WorldWideScience

Sample records for bacillus anthracis spore

  1. Quantitative immunofluorescence studies of the serology of Bacillus anthracis spores.

    OpenAIRE

    Phillips, A. P.; Martin, K L

    1983-01-01

    A fluorescein-conjugated antibody against formalin-inactivated spores of Bacillus anthracis Vollum reacted only weakly with a variety of Bacillus species in microfluorometric immunofluorescence assays. A conjugated antibody against spores of B. anthracis Sterne showed little affinity for spores of several B. anthracis isolates including B. anthracis Vollum, indicating that more than one anthrax spore serotype exists.

  2. Inactivation of Spores of Bacillus anthracis Sterne, Bacillus cereus, and Bacillus thuringiensis subsp. israelensis by Chlorination

    OpenAIRE

    Rice, E W; Adcock, N. J.; Sivaganesan, M; Rose, L. J.

    2005-01-01

    Three species of Bacillus were evaluated as potential surrogates for Bacillus anthracis for determining the sporicidal activity of chlorination as commonly used in drinking water treatment. Spores of Bacillus thuringiensis subsp. israelensis were found to be an appropriate surrogate for spores of B. anthracis for use in chlorine inactivation studies.

  3. Natural Dissemination of Bacillus anthracis Spores in Northern Canada

    OpenAIRE

    Dragon, D C; Bader, D. E.; Mitchell, J.; Woollen, N.

    2005-01-01

    Soil samples were collected from around fresh and year-old bison carcasses and areas not associated with known carcasses in Wood Buffalo National Park during an active anthrax outbreak in the summer of 2001. Sample selection with a grid provided the most complete coverage of a site. Soil samples were screened for viable Bacillus anthracis spores via selective culture, phenotypic analysis, and PCR. Bacillus anthracis spores were isolated from 28.4% of the samples. The highest concentrations of...

  4. Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores

    Science.gov (United States)

    Wood, Joseph P.; Meyer, Kathryn M.; Kelly, Thomas J.; Choi, Young W.; Rogers, James V.; Riggs, Karen B.; Willenberg, Zachary J.

    2015-01-01

    There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially. PMID:26372011

  5. Differentiation between spores of Bacillus anthracis and Bacillus cereus by a quantitative immunofluorescence technique.

    OpenAIRE

    Phillips, A. P.; Martin, K L; Broster, M G

    1983-01-01

    A quantitative immunofluorescence assay based on fiber optic microscopy was used to measure the reaction of formalized spores of Bacillus anthracis and Bacillus cereus isolates with fluorescein conjugates prepared by hyperimmunization with B. anthracis Vollum spores. The spores of 11 of the 20 B. cereus strains reacted with the anti-anthrax conjugate to such an extent that they were indistinguishable from the spores of the several B. anthracis isolates tested. However, absorption of the conju...

  6. Identifying experimental surrogates for Bacillus anthracis spores: a review

    Directory of Open Access Journals (Sweden)

    Greenberg David L

    2010-09-01

    Full Text Available Abstract Bacillus anthracis, the causative agent of anthrax, is a proven biological weapon. In order to study this threat, a number of experimental surrogates have been used over the past 70 years. However, not all surrogates are appropriate for B. anthracis, especially when investigating transport, fate and survival. Although B. atrophaeus has been widely used as a B. anthracis surrogate, the two species do not always behave identically in transport and survival models. Therefore, we devised a scheme to identify a more appropriate surrogate for B. anthracis. Our selection criteria included risk of use (pathogenicity, phylogenetic relationship, morphology and comparative survivability when challenged with biocides. Although our knowledge of certain parameters remains incomplete, especially with regards to comparisons of spore longevity under natural conditions, we found that B. thuringiensis provided the best overall fit as a non-pathogenic surrogate for B. anthracis. Thus, we suggest focusing on this surrogate in future experiments of spore fate and transport modelling.

  7. Multigeneration Cross-Contamination of Mail with Bacillus anthracis Spores.

    Directory of Open Access Journals (Sweden)

    Jason Edmonds

    Full Text Available The release of biological agents, including those which could be used in biowarfare or bioterrorism in large urban areas, has been a concern for governments for nearly three decades. Previous incidents from Sverdlosk and the postal anthrax attack of 2001 have raised questions on the mechanism of spread of Bacillus anthracis spores as an aerosol or contaminant. Prior studies have demonstrated that Bacillus atrophaeus is easily transferred through simulated mail handing, but no reports have demonstrated this ability with Bacillus anthracis spores, which have morphological differences that may affect adhesion properties between spore and formite. In this study, equipment developed to simulate interactions across three generations of envelopes subjected to tumbling and mixing was used to evaluate the potential for cross-contamination of B. anthracis spores in simulated mail handling. In these experiments, we found that the potential for cross-contamination through letter tumbling from one generation to the next varied between generations while the presence of a fluidizer had no statistical impact on the transfer of material. Likewise, the presence or absence of a fluidizer had no statistically significant impact on cross-contamination levels or reaerosolization from letter opening.

  8. Multigeneration Cross-Contamination of Mail with Bacillus anthracis Spores.

    Science.gov (United States)

    Edmonds, Jason; Lindquist, H D Alan; Sabol, Jonathan; Martinez, Kenneth; Shadomy, Sean; Cymet, Tyler; Emanuel, Peter

    2016-01-01

    The release of biological agents, including those which could be used in biowarfare or bioterrorism in large urban areas, has been a concern for governments for nearly three decades. Previous incidents from Sverdlosk and the postal anthrax attack of 2001 have raised questions on the mechanism of spread of Bacillus anthracis spores as an aerosol or contaminant. Prior studies have demonstrated that Bacillus atrophaeus is easily transferred through simulated mail handing, but no reports have demonstrated this ability with Bacillus anthracis spores, which have morphological differences that may affect adhesion properties between spore and formite. In this study, equipment developed to simulate interactions across three generations of envelopes subjected to tumbling and mixing was used to evaluate the potential for cross-contamination of B. anthracis spores in simulated mail handling. In these experiments, we found that the potential for cross-contamination through letter tumbling from one generation to the next varied between generations while the presence of a fluidizer had no statistical impact on the transfer of material. Likewise, the presence or absence of a fluidizer had no statistically significant impact on cross-contamination levels or reaerosolization from letter opening. PMID:27123934

  9. Cytokine Response to Infection with Bacillus anthracis Spores

    OpenAIRE

    Pickering, Alison K.; Osorio, Manuel; Lee, Gloria M.; Grippe, Vanessa K.; Bray, Mechelle; Merkel, Tod J.

    2004-01-01

    Bacillus anthracis, the etiological agent of anthrax, is a gram-positive, spore-forming bacterium. The inhalational form of anthrax is the most severe and is associated with rapid progression of the disease and the outcome is frequently fatal. Transfer from the respiratory epithelium to regional lymph nodes appears to be an essential early step in the establishment of infection. This transfer is believed to occur by means of carriage within alveolar macrophages following phagocytosis. Therefo...

  10. Decontamination Options for Drinking Water Contaminated with Bacillus anthracis Spores

    Energy Technology Data Exchange (ETDEWEB)

    Raber, E; Burklund, A

    2010-02-16

    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination options for use in a contaminated drinking water supply. The parameters were: (1) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus); (2) spore concentration in suspension (10{sup 2} to 10{sup 6} spores/ml); (3) chemical characteristics of decontaminant [sodium dicholor-s-triazinetrione dihydrate (Dichlor), hydrogen peroxide, potassium peroxymonosulfate (Oxone), sodium hypochlorite, and VirkonS{reg_sign}]; (4) decontaminant concentration (0.01% to 5%); and (5) decontaminant exposure time (10 min to 24 hr). Results from 162 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5%, and Dichlor and sodium hypochlorite at a concentration of 2%, were effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting EPA's biocide standard of greater than a 6 log kill after a 10-minute exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS{reg_sign} and Oxone were less effective decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for biocides. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.

  11. Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence.

    Science.gov (United States)

    Wang, Yanyu; Jenkins, Sarah A; Gu, Chunfang; Shree, Ankita; Martinez-Moczygemba, Margarita; Herold, Jennifer; Botto, Marina; Wetsel, Rick A; Xu, Yi

    2016-06-01

    Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications. PMID:27304426

  12. Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence.

    Directory of Open Access Journals (Sweden)

    Yanyu Wang

    2016-06-01

    Full Text Available Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications.

  13. Development of a Rapid and Sensitive Immunoassay for Detection and Subsequent Recovery of Bacillus anthracis Spores in Environmental Samples

    OpenAIRE

    Hang, Jun; Sundaram, Appavu K.; Zhu, Peixuan; Shelton, Daniel R.; Karns, Jeffrey S.; Martin, Phyllis A. W.; Li, Shuhong; Amstutz, Platte; Tang, Cha-Mei

    2008-01-01

    Bacillusanthracis is considered a major threat as an agent of bioterrorism. B. anthracis spores are readily dispersed as aerosols, are very persistent, and are resistant to normal disinfection treatments. Immunoassays have been developed to rapidly detect B. anthracis spores at high concentrations. However, detection of B. anthracis spores at lower concentrations is problematic due to the fact that closely related Bacillus species (e.g., B. thuringiensis) can cross react with anti-B. anthraci...

