wasting caused by cigarette smoke were also investigated. Wistar Kyoto (WKY) rats that were fed with a control or a BCAA-rich diet were exposed to cigarette smoke for four weeks. After the exposure, the skeletal muscle weight and BCAA levels in plasma and the skeletal muscles were measured. Cigarette smoke significantly decreased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles, while a BCAA-rich diet increased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles that had decreased by cigarette smoke exposure. In conclusion, skeletal muscle wasting caused by cigarette smoke was related to the decrease of BCAA levels in the skeletal muscles, while a BCAA-rich diet may improve cases of cigarette smoke-induced skeletal muscle wasting.

  11. Branched-chain amino acids to tyrosine ratio value as a potential prognostic factor for hepatocellular carcinoma.

    Science.gov (United States)

    Ishikawa, Toru

    2012-05-07

    The prognosis of hepatocellular carcinoma (HCC) depends on tumor extension as well as hepatic function. Hepatic functional reserve is recognized as a factor affecting survival in the treatment of HCC; the Child-Pugh classification system is the most extensively used method for assessing hepatic functional reserve in patients with chronic liver disease, using serum albumin level to achieve accurate assessment of the status of protein metabolism. However, insufficient attention has been given to the status of amino acid (AA) metabolism in chronic liver disease and HCC. Fischer's ratio is the molar ratio of branched-chain AAs (BCAAs: leucine, valine, isoleucine) to aromatic AAs (phenylalanine, tyrosine) and is important for assessing liver metabolism, hepatic functional reserve and the severity of liver dysfunction. Although this ratio is difficult to determine in clinical situations, BCAAs/tyrosine molar concentration ratio (BTR) has been proposed as a simpler substitute. BTR correlates with various liver function examinations, including markers of hepatic fibrosis, hepatic blood flow and hepatocyte function, and can thus be considered as reflecting the degree of hepatic impairment. This manuscript examines the literature to clarify whether BTR can serve as a prognostic factor for treatment of HCC.

  12. Branched-chain amino acids for people with hepatic encephalopathy

    DEFF Research Database (Denmark)

    Gluud, Lise Lotte; Dam, Gitte; Les, Iñigo

    2015-01-01

    -chain amino acids (BCAA) versus control interventions has evaluated if BCAA may benefit people with hepatic encephalopathy. OBJECTIVES: To evaluate the beneficial and harmful effects of BCAA versus any control intervention for people with hepatic encephalopathy. SEARCH METHODS: We identified trials through...

  13. Branched-chain amino acids for people with hepatic encephalopathy

    DEFF Research Database (Denmark)

    Gluud, Lise Lotte; Dam, Gitte; Les, Iñigo

    2017-01-01

    -chain amino acids (BCAA) versus control interventions has evaluated if BCAA may benefit people with hepatic encephalopathy. Objectives: To evaluate the beneficial and harmful effects of BCAA versus any control intervention for people with hepatic encephalopathy. Search methods: We identified trials through...

  14. Fixman compensating potential for general branched molecules

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Abhinandan, E-mail: Abhi.Jain@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109 (United States); Kandel, Saugat; Wagner, Jeffrey; Larsen, Adrien; Vaidehi, Nagarajan, E-mail: nvaidehi@coh.org [Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010 (United States)

    2013-12-28

    The technique of constraining high frequency modes of molecular motion is an effective way to increase simulation time scale and improve conformational sampling in molecular dynamics simulations. However, it has been shown that constraints on higher frequency modes such as bond lengths and bond angles stiffen the molecular model, thereby introducing systematic biases in the statistical behavior of the simulations. Fixman proposed a compensating potential to remove such biases in the thermodynamic and kinetic properties calculated from dynamics simulations. Previous implementations of the Fixman potential have been limited to only short serial chain systems. In this paper, we present a spatial operator algebra based algorithm to calculate the Fixman potential and its gradient within constrained dynamics simulations for branched topology molecules of any size. Our numerical studies on molecules of increasing complexity validate our algorithm by demonstrating recovery of the dihedral angle probability distribution function for systems that range in complexity from serial chains to protein molecules. We observe that the Fixman compensating potential recovers the free energy surface of a serial chain polymer, thus annulling the biases caused by constraining the bond lengths and bond angles. The inclusion of Fixman potential entails only a modest increase in the computational cost in these simulations. We believe that this work represents the first instance where the Fixman potential has been used for general branched systems, and establishes the viability for its use in constrained dynamics simulations of proteins and other macromolecules.

  15. Tokunaga and Horton self-similarity for level set trees of Markov chains

    International Nuclear Information System (INIS)

    Zaliapin, Ilia; Kovchegov, Yevgeniy

    2012-01-01

    Highlights: ► Self-similar properties of the level set trees for Markov chains are studied. ► Tokunaga and Horton self-similarity are established for symmetric Markov chains and regular Brownian motion. ► Strong, distributional self-similarity is established for symmetric Markov chains with exponential jumps. ► It is conjectured that fractional Brownian motions are Tokunaga self-similar. - Abstract: The Horton and Tokunaga branching laws provide a convenient framework for studying self-similarity in random trees. The Horton self-similarity is a weaker property that addresses the principal branching in a tree; it is a counterpart of the power-law size distribution for elements of a branching system. The stronger Tokunaga self-similarity addresses so-called side branching. The Horton and Tokunaga self-similarity have been empirically established in numerous observed and modeled systems, and proven for two paradigmatic models: the critical Galton–Watson branching process with finite progeny and the finite-tree representation of a regular Brownian excursion. This study establishes the Tokunaga and Horton self-similarity for a tree representation of a finite symmetric homogeneous Markov chain. We also extend the concept of Horton and Tokunaga self-similarity to infinite trees and establish self-similarity for an infinite-tree representation of a regular Brownian motion. We conjecture that fractional Brownian motions are also Tokunaga and Horton self-similar, with self-similarity parameters depending on the Hurst exponent.

  16. The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria

    DEFF Research Database (Denmark)

    Rasmusson, Allan G; Geisler, Daniela A; Møller, Ian Max

    2008-01-01

    The electron transport chain in mitochondria of different organisms contains a mixture of common and specialised components. The specialised enzymes form branches to the universal electron path, especially at the level of ubiquinone, and allow the chain to adjust to different cellular and metabolic...... and their consequences for the understanding of electron transport and redundancy of electron paths...... requirements. In plants, specialised components have been known for a long time. However, recently, the known number of plant respiratory chain dehydrogenases has increased, including both components specific to plants and those with mammalian counterparts. This review will highlight the novel branches...

  17. Two randomized controlled studies comparing the nutritional benefits of branched-chain amino acid (BCAA) granules and a BCAA-enriched nutrient mixture for patients with esophageal varices after endoscopic treatment

    OpenAIRE

    Sakai, Yoshiyuki; Iwata, Yoshinori; Enomoto, Hirayuki; Saito, Masaki; Yoh, Kazunori; Ishii, Akio; Takashima, Tomoyuki; Aizawa, Nobuhiro; Ikeda, Naoto; Tanaka, Hironori; Iijima, Hiroko; Nishiguchi, Shuhei

    2014-01-01

    Background The usefulness of branched-chain amino acid (BCAA) granules and BCAA-enriched nutrient mixtures for patients with liver cirrhosis is often reported. However, no randomized controlled studies have investigated the usefulness of these supplements in the nutritional intervention of cirrhotic patients receiving endoscopic treatment for esophageal varices. Methods Patients without BCAA before endoscopic treatment were divided into study 1, and those who received BCAA were divided into s...

  18. Methods for detecting pathogens in the beef food chain: detecting particular pathogens

    Science.gov (United States)

    The main food-borne pathogens of concern in the beef food chain are Shiga toxin-producing Escherichia coli (STEC) and Salmonella spp.; however, the presence of other pathogens, including Listeria monocytogenes, Campylobacter spp., Clostridium spp., Bacillus cereus, and Mycobacterium avium subsp. par...

  19. The Effects of Adding Whey Protein and Branched-chain Amino Acid to Carbohydrate Beverages on Indices of Muscle Damage after Eccentric Resistance Exercise in Untrained Young Males

    OpenAIRE

    Foad Asjodi; Hamid Mohebi; Ebrahim Mirzajani; Azimeh Izadi

    2017-01-01

    Abstract Background: The aim of this study was to evaluate the effects of supplementation of Branched-Chain Amino Acids (BCAAs) plus carbohydrate (CHO) and whey protein plus CHO on muscle damage indices after eccentric resistant exercise. Materials and Methods: Twenty four untrained healthy males participated in this study. They were randomly divided into three groups, BCAA +glucose (0.1+0.1g/kg) supplement group (n=8), Whey+glucose (0.1+0.1g/kg) supplement group (n=8), and placebo (ma...

  20. Investigation of biosurfactant production by Bacillus pumilus 1529 and Bacillus subtilis WPI

    Directory of Open Access Journals (Sweden)

    shila khajavi shojaei

    2016-06-01

    Full Text Available Introduction: Biosurfactants are unique amphipathic molecules with extensive application in removing organic and metal contaminants. The purpose of this study was to investigate production of biosurfactant and determine optimal conditions to produce biosurfactant by Bacillus pumilus 1529 and Bacillus subtilis WPI. Materials and methods: In this study, effect of carbon source, temperature and incubation time on biosurfactant production was evaluated. Hemolytic activity, emulsification activity, oil spreading, drop collapse, cell hydrophobicity and measurement of surface tension were used to detect biosurfactant production. Then, according to the results, the optimal conditions for biosurfactant production by and Bacillus subtilis WPI was determined. Results: In this study, both bacteria were able to produce biosurfactant at an acceptable level. Glucose, kerosene, sugarcane molasses and phenanthrene used as a sole carbon source and energy for the mentioned bacteria. Bacillus subtilis WPI produced maximum biosurfactant in the medium containing kerosene and reduced surface tension of the medium to 33.1 mN/m after 156 hours of the cultivation at 37°C. Also, the highest surface tension reduction by Bacillus pumilus 1529 occurred in the medium containing sugarcane molasses and reduce the surface tension of culture medium after 156 hours at 37°C from 50.4 to 28.83 mN/m. Discussion and conclusion: Bacillus pumilus 1529 and Bacillus subtilis WPI had high potential in production of biosurfactant and degradation of petroleum hydrocarbons and Phenanthrene. Therefore, it could be said that these bacteria had a great potential for applications in bioremediation and other environmental process.

  1. Enzymatic hydrolysis of short-chain lecithin/long-chain phospholipid unilamellar vesicles: sensitivity of phospholipases to matrix phase state.

    Science.gov (United States)

    Gabriel, N E; Agman, N V; Roberts, M F

    1987-11-17

    Short-chain lecithin/long-chain phospholipid unilamellar vesicles (SLUVs), unlike pure long-chain lecithin vesicles, are excellent substrates for water-soluble phospholipases. Hemolysis assays show that greater than 99.5% of the short-chain lecithin is partitioned in the bilayer. In these binary component vesicles, the short-chain species is the preferred substrate, while the long-chain phospholipid can be treated as an inhibitor (phospholipase C) or poor substrate (phospholipase A2). For phospholipase C Bacillus cereus, apparent Km and Vmax values show that bilayer-solubilized diheptanoylphosphatidylcholine (diheptanoyl-PC) is nearly as good a substrate as pure micellar diheptanoyl-PC, although the extent of short-chain lecithin hydrolysis depends on the phase state of the long-chain lipid. For phospholipase A2 Naja naja naja, both Km and Vmax values show a greater range: in a gel-state matrix, diheptanoyl-PC is hydrolyzed with micellelike kinetic parameters; in a liquid-crystalline matrix, the short-chain lecithin becomes comparable to the long-chain component. Both enzymes also show an anomalous increase in specific activity toward diheptanoyl-PC around the phase transition temperature of the long-chain phospholipid. Since the short-chain lecithin does not exhibit a phase transition, this must reflect fluctuations in head-group area or vertical motions of the short-chain lecithin caused by surrounding long-chain lecithin molecules. These results are discussed in terms of a specific model for SLUV hydrolysis and a general explanation for the "interfacial activation" observed with water-soluble phospholipases.

  2. Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants

    KAUST Repository

    Chen, Hao

    2010-08-01

    The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over-expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE-TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map-based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant-containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed. © 2010 Blackwell Publishing Ltd.

  3. Chronic dietary exposure to branched chain amino acids impairs glucose disposal in vegans but not in omnivores.

    Science.gov (United States)

    Gojda, J; Rossmeislová, L; Straková, R; Tůmová, J; Elkalaf, M; Jaček, M; Tůma, P; Potočková, J; Krauzová, E; Waldauf, P; Trnka, J; Štich, V; Anděl, M

    2017-05-01

    Branched chain amino acids (BCAA) are among nutrients strongly linked with insulin sensitivity (IS) measures. We investigated the effects of a chronic increase of BCAA intake on IS in two groups of healthy subjects differing in their basal consumption of BCAA, that is, vegans and omnivores. Eight vegans and eight matched omnivores (five men and three women in each group) received 15 g (women) or 20 g (men) of BCAA daily for 3 months. Anthropometry, blood analyses, glucose clamp, arginine test, subcutaneous abdominal adipose tissue (AT) and skeletal muscle (SM) biopsies (mRNA levels of selected metabolic markers, respiratory chain (RC) activity) were performed at baseline, after the intervention and after a 6 month wash-out period. Compared with omnivores, vegans had higher IS at baseline (GIR, glucose infusion rate: 9.6±2.4 vs 7.1±2.4 mg/kg/min, 95% CI for difference: 0.55 to 5.82) that declined after the intervention and returned to baseline values after the wash-out period (changes in GIR with 95% CI, 3-0 months: -1.64 [-2.5; -0.75] and 9-3 months: 1.65 [0.75; 2.54] mg/kg/min). No such change was observed in omnivores. In omnivores the intervention led to an increased expression of lipogenic genes (DGAT2, FASN, PPARγ, SCD1) in AT. SM RC activity increased in both groups. Negative impact of increased BCAA intake on IS was only detected in vegans, that is, subjects with low basal amino acids/BCAA intake, which appear to be unable to induce sufficient compensatory changes within AT and SM on a BCAA challenge.

  4. Characterization of lipoteichoic acid structures from three probiotic Bacillus strains: involvement of D-alanine in their biological activity.

    Science.gov (United States)

    Villéger, Romain; Saad, Naima; Grenier, Karine; Falourd, Xavier; Foucat, Loïc; Urdaci, Maria C; Bressollier, Philippe; Ouk, Tan-Sothea

    2014-10-01

    Probiotics represent a potential strategy to influence the host's immune system thereby modulating immune response. Lipoteichoic Acid (LTA) is a major immune-stimulating component of Gram-positive cell envelopes. This amphiphilic polymer, anchored in the cytoplasmic membrane by means of its glycolipid component, typically consists of a poly (glycerol-phosphate) chain with D-alanine and/or glycosyl substitutions. LTA is known to stimulate macrophages in vitro, leading to secretion of inflammatory mediators such as Nitric Oxide (NO). This study investigates the structure-activity relationship of purified LTA from three probiotic Bacillus strains (Bacillus cereus CH, Bacillus subtilis CU1 and Bacillus clausii O/C). LTAs were extracted from bacterial cultures and purified. Chemical modification by means of hydrolysis at pH 8.5 was performed to remove D-alanine. The molecular structure of native and modified LTAs was determined by (1)H NMR and GC-MS, and their inflammatory potential investigated by measuring NO production by RAW 264.7 macrophages. Structural analysis revealed several differences between the newly characterized LTAs, mainly relating to their D-alanylation rates and poly (glycerol-phosphate) chain length. We observed induction of NO production by LTAs from B. subtilis and B. clausii, whereas weaker NO production was observed with B. cereus. LTA dealanylation abrogated NO production independently of the glycolipid component, suggesting that immunomodulatory potential depends on D-alanine substitutions. D-alanine may control the spatial configuration of LTAs and their recognition by cell receptors. Knowledge of molecular mechanisms behind the immunomodulatory abilities of probiotics is essential to optimize their use.

  5. Branch Point Withdrawal in Elongational Startup Flow by Time-Resolved Small Angle Neutron Scattering

    KAUST Repository

    Ruocco, N.

    2016-05-27

    We present a small angle neutron scattering (SANS) investigation of a blend composed of a dendritic polymer and a linear matrix with comparable viscosity in start-up of an elongational flow at Tg + 50. The two-generation dendritic polymer is diluted to 10% by weight in a matrix of a long well-entangled linear chains. Both components consist of mainly 1,4-cis-polyisoprene but differ in isotopic composition. The resulting scattering contrast is sufficiently high to permit time-resolved measurements of the system structure factor during the start-up phase and to follow the retraction processes involving the inner sections of the branched polymer in the nonlinear deformation response. The outer branches and the linear matrix, on the contrary, are in the linear deformation regime. The linear matrix dominates the rheological signature of the blend and the influence of the branched component can barely be detected. However, the neutron scattering intensity is predominantly that of the (branched) minority component so that its dynamics is clearly evident. In the present paper, we use the neutron scattering data to validate the branch point withdrawal process, which could not be unambiguously discerned from rheological measurements in this blend. The maximal tube stretch that the inner branches experience, before the relaxed outer arm material is incorporated into the tube is determined. The in situ scattering experiments demonstrate for the first time the leveling-off of the strain as the result of branch point withdrawal and chain retraction directly on the molecular level. We conclude that branch point motion in the mixture of architecturally complex polymers occurs earlier than would be expected in a purely branched system, presumably due to the different topological environment that the linear matrix presents to the hierarchically deep-buried tube sections. © 2016 American Chemical Society.

  6. Branch Point Withdrawal in Elongational Startup Flow by Time-Resolved Small Angle Neutron Scattering

    KAUST Repository

    Ruocco, N.; Auhl, D.; Bailly, C.; Lindner, P.; Pyckhout-Hintzen, W.; Wischnewski, A.; Leal, L. G.; Hadjichristidis, Nikolaos; Richter, D.

    2016-01-01

    We present a small angle neutron scattering (SANS) investigation of a blend composed of a dendritic polymer and a linear matrix with comparable viscosity in start-up of an elongational flow at Tg + 50. The two-generation dendritic polymer is diluted to 10% by weight in a matrix of a long well-entangled linear chains. Both components consist of mainly 1,4-cis-polyisoprene but differ in isotopic composition. The resulting scattering contrast is sufficiently high to permit time-resolved measurements of the system structure factor during the start-up phase and to follow the retraction processes involving the inner sections of the branched polymer in the nonlinear deformation response. The outer branches and the linear matrix, on the contrary, are in the linear deformation regime. The linear matrix dominates the rheological signature of the blend and the influence of the branched component can barely be detected. However, the neutron scattering intensity is predominantly that of the (branched) minority component so that its dynamics is clearly evident. In the present paper, we use the neutron scattering data to validate the branch point withdrawal process, which could not be unambiguously discerned from rheological measurements in this blend. The maximal tube stretch that the inner branches experience, before the relaxed outer arm material is incorporated into the tube is determined. The in situ scattering experiments demonstrate for the first time the leveling-off of the strain as the result of branch point withdrawal and chain retraction directly on the molecular level. We conclude that branch point motion in the mixture of architecturally complex polymers occurs earlier than would be expected in a purely branched system, presumably due to the different topological environment that the linear matrix presents to the hierarchically deep-buried tube sections. © 2016 American Chemical Society.

  7. Morphology of blends of linear and long-chain-branched polyethylenes in the solid state: A study by SANS, SAXS, and DSC

    International Nuclear Information System (INIS)

    Wignall, G.D.; Londono, J.D.; Lin, J.S.; Alamo, R.G.; Galante, M.J.; Mandelkern, L.

    1995-01-01

    Differential scanning calorimetry (DSC), small-angle neutron scattering (SANS), and X-ray scattering (SAXS) have been used to investigate the solid-state morphology of blends of linear (high density) and long-chain-branched (low-density) polyethylenes (HDPE/LDPE). The blends are homogeneous in the melt, as previously demonstrated by SANS using the contrast obtained by deuterating the linear polymer. However, due to the structural and melting point differences (∼ 20 C) between HDPE and LDPE, the components may phase segregate on slow cooling (0.75 C/min). For high concentrations (φ ≥ 0.5) of HDPE, relatively high rates of crystallization of the linear component lead to the formation of separate stacks of HDPE and LDPE lamellae, as indicated by two-peak SAXS curves. For predominantly branched blends, the difference in crystallization rate of the components becomes smaller and only one SAXS peak is observed, indicating that the two species are in the same lamellar stack. Moreover, the phases no longer consist of the pure component and the HDPE lamellae contain up to 15--20% LDPE (and vice versa). Rapid quenching into dry ice/2-propanol (-78 C) produces only one SAXS peak (and hence one lamellar stack) over the whole concentration range. The blends show extensive cocrystallization, along with a tendency for the branched material to be preferentially located in the amorphous interlamellar regions. For high concentrations (φ > 0.5) of HDPE-D, the overall scattering length density (SLD) is high and the excess concentration of LDPE between the lamellae enhances the SLD contrast between the crystalline and amorphous phases. Thus, the interlamellar spacing (long period) is clearly visible in the SANS pattern. The blend morphology is a strong function of the quenching rate, and samples quenched less rapidly (e.g., into water at 23 C) are similar to slowly cooled blends

  8. Repression of branched-chain amino acid synthesis in Staphylococcus aureus is mediated by isoleucine via CodY, and by a leucine-rich attenuator peptide.

    Science.gov (United States)

    Kaiser, Julienne C; King, Alyssa N; Grigg, Jason C; Sheldon, Jessica R; Edgell, David R; Murphy, Michael E P; Brinsmade, Shaun R; Heinrichs, David E

    2018-01-01

    Staphylococcus aureus requires branched-chain amino acids (BCAAs; isoleucine, leucine, valine) for protein synthesis, branched-chain fatty acid synthesis, and environmental adaptation by responding to their availability via the global transcriptional regulator CodY. The importance of BCAAs for S. aureus physiology necessitates that it either synthesize them or scavenge them from the environment. Indeed S. aureus uses specialized transporters to scavenge BCAAs, however, its ability to synthesize them has remained conflicted by reports that it is auxotrophic for leucine and valine despite carrying an intact BCAA biosynthetic operon. In revisiting these findings, we have observed that S. aureus can engage in leucine and valine synthesis, but the level of BCAA synthesis is dependent on the BCAA it is deprived of, leading us to hypothesize that each BCAA differentially regulates the biosynthetic operon. Here we show that two mechanisms of transcriptional repression regulate the level of endogenous BCAA biosynthesis in response to specific BCAA availability. We identify a trans-acting mechanism involving isoleucine-dependent repression by the global transcriptional regulator CodY and a cis-acting leucine-responsive attenuator, uncovering how S. aureus regulates endogenous biosynthesis in response to exogenous BCAA availability. Moreover, given that isoleucine can dominate CodY-dependent regulation of BCAA biosynthesis, and that CodY is a global regulator of metabolism and virulence in S. aureus, we extend the importance of isoleucine availability for CodY-dependent regulation of other metabolic and virulence genes. These data resolve the previous conflicting observations regarding BCAA biosynthesis, and reveal the environmental signals that not only induce BCAA biosynthesis, but that could also have broader consequences on S. aureus environmental adaptation and virulence via CodY.

  9. Repression of branched-chain amino acid synthesis in Staphylococcus aureus is mediated by isoleucine via CodY, and by a leucine-rich attenuator peptide.

    Directory of Open Access Journals (Sweden)

    Julienne C Kaiser

    2018-01-01

    Full Text Available Staphylococcus aureus requires branched-chain amino acids (BCAAs; isoleucine, leucine, valine for protein synthesis, branched-chain fatty acid synthesis, and environmental adaptation by responding to their availability via the global transcriptional regulator CodY. The importance of BCAAs for S. aureus physiology necessitates that it either synthesize them or scavenge them from the environment. Indeed S. aureus uses specialized transporters to scavenge BCAAs, however, its ability to synthesize them has remained conflicted by reports that it is auxotrophic for leucine and valine despite carrying an intact BCAA biosynthetic operon. In revisiting these findings, we have observed that S. aureus can engage in leucine and valine synthesis, but the level of BCAA synthesis is dependent on the BCAA it is deprived of, leading us to hypothesize that each BCAA differentially regulates the biosynthetic operon. Here we show that two mechanisms of transcriptional repression regulate the level of endogenous BCAA biosynthesis in response to specific BCAA availability. We identify a trans-acting mechanism involving isoleucine-dependent repression by the global transcriptional regulator CodY and a cis-acting leucine-responsive attenuator, uncovering how S. aureus regulates endogenous biosynthesis in response to exogenous BCAA availability. Moreover, given that isoleucine can dominate CodY-dependent regulation of BCAA biosynthesis, and that CodY is a global regulator of metabolism and virulence in S. aureus, we extend the importance of isoleucine availability for CodY-dependent regulation of other metabolic and virulence genes. These data resolve the previous conflicting observations regarding BCAA biosynthesis, and reveal the environmental signals that not only induce BCAA biosynthesis, but that could also have broader consequences on S. aureus environmental adaptation and virulence via CodY.

  10. Biodiesel production from triolein and short chain alcohols through biocatalysis.

    Science.gov (United States)

    Salis, Andrea; Pinna, Marcella; Monduzzi, Maura; Solinas, Vincenzo

    2005-09-29

    Oleic acid alkyl esters (biodiesel) were synthesised by biocatalysis in solvent-free conditions. Different commercial immobilised lipases, namely Candida antarctica B, Rizhomucor miehei, and Pseudomonas cepacia, were tested towards the reaction between triolein and butanol to produce butyl oleate. Pseudomonas cepacia lipase resulted to be the most active enzyme reaching 100% of conversion after 6h. Different operative conditions such as reaction temperature, water activity, and reagent stoichiometric ratio were investigated and optimised. These conditions were then used to investigate the effect of linear and branched short chain alcohols. Methanol and 2-butanol were the worst alcohols: the former, probably, due to its low miscibility with the oil and the latter because secondary alcohols usually are less reactive than primary alcohols. Conversely, linear and branched primary alcohols with short alkyl chains (C(2)--C(4)) showed high reaction rate and conversion. A mixture of linear and branched short chain alcohols that mimics the residual of ethanol distillation (fusel oil) was successfully used for oleic acid ester synthesis. These compounds are important in biodiesel mixtures since they improve low temperature properties.

  11. Control of Chain Walking by Weak Neighbouring Group Interac-tions in Unsymmetric Catalysts

    KAUST Repository

    Falivene, Laura

    2017-12-20

    A combined theoretical and experimental study shows how weak attractive interactions of a neighbouring group can strongly promote chain walking and chain transfer. This accounts for the previously observed very different micro-structures obtained in ethylene polymerization by [κ2-N,O-{(2,6-(3\\',5\\'-R2C6H3)2C6H3-N=C(H)-(3,5-X,Y2-2-O-C6H2)}]NiCH3(pyridine)], namely hyperbranched oligomers for remote substituents R = CH3 versus. high molecular weight polyethylene for R = CF3. From a full mechanistic consideration the alkyl olefin complex with the growing chain cis to the salicylaldiminato oxygen donor is identified as the key species. Alternative to ethylene chain growth by insertion in this species, decoordination of the monomer to form a cis ß-agostic complex provides an entry into branching and chain transfer pathways. This release of monomer is promoted and made competitive by a weak η2-coordination of the distal aryl rings to the metal center, operative only for the case of sufficiently electron rich aryls. This concept for controlling chain walking is underlined by catalysts with other weakly coordinating furane and thio-phene motifs, which afford highly branched oligomers with > 120 branches per 1000 carbon atoms.

  12. Effects of squat exercise and branched-chain amino acid supplementation on plasma free amino acid concentrations in young women.

    Science.gov (United States)

    Shimomura, Yoshiharu; Kobayashi, Hisamine; Mawatari, Kazunori; Akita, Keiichi; Inaguma, Asami; Watanabe, Satoko; Bajotto, Gustavo; Sato, Juichi

    2009-06-01

    The present study was conducted to examine alterations in plasma free amino acid concentrations induced by squat exercise and branched-chain amino acid (BCAA) supplementation in young, untrained female subjects. In the morning on the exercise session day, participants ingested drinks containing either BCAA (isoleucine:leucine:valine=1:2.3:1.2) or dextrin (placebo) at 0.1 g/kg body weight 15 min before a squat exercise session, which consisted of 7 sets of 20 squats, with 3 min intervals between sets. In the placebo trial, plasma BCAA concentrations were decreased subsequent to exercise, whereas they were significantly increased in the BCAA trial until 2 h after exercise. Marked changes in other free amino acids in response to squat exercise and BCAA supplementation were observed. In particular, plasma concentrations of methionine and aromatic amino acids were temporarily decreased in the BCAA trial, being significantly lower than those in the placebo trial. These results suggest that BCAA intake before exercise affects methionine and aromatic amino acid metabolism.

  13. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance

    Science.gov (United States)

    Newgard, Christopher B; An, Jie; Bain, James R; Muehlbauer, Michael J; Stevens, Robert D; Lien, Lillian F; Haqq, Andrea M; Shah, Svati H.; Arlotto, Michelle; Slentz, Cris A; Rochon, James; Gallup, Dianne; Ilkayeva, Olga; Wenner, Brett R; Yancy, William E; Eisenson, Howard; Musante, Gerald; Surwit, Richard; Millington, David S; Butler, Mark D; Svetkey, Laura P

    2009-01-01

    Summary Metabolomic profiling of obese versus lean humans reveals a branched-chain amino acid (BCAA)-related metabolite signature that is suggestive of increased catabolism of BCAA and correlated with insulin resistance. To test its impact on metabolic homeostasis, we fed rats on high-fat (HF), HF with supplemented BCAA (HF/BCAA) or standard chow (SC) diets. Despite having reduced food intake and weight gain equivalent to the SC group, HF/BCAA rats were equally insulin resistant as HF rats. Pair-feeding of HF diet to match the HF/BCAA animals or BCAA addition to SC diet did not cause insulin resistance. Insulin resistance induced by HF/BCAA feeding was accompanied by chronic phosphorylation of mTOR, JNK, and IRS1(ser307), accumulation of multiple acylcarnitines in muscle, and was reversed by the mTOR inhibitor, rapamycin. Our findings show that in the context of a poor dietary pattern that includes high fat consumption, BCAA contributes to development of obesity-associated insulin resistance. PMID:19356713

  14. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens.

    Science.gov (United States)

    Wang, Li-Ting; Lee, Fwu-Ling; Tai, Chun-Ju; Kuo, Hsiao-Ping

    2008-03-01

    Strain BCRC 14193, isolated from soil, shared more than 99 % 16S rRNA gene sequence similarity with Bacillus amyloliquefaciens BCRC 11601(T) and Bacillus velezensis BCRC 17467(T). This strain was previously identified as B. amyloliquefaciens, based on DNA-DNA hybridization, but its DNA relatedness value with B. velezensis BCRC 17467(T) was 89 %. To investigate the relatedness of strain BCRC 14193, B. amyloliquefaciens and B. velezensis, the partial sequence of the gene encoding the subunit B protein of DNA gyrase (gyrB) was determined. B. velezensis BCRC 17467(T) shared high gyrB gene sequence similarity with B. amyloliquefaciens BCRC 14193 (98.4 %) and all of the B. amyloliquefaciens strains available (95.5-95.6 %). DNA-DNA hybridization experiments revealed high relatedness values between B. velezensis BCRC 17467(T) and B. amyloliquefaciens BCRC 11601(T) (74 %) and the B. amyloliquefaciens reference strains (74-89 %). Based on these data and the lack of phenotypic distinctive characteristics, we propose Bacillus velezensis as a later heterotypic synonym of Bacillus amyloliquefaciens.