  14. The search and identification of the new immunodiagnostic targets of bacillus anthracis spore

    International Nuclear Information System (INIS)

    Spores of Bacillus anthracis have been used as bio warfare agent to bio terrorize purposes. As efficiency of anti-epidemic measures included urgent prevention and treatment is determined by terms within which the bio agent is identified. Direct and rapid spore detection by antibodies based detection system is very attractive alternative to current PCR-based assays or routine phenotyping which are the most accurate but are also complex, time-consumption and expensive. The main difficulty with respect to such kind of anthrax spores detection is a cross-reaction with spores of closely related bacteria. For development of species-specific antibodies to anthrax spores recombinant scFvs or hybridoma technique were used. In both case surface spore antigens contained species-specific epitopes are need. Among exosporium proteins only ExsF(BxpB), ExsK and SoaA are specific to B.cereus group. On the surface of B. anthracis spores, a unique tetrasaccharides containing an novel monosaccharide - anthrose, was discovered. It was shown that anthrose can be serving as species-specific target for B. anthracis spores detection. We have revealed that EA1 isolated from spore of Russians strain STI-1 contain carbohydrate which formed species-specific epitopes and determine immunogenicity of this antigen. Antibodies to this antigen specifically recognized the surface target of B. anthracis spores and do not reacted with others Bacillus spore. Based on these antibodies we developed the test-systems in different formats for rapid direct detection and identification of B. anthracis spores. The results of trial these test-systems with using more than 50 different Bacillus strains were indicated that carbohydrate of EA1 isolated from spore is effective immunodiagnostic target for anthrax spores bio detection.(author)

  15. Flow-cytometric Analysis of Bacillus anthracis Spores

    Directory of Open Access Journals (Sweden)

    D. V. Kamboj

    2006-11-01

    Full Text Available Flow-cytometric technique has been established as a powerful tool for detection andidentification of microbiological agents. Unambiguous and rapid detection of Bacillus anthracisspores has been reported using immunoglobulin G-fluorescein isothiocyanate conjugate againstlive spores. In addition to the high sensitivity, the present technique could differentiate betweenspores of closely related species, eg, Bacillus cereus and Bacillus subtilis using fluorescenceintensity. The technique can be used for detection of live as well as inactivated spores makingit more congenial for screening of suspected samples of bioterrorism.

  16. PCR Assay To Detect Bacillus anthracis Spores in Heat-Treated Specimens

    OpenAIRE

    Fasanella, A.; Losito, S.; Adone, R.; Ciuchini, F.; Trotta, T.; Altamura, S. A.; D. Chiocco; Ippolito, G

    2003-01-01

    Recent interest in anthrax is due to its potential use in bioterrorism and as a biowarfare agent against civilian populations. The development of rapid and sensitive techniques to detect anthrax spores in suspicious specimens is the most important aim for public health. With a view to preventing exposure of laboratory workers to viable Bacillus anthracis spores, this study evaluated the suitability of PCR assays for detecting anthrax spores previously inactivated at 121°C for 45 min. The resu...

  17. Anthrax Toxins in Context of Bacillus anthracis Spores and Spore Germination

    OpenAIRE

    Cote, Christopher K.; Susan L. Welkos

    2015-01-01

    The interaction of anthrax toxin or toxin components with B. anthracis spores has been demonstrated. Germinating spores can produce significant amounts of toxin components very soon after the initiation of germination. In this review, we will summarize the work performed that has led to our understanding of toxin and spore interactions and discuss the complexities associated with these interactions.

  18. Novel Sample Preparation Method for Safe and Rapid Detection of Bacillus anthracis Spores in Environmental Powders and Nasal Swabs

    OpenAIRE

    Luna, Vicki A.; King, Debra; Davis, Carisa; Rycerz, Tony; Ewert, Matthew; Cannons, Andrew; Amuso, Philip; Cattani, Jacqueline

    2003-01-01

    Bacillus anthracis spores have been used as a biological weapon in the United States. We wanted to develop a safe, rapid method of sample preparation that provided safe DNA for the detection of spores in environmental and clinical specimens. Our method reproducibly detects B. anthracis in samples containing

  19. The Use of Germinants to Potentiate the Sensitivity of Bacillus anthracis Spores to Peracetic Acid.

    Science.gov (United States)

    Celebi, Ozgur; Buyuk, Fatih; Pottage, Tom; Crook, Ant; Hawkey, Suzanna; Cooper, Callum; Bennett, Allan; Sahin, Mitat; Baillie, Leslie

    2016-01-01

    Elimination of Bacillus anthracis spores from the environment is a difficult and costly process due in part to the toxicity of current sporicidal agents. For this reason we investigated the ability of the spore germinants L-alanine (100 mM) and inosine (5 mM) to reduce the concentration of peracetic acid (PAA) required to inactivate B. anthracis spores. While L-alanine significantly enhanced (p = 0.0085) the bactericidal activity of 500 ppm PAA the same was not true for inosine suggesting some form of negative interaction. In contrast the germinant combination proved most effective at 100 ppm PAA (p = 0.0009). To determine if we could achieve similar results in soil we treated soil collected from the burial site of an anthrax infected animal which had been supplemented with spores of the Sterne strain of B. anthracis to increase the level of contamination to 10(4) spores/g. Treatment with germinants followed 1 h later by 5000 ppm PAA eliminated all of the spores. In contrast direct treatment of the animal burial site using this approach delivered using a back pack sprayer had no detectable effect on the level of B. anthracis contamination or on total culturable bacterial numbers over the course of the experiment. It did trigger a significant, but temporary, reduction (p < 0.0001) in the total spore count suggesting that germination had been triggered under real world conditions. In conclusion, we have shown that the application of germinants increase the sensitivity of bacterial spores to PAA. While the results of the single field trial were inconclusive, the study highlighted the potential of this approach and the challenges faced when attempting to perform real world studies on B. anthracis spores contaminated sites. PMID:26858699

  20. The Use of Germinants to Potentiate the Sensitivity of Bacillus anthracis Spores to Peracetic Acid

    Science.gov (United States)

    Celebi, Ozgur; Buyuk, Fatih; Pottage, Tom; Crook, Ant; Hawkey, Suzanna; Cooper, Callum; Bennett, Allan; Sahin, Mitat; Baillie, Leslie

    2016-01-01

    Elimination of Bacillus anthracis spores from the environment is a difficult and costly process due in part to the toxicity of current sporicidal agents. For this reason we investigated the ability of the spore germinants L-alanine (100 mM) and inosine (5 mM) to reduce the concentration of peracetic acid (PAA) required to inactivate B. anthracis spores. While L-alanine significantly enhanced (p = 0.0085) the bactericidal activity of 500 ppm PAA the same was not true for inosine suggesting some form of negative interaction. In contrast the germinant combination proved most effective at 100 ppm PAA (p = 0.0009). To determine if we could achieve similar results in soil we treated soil collected from the burial site of an anthrax infected animal which had been supplemented with spores of the Sterne strain of B. anthracis to increase the level of contamination to 104 spores/g. Treatment with germinants followed 1 h later by 5000 ppm PAA eliminated all of the spores. In contrast direct treatment of the animal burial site using this approach delivered using a back pack sprayer had no detectable effect on the level of B. anthracis contamination or on total culturable bacterial numbers over the course of the experiment. It did trigger a significant, but temporary, reduction (p < 0.0001) in the total spore count suggesting that germination had been triggered under real world conditions. In conclusion, we have shown that the application of germinants increase the sensitivity of bacterial spores to PAA. While the results of the single field trial were inconclusive, the study highlighted the potential of this approach and the challenges faced when attempting to perform real world studies on B. anthracis spores contaminated sites. PMID:26858699

  1. Inactivation of Bacillus anthracis Spores during Laboratory-Scale Composting of Feedlot Cattle Manure

    Science.gov (United States)

    Xu, Shanwei; Harvey, Amanda; Barbieri, Ruth; Reuter, Tim; Stanford, Kim; Amoako, Kingsley K.; Selinger, Leonard B.; McAllister, Tim A.

    2016-01-01

    Anthrax outbreaks in livestock have social, economic and health implications, altering farmer’s livelihoods, impacting trade and posing a zoonotic risk. Our study investigated the survival of Bacillus thuringiensis and B. anthracis spores sporulated at 15, 20, or 37°C, over 33 days of composting. Spores (∼7.5 log10 CFU g-1) were mixed with manure and composted in laboratory scale composters. After 15 days, the compost was mixed and returned to the composter for a second cycle. Temperatures peaked at 71°C on day 2 and remained ≥55°C for an average of 7 days in the first cycle, but did not exceed 55°C in the second. For B. thuringiensis, spores generated at 15 and 21°C exhibited reduced (P < 0.05) viability of 2.7 and 2.6 log10 CFU g-1 respectively, as compared to a 0.6 log10 CFU g-1 reduction for those generated at 37°C. For B. anthracis, sporulation temperature did not impact spore survival as there was a 2.5, 2.2, and 2.8 log10 CFU g-1 reduction after composting for spores generated at 15, 21, and 37°C, respectively. For both species, spore viability declined more rapidly (P < 0.05) in the first as compared to the second composting cycle. Our findings suggest that the duration of thermophilic exposure (≥55°C) is the main factor influencing survival of B. anthracis spores in compost. As sporulation temperature did not influence survival of B. anthracis, composting may lower the viability of spores associated with carcasses infected with B. anthracis over a range of sporulation temperatures. PMID:27303388

  2. Inactivation of Bacillus anthracis Spores during Laboratory-Scale Composting of Feedlot Cattle Manure.

    Science.gov (United States)

    Xu, Shanwei; Harvey, Amanda; Barbieri, Ruth; Reuter, Tim; Stanford, Kim; Amoako, Kingsley K; Selinger, Leonard B; McAllister, Tim A

    2016-01-01

    Anthrax outbreaks in livestock have social, economic and health implications, altering farmer's livelihoods, impacting trade and posing a zoonotic risk. Our study investigated the survival of Bacillus thuringiensis and B. anthracis spores sporulated at 15, 20, or 37°C, over 33 days of composting. Spores (∼7.5 log10 CFU g(-1)) were mixed with manure and composted in laboratory scale composters. After 15 days, the compost was mixed and returned to the composter for a second cycle. Temperatures peaked at 71°C on day 2 and remained ≥55°C for an average of 7 days in the first cycle, but did not exceed 55°C in the second. For B. thuringiensis, spores generated at 15 and 21°C exhibited reduced (P < 0.05) viability of 2.7 and 2.6 log10 CFU g(-1) respectively, as compared to a 0.6 log10 CFU g(-1) reduction for those generated at 37°C. For B. anthracis, sporulation temperature did not impact spore survival as there was a 2.5, 2.2, and 2.8 log10 CFU g(-1) reduction after composting for spores generated at 15, 21, and 37°C, respectively. For both species, spore viability declined more rapidly (P < 0.05) in the first as compared to the second composting cycle. Our findings suggest that the duration of thermophilic exposure (≥55°C) is the main factor influencing survival of B. anthracis spores in compost. As sporulation temperature did not influence survival of B. anthracis, composting may lower the viability of spores associated with carcasses infected with B. anthracis over a range of sporulation temperatures. PMID:27303388

  3. Variable Lymphocyte Receptor Recognition of the Immunodominant Glycoprotein of Bacillus anthracis Spores

    Energy Technology Data Exchange (ETDEWEB)

    Kirchdoerfer, Robert N.; Herrin, Brantley R.; Han, Byung Woo; Turnbough, Jr., Charles L.; Cooper, Max D.; Wilson, Ian A. (SNU); (Scripps); (Emory); (UAB); (Emory Vaccine)

    2012-07-25

    Variable lymphocyte receptors (VLRs) are the adaptive immune receptors of jawless fish, which evolved adaptive immunity independent of other vertebrates. In lieu of the immunoglobulin fold-based T and B cell receptors, lymphocyte-like cells of jawless fish express VLRs (VLRA, VLRB, or VLRC) composed of leucine-rich repeats and are similar to toll-like receptors (TLRs) in structure, but antibodies (VLRB) and T cell receptors (VLRA and VLRC) in function. Here, we present the structural and biochemical characterization of VLR4, a VLRB, in complex with BclA, the immunodominant glycoprotein of Bacillus anthracis spores. Using a combination of crystallography, mutagenesis, and binding studies, we delineate the mode of antigen recognition and binding between VLR4 and BclA, examine commonalities in VLRB recognition of antigens, and demonstrate the potential of VLR4 as a diagnostic tool for the identification of B. anthracis spores.

  4. Testing nucleoside analogues as inhibitors of Bacillus anthracis spore germination in vitro and in macrophage cell culture.

    Science.gov (United States)

    Alvarez, Zadkiel; Lee, Kyungae; Abel-Santos, Ernesto

    2010-12-01

    Bacillus anthracis, the etiological agent of anthrax, has a dormant stage in its life cycle known as the endospore. When conditions become favorable, spores germinate and transform into vegetative bacteria. In inhalational anthrax, the most fatal manifestation of the disease, spores enter the organism through the respiratory tract and germinate in phagosomes of alveolar macrophages. Germinated cells can then produce toxins and establish infection. Thus, germination is a crucial step for the initiation of pathogenesis. B. anthracis spore germination is activated by a wide variety of amino acids and purine nucleosides. Inosine and l-alanine are the two most potent nutrient germinants in vitro. Recent studies have shown that germination can be hindered by isomers or structural analogues of germinants. 6-Thioguanosine (6-TG), a guanosine analogue, is able to inhibit germination and prevent B. anthracis toxin-mediated necrosis in murine macrophages. In this study, we screened 46 different nucleoside analogues as activators or inhibitors of B. anthracis spore germination in vitro. These compounds were also tested for their ability to protect the macrophage cell line J774a.1 from B. anthracis cytotoxicity. Structure-activity relationship analysis of activators and inhibitors clarified the binding mechanisms of nucleosides to B. anthracis spores. In contrast, no structure-activity relationships were apparent for compounds that protected macrophages from B. anthracis-mediated killing. However, multiple inhibitors additively protected macrophages from B. anthracis. PMID:20921305

  5. Thermal inactivation of Bacillus anthracis surrogate spores in a bench-scale enclosed landfill gas flare.

    Science.gov (United States)

    Tufts, Jenia A McBrian; Rosati, Jacky A

    2012-02-01

    A bench-scale landfill flare system was designed and built to test the potential for landfilled biological spores that migrate from the waste into the landfill gas to pass through the flare and exit into the environment as viable. The residence times and temperatures of the flare were characterized and compared to full-scale systems. Geobacillus stearothermophilus and Bacillus atrophaeus, nonpathogenic spores that may serve as surrogates for Bacillus anthracis, the causative agent for anthrax, were investigated to determine whether these organisms would be inactivated or remain viable after passing through a simulated landfill flare. High concentration spore solutions were aerosolized, dried, and sent through a bench-scale system to simulate the fate of biological weapon (BW)-grade spores in a landfill gas flare. Sampling was conducted downstream of the flare using a bioaerosol collection device containing sterile white mineral oil. The samples were cultured, incubated for seven days, and assessed for viability. Results showed that the bench-scale system exhibited good similarity to the real-world conditions of an enclosed standard combustor flare stack with a single orifice, forced-draft diffusion burner. All spores of G. stearothermophilus and B. atrophaeus were inactivated in the flare, indicating that spores that become re-entrained in landfill gas may not escape the landfill as viable, apparently becoming completely inactivated as they exit through a landfill flare. PMID:22442931

  6. Transcriptional Stimulation of Anthrax Toxin Receptors by Anthrax Edema Toxin and Bacillus anthracis Sterne Spore

    OpenAIRE

    Xu, Qingfu; Hesek, Eric D.; Zeng, Mingtao

    2007-01-01

    We used quantitative real-time RT-PCR to not only investigate the mRNA levels of anthrax toxin receptor 1 (ANTXR1) and 2 (ANTXR2) in the murine J774A.1 macrophage cells and different tissues of mice, but also evaluate the effect of anthrax edema toxin and Bacillus anthracis Sterne spores on the expression of mRNA of these receptors. The mRNA transcripts of both receptors was detected in J774A.1 cells and mouse tissues such as the lung, heart, kidney, spleen, stomach, jejunum, brain, skeleton ...

  7. Identification of the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R.

    Directory of Open Access Journals (Sweden)

    Xiankai Liu

    Full Text Available Immunoproteomics was used to screen the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. The spore and vegetative proteins were separated by 2D gel electrophoresis and transferred to polyvinylidene difluoride membranes, and then western blotting was performed with rabbit immune serum against B.anthracis live spores. Immunogenic spots were cut and digested by trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed to identify the proteins. As a result, 11 and 45 immunogenic proteins were identified in the spores and vegetative cells, respectively; 26 of which have not been reported previously. To verify their immunogenicity, 12 of the identified proteins were selected to be expressed, and the immune sera from the mice vaccinated by the 12 expressed proteins, except BA0887, had a specific western blot band with the A16R whole cellular lytic proteins. Some of these immunogenic proteins might be used as novel vaccine candidates themselves or for enhancing the protective efficacy of a protective-antigen-based vaccine.