  15. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov

    Science.gov (United States)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.; Deinhard, G.; Poralla, K.

    1992-01-01

    Comparative 16S rRNA (rDNA) sequence analyses performed on the thermophilic Bacillus species Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus revealed that these organisms are sufficiently different from the traditional Bacillus species to warrant reclassification in a new genus, Alicyclobacillus gen. nov. An analysis of 16S rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organisms Bacillus stearothermophilus and the facultatively thermophilic organism Bacillus coagulans, as well as many other common mesophilic and thermophilic Bacillus species. The thermoacidophilic Bacillus species B. acidocaldarius, B. acidoterrestris, and B. cycloheptanicus also are unique in that they possess omega-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other Bacillus species characterized to date. This phenotype, along with the 16S rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus Alicyclobacillus.

  16. The Considere condition and rapid stretching of linear and branched polymer melts

    DEFF Research Database (Denmark)

    McKinley, Gareth H; Hassager, Ole

    1999-01-01

    to larger Hencky strains as the number of branches is increased. Numerical computations at finite Deborah numbers also show that there is an optimal range of deformation rates over which homogeneous extensions can be maintained to large strain. We also consider other rapid homogeneous stretching...... deformations, such as biaxial and planar stretching, and show that the degree of stabilization afforded by inclusion of material with long-chain branching is a sensitive function of the imposed mode of deformation....

  17. Higher concentrations of branched-chain amino acids in breast milk of obese mothers.

    Science.gov (United States)

    De Luca, Arnaud; Hankard, Régis; Alexandre-Gouabau, Marie-Cécile; Ferchaud-Roucher, Véronique; Darmaun, Dominique; Boquien, Clair-Yves

    2016-01-01

    Nutrition during fetal life and early childhood is thought to play a crucial role in the risk for developing metabolic syndrome and cardiovascular diseases in the future adult and branched-chain amino acids (BCAA) intake may play a role in the development of obesity. The aim of this study was to compare the breast milk amino acid profiles of obese and normal weight (control) breast-feeding mothers. Fifty obese and 50 control breast-feeding mothers were enrolled. Age and parity were similar in both groups. Breast milk samples were collected at the end of the first month of lactation. Free amino acid (FAA) concentrations in breast milk were determined by ultra-performance liquid chromatography tandem mass spectrometry. Comparisons between groups were performed using a two-tailed paired t test. We analyzed 45 breast milk samples from each group. Body mass index was 34.3 ± 3.9 kg/m(2) in the obese group and 21.6 ± 1.4 kg/m(2) in the control group (P milk of obese mothers (95.5 ± 38.2 μM versus 79.8 ± 30.9 μM; P = 0.037), as was tyrosine concentration (13.8 ± 7.1 μM versus 10.6 ± 5.2 μM; P = 0.016). The mature breast milk of obese mothers contained 20% more BCAA and 30% more tyrosine than breast milk of control mothers. Whether altered breast milk FAA profile affects metabolic risk in the breast-fed child remains to be explored. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. New paradigm for simplified combustion modeling of energetic solids: Branched chain gas reaction

    Energy Technology Data Exchange (ETDEWEB)

    Brewster, M.Q.; Ward, M.J. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States)

    1997-09-01

    Two combustion models with simple but rational chemistry are compared: the classical high gas activation energy (E{sub g}/RT {much_gt} 1) Denison-Baum-Williams (DBW) model, and a new low gas activation energy (E{sub g}/RT {much_lt} 1) model recently proposed by Ward, Son, and Brewster (WSB). Both models make the same simplifying assumptions of constant properties, Lewis number unity, single-step, second order gas phase reaction, and single-step, zero order, high activation energy condensed phase decomposition. The only difference is in the gas reaction activation energy E{sub g} which is asymptotically large for DBW and vanishingly small for WSB. For realistic parameters the DBW model predicts a nearly constant temperature sensitivity {sigma}{sub p} and a pressure exponent n approaching 1. The WSB model predicts generally observed values of n = 0.7 to 0.9 and {sigma}{sub p}(T{sub o},P) with the generally observed variations with temperature (increasing) and pressure (decreasing). The WSB temperature profile also matches measured profiles better. Comparisons with experimental data are made using HMX as an illustrative example (for which WSB predictions for {sigma}{sub p}(T{sub o},P) are currently more accurate than even complex chemistry models). WSB has also shown good agreement with NC/NG double base propellant and HNF, suggesting that at the simplest level of combustion modeling, a vanishingly small gas activation energy is more realistic than an asymptotically large one. The authors conclude from this that the important (regression rate determining) gas reaction zone near the surface has more the character of chain branching than thermal decomposition.

  19. Effect of waste wax and chain structure on the mechanical and physical properties of polyethylene

    Directory of Open Access Journals (Sweden)

    M.A. AlMaadeed

    2015-05-01

    The wax dispersion in the matrix strongly depends on the percentage of wax added to the polymer and the molecular structure of the polymer. It was found that increasing the wax content enhances the phase separation. LDPE undergoes less phase separation due to its highly branched structure composed of a network of short and long chain branches. The wax has no pronounced plasticising effect on the polymer. This is clearly manifested in LDPE as no change in the melting temperature occurred. LLDPE and HDPE were slightly affected by a high concentration of wax (30% and 40%. This is due to the non-uniform distribution of short chain branching along the LLDPE and HDPE main chains, which can interact with the wax structure.

  20. Chemical constituents from branches of Maytenus gonoclada (Celastraceae) and evaluation of antimicrobial activity

    International Nuclear Information System (INIS)

    Silva, Fernando C.; Duarte, Lucienir P.; Silva, Gracia D.F.; Vieira Filho, Sidney A.; Lula, Ivana S.; Takahashi, Jacqueline A.; Sallum, William S.T.

    2011-01-01

    Six pentacyclic triterpenes were isolated from branches of Maytenus gonoclada (Celastraceae) and all NMR data of a new compound 3-oxo-12α,29-dihydroxyfriedelane are herein reported. The stereochemistry of the new friedelane was established by bidimensional NMR (HSQC, HMBC and NOESY) data, and its molecular weight confirmed by ESI mass spectrometry. Antimicrobial activity assays using the method of disk diffusion and macrodilution were carried out against the bacteria Escherichia coli, Citrobacter freundii, and Bacillus cereus, and against the fungi Candida albicans. The triterpene 3-oxo-12α-hydroxyfriedelane showed positive result against C. albicans. (author)

  1. Chemical constituents from branches of Maytenus gonoclada (Celastraceae) and evaluation of antimicrobial activity

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fernando C.; Duarte, Lucienir P.; Silva, Gracia D.F.; Vieira Filho, Sidney A.; Lula, Ivana S., E-mail: lucienir@ufmg.b [Universidade Federal de Minas Gerais (DQ/UFMG), Belo Horizonte (Brazil). Dept. de Quimica. Nucleo de Estudos de Plantas Medicinais; Takahashi, Jacqueline A.; Sallum, William S.T. [Universidade Federal de Ouro Preto (UFOP), MG (Brazil). Escola de Farmacia

    2011-07-01

    Six pentacyclic triterpenes were isolated from branches of Maytenus gonoclada (Celastraceae) and all NMR data of a new compound 3-oxo-12{alpha},29-dihydroxyfriedelane are herein reported. The stereochemistry of the new friedelane was established by bidimensional NMR (HSQC, HMBC and NOESY) data, and its molecular weight confirmed by ESI mass spectrometry. Antimicrobial activity assays using the method of disk diffusion and macrodilution were carried out against the bacteria Escherichia coli, Citrobacter freundii, and Bacillus cereus, and against the fungi Candida albicans. The triterpene 3-oxo-12{alpha}-hydroxyfriedelane showed positive result against C. albicans. (author)

  2. Characterization of microsatellite loci in the stick insects Bacillus rossius rossius, Bacillus rossius redtenbacheri and Bacillus whitei (Insecta : Phasmatodea)

    DEFF Research Database (Denmark)

    Andersen, DH; Pertoldi, C; Loeschcke, V

    2005-01-01

    Five microsatellite markers were obtained from a dinucleotide enriched genomic library of the stick insect Bacillus rossius rossius. The markers were tested in three species of Bacillus. All loci were polymorphic when tested across species. The number of alleles at each locus was low (maximum four...

  3. BacillusRegNet

    DEFF Research Database (Denmark)

    Misirli, Goksel; Hallinan, Jennifer; Röttger, Richard

    2014-01-01

    As high-throughput technologies become cheaper and easier to use, raw sequence data and corresponding annotations for many organisms are becoming available. However, sequence data alone is not sufficient to explain the biological behaviour of organisms, which arises largely from complex molecular...... the associated BacillusRegNet website (http://bacillus.ncl.ac.uk)....

  4. Analysis of the interaction between Bacillus coagulans and Bacillus thuringiensis S-layers and calcium ions by XRD, light microscopy, and FTIR.

    Science.gov (United States)

    Babolmorad, Ghazal; Emtiazi, Giti; Emamzadeh, Rahman

    2014-05-01

    S-layer is a self-assemble regularly crystalline surface that covers major cell wall component of many bacteria and archaea and exhibits a high metal-binding capacity. We have studied the effect of the calcium ions and type of solid support (glass or mica) on the structure of the S-layers from Bacillus coagulans HN-68 and Bacillus thuringiensis MH14 upon simple methods based on light microscopy and AFM. Furthermore, the Fourier transform infrared spectroscopy (FTIR) study is indicated that the calcium-S-layer interaction occurred mainly through the carboxylate groups of the side chains of aspartic acid (Asp) and glutamic acid (Glu) and nitrogen atoms of Lys, Asn, and histidine (His) amino acids and N-H groups of the peptide backbone. Studied FTIR revealed that inner faces of S-layer are mainly negative, and outer faces of S-layer are mainly positive. Probably, calcium ions with positive charges bound to the carboxyl groups of Glu and Asp. Accordingly, calcium ions are anchored in the space between the inner faces of S-layer with negative charge and the surface of mica with negative charge. This leads to regular arrangement of the S-layer subunits.

  5. Functionalized PHB granules provide the basis for the efficient side-chain cleavage of cholesterol and analogs in recombinant Bacillus megaterium.

    Science.gov (United States)

    Gerber, Adrian; Kleser, Michael; Biedendieck, Rebekka; Bernhardt, Rita; Hannemann, Frank

    2015-07-29

    Cholesterol, the precursor of all steroid hormones, is the most abundant steroid in vertebrates and exhibits highly hydrophobic properties, rendering it a difficult substrate for aqueous microbial biotransformations. In the present study, we developed a Bacillus megaterium based whole-cell system that allows the side-chain cleavage of this sterol and investigated the underlying physiological basis of the biocatalysis. CYP11A1, the side-chain cleaving cytochrome P450, was recombinantly expressed in the Gram-positive soil bacterium B. megaterium combined with the required electron transfer proteins. By applying a mixture of 2-hydroxypropyl-β-cyclodextrin and Quillaja saponin as solubilizing agents, the zoosterols cholesterol and 7-dehydrocholesterol, as well as the phytosterol β-sitosterol could be efficiently converted to pregnenolone or 7-dehydropregnenolone. Fluorescence-microscopic analysis revealed that cholesterol accumulates in the carbon and energy storage-serving poly(3-hydroxybutyrate) (PHB) bodies and that the membrane proteins CYP11A1 and its redox partner adrenodoxin reductase (AdR) are likewise localized to their surrounding phospholipid/protein monolayer. The capacity to store cholesterol was absent in a mutant strain devoid of the PHB-producing polymerase subunit PhaC, resulting in a drastically decreased cholesterol conversion rate, while no effect on the expression of the recombinant proteins could be observed. We established a whole-cell system based on B. megaterium, which enables the conversion of the steroid hormone precursor cholesterol to pregnenolone in substantial quantities. We demonstrate that the microorganism's PHB granules, aggregates of bioplastic coated with a protein/phospholipid monolayer, are crucial for the high conversion rate by serving as substrate storage. This microbial system opens the way for an industrial conversion of the abundantly available cholesterol to any type of steroid hormones, which represent one of the

  6. Self-assembly of long chain fatty acids: Effect of a methyl branch

    DEFF Research Database (Denmark)

    Liljeblad, Jonathan F. D.; Tyrode, Eric; Thormann, Esben

    2014-01-01

    chains of the straight chain fatty acids appear to be oriented perpendicular to the sample surface, based on an orientational analysis of VSFS data and the odd/even effect. In addition, the selection of the subphase (neat water or CdCl2 containing water buffered to pH 6.0) used for the LB-deposition has...

  7. Chemical modifications of Sterculia foetida L. oil to branched ester derivatives

    NARCIS (Netherlands)

    Manurung, Robert; Daniel, Louis; van de Bovenkamp, Hendrik H.; Buntara, Teddy; Maemunah, Siti; Kraai, Gerard; Makertihartha, I. G. B. N.; Broekhuis, Antonius A.; Heeres, Hero J.

    An experimental study to modify Sterculia foetida L. oil (STO) or the corresponding methyl esters (STO FAME) to branched ester derivatives is reported. The transformations involve conversion of the cyclopropene rings in the fatty acid chains of STO through various catalytic as well as stoichiometric

  8. Sodium phenylbutyrate decreases plasma branched-chain amino acids in patients with urea cycle disorders.

    Science.gov (United States)

    Burrage, Lindsay C; Jain, Mahim; Gandolfo, Laura; Lee, Brendan H; Nagamani, Sandesh C S

    2014-01-01

    Sodium phenylbutyrate (NaPBA) is a commonly used medication for the treatment of patients with urea cycle disorders (UCDs). Previous reports involving small numbers of patients with UCDs have shown that NaPBA treatment can result in lower plasma levels of the branched-chain amino acids (BCAA) but this has not been studied systematically. From a large cohort of patients (n=553) with UCDs enrolled in the Longitudinal Study of Urea Cycle Disorders, a collaborative multicenter study of the Urea Cycle Disorders Consortium, we evaluated whether treatment with NaPBA leads to a decrease in plasma BCAA levels. Our analysis shows that NaPBA use independently affects the plasma BCAA levels even after accounting for multiple confounding covariates. Moreover, NaPBA use increases the risk for BCAA deficiency. This effect of NaPBA seems specific to plasma BCAA levels, as levels of other essential amino acids are not altered by its use. Our study, in an unselected population of UCD subjects, is the largest to analyze the effects of NaPBA on BCAA metabolism and potentially has significant clinical implications. Our results indicate that plasma BCAA levels should to be monitored in patients treated with NaPBA since patients taking the medication are at increased risk for BCAA deficiency. On a broader scale, these findings could open avenues to explore NaPBA as a therapy in maple syrup urine disease and other common complex disorders with dysregulation of BCAA metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Inflammation and ER Stress Regulate Branched-Chain Amino Acid Uptake and Metabolism in Adipocytes

    Science.gov (United States)

    Burrill, Joel S.; Long, Eric K.; Reilly, Brian; Deng, Yingfeng; Armitage, Ian M.; Scherer, Philipp E.

    2015-01-01

    Inflammation plays a critical role in the pathology of obesity-linked insulin resistance and is mechanistically linked to the effects of macrophage-derived cytokines on adipocyte energy metabolism, particularly that of the mitochondrial branched-chain amino acid (BCAA) and tricarboxylic acid (TCA) pathways. To address the role of inflammation on energy metabolism in adipocytes, we used high fat-fed C57BL/6J mice and lean controls and measured the down-regulation of genes linked to BCAA and TCA cycle metabolism selectively in visceral but not in subcutaneous adipose tissue, brown fat, liver, or muscle. Using 3T3-L1 cells, TNFα, and other proinflammatory cytokine treatments reduced the expression of the genes linked to BCAA transport and oxidation. Consistent with this, [14C]-leucine uptake and conversion to triglycerides was markedly attenuated in TNFα-treated adipocytes, whereas the conversion to protein was relatively unaffected. Because inflammatory cytokines lead to the induction of endoplasmic reticulum stress, we evaluated the effects of tunicamycin or thapsigargin treatment of 3T3-L1 cells and measured a similar down-regulation in the BCAA/TCA cycle pathway. Moreover, transgenic mice overexpressing X-box binding protein 1 in adipocytes similarly down-regulated genes of BCAA and TCA metabolism in vivo. These results indicate that inflammation and endoplasmic reticulum stress attenuate lipogenesis in visceral adipose depots by down-regulating the BCAA/TCA metabolism pathway and are consistent with a model whereby the accumulation of serum BCAA in the obese insulin-resistant state is linked to adipose inflammation. PMID:25635940

  10. Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis.

    Science.gov (United States)

    Lotta, Luca A; Scott, Robert A; Sharp, Stephen J; Burgess, Stephen; Luan, Jian'an; Tillin, Therese; Schmidt, Amand F; Imamura, Fumiaki; Stewart, Isobel D; Perry, John R B; Marney, Luke; Koulman, Albert; Karoly, Edward D; Forouhi, Nita G; Sjögren, Rasmus J O; Näslund, Erik; Zierath, Juleen R; Krook, Anna; Savage, David B; Griffin, Julian L; Chaturvedi, Nishi; Hingorani, Aroon D; Khaw, Kay-Tee; Barroso, Inês; McCarthy, Mark I; O'Rahilly, Stephen; Wareham, Nicholas J; Langenberg, Claudia

    2016-11-01

    Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question. Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 × 10-8) for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 × 10-6) for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 × 10-6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in type 2 diabetes. Evidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes.

  11. Structural and Thermodynamic Basis for Weak Interactions between Dihydrolipoamide Dehydrogenase and Subunit-binding Domain of the Branched-chain [alpha]-Ketoacid Dehydrogenase Complex

    Energy Technology Data Exchange (ETDEWEB)

    Brautigam, Chad A.; Wynn, R. Max; Chuang, Jacinta L.; Naik, Mandar T.; Young, Brittany B.; Huang, Tai-huang; Chuang, David T. (AS); (UTSMC)

    2012-02-27

    The purified mammalian branched-chain {alpha}-ketoacid dehydrogenase complex (BCKDC), which catalyzes the oxidative decarboxylation of branched-chain {alpha}-keto acids, is essentially devoid of the constituent dihydrolipoamide dehydrogenase component (E3). The absence of E3 is associated with the low affinity of the subunit-binding domain of human BCKDC (hSBDb) for hE3. In this work, sequence alignments of hSBDb with the E3-binding domain (E3BD) of the mammalian pyruvate dehydrogenase complex show that hSBDb has an arginine at position 118, where E3BD features an asparagine. Substitution of Arg-118 with an asparagine increases the binding affinity of the R118N hSBDb variant (designated hSBDb*) for hE3 by nearly 2 orders of magnitude. The enthalpy of the binding reaction changes from endothermic with the wild-type hSBDb to exothermic with the hSBDb* variant. This higher affinity interaction allowed the determination of the crystal structure of the hE3/hSBDb* complex to 2.4-{angstrom} resolution. The structure showed that the presence of Arg-118 poses a unique, possibly steric and/or electrostatic incompatibility that could impede E3 interactions with the wild-type hSBDb. Compared with the E3/E3BD structure, the hE3/hSBDb* structure has a smaller interfacial area. Solution NMR data corroborated the interactions of hE3 with Arg-118 and Asn-118 in wild-type hSBDb and mutant hSBDb*, respectively. The NMR results also showed that the interface between hSBDb and hE3 does not change significantly from hSBDb to hSBDb*. Taken together, our results represent a starting point for explaining the long standing enigma that the E2b core of the BCKDC binds E3 far more weakly relative to other {alpha}-ketoacid dehydrogenase complexes.

  12. Dietary supplementation of branched-chain amino acids increases muscle net amino acid fluxes through elevating their substrate availability and intramuscular catabolism in young pigs.

    Science.gov (United States)

    Zheng, Liufeng; Zuo, Fangrui; Zhao, Shengjun; He, Pingli; Wei, Hongkui; Xiang, Quanhang; Pang, Jiaman; Peng, Jian

    2017-04-01

    Branched-chain amino acids (BCAA) have been clearly demonstrated to have anabolic effects on muscle protein synthesis. However, little is known about their roles in the regulation of net AA fluxes across skeletal muscle in vivo. This study was aimed to investigate the effect and related mechanisms of dietary supplementation of BCAA on muscle net amino acid (AA) fluxes using the hindlimb flux model. In all fourteen 4-week-old barrows were fed reduced-protein diets with or without supplemental BCAA for 28 d. Pigs were implanted with carotid arterial, femoral arterial and venous catheters, and fed once hourly with intraarterial infusion of p-amino hippurate. Arterial and venous plasma and muscle samples were obtained for the measurement of AA, branched-chain α-keto acids (BCKA) and 3-methylhistidine (3-MH). Metabolomes of venous plasma were determined by HPLC-quadrupole time-of-flight-MS. BCAA-supplemented group showed elevated muscle net fluxes of total essential AA, non-essential AA and AA. As for individual AA, muscle net fluxes of each BCAA and their metabolites (alanine, glutamate and glutamine), along with those of histidine, methionine and several functional non-essential AA (glycine, proline and serine), were increased by BCAA supplementation. The elevated muscle net AA fluxes were associated with the increase in arterial and intramuscular concentrations of BCAA and venous metabolites including BCKA and free fatty acids, and were also related to the decrease in the intramuscular concentration of 3-MH. Correlation analysis indicated that muscle net AA fluxes are highly and positively correlated with arterial BCAA concentrations and muscle net BCKA production. In conclusion, supplementing BCAA to reduced-protein diet increases the arterial concentrations and intramuscular catabolism of BCAA, both of which would contribute to an increase of muscle net AA fluxes in young pigs.

  13. Heat activation and stability of amylases from Bacillus species

    African Journals Online (AJOL)

    Administrator

    2007-05-16

    May 16, 2007 ... as Bacillus macerans, Bacillus coagulans Bacillus licheniformis, Bacillus circulans, Bacillus megaterium, Bacillus polymyxa and Bacillus subtilis. Heat treatment at 70oC denatured the β-amylase component of the amylase source while α-amylase retained its potency at this temperature. Calcium.

  14. Measuring chain digitisation maturity: an assessment of Dutch retail branches.

    NARCIS (Netherlands)

    Plomp, M.G.A.; Batenburg, R.S.

    2010-01-01

    The purpose of this article is to develop a validated measurement model and typology for chain digitisation maturity, defined as the degree of interorganisational collaboration through ICT. The advantages of interorganisational information systems (IOIS) seem to meet the challenges currently facing

  15. Cell Physiology and Protein Secretion of Bacillus licheniformis Compared to Bacillus subtilis

    NARCIS (Netherlands)

    Voigt, Birgit; Antelmann, Haike; Albrecht, Dirk; Ehrenreich, Armin; Maurer, Karl-Heinz; Evers, Stefan; Gottschalk, Gerhard; van Dijl, Jan Maarten; Schweder, Thomas; Hecker, Michael

    2009-01-01

    The genome sequence of Bacillus subtilis was published in 1997 and since then many other bacterial genomes have been sequenced, among them Bacillus licheniformis in 2004. B. subtilis and B. licheniformis are closely related and feature similar saprophytic lifestyles in the soil. Both species can

  16. Comparison of the Photovoltaic Characteristics and Nanostructure of Fullerenes Blended with Conjugated Polymers with Siloxane-Terminated and Branched Aliphatic Side Chains

    KAUST Repository

    Kim, Do Hwan

    2013-02-12

    All-organic bulk heterojunction solar cells based on blends of conjugated polymers with fullerenes have recently surpassed the 8% efficiency mark and are well on their way to the industrially relevant ∼15% threshold. Using a low band-gap conjugated polymer, we have recently shown that polymer side chain engineering can lead to dramatic improvement in the in-plane charge carrier mobility. In this article, we investigate the effectiveness of siloxy side chain derivatization in controlling the photovoltaic performance of polymer:[6,6]-phenyl-C[71]-butyric acid methyl ester (PC71BM) blends and hence its influence on charge transport in the out-of-plane direction relevant for organic solar cells. We find that, in neat blends, the photocurrent of the polymer with siloxy side chains (PII2T-Si) is 4 times greater than that in blends using the polymer with branched aliphatic side chains (PII2T-ref). This difference is due to a larger out-of-plane hole mobility for PII2T-Si brought about by a largely face-on crystallite orientation as well as more optimal nanoscale polymer:PC71BM mixing. However, upon incorporating a common processing additive, 1,8-diiodooctane (DIO), into the spin-casting blend solution and following optimization, the PII2T-ref:PC71BM OPV device performance undergoes a large improvement and becomes the better-performing device, almost independent of DIO concentration (>1%). We find that the precise amount of DIO plays a larger role in determining the efficiency of PII2T-Si:PC71BM, and even at its maximum, the device performance lags behind optimized PII2T-ref:PC71BM blends. Using a combination of atomic force microscopy and small- and wide-angle X-ray scattering, we are able to elucidate the morphological modifications associated with the DIO-induced changes in both the nanoscale morphology and the molecular packing in blend films. © 2012 American Chemical Society.

  17. Measuring chain digitisation maturity: an assessment of Dutch retail branches.

    NARCIS (Netherlands)

    Plomp, M.; Batenburg, R.

    2010-01-01

    The purpose of this article is to develop a validated measurement model and typology for chain digitisation maturity, defined as the degree of interorganisational collaboration through ICT. Design/methodology/approach: Through a literature (meta) study, 22 existing maturity models are found and

  18. Phase Behavior of Blends of Linear and Branched Polyethylenes on Micron-Length Scales via Ultra-Small-Angle Neutron Scattering (USANS)

    International Nuclear Information System (INIS)

    Agamalian, M.M.; Alamo, R.G.; Londono, J.D.; Mandelkern, L.; Wignall, G.D.

    1999-01-01

    SANS experiments on blends of linear, high density (HD) and long chain branched, low density (LD) polyethylenes indicate that these systems form a one-phase mixture in the melt. However, the maximum spatial resolution of pinhole cameras is approximately equal to 10 3 and it has therefore been suggested that data might also be interpreted as arising from a bi-phasic melt with large a particle size ( 1 m), because most of the scattering from the different phases would not be resolved. We have addressed this hypothesis by means of USANS experiments, which confirm that HDPEILDPE blends are homogenous in the melt on length scales up to 20 m. We have also studied blends of HDPE and short-chain branched linear low density polyethylenes (LLDPEs), which phase separate when the branch content is sufficiently high. LLDPEs prepared with Ziegler-Natta catalysts exhibit a wide distribution of compositions, and may therefore be thought of as a blend of different species. When the composition distribution is broad enough, a fraction of highly branched chains may phase separate on m-length scales, and USANS has also been used to quantify this phenomenon

  19. Novel consortium of Klebsiella variicola and Lactobacillus species enhances the functional potential of fermented dairy products by increasing the availability of branched-chain amino acids and the amount of distinctive volatiles.

    Science.gov (United States)

    Rosales-Bravo, H; Morales-Torres, H C; Vázquez-Martínez, J; Molina-Torres, J; Olalde-Portugal, V; Partida-Martínez, L P

    2017-11-01

    Identify novel bacterial taxa that could increase the availability of branched-chain amino acids and the amount of distinctive volatiles during skim milk fermentation. We recovered 344 bacterial isolates from stool samples of healthy and breastfed infants. Five were selected based on their ability to produce branched-chain amino acids. Three strains were identified as Escherichia coli, one as Klebsiella pneumoniae and other as Klebsiella variicola by molecular and biochemical methods. HPLC and solid-phase microextraction with GC-MS were used for the determination of free amino acids and volatile compounds respectively. The consortium formed by K. variicola and four Lactobacillus species showed the highest production of Leu and Ile in skim milk fermentation. In addition, the production of volatile compounds, such as acetoin, ethanol, 2-nonanone, and acetic, hexanoic and octanoic acids, increased in comparison to commercial yogurt, Emmental and Gouda cheese. Also, distinctive volatiles, such as 2,3-butanediol, 4-methyl-2- hexanone and octanol, were identified. The use of K. variicola in combination with probiotic Lactobacillus species enhances the availability of Leu and Ile and the amount of distinctive volatiles during skim milk fermentation. The identified consortium increases the functional potential of fermented dairy products. © 2017 The Society for Applied Microbiology.

  20. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics.

    Science.gov (United States)

    Khatri, Indu; Sharma, Shailza; Ramya, T N C; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.

  1. Synthesis and properties of highly branched Jatropha curcas L. oil derivatives

    NARCIS (Netherlands)

    Daniel, Louis; Ardiyanti, Agnes R.; Schuur, Boelo; Manurung, Robert; Broekhuis, Antonius A.; Heeres, Hero J.

    The synthesis and properties of a number of novel branched Jatropha curcas L. oil (JO) derivatives containing vicinal di-ester units in the fatty acid chains are reported. Both the length (acetyl vs. hexanoyl) and the stereochemistry of the vicinal di-ester units (cis vs. trans) were varied. The

  2. Host organisms: Bacillus subtilis

    NARCIS (Netherlands)

    Hohman, Hans-Peter; van Dijl, Jan; Krishnappa, Laxmi; Pragai, Zoltan

    2016-01-01

    Bacillus subtilis and its close Bacillus relatives are important bacterial platforms for industrial production of enzymes and fine chemicals such as vitamin B2 and nucleotides. B. subtilis is an attractive bacterial organism for industrial use mainly because of its straightforward genetic

  3. The Effects of Adding Whey Protein and Branched-chain Amino Acid to Carbohydrate Beverages on Indices of Muscle Damage after Eccentric Resistance Exercise in Untrained Young Males

    Directory of Open Access Journals (Sweden)

    Foad Asjodi

    2017-07-01

    Full Text Available Abstract Background: The aim of this study was to evaluate the effects of supplementation of Branched-Chain Amino Acids (BCAAs plus carbohydrate (CHO and whey protein plus CHO on muscle damage indices after eccentric resistant exercise. Materials and Methods: Twenty four untrained healthy males participated in this study. They were randomly divided into three groups, BCAA +glucose (0.1+0.1g/kg supplement group (n=8, Whey+glucose (0.1+0.1g/kg supplement group (n=8, and placebo (malto dextrin 0.2g/kg group (n=8. Each subject consumed a carbohydrate beverage with addition of whey protein or branched-chain amino acid or placebo 30 minutes before exercise in a randomized,double-blind fashion. Serum levels of Creatine Kinase (CK, Lactate dehydrogenase (LDH, and muscle pain were measured before, 24, 48, 72 h after exercise. Follow-up analyses included 1-way repeated measures ANOVAs, and Bonferroni post hoc comparisons. Results: 24 h after test, serum levels of CK, LDH and muscle pain in both supplement groups were increased less than placebo group (0.015, 0.001 and 0.001, respectively. Also, the levels of CK and LDH showed significant changes in both intervention groups compared to placebo group at 24 h (0.001, 0. 015, respectively. Similarly, significant differences in the levels of CK and LDH between groups were observed. Conclusion: These data indicate that muscle damage and pain after resistant exercise were reduced by an ingestion of either BCAA drink or whey protein drink.