  8. Achieving consistent multiple daily low-dose Bacillus anthracis spore inhalation exposures in the rabbit model

    Directory of Open Access Journals (Sweden)

    Roy E Barnewall

    2012-06-01

    Full Text Available Repeated low-level exposures to Bacillus anthracis could occur before or after the remediation of an environmental release. This is especially true for persistent agents such as Bacillus anthracis spores, the causative agent of anthrax. Studies were conducted to examine aerosol methods needed for consistent daily low aerosol concentrations to deliver a low-dose (less than 106 colony forming units (CFU of B. anthracis spores and included a pilot feasibility characterization study, acute exposure study, and a multiple fifteen day exposure study. This manuscript focuses on the state-of-the-science aerosol methodologies used to generate and aerosolize consistent daily low aerosol concentrations and resultant low inhalation doses. The pilot feasibility characterization study determined that the aerosol system was consistent and capable of producing very low aerosol concentrations. In the acute, single day exposure experiment, targeted inhaled doses of 1 x 102, 1 x 103, 1 x 104, and 1 x 105 CFU were used. In the multiple daily exposure experiment, rabbits were exposed multiple days to targeted inhaled doses of 1 x 102, 1 x 103, and 1 x 104 CFU. In all studies, targeted inhaled doses remained fairly consistent from rabbit to rabbit and day to day. The aerosol system produced aerosolized spores within the optimal mass median aerodynamic diameter particle size range to reach deep lung alveoli. Consistency of the inhaled dose was aided by monitoring and recording respiratory parameters during the exposure with real-time plethysmography. Overall, the presented results show that the animal aerosol system was stable and highly reproducible between different studies and multiple exposure days.

  9. Comparative efficacy of Bacillus anthracis live spore vaccine and protective antigen vaccine against anthrax in the guinea pig.

    OpenAIRE

    Little, S F; Knudson, G B

    1986-01-01

    Several strains of Bacillus anthracis have been reported previously to cause fatal infection in immunized guinea pigs. In this study, guinea pigs were immunized with either a protective antigen vaccine or a live Sterne strain spore vaccine, then challenged with virulent B. anthracis strains isolated from various host species from the United States and foreign sources. Confirmation of previously reported studies (which used only protective antigen vaccines) was made with the identification of ...

  10. Roles of Macrophages and Neutrophils in the Early Host Response to Bacillus anthracis Spores in a Mouse Model of Infection

    OpenAIRE

    Cote, Christopher K.; Van Rooijen, Nico; Welkos, Susan L.

    2006-01-01

    The development of new approaches to combat anthrax requires that the pathogenesis and host response to Bacillus anthracis spores be better understood. We investigated the roles that macrophages and neutrophils play in the progression of infection by B. anthracis in a mouse model. Mice were treated with a macrophage depletion agent (liposome-encapsulated clodronate) or with a neutrophil depletion agent (cyclophosphamide or the rat anti-mouse granulocyte monoclonal antibody RB6-8C5), and the a...

  11. Bacillus anthracis

    OpenAIRE

    2003-01-01

    The events of 11 September 2001 and the subsequent anthrax outbreaks have shown that the West needs to be prepared for an increasing number of terrorist attacks, which may include the use of biological warfare. Bacillus anthracis has long been considered a potential biological warfare agent, and this review will discuss the history of its use as such. It will also cover the biology of this organism and the clinical features of the three disease forms that it can produce: cutaneous, gastrointe...

  12. Bacillus anthracis

    OpenAIRE

    BOSERET, GÉRALDINE; Linden, Annick; Mainil, Jacques

    2002-01-01

    The literature describes several methods for detection of Bacillus anthracis based on application of specific bacteriophages. The following methods of pahoinpitely are used to identify the causative agent of anthrax: the reaction of bacteriophage titer growth (RBTG), the reaction of phage adsorption (RPA), fagoterapii method (FTM) and fluorescentserological method (FSM). The essence of RBTG consists in the following: if there is the researchform of bacteria presents in the test material, then...

  13. Reagent-free and portable detection of Bacillus anthracis spores using a microfluidic incubator and smartphone microscope

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, Janine R.; Erikson, Rebecca L.; Sheen, Allison M.; Ozanich, Richard M.; Kelly, Ryan T.

    2015-08-06

    Rapid, cost-effective bacterial detection systems are needed to respond to potential biothreat events. Here we report the use of smartphone-based microscopy in combination with a simple microfluidic incubation device to detect 5000 Bacillus anthracis spores in 3 hours. This field-deployable approach is compatible with real-time PCR for secondary confirmation.

  14. Testing Nucleoside Analogues as Inhibitors of Bacillus anthracis Spore Germination In Vitro and in Macrophage Cell Culture ▿

    OpenAIRE

    Alvarez, Zadkiel; Lee, Kyungae; Abel-Santos, Ernesto

    2010-01-01

    Bacillus anthracis, the etiological agent of anthrax, has a dormant stage in its life cycle known as the endospore. When conditions become favorable, spores germinate and transform into vegetative bacteria. In inhalational anthrax, the most fatal manifestation of the disease, spores enter the organism through the respiratory tract and germinate in phagosomes of alveolar macrophages. Germinated cells can then produce toxins and establish infection. Thus, germination is a crucial step for the i...

  15. Bacillus anthracis spore interactions with mammalian cells: Relationship between germination state and the outcome of in vitro

    OpenAIRE

    Stojkovic Bojana; Prouty Angela M; Tamilselvam Batcha; Gut Ian M; Czeschin Stephanie; van der Donk Wilfred A; Blanke Steven R

    2011-01-01

    Abstract Background During inhalational anthrax, internalization of Bacillus anthracis spores by host cells within the lung is believed to be a key step for initiating the transition from the localized to disseminated stages of infection. Despite compelling in vivo evidence that spores remain dormant within the bronchioalveolar spaces of the lungs, and germinate only after uptake into host cells, most in vitro studies of infection have been conducted under conditions that promote rapid germin...

  16. Rugged single domain antibody detection elements for Bacillus anthracis spores and vegetative cells.

    Directory of Open Access Journals (Sweden)

    Scott A Walper

    Full Text Available Significant efforts to develop both laboratory and field-based detection assays for an array of potential biological threats started well before the anthrax attacks of 2001 and have continued with renewed urgency following. While numerous assays and methods have been explored that are suitable for laboratory utilization, detection in the field is often complicated by requirements for functionality in austere environments, where limited cold-chain facilities exist. In an effort to overcome these assay limitations for Bacillus anthracis, one of the most recognizable threats, a series of single domain antibodies (sdAbs were isolated from a phage display library prepared from immunized llamas. Characterization of target specificity, affinity, and thermal stability was conducted for six sdAb families isolated from rounds of selection against the bacterial spore. The protein target for all six sdAb families was determined to be the S-layer protein EA1, which is present in both vegetative cells and bacterial spores. All of the sdAbs examined exhibited a high degree of specificity for the target bacterium and its spore, with affinities in the nanomolar range, and the ability to refold into functional antigen-binding molecules following several rounds of thermal denaturation and refolding. This research demonstrates the capabilities of these sdAbs and their potential for integration into current and developing assays and biosensors.

  17. Identifying experimental surrogates for Bacillus anthracis spores: a review

    OpenAIRE

    Greenberg David L; Busch Joseph D; Keim Paul; Wagner David M

    2010-01-01

    Abstract Bacillus anthracis, the causative agent of anthrax, is a proven biological weapon. In order to study this threat, a number of experimental surrogates have been used over the past 70 years. However, not all surrogates are appropriate for B. anthracis, especially when investigating transport, fate and survival. Although B. atrophaeus has been widely used as a B. anthracis surrogate, the two species do not always behave identically in transport and survival models. Therefore, we devised...

  18. Bacillus anthracis spore interactions with mammalian cells: Relationship between germination state and the outcome of in vitro

    Directory of Open Access Journals (Sweden)

    Stojkovic Bojana

    2011-02-01

    Full Text Available Abstract Background During inhalational anthrax, internalization of Bacillus anthracis spores by host cells within the lung is believed to be a key step for initiating the transition from the localized to disseminated stages of infection. Despite compelling in vivo evidence that spores remain dormant within the bronchioalveolar spaces of the lungs, and germinate only after uptake into host cells, most in vitro studies of infection have been conducted under conditions that promote rapid germination of spores within the culture medium. Results Using an in vitro model of infection, we evaluated the influence of the germination state of B. anthracis spores, as controlled by defined culture conditions, on the outcome of infection. Spores prepared from B. anthracis Sterne 7702 germinated in a variety of common cell culture media supplemented with fetal bovine serum (FBS while, in the absence of FBS, germination was strictly dependent on medium composition. RAW264.7 macrophage-like cells internalized spores to the same extent in either germinating or non-germinating media. However, significantly more viable, intracellular B. anthracis were recovered from cells infected under non-germinating conditions compared to germinating conditions. At the same time, RAW264.7 cells demonstrated a significant loss in viability when infected under non-germinating conditions. Conclusions These results suggest that the outcome of host cell infection is sensitive to the germination state of spores at the time of uptake. Moreover, this study demonstrates the efficacy of studying B. anthracis spore infection of host cells within a defined, non-germinating, in vitro environment.