  4. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics

    Science.gov (United States)

    Ramya, T. N. C.; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions. PMID:27258038

  5. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics.

    Directory of Open Access Journals (Sweden)

    Indu Khatri

    Full Text Available Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.

  6. Diversification of Transcriptional Regulation Determines Subfunctionalization of Paralogous Branched Chain Aminotransferases in the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    González, James; López, Geovani; Argueta, Stefany; Escalera-Fanjul, Ximena; El Hafidi, Mohammed; Campero-Basaldua, Carlos; Strauss, Joseph; Riego-Ruiz, Lina; González, Alicia

    2017-11-01

    Saccharomyces cerevisiae harbors BAT1 and BAT2 paralogous genes that encode branched chain aminotransferases and have opposed expression profiles and physiological roles . Accordingly, in primary nitrogen sources such as glutamine, BAT1 expression is induced, supporting Bat1-dependent valine-isoleucine-leucine (VIL) biosynthesis, while BAT2 expression is repressed. Conversely, in the presence of VIL as the sole nitrogen source, BAT1 expression is hindered while that of BAT2 is activated, resulting in Bat2-dependent VIL catabolism. The presented results confirm that BAT1 expression is determined by transcriptional activation through the action of the Leu3-α-isopropylmalate (α-IPM) active isoform, and uncovers the existence of a novel α-IPM biosynthetic pathway operating in a put3 Δ mutant grown on VIL, through Bat2-Leu2-Leu1 consecutive action. The classic α-IPM biosynthetic route operates in glutamine through the action of the leucine-sensitive α-IPM synthases. The presented results also show that BAT2 repression in glutamine can be alleviated in a ure2 Δ mutant or through Gcn4-dependent transcriptional activation. Thus, when S. cerevisiae is grown on glutamine, VIL biosynthesis is predominant and is preferentially achieved through BAT1 ; while on VIL as the sole nitrogen source, catabolism prevails and is mainly afforded by BAT2 . Copyright © 2017 by the Genetics Society of America.

  7. Efficacy, Dosage, and Duration of Action of Branched Chain Amino Acid Therapy for Traumatic Brain Injury

    Science.gov (United States)

    Elkind, Jaclynn A.; Lim, Miranda M.; Johnson, Brian N.; Palmer, Chris P.; Putnam, Brendan J.; Kirschen, Matthew P.; Cohen, Akiva S.

    2015-01-01

    Traumatic brain injury (TBI) results in long-lasting cognitive impairments for which there is currently no accepted treatment. A well-established mouse model of mild to moderate TBI, lateral fluid percussion injury (FPI), shows changes in network excitability in the hippocampus including a decrease in net synaptic efficacy in area CA1 and an increase in net synaptic efficacy in dentate gyrus. Previous studies identified a novel therapy consisting of branched chain amino acids (BCAAs), which restored normal mouse hippocampal responses and ameliorated cognitive impairment following FPI. However, the optimal BCAA dose and length of treatment needed to improve cognitive recovery is unknown. In the current study, mice underwent FPI then consumed 100 mM BCAA supplemented water ad libitum for 2, 3, 4, 5, and 10 days. BCAA therapy ameliorated cognitive impairment at 5 and 10 days duration. Neither BCAA supplementation at 50 mM nor BCAAs when dosed 5 days on then 5 days off was sufficient to ameliorate cognitive impairment. These results suggest that brain injury causes alterations in hippocampal function, which underlie and contribute to hippocampal cognitive impairment, which are reversible with at least 5 days of BCAA treatment, and that sustaining this effect is dependent on continuous treatment. Our findings have profound implications for the clinical investigation of TBI therapy. PMID:25870584

  8. Branched-chain amino acid-enriched nutrient increases blood platelet count in patients after endoscopic injection sclerotherapy.

    Science.gov (United States)

    Furuichi, Yoshihiro; Imai, Yasuharu; Miyata, Yuki; Sugimoto, Katsutoshi; Sano, Takatomo; Taira, Junichi; Kojima, Mayumi; Kobayashi, Yoshiyuki; Nakamura, Ikuo; Moriyasu, Fuminori

    2016-10-01

    Protein and energy malnutrition is a severe problem for patients with liver cirrhosis (LC) and fasting often induces starvation which is a vitally important outcome. Dietary restriction is essential for endoscopic injection sclerotherapy (EIS) in patients with risky esophageal varices, thereby creating the possible exacerbation of nutritional state and inducing liver dysfunction. Whether EIS induces nutritional deficiency in LC patients and the effects of branched-chain amino acid (BCAA)-enriched nutrient are prospectively investigated. A total of 61 LC patients were randomly divided into an EIS monotherapy group (non-BCAA group, n = 31) and an EIS combined with BCAA therapy group (n = 30). Platelet count, blood chemistry and somatometry values were prospectively measured at five time points. The platelet counts before treatment were at the same level in both groups (P = 0.72). Three months after treatment, the counts decreased in the non-BCAA group; however, they increased in the BCAA group (P = 0.019). Body mass index, triceps skin fold thickness and arm muscle circumference significantly decreased in both groups. The BCAA and tyrosine ratio value increased only in the BCAA group (P BCAA group (P BCAA. Administration of BCAA had some effect in maintaining the nutritional state, and may improve the platelet count. Taking a greater amount of nutrients and shorter dietary restriction period or hospitalization was desirable. © 2016 The Japan Society of Hepatology.

  9. Efficacy, dosage and duration of action of branched chain amino acid therapy for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jaclynn eElkind

    2015-03-01

    Full Text Available Traumatic brain injury (TBI results in long-lasting cognitive impairments for which there is currently no accepted treatment. A well-established mouse model of mild to moderate TBI, lateral fluid percussion injury (FPI, shows changes in network excitability in the hippocampus including a decrease in net synaptic efficacy in area CA1 and an increase in net synaptic efficacy in dentate gyrus. Previous studies identified a novel therapy consisting of branched chain amino acids (BCAAs which restored normal mouse hippocampal responses and ameliorated cognitive impairment following FPI. However, the optimal BCAA dose and length of treatment needed to improve cognitive recovery is unknown. In the current study mice underwent FPI then consumed 100 mM BCAA supplemented water ad libitum for 2, 3, 4, 5 and 10 days. BCAA therapy ameliorated cognitive impairment at 5 and 10 days duration. Neither BCAA supplementation at 50 mM, nor BCAAs when dosed 5 days on then 5 days off, was sufficient to ameliorate cognitive impairment. These results suggest that brain injury causes alterations in hippocampal function which underlie and contribute to hippocampal cognitive impairment which are reversible with at least 5 days of BCAA treatment, and that sustaining this effect is dependent on continuous treatment. Our findings have profound implications for the clinical investigation of TBI therapy.

  10. Determination of haemolytic and non haemolytic genes profiles of Bacillus cereus strains isolated from food samples by polymerase chain reaction (pcr) technique

    Science.gov (United States)

    Jawad, Nisreen; Ahemd, Asmat; Abdullah, Aminah

    2018-04-01

    The aim of this study was to investigate the presence of Bacillus cereus and detection of enterotoxigenic genes in food samples by utilizing a Polymerase Chain Reaction technique (PCR). In this study the providence of B. cereus was carried out to food samples. The B. cereus isolates were investigated for enterotoxigenic gene. The cooked seafood, and raw milk samples were purchased from several restaurants and market in the area of (Bangi, Kajang, Serdang and UKM) Selangor, Malaysia. A total of 60 samples have been analyzed. B. cereus contamination has been formed between 1.4×105 - 3×105 cfu/mL of cooked seafood and raw milk samples. Five colonies have been detected as B. cereus using biochemical test. All B. cereus isolates named BC1 to BC27, were characterized for haemolytic enterotoxin (HBL) complex encoding genes (hblA), non-haemolytic enterotoxin encoding gene (NheA). 10 isolates have been reported to be positive towards hblA and 12 isolates were positive towards NheA. The presence of B. cereus and their enterotoxigenic genes in cooked seafood and raw milk from to food samples obtained may pose a potential risk for public health.

  11. Fluorene biodegradation potentials of Bacillus strains isolated from ...

    African Journals Online (AJOL)

    Fluorene biodegradation potentials of Bacillus strains isolated from tropical ... Bacillus strains, putatively identified as Bacillus subtilis BM1 and Bacillus amyloliquefaciens BR1 were ... African Journal of Biotechnology, Vol 13(14), 1554-1559 ...

  12. Evaluation of short-chain-length polyhydroxyalkanoate accumulation in Bacillus aryabhattai

    Directory of Open Access Journals (Sweden)

    Aneesh Balakrishna Pillai

    Full Text Available Abstract This study was focused on the polyhydroxybutyrate (PHB accumulation property of Bacillus aryabhattai isolated from environment. Twenty-four polyhydroxyalkanoate (PHA producers were screened out from sixty-two environmental bacterial isolates based on Sudan Black B colony staining. Based on their PHA accumulation property, six promising isolates were further screened out. The most productive isolate PHB10 was identified as B. aryabhattai PHB10. The polymer production maxima were 3.264 g/L, 2.181 g/L, 1.47 g/L, 1.742 g/L and 1.786 g/L in glucose, fructose, maltose, starch and glycerol respectively. The bacterial culture reached its stationary and declining phases at 18 h and 21 h respectively and indicated growth-associated PHB production. Nuclear Magnetic Resonance (NMR spectra confirmed the material as PHB. The material has thermal stability between 30 and 140 °C, melting point at 170 °C and maximum thermal degradation at 287 °C. The molecular weight and poly dispersion index of the polymer were found as 199.7 kDa and 2.67 respectively. The bacterium B. aryabhattai accumulating PHB up to 75% of cell dry mass utilizing various carbon sources is a potential candidate for large scale production of bacterial polyhydroxybutyrate.

  13. Record high hole mobility in polymer semiconductors via side-chain engineering.

    Science.gov (United States)

    Kang, Il; Yun, Hui-Jun; Chung, Dae Sung; Kwon, Soon-Ki; Kim, Yun-Hi

    2013-10-09

    Charge carrier mobility is still the most challenging issue that should be overcome to realize everyday organic electronics in the near future. In this Communication, we show that introducing smart side-chain engineering to polymer semiconductors can facilitate intermolecular electronic communication. Two new polymers, P-29-DPPDBTE and P-29-DPPDTSE, which consist of a highly conductive diketopyrrolopyrrole backbone and an extended branching-position-adjusted side chain, showed unprecedented record high hole mobility of 12 cm(2)/(V·s). From photophysical and structural studies, we found that moving the branching position of the side chain away from the backbone of these polymers resulted in increased intermolecular interactions with extremely short π-π stacking distances, without compromising solubility of the polymers. As a result, high hole mobility could be achieved even in devices fabricated using the polymers at room temperature.

  14. Identification of Bacillus Probiotics Isolated from Soil Rhizosphere Using 16S rRNA, recA, rpoB Gene Sequencing and RAPD-PCR.

    Science.gov (United States)

    Mohkam, Milad; Nezafat, Navid; Berenjian, Aydin; Mobasher, Mohammad Ali; Ghasemi, Younes

    2016-03-01

    Some Bacillus species, especially Bacillus subtilis and Bacillus pumilus groups, have highly similar 16S rRNA gene sequences, which are hard to identify based on 16S rDNA sequence analysis. To conquer this drawback, rpoB, recA sequence analysis along with randomly amplified polymorphic (RAPD) fingerprinting was examined as an alternative method for differentiating Bacillus species. The 16S rRNA, rpoB and recA genes were amplified via a polymerase chain reaction using their specific primers. The resulted PCR amplicons were sequenced, and phylogenetic analysis was employed by MEGA 6 software. Identification based on 16S rRNA gene sequencing was underpinned by rpoB and recA gene sequencing as well as RAPD-PCR technique. Subsequently, concatenation and phylogenetic analysis showed that extent of diversity and similarity were better obtained by rpoB and recA primers, which are also reinforced by RAPD-PCR methods. However, in one case, these approaches failed to identify one isolate, which in combination with the phenotypical method offsets this issue. Overall, RAPD fingerprinting, rpoB and recA along with concatenated genes sequence analysis discriminated closely related Bacillus species, which highlights the significance of the multigenic method in more precisely distinguishing Bacillus strains. This research emphasizes the benefit of RAPD fingerprinting, rpoB and recA sequence analysis superior to 16S rRNA gene sequence analysis for suitable and effective identification of Bacillus species as recommended for probiotic products.

  15. Effect of Ultrasonic Waves on the Heat Resistance of Bacillus cereus and Bacillus licheniformis Spores

    Science.gov (United States)

    Burgos, J.; Ordóñez, J. A.; Sala, F.

    1972-01-01

    Heat resistance of Bacillus cereus and Bacillus licheniformis spores in quarter-strength Ringer solution decreases markedly after ultrasonic treatments which are unable to kill a significant proportion of the spore population. This effect does not seem to be caused by a loss of Ca2+ or dipicolinic acid. The use of ultrasonics to eliminate vegetative cells or to break aggregates in Bacillus spore suspensions to be used subsequently in heat resistance experiments appears to be unadvisable. PMID:4627969

  16. Comparative Genomics of Regulation of Fatty Acid and Branched-chain Amino Acid Utilization in Proteobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kazakov, Alexey E.; Rodionov, Dmitry A.; Arkin, Adam Paul; Dubchak, Inna; Gelfand, Mikhail S.; Alm, Eric

    2008-10-31

    Bacteria can use branched-chain amino acids (ILV, i.e. isoleucine, leucine, valine) and fatty acids (FA) as sole carbon and energy sources convering ILV into acetyl-CoA, propanoyl-CoA and propionyl-CoA, respectively. In this work, we used the comparative genomic approach to identify candidate transcriptional factors and DNA motifs that control ILV and FA utilization pathways in proteobacteria. The metabolic regulons were characterized based on the identification and comparison of candidate transcription factor binding sites in groups of phylogenetically related genomes. The reconstructed ILV/FA regulatory network demonstrates considerable variability and involves six transcriptional factors from the MerR, TetR and GntR families binding to eleven distinct DNA motifs. The ILV degradation genes in gamma- and beta-proteobacteria are mainly regulated by anovel regulator from the MerR family (e.g., LiuR in Pseudomonas aeruginosa) (40 species), in addition, the TetR-type regulator LiuQ was identified in some beta-proteobacteria (8 species). Besides the core set of ILV utilization genes, the LiuR regulon in some lineages is expanded to include genes from other metabolic pathways, such as the glyoxylate shunt and glutamate synthase in the Shewanella species. The FA degradation genes are controlled by four regulators including FadR in gamma-proteobacteria (34 species), PsrA in gamma- and beta-proteobacteria (45 species), FadP in beta-proteobacteria (14 species), and LiuR orthologs in alpha-proteobacteria (22 species). The remarkable variability of the regulatory systems associated with the FA degradation pathway is discussed from the functional and evolutionary points of view.

  17. The positive association of branched-chain amino acids and metabolic dyslipidemia in Chinese Han population.

    Science.gov (United States)

    Yang, Panpan; Hu, Wen; Fu, Zhenzhen; Sun, Luning; Zhou, Ying; Gong, Yingyun; Yang, Tao; Zhou, Hongwen

    2016-07-25

    It has been suggested that serum branched-chain amino acids (BCAAs) are associated with the incident, progression and prognostic of type 2 diabetes. However, the role of BCAAs in metabolic dyslipidemia (raised triglycerides (TG) and reduced high-density lipoprotein cholesterol (HDL-C)) remains poorly understood. This study aims to investigate 1) the association of serum BCAAs with total cholesterol (TC), TG, HDL-C and low-density lipoprotein cholesterol (LDL-C) and 2) the association between serum BCAAs levels and risk of metabolic dyslipidemia in a community population with different glucose homeostasis. Demographics data and blood samples were collected from 2251 Chinese subjects from the Huaian Diabetes Protective Program (HADPP) study. After exclusion for cardiovascular disease (CVD), serious hepatic or nephritic diseases and others, 1320 subjects remained for analysis (789 subjects with hemoglobin A1c (HbA1c) > 5.7, 521 with HbA1c ≤ 5.7). Serum BCAAs level was measured by liquid chromatography-tandem mass spectrometry (LC MS/MS). The association of BCAAs with lipids or with the risk of metabolic dyslipidemia was analyzed. Elevated serum BCAAs (both total and individual BCAA) were positively associated with TG and inversely associated with HDL-C in the whole population. These correlations were still significant even after adjustment for confounding factors (r = 0.165, p dyslipidemia was 3.703 (2.261, 6.065) and 3.702 (1.877, 7.304), respectively (all p dyslipidemia. In addition, glucose homeostasis could play a certain role in BCAAs-related dyslipidemia.

  18. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase

    Energy Technology Data Exchange (ETDEWEB)

    Kolodkin-Gal, I; Elsholz, AKW; Muth, C; Girguis, PR; Kolter, R; Losick, R

    2013-04-29

    Bacillus subtilis forms organized multicellular communities known as biofilms wherein the individual cells are held together by a self-produced extracellular matrix. The environmental signals that promote matrix synthesis remain largely unknown. We discovered that one such signal is impaired respiration. Specifically, high oxygen levels suppressed synthesis of the extracellular matrix. In contrast, low oxygen levels, in the absence of an alternative electron acceptor, led to increased matrix production. The response to impaired respiration was blocked in a mutant lacking cytochromes caa(3) and bc and markedly reduced in a mutant lacking kinase KinB. Mass spectrometry of proteins associated with KinB showed that the kinase was in a complex with multiple components of the aerobic respiratory chain. We propose that KinB is activated via a redox switch involving interaction of its second transmembrane segment with one or more cytochromes under conditions of reduced electron transport. In addition, a second kinase (KinA) contributes to the response to impaired respiration. Evidence suggests that KinA is activated by a decrease in the nicotinamide adenine dinucleotide (NAD(+))/NADH ratio via binding of NAD(+) to the kinase in a PAS domain A-dependent manner. Thus, B. subtilis switches from a unicellular to a multicellular state by two pathways that independently respond to conditions of impaired respiration.

  19. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase

    Science.gov (United States)

    Kolodkin-Gal, Ilana; Elsholz, Alexander K.W.; Muth, Christine; Girguis, Peter R.; Kolter, Roberto; Losick, Richard

    2013-01-01

    Bacillus subtilis forms organized multicellular communities known as biofilms wherein the individual cells are held together by a self-produced extracellular matrix. The environmental signals that promote matrix synthesis remain largely unknown. We discovered that one such signal is impaired respiration. Specifically, high oxygen levels suppressed synthesis of the extracellular matrix. In contrast, low oxygen levels, in the absence of an alternative electron acceptor, led to increased matrix production. The response to impaired respiration was blocked in a mutant lacking cytochromes caa3 and bc and markedly reduced in a mutant lacking kinase KinB. Mass spectrometry of proteins associated with KinB showed that the kinase was in a complex with multiple components of the aerobic respiratory chain. We propose that KinB is activated via a redox switch involving interaction of its second transmembrane segment with one or more cytochromes under conditions of reduced electron transport. In addition, a second kinase (KinA) contributes to the response to impaired respiration. Evidence suggests that KinA is activated by a decrease in the nicotinamide adenine dinucleotide (NAD+)/NADH ratio via binding of NAD+ to the kinase in a PAS domain A-dependent manner. Thus, B. subtilis switches from a unicellular to a multicellular state by two pathways that independently respond to conditions of impaired respiration. PMID:23599347

  20. Branching structure and strain hardening of branched metallocene polyethylenes

    International Nuclear Information System (INIS)

    Torres, Enrique; Li, Si-Wan; Costeux, Stéphane; Dealy, John M.

    2015-01-01

    There have been a number of studies of a series of branched metallocene polyethylenes (BMPs) made in a solution, continuous stirred tank reactor (CSTR) polymerization. The materials studied vary in branching level in a systematic way, and the most highly branched members of the series exhibit mild strain hardening. An outstanding question is which types of branched molecules are responsible for strain hardening in extension. This question is explored here by use of polymerization and rheological models along with new data on the extensional flow behavior of the most highly branched members of the set. After reviewing all that is known about the effects of various branching structures in homogeneous polymers and comparing this with the structures predicted to be present in BMPs, it is concluded that in spite of their very low concentration, treelike molecules with branch-on-branch structure provide a large number of deeply buried inner segments that are essential for strain hardening in these polymers

  1. Branching structure and strain hardening of branched metallocene polyethylenes

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Enrique; Li, Si-Wan; Costeux, Stéphane; Dealy, John M., E-mail: john.dealy@mcgill.ca [Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C4 (Canada)

    2015-09-15

    There have been a number of studies of a series of branched metallocene polyethylenes (BMPs) made in a solution, continuous stirred tank reactor (CSTR) polymerization. The materials studied vary in branching level in a systematic way, and the most highly branched members of the series exhibit mild strain hardening. An outstanding question is which types of branched molecules are responsible for strain hardening in extension. This question is explored here by use of polymerization and rheological models along with new data on the extensional flow behavior of the most highly branched members of the set. After reviewing all that is known about the effects of various branching structures in homogeneous polymers and comparing this with the structures predicted to be present in BMPs, it is concluded that in spite of their very low concentration, treelike molecules with branch-on-branch structure provide a large number of deeply buried inner segments that are essential for strain hardening in these polymers.

  2. A general algorithm for radioactive decay with branching and loss from a medium

    International Nuclear Information System (INIS)

    Strenge, D.L.

    1995-07-01

    Many areas in the field of health physics require evaluation of the change of radionuclide quantity in a medium with time. A general solution to first-order compartmental models is presented in this paper for application to systems consisting of one physical medium that contains any number of radionuclide decay chain members. The general analytical solution to the problem is first described mathematically, and then extended to four applications: (1) evaluation of the quantity of radionuclides as a function of time, (2) evaluation of the time integral of the quantity during a time period, (3) evaluation of the amount in a medium as a function of time following deposition at a constant rate, and (4) evaluation of the time integral of the amount in a medium after deposition at a constant rate for a time. The solution can be applied to any system involving physical transfers from the medium and radioactive chain decay with branching in the medium. The general solution is presented for quantities expressed in units of atoms and activity. Unlike many earlier mathematical solutions, this solution includes chain decay with branching explicitly in the equations

  3. The relationship between odd- and branched-chain fatty acids and microbial nucleic acid bases in rumen.

    Science.gov (United States)

    Liu, Keyuan; Hao, Xiaoyan; Li, Yang; Luo, Guobin; Zhang, Yonggen; Xin, Hangshu

    2017-11-01

    This study aims to identify the relationship between odd- and branched-chain fatty acids (OBCFAs) and microbial nucleic acid bases in the rumen, and to establish a model to accurately predict microbial protein flow by using OBCFA. To develop the regression equations, data on the rumen contents of individual cows were obtained from 2 feeding experiments. In the first experiment, 3 rumen-fistulated dry dairy cows arranged in a 3×3 Latin square were fed diets of differing forage to concentration ratios (F:C). The second experiment consisted of 9 lactating Holstein dairy cows of similar body weights at the same stage of pregnancy. For each lactation stage, 3 cows with similar milk production were selected. The rumen contents were sampled at 4 time points of every two hours after morning feeding 6 h, and then to analyse the concentrations of OBCFA and microbial nucleic acid bases in the rumen samples. The ruminal bacteria nucleic acid bases were significantly influenced by feeding diets of differing forge to concentration ratios and lactation stages of dairy cows (pacids and C15:0 isomers, strongly correlated with the microbial nucleic acid bases in the rumen (pacid bases established by ruminal OBCFAs contents showed a good predictive capacity, as indicated by reasonably low standard errors and high R-squared values. This finding suggests that the rumen OBCFA composition could be used as an internal marker of rumen microbial matter.

  4. Associations between plasma branched-chain amino acids, β-aminoisobutyric acid and body composition.

    Science.gov (United States)

    Rietman, Annemarie; Stanley, Takara L; Clish, Clary; Mootha, Vamsi; Mensink, Marco; Grinspoon, Steven K; Makimura, Hideo

    2016-01-01

    Plasma branched-chain amino acids (BCAA) are elevated in obesity and associated with increased cardiometabolic risk. β-Aminoisobutyric acid (B-AIBA), a recently identified small molecule metabolite, is associated with decreased cardiometabolic risk. Therefore, we investigated the association of BCAA and B-AIBA with each other and with detailed body composition parameters, including abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). A cross-sectional study was carried out with lean (n 15) and obese (n 33) men and women. Detailed metabolic evaluations, including measures of body composition, insulin sensitivity and plasma metabolomics were completed. Plasma BCAA were higher (1·6 (se 0·08) (×10(7)) v. 1·3 (se 0·06) (×10(7)) arbitrary units; P = 0·005) in obese v. lean subjects. BCAA were positively associated with VAT (R 0·49; P = 0·0006) and trended to an association with SAT (R 0·29; P = 0·052). The association between BCAA and VAT, but not SAT, remained significant after controlling for age, sex and race on multivariate modelling (P BCAA were also associated with parameters of insulin sensitivity (Matsuda index: R -0·50, P = 0·0004; glucose AUC: R 0·53, P BCAA were not associated with B-AIBA (R -0·04; P = 0·79). B-AIBA was negatively associated with SAT (R -0·37; P = 0·01) but only trended to an association with VAT (R 0·27; P = 0·07). However, neither relationship remained significant after multivariate modelling (P > 0·05). Plasma B-AIBA was associated with parameters of insulin sensitivity (Matsuda index R 0·36, P = 0·01; glucose AUC: R -0·30, P = 0·04). Plasma BCAA levels were positively correlated with VAT and markers of insulin resistance. The results suggest a possible complex role of adipose tissue in BCAA homeostasis and insulin resistance.

  5. Effects of dietary valine:lysine ratio on the performance, amino acid composition of tissues and mRNA expression of genes involved in branched-chain amino acid metabolism of weaned piglets

    Directory of Open Access Journals (Sweden)

    Ye Tong Xu

    2018-01-01

    Full Text Available Objective The goal of this study was to investigate the effects of dietary standard ileal digestible (SID valine:lysine ratios on performance, intestinal morphology, amino acids of liver and muscle, plasma indices and mRNA expression of branched-chain amino acid (BCAA metabolism enzymes. Methods A total of 144 crossbred pigs (Duroc×Landrace×Large White weaned at 28±4 days of age (8.79±0.02 kg body weight were randomly allotted to 1 of 4 diets formulated to provide SID valine:lysine ratios of 50%, 60%, 70%, or 80%. Each diet was fed to 6 pens of pigs with 6 pigs per pen (3 gilts and 3 barrows for 28 days. Results Average daily gain increased quadratically (p<0.05, the villous height of the duodenum, jejunum and ileum increased linearly (p<0.05 as the SID valine:lysine ratio increased. The concentrations of plasma α-keto isovaleric and valine increased linearly (p<0.05, plasma aspartate, asparagine and cysteine decreased (p<0.05 as the SID valine:lysine ratio increased. An increase in SID lysine:valine levels increased mRNA expression levels of mitochondrial BCAA transaminase and branched-chain α-keto acid dehydrogenase in the longissimus dorsi muscle (p<0.05. Conclusion Using a quadratic model, a SID valine:lysine ratio of 68% was shown to maximize the growth of weaned pigs which is slightly higher than the level recommended by the National Research Council [6].

  6. Determining the source of Bacillus cereus and Bacillus licheniformis isolated from raw milk, pasteurized milk and yoghurt.

    Science.gov (United States)

    Banykó, J; Vyletelová, M

    2009-03-01

    Strain-specific detection of Bacillus cereus and Bacillus licheniformis in raw and pasteurized milk, and yoghurt during processing. Randomly selected isolates of Bacillus spp. were subjected to PCR analysis, where single primer targeting to the repetitive sequence Box elements was used to fingerprint the species. The isolates were separated into six different fingerprint patterns. The results show that isolates clustered together at about the 57% similarity level with two main groups at the 82% and 83% similarity levels, respectively. Contamination with identical strains both of B. cereus and B. licheniformis in raw and pasteurized milk was found as well as contaminated with different strains (in the case of raw milk and yoghurt/pasteurized milk and yoghurt). Several BOX types traced in processed milk samples were not discovered in the original raw milk. BOX-PCR fingerprinting is useful for characterizing Bacillus populations in a dairy environment. It can be used to confirm environmental contamination, eventually clonal transfer of Bacillus strains during the technological processing of milk. Despite the limited number of strains analysed, the two Bacillus species yielded adequately detectable banding profiles, permitting differentiation of bacteria at the strain level and showing their diversity throughout dairy processing.

  7. A Branched-Chain Amino Acid-Related Metabolic Signature Characterizes Obese Adolescents with Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Martina Goffredo

    2017-06-01

    Full Text Available Dysregulation of several metabolite pathways, including branched-chain amino acids (BCAAs, are associated with Non-Alcoholic Fatty Liver Disease (NAFLD and insulin resistance in adults, while studies in youth reported conflicting results. We explored whether, independently of obesity and insulin resistance, obese adolescents with NAFLD display a metabolomic signature consistent with disturbances in amino acid and lipid metabolism. A total of 180 plasma metabolites were measured by a targeted metabolomic approach in 78 obese adolescents with (n = 30 or without (n = 48 NAFLD assessed by magnetic resonance imaging (MRI. All subjects underwent an oral glucose tolerance test and subsets of patients underwent a two-step hyperinsulinemic-euglycemic clamp and/or a second MRI after a 2.2 ± 0.8-year follow-up. Adolescents with NAFLD had higher plasma levels of valine (p = 0.02, isoleucine (p = 0.03, tryptophan (p = 0.02, and lysine (p = 0.02 after adjustment for confounding factors. Circulating BCAAs were negatively correlated with peripheral and hepatic insulin sensitivity. Furthermore, higher baseline valine levels predicted an increase in hepatic fat content (HFF at follow-up (p = 0.01. These results indicate that a dysregulation of BCAA metabolism characterizes obese adolescents with NAFLD independently of obesity and insulin resistance and predict an increase in hepatic fat content over time.

  8. Effects of kinase inhibitors and potassium phosphate (KPi) on site-specific phosphorylation of branched chain α-ketoacid dehydrogenase (BCKDH)

    International Nuclear Information System (INIS)

    Kuntz, M.J.; Shimomura, Y.; Ozawa, T.; Harris, R.A.

    1987-01-01

    BCKDH is phosphorylated by a copurifying kinase at two serine residues on the Elα subunit. Phosphorylation of both sites occurs at about the same rate initially, but inactivation is believed associated only with site 1 phosphorylation. The effects of KPi and known inhibitors of BCKDH kinase, α-chloroisocaproate (CIC) and branched chain α-ketoacids (BCKA), on the phosphorylation of purified rat liver BCKDH were studied. Site-specific phosphorylation was quantitated by thin-layer electrophoresis of tryptic peptides followed by densitometric scanning of autoradiograms. Addition of 5 mM KPi was found necessary to stabilize the BCKDH activity at 37 0 C. Increasing the KPi to 50 mM dramatically increased the CIC and BCKA inhibition of site 1 and site 2 phosphorylation. The finding of enhanced sensitivity of inhibitors with 50 mM KPi may facilitate identification of physiologically important kinase effectors. Regardless of the KPi concentration, CIC and the BCKA showed much more effective inhibition of site 2 than site 1 phosphorylation. Although site 1 is the primary inactivating site, predominant inhibition of site 2 phosphorylation may provide a means of modulating kinase/phosphatase control of BCKDH activity under steady state conditions

  9. Monte Carlo calculations of the free-molecule drag on chains of uniform spheres

    International Nuclear Information System (INIS)

    Dahneke, B.; Chan, P.

    1980-01-01

    Monte Carlo calculations of the free-molecule drag on straight chains of uniform spheres are presented. The drag on a long chain is expressed in terms of the drag on a basic chain unit (two hemispheres touching at their poles) multiplied by the number of spheres in the chain. Since there is no interaction between the basic chain units, it is argued that the results also apply as a good approximation to the drag on kinked and branched chains covering a broad range of geometries. Experimental data are cited which support this claim

  10. Transcriptional regulation of the Bacillus subtilis menp1 promoter.

    Science.gov (United States)

    Qin, X; Taber, H W

    1996-02-01

    The Bacillus subtilis men genes encode biosynthetic enzymes for formation of the respiratory chain component menaquinone. The menp1 promoter previously was shown to be the primary cis element for menFD gene expression. In the present work, it was found that either supplementation with nonfermentable carbon sources or reutilization of glycolytic end products increased menp1 activity in the late postexponential phase. The effect on menp1 activity by a particular end product (such as acetoin or acetate) was prevented by blocking the corresponding pathway for end product utilization. Alteration of a TGAAA motif within the promoter region resulted in unregulated menp1 activity throughout the culture cycle, irrespective of the carbon source added.

  11. Soil burial method for plastic degradation performed by Pseudomonas PL-01, Bacillus PL-01, and indigenous bacteria

    Science.gov (United States)

    Shovitri, Maya; Nafi'ah, Risyatun; Antika, Titi Rindi; Alami, Nur Hidayatul; Kuswytasari, N. D.; Zulaikha, Enny

    2017-06-01

    Lately, plastic bag is becoming the most important pollutant for environment since it is difficult to be naturally degraded due to it consists of long hydrocarbon polymer chains. Our previous study indicated that our pure isolate Pseudomonas PL-01 and Bacillus PL-01 could degrade about 10% plastic bag. This present study was aimed to find out whether Pseudomonas PL01 and Bacillus PL01 put a positive effect to indigenous bacteria from marginal area in doing plastic degradation with a soil burial method. Beach sand was used as a representative marginal area, and mangrove sediment was used as a comparison. Plastics were submerged into unsterile beach sand with 10% of Pseudomonas PL-01 or Bacillus PL-01 containing liquid minimal salt medium (MSM) separately, while other plastics were submerged into unsterile mangrove sediments. After 4, 8, 12 and 16 weeks, their biofilm formation on their plastic surfaces and plastic degradation were measured. Results indicated that those 2 isolates put positive influent on biofilm formation and plastic degradation for indigenous beach sand bacteria. Bacillus PL-01 put higher influent than Pseudomonas PL-01. Plastic transparent was preferable degraded than black and white plastic bag `kresek'. But anyhow, indigenous mangrove soil bacteria showed the best performance in biofilm formation and plastic degradation, even without Pseudomonas PL-01 or Bacillus PL-01 addition. Fourier Transform Infrared (FTIR) analysis complemented the results; there were attenuated peaks with decreasing peaks transmittances. This FTIR peaks indicated chemical functional group changes happened among the plastic compounds after 16 weeks incubation time.

  12. Production of amylolytic enzymes by bacillus spp

    International Nuclear Information System (INIS)

    Dawood, Elham Shareif

    1997-12-01

    Sixty six bacteria and twenty fungi were isolated from various sources. These varied from rotten fruites to local drinks and soil samples from different parts of Sudan. On the basis of index of amylolytic activity, forty one bacteria and twelve fungi were found to hydrolyse strach. The best ten strach hydrolysing isolates were identified all as bacilli (Bacillus licheniformis SUD-K 1 , SUD-K 2 , SUD-K 4 , SUD-O, SUD-SRW, SUD-BRW, SUD-By, Bacillus subtilis SUD-K 3 , and Bacillus circulans SUD-D and SUD-K 7 ). Their amylase productivity was studied with respect to temperature and time. Amylolytic activity was measured by spectrophotometer, the highest activity was produced in around 24 hours of growth in all; six of which gave the highest amylase activity at 50 deg C and the rest at 45C. Based on the thermal production six isolates were chosen for further investigation. These were Bacillus licheniformis SUD-K 1 , SUD-K 2 , SUD-K 4 , SUD-O, Bacillus subtilis SUD-K 3 and Bacillus circulans SUD-K 7 . The inclusion of strach and Mg ++ ions in the culture medium gave the highest enzyme yield. The Ph 9.0 was found to be the optimum for amylase production for all isolates except Bacillus subtilis SUD-K 3 which had an optimum at pH 7.0. Three isolates (Bacillus licheniformis SUD-K 1 , SUD-K 4 and SUD-O recorded highestamylase production in a medium supplemented with peptone while the rest (Bacillus licheniformis SUD-K 2 , Bacillus subtilis SUD-K 3 and Bacillus circulans SUD-K 7 ) gave highest amylase productivity in a medium supplemented with malt extract. Four isolates (Bacillus licheniformis SUD-K 1 and Bacillus subtilis SUD-K 3 gave maximum amylase production in a medium containing 0.5% soluble strach while the rest (gave maximum amylase production at 2%. Soluble strach was found to be best substrate among the different carbon sources tested. The maximum temperature for amylase activity ranged from 60-70 deg C and 1% strach concentration was optimum for all isolates

  13. Bacillus Strains Most Closely Related to Bacillus nealsonii Are Not Effectively Circumscribed within the Taxonomic Species Definition

    Directory of Open Access Journals (Sweden)

    K. Kealy Peak

    2011-01-01

    Full Text Available Bacillus strains with >99.7% 16S rRNA gene sequence similarity were characterized with DNA:DNA hybridization, cellular fatty acid (CFA analysis, and testing of 100 phenotypic traits. When paired with the most closely related type strain, percent DNA:DNA similarities (% S for six Bacillus strains were all far below the recommended 70% threshold value for species circumscription with Bacillus nealsonii. An apparent genomic group of four Bacillus strain pairings with 94%–70% S was contradicted by the failure of the strains to cluster in CFA- and phenotype-based dendrograms as well as by their differentiation with 9–13 species level discriminators such as nitrate reduction, temperature range, and acid production from carbohydrates. The novel Bacillus strains were monophyletic and very closely related based on 16S rRNA gene sequence. Coherent genomic groups were not however supported by similarly organized phenotypic clusters. Therefore, the strains were not effectively circumscribed within the taxonomic species definition.

  14. L-Glutamic acid production by Bacillus spp. isolated from vegetable ...

    African Journals Online (AJOL)

    Ogiri” (fermented vegetable proteins) in Nigeria. The isolates were identified as Bacillus subtilis (6), (27.3%), Bacillus pumilus (5), (22.7%), Bacillus licheniformis (5), (27.3%) and Bacillus polymyxa (6), (22.7%). Four species of the Bacillus isolates ...

  15. Reclassification of Bacillus axarquiensis Ruiz-Garcia et al. 2005 and Bacillus malacitensis Ruiz-Garcia et al. 2005 as later heterotypic synonyms of Bacillus mojavensis Roberts et al. 1994.

    Science.gov (United States)

    Wang, Li-Ting; Lee, Fwu-Ling; Tai, Chun-Ju; Yokota, Akira; Kuo, Hsiao-Ping

    2007-07-01

    The Bacillus subtilis group encompasses the taxa Bacillus subtilis subsp. subtilis, B. licheniformis, B. amyloliquefaciens, B. atrophaeus, B. mojavensis, B. vallismortis, B. subtilis subsp. spizizenii, B. sonorensis, B. velezensis, B. axarquiensis and B. malacitensis. In this study, the taxonomic relatedness between the species B. axarquiensis, B. malacitensis and B. mojavensis was investigated. Sequence analysis of the 16S rRNA gene and the gene for DNA gyrase subunit B (gyrB) confirmed the very high similarities between these three type strains and a reference strain of B. mojavensis (>99 and >97 %, respectively). DNA-DNA hybridization experiments revealed high relatedness values between the type strains of B. axarquiensis, B. malacitensis and B. mojavensis and between these strains and a reference strain of B. mojavensis (83-98 %). Based on these molecular taxonomic data and the lack of phenotypic distinctive characteristics, Bacillus axarquiensis and Bacillus malacitensis should be reclassified as later heterotypic synonyms of Bacillus mojavensis.

  16. Role of fatty acids in Bacillus environmental adaptation

    Directory of Open Access Journals (Sweden)

    Sara Esther Diomande

    2015-08-01

    Full Text Available The large bacterial genus genus Bacillus is widely distributed in the environment and is able to colonize highly diverse niches. Some Bacillus species harbour pathogenic characteristics. The fatty acid (FA composition is among the essential criteria used to define Bacillus species. Some elements of the FA pattern composition are common to Bacillus species, whereas others are specific and can be categorized in relation to the ecological niches of the species. Bacillus species are able to modify their FA patterns to adapt to a wide range of environmental changes, including changes in the growth medium, temperature, food processing conditions, and pH. Like many other Gram-positive bacteria, Bacillus strains display a well-defined FA synthesis II system that is equilibrated with a FA degradation pathway and regulated to efficiently respond to the needs of the cell. Like endogenous FAs, exogenous FAs may positively or negatively affect the survival of Bacillus vegetative cells and the spore germination ability in a given environment. Some of these exogenous FAs may provide a powerful strategy for preserving food against contamination by the Bacillus pathogenic strains responsible for foodborne illness.

  17. Environmental management in product chains

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Forman, Marianne; Hansen, Anne Grethe

    of environmental initiatives, a number of recommendations for governmental regulation, which can support the further diffusion of environmental management in product chains, are developed. Furthermore, the report describes a number of theoretical perspectives from sociology of technology, organisation theory......This report presents the analyses of the shaping, implementation and embedding of eight types of environmental initiatives in product chains. The analyses focus on • the role of the type of product and branch, of the size of the companies and of governmental regulation • the focus...... of the environmental concerns and the reductions in environmental impact • organisational changes which have been part of the embedding of the initiatives The analyses are based on 25 cases from national and international product chains involving one or more Danish companies. Based on the analyses of the eight types...

  18. Evaluation of the metabolism in rat hearts of two new radioiodinated 3-methyl-branched fatty acid myocardial imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, K R; Owen, B A; Goodman, M M; Knapp, Jr, F F

    1987-01-01

    The biological fate of two new radioiodinated 3-methyl-branched fatty acids has been evaluated in rat hearts following intravenous administration. Methyl-branching was introduced in (15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid (BMIPP) and 15-(p-iodophenyl)-3,3-dimethylpentadecanoic acid (DMIPP) to inhibit ..beta..-oxidation. The goals of these studies were to correlate the effects of methyl-branching on the incorporation of these agents into the various fatty acid pools and subcellular distribution profiles, and to relate these data to the myocardial retention properties. The properties of BMIPP and DMIPP were compared with the 15-(p-iodophenyl)pentadecanoic acid straight-chain analogue (IPP). Differences in the heart retention of the analogues after intravenous administration in rats correlated with differences observed in subcellular distribution patterns. The dimethyl DMIPP analogue showed the longest retention and the highest association with the mitochondrial and microsomal fractions (34%, 38%) 30 min after injection. These data are in contrast to the rapid clearance of the straight-chain IPP analogue which showed much lower relative association with the mitochondria and microsomes (18%, 15%). The distribution patterns of each analogue in the various lipid pools appeared consistent with the expected capacity of the analogues to be metabolized by ..beta..-oxidation. In contrast to the rapid oxidation of the straight-chain IPP analogue, the 3-monomethyl BMIPP analogue appeared to undergo slower oxidation and clearance, whereas the dimethyl-branched DMIPP analogue was apparatently not catabolized by the myocardium. All three analogues showed some incorporation into triglycerides. The metabolism patterns of the branched analogues reported here may provide useful information in the description of the mechanisms by which BMIPP and DMIPP are retained in rat myocardium.

  19. Effect of garlic solution to Bacillus sp. removal

    Science.gov (United States)

    Zainol, N.; Rahim, S. R.

    2018-04-01

    Biofilm is a microbial derived sessile community characterized by cells that are irreversibly attached to a substratum or interface to each other, embedded in a matrix of extracellular polymeric substances that they have produced. Bacillus sp. was used as biofilm model in this study. The purpose of this study is to determine the effect of Garlic solution in term of ratio of water and Garlic solution (W/G) and ratio of Garlic solution to Bacillus sp. (GS/B) on Bacillus sp removal. Garlic solution was used to remove Bacillus sp. In this study, Garlic solution was prepared by crushing the garlic and mixed it with water. the Garlic solution was added into Bacillus sp. mixture and mixed well. The mixture then was spread on nutrient agar. The Bacillus sp. weight on agar plate was measured by using dry weight measurement method. In this study, initially Garlic solution volume and Garlic solution concentration were studied using one factor at time (OFAT). Later two-level-factorial analysis was done to determine the most contributing factor in Bacillus sp. removal. Design Expert software (Version 7) was used to construct experimental table where all the factors were randomized. Bacilus sp removal was ranging between 42.13% to 99.6%. The analysis of the results showed that at W/G of 1:1, Bacillus sp. removal increased when more Garlic solution was added to Bacillus sp. Effect of Garlic solution to Bacillus sp. will be understood which in turn may be beneficial for the industrial purpose.

  20. Branched Crystalline Patterns of Poly(ε-caprolactone) and Poly(4-hydroxystyrene) Blends Thin Films.

    Science.gov (United States)

    Hou, Chunyue; Yang, Tianbo; Sun, Xiaoli; Ren, Zhongjie; Li, Huihui; Yan, Shouke

    2016-01-14

    The chain organization of poly(ε-caprolactone) (PCL) in its blend with poly(4-hydroxystyrene) (PVPh) in thin films (130 ± 10 nm) has been revealed by grazing incident infrared (GIIR) spectroscopy. It can be found that PCL chains orient preferentially in the surface-normal direction and crystallization occurs simultaneously. The morphology of the PCL/PVPh blends films can be identified by optical microscopy (OM). When crystallized at 35 °C, the blends film shows a seaweed-like structure and becomes more open with increasing PVPh content. In contrast, when crystallized at higher temperatures, i.e., 40 and 45 °C, dendrites with apparent crystallographically favored branches can be observed. This characteristic morphology indicates that the diffusion-limited aggregation (DLA) process controls the crystal growth in the blends films. The detailed lamellar structure can be revealed by the height images of atomic force microscopy (AFM), i.e., the crystalline branches are composed of overlayered flat-on lamellae. The branch width has been found to be dependent on the supercooling and PVPh content. This result differs greatly from pure PCL, in which case the crystal patterns controlled by DLA process developed in ultrathin film or monolayers of several nanometers. In the PCL/PVPh blends case, the strong intermolecular interactions and the dilution effect of PVPh should contribute to these results. That is to say, the mobility of PCL chains can be retarded and diffusion of them to the crystal growth front slows down greatly, even though the film thickness is far more than the lamellar thickness of PCL.

  1. ABILITY OF BACTERIAL CONSORTIUM: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp. and Pseudomonas putida IN BIOREMEDIATION OF WASTE WATER IN CISIRUNG WASTE WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Ratu SAFITRI

    2015-10-01

    Full Text Available This study was conducted in order to determine the ability of bacterial consortium: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp., and Pseudomonas putida in bioremediation of wastewater origin Cisirung WWTP. This study uses an experimental method completely randomized design (CRD, which consists of two treatment factors (8x8 factorial design. The first factor is a consortium of bacteria (K, consisting of 8 level factors (k1, k2, k3, k4, k5, k6, k7, and k8. The second factor is the time (T, consisting of a 7 level factors (t0, t1, t2, t3, t4, t5, t6, and t7. Test parameters consist of BOD (Biochemical Oxygen Demand, COD (Chemical Oxygen Demand, TSS (Total Suspended Solid, Ammonia and Population of Microbes during bioremediation. Data were analyzed by ANOVA, followed by Duncan test. The results of this study showed that the consortium of Bacillus pumilus, Bacillus subtilis, Bacillus coagulans, Nitrosomonas sp., and Pseudomonas putida with inoculum concentration of 5% (k6 is a consortium of the most effective in reducing BOD 71.93%, 64.30% COD, TSS 94.85%, and 88.58% of ammonia.

  2. Lipase-catalyzed kinetic resolution of branched chain fatty acids and their esters : a study towards the production of enantiopure 4-methyloctanoic acid = Lipase-gekatalyseerde kinetische resolutie van vertakte vetzuren en hun esters : een studie naar de productie van enantiomeer zuiver 4-methyloctaanzuur

    NARCIS (Netherlands)

    Heinsman, N.W.J.T.

    2000-01-01

    Flavors and fragrances make an important contribution to the taste and smell of all kinds of food products both as natural occurring components and as additional flavors or fragrances. One of these flavor components is 4-methyloctanoic acid (4-MOA). This branched chain fatty acid

  3. Ultrasensitive electrochemical biosensor for detection of DNA from Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification.

    Science.gov (United States)

    Hu, Yuhua; Xu, Xueqin; Liu, Qionghua; Wang, Ling; Lin, Zhenyu; Chen, Guonan

    2014-09-02

    A simple, ultrasensitive, and specific electrochemical biosensor was designed to determine the given DNA sequence of Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. The target DNA (TD, the DNA sequence from the hypervarient region of 16S rDNA of Bacillus subtilis) could be detected by the differential pulse voltammetry (DPV) in a range from 0.1 fM to 20 fM with the detection limit down to 0.08 fM at the 3s(blank) level. This electrochemical biosensor exhibits high distinction ability to single-base mismatch, double-bases mismatch, and noncomplementary DNA sequence, which may be expected to detect single-base mismatch and single nucleotide polymorphisms (SNPs). Moreover, the applicability of the designed biosensor for detecting the given DNA sequence from Bacillus subtilis was investigated. The result obtained by electrochemical method is approximately consistent with that by a real-time quantitative polymerase chain reaction detecting system (QPCR) with SYBR Green.

  4. Production of amylolytic enzymes by bacillus spp

    Energy Technology Data Exchange (ETDEWEB)

    Dawood, Elham Shareif [Department of Botany, Faculty of Science, University of Khartoum, Khartoum (Sudan)

    1997-12-01

    Sixty six bacteria and twenty fungi were isolated from various sources. These varied from rotten fruites to local drinks and soil samples from different parts of Sudan. On the basis of index of amylolytic activity, forty one bacteria and twelve fungi were found to hydrolyse strach. The best ten strach hydrolysing isolates were identified all as bacilli (Bacillus licheniformis SUD-K{sub 1}, SUD-K{sub 2}, SUD-K{sub 4}, SUD-O, SUD-SRW, SUD-BRW, SUD-By, Bacillus subtilis SUD-K{sub 3}, and Bacillus circulans SUD-D and SUD-K{sub 7}). Their amylase productivity was studied with respect to temperature and time. Amylolytic activity was measured by spectrophotometer, the highest activity was produced in around 24 hours of growth in all; six of which gave the highest amylase activity at 50 deg C and the rest at 45C. Based on the thermal production six isolates were chosen for further investigation. These were Bacillus licheniformis SUD-K{sub 1}, SUD-K{sub 2}, SUD-K{sub 4}, SUD-O, Bacillus subtilis SUD-K{sub 3} and Bacillus circulans SUD-K{sub 7}. The inclusion of strach and Mg{sup ++} ions in the culture medium gave the highest enzyme yield. The Ph 9.0 was found to be the optimum for amylase production for all isolates except Bacillus subtilis SUD-K{sub 3} which had an optimum at pH 7.0. Three isolates (Bacillus licheniformis SUD-K{sub 1}, SUD-K{sub 4} and SUD-O recorded highestamylase production in a medium supplemented with peptone while the rest (Bacillus licheniformis SUD-K{sub 2}, Bacillus subtilis SUD-K{sub 3} and Bacillus circulans SUD-K{sub 7}) gave highest amylase productivity in a medium supplemented with malt extract. Four isolates (Bacillus licheniformis SUD-K{sub 1} and Bacillus subtilis SUD-K{sub 3} gave maximum amylase production in a medium containing 0.5% soluble strach while the rest (gave maximum amylase production at 2%. Soluble strach was found to be best substrate among the different carbon sources tested. The maximum temperature for amylase activity

  5. Intensity of rivalry among existing competitors in the wine-making branch

    Directory of Open Access Journals (Sweden)

    Radka Šperková

    2012-01-01

    Full Text Available The analysis of the rivalry among existing competitors in the wine-making branch is the aim of this paper. On the whole, the rivalry among existing companies in the wine-making branch may be described as intensive. When evaluating the level of intensity of rivalry among existing businesses in the branch, it is necessary to take into consideration their size and market share. Among first ten most significant companies on the market (84% market share there is intensive competing. Individual companies use all their tangible and intangible means in order to extend their share and attract new clients. The aim of this competing is to strengthen the clients’ trust in given brands, and it is about efforts to obtain the best positions possible for negotiations of wine distribution, mainly to chain stores, which requires favorable price quotes. The other group of subjects operating in this branch is formed mainly by small producers (16% market share. Given their small size, they are unable to effectively use the economy of scale, they do not make too big profit, and so they do not have enough finances for intensive competing.

  6. Time-course changes in circulating branched-chain amino acid levels and metabolism in obese Yucatan minipig.

    Science.gov (United States)

    Polakof, Sergio; Rémond, Didier; David, Jérémie; Dardevet, Dominique; Savary-Auzeloux, Isabelle

    2018-06-01

    High-fat high-sucrose diet (HFHS) overfeeding is one of the main factors responsible for the increased prevalence of metabolic disorders. Elevated levels of branched-chain amino acids (BCAAs) have been associated with metabolic dysfunctions, including insulin resistance (IR). The aim of this study was to elucidate whether elevated BCAA levels are the cause or the consequence of IR and to determine the mechanisms and tissues involved in such a phenotype. We performed a 2-mo follow-up on minipigs overfed an HFHS diet and focused on kinetics fasting and postprandial (PP) BCAA levels and BCAA catabolism in key tissues. The study of the fasting BCAA elevation reveals that BCAA accumulation in the plasma compartment is well correlated with IR markers and body weight. Furthermore, the PP excursion of BCAA levels after the last HFHS meal was exacerbated when compared with that of the first meal, suggesting a reduced amino acid oxidation potential. Although only minor changes in BCAA metabolism were observed in liver, muscle, and the visceral adipose tissue, the oxidative deamination potential of the subcutaneous adipose tissue was blunted after 60 d of HFHS feeding. To our knowledge, the present results demonstrated for the first time in a swine model of obesity and IR, the existence of a phenotype related to high-circulating BCAA levels and metabolic dysregulation. The oxidative BCAA capacity reduction specifically in the subcutaneous adipose tissue emerges, at least in the present swine model, as the more plausible metabolic explanation for the elevated blood BCAA phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Bifurcation and extinction limit of stretched premixed flames with chain-branching intermediate kinetics and radiative loss

    Science.gov (United States)

    Zhang, Huangwei; Chen, Zheng

    2018-05-01

    Premixed counterflow flames with thermally sensitive intermediate kinetics and radiation heat loss are analysed within the framework of large activation energy. Unlike previous studies considering one-step global reaction, two-step chemistry consisting of a chain branching reaction and a recombination reaction is considered here. The correlation between the flame front location and stretch rate is derived. Based on this correlation, the extinction limit and bifurcation characteristics of the strained premixed flame are studied, and the effects of fuel and radical Lewis numbers as well as radiation heat loss are examined. Different flame regimes and their extinction characteristics can be predicted by the present theory. It is found that fuel Lewis number affects the flame bifurcation qualitatively and quantitatively, whereas radical Lewis number only has a quantitative influence. Stretch rates at the stretch and radiation extinction limits respectively decrease and increase with fuel Lewis number before the flammability limit is reached, while the radical Lewis number shows the opposite tendency. In addition, the relation between the standard flammability limit and the limit derived from the strained near stagnation flame is affected by the fuel Lewis number, but not by the radical Lewis number. Meanwhile, the flammability limit increases with decreased fuel Lewis number, but with increased radical Lewis number. Radical behaviours at flame front corresponding to flame bifurcation and extinction are also analysed in this work. It is shown that radical concentration at the flame front, under extinction stretch rate condition, increases with radical Lewis number but decreases with fuel Lewis number. It decreases with increased radiation loss.

  8. Integrability and the conformal field theory of the Higgs branch

    International Nuclear Information System (INIS)

    Sax, Olof Ohlsson; Sfondrini, Alessandro; Bogdan, Stefański Jr.

    2015-01-01

    In the context of the AdS 3 /CFT 2 correspondence, we investigate the Higgs branch CFT 2 . Witten showed that states localised near the small instanton singularity can be described in terms of vector multiplet variables. This theory has a planar, weak-coupling limit, in which anomalous dimensions of single-trace composite operators can be calculated. At one loop, the calculation reduces to finding the spectrum of a spin-chain with nearest-neighbour interactions. This CFT 2 spin-chain matches precisely the one that was previously found as the weak-coupling limit of the integrable system describing the AdS 3 side of the duality. We compute the one-loop dilatation operator in a non-trivial compact subsector and show that it corresponds to an integrable spin-chain Hamiltonian. This provides the first direct evidence of integrability on the CFT 2 side of the correspondence.

  9. Aspectos atuais sobre aminoácidos de cadeia ramificada e exercício físico Current aspects of branched chain amino acid and exercise

    Directory of Open Access Journals (Sweden)

    Marcelo Macedo Rogero

    2008-12-01

    Full Text Available Em humanos saudáveis, nove aminoácidos são considerados essenciais, uma vez que não podem ser sintetizados endogenamente e, portanto, devem ser ingeridos por meio da dieta. Dentre os aminoácidos essenciais, se incluem os três aminoácidos de cadeia ramificada, ou seja, leucina, valina e isoleucina. Esses aminoácidos participam da regulação do balanço protéico corporal além de serem fonte de nitrogênio para a síntese de alanina e glutamina. No tocante à regulação da síntese protéica muscular, verifica-se que a leucina age estimulando a fase de iniciação da tradução do RNA-mensageiro em proteína, por mecanismos tanto dependentes quanto independentes de insulina. No que concerne ao exercício físico, supõe-se que esses aminoácidos estejam envolvidos na fadiga central, no balanço protéico muscular, na secreção de insulina, na modulação da imunocompetência, no aumento da performance de indivíduos que se exercitam em ambientes quentes e na diminuição do grau de lesão muscular. Nesse contexto, essa revisão aborda os aspectos atuais do metabolismo e da suplementação de aminoácidos de cadeia ramificada no exercício físico.In healthy humans, nine amino acids are considered to be essential once they cannot be endogenously synthesised and must therefore be ingested in the diet. Amongst the essential amino acids are the three branched chain amino acids, namely, leucine, valine and isoleucine. These amino acids participate in the regulation of protein balance in addition to being nitrogen sources for the synthesis of alanine and glutamine. As to the regulation of muscle protein synthesis, leucine acts in the stimulation of initiation of mRNA translation into protein, both through mechanisms that are dependent and independent of insulin. In the physiology of physical exercise, these branched amino acids play a role in central fatigue hypothesis, in muscle protein balance, in the secretion of insulin, in the

  10. Automated generation of burnup chain for reactor analysis applications

    International Nuclear Information System (INIS)

    Tran Viet Phu; Tran Hoai Nam; Akio Yamamoto; Tomohiro Endo

    2015-01-01

    This paper presents the development of an automated generation of a new burnup chain for reactor analysis applications. The JENDL FP Decay Data File 2011 and Fission Yields Data File 2011 were used as the data sources. The nuclides in the new chain are determined by restrictions of the half-life and cumulative yield of fission products or from a given list. Then, decay modes, branching ratios and fission yields are recalculated taking into account intermediate reactions. The new burnup chain is output according to the format for the SRAC code system. Verification was performed to evaluate the accuracy of the new burnup chain. The results show that the new burnup chain reproduces well the results of a reference one with 193 fission products used in SRAC. Further development and applications are being planned with the burnup chain code. (author)

  11. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    Science.gov (United States)

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  12. Creep measurements confirm steady flow after stress maximum in extension of branched polymer melts

    DEFF Research Database (Denmark)

    Javier Alvarez, Nicolas; Román Marín, José Manuel; Huang, Qian

    2013-01-01

    We provide conclusive evidence of nonmonotonic mechanical behavior in the extension of long-chain branched polymer melts. While nonmonotonic behavior is known to occur for solids, for the case of polymeric melts, this phenomenon is in direct contrast with current theoretical models. We rule out t...

  13. Synthesis of Well-Defined Three-Arm Star-Branched Polystyrene through Arm-First Coupling Approach by Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2015-01-01

    Full Text Available Here we describe a simple route to synthesize three-arm star-branched polystyrene. Atom transfer radical polymerization technique has been utilized to yield branched polystyrene involving Williamson coupling strategy. Initially a linear polymeric chain of predetermined molecular weight has been synthesized which is further end-functionalized into a primary alkyl bromide moiety, a prime requisition for Williamson reaction. The end-functionalized polymer is then coupled using 1,1,1-tris(4-hydroxyphenylethane, a trifunctional core molecule, to give well-defined triple-arm star-branched polystyrene.

  14. Molecular detection of TasA gene in endophytic Bacillus species ...

    African Journals Online (AJOL)

    Molecular detection of TasA gene in endophytic Bacillus species and characterization of the gene in Bacillus amyloliquefaciens. ... African Journal of Biotechnology ... in Bacillus amyloliquefaciens PEBA20 and 7 strains of Bacillus subtilis, ...

  15. Radioiodinated methyl-branched fatty acids: Evaluation of catabolites formed in vivo

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Reske, S.N.; Kirsch, G.; Ambrose, K.R.; Blystone, S.L.; Goodman, M.M.