  19. Anthrax Vaccine Antigen-Adjuvant Formulations Completely Protect New Zealand White Rabbits against Challenge with Bacillus anthracis Ames Strain Spores

    OpenAIRE

    Peachman, Kristina K.; Li, Qin; Matyas, Gary R.; Shivachandra, Sathish B.; Lovchik, Julie; Lyons, Rick C.; Alving, Carl R; Rao, Venigalla B.; Rao, Mangala

    2012-01-01

    In an effort to develop an improved anthrax vaccine that shows high potency, five different anthrax protective antigen (PA)-adjuvant vaccine formulations that were previously found to be efficacious in a nonhuman primate model were evaluated for their efficacy in a rabbit pulmonary challenge model using Bacillus anthracis Ames strain spores. The vaccine formulations include PA adsorbed to Alhydrogel, PA encapsulated in liposomes containing monophosphoryl lipid A, stable liposomal PA oil-in-wa...

  20. Rapid Detection of Viable Bacillus anthracis Spores in Environmental Samples by Using Engineered Reporter Phages.

    Science.gov (United States)

    Sharp, Natasha J; Molineux, Ian J; Page, Martin A; Schofield, David A

    2016-04-15

    Bacillus anthracis, the causative agent of anthrax, was utilized as a bioterrorism agent in 2001 when spores were distributed via the U.S. postal system. In responding to this event, the Federal Bureau of Investigation used traditional bacterial culture viability assays to ascertain the extent of contamination of the postal facilities within 24 to 48 h of environmental sample acquisition. Here, we describe a low-complexity, second-generation reporter phage assay for the rapid detection of viableB. anthracisspores in environmental samples. The assay uses an engineeredB. anthracisreporter phage (Wβ::luxAB-2) which transduces bioluminescence to infected cells. To facilitate low-level environmental detection and maximize the signal response, expression ofluxABin an earlier version of the reporter phage (Wβ::luxAB-1) was optimized. These alterations prolonged signal kinetics, increased light output, and improved assay sensitivity. Using Wβ::luxAB-2, detection ofB. anthracisspores was 1 CFU in 8 h from pure cultures and as low as 10 CFU/g in sterile soil but increased to 10(5)CFU/g in unprocessed soil due to an unstable signal and the presence of competing bacteria. Inclusion of semiselective medium, mediated by a phage-expressed antibiotic resistance gene, maintained signal stability and enabled the detection of 10(4)CFU/g in 6 h. The assay does not require spore extraction and relies on the phage infecting germinating cells directly in the soil sample. This reporter phage displays promise for the rapid detection of low levels of spores on clean surfaces and also in grossly contaminated environmental samples from complex matrices such as soils. PMID:26873316

  1. Bacillus anthracis spores germinate extracellularly at air–liquid interface in an in vitro lung model under serum‐free conditions

    OpenAIRE

    Powell, J D; Hutchison, J.R.; Hess, B.M.; Straub, T.M.

    2015-01-01

    Abstract Aims To better understand the parameters that govern spore dissemination after lung exposure using in vitro cell systems. Methods and Results We evaluated the kinetics of uptake, germination and proliferation of Bacillus anthracis Sterne spores in association with human primary lung epithelial cells, Calu‐3 and A549 cell lines. We also analysed the influence of various cell culture medium formulations related to spore germination. Conclusions We found negligible spore uptake by epith...

  2. Bacillus anthracis Protective Antigen Kinetics in Inhalation Spore-Challenged Untreated or Levofloxacin/ Raxibacumab-Treated New Zealand White Rabbits

    Directory of Open Access Journals (Sweden)

    Cecil Chen

    2013-01-01

    Full Text Available Inhaled Bacillus anthracis spores germinate and the subsequent vegetative growth results in bacteremia and toxin production. Anthrax toxin is tripartite: the lethal factor and edema factor are enzymatic moieties, while the protective antigen (PA binds to cell receptors and the enzymatic moieties. Antibiotics can control B. anthracis bacteremia, whereas raxibacumab binds PA and blocks lethal toxin effects. This study assessed plasma PA kinetics in rabbits following an inhaled B. anthracis spore challenge. Additionally, at 84 h post-challenge, 42% of challenged rabbits that had survived were treated with either levofloxacin/placebo or levofloxacin/raxibacumab. The profiles were modeled using a modified Gompertz/second exponential growth phase model in untreated rabbits, with added monoexponential PA elimination in treated rabbits. Shorter survival times were related to a higher plateau and a faster increase in PA levels. PA elimination half-lives were 10 and 19 h for the levofloxacin/placebo and levofloxacin/raxibacumab groups, respectively, with the difference attributable to persistent circulating PA-raxibacumab complex. PA kinetics were similar between untreated and treated rabbits, with one exception: treated rabbits had a plateau phase nearly twice as long as that for untreated rabbits. Treated rabbits that succumbed to disease had higher plateau PA levels and shorter plateau duration than surviving treated rabbits.

  3. Improved Proteomic Analysis Following Trichloroacetic Acid Extraction of Bacillus anthracis Spore Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Brooke LD; Wunschel, David S.; Sydor, Michael A.; Warner, Marvin G.; Wahl, Karen L.; Hutchison, Janine R.

    2015-08-07

    Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Proteomic analysis is dependent upon efficient extraction of proteins from bacterial samples without introducing bias toward extraction of particular protein classes. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrich for certain classes of proteins. The method presented here is technically simple and does not require specialized equipment such as a mechanical disrupter. Our data reveal that for particularly challenging samples, such as B. anthracis Sterne spores, trichloroacetic acid extraction improved the number of proteins identified within a sample compared to bead beating (714 vs 660, respectively). Further, TCA extraction enriched for 103 known spore specific proteins whereas bead beating resulted in 49 unique proteins. Analysis of C. botulinum samples grown to 5 days, composed of vegetative biomass and spores, showed a similar trend with improved protein yields and identification using our method compared to bead beating. Interestingly, easily lysed samples, such as B. anthracis vegetative cells, were equally as effectively processed via TCA and bead beating, but TCA extraction remains the easiest and most cost effective option. As with all assays, supplemental methods such as implementation of an alternative preparation method may provide additional insight to the protein biology of the bacteria being studied.

  4. Inhibitory effects of nisin-coated multi-walled carbon nanotube sheet on biofilm formation from Bacillus anthracis spores

    Institute of Scientific and Technical Information of China (English)

    Xiuli Dong; Eric McCoy; Mei Zhang; Liju Yang

    2014-01-01

    Multi-walled carbon nanotube (MWCNT) sheet was fabricated from a drawable MWCNT forest and then deposited on poly(methyl methacrylate) film.The film was further coated with a natural antimicrobial peptide nisin.We studied the effects of nisin coating on the attachment of Bacillus anthracis spores,the germination of attached spores,and the subsequent biofilm formation from attached spores.It was found that the strong adsorptivity and the super hydrophobicity of MWCNTs provided an ideal platform for nisin coating.Nisin coating on MWCNT sheets decreased surface hydrophobicity,reduced spore attachment,and reduced the germination of attached spores by 3.5 fold,and further inhibited the subsequent biofilm formation by 94.6% compared to that on uncoated MWCNT sheet.Nisin also changed the morphology of vegetative cells in the formed biofilm.The results of this study demonstrated that the anti-adhesion and antimicrobial effect of nisin in combination with the physical properties of carbon nanotubes had the potential in producing effective anti-biofilm formation surfaces.

  5. Efficacy of Daptomycin against Bacillus anthracis in a Murine Model of Anthrax Spore Inhalation▿

    OpenAIRE

    Heine, Henry S.; Bassett, Jennifer; Miller, Lynda; Purcell, Bret K.; Byrne, W. Russell

    2010-01-01

    Daptomycin demonstrated in vitro (MIC90, 4 μg/ml) and in vivo activities against Bacillus anthracis. Twice-daily treatment with a dose of 50 mg/kg of body weight was begun 24 h after challenge and continued for 14 or 21 days; results were compared to those for controls treated with phosphate-buffered saline or ciprofloxacin. Day 43 survival rates were 6/10 mice for the 14-day and 9/10 mice for the 21-day treatment groups, compared to survival with ciprofloxacin: 8/10 and 9/10 mice, respective...

  6. Bacterial spores as possible contaminants of biomedical materials and devices. [Bacillus anthracis, clostridium botulinum, C. perfringens, C. tetani

    Energy Technology Data Exchange (ETDEWEB)

    Grecz, N.; Kang, T.

    1973-01-01

    Destruction of spores on biomedical devices in drugs, and biologicals is essential for prevention of infection of patients with pathogenic sporeformers. Of particular concern are Clostridium tetani, C. perfringens, C. botulinum, Bacillus anthracis and other sporeforming pathogens. Spores are ubiquitous in nature and contamination of biomedical devices varies depending on manufacturing process, handling, raw materials and other variables. In the last 20 years the number of cases per year of specific notifiable diseases in the United States was as follows: tetanus, 120 to 500 cases, botulism, 7 to 47 cases, and anthrax, 2 to 10 cases. Gas gangrene is caused by a mixed flora consisting predominantly of sporeformers. C botulinum, which usually acts as saprophytic agent of food poisoning, may also initiate pathogenic processes; there are nine cases on record in the United States of botulism wound infections almost half of which ended in death. The spores of these organisms are distinguished by high radiation resistance and their erradication often requires severe radiation treatments. Representative bacterial spores in various suspending media show D/sub 10/ values (dose necessary to destroy 90 percent of a given population) ranging from approximately 0.1 to 0.4 Mrad. Some viruses show D/sub 10/ values up to greater than 1 Mrad. The D/sub 10/-values of spores vary depending on physical, chemical and biological factors. This variability is important in evaluation and selection of biological indicator organisms. Radiation sterilization of biomedical devices and biomedical materials must provide safety from infectious microorganisms including radiation resistant spores and viruses.

  7. Efficacy of Daptomycin against Bacillus anthracis in a murine model of anthrax spore inhalation.

    Science.gov (United States)

    Heine, Henry S; Bassett, Jennifer; Miller, Lynda; Purcell, Bret K; Byrne, W Russell

    2010-10-01

    Daptomycin demonstrated in vitro (MIC(90), 4 μg/ml) and in vivo activities against Bacillus anthracis. Twice-daily treatment with a dose of 50 mg/kg of body weight was begun 24 h after challenge and continued for 14 or 21 days; results were compared to those for controls treated with phosphate-buffered saline or ciprofloxacin. Day 43 survival rates were 6/10 mice for the 14-day and 9/10 mice for the 21-day treatment groups, compared to survival with ciprofloxacin: 8/10 and 9/10 mice, respectively. Culture results from tissues removed at the termination of the experiment were negative. PMID:20643899

  8. Antimicrobial effects of gold/copper sulphide (Gold/Copper monosulfide) core/shell nanoparticles on Bacillus anthracis spores and cells

    Science.gov (United States)

    Addae, Ebenezer

    Bacillus anthracis is a gram positive, rod shaped and spore forming bacteria. It causes anthrax, a deadly human and animal disease that can kill its victims in three days. The spores of B. anthracis can survive extreme environmental conditions for decades and germinate when exposed to proper conditions. Due to its potential as a bio-weapon, effective disinfectants that pose less harm to the environment and animals are urgently needed. Metal nanoparticles have the potential of killing microbial cells and spores. We present here the effect of Gold/Copper Sulphide core/shell (Au/CuS) nanoparticles on B. anthracis cells and spores. The results indicated that the continuous presence of 0.83 microM during the spore growth in nutrient medium completely inhibited spore outgrowth. Au/CuS nanoparticles at concentration of 4.15 μM completely inactivated B. anthracis cells (x 107) after 30 min of pre-treatment in any of the three buffers including water, PBS, and nutrient broth. However, the same and even higher concentrations of nanoparticles produce no significant spore (x 105) killing after 24 h of pre-treatment. SEM imaging, EDS analysis, and DNA extrusion experiments revealed that nanoparticles damaged the cell membrane causing DNA and cytosolic content efflux and eventually cell death. The study demonstrated the strong antimicrobial activity of Au/CuS nanoparticles to B. anthracis cells and revealed that Au/CuS NPs showed more effective inactivation effect against the cells than they did against the spores.

  9. Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

    International Nuclear Information System (INIS)

    The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field

  10. A single-dose PLGA encapsulated protective antigen domain 4 nanoformulation protects mice against Bacillus anthracis spore challenge.

    Directory of Open Access Journals (Sweden)

    Manish Manish

    Full Text Available Bacillus anthracis, the etiological agent of anthrax, is a major bioterror agent. Vaccination is the most effective prophylactic measure available against anthrax. Currently available anthrax vaccines have issues of the multiple booster dose requirement, adjuvant-associated side effects and stability. Use of biocompatible and biodegradable nanoparticles to deliver the antigens to immune cells could solve the issues associated with anthrax vaccines. We hypothesized that the delivery of a stable immunogenic domain 4 of protective antigen (PAD4 of Bacillus anthracis encapsulated in a poly (lactide-co-glycolide (PLGA--an FDA approved biocompatible and biodegradable material, may alleviate the problems of booster dose, adjuvant toxicity and stability associated with anthrax vaccines. We made a PLGA based protective antigen domain 4 nanoparticle (PAD4-NP formulation using water/oil/water solvent evaporation method. Nanoparticles were characterized for antigen content, morphology, size, polydispersity and zeta potential. The immune correlates and protective efficacy of the nanoparticle formulation was evaluated in Swiss Webster outbred mice. Mice were immunized with single dose of PAD4-NP or recombinant PAD4. The PAD4-NP elicited a robust IgG response with mixed IgG1 and IgG2a subtypes, whereas the control PAD4 immunized mice elicited low IgG response with predominant IgG1 subtype. The PAD4-NP generated mixed Th1/Th2 response, whereas PAD4 elicited predominantly Th2 response. When we compared the efficacy of this single-dose vaccine nanoformulation PAD4-NP with that of the recombinant PAD4 in providing protective immunity against a lethal challenge with Bacillus anthracis spores, the median survival of PAD4-NP immunized mice was 6 days as compared to 1 day for PAD4 immunized mice (p<0.001. Thus, we demonstrate, for the first time, the possibility of the development of a single-dose and adjuvant-free protective antigen based anthrax vaccine in the form

  11. Observations on the Inactivation Efficacy of a MALDI-TOF MS Chemical Extraction Method on Bacillus anthracis Vegetative Cells and Spores.

    Directory of Open Access Journals (Sweden)

    Simon A Weller

    Full Text Available A chemical (ethanol; formic acid; acetonitrile protein extraction method for the preparation of bacterial samples for matrix assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS identification was evaluated for its ability to inactivate bacterial species. Initial viability tests (with and without double filtration of the extract through 0.2 μM filters, indicated that the method could inactivate Escherichia coli MRE 162 and Klebsiella pneumoniae ATCC 35657, with or without filtration, but that filtration was required to exclude viable, avirulent, Bacillus anthracis UM23CL2 from extracts. Multiple, high stringency, viability experiments were then carried out on entire filtered extracts prepared from virulent B. anthracis Vollum vegetative cells and spores ranging in concentration from 10(6-10(8 cfu per extract. B. anthracis was recovered in 3/18 vegetative cell extracts and 10/18 spore extracts. From vegetative cell extracts B. anthracis was only recovered from extracts that had undergone prolonged Luria (L-broth (7 day and L-agar plate (a further 7 days incubations. We hypothesise that the recovery of B. anthracis in vegetative cell extracts is due to the escape of individual sub-lethally injured cells. We discuss our results in view of working practises in clinical laboratories and in the context of recent inadvertent releases of viable B. anthracis.

  12. Observations on the Inactivation Efficacy of a MALDI-TOF MS Chemical Extraction Method on Bacillus anthracis Vegetative Cells and Spores.

    Science.gov (United States)

    Weller, Simon A; Stokes, Margaret G M; Lukaszewski, Roman A

    2015-01-01

    A chemical (ethanol; formic acid; acetonitrile) protein extraction method for the preparation of bacterial samples for matrix assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) identification was evaluated for its ability to inactivate bacterial species. Initial viability tests (with and without double filtration of the extract through 0.2 μM filters), indicated that the method could inactivate Escherichia coli MRE 162 and Klebsiella pneumoniae ATCC 35657, with or without filtration, but that filtration was required to exclude viable, avirulent, Bacillus anthracis UM23CL2 from extracts. Multiple, high stringency, viability experiments were then carried out on entire filtered extracts prepared from virulent B. anthracis Vollum vegetative cells and spores ranging in concentration from 10(6)-10(8) cfu per extract. B. anthracis was recovered in 3/18 vegetative cell extracts and 10/18 spore extracts. From vegetative cell extracts B. anthracis was only recovered from extracts that had undergone prolonged Luria (L)-broth (7 day) and L-agar plate (a further 7 days) incubations. We hypothesise that the recovery of B. anthracis in vegetative cell extracts is due to the escape of individual sub-lethally injured cells. We discuss our results in view of working practises in clinical laboratories and in the context of recent inadvertent releases of viable B. anthracis. PMID:26633884

  13. A Novel Immunogenic Spore Coat-Associated Protein in Bacillus Anthracis: Characterization via Proteomics Approaches and a Vector-Based Vaccine System

    OpenAIRE

    Liu, Yu-Tsueng; Lin, Shwu-Bin; Huang, Cheng-Po; Huang, Chun-Ming

    2007-01-01

    New generation anthrax vaccines have been actively explored with the aim of enhancing efficacies and decreasing undesirable side effects that could be caused by licensed vaccines. Targeting novel antigens and/or eliminating the requirements for multiple needle injections and adjuvants are major objectives in the development of new anthrax vaccines. Using proteomics approaches, we identified a spore coat-associated protein (SCAP) in Bacillus anthracis. An E. coli vector-based vaccine system wa...