    1987-01-01

    Radioiodinated terminal iodophenyl-substituted long-chain fatty acids containing either racemic mono-methyl or geminal dimethyl-branching in the alkyl chain have been shown to exhibit delayed myocardial clearance properties which make these agents useful for the SPECT evaluation of myocardial fatty acid uptake patterns. Although the myocardial clearance rate of 15-(p-iodophenyl)-3-R,S- methylpentadecanoic acid (BMIPP) is considerably delayed, in comparison with the IPPA straight-chain analogue, analysis of the radioiodinated lipids present in the outflow tract of isolated rat hearts administered BMIPP have clearly demonstrated the presence of a polar metabolite. The synthesis of β-hydroxy fatty acids has been developed to allow investigation of the possible formation of β-hydroxy catabolites in vivo. The preparation of β-hydroxy BMIPP and β-hydroxy IPPA are described, and the possible significance of their formation in vivo discussed. 4 figs

  16. The Bacillus subtilis Acyl Lipid Desaturase Is a Δ5 Desaturase

    Science.gov (United States)

    Altabe, Silvia G.; Aguilar, Pablo; Caballero, Gerardo M.; de Mendoza, Diego

    2003-01-01

    Bacillus subtilis was recently reported to synthesize unsaturated fatty acids (UFAs) with a double bond at positions Δ5, Δ7, and Δ9 (M. H. Weber, W. Klein, L. Muller, U. M. Niess, and M. A. Marahiel, Mol. Microbiol. 39:1321-1329, 2001). Since this finding would have considerable importance in the double-bond positional specificity displayed by the B. subtilis acyl lipid desaturase, we have attempted to confirm this observation. We report that the double bond of UFAs synthesized by B. subtilis is located exclusively at the Δ5 position, regardless of the growth temperature and the length chain of the fatty acids. PMID:12730185

  17. Rapid and precise measurement of serum branched-chain and aromatic amino acids by isotope dilution liquid chromatography tandem mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Ruiyue Yang

    Full Text Available BACKGROUND: Serum branched-chain and aromatic amino acids (BCAAs and AAAs have emerged as predictors for the future development of diabetes and may aid in diabetes risk assessment. However, the current methods for the analysis of such amino acids in biological samples are time consuming. METHODS: An isotope dilution liquid chromatography tandem mass spectrometry (ID-LC/MS/MS method for serum BCAAs and AAAs was developed. The serum was mixed with isotope-labeled BCAA and AAA internal standards and the amino acids were extracted with acetonitrile, followed by analysis using LC/MS/MS. The LC separation was performed on a reversed-phase C18 column, and the MS/MS detection was performed via the positive electronic spray ionization in multiple reaction monitoring mode. RESULTS: Specific analysis of the amino acids was achieved within 2 min. Intra-run and total CVs for the amino acids were less than 2% and 4%, respectively, and the analytical recoveries ranged from 99.6 to 103.6%. CONCLUSION: A rapid and precise method for the measurement of serum BCAAs and AAAs was developed and may serve as a quick tool for screening serum BCAAs and AAAs in studies assessing diabetes risk.

  18. Effect of diurnal photosynthetic activity on the fine structure of amylopectin from normal and waxy barley starch

    DEFF Research Database (Denmark)

    Goldstein, Avi; Annor, George; Blennow, Andreas

    2017-01-01

    growing conditions. The amylopectin fine structures were analysed by characterizing its unit chain length profiles after enzymatic debranching as well as its φ,β-limit dextrins and its clusters and building blocks after their partial and complete hydrolysis with α-amylase from Bacillus amyloliquefaciens...... density and longer average chain lengths than clusters derived from plants grown under constant light conditions. Amylopectin clusters from diurnally grown plants also consisted of a greater number of building blocks, and shorter inter-block chain lengths compared to clusters derived from plants grown......, respectively. Regardless of lighting conditions, no structural effects were found when comparing both the amylopectin side-chain distribution and the internal chain fragments of these amylopectins. However, the diurnally grown NBS and WBS both showed larger amylopectin clusters and these had lower branching...

  19. The effect of the head group on branched-alkyl chain surfactants in glycolipid/n-octane/water ternary system.

    Science.gov (United States)

    Nainggolan, Irwana; Radiman, Shahidan; Hamzah, Ahmad Sazali; Hashim, Rauzah

    2009-10-01

    Two novel glycolipids have been synthesized and their phase behaviour studied. They have been characterized using FT-IR, FAB and 13C NMR and 1H NMR to ensure the purity of novel glycolipids. The two glycolipids are distinguished based on the head group of glycolipids (monosaccharide/glucose and disaccharide/maltose). These two novel glycolipids have been used as surfactant to perform two phase diagrams. Phase behaviours that have been investigated are 2-hexyldecyl-beta-D-glucopyranoside (2-HDG)/n-octane/water ternary system and 2-hexyldecyl-beta-D-maltoside (2-HDM)/n-octane/water ternary system. SAXS and polarizing optical microscope have been used to study the phase behaviours of these two surfactants in ternary phase diagram. Study of effect of the head group on branched-alkyl chain surfactants in ternary system is a strategy to derive the structure-property relationship. For comparison, 2-HDM and 2-HDG have been used as surfactant in the same ternary system. The phase diagram of 2-hexyldecyl-beta-D-maltoside/n-octane/water ternary system exhibited a Lalpha phase at a higher concentration regime, followed with two phases and a micellar solution region in a lower concentration regime. The phase diagram of 2-HDG/water/n-octane ternary system shows hexagonal phase, cubic phase, rectangular ribbon phase, lamellar phase, cubic phase as the surfactant concentration increase.

  20. Bacillus and biopolymer: Prospects and challenges

    Directory of Open Access Journals (Sweden)

    Swati Mohapatra

    2017-12-01

    Full Text Available The microbially derived polyhydroxyalkanoates biopolymers could impact the global climate scenario by replacing the conventional non-degradable, petrochemical-based polymer. The biogenesis, characterization and properties of PHAs by Bacillus species using renewable substrates have been elaborated by many for their wide applications. On the other hand Bacillus species are advantageous over other bacteria due to their abundance even in extreme ecological conditions, higher growth rates even on cheap substrates, higher PHAs production ability, and the ease of extracting the PHAs. Bacillus species possess hydrolytic enzymes that can be exploited for economical PHAs production. This review summarizes the recent trends in both non-growth and growth associated PHAs production by Bacillus species which may provide direction leading to future research towards this growing quest for biodegradable plastics, one more critical step ahead towards sustainable development.

  1. Measurement of the branching fraction for D0 -> K- π+

    Science.gov (United States)

    Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Miquel, R.; Mir, Ll. M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Becker, U.; Bazarko, A. O.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rizzo, G.; Rolandi, L.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thompson, E.; Thomson, F.; Turnbull, R. M.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Giehl, I.; Greene, A. M.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Coyle, P.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Leroy, O.; Motsch, F.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Choi, Y.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Schune, M.-H.; Simion, S.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassis, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A.; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zobernig, G.

    1997-02-01

    The branching fraction for D0 -> K- π+ is measured with the statistics collected by ALEPH from 1991 to 1994. The method is based on the comparison between the rate for the reconstructed D*+ -> D0π+, D0 -> K-π+ decay chain and the rate for inclusive soft pion production at low transverse momentum with respect to the nearest jet. The result is B(D0 -> K- π+) = (3.90 +/- 0.09 +/- 0.12)%

  2. Microhydration effect on structural, energetic and light scattering properties of first branched interstellar molecule ( i-PrCN)

    OpenAIRE

    Chakraborty, Sumana; Routh, Swati; Krishnappa, Madhu

    2015-01-01

    In this work, we have focused on microsolvation of isopropyl cyanide (i-PrCN) as isopropyl cyanide has been recently detected in interstellar space and is of great importance from the astrochemical and bio-chemical point of view for its branching carbon chains. Such branches are needed for many molecules crucial to life, such as the amino acids that build proteins. The phenomenon of the formation of hydrogen bond affects structure, energetic and electric properties of microhydrated isopropyl ...

  3. Metabolic reconstructions identify plant 3-methylglutaconyl-CoA hydratase that is crucial for branched-chain amino acid catabolism in mitochondria.

    Science.gov (United States)

    Latimer, Scott; Li, Yubing; Nguyen, Thuong T H; Soubeyrand, Eric; Fatihi, Abdelhak; Elowsky, Christian G; Block, Anna; Pichersky, Eran; Basset, Gilles J

    2018-05-09

    The proteinogenic branched-chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates to the tricarboxylic acid cycle. Yet, the actual architecture of the degradation pathways of BCAAs is not well understood. In this study, gene network modeling in Arabidopsis and rice, and plant-prokaryote comparative genomics detected candidates for 3-methylglutaconyl-CoA hydratase (4.2.1.18), one of the missing plant enzymes of leucine catabolism. Alignments of these protein candidates sampled from various spermatophytes revealed non-homologous N-terminal extensions that are lacking in their bacterial counterparts, and green fluorescent protein-fusion experiments demonstrated that the Arabidopsis protein, product of gene At4g16800, is targeted to mitochondria. Recombinant At4g16800 catalyzed the dehydration of 3-hydroxymethylglutaryl-CoA into 3-methylglutaconyl-CoA, and displayed kinetic features similar to those of its prokaryotic homolog. When at4g16800 knockout plants were subjected to dark-induced carbon starvation, their rosette leaves displayed accelerated senescence as compared to control plants, and this phenotype was paralleled by a marked increase in the accumulation of free and total leucine, isoleucine and valine. The seeds of the at4g16800 mutant showed a similar accumulation of free BCAAs. These data suggest that 3-methylglutaconyl-CoA hydratase is not solely involved in the degradation of leucine, but is also a significant contributor to that of isoleucine and valine. Furthermore, evidence is shown that unlike the situation observed in Trypanosomatidae, leucine catabolism does not contribute to the formation of the terpenoid precursor mevalonate. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights

  4. Branched-Chain Amino Acids Ameliorate Fibrosis and Suppress Tumor Growth in a Rat Model of Hepatocellular Carcinoma with Liver Cirrhosis

    Science.gov (United States)

    Cha, Jung Hoon; Bae, Si Hyun; Kim, Hye Lim; Park, Na Ri; Choi, Eun Suk; Jung, Eun Sun; Choi, Jong Young; Yoon, Seung Kew

    2013-01-01

    Purpose Recent studies have revealed that branched-chain amino acids (BCAA) reduce the development of hepatocellular carcinoma (HCC) in patients with obesity and hepatitis C virus infection by improving insulin resistance (IR). The aim of this study was to examine the anti-cancer and anti-fibrotic effects of BCAA on the development of diethylnitrosamine (DEN)-induced HCC and liver cirrhosis in a rat model. Methods Male SD rats received weekly intraperitoneal injections of DEN (50 mg/kg of body weight) for 16 weeks to induce HCC. They were fed a diet containing 3% casein, 3% or 6% BCAA for 13 weeks beginning 6 weeks after DEN administration. DEN was used to induce HCC through stepwise development from cirrhosis to HCC. The effect of BCAA was evaluated in tumor tissues by histopathologic analyses, reverse transcription-polymerase chain reaction, and Western blotting. Results The mean area and number of dysplastic nodules (DNs) and tumors in the casein group tended to be larger than those in the BCAA group 16 weeks after DEN administration. The mean fibrotic area in the BCAA group was smaller than that in the casein group. The BCAA group showed decreased mRNA levels for markers of fibrosis, angiogenesis, and apoptosis inhibition. Compared with the casein group, the BCAA group had lower levels of α-smooth muscle actin, vascular endothelial growth factor, p-β-catenin, p-p38 mitogen-activated protein kinase, proliferating cell nuclear antigen, and caspase-3 protein expression, as well as a higher level of cleaved caspase-3 protein expression. Conclusions BCAA supplementation of the diet ameliorated liver fibrosis and HCC development in a DEN-induced rat model of HCC with liver cirrhosis, but not in the IR model. These results provide a rationale for anti-fibrosis and chemoprevention using BCAA treatment for HCC with liver cirrhosis, as well as decreasing the ammonia level. PMID:24223741

  5. Branched-chain amino acids ameliorate fibrosis and suppress tumor growth in a rat model of hepatocellular carcinoma with liver cirrhosis.

    Directory of Open Access Journals (Sweden)

    Jung Hoon Cha

    Full Text Available PURPOSE: Recent studies have revealed that branched-chain amino acids (BCAA reduce the development of hepatocellular carcinoma (HCC in patients with obesity and hepatitis C virus infection by improving insulin resistance (IR. The aim of this study was to examine the anti-cancer and anti-fibrotic effects of BCAA on the development of diethylnitrosamine (DEN-induced HCC and liver cirrhosis in a rat model. METHODS: Male SD rats received weekly intraperitoneal injections of DEN (50 mg/kg of body weight for 16 weeks to induce HCC. They were fed a diet containing 3% casein, 3% or 6% BCAA for 13 weeks beginning 6 weeks after DEN administration. DEN was used to induce HCC through stepwise development from cirrhosis to HCC. The effect of BCAA was evaluated in tumor tissues by histopathologic analyses, reverse transcription-polymerase chain reaction, and Western blotting. RESULTS: The mean area and number of dysplastic nodules (DNs and tumors in the casein group tended to be larger than those in the BCAA group 16 weeks after DEN administration. The mean fibrotic area in the BCAA group was smaller than that in the casein group. The BCAA group showed decreased mRNA levels for markers of fibrosis, angiogenesis, and apoptosis inhibition. Compared with the casein group, the BCAA group had lower levels of α-smooth muscle actin, vascular endothelial growth factor, p-β-catenin, p-p38 mitogen-activated protein kinase, proliferating cell nuclear antigen, and caspase-3 protein expression, as well as a higher level of cleaved caspase-3 protein expression. CONCLUSIONS: BCAA supplementation of the diet ameliorated liver fibrosis and HCC development in a DEN-induced rat model of HCC with liver cirrhosis, but not in the IR model. These results provide a rationale for anti-fibrosis and chemoprevention using BCAA treatment for HCC with liver cirrhosis, as well as decreasing the ammonia level.

  6. Real-Time PCR Assay for a Unique Chromosomal Sequence of Bacillus anthracis

    Science.gov (United States)

    2004-12-01

    13061 Neisseria lactamica .............................................................. 23970 Bacillus coagulans ...NEG Bacillus coagulane 7050 NEG NEG Bacillus cereus 13472 NEG NEG Bacillus licheniforms 12759 NEG NEG Bacillus cereus 13824 NEG NEG Bacillus ...Assay for a Unique Chromosomal Sequence of Bacillus anthracis Elizabeth Bode,1 William Hurtle,2† and David Norwood1* United States Army Medical

  7. Automated generation of burnup chain for reactor analysis applications

    International Nuclear Information System (INIS)

    Tran, Viet-Phu; Tran, Hoai-Nam; Yamamoto, Akio; Endo, Tomohiro

    2017-01-01

    This paper presents the development of an automated generation of burnup chain for reactor analysis applications. Algorithms are proposed to reevaluate decay modes, branching ratios and effective fission product (FP) cumulative yields of a given list of important FPs taking into account intermediate reactions. A new burnup chain is generated using the updated data sources taken from the JENDL FP decay data file 2011 and Fission yields data file 2011. The new burnup chain is output according to the format for the SRAC code system. Verification has been performed to evaluate the accuracy of the new burnup chain. The results show that the new burnup chain reproduces well the results of a reference one with 193 fission products used in SRAC. Burnup calculations using the new burnup chain have also been performed based on UO_2 and MOX fuel pin cells and compared with a reference chain th2cm6fp193bp6T.

  8. Automated generation of burnup chain for reactor analysis applications

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Viet-Phu [VINATOM, Hanoi (Viet Nam). Inst. for Nuclear Science and Technology; Tran, Hoai-Nam [Duy Tan Univ., Da Nang (Viet Nam). Inst. of Research and Development; Yamamoto, Akio; Endo, Tomohiro [Nagoya Univ., Nagoya-shi (Japan). Dept. of Materials, Physics and Energy Engineering

    2017-05-15

    This paper presents the development of an automated generation of burnup chain for reactor analysis applications. Algorithms are proposed to reevaluate decay modes, branching ratios and effective fission product (FP) cumulative yields of a given list of important FPs taking into account intermediate reactions. A new burnup chain is generated using the updated data sources taken from the JENDL FP decay data file 2011 and Fission yields data file 2011. The new burnup chain is output according to the format for the SRAC code system. Verification has been performed to evaluate the accuracy of the new burnup chain. The results show that the new burnup chain reproduces well the results of a reference one with 193 fission products used in SRAC. Burnup calculations using the new burnup chain have also been performed based on UO{sub 2} and MOX fuel pin cells and compared with a reference chain th2cm6fp193bp6T.

  9. Alterations in protein and amino acid metabolism in rats fed a branched-chain amino acid- or leucine-enriched diet during postprandial and postabsorptive states.

    Science.gov (United States)

    Holecek, Milan; Siman, Pavel; Vodenicarovova, Melita; Kandar, Roman

    2016-01-01

    Many people believe in favourable effects of branched-chain amino acids (BCAAs; valine, leucine, and isoleucine), especially leucine, on muscle protein balance and consume BCAAs for many years. We determined the effects of the chronic intake of a BCAA- or leucine-enriched diet on protein and amino acid metabolism in fed and postabsorptive states. Rats were fed a standard diet, a diet with a high content of valine, leucine, and isoleucine (HVLID), or a high content of leucine (HLD) for 2 months. Half of the animals in each group were sacrificed in the fed state on the last day, and the other half were sacrificed after overnight fast. Protein synthesis was assessed using the flooding dose method (L-[3,4,5-(3)H]phenylalanine), proteolysis on the basis of chymotrypsin-like activity (CHTLA) of proteasome and cathepsin B and L activities. Chronic intake of HVLID or HLD enhanced plasma levels of urea, alanine and glutamine. HVLID also increased levels of all three BCAA and branched-chain keto acids (BCKA), HLD increased leucine, ketoisocaproate and alanine aminotransferase and decreased valine, ketovaline, isoleucine, ketoisoleucine, and LDL cholesterol. Tissue weight and protein content were lower in extensor digitorum longus muscles in the HLD group and higher in kidneys in the HVLID and HLD groups. Muscle protein synthesis in postprandial state was higher in the HVLID group, and CHTLA was lower in muscles of the HVLID and HLD groups compared to controls. Overnight starvation enhanced alanine aminotransferase activity in muscles, and decreased protein synthesis in gastrocnemius (in HVLID group) and extensor digitorum longus (in HLD group) muscles more than in controls. Effect of HVLID and HLD on CHTLA in muscles in postabsorptive state was insignificant. The results failed to demonstrate positive effects of the chronic consumption of a BCAA-enriched diet on protein balance in skeletal muscle and indicate rather negative effects from a leucine-enriched diet. The primary

  10. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export.

    Science.gov (United States)

    White, Phillip J; Lapworth, Amanda L; An, Jie; Wang, Liping; McGarrah, Robert W; Stevens, Robert D; Ilkayeva, Olga; George, Tabitha; Muehlbauer, Michael J; Bain, James R; Trimmer, Jeff K; Brosnan, M Julia; Rolph, Timothy P; Newgard, Christopher B

    2016-07-01

    A branched-chain amino acid (BCAA)-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Zucker-lean rats (ZLR) and Zucker-fatty rats (ZFR) were fed either a custom control, low fat (LF) diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val) were reduced by 45% (LF-RES). We performed comprehensive metabolic and physiologic profiling to characterize the effects of BCAA restriction on energy balance, insulin sensitivity, and glucose, lipid and amino acid metabolism. LF-fed ZFR had higher levels of circulating BCAA and lower levels of glycine compared to LF-fed ZLR. Feeding ZFR with the LF-RES diet lowered circulating BCAA to levels found in LF-fed ZLR. Activity of the rate limiting enzyme in the BCAA catabolic pathway, branched chain keto acid dehydrogenase (BCKDH), was lower in liver but higher in skeletal muscle of ZFR compared to ZLR and was not responsive to diet in either tissue. BCAA restriction had very little impact on metabolites studied in liver of ZFR where BCAA content was low, and BCKDH activity was suppressed. However, in skeletal muscle of LF-fed ZFR compared to LF-fed ZLR, where BCAA content and BCKDH activity were increased, accumulation of fatty acyl CoAs was completely normalized by dietary BCAA restriction. BCAA restriction also normalized skeletal muscle glycine content and increased urinary acetyl glycine excretion in ZFR. These effects were accompanied by lower RER and improved skeletal muscle insulin sensitivity in LF-RES fed ZFR as measured by hyperinsulinemic-isoglycemic clamp. Our data are consistent with a model wherein elevated circulating BCAA contribute to development of

  11. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export

    Directory of Open Access Journals (Sweden)

    Phillip J. White

    2016-07-01

    Full Text Available Objective: A branched-chain amino acid (BCAA-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Methods: Zucker-lean rats (ZLR and Zucker-fatty rats (ZFR were fed either a custom control, low fat (LF diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val were reduced by 45% (LF-RES. We performed comprehensive metabolic and physiologic profiling to characterize the effects of BCAA restriction on energy balance, insulin sensitivity, and glucose, lipid and amino acid metabolism. Results: LF-fed ZFR had higher levels of circulating BCAA and lower levels of glycine compared to LF-fed ZLR. Feeding ZFR with the LF-RES diet lowered circulating BCAA to levels found in LF-fed ZLR. Activity of the rate limiting enzyme in the BCAA catabolic pathway, branched chain keto acid dehydrogenase (BCKDH, was lower in liver but higher in skeletal muscle of ZFR compared to ZLR and was not responsive to diet in either tissue. BCAA restriction had very little impact on metabolites studied in liver of ZFR where BCAA content was low, and BCKDH activity was suppressed. However, in skeletal muscle of LF-fed ZFR compared to LF-fed ZLR, where BCAA content and BCKDH activity were increased, accumulation of fatty acyl CoAs was completely normalized by dietary BCAA restriction. BCAA restriction also normalized skeletal muscle glycine content and increased urinary acetyl glycine excretion in ZFR. These effects were accompanied by lower RER and improved skeletal muscle insulin sensitivity in LF-RES fed ZFR as measured by hyperinsulinemic-isoglycemic clamp. Conclusions: Our data are consistent with a model wherein

  12. Disseminated bacillus calmette guerin disease in a twin infant with severe combined immunodeficiency disease

    Directory of Open Access Journals (Sweden)

    Hema Mittal

    2014-01-01

    Full Text Available Fatal-disseminated Bacillus Calmette Guerin (BCG disease is well known in infants with severe combined immunodeficiency after BCG vaccination. We report a 7 month male infant delivered as a product of in vitro fertilization and twin gestation that presented with fever, cough and multiple nodular skin lesions. A biopsy of skin lesions revealed the presence of acid fast bacilli. Mycobacterium bovis infection was confirmed by polymerase chain reaction (PCR and molecular studies. Immunological profile confirmed the diagnosis of severe combined immunodeficiency. Only few reports of similar case exist in the literature.

  13. Genome Sequence of Bacillus endophyticus and Analysis of Its Companion Mechanism in the Ketogulonigenium vulgare-Bacillus Strain Consortium.

    Directory of Open Access Journals (Sweden)

    Nan Jia

    Full Text Available Bacillus strains have been widely used as the companion strain of Ketogulonigenium vulgare in the process of vitamin C fermentation. Different Bacillus strains generate different effects on the growth of K. vulgare and ultimately influence the productivity. First, we identified that Bacillus endophyticus Hbe603 was an appropriate strain to cooperate with K. vulgare and the product conversion rate exceeded 90% in industrial vitamin C fermentation. Here, we report the genome sequencing of the B. endophyticus Hbe603 industrial companion strain and speculate its possible advantage in the consortium. The circular chromosome of B. endophyticus Hbe603 has a size of 4.87 Mb with GC content of 36.64% and has the highest similarity with that of Bacillus megaterium among all the bacteria with complete genomes. By comparing the distribution of COGs with that of Bacillus thuringiensis, Bacillus cereus and B. megaterium, B. endophyticus has less genes related to cell envelope biogenesis and signal transduction mechanisms, and more genes related to carbohydrate transport and metabolism, energy production and conversion, as well as lipid transport and metabolism. Genome-based functional studies revealed the specific capability of B. endophyticus in sporulation, transcription regulation, environmental resistance, membrane transportation, extracellular proteins and nutrients synthesis, which would be beneficial for K. vulgare. In particular, B. endophyticus lacks the Rap-Phr signal cascade system and, in part, spore coat related proteins. In addition, it has specific pathways for vitamin B12 synthesis and sorbitol metabolism. The genome analysis of the industrial B. endophyticus will help us understand its cooperative mechanism in the K. vulgare-Bacillus strain consortium to improve the fermentation of vitamin C.

  14. Effects of branched-chain amino acid supplementation after radiofrequency ablation for hepatocellular carcinoma: A randomized trial.

    Science.gov (United States)

    Nojiri, Shunsuke; Fujiwara, Kei; Shinkai, Noboru; Iio, Etsuko; Joh, Takashi

    2017-01-01

    Maintenance of liver function is important for better outcomes after radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC). The aim of this study was to examine the effects of oral branched-chain amino acid (BCAA) supplementation on liver function, intrahepatic recurrence rate, and incidence of complications after RFA for HCC. Patients with cirrhosis who underwent RFA were enrolled between August 2009 and April 2012, randomized to oral supplementation with Aminoleban EN (BCAA group) or diet alone (control group), and followed to determine changes in serum parameters and health status. Patients in the BCAA group were instructed to ingest a packet of Aminoleban EN twice daily. Levels of physical and mental stress were assessed using the Short Form-8 health survey. Oral BCAA and dietary interventions were initiated 2 wk before local therapy, and contrast-enhanced computed tomography was performed every 3 mo to assess recurrence. We evaluated 25 patients in the BCAA group and 26 in the control group. The median follow-up period was 3.9 y (736-1818 d). There were no significant differences between the two groups in basal characteristics. Complications were less frequent in the BCAA group (P = 0.03). Event-free survival was significantly higher in the BCAA group, whereas the intrahepatic recurrence rate was significantly lower (P = 0.04 and 0.036, respectively). A significant improvement in the Short Form-8 mental component score was observed in the BCAA group only (P < 0.01). Aminoleban EN may be beneficial for cirrhotic patients after RFA to relieve mental stress and reduce the risks for intrahepatic recurrence and complications. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. OPTIMIZATION OF ATM AND BRANCH CASH OPERATIONS USING AN INTEGRATED CASH REQUIREMENT FORECASTING AND CASH OPTIMIZATION MODEL

    OpenAIRE

    Canser BİLİR

    2018-01-01

    In this study, an integrated cash requirement forecasting and cash inventory optimization model is implemented in both the branch and automated teller machine (ATM) networks of a mid-sized bank in Turkey to optimize the bank’s cash supply chain. The implemented model’s objective is to minimize the idle cash levels at both branches and ATMs without decreasing the customer service level (CSL) by providing the correct amount of cash at the correct location and time. To the best of our knowledge,...

  16. Germination of Bacillus cereus spores : the role of germination receptors

    NARCIS (Netherlands)

    Hornstra, L.M.

    2007-01-01

    The Bacillus cereus sensu lato group forms a highly homogeneous subdivision of the genus Bacillus and comprises several species that are relevant for humans. Notorious is Bacillus anthracis, the cause of the often-lethal disease anthrax, while the insect pathogen Bacillus

  17. Identification and functional characterization of the Lactococcus lactis CodY-regulated branched-chain amino acid permease BcaP (CtrA)

    NARCIS (Netherlands)

    den Hengst, CD; Groeneveld, M; Kuipers, OP; Kok, J; Hengst, Chris D. den

    Transcriptome analyses have previously revealed that a gene encoding the putative amino acid transporter CtrA (YhdG) is one of the major targets of the pleiotropic regulator CodY in Lactococcus lactis and Bacillus subtilis. The role of ctrA in L. lactis was further investigated with respect to both

  18. Branched Chain Amino Acid Suppresses Hepatocellular Cancer Stem Cells through the Activation of Mammalian Target of Rapamycin

    Science.gov (United States)

    Nishitani, Shinobu; Horie, Mayumi; Ishizaki, Sonoko; Yano, Hirohisa

    2013-01-01

    Differentiation of cancer stem cells (CSCs) into cancer cells causes increased sensitivity to chemotherapeutic agents. Although inhibition of mammalian target of rapamycin (mTOR) leads to CSC survival, the effect of branched chain amino acids (BCAAs), an mTOR complex 1 (mTORC1) activator remains unknown. In this study, we examined the effects of BCAA on hepatocellular carcinoma (HCC) cells expressing a hepatic CSC marker, EpCAM. We examined the effects of BCAA and/or 5-fluorouracil (FU) on expression of EpCAM and other CSC-related markers, as well as cell proliferation in HCC cells and in a xenograft mouse model. We also characterized CSC-related and mTOR signal-related molecule expression and tumorigenicity in HCC cells with knockdown of Rictor or Raptor, or overexpression of constitutively active rheb (caRheb). mTOR signal-related molecule expression was also examined in BCAA-treated HCC cells. In-vitro BCAA reduced the frequency of EpCAM-positive cells and improved sensitivity to the anti-proliferative effect of 5-FU. Combined 5-FU and BCAA provided better antitumor efficacy than 5-FU alone in the xenograft model. Stimulation with high doses of BCAA activated mTORC1. Knockdown and overexpression experiments revealed that inhibition of mTOR complex 2 (mTORC2) or activation of mTORC1 led to decreased EpCAM expression and little or no tumorigenicity. BCAA may enhance the sensitivity to chemotherapy by reducing the population of cscs via the mTOR pathway. This result suggests the utility of BCAA in liver cancer therapy. PMID:24312415

  19. Branched chain amino acid suppresses hepatocellular cancer stem cells through the activation of mammalian target of rapamycin.

    Directory of Open Access Journals (Sweden)

    Shinobu Nishitani

    Full Text Available Differentiation of cancer stem cells (CSCs into cancer cells causes increased sensitivity to chemotherapeutic agents. Although inhibition of mammalian target of rapamycin (mTOR leads to CSC survival, the effect of branched chain amino acids (BCAAs, an mTOR complex 1 (mTORC1 activator remains unknown. In this study, we examined the effects of BCAA on hepatocellular carcinoma (HCC cells expressing a hepatic CSC marker, EpCAM. We examined the effects of BCAA and/or 5-fluorouracil (FU on expression of EpCAM and other CSC-related markers, as well as cell proliferation in HCC cells and in a xenograft mouse model. We also characterized CSC-related and mTOR signal-related molecule expression and tumorigenicity in HCC cells with knockdown of Rictor or Raptor, or overexpression of constitutively active rheb (caRheb. mTOR signal-related molecule expression was also examined in BCAA-treated HCC cells. In-vitro BCAA reduced the frequency of EpCAM-positive cells and improved sensitivity to the anti-proliferative effect of 5-FU. Combined 5-FU and BCAA provided better antitumor efficacy than 5-FU alone in the xenograft model. Stimulation with high doses of BCAA activated mTORC1. Knockdown and overexpression experiments revealed that inhibition of mTOR complex 2 (mTORC2 or activation of mTORC1 led to decreased EpCAM expression and little or no tumorigenicity. BCAA may enhance the sensitivity to chemotherapy by reducing the population of cscs via the mTOR pathway. This result suggests the utility of BCAA in liver cancer therapy.