  14. Sporulation and germination gene expression analysis of Bacillus anthracis Sterne spores in skim milk under heat and different intervention techniques

    Science.gov (United States)

    To investigate how B. anthracis Stene spores survive in milk under heat (80 degree C, 10 minutes), pasteurization (72 degree C, 15 seconds) and pasteurization plus microfiltration, the expression levels of genes that related to sporulation and germination were tested using real-time PCR assays. Tw...

  15. Effect of pH on the Electrophoretic Mobility of Spores of Bacillus anthracis and Its Surrogates in Aqueous Solutions

    Science.gov (United States)

    Electrophoretic mobility (EPM) of endospores of Bacillus anthracis and surrogates were measured in aqueous solution across a broad pH range and several ionic strengths. EPM values trended around phylogenetic clustering based on the 16S rRNA gene. Measurements reported here prov...

  16. Next-Generation Bacillus anthracis Live Attenuated Spore Vaccine Based on the htrA(-) (High Temperature Requirement A) Sterne Strain.

    Science.gov (United States)

    Chitlaru, Theodor; Israeli, Ma'ayan; Bar-Haim, Erez; Elia, Uri; Rotem, Shahar; Ehrlich, Sharon; Cohen, Ofer; Shafferman, Avigdor

    2016-01-01

    Anthrax is a lethal disease caused by the gram-positive spore-producing bacterium Bacillus anthracis. Live attenuated vaccines, such as the nonencapsulated Sterne strain, do not meet the safety standards mandated for human use in the Western world and are approved for veterinary purposes only. Here we demonstrate that disrupting the htrA gene, encoding the chaperone/protease HtrA (High Temperature Requirement A), in the virulent Bacillus anthracis Vollum strain results in significant virulence attenuation in guinea pigs, rabbits and mice, underlying the universality of the attenuated phenotype associated with htrA knockout. Accordingly, htrA disruption was implemented for the development of a Sterne-derived safe live vaccine compatible with human use. The novel B. anthracis SterneΔhtrA strain secretes functional anthrax toxins but is 10-10(4)-fold less virulent than the Sterne vaccine strain depending on animal model (mice, guinea pigs, or rabbits). In spite of this attenuation, double or even single immunization with SterneΔhtrA spores elicits immune responses which target toxaemia and bacteremia resulting in protection from subcutaneous or respiratory lethal challenge with a virulent strain in guinea pigs and rabbits. The efficacy of the immune-protective response in guinea pigs was maintained for at least 50 weeks after a single immunization. PMID:26732659

  17. Inactivation of Bacillus anthracis by Gamma irradiation

    Directory of Open Access Journals (Sweden)

    N. Natalia

    2013-09-01

    Full Text Available The use of Bacillus anthracis as a biological weapon heighlightened awareness of the need for validated methods for the inactivation of B. anthracis spores. Ionizing radiation is capable of causing a variety of chemical changes and biological effects on bacteria which can be due both to direct interactions with critical cell components and to indirect actions on bacteria by molecular entities formed as a result of radiolysis of other molecules in the bacterial cell. This study determined the gamma irradiation dose for inactivating B. anthracis spores and its biological effects on the bacterial characteristics. Gamma irradiation was conducted at the IRKA irradiator at the National Nuclear Energy Agency, Jakarta and cobalt-60 was used as the source of ionizing radiation (capacity of ca. 134,044 Kci. Freeze dried culture of B. anthracis in glass ampoules was irradiated using variable doses of 30, 20 and 10 KGy. Viability, biochemical and protease enzyme characteristics of B. anthracis were evaluated before and after irradiation. The ability of B. anthracis to degrade gelatin, haemoglobin and bovine immunoglobulin G was also tested. The results showed that ionizing radiation was able to inactivate or kill 11,05 x 108 cfu B. anthracis by 95.37%, 99.58% and 99.99 at respective doses of 10, 20 and 30 KGy. Bacterial spores appear to be less susceptible to irradiation than the vegetative cells, because of their specific structure. The survive spores irradiated at 30kGy shows some biochemical characteristic changes. The survivors failed to degrade methyl -D-glucopyranoside and arbutine. The ability of B. anthracis protease to degrade gelatin, haemoglobin and bovine immunoglobulin G was not affected by irradiation. These findings showed that a gamma irradiation at 30 KGy effectively inactivates B. anthracis spores without changing the protease activities.

  18. Enhanced Immune Response to DNA Vaccine Encoding Bacillus anthracis PA-D4 Protects Mice against Anthrax Spore Challenge.

    Directory of Open Access Journals (Sweden)

    Na Young Kim

    Full Text Available Anthrax has long been considered the most probable bioweapon-induced disease. The protective antigen (PA of Bacillus anthracis plays a crucial role in the pathogenesis of anthrax. In the current study, we evaluated the efficiency of a genetic vaccination with the fourth domain (D4 of PA, which is responsible for initial binding of the anthrax toxin to the cellular receptor. The eukaryotic expression vector was designed with the immunoglobulin M (IgM signal sequence encoding for PA-D4, which contains codon-optimized genes. The expression and secretion of recombinant protein was confirmed in vitro in 293T cells transfected with plasmid and detected by western blotting, confocal microscopy, and enzyme-linked immunosorbent assay (ELISA. The results revealed that PA-D4 protein can be efficiently expressed and secreted at high levels into the culture medium. When plasmid DNA was given intramuscularly to mice, a significant PA-D4-specific antibody response was induced. Importantly, high titers of antibodies were maintained for nearly 1 year. Furthermore, incorporation of the SV40 enhancer in the plasmid DNA resulted in approximately a 15-fold increase in serum antibody levels in comparison with the plasmid without enhancer. The antibodies produced were predominantly the immunoglobulin G2 (IgG2 type, indicating the predominance of the Th1 response. In addition, splenocytes collected from immunized mice produced PA-D4-specific interferon gamma (IFN-γ. The biodistribution study showed that plasmid DNA was detected in most organs and it rapidly cleared from the injection site. Finally, DNA vaccination with electroporation induced a significant increase in immunogenicity and successfully protected the mice against anthrax spore challenge. Our approach to enhancing the immune response contributes to the development of DNA vaccines against anthrax and other biothreats.

  19. Enhanced Immune Response to DNA Vaccine Encoding Bacillus anthracis PA-D4 Protects Mice against Anthrax Spore Challenge.

    Science.gov (United States)

    Kim, Na Young; Chang, Dong Suk; Kim, Yeonsu; Kim, Chang Hwan; Hur, Gyeung Haeng; Yang, Jai Myung; Shin, Sungho

    2015-01-01

    Anthrax has long been considered the most probable bioweapon-induced disease. The protective antigen (PA) of Bacillus anthracis plays a crucial role in the pathogenesis of anthrax. In the current study, we evaluated the efficiency of a genetic vaccination with the fourth domain (D4) of PA, which is responsible for initial binding of the anthrax toxin to the cellular receptor. The eukaryotic expression vector was designed with the immunoglobulin M (IgM) signal sequence encoding for PA-D4, which contains codon-optimized genes. The expression and secretion of recombinant protein was confirmed in vitro in 293T cells transfected with plasmid and detected by western blotting, confocal microscopy, and enzyme-linked immunosorbent assay (ELISA). The results revealed that PA-D4 protein can be efficiently expressed and secreted at high levels into the culture medium. When plasmid DNA was given intramuscularly to mice, a significant PA-D4-specific antibody response was induced. Importantly, high titers of antibodies were maintained for nearly 1 year. Furthermore, incorporation of the SV40 enhancer in the plasmid DNA resulted in approximately a 15-fold increase in serum antibody levels in comparison with the plasmid without enhancer. The antibodies produced were predominantly the immunoglobulin G2 (IgG2) type, indicating the predominance of the Th1 response. In addition, splenocytes collected from immunized mice produced PA-D4-specific interferon gamma (IFN-γ). The biodistribution study showed that plasmid DNA was detected in most organs and it rapidly cleared from the injection site. Finally, DNA vaccination with electroporation induced a significant increase in immunogenicity and successfully protected the mice against anthrax spore challenge. Our approach to enhancing the immune response contributes to the development of DNA vaccines against anthrax and other biothreats. PMID:26430894

  20. Comparative analysis of the immunologic response induced by the Sterne 34F2 live spore Bacillus anthracis vaccine in a ruminant model.