  20. Branches of the Facial Artery.

    Science.gov (United States)

    Hwang, Kun; Lee, Geun In; Park, Hye Jin

    2015-06-01

    The aim of this study is to review the name of the branches, to review the classification of the branching pattern, and to clarify a presence percentage of each branch of the facial artery, systematically. In a PubMed search, the search terms "facial," AND "artery," AND "classification OR variant OR pattern" were used. The IBM SPSS Statistics 20 system was used for statistical analysis. Among the 500 titles, 18 articles were selected and reviewed systematically. Most of the articles focused on "classification" according to the "terminal branch." Several authors classified the facial artery according to their terminal branches. Most of them, however, did not describe the definition of "terminal branch." There were confusions within the classifications. When the inferior labial artery was absent, 3 different types were used. The "alar branch" or "nasal branch" was used instead of the "lateral nasal branch." The angular branch was used to refer to several different branches. The presence as a percentage of each branch according to the branches in Gray's Anatomy (premasseteric, inferior labial, superior labial, lateral nasal, and angular) varied. No branch was used with 100% consistency. The superior labial branch was most frequently cited (95.7%, 382 arteries in 399 hemifaces). The angular branch (53.9%, 219 arteries in 406 hemifaces) and the premasseteric branch were least frequently cited (53.8%, 43 arteries in 80 hemifaces). There were significant differences among each of the 5 branches (P < 0.05) except between the angular branch and the premasseteric branch and between the superior labial branch and the inferior labial branch. The authors believe identifying the presence percentage of each branch will be helpful for surgical procedures.

  1. Synthesis of Well-Defined Three-Arm Star-Branched Polystyrene through Arm-First Coupling Approach by Atom Transfer Radical Polymerization

    OpenAIRE

    Shahabuddin, Syed; Hamime Ismail, Fatem; Mohamad, Sharifah; Muhamad Sarih, Norazilawati

    2015-01-01

    Here we describe a simple route to synthesize three-arm star-branched polystyrene. Atom transfer radical polymerization technique has been utilized to yield branched polystyrene involving Williamson coupling strategy. Initially a linear polymeric chain of predetermined molecular weight has been synthesized which is further end-functionalized into a primary alkyl bromide moiety, a prime requisition for Williamson reaction. The end-functionalized polymer is then coupled using 1,1,1-tris(4-hydro...

  2. Statistical properties of multi-theta polymer chains

    Science.gov (United States)

    Uehara, Erica; Deguchi, Tetsuo

    2018-04-01

    We study statistical properties of polymer chains with complex structures whose chemical connectivities are expressed by graphs. The multi-theta curve of m subchains with two branch points connected by them is one of the simplest graphs among those graphs having closed paths, i.e. loops. We denoted it by θm , and for m  =  2 it is given by a ring. We derive analytically the pair distribution function and the scattering function for the θm -shaped polymer chains consisting of m Gaussian random walks of n steps. Surprisingly, it is shown rigorously that the mean-square radius of gyration for the Gaussian θm -shaped polymer chain does not depend on the number m of subchains if each subchain has the same fixed number of steps. For m  =  3 we show the Kratky plot for the theta-shaped polymer chain consisting of hard cylindrical segments by the Monte-Carlo method including reflection at trivalent vertices.

  3. Branched chain amino acids supplemented with L-acetylcarnitine versus BCAA treatment in hepatic coma: a randomized and controlled double blind study.

    Science.gov (United States)

    Malaguarnera, Mariano; Risino, Corrado; Cammalleri, Lisa; Malaguarnera, Lucia; Astuto, Marinella; Vecchio, Ignazio; Rampello, Liborio

    2009-07-01

    Our earlier study has demonstrated that the administration of L-acetylcarnitine (LAC) improves neurological symptoms and serum parameters in hepatic coma. The aim of this work has been to evaluate the efficacy of the LAC and branched chain amino acids (BCAA) versus BCAA, administered in intravenous infusion, in patients with cirrhotic hepatic coma. Forty-eight highly selected patients were enrolled in the study and, after randomization, received blindly LAC+BCAA (n=24) versus BCAA (n=24). The two groups were similar in age, sex, pathogenesis of cirrhosis, and severity of liver disease. The comparison between values before and after LAC planned treatment showed statistical significant differences in neurological findings, evaluated by the Glasgow Scale, ammonia serum levels, blood urea nitrogen, and EEG. After 60 min of the study period, the LAC+BCAA treated patients compared with BCCA treated showed a significant decrease of ammonia serum levels: 41.20 versus 10.40 mumol PBCAA treated patients compared with BCCA treated patients showed a significant increase of Glasgow's score: 3.60 versus 1.50 score PBCAA supplemented with LAC might improve neurological symptoms and serum ammonium levels in selected cirrhotic patients with hepatic coma.

  4. Impacts of Bacillus thuringiensis var. israelensis and Bacillus ...

    African Journals Online (AJOL)

    The study assessed the impact of bio-larvicides- Bacillus thuringiensis var. israelensis (Bti) and B. sphaericus (Bs) on anopheline mosquito larval densities in four selected areas of Lusaka urban district. Larval densities were determined using a standard WHO protocol at each study area prior to and after larviciding.

  5. Symmetry chains for the atomic shell model. I. Classification of symmetry chains for atomic configurations

    International Nuclear Information System (INIS)

    Gruber, B.; Thomas, M.S.

    1980-01-01

    In this article the symmetry chains for the atomic shell model are classified in such a way that they lead from the group SU(4l+2) to its subgroup SOsub(J)(3). The atomic configurations (nl)sup(N) transform like irreducible representations of the group SU(4l+2), while SOsub(J)(3) corresponds to total angular momentum in SU(4l+2). The defining matrices for the various embeddings are given for each symmetry chain that is obtained. These matrices also define the projection onto the weight subspaces for the corresponding subsymmetries and thus relate the various quantum numbers and determine the branching of representations. It is shown in this article that three (interrelated) symmetry chains are obtained which correspond to L-S coupling, j-j coupling, and a seniority dependent coupling. Moreover, for l<=6 these chains are complete, i.e., there are no other chains but these. In articles to follow, the symmetry chains that lead from the group SO(8l+5) to SOsub(J)(3) will be discussed, with the entire atomic shell transforming like an irreducible representation of SO(8l+5). The transformation properties of the states of the atomic shell will be determined according to the various symmetry chains obtained. The symmetry lattice discussed in this article forms a sublattice of the larger symmetry lattice with SO(8l+5) as supergroup. Thus the transformation properties of the states of the atomic configurations, according to the various symmetry chains discussed in this article, will be obtained too. (author)

  6. Identification of In-Chain-Functionalized Compounds and Methyl-Branched Alkanes in Cuticular Waxes of Triticum aestivum cv. Bethlehem.

    Directory of Open Access Journals (Sweden)

    Radu C Racovita

    Full Text Available In this work, cuticular waxes from flag leaf blades and peduncles of Triticum aestivum cv. Bethlehem were investigated in search for novel wax compounds. Seven wax compound classes were detected that had previously not been reported, and their structures were elucidated using gas chromatography-mass spectrometry of various derivatives. Six of the classes were identified as series of homologs differing by two methylene units, while the seventh was a homologous series with homologs with single methylene unit differences. In the waxes of flag leaf blades, secondary alcohols (predominantly C27 and C33, primary/secondary diols (predominantly C28 and esters of primary/secondary diols (predominantly C50, combining C28 diol with C22 acid were found, all sharing similar secondary hydroxyl group positions at and around C-12 or ω-12. 7- and 8-hydroxy-2-alkanol esters (predominantly C35, 7- and 8-oxo-2-alkanol esters (predominantly C35, and 4-alkylbutan-4-olides (predominantly C28 were found both in flag leaf and peduncle wax mixtures. Finally, a series of even- and odd-numbered alkane homologs was identified in both leaf and peduncle waxes, with an internal methyl branch preferentially on C-11 and C-13 of homologs with even total carbon number and on C-12 of odd-numbered homologs. Biosynthetic pathways are suggested for all compounds, based on common structural features and matching chain length profiles with other wheat wax compound classes.

  7. The Supplementation of Branched-Chain Amino Acids, Arginine, and Citrulline Improves Endurance Exercise Performance in Two Consecutive Days

    Directory of Open Access Journals (Sweden)

    I-Shiung Cheng, Yi-Wen Wang, I-Fan Chen, Gi-Sheng Hsu, Chun-Fang Hsueh, Chen-Kang Chang

    2016-09-01

    Full Text Available The central nervous system plays a crucial role in fatigue during endurance exercise. Branched-chain amino acids (BCAA could reduce cerebral serotonin synthesis by competing with its precursor tryptophan for crossing the blood brain barrier. Arginine and citrulline could prevent excess hyperammonemia accompanied by BCAA supplementation. This study investigated the combination of BCAA, arginine, and citrulline on endurance performance in two consecutive days. Seven male and three female endurance runners ingested 0.17 g·kg-1 BCAA, 0.05 g·kg-1 arginine and 0.05 g·kg-1 citrulline (AA trial or placebo (PL trial in a randomized cross-over design. Each trial contained a 5000 m time trial on the first day, and a 10000 m time trial on the second day. The AA trial had significantly better performance in 5000 m (AA: 1065.7 ± 33.9 s; PL: 1100.5 ± 40.4 s and 10000 m (AA: 2292.0 ± 211.3 s; PL: 2375.6 ± 244.2 s. The two trials reported similar ratings of perceived exertion. After exercise, the AA trial had significantly lower tryptophan/BCAA ratio, similar NH3, and significantly higher urea concentrations. In conclusion, the supplementation could enhance time-trial performance in two consecutive days in endurance runners, possibly through the inhibition of cerebral serotonin synthesis by BCAA and the prevention of excess hyperammonemia by increased urea genesis.

  8. Impact of the Nature of the Side-Chains on the Polymer-Fullerene Packing in the Mixed Regions of Bulk Heterojunction Solar Cells

    KAUST Repository

    Wang, Tonghui; Ravva, Mahesh Kumar; Bredas, Jean-Luc

    2016-01-01

    Polymer-fullerene packing in mixed regions of a bulk heterojunction solar cell is expected to play a major role in exciton-dissociation, charge-separation, and charge-recombination processes. Here, molecular dynamics simulations are combined with density functional theory calculations to examine the impact of nature and location of polymer side-chains on the polymer-fullerene packing in mixed regions. The focus is on poly-benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione (PBDTTPD) as electron-donating material and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as electron-accepting material. Three polymer side-chain patterns are considered: i) linear side-chains on both benzodithiophene (BDT) and thienopyrroledione (TPD) moieties; ii) two linear side-chains on BDT and a branched side-chain on TPD; and iii) two branched side-chains on BDT and a linear side-chain on TPD. Increasing the number of branched side-chains is found to decrease the polymer packing density and thereby to enhance PBDTTPD–PC61 BM mixing. The nature and location of side-chains are found to play a determining role in the probability of finding PC61BM molecules close to either BDT or TPD. The electronic couplings relevant for the exciton-dissociation and charge-recombination processes are also evaluated. Overall, the findings are consistent with the experimental evolution of the PBDTTPD–PC61BM solar-cell performance as a function of side-chain patterns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  9. Impact of the Nature of the Side-Chains on the Polymer-Fullerene Packing in the Mixed Regions of Bulk Heterojunction Solar Cells

    KAUST Repository

    Wang, Tonghui

    2016-06-20

    Polymer-fullerene packing in mixed regions of a bulk heterojunction solar cell is expected to play a major role in exciton-dissociation, charge-separation, and charge-recombination processes. Here, molecular dynamics simulations are combined with density functional theory calculations to examine the impact of nature and location of polymer side-chains on the polymer-fullerene packing in mixed regions. The focus is on poly-benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione (PBDTTPD) as electron-donating material and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as electron-accepting material. Three polymer side-chain patterns are considered: i) linear side-chains on both benzodithiophene (BDT) and thienopyrroledione (TPD) moieties; ii) two linear side-chains on BDT and a branched side-chain on TPD; and iii) two branched side-chains on BDT and a linear side-chain on TPD. Increasing the number of branched side-chains is found to decrease the polymer packing density and thereby to enhance PBDTTPD–PC61 BM mixing. The nature and location of side-chains are found to play a determining role in the probability of finding PC61BM molecules close to either BDT or TPD. The electronic couplings relevant for the exciton-dissociation and charge-recombination processes are also evaluated. Overall, the findings are consistent with the experimental evolution of the PBDTTPD–PC61BM solar-cell performance as a function of side-chain patterns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  10. Synthesis of 3-aminopropyl glycoside of branched β-(1 → 3)-d-glucooctaoside.

    Science.gov (United States)

    Yashunsky, Dmitry V; Tsvetkov, Yury E; Nifantiev, Nikolay E

    2016-12-21

    The synthesis was described of branched glucooctaoside bearing the β-(1 → 3)-glucotrioside side chain at O-6 of the second (from the reducing end) monosaccharide unit of the linear β-(1 → 3)-glucopentaoside core. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Isolation and Characterization of a Gene Specific to Lager Brewing Yeast That Encodes a Branched-Chain Amino Acid Permease

    Science.gov (United States)

    Kodama, Yukiko; Omura, Fumihiko; Ashikari, Toshihiko

    2001-01-01

    We found two types of branched-chain amino acid permease gene (BAP2) in the lager brewing yeast Saccharomyces pastorianus BH-225 and cloned one type of BAP2 gene (Lg-BAP2), which is identical to that of Saccharomyces bayanus (by-BAP2-1). The other BAP2 gene of the lager brewing yeast (cer-BAP2) is very similar to the Saccharomyces cerevisiae BAP2 gene. This result substantiates the notion that lager brewing yeast is a hybrid of S. cerevisiae and S. bayanus. The amino acid sequence homology between S. cerevisiae Bap2p and Lg-Bap2p was 88%. The transcription of Lg-BAP2 was not induced by the addition of leucine to the growth medium, while that of cer-BAP2 was induced. The transcription of Lg-BAP2 was repressed by the presence of ethanol and weak organic acid, while that of cer-BAP2 was not affected by these compounds. Furthermore, Northern analysis during beer fermentation revealed that the transcription of Lg-BAP2 was repressed at the beginning of the fermentation, while cer-BAP2 was highly expressed throughout the fermentation. These results suggest that the transcription of Lg-BAP2 is regulated differently from that of cer-BAP2 in lager brewing yeasts. PMID:11472919

  12. High-Level Heat Resistance of Spores of Bacillus amyloliquefaciens and Bacillus licheniformis Results from the Presence of a spoVA Operon in a Tn1546 Transposon

    Science.gov (United States)

    Berendsen, Erwin M.; Koning, Rosella A.; Boekhorst, Jos; de Jong, Anne; Kuipers, Oscar P.; Wells-Bennik, Marjon H. J.

    2016-01-01

    Bacterial endospore formers can produce spores that are resistant to many food processing conditions, including heat. Some spores may survive heating processes aimed at production of commercially sterile foods. Recently, it was shown that a spoVA operon, designated spoVA2mob, present on a Tn1546 transposon in Bacillus subtilis, leads to profoundly increased wet heat resistance of B. subtilis spores. Such Tn1546 transposon elements including the spoVA2mob operon were also found in several strains of Bacillus amyloliquefaciens and Bacillus licheniformis, and these strains were shown to produce spores with significantly higher resistances to wet heat than their counterparts lacking this transposon. In this study, the locations and compositions of Tn1546 transposons encompassing the spoVA2mob operons in B. amyloliquefaciens and B. licheniformis were analyzed. Introduction of these spoVA2mob operons into B. subtilis 168 (producing spores that are not highly heat resistant) rendered mutant 168 strains that produced high-level heat resistant spores, demonstrating that these elements in B. amyloliquefaciens and B. licheniformis are responsible for high level heat resistance of spores. Assessment of growth of the nine strains of each species between 5.2°C and 57.7°C showed some differences between strains, especially at lower temperatures, but all strains were able to grow at 57.7°C. Strains of B. amyloliquefaciens and B. licheniformis that contain the Tn1546 elements (and produce high-level heat resistant spores) grew at temperatures similar to those of their Tn1546-negative counterparts that produce low-level heat resistant spores. The findings presented in this study allow for detection of B. amyloliquefaciens and B. licheniformis strains that produce highly heat resistant spores in the food chain. PMID:27994575

  13. Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens.

    Science.gov (United States)

    Martinez-Garcia, Marta; Stuart, Marc C A; van der Maarel, Marc J E C

    2016-08-01

    The thermoacidophilic red microalga Galdieria sulphuraria synthesizes glycogen when growing under heterotrophic conditions. Structural characterization revealed that G. sulphuraria glycogen is the most highly branched glycogen described to date, with 18% of α-(1→6) linkages. Moreover, it differs from other glycogens because it is composed of short chains only and has a substantially smaller molecular weight and particle size. The physiological role of this highly branched glycogen in G. sulphuraria is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    2002-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch ...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere. (C) 2001 Elsevier Science B.V. All rights reserved.......A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...

  15. Phosphorylated alpha(1 leads to 4) glucans as substrate for potato starch-branching enzyme I

    International Nuclear Information System (INIS)

    Vikso-Nielsen, A.; Blennow, A.; Nielsen, T.H.; Moller, B.L.

    1998-01-01

    The possible involvement of potato (Solanum tuberosum L.) starch-branching enzyme I (PSBE-I) in the in vivo synthesis of phosphorylated amylopectin was investigated in in vitro experiments with isolated PSBE-I using 33P-labeled phosphorylated and 3H end-labeled nonphosphorylated alpha(1 leads to 4) glucans as the substrates. From these radiolabeled substrates PSBE-I was shown to catalyze the formation of dual-labeled (3H/33P) phosphorylated branched polysaccharides with an average degree of polymerization of 80 to 85. The relatively high molecular mass indicated that the product was the result of multiple chain-transfer reactions. The presence of alpha(1 leads to 6) branch points was documented by isoamylase treatment and anion-exchange chromatography. Although the initial steps of the in vivo mechanism responsible for phosphorylation of potato starch remains elusive, the present study demonstrates that the enzyme machinery available in potato has the ability to incorporate phosphorylated alpha(1 leads to 4) glucans into neutral polysaccharides in an interchain catalytic reaction. Potato mini tubers synthesized phosphorylated starch from exogenously supplied 33PO4(3-) and [U-14C]Glc at rates 4 times higher than those previously obtained using tubers from fully grown potato plants. This system was more reproducible compared with soil-grown tubers and was therefore used for preparation of 33P-labeled phosphorylated alpha(1 leads to 4) glucan chains

  16. Effect of oral administration of Bacillus coagulans B37 and Bacillus pumilus B9 strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model.

    Science.gov (United States)

    Haldar, Lopamudra; Gandhi, D N

    2016-07-01

    To investigate the effect of oral administration of two Bacillus strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model. An in vivo experiment was conducted for 49-day period on 36 adult male albino Wister rats divided equally into to four groups. After 7-day adaptation period, one group (T1) was fed on sterile skim milk along with basal diet for the next 28 days. Second (T2) and (T3) groups received spore biomass of Bacillus coagulans B37 and Bacillus pumilus B9, respectively, suspended in sterilized skim milk at 8-9 log colony-forming units/ml plus basal diet for 28 days, while control group (T4) was supplied with clean water along with basal diet. There was a 14-day post-treatment period. A total of 288 fecal samples (8 fecal collections per rat) were collected at every 7-day interval starting from 0 to 49 days and subjected to the enumeration of the counts of coliforms and lactobacilli and Bacillus spores using respective agar media. In vitro acid and bile tolerance tests on both the strains were performed. The rats those (T2 and T3) received either B. coagulans B37 or B. pumilus B9 spore along with non-fermented skim milk showed decrease (pBacillus spore counts as compared to the control group (T4) and the group fed only skim milk (T1). In vitro study indicated that both the strains were found to survive at pH 2.0 and 3.0 even up to 3 h and tolerate bile up to 2.0% concentration even after 12 h of exposure. This study revealed that oral administration of either B. coagulans B37 or B. pumilus B9 strains might be useful in reducing coliform counts accompanied by concurrent increase in lactobacilli counts in the intestinal flora in rats.

  17. Effect of oral administration of Bacillus coagulans B37 and Bacillus pumilus B9 strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model

    Directory of Open Access Journals (Sweden)

    Lopamudra Haldar

    2016-07-01

    Full Text Available Aim: To investigate the effect of oral administration of two Bacillus strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model. Materials and Methods: An in vivo experiment was conducted for 49-day period on 36 adult male albino Wister rats divided equally into to four groups. After 7-day adaptation period, one group (T1 was fed on sterile skim milk along with basal diet for the next 28 days. Second (T2 and (T3 groups received spore biomass of Bacillus coagulans B37 and Bacillus pumilus B9, respectively, suspended in sterilized skim milk at 8-9 log colony-forming units/ml plus basal diet for 28 days, while control group (T4 was supplied with clean water along with basal diet. There was a 14-day post-treatment period. A total of 288 fecal samples (8 fecal collections per rat were collected at every 7-day interval starting from 0 to 49 days and subjected to the enumeration of the counts of coliforms and lactobacilli and Bacillus spores using respective agar media. In vitro acid and bile tolerance tests on both the strains were performed. Results: The rats those (T2 and T3 received either B. coagulans B37 or B. pumilus B9 spore along with non-fermented skim milk showed decrease (p<0.01 in fecal coliform counts and increase (p<0.05 in both fecal lactobacilli and Bacillus spore counts as compared to the control group (T4 and the group fed only skim milk (T1. In vitro study indicated that both the strains were found to survive at pH 2.0 and 3.0 even up to 3 h and tolerate bile up to 2.0% concentration even after 12 h of exposure. Conclusions: This study revealed that oral administration of either B. coagulans B37 or B. pumilus B9 strains might be useful in reducing coliform counts accompanied by concurrent increase in lactobacilli counts in the intestinal flora in rats.

  18. Utilization of corn starch as sustrate for ß-Amylase by Bacillus SPP

    African Journals Online (AJOL)

    Corn starch was used as substrate for ß -amylase production from ten(10) amylolytic species of the genus Bacillus isolated locally from soil, waste water and food sources. Ten bacillus strains was made up of two strains each of Bacillus macerans, Bacillus licheniformis and Bacillus circulans. Also included are B. coagulans, ...

  19. Arthromitus (Bacillus cereus) symbionts in the cockroach Blaberus giganteus: dietary influences on bacterial development and population density

    Science.gov (United States)

    Feinberg, L.; Jorgensen, J.; Haselton, A.; Pitt, A.; Rudner, R.; Margulis, L.

    1999-01-01

    The filamentous spore-forming bacterium Arthromitus, discovered in termites, millipedes, sow bugs and other soil-dwelling arthropods by Leidy (1850), is the intestinal stage of Bacillus cereus. We extend the range of Arthromitus habitats to include the hindgut of Blaberus giganteus, the large tropical American cockroach. The occurrence and morphology of the intestinal form of the bacillus were compared in individual cockroaches (n=24) placed on four different diet regimes: diurnally maintained insects fed (1) dog food, (2) soy protein only, (3)purified cellulose only, and (4) a dog food-fed group maintained in continuous darkness. Food quality exerted strong influence on population densities and developmental stages of the filamentous bacterium and on fecal pellet composition. The most dramatic rise in Arthromitus populations, defined as the spore-forming filament intestinal stage, occurred in adult cockroaches kept in the dark on a dog food diet. Limited intake of cellulose or protein alone reduced both the frequency of Arthromitus filaments and the rate of weight gain of the insects. Spores isolated from termites, sow bugs, cockroaches and moths, grown on various hard surfaces display a branching mobility and resistance to antibiotics characteristic to group I Bacilli whose members include B. cereus, B. circulans, B. alvei and B. macerans. DNA isolated from pure cultures of these bacilli taken from the guts of Blaberus giganteus (cockroach), Junonia coenia (moth), Porcellio scaber (sow bug) and Cryptotermes brevis (termite) and subjected to Southern hybridization with a 23S-5S B. subtilis ribosomal sequence probe verified that they are indistinguishable from laboratory strains of Bacillus cereus.

  20. Cut contribution to momentum autocorrelation function of an impurity in a classical diatomic chain

    Science.gov (United States)

    Yu, Ming B.

    2018-02-01

    A classic diatomic chain with a mass impurity is studied using the recurrence relations method. The momentum autocorrelation function of the impurity is a sum of contributions from two pairs of resonant poles and three branch cuts. The former results in cosine function and the latter in acoustic and optical branches. By use of convolution theorem, analytical expressions for the acoustic and optical branches are derived as even-order Bessel function expansions. The expansion coefficients are integrals of elliptic functions in the real axis for the acoustic branch and along a contour parallel to the imaginary axis for the optical branch, respectively. An integral is carried out for the calculation of optical branch: ∫0 ϕ dθ/√((1 - r 1 2 sin2 θ)(1 - r 2 2 sin2 θ)) = igsn -1 (sin ϕ) ( r 2 2 > r 1 2 > 1, g is a constant).

  1. Branched-Chain Amino Acid Ingestion Stimulates Muscle Myofibrillar Protein Synthesis following Resistance Exercise in Humans

    Directory of Open Access Journals (Sweden)

    Sarah R. Jackman

    2017-06-01

    Full Text Available The ingestion of intact protein or essential amino acids (EAA stimulates mechanistic target of rapamycin complex-1 (mTORC1 signaling and muscle protein synthesis (MPS following resistance exercise. The purpose of this study was to investigate the response of myofibrillar-MPS to ingestion of branched-chain amino acids (BCAAs only (i.e., without concurrent ingestion of other EAA, intact protein, or other macronutrients following resistance exercise in humans. Ten young (20.1 ± 1.3 years, resistance-trained men completed two trials, ingesting either 5.6 g BCAA or a placebo (PLA drink immediately after resistance exercise. Myofibrillar-MPS was measured during exercise recovery with a primed, constant infusion of L-[ring13C6] phenylalanine and collection of muscle biopsies pre and 4 h-post drink ingestion. Blood samples were collected at time-points before and after drink ingestion. Western blotting was used to measure the phosphorylation status of mTORC1 signaling proteins in biopsies collected pre, 1-, and 4 h-post drink. The percentage increase from baseline in plasma leucine (300 ± 96%, isoleucine (300 ± 88%, and valine (144 ± 59% concentrations peaked 0.5 h-post drink in BCAA. A greater phosphorylation status of S6K1Thr389 (P = 0.017 and PRAS40 (P = 0.037 was observed in BCAA than PLA at 1 h-post drink ingestion. Myofibrillar-MPS was 22% higher (P = 0.012 in BCAA (0.110 ± 0.009%/h than PLA (0.090 ± 0.006%/h. Phenylalanine Ra was ~6% lower in BCAA (18.00 ± 4.31 μmol·kgBM−1 than PLA (21.75 ± 4.89 μmol·kgBM−1; P = 0.028 after drink ingestion. We conclude that ingesting BCAAs alone increases the post-exercise stimulation of myofibrillar-MPS and phosphorylation status mTORC1 signaling.

  2. Measurement of the branching fraction for $D^{0} \\rightarrow K^{-}\\pi^{+}$

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Miquel, R; Mir, L M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Becker, U; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Coyle, P; Diaconu, C A; Etienne, F; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1997-01-01

    The branching fraction for D0 -> K- pi+ is measured with the statistics collected by ALEPH from 1991 to 1994. The method is based on the comparison between the rate for the reconstructed D*+ -> D0 pi+, D0 -> K- pi+ decay chain and the rate for inclusive soft pion production at low transverse momentum with respect to the nearest jet. The result found is B(D0 -> K- pi+) = (3.90 +- 0.09 +- 0.12)%

  3. Expression, purification, crystallization and preliminary X-ray analysis of a novel N-substituted branched-chain l-amino-acid dioxygenase from Burkholderia ambifaria AMMD

    International Nuclear Information System (INIS)

    Qin, Hui-Min; Miyakawa, Takuya; Nakamura, Akira; Xue, You-Lin; Kawashima, Takashi; Kasahara, Takuya; Hibi, Makoto; Ogawa, Jun; Tanokura, Masaru

    2012-01-01

    Diffraction data were collected to a limiting resolution of 2.4 Å from a crystal of selenomethionyl-labelled SadA, an l-amino-acid dioxygenase. Ferrous ion- and α-ketoglutarate-dependent dioxygenase from Burkholderia ambifaria AMMD (SadA) catalyzes the C3-hydroxylation of N-substituted branched-chain l-amino acids, especially N-succinyl-l-leucine, coupled to the conversion of α-ketoglutarate to succinate and CO 2 . SadA was expressed in Escherichia coli, purified and crystallized using the sitting-drop vapour-diffusion method at 293 K. Crystals of selenomethionine-substituted SadA were obtained using a reservoir solution containing PEG 3000 as the precipitant at pH 9.5 and diffracted X-rays to 2.4 Å resolution. The crystal belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 49.3, b = 70.9, c = 148.2 Å. The calculated Matthews coefficient (V M = 2.1 Å 3 Da −1 , 41% solvent content) suggested that the crystal contains two molecules per asymmetric unit

  4. Kefiran antagonizes cytopathic effects of Bacillus cereus extracellular factors.

    Science.gov (United States)

    Medrano, Micaela; Pérez, Pablo Fernando; Abraham, Analía Graciela

    2008-02-29

    Kefiran, the polysaccharide produced by microorganisms present in kefir grains, is a water-soluble branched glucogalactan containing equal amounts of D-glucose and D-galactose. In this study, the effect of kefiran on the biological activity of Bacillus cereus strain B10502 extracellular factors was assessed by using cultured human enterocytes (Caco-2 cells) and human erythrocytes. In the presence of kefiran concentrations ranging from 300 to 1000 mg/L, the ability of B. cereus B10502 spent culture supernatants to detach and damage cultured human enterocytes was significantly abrogated. In addition, mitochondrial dehydrogenase activity was higher when kefiran was present during the cell toxicity assays. Protection was also demonstrated in hemolysis and apoptosis/necrosis assays. Scanning electron microscopy showed the protective effect of kefiran against structural cell damages produced by factors synthesized by B. cereus strain B10502. Protective effect of kefiran depended on strain of B. cereus. Our findings demonstrate the ability of kefiran to antagonize key events of B. cereus B10502 virulence. This property, although strain-specific, gives new perspectives for the role of bacterial exopolysaccharides in functional foods.

  5. Branched-chain amino acids for people with hepatic encephalopathy.

    Science.gov (United States)

    Gluud, Lise Lotte; Dam, Gitte; Les, Iñigo; Marchesini, Giulio; Borre, Mette; Aagaard, Niels Kristian; Vilstrup, Hendrik

    2017-05-18

    Hepatic encephalopathy is a brain dysfunction with neurological and psychiatric changes associated with liver insufficiency or portal-systemic shunting. The severity ranges from minor symptoms to coma. A Cochrane systematic review including 11 randomised clinical trials on branched-chain amino acids (BCAA) versus control interventions has evaluated if BCAA may benefit people with hepatic encephalopathy. To evaluate the beneficial and harmful effects of BCAA versus any control intervention for people with hepatic encephalopathy. We identified trials through manual and electronic searches in The Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Science Citation Index Expanded and Conference Proceedings Citation Index - Science, and LILACS (May 2017). We included randomised clinical trials, irrespective of the bias control, language, or publication status. The authors independently extracted data based on published reports and collected data from the primary investigators. We changed our primary outcomes in this update of the review to include mortality (all cause), hepatic encephalopathy (number of people without improved manifestations of hepatic encephalopathy), and adverse events. The analyses included random-effects and fixed-effect meta-analyses. We performed subgroup, sensitivity, regression, and trial sequential analyses to evaluate sources of heterogeneity (including intervention, and participant and trial characteristics), bias (using The Cochrane Hepato-Biliary Group method), small-study effects, and the robustness of the results after adjusting for sparse data and multiplicity. We graded the quality of the evidence using the GRADE approach. We found 16 randomised clinical trials including 827 participants with hepatic encephalopathy classed as overt (12 trials) or minimal (four trials). Eight trials assessed oral BCAA supplements and seven trials assessed intravenous

  6. Potential of Bacillus spp produces siderophores insuppressing thewilt disease of banana plants

    Science.gov (United States)

    Kesaulya, H.; Hasinu, J. V.; Tuhumury, G. NC

    2018-01-01

    In nature, different types of siderophore such as hydroxymate, catecholets and carboxylate, are produced by different bacteria. Bacillus spp were isolated from potato rhizospheric soil can produce siderophore of both catecholets and salicylate type with different concentrations. Various strains of Bacillus spp were tested for pathogen inhibition capability in a dual culture manner. The test results showed the ability of inhibition of pathogen isolated from banana wilt disease. From the result tested were found Bacillus niabensis Strain PT-32-1, Bacillus subtilis Strain SWI16b, Bacillus subtilis Strain HPC21, Bacillus mojavensis Strain JCEN3, and Bacillus subtilis Strain HPC24 showed different capabilities in suppressing pathogen.

  7. PRODUCTION OF FIBRINOLYTIC ENZYME (NATTOKINASE) FROM BACILLUS SP.

    OpenAIRE

    Padma Singh, Rekha Negi*, Vani Sharma, Alka Rani, Pallavi and Richa Prasad

    2018-01-01

    During present study Nattokinase which is a novel fibrinolytic enzyme was produced by Bacillus sp. To screen and extract nattokinase enzyme from Bacillus sp. were isolated from soil of different agricultural field by serial dilution method. Out of 10 isolate, one strain i.e. B3 produced nattokinase on screening medium. B3 was identified by biochemical characterization. The caseinolytic activity of Nattokinase was 0.526 U/ml and the selected isolate Bacillus sp. could produce active nattokinas...

  8. An anionic defensin from Plutella xylostella with potential activity against Bacillus thuringiensis.

    Science.gov (United States)

    Xu, X-X; Zhang, Y-Q; Freed, S; Yu, J; Gao, Y-F; Wang, S; Ouyang, L-N; Ju, W-Y; Jin, F-L

    2016-12-01

    Insect defensins, are cationic peptides that play an important role in immunity against microbial infection. In the present study, an anionic defensin from Plutella xylostella, (designated as PxDef) was first cloned and characterized. Amino acid sequence analysis showed that the mature peptide owned characteristic six-cysteine motifs with predicted isoelectric point of 5.57, indicating an anionic defensin. Quantitative real-time polymerase chain reaction analysis showed that PxDef was significantly induced in epidermis, fat body, midgut and hemocytes after injection of heat-inactivated Bacillus thuringiensis, while such an induction was delayed by the injection of live B. thuringiensis in the 4th instar larvae of P. xylostella. Knocking down the expression of nuclear transcription factor Dorsal in P. xylostella by RNA interference significantly decreased the mRNA level of PxDef, and increased the sensitivity of P. xylostella larvae to the infection by live B. thuringiensis. The purified recombinant mature peptide (PxDef) showed higher activity against Gram-positive bacteria, with the minimum inhibition concentrations of 1.6 and 2.6 µM against B. thuringiensis and Bacillus subtilis, respectively. To our knowledge, this is the first report about an anionic PxDef, which may play an important role in the immune system of P. xylostella against B. thuringiensis.

  9. Genetic transformation of Bacillus strains close to bacillus subtilis and isolated from the soil

    International Nuclear Information System (INIS)

    Van, C.K.; Kuzin, Yu.Yu.; Kozlovskii, Yu.E.; Prozorov, A.A.

    1986-01-01

    Chromosomal and plasmid transformation was found in five out of 118 Bacillus strains, close or identical to Bacillus subtilis, and isolated from soil in Moscow or in the Moscow district. The efficiency of transformation in these strains was lower than that in derivatives of Bac. subtilis strain 168. In these strains the ability to undergo transformation was dependent on the rate of sporulation and the presence of restrictases. As in the case of Bac. subtilis 168 the strains isolated may be used as models in genetic transformation studies on Bac. subtilis

  10. DECONTAMINATION ASSESSMENT OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS, AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACTS USING A HYDROGEN PERIOXIDE GAS GENERATOR

    Science.gov (United States)

    Aims: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Methods and Results: B. anthracis, B. subtilis, and G. Stearothermophilus spores were dried on seven...

  11. Heavy metals and their radionuclides uptake by Bacillus Licheniformis

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Ahmed, M.M.; Abo-state, M.A.M.; Sarhan, M.; Faroqe, M.

    2007-01-01

    Bacillus licheniformis is a gram positive spore forming bacterium. Different concentrations of cobalt affected the ability of Co uptake and growth of Bacillus licheniformis. As the concentration increased, both the uptake and growth were decreased. Maximum Co uptake was found at ph 7.0, while for growth was ph 8.0. The optimum temperature for uptake and growth was 40 degree C and 20% inoculum size represents the maximum cobalt uptake by Bacillus licheniformis. Also, maximum uptake was recorded after 72 hours, incubation period. As the concentration of cesium was increased till 400 mg/l, the uptake was also increased. The optimum cesium uptake and growth was at ph 8.0. The optimum growth was at 45 degree C while Cs uptake was found at 35 degree C and 15% inoculum size represented the maximum Cs uptake. After 72 hour incubation period, maximum Cs uptake was recorded. Generally, Bacillus licheniformis removed more than 80% of Co and 50% of Cs from the broth medium. Addition of clay to Bacillus licheniformis increased both Co or Cs uptake. Bacillus licheniformis was gamma resistant and 10 KGy reduced the viability by 5.3 log cycles. The irradiated and non-irradiated cultures can grow on 500 or 700 mg Co or Cs. Bacillus licheniformis removed 99.32% of the Co radionuclides and 99.28% of Cs radionuclides

  12. α-decay chains and cluster-decays of superheavy 269-27110 nuclei

    International Nuclear Information System (INIS)

    Sushil Kumar; Rajesh Kumar; Balasubramaniam, M.; Gupta, Raj K.

    2001-01-01

    Due to the availability of radioactive nuclear beams (RNB) and the advancement in accelerator technology, it is now possible to synthesize very heavy elements (Z> 100), called superheavy elements. It is a well established fact that these superheavy elements, due to their shorter lifetime, decay via successive alpha emissions and at a later stage undergo spontaneous fission. Several such decay chains are now observed. An attempt is made to fit all such known decay chains and the results of the three observed α-decay chains of Z=110 ( 269-271 10) nuclei are presented. The model used is the preformed cluster model (PCM). Also, an attempt is made for the first time to find the possibility of any branching to heavy-cluster emissions in these chains

  13. Branched-chain amino acids reduce hepatic iron accumulation and oxidative stress in hepatitis C virus polyprotein-expressing mice

    Science.gov (United States)

    Korenaga, Masaaki; Nishina, Sohji; Korenaga, Keiko; Tomiyama, Yasuyuki; Yoshioka, Naoko; Hara, Yuichi; Sasaki, Yusuke; Shimonaka, Yasushi; Hino, Keisuke

    2015-01-01

    Background & Aims Branched-chain amino acids (BCAA) reduce the incidence of hepatocellular carcinoma (HCC) in patients with cirrhosis. However, the mechanisms that underlie these effects remain unknown. Previously, we reported that oxidative stress in male transgenic mice that expressed hepatitis C virus polyprotein (HCVTgM) caused hepatic iron accumulation by reducing hepcidin transcription, thereby leading to HCC development. This study investigated whether long-term treatment with BCAA reduced hepatic iron accumulation and oxidative stress in iron-overloaded HCVTgM and in patients with HCV-related advanced fibrosis. Methods Male HCVTgM were fed an excess-iron diet that comprised either casein or 3.0% BCAA, or a control diet, for 6 months. Results For HCVTgM, BCAA supplementation increased the serum hepcidin-25 levels and antioxidant status [ratio of biological antioxidant potential (BAP) relative to derivatives of reactive oxygen metabolites (dROM)], decreased the hepatic iron contents, attenuated reactive oxygen species generation, and restored mitochondrial superoxide dismutase expression and mitochondrial complex I activity in the liver compared with mice fed the control diet. After 48 weeks of BCAA supplementation in patients with HCV-related advanced fibrosis, BAP/dROM and serum hepcidin-25 increased and serum ferritin decreased compared with the pretreatment levels. Conclusions BCAA supplementation reduced oxidative stress by restoring mitochondrial function and improved iron metabolism by increasing hepcidin-25 in both iron-overloaded HCVTgM and patients with HCV-related advanced fibrosis. These activities of BCAA may partially account for their inhibitory effects on HCC development in cirrhosis patients. PMID:25156780

  14. Entanglement branching operator

    Science.gov (United States)

    Harada, Kenji

    2018-01-01

    We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.

  15. Effect of Side Chains on Molecular Conformation of Anthracene-Ethynylene-Phenylene-Vinylene Oligomers: A Comparative Density Functional Study With and Without Dispersion Interaction.

    Science.gov (United States)

    Dong, Chuanding; Hoppe, Harald; Beenken, Wichard J D

    2016-06-02

    Using density functional calculations with and without dispersion interaction, we studied the effects of linear octyl and branched 2-ethylhexyl side chains on the oligomer conformation of the conjugated copolymer poly(p-anthracene-ethynylene)-alt-poly(p-phenylene-vinylene). With dispersion included, the branched side chains can cause significant bending of the oligomer backbone, while without dispersion they induce mainly torsional disorder. The oligomers with mainly linear side chains keep good planarity when optimized with and without dispersion. Despite their dramatically different conformations, the calculated absorption spectra of the oligomers with various side chain combinations are very similar, indicating that the conformation of the copolymer is not the main reason for the experimentally observed different spectra of ordered and disordered phases.

  16. Novel spin excitation in the high field phase of an S=1 antiferromagnetic chain

    International Nuclear Information System (INIS)

    Hagiwara, M.; Kashiwagi, T.; Kimura, S.; Honda, Z.; Kindo, K.

    2007-01-01

    We report the results of high-field multi-frequency ESR experiment on the S=1 Heisenberg antiferromagnetic chain Ni(C 5 H 14 N 2 ) 2 N 3 (PF 6 ) for the fields up to about 55T and the frequencies up to about 2THz. We have found that excitation branches above the critical field (H c ) where the energy gap closes change into one branch around 15T which becomes close to the paramagnetic line at high fields. The branch above 15T fits well the conventional antiferromagnetic resonance mode with easy planar anisotropy. We compare the results with those in a weakly coupled antiferromagnetic dimer compound KCuCl 3 and discuss the origin of the branches observed above H c

  17. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation.

    Science.gov (United States)

    Zhenyukh, Olha; Civantos, Esther; Ruiz-Ortega, Marta; Sánchez, Maria Soledad; Vázquez, Clotilde; Peiró, Concepción; Egido, Jesús; Mas, Sebastián

    2017-03-01

    Leucine, isoleucine and valine are essential aminoacids termed branched-chain amino acids (BCAA) due to its aliphatic side-chain. In several pathological and physiological conditions increased BCAA plasma concentrations have been described. Elevated BCAA levels predict insulin resistance development. Moreover, BCAA levels higher than 2mmol/L are neurotoxic by inducing microglial activation in maple syrup urine disease. However, there are no studies about the direct effects of BCAA in circulating cells. We have explored whether BCAA could promote oxidative stress and pro-inflammatory status in peripheral blood mononuclear cells (PBMCs) obtained from healthy donors. In cultured PBMCs, 10mmol/L BCAA increased the production of reactive oxygen species (ROS) via both NADPH oxidase and the mitochondria, and activated Akt-mTOR signalling. By using several inhibitors and activators of these molecular pathways we have described that mTOR activation by BCAA is linked to ROS production and mitochondrial dysfunction. BCAA stimulated the activation of the redox-sensitive transcription factor NF-κB, which resulted in the release of pro-inflammatory molecules, such as interleukin-6, tumor necrosis factor-α, intracellular adhesion molecule-1 or CD40L, and the migration of PBMCs. In conclusion, elevated BCAA blood levels can promote the activation of circulating PBMCs, by a mechanism that involving ROS production and NF-κB pathway activation. These data suggest that high concentrations of BCAA could exert deleterious effects on circulating blood cells and therefore contribute to the pro-inflammatory and oxidative status observed in several pathophysiological conditions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Single Nucleotide Polymorphisms (SNP)-specific Quantitative Real Time Polymerase Chain Reaction (PCR) Assay for Analyzing Competition and Emergence of the Military Hypersporulating Strains of Bacillus Atrophaeous var. Globigii

    Science.gov (United States)

    2012-09-01

    than 120 genes (22). The Spo0F protein of BG is identical to the same protein of Bacillus subtilis except for two amino acids. Similar directed...Competition experiments using antibiotic resistant strains have been performed for B. subtilis strains obtained from directed evolution experiments (36...K. H.; Valentine, N. B.; Golledge, S. L.; Gaspar, D. J.; Wunschel, D. S. et al. Differentiation of Spores of Bacillus subtilis Grown in Different

  19. Relationship between Branched-Chain Amino Acids, Metabolic Syndrome, and Cardiovascular Risk Profile in a Chinese Population: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Wen Hu

    2016-01-01

    Full Text Available Objective. This study aimed to evaluate the relationship between branched-chain amino acids (BCAAs, metabolic syndrome (MS, and other cardiovascular (CV risk factors in middle-aged and elderly Chinese population at high risk for the development of cardiovascular disease (CVD. Methods. 1302 subjects were enrolled from the Huai’an Diabetes Prevention Program. Results. BCAAs levels were positively correlated with MS, its components, and CV risk profile. The odds ratio (OR for MS among subjects in the fourth quartile of BCAAs levels showed a 2.17-fold increase compared with those in the first quartile. BCAAs were independently associated with high Framingham risk score even after adjusting for MS and its components (P<0.0001. Additionally, the OR for high CV risk was 3.20-fold (P<0.0001 in participants in the fourth BCAAs quartile with MS compared with participants in the first BCAAs quartile without MS. Conclusions. Increased BCAAs levels are independent risk factors of MS and CVD in addition to the traditional factors in middle-aged and elderly Chinese population. The development of CVD in MS patients with high level BCAAs is accelerated. Intervention studies are needed to investigate whether the strategy of BCAAs reduction has impacts on endpoints in patients with higher CV risk. This study is registered with ChiCTR-TRC-14005029.

  20. Controlled branched-chain amino acids auxotrophy in Listeria monocytogenes allows isoleucine to serve as a host signal and virulence effector.

    Science.gov (United States)

    Brenner, Moran; Lobel, Lior; Borovok, Ilya; Sigal, Nadejda; Herskovits, Anat A

    2018-03-01

    Listeria monocytogenes (Lm) is a saprophyte and intracellular pathogen. Transition to the pathogenic state relies on sensing of host-derived metabolites, yet it remains unclear how these are recognized and how they mediate virulence gene regulation. We previously found that low availability of isoleucine signals Lm to activate the virulent state. This response is dependent on CodY, a global regulator and isoleucine sensor. Isoleucine-bound CodY represses metabolic pathways including branched-chain amino acids (BCAA) biosynthesis, however under BCAA depletion, as occurs during infection, BCAA biosynthesis is upregulated and isoleucine-unbound CodY activates virulence genes. While isoleucine was revealed as an important input signal, it was not identified how internal levels are controlled during infection. Here we show that Lm regulates BCAA biosynthesis via CodY and via a riboregulator located upstream to the BCAA biosynthesis genes, named Rli60. rli60 is transcribed when BCAA levels drop, forming a ribosome-mediated attenuator that cis-regulates the downstream genes according to BCAA supply. Notably, we found that Rli60 restricts BCAA production, essentially starving Lm, a mechanism that is directly linked to virulence, as it controls the internal isoleucine pool and thereby CodY activity. This controlled BCAA auxotrophy likely evolved to enable isoleucine to serve as a host signal and virulence effector.

  1. Controlled branched-chain amino acids auxotrophy in Listeria monocytogenes allows isoleucine to serve as a host signal and virulence effector.

    Directory of Open Access Journals (Sweden)

    Moran Brenner

    2018-03-01

    Full Text Available Listeria monocytogenes (Lm is a saprophyte and intracellular pathogen. Transition to the pathogenic state relies on sensing of host-derived metabolites, yet it remains unclear how these are recognized and how they mediate virulence gene regulation. We previously found that low availability of isoleucine signals Lm to activate the virulent state. This response is dependent on CodY, a global regulator and isoleucine sensor. Isoleucine-bound CodY represses metabolic pathways including branched-chain amino acids (BCAA biosynthesis, however under BCAA depletion, as occurs during infection, BCAA biosynthesis is upregulated and isoleucine-unbound CodY activates virulence genes. While isoleucine was revealed as an important input signal, it was not identified how internal levels are controlled during infection. Here we show that Lm regulates BCAA biosynthesis via CodY and via a riboregulator located upstream to the BCAA biosynthesis genes, named Rli60. rli60 is transcribed when BCAA levels drop, forming a ribosome-mediated attenuator that cis-regulates the downstream genes according to BCAA supply. Notably, we found that Rli60 restricts BCAA production, essentially starving Lm, a mechanism that is directly linked to virulence, as it controls the internal isoleucine pool and thereby CodY activity. This controlled BCAA auxotrophy likely evolved to enable isoleucine to serve as a host signal and virulence effector.

  2. Study of the radiation effect of "9"9Mo/"9"9"mTc generator on Bacillus subtilis and Bacillus pumilus species

    International Nuclear Information System (INIS)

    Fukumori, Neuza T.O.; Endo, Erica M.M.; Felgueiras, Carlos F.; Matsuda, Margareth M.N.; Osso Junior, João A.

    2016-01-01

    In this work, molybdenum-99 loaded columns were challenged with Bacillus subtilis vegetative cells and Bacillus pumilus spores inside and outside the alumina column, and microbial recovery and radiation effect were assessed. Alumina was a barrier for the passage of microorganisms regardless the species, whilst spores were more retained than vegetative cells with a lower microbial recovery, without significant differences between 9.25 and 74 GBq generators. Bacillus pumilus biological indicator showed lower recoveries, suggesting a radiation inactivating effect on microorganisms. - Highlights: • Microorganisms in radionuclide generator may impair the quality of the product. • Killing of Bacillus pumilus was not complete even after 20 days of exposition. • Alumina column was a physical barrier for the microbial recovery. • An alternative biological indicator based on B. pumilus spores is proposed.

  3. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    1999-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere....

  4. Characterization of Emetic Bacillus weihenstephanensis, a New Cereulide-Producing Bacterium

    DEFF Research Database (Denmark)

    Thorsen, Line; Munk Hansen, Bjarne; Nielsen, Kristian Fog

    2006-01-01

    Cereulide production has until now been restricted to the species Bacillus cereus. Here we report on two psychrotolerant Bacillus weihenstephanensis strains, MC67 and MC118, that produce cereulide. The strains are atypical with regard to pheno- and genotypic characteristics normally used for iden......Cereulide production has until now been restricted to the species Bacillus cereus. Here we report on two psychrotolerant Bacillus weihenstephanensis strains, MC67 and MC118, that produce cereulide. The strains are atypical with regard to pheno- and genotypic characteristics normally used...

  5. Antifungal activity of indigenous Bacillus spp. isolated from soil

    Directory of Open Access Journals (Sweden)

    Bjelić Dragana Đ.

    2017-01-01

    Full Text Available Biocontrol using plant growth-promoting rhizobacteria (PGPR represents an alternative approach to disease management, since PGPR are known to promote growth and reduce diseases in various crops. Among the different PGPR, members of the genus Bacillus are prefered for most biotechnological uses due to their capability to form extremely resistant spores and produce a wide variety of metabolites with antimicrobial activity. The objective of this research was to identify antagonistic bacteria for management of the plant diseases. Eleven isolates of Bacillus spp. were obtained from the soil samples collected from different localities in the Province of Vojvodina. The antifungal activity of bacterial isolates against five fungal species was examined using a dual plate assay. Bacillus isolates exhibited the highest antifungal activity against Fusarium proliferatum, Fusarium oxysporum f. sp. cepae and Alternaria padwickii, while they had the least antagonistic effect on Fusarium verticillioides and Fusarium graminearum. Molecular identification showed that effective bacterial isolates were identified as Bacillus safensis (B2, Bacillus pumilus (B3, B11, Bacillus subtilis (B5, B7 and Bacillus megaterium (B8, B9. The highest antagonistic activity was exhibited by isolates B5 (from 39% to 62% reduction in fungal growth and B7 (from 40% to 71% reduction in fungal growth. These isolates of B. subtilis could be used as potential biocontrol agents of plant diseases. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-31073

  6. PRODUKSI ANTIBIOTIKA OLEH Bacillus subtilis M10 DALAM MEDIA UREA-SORBITOL

    Directory of Open Access Journals (Sweden)

    Supartono Supartono

    2012-04-01

    Full Text Available PRODUCTION OF ANTIBIOTICS BY Bacillus subtilis M10 IN UREA-SORBITOL MEDIUM. Infection diseases still become the main health problems that suffered by people in Indonesia. Besides, there were many pathogen bacteria found to be resistant to the some antibiotics. Therefore, the efforts to get a new antibiotic require to be done continuously. A new local strain of Bacillus subtilis BAC4 has been known producing an antibiotic that inhibit Serratia marcescens ATCC 27117 growth. To make efficient the local strain, mutation on Bacillus subtilis BAC4 was done by using acridine orange and a mutant cell of Bacillus subtilis M10 that overproduction for producing antibiotic was obtained. Nevertheless, the production kinetics of antibiotic by this mutant has not been reported. The objective of this research was to study the production kinetics of antibiotic by Bacillus subtilis M10 mutant. The production of antibiotic was conducted using batch fermentation and antibiotic assay was performed with agar absorption method using Serratia marcescens ATCC 27117 as bacteria assay. Research result provided that Bacillus subtilis M10 mutant with overproduction of antibiotic produced an antibiotic since 8th hour’s fermentation and optimum of it production was at 14th hours after inoculation.  Penyakit infeksi masih menjadi masalah yang utama diderita oleh masyarakat Indonesia. Di samping itu, banyak bakteri patogen yang ditemukan resisten terhadap beberapa antibiotika. Oleh karena itu, upaya-upaya untuk mendapatkan antibiotika baru perlu dilakukan secara terus-menerus. Suatu galur lokal baru Bacillus subtilis BAC4 teridentifikasi memproduksi senyawa antibiotika yang menghambat pertumbuhan Serratia marcescens ATCC27117. Untuk memberdayakan galur tersebut, terhadap Bacillus subtilis BAC4 dilakukan mutasi dengan larutan akridin oranye dan diperoleh mutan Bacillus subtilis M10 yang memproduksi antibiotika berlebihan. Namun, kinetika produksi antibiotika oleh Bacillus

  7. Runtime Verification Through Forward Chaining

    Directory of Open Access Journals (Sweden)

    Alan Perotti

    2014-12-01

    Full Text Available In this paper we present a novel rule-based approach for Runtime Verification of FLTL properties over finite but expanding traces. Our system exploits Horn clauses in implication form and relies on a forward chaining-based monitoring algorithm. This approach avoids the branching structure and exponential complexity typical of tableaux-based formulations, creating monitors with a single state and a fixed number of rules. This allows for a fast and scalable tool for Runtime Verification: we present the technical details together with a working implementation.

  8. Enantioseparation and optical rotation of flavor-relevant 4-alkyl-branched fatty acids.

    Science.gov (United States)

    Eibler, Dorothee; Vetter, Walter

    2017-07-07

    Short chain 4-alkyl-branched fatty acids are character impact compounds of the flavor of sheep and goat milk and meat. Due to their methyl or ethyl branches these volatile fatty acids are chiral, and both enantiomers are characterized by different aroma intensities. Recently, it was found that 4-methyloctanoic acid (4-Me-8:0), 4-ethyloctanoic acid (4-Et-8:0), and 4-methylnonanoic acid (4-Me-9:0) are enantiopure in goat and sheep samples, if present. Here we generated enantiopure or enantioenriched standards from racemates by means of (R)-selective esterification with lipase B and verified that 4-Me-8:0, 4-Et-8:0 and 4-Me-9:0 were (R)-enantiopure in these tissues. Determination of the optical rotation and [α] D value was carried out to show that (R)-4-Et-8:0 is dextrorotary and to verify the literature values of (R)-4-methyl-branched fatty acids. The elution order of free acids and the methyl and ethyl esters of 4-Me-8:0, 4-Et-8:0, 4-Me-9:0 and 4-methylhexanoic acid (4-Me-6:0) enantiomers was investigated on different chiral columns as well as the (-)-menthyl ester by indirect enantiomer separation on an ionic liquid phase. Different chiral recognition processes were suggested for free acid and esters of 4-Me-8:0 and 4-Me-9:0 on the one hand (decisive: 4-alkyl branch) compared to 4-Me-6:0 on the other hand (decisive: branch on antepenultimate carbon). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Biodegradation of naphthalene and phenanthren by Bacillus subtilis 3KP

    Science.gov (United States)

    Ni'matuzahroh, Trikurniadewi, N.; Pramadita, A. R. A.; Pratiwi, I. A.; Salamun, Fatimah, Sumarsih, Sri

    2017-06-01

    The purposes of this research were to know growth response, degradation ability, and uptake mechanism of naphthalene and phenanthrene by Bacillus subtilis 3KP. Bacillus subtilis 3KP was grown on Mineral Synthetic (MS) medium with addition of 1% yeast extract and naphthalene and phenanthrene respectively 200 ppm in different cultures. Bacillus subtilis 3KP growth response was monitored by Total Plate Count (TPC) method, the degradation ability was monitored by UV-Vis spectrophotometer, and the uptake mechanism of hydrocarbon was monitored by emulsification activity, decrease of surface tension, and activity of Bacterial Adherence to Hydrocarbon (BATH). Bacillus subtilis 3KP was able to grow and show biphasic growth pattern on both of substrates. Naphthalene and phenanthrene were used as a carbon source for Bacillus subtilis 3KP growth that indicated by the reduction of substrate concomitant with the growth. At room temperature conditions (± 30°C) and 90 rpm of agitation for 7 days, Bacillus subtilis 3KP could degrade naphthalene in the amount of 70.5% and phenanthrene in the amount of 24.8%. Based on the analysis of UV-Vis spectrophotometer, three metabolites, 1-hydroxy-2-naphthoic acid, salicylic acid, and pyrocatechol were found in both cultures. The metabolite identification became basis of propose degradation pathway of naphthalene and phenanthrene by Bacillus subtilis 3KP. The results of hydrocarbon uptake mechanism test show that Bacillus subtilis 3KP used all of the mechanism to degrade naphthalene and phenanthrene.

  10. Laser-induced speckle scatter patterns in Bacillus colonies

    Directory of Open Access Journals (Sweden)

    Huisung eKim

    2014-10-01

    Full Text Available Label-free bacterial colony phenotyping technology called BARDOT (BActerial Rapid Detection using Optical scattering Technology provided successful classification of several different bacteria at the genus, species, and serovar level. Recent experiments with colonies of Bacillus species provided strikingly different characteristics of elastic light scatter (ELS patterns, which were comprised of random speckles compared to other bacteria, which are dominated by concentric rings and spokes. Since this laser-based optical sensor interrogates the whole volume of the colony, 3-D information of micro- and macro-structures are all encoded in the far-field scatter patterns. Here, we present a theoretical model explaining the underlying mechanism of the speckle formation by the colonies from Bacillus species. Except for Bacillus polymyxa, all Bacillus spp. produced random bright spots on the imaging plane, which presumably dependent on the cellular and molecular organization and content within the colony. Our scatter model-based analysis revealed that colony spread resulting in variable surface roughness can modify the wavefront of the scatter field. As the center diameter of the Bacillus spp. colony grew from 500 μm to 900 μm, average speckles area decreased 2-fold and the number of small speckles increased 7-fold. In conclusion, as Bacillus colony grows, the average speckle size in the scatter pattern decreases and the number of smaller speckle increases due to the swarming growth characteristics of bacteria within the colony.

  11. Experimental Design for a Macrofoam-Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hutchison, Janine R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-05

    This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam-swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (culture and polymerase chain reaction) will be used. Only one previous study has investigated how the false negative rate depends on test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam-swab sampling at low concentrations.

  12. Experimental Design for a Macrofoam Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F.; Hutchison, Janine R.

    2014-04-16

    This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (plating/counting and polymerase chain reaction) will be used. Only one previous study has investigated false negative as a function of affecting test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam swab sampling at low concentrations.

  13. Transesterification Synthesis of Chloramphenicol Esters with the Lipase from Bacillus amyloliquefaciens

    Directory of Open Access Journals (Sweden)

    Fengying Dong

    2017-09-01

    Full Text Available This work presents a synthetic route to produce chloramphenicol esters by taking advantage the high enantio- and regio-selectivity of lipases. A series of chloramphenicol esters were synthesized using chloramphenicol, acyl donors of different carbon chain length and lipase LipBA (lipase cloned from Bacillus amyloliquefaciens. Among acyl donors with different carbon chain lengths, vinyl propionate was found to be the best. The influences of different organic solvents, reaction temperature, reaction time, enzyme loading and water content on the synthesis of the chloramphenicol esters were studied. The synthesis of chloramphenicol propionate (0.25 M with 4.0 g L−1 of LipBA loading gave a conversion of ~98% and a purity of ~99% within 8 h at 50 °C in 1,4-dioxane as solvent. The optimum mole ratio of vinyl propionate to chloramphenicol was increased to 5:1. This is the first report of B. amyloliquefaciens lipase being used in chloramphenicol ester synthesis and a detailed study of the synthesis of chloramphenicol propionate using this reaction. The high enzyme activity and selectivity make lipase LipBA an attractive catalyst for green chemical synthesis of molecules with complex structures.

  14. Heat activation and stability of amylases from Bacillus species | Ajayi ...

    African Journals Online (AJOL)

    Leitch and Collier sporulating Bacillus medium was used to isolate some strains of Bacillus species from soil, wastewater and food sources in Ibadan, Oyo State, Nigeria, by heat activation method. Heat treatment at 80oC allowed the growth of sporulating Bacillus species, in the culture sample source without other bacteria ...

  15. Isolation and characterization of cellulolytic Bacillus licheniformis ...

    African Journals Online (AJOL)

    Eight cellulose degrading bacteria were isolated from compost and were identified as Bacillus licheniformis by 16S rRNA sequencing. Among the eight isolates, Bacillus licheniformis B4, B7 and B8 showed the highest cellulase activity. B. licheniformis B4 and B8 showed the maximum cellulase activity during the stationary ...

  16. Branched-chain amino acid, meat intake and risk of type 2 diabetes in the Women's Health Initiative.

    Science.gov (United States)

    Isanejad, Masoud; LaCroix, Andrea Z; Thomson, Cynthia A; Tinker, Lesley; Larson, Joseph C; Qi, Qibin; Qi, Lihong; Cooper-DeHoff, Rhonda M; Phillips, Lawrence S; Prentice, Ross L; Beasley, Jeannette M

    2017-06-01

    Knowledge regarding association of dietary branched-chain amino acid (BCAA) and type 2 diabetes (T2D), and the contribution of BCAA from meat to the risk of T2D are scarce. We evaluated associations between dietary BCAA intake, meat intake, interaction between BCAA and meat intake and risk of T2D. Data analyses were performed for 74 155 participants aged 50-79 years at baseline from the Women's Health Initiative for up to 15 years of follow-up. We excluded from analysis participants with treated T2D, and factors potentially associated with T2D or missing covariate data. The BCAA and total meat intake was estimated from FFQ. Using Cox proportional hazards models, we assessed the relationship between BCAA intake, meat intake, and T2D, adjusting for confounders. A 20 % increment in total BCAA intake (g/d and %energy) was associated with a 7 % higher risk for T2D (hazard ratio (HR) 1·07; 95 % CI 1·05, 1·09). For total meat intake, a 20 % increment was associated with a 4 % higher risk of T2D (HR 1·04; 95 % CI 1·03, 1·05). The associations between BCAA intake and T2D were attenuated but remained significant after adjustment for total meat intake. These relations did not materially differ with or without adjustment for BMI. Our results suggest that dietary BCAA and meat intake are positively associated with T2D among postmenopausal women. The association of BCAA and diabetes risk was attenuated but remained positive after adjustment for meat intake suggesting that BCAA intake in part but not in full is contributing to the association of meat with T2D risk.

  17. Isolation and characterization of a novel analyte from Bacillus subtilis SC-8 antagonistic to Bacillus cereus.

    Science.gov (United States)

    Lee, Nam Keun; Yeo, In-Cheol; Park, Joung Whan; Kang, Byung-Sun; Hahm, Young Tae

    2010-09-01

    In this study, an effective substance was isolated from Bacillus subtilis SC-8, which was obtained from traditionally fermented soybean paste, cheonggukjang. The substance was purified by HPLC, and its properties were analyzed. It had an adequate antagonistic effect on Bacilluscereus, and its spectrum of activity was narrow. When tested on several gram-negative and gram-positive foodborne pathogenic bacteria such as Salmonella enterica, Salmonella enteritidis, Staphylococcus aureus, and Listeria monocytogenes, no antagonistic effect was observed. Applying the derivative from B. subtilis SC-8 within the same genus did not inhibit the growth of major soybean-fermenting bacteria such as Bacillus subtilis, Bacillus licheniformis, and Bacillus amyloquefaciens. The range of pH stability of the purified antagonistic substance was wide (from 4.0 to >10.0), and the substance was thermally stable up to 60 degrees C. In the various enzyme treatments, the antagonistic activity of the purified substance was reduced with proteinase K, protease, and lipase; its activity was partially destroyed with esterase. Spores of B. cereus did not grow at all in the presence of 5mug/mL of the purified antagonistic substance. The isolated antagonistic substance was thought to be an antibiotic-like lipopeptidal compound and was tentatively named BSAP-254 because it absorbed to UV radiation at 254nm. Copyright 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Induction of L-form-like cell shape change of Bacillus subtilis under microculture conditions.

    Science.gov (United States)

    Shingaki, Ryuji; Kasahara, Yasuhiro; Iwano, Megumi; Kuwano, Masayoshi; Takatsuka, Tomomasa; Inoue, Tetsuyoshi; Kokeguchi, Susumu; Fukui, Kazuhiro

    2003-09-01

    A remarkable cell shape change was observed in Bacillus subtilis strain 168 under microculture conditions on CI agar medium (Spizizen's minimal medium supplemented with a trace amount of yeast extract and Casamino acids). Cells cultured under a cover glass changed in form from rod-shaped to spherical, large and irregular shapes that closely resembled L-form cells. The cell shape change was observed only with CI medium, not with Spizizen's minimum medium alone or other rich media. The whole-cell protein profile of cells grown under cover glass and cells grown on CI agar plates differed in several respects. Tandem mass analysis of nine gel bands which differed in protein expression between the two conditions showed that proteins related to nitrate respiration and fermentation were expressed in the shape-changed cells grown under cover glass. The cell shape change of CI cultures was repressed when excess KNO3 was added to the medium. Whole-cell protein analysis of the normal rod-shaped cells grown with 0.1% KNO3 and the shape-changed cells grown without KNO3 revealed that the expression of the branched-chain alpha-keto acid dehydrogenase complex (coded by the bfmB gene locus) was elevated in the shape-changed cells. Inactivation of the bfmB locus resulted in the repression of cell shape change, and cells in which bfmB expression was induced by IPTG did show changes in shape. Transmission electron microscopy of ultrathin sections demonstrated that the shape-changed cells had thin walls, and plasmolysis of cells fixed with a solution including 0.1 M sucrose was observed. Clarifying the mechanism of thinning of the cell wall may lead to the development of a new type of cell wall biosynthetic inhibitor.

  19. Selection and differentiation of Bacillus spp. Antagonistic to Fusarium oxysporum f.sp. lycopersici and Alternaria solani infecting Tomato.

    Science.gov (United States)

    Shanmugam, Veerubommu; Atri, Kamini; Gupta, Samriti; Kanoujia, Nandina; Naruka, Digvijay Singh

    2011-03-01

    Antagonistic Bacillus spp. displaying in vitro production of siderophore, chitinase, and β-1,3-glucanase were identified from dual culture assays. In independent greenhouse studies, seed bacterization and soil application of Bacillus atrophaeus S2BC-2 challenge inoculated with Fusarium oxysporum f.sp. lycopersici (FOL) and Alternaria solani (AS) recorded low percent disease index of 25.3 and 28.7, respectively, over nonbacterised pathogen control (44.3 and 56.4). The low disease incidence corroborated with tomato growth promotion with high vigor index (8,041.2) and fresh plant weight (82.5 g) on challenge inoculation with FOL. Analysis of root and leaf samples in rhizobacterial treatment challenged with FOL and AS revealed maximum induction of chitinase (1.9 and 1.7 U/mg of protein, respectively) and β-1,3-glucanase (23.5 and 19.2 U/mg of protein, respectively). In native gel activity assays, the rhizobacterial treatment on challenge inoculation strongly expressed three high intensity PO isoforms along with one low intensity isoform. In studies on genetic diversity of the Bacillus strains by repetitive extragenomic palindromic-polymerase chain reaction (REP-PCR) and amplified rDNA restriction analysis (ARDRA) patterns, ARDRA was more highly discriminant than REP-PCR and allowed grouping of the strains and differentiation of the antagonistic strains from other isolates.

  20. Physical Sequestration of Bacillus anthracis in the Pulmonary Capillaries in Terminal Infection.

    Science.gov (United States)

    Jouvion, Gregory; Corre, Jean-Philippe; Khun, Huot; Moya-Nilges, Marie; Roux, Pascal; Latroche, Claire; Tournier, Jean-Nicolas; Huerre, Michel; Chrétien, Fabrice; Goossens, Pierre L

    2016-07-15

    The lung is the terminal target of Bacillus anthracis before death, whatever the route of infection (cutaneous, inhalational, or digestive). During a cutaneous infection in absence of toxins, we observed encapsulated bacteria colonizing the alveolar capillary network, bacteria and hemorrhages in alveolar and bronchiolar spaces, and hypoxic foci in the lung (endothelial cells) and brain (neurons and neuropil). Circulating encapsulated bacteria were as chains of approximately 13 µm in length. Bacteria of such size were immediately trapped within the lung capillary network, but bacteria of shorter length were not. Controlling lung-targeted pathology would be beneficial for anthrax treatment. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  1. Neuro-Oncology Branch

    Science.gov (United States)

    ... BTTC are experts in their respective fields. Neuro-Oncology Clinical Fellowship This is a joint program with ... can increase survival rates. Learn more... The Neuro-Oncology Branch welcomes Dr. Mark Gilbert as new Branch ...

  2. BranchAnalysis2D/3D automates morphometry analyses of branching structures.

    Science.gov (United States)

    Srinivasan, Aditya; Muñoz-Estrada, Jesús; Bourgeois, Justin R; Nalwalk, Julia W; Pumiglia, Kevin M; Sheen, Volney L; Ferland, Russell J

    2018-01-15

    Morphometric analyses of biological features have become increasingly common in recent years with such analyses being subject to a large degree of observer bias, variability, and time consumption. While commercial software packages exist to perform these analyses, they are expensive, require extensive user training, and are usually dependent on the observer tracing the morphology. To address these issues, we have developed a broadly applicable, no-cost ImageJ plugin we call 'BranchAnalysis2D/3D', to perform morphometric analyses of structures with branching morphologies, such as neuronal dendritic spines, vascular morphology, and primary cilia. Our BranchAnalysis2D/3D algorithm allows for rapid quantification of the length and thickness of branching morphologies, independent of user tracing, in both 2D and 3D data sets. We validated the performance of BranchAnalysis2D/3D against pre-existing software packages using trained human observers and images from brain and retina. We found that the BranchAnalysis2D/3D algorithm outputs results similar to available software (i.e., Metamorph, AngioTool, Neurolucida), while allowing faster analysis times and unbiased quantification. BranchAnalysis2D/3D allows inexperienced observers to output results like a trained observer but more efficiently, thereby increasing the consistency, speed, and reliability of morphometric analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Branched-Chain Amino Acid Levels Are Related with Surrogates of Disturbed Lipid Metabolism among Older Men

    Directory of Open Access Journals (Sweden)

    Urho M Kujala

    2016-11-01

    Full Text Available Aims/hypothesis Existing studies suggest that decreased branched-chain amino acid (BCAA catabolism and thus elevated levels in blood are associated with metabolic disturbances. Based on such information we have developed a hypothesis how BCAA degradation mechanistically connects to tricarboxylic acid (TCA cycle, intramyocellular lipid storage and oxidation thus allowing more efficient mitochondrial energy production from lipids as well as providing better metabolic health. We analyzed whether data from aged Finnish men are in line with our mechanistic hypothesis linking BCAA catabolism and metabolic disturbances. Methods Older Finnish men enriched with individuals having been athletes in young adulthood (n=593; mean age 72.6 ± 5.9 years responded to questionnaires, participated in a clinical examination including assessment of body composition with bioimpedance and gave fasting blood samples for various analytes as well as participated in a 2 hour 75 g oral glucose tolerance test. Metabolomics measurements from serum included BCAAs (isoleucine, leucine and valine.Results Out of the 593 participants 59 had previously known type 2 diabetes, further 67 had screen-detected type 2 diabetes, 127 IGT and 125 IFG while 214 had normal glucose regulation. There were group differences in all of the BCAA concentrations (p≤0.005 for all BCAAs, such that those with normal glucose tolerance had the lowest and those with diabetes mellitus had the highest BCAA concentrations. All BCAA levels correlated positively with body fat percentage (r=.29 - .34, p<.0001 for all. Expected associations with high BCAA concentrations and unfavorable metabolic profile indicators from metabolomics analysis were found. Except for glucose concentrations, the associations were stronger with isoleucine and leucine than with valine. Conclusions/interpretation The findings provided further support for our hypothesis by strengthening the idea that the efficiency of BCAA catabolism

  4. Momentum autocorrelation function of a classic diatomic chain

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ming B., E-mail: mingbyu@gmail.com

    2016-10-23

    A classical harmonic diatomic chain is studied using the recurrence relations method. The momentum autocorrelation function results from contributions of acoustic and optical branches. By use of convolution theorem, analytical expressions for the acoustic and optical contributions are derived as even-order Bessel function expansions with coefficients given in terms of integrals of elliptic functions in real axis and a contour parallel to the imaginary axis, respectively. - Highlights: • Momentum autocorrelation function of a classic diatomic chain is studied. • It is derived as even-order Bessel function expansion using the convolution theorem. • The expansion coefficients are integrals of elliptic functions. • Addition theorem is used to reduce complex elliptic function to complex sum of real ones.

  5. Effects of carbohydrate, branched-chain amino acids, and arginine in recovery period on the subsequent performance in wrestlers

    Directory of Open Access Journals (Sweden)

    Jang Tsong-Rong

    2011-11-01

    Full Text Available Abstract Many athletes need to participate in multiple events in a single day. The efficient post-exercise glycogen recovery may be critical for the performance in subsequent exercise. This study examined whether post-exercise carbohydrate supplementation could restore the performance in the subsequent simulated wrestling match. The effect of branched-chain amino acids and arginine on glucose disposal and performance was also investigated. Nine well-trained male wrestlers participated in 3 trials in a random order. Each trial contained 3 matches with a 1-hr rest between match 1 and 2, and a 2-hr rest between match 2 and 3. Each match contained 3 exercise periods interspersed with 1-min rests. The subjects alternated 10-s all-out sprints and 20-s rests in each exercise period. At the end of match 2, 3 different supplementations were consumed: 1.2 g/kg glucose (CHO trial, 1 g/kg glucose + 0.1 g/kg Arg + 0.1 g/kg BCAA (CHO+AA trial, or water (placebo trial. The peak and average power in the 3 matches was similar in the 3 trials. After the supplementation, CHO and CHO+AA trial showed significantly higher glucose and insulin, and lower glycerol and non-esterified fatty acid concentrations than the placebo trial. There was no significant difference in these biochemical parameters between the CHO and CHO+AA trials. Supplementation of carbohydrate with or without BCAA and arginine during the post-match period had no effect on the performance in the following simulated match in wrestlers. In addition, BCAA and arginine did not provide additional insulinemic effect.

  6. Bundle Branch Block

    Science.gov (United States)

    ... known cause. Causes can include: Left bundle branch block Heart attacks (myocardial infarction) Thickened, stiffened or weakened ... myocarditis) High blood pressure (hypertension) Right bundle branch block A heart abnormality that's present at birth (congenital) — ...

  7. Synthesis of β-1,4-Linked Galactan Side-Chains of Rhamnogalacturonan I

    DEFF Research Database (Denmark)

    Andersen, Mathias Christian Franch; Kracun, Stjepan; Rydahl, Maja

    2016-01-01

    The synthesis of linear- and (1→6)-branched-β-(1→4)-D-galactans, side chains of the pectic polysaccharide rhamnogalacturonan I is described. The strategy relies on iterative couplings of n-pentenyl disaccharides followed by a late stage glycosylation of a common hexasaccharide core. Reaction...

  8. Saturated Branched Chain, Normal Odd-Carbon-Numbered, and n-3 (Omega-3) Polyunsaturated Fatty Acids in Freshwater Fish in the Northeastern United States.

    Science.gov (United States)

    Wang, Dong Hao; Jackson, James R; Twining, Cornelia; Rudstam, Lars G; Zollweg-Horan, Emily; Kraft, Clifford; Lawrence, Peter; Kothapalli, Kumar; Wang, Zhen; Brenna, J Thomas

    2016-10-04

    The fatty acid profiles of wild freshwater fish are poorly characterized as a human food source for several classes of fatty acids, particularly for branched chain fatty acids (BCFA), a major bioactive dietary component known to enter the US food supply primarily via dairy and beef fat. We evaluated the fatty acid content of 27 freshwater fish species captured in the northeastern US with emphasis on the BCFA and bioactive polyunsaturated fatty acids (PUFA) most associated with fish, specifically n-3 (omega-3) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Mean BCFA content across all species was 1.0 ± 0.5% (mean ± SD) of total fatty acids in edible muscle, with rainbow smelt (Osmerus mordax) and pumpkinseed (Lepomis gibbosus) the highest at >2% BCFA. In comparison, EPA + DHA constituted 28% ± 7% of total fatty acids. Across all fish species, the major BCFA were iso-15:0, anteiso-15:0, iso-16:0, iso-17:0 and anteiso-17:0. Fish skin had significantly higher BCFA content than muscle tissues, at 1.8% ± 0.7%, but lower EPA and DHA. Total BCFA in fish skins was positively related with that in muscle (r 2 = 0.6). The straight chain saturates n-15:0 and n-17:0 which have been identified previously as markers for dairy consumption were relatively high with means of 0.4% and 0.6%, respectively, and may be an underappreciated marker for seafood intake. Consuming a standardized portion, 70 g (2.5 oz), of wild freshwater fish contributes only small amounts of BCFA, 2.5-24.2 mg, to the American diet, while it adds surprisingly high amounts of EPA + DHA (107 mg to 558 mg).

  9. A 48-Hour Vegan Diet Challenge in Healthy Women and Men Induces a BRANCH-Chain Amino Acid Related, Health Associated, Metabolic Signature.

    Science.gov (United States)

    Draper, Colleen Fogarty; Vassallo, Irene; Di Cara, Alessandro; Milone, Cristiana; Comminetti, Ornella; Monnard, Irina; Godin, Jean-Philippe; Scherer, Max; Su, MingMing; Jia, Wei; Guiraud, Seu-Ping; Praplan, Fabienne; Guignard, Laurence; Ammon Zufferey, Corinne; Shevlyakova, Maya; Emami, Nashmil; Moco, Sofia; Beaumont, Maurice; Kaput, Jim; Martin, Francois-Pierre

    2018-02-01

    Research is limited on diet challenges to improve health. A short-term, vegan protein diet regimen nutritionally balanced in macronutrient composition compared to an omnivorous diet is hypothesized to improve metabolic measurements of blood sugar regulation, blood lipids, and amino acid metabolism. This randomized, cross-over, controlled vegan versus animal diet challenge is conducted on 21 (11 female,10 male) healthy participants. Fasting plasma is measured during a 3 d diet intervention for clinical biochemistry and metabonomics. Intervention diet plans meet individual caloric needs. Meals are provided and supervised. Diet compliance is monitored. The vegan diet lowers triglycerides, insulin and homeostatic model assessment (HOMA-IR), bile acids, elevated magnesium levels, and changed branched-chain amino acids (BCAAs) metabolism (p vegan versus omnivorous diets. Plasma amino acid and magnesium concentrations positively correlate with dietary amino acids. Polyunsaturated fatty acids and dietary fiber inversely correlate with insulin, HOMA-IR, and triglycerides. Nutritional biochemistries, BCAAs, insulin, and HOMA-IR are impacted by sexual dimorphism. A health-promoting, BCAA-associated metabolic signature is produced from a short-term, healthy, controlled, vegan diet challenge when compared with a healthy, controlled, omnivorous diet. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Branched-chain amino acids alleviate hepatic steatosis and liver injury in choline-deficient high-fat diet induced NASH mice.

    Science.gov (United States)

    Honda, Takashi; Ishigami, Masatoshi; Luo, Fangqiong; Lingyun, Ma; Ishizu, Yoji; Kuzuya, Teiji; Hayashi, Kazuhiko; Nakano, Isao; Ishikawa, Tetsuya; Feng, Guo-Gang; Katano, Yoshiaki; Kohama, Tomoya; Kitaura, Yasuyuki; Shimomura, Yoshiharu; Goto, Hidemi; Hirooka, Yoshiki

    2017-04-01

    For successful treatment for nonalcoholic steatohepatitis (NASH), it may be important to treat the individual causative factors. At present, however, there is no established treatment for this disease. Branched-chain amino acids (BCAAs) have been used to treat patients with decompensated cirrhosis. In order to elucidate the mechanisms responsible for the effects of BCAAs on hepatic steatosis and disease progression, we investigated the effects of BCAA supplementation in mice fed a choline-deficient high-fat diet (CDHF), which induces NASH. Male mice were divided into four groups that received (1) choline-sufficient high fat (HF) diet (HF-control), (2) HF plus 2% BCAA in drinking water (HF-BCAA), (3) CDHF diet (CDHF-control), or (4) CDHF-BCAA for 8weeks. We monitored liver injury, hepatic steatosis and cholesterol, gene expression related to lipid metabolism, and hepatic fat accumulation. Serum alanine aminotransferase (ALT) levels and hepatic triglyceride (TG) were significantly elevated in CDHF-control relative to HF-control. Liver histopathology revealed severe steatosis, inflammation, and pericellular fibrosis in CDHF-control, confirming the NASH findings. Serum ALT levels and hepatic TG and lipid droplet areas were significantly lower in CDHF-BCAA than in CDHF-control. Gene expression and protein level of fatty acid synthase (FAS), which catalyzes the final step in fatty acid biosynthesis, was significantly decreased in CDHF-BCAA than in CDHF-control (PBCAA was significantly lower than those of CDHF-control. BCAA can alleviate hepatic steatosis and liver injury associated with NASH by suppressing FAS gene expression and protein levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Not so simple, not so subtle: the interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms

    Science.gov (United States)

    Rosenberg, Gili; Steinberg, Nitai; Oppenheimer-Shaanan, Yaara; Olender, Tsvia; Doron, Shany; Ben-Ari, Julius; Sirota-Madi, Alexandra; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2016-01-01

    Bacillus subtilis biofilms have a fundamental role in shaping the soil ecosystem. During this process, they unavoidably interact with neighbour bacterial species. We studied the interspecies interactions between biofilms of the soil-residing bacteria B. subtilis and related Bacillus species. We found that proximity between the biofilms triggered recruitment of motile B. subtilis cells, which engulfed the competing Bacillus simplex colony. Upon interaction, B. subtilis secreted surfactin and cannibalism toxins, at concentrations that were inert to B. subtilis itself, which eliminated the B. simplex colony, as well as colonies of Bacillus toyonensis. Surfactin toxicity was correlated with the presence of short carbon-tail length isomers, and synergistic with the cannibalism toxins. Importantly, during biofilm development and interspecies interactions a subpopulation in B. subtilis biofilm lost its native plasmid, leading to increased virulence against the competing Bacillus species. Overall, these findings indicate that genetic programs and traits that have little effect on biofilm development when each species is grown in isolation have a dramatic impact when different bacterial species interact. PMID:28721238

  12. Objectives of research activities in Biology Branch, Chalk River Nuclear Laboratories, 1976

    International Nuclear Information System (INIS)

    1977-03-01

    The primary responsibility assigned to the Biology Branch within the framework of CRNL has been an active engagement in basic research related to the assessment of radiation hazards, particularly those to be expected after exposure to relatively low doses of radiation delivered at low dose-rates. The present group is characterized by a broad interest in the entire chain of events by which the initial radiation-induced changes in the living cell are translated into biological effects, with a special focus of attention on the mechanisms by which the initial damage can be largely repaired and by which the risks to man are modified under different circumstances. The basic concepts in radiation biology and risk estimates are reviewed in the light of recent literature on these topics. The current and proposed research activities of the Biology Branch are described. General and specific recommendations for future activities are given. (author)

  13. Effect of Bacillus subtilis on Granite Weathering: A Laboratory Experiment

    Science.gov (United States)

    Song, W.; Ogawa, N.; Oguchi, C. T.; Hatta, T.; Matsukura, Y.

    2006-12-01

    We performed a comparative experiment to investigate how the ubiquitous soil bacterium Bacillus subtilis weathers granite and which granite-forming minerals weather more rapidly via biological processes. Batch type experiments (granite specimen in a 500 ml solution including NaCl, glucose, yeast extract and bacteria Bacillus subtilis at 27°E C) were carried out for 30 days. Granite surfaces were observed by SEM before and after the experiment. Bacillus subtilis had a strong influence on granite weathering by forming pits. There were 2.4 times as many pits and micropores were 2.3 times wider in granite exposed to Bacillus subtilis when compared with bacteria-free samples. Bacillus subtilis appear to preferentially select an optimum place to adhere to the mineral and dissolve essential elements from the mineral to live. Plagioclase was more vulnerable to bacterial weathering than biotite among the granite composing minerals.

  14. High Leucine Diets Stimulate Cerebral Branched-Chain Amino Acid Degradation and Modify Serotonin and Ketone Body Concentrations in a Pig Model

    Science.gov (United States)

    Wessels, Anna G.; Kluge, Holger; Hirche, Frank; Kiowski, Andreas; Schutkowski, Alexandra; Corrent, Etienne; Bartelt, Jörg; König, Bettina; Stangl, Gabriele I.

    2016-01-01

    In addition to its role as an essential protein component, leucine (Leu) displays several other metabolic functions such as activation of protein synthesis. This property makes it an interesting amino acid for the therapy of human muscle atrophy and for livestock production. However, Leu can stimulate its own degradation via the branched-chain keto acid dehydrogenase complex (BCKDH). To examine the response of several tissues to excessive Leu, pigs were fed diets containing two- (L2) and four-fold (L4) higher Leu contents than the recommended amount (control). We found that the L4 diet led to a pronounced increase in BCKDH activity in the brain (2.5-fold, P diet had only weak effects on BCKDH activity. Both high Leu diets reduced the concentrations of free valine and isoleucine in nearly all tissues. In the brain, high Leu diets modified the amount of tryptophan available: for serotonin synthesis. Compared to the controls, pigs treated with the high Leu diets consumed less food, showed increased plasma concentrations of 3-hydroxybutyrate and reduced levels of circulating serotonin. In conclusion, excessive Leu can stimulate BCKDH activity in several tissues, including the brain. Changes in cerebral tryptophan, along with the changes in amino acid-derived metabolites in the plasma may limit the use of high Leu diets to treat muscle atrophy or to increase muscle growth. PMID:26930301

  15. Branches of the landscape

    International Nuclear Information System (INIS)

    Dine, Michael; O'Neil, Deva; Sun Zheng

    2005-01-01

    With respect to the question of supersymmetry breaking, there are three branches of the flux landscape. On one of these, if one requires small cosmological constant, supersymmetry breaking is predominantly at the fundamental scale; on another, the distribution is roughly flat on a logarithmic scale; on the third, the preponderance of vacua are at very low scale. A priori, as we will explain, one can say little about the first branch. The vast majority of these states are not accessible even to crude, approximate analysis. On the other two branches one can hope to do better. But as a result of the lack of access to branch one, and our poor understanding of cosmology, we can at best conjecture about whether string theory predicts low energy supersymmetry or not. If we hypothesize that are on branch two or three, distinctive predictions may be possible. We comment of the status of naturalness within the landscape, deriving, for example, the statistics of the first branch from simple effective field theory reasoning

  16. Sodium salt medium-chain fatty acids and Bacillus-based probiotic strategies to improve growth and intestinal health of gilthead sea bream (Sparus aurata

    Directory of Open Access Journals (Sweden)

    Paula Simó-Mirabet

    2017-12-01

    Full Text Available Background The increased demand for fish protein has led to the intensification of aquaculture practices which are hampered by nutritional and health factors affecting growth performance. To solve these problems, antibiotics have been used for many years in the prevention, control and treatment against disease as well as growth promoters to improve animal performance. Nowadays, the use of antibiotics in the European Union and other countries has been completely or partially banned as a result of the existence of antibiotic cross-resistance. Therefore, a number of alternatives, including enzymes, prebiotics, probiotics, phytonutrients and organic acids used alone or in combination have been proposed for the improvement of immunological state, growth performance and production in livestock animals. The aim of the present study was to evaluate two commercially available feed additives, one based on medium-chain fatty acids (MCFAs from coconut oil and another with a Bacillus-based probiotic, in gilthead sea bream (GSB, Sparus aurata, a marine farmed fish of high value in the Mediterranean aquaculture. Methods The potential benefits of adding two commercial feed additives on fish growth performance and intestinal health were assessed in a 100-days feeding trial. The experimental diets (D2 and D3 were prepared by supplementing a basal diet (D1 with MCFAs in the form of a sodium salt of coconut fatty acid distillate (DICOSAN®; Norel, Madrid, Spain, rich on C-12, added at 0.3% (D2 or with the probiotic Bacillus amyloliquefaciens CECT 5940, added at 0.1% (D3. The study integrated data on growth performance, blood biochemistry, histology and intestinal gene expression patterns of selected markers of intestinal function and architecture. Results MCFAs in the form of a coconut oil increased feed intake, growth rates and the surface of nutrient absorption, promoting the anabolic action of the somatotropic axis. The probiotic (D3 induced anti

  17. Evaluation of antifungal activity from Bacillus strains against ...

    African Journals Online (AJOL)

    In this study, 30 bacterial strains isolated from marine biofilms were screened for their antifungal activity against Rhizoctonia solani by dual culture assay. Two bacterial strains, Bacillus subtilis and Bacillus cereus, showed a clear antagonism against R. solani on potato dextrose agar (PDA) medium. The antagonistic activity ...

  18. Effect of vitamins and bivalent metals on lysine yield in Bacillus ...

    African Journals Online (AJOL)

    The effects of vitamins and bivalent metals on lysine accumulation in Bacillus strains were investigated. Biotin enhanced lysine production in all the Bacillus strains, while folic acid and riboflavin stimulated lysine yields in Bacillus megaterium SP 86 only. All bivalent metals stimulated lysine accumulation in B. megaterium ...

  19. Genome Sequence of Antibiotic-Producing Bacillus amyloliquefaciens Strain KCTC 13012.

    Science.gov (United States)

    Jeong, Haeyoung; Park, Seung-Hwan; Choi, Soo-Keun

    2015-10-01

    We report the 4.0-Mb draft genome sequence of Bacillus amyloliquefaciens (syn. Bacillus velezensis) KCTC 13012, which exhibits a broad spectrum of antagonistic activity against bacteria and fungi and promotes plant growth as well. The genome contains an array of biosynthetic gene clusters for secondary metabolites that are comparable to those in Bacillus amyloliquefaciens subsp. plantarum FZB42(T). Copyright © 2015 Jeong et al.

  20. In vitro antimicrobial effect of Satureja wiedemanniana against Bacillus species isolated from raw meat samples.

    Science.gov (United States)

    Yucel, Nihal; Aslim, Belma; Ozdoğan, Hakan

    2009-08-01

    In this study a total of 30 raw meat samples obtained from Ankara, Turkey were screened for the presence of Bacillus species. Among the meat samples analyzed, the predominant species isolated was Bacillus circulans; other Bacillus species were identified as Bacillus firmus, Bacillus lentus, Bacillus megaterium, Bacillus licheniformis, Bacillus mycoides, Bacillus sphaericus, and Bacillus cereus. Minced meat samples were more contaminated with Bacillus species than sliced beef sample. From these samples, 242 Bacillus species isolates were obtained, which were investigated for proteolytic and lipolytic activity, associated with meat spoilage. Interestingly, some Bacillus strains produced the highest values of proteolytic/lipolytic activities. Nineteen Bacillus strains were selected among the 242 isolates according to their proteolytic/lipolytic activity with a clear zone diameter of > or =6 mm. The essential oil of Satureja wiedemanniana (Lalem) Velen was also tested against these 19 Bacillus species that had proteolytic and lipolytic activity. The essential oil yield obtained from the aerial parts of the plant was 0.35% (vol/wt). The inhibition zones of the essential oil obtained against all the Bacillus species were in the range of 5.0-12.0 mm. The oil showed high antimicrobial activities against B. licheniformis M 6(26), M 11(16), and M 12(1) strains. B. licheniformis 12(1) showed high lipolytic activity (18.0 mm). Also, B. licheniformis M 6(26) and M 11(16) showed high proteolytic activity (16.0 and 14.0 mm). These results may suggest that an essential oil of S. wiedemanniana can be used as a natural preservative in meat against spoilage bacteria.