    Science.gov (United States)

    Ndumnego, Okechukwu C; Köhler, Susanne M; Crafford, Jannie; van Heerden, Henriette; Beyer, Wolfgang

    2016-10-01

    The Sterne 34F2 live spore vaccine (SLSV) developed in 1937 is the most widely used veterinary vaccine against anthrax. However, literature on the immunogenicity of this vaccine in a target ruminant host is scarce. In this study, we evaluated the humoral response to the Bacillus anthracis protective antigen (rPA), a recombinant bacillus collagen-like protein of anthracis (rBclA), formaldehyde inactivated spores (FIS) prepared from strain 34F2 and a vegetative antigen formulation prepared from a capsule and toxin deficient strain (CDC 1014) in Boer goats. The toxin neutralizing ability of induced antibodies was evaluated using an in vitro toxin neutralization assay. The protection afforded by the vaccine was also assessed in vaccinates. Anti-rPA, anti-FIS and lethal toxin neutralizing titres were superior after booster vaccinations, compared to single vaccinations. Qualitative analysis of humoral responses to rPA, rBclA and FIS antigens revealed a preponderance of anti-FIS IgG titres following either single or double vaccinations with the SLSV. Antibodies against FIS and rPA both increased by 350 and 300-fold following revaccinations respectively. There was no response to rBclA following vaccinations with the SLSV. Toxin neutralizing titres increased by 80-fold after single vaccination and 700-fold following a double vaccination. Lethal challenge studies in naïve goats indicated a minimum infective dose of 36 B. anthracis spores. Single and double vaccination with the SLSV protected 4/5 and 3/3 of goats challenged with>800 spores respectively. An early booster vaccination following the first immunization is suggested in order to achieve a robust immunity. Results from this study indicate that this crucial second vaccination can be administered as early as 3 months after the initial vaccination. PMID:27496738

  1. Pathogenomic Sequence Analysis of Bacillus cereus and Bacillus thuringiensis Isolates Closely Related to Bacillus anthracis

    OpenAIRE

    Han, Cliff S.; Xie, Gary; Challacombe, Jean F.; Altherr, Michael R.; Bhotika, Smriti S.; Bruce, David; Campbell, Connie S.; Campbell, Mary L.; Chen, Jin; Chertkov, Olga; Cleland, Cathy; Dimitrijevic, Mira; Doggett, Norman A.; Fawcett, John J.; Glavina, Tijana

    2006-01-01

    Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are closely related gram-positive, spore-forming bacteria of the B. cereus sensu lato group. While independently derived strains of B. anthracis reveal conspicuous sequence homogeneity, environmental isolates of B. cereus and B. thuringiensis exhibit extensive genetic diversity. Here we report the sequencing and comparative analysis of the genomes of two members of the B. cereus group, B. thuringiensis 97-27 subsp. konkukian sero...

  2. Enhanced Immune Response to DNA Vaccine Encoding Bacillus anthracis PA-D4 Protects Mice against Anthrax Spore Challenge

    OpenAIRE

    Kim, Na Young; Chang, Dong Suk; Kim, Yeonsu; Kim, Chang Hwan; Hur, Gyeung Haeng; Yang, Jai Myung; Shin, Sungho

    2015-01-01

    Anthrax has long been considered the most probable bioweapon-induced disease. The protective antigen (PA) of Bacillus anthracis plays a crucial role in the pathogenesis of anthrax. In the current study, we evaluated the efficiency of a genetic vaccination with the fourth domain (D4) of PA, which is responsible for initial binding of the anthrax toxin to the cellular receptor. The eukaryotic expression vector was designed with the immunoglobulin M (IgM) signal sequence encoding for PA-D4, whic...

  3. Immunological analysis of cell-associated antigens of Bacillus anthracis.

    OpenAIRE

    Ezzell, J W; Abshire, T. G.

    1988-01-01

    Sera from Hartley guinea pigs vaccinated with a veterinary live spore anthrax vaccine were compared with sera from guinea pigs vaccinated with the human anthrax vaccine, which consists of aluminum hydroxide-adsorbed culture proteins of Bacillus anthracis V770-NP-1R. Sera from animals vaccinated with the spore vaccine recognized two major B. anthracis vegetative cell-associated proteins that were either not recognized or poorly recognized by sera from animals that received the human vaccine. T...

  4. The mechanism of DNA ejection in the Bacillus anthracis spore-binding phage 8a revealed by cryo-electron tomography

    International Nuclear Information System (INIS)

    The structure of the Bacillus anthracis spore-binding phage 8a was determined by cryo-electron tomography. The phage capsid forms a T = 16 icosahedron attached to a contractile tail via a head–tail connector protein. The tail consists of a six-start helical sheath surrounding a central tail tube, and a structurally novel baseplate at the distal end of the tail that recognizes and attaches to host cells. The parameters of the icosahedral capsid lattice and the helical tail sheath suggest protein folds for the capsid and tail-sheath proteins, respectively, and indicate evolutionary relationships to other dsDNA viruses. Analysis of 2518 intact phage particles show four distinct conformations that likely correspond to four sequential states of the DNA ejection process during infection. Comparison of the four observed conformations suggests a mechanism for DNA ejection, including the molecular basis underlying coordination of tail sheath contraction and genome release from the capsid.

  5. Decontamination efficacy of three commercial-off-the-shelf (COTS sporicidal disinfectants on medium-sized panels contaminated with surrogate spores of Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Jason M Edmonds

    Full Text Available In the event of a wide area release and contamination of a biological agent in an outdoor environment and to building exteriors, decontamination is likely to consume the Nation's remediation capacity, requiring years to cleanup, and leading to incalculable economic losses. This is in part due to scant body of efficacy data on surface areas larger than those studied in a typical laboratory (5×10-cm, resulting in low confidence for operational considerations in sampling and quantitative measurements of prospective technologies recruited in effective cleanup and restoration response. In addition to well-documented fumigation-based cleanup efforts, agencies responsible for mitigation of contaminated sites are exploring alternative methods for decontamination including combinations of disposal of contaminated items, source reduction by vacuuming, mechanical scrubbing, and low-technology alternatives such as pH-adjusted bleach pressure wash. If proven effective, a pressure wash-based removal of Bacillus anthracis spores from building surfaces with readily available equipment will significantly increase the readiness of Federal agencies to meet the daunting challenge of restoration and cleanup effort following a wide-area biological release. In this inter-agency study, the efficacy of commercial-of-the-shelf sporicidal disinfectants applied using backpack sprayers was evaluated in decontamination of spores on the surfaces of medium-sized (∼1.2 m2 panels of steel, pressure-treated (PT lumber, and brick veneer. Of the three disinfectants, pH-amended bleach, Peridox, and CASCAD evaluated; CASCAD was found to be the most effective in decontamination of spores from all three panel surface types.

  6. A plant-produced protective antigen vaccine confers protection in rabbits against a lethal aerosolized challenge with Bacillus anthracis Ames spores

    OpenAIRE

    Chichester, Jessica A.; Manceva, Slobodanka D; Rhee, Amy; Coffin, Megan V.; Musiychuk, Konstantin; Mett, Vadim; Shamloul, Moneim; Norikane, Joey; Streatfield, Stephen J.; Yusibov, Vidadi

    2013-01-01

    The potential use of Bacillus anthracis as a bioterrorism weapon threatens the security of populations globally, requiring the immediate availability of safe, efficient and easily delivered anthrax vaccine for mass vaccination. Extensive research efforts have been directed toward the development of recombinant subunit vaccines based on protective antigen (PA), the principal virulence factor of B. anthracis. Among the emerging technologies for the production of these vaccine antigens is our la...

  7. In Vivo Demonstration and Quantification of Intracellular Bacillus anthracis in Lung Epithelial Cells▿

    OpenAIRE

    Russell, Brooke H.; Liu, Qing; Sarah A Jenkins; Tuvim, Michael J.; Dickey, Burton F.; Xu, Yi

    2008-01-01

    Inhalational anthrax is initiated by the entry of Bacillus anthracis spores into the lung. A critical early event in the establishment of an infection is the dissemination of spores from the lung. Using in vitro cell culture assays, we previously demonstrated that B. anthracis spores are capable of entering into epithelial cells of the lung and crossing a barrier of lung epithelial cells without apparent disruption of the barrier integrity, suggesting a novel portal for spores to disseminate ...

  8. The Bacillus anthracis Exosporium: What's the Big "Hairy" Deal?

    Science.gov (United States)

    Bozue, Joel A; Welkos, Susan; Cote, Christopher K

    2015-10-01

    In some Bacillus species, including Bacillus subtilis, the coat is the outermost layer of the spore. In others, such as the Bacillus cereus family, there is an additional layer that envelops the coat, called the exosporium. In the case of Bacillus anthracis, a series of fine hair-like projections, also referred to as a "hairy" nap, extends from the exosporium basal layer. The exact role of the exosporium in B. anthracis, or for any of the Bacillus species possessing this structure, remains unclear. However, it has been assumed that the exosporium would play some role in infection for B. anthracis, because it is the outermost structure of the spore and would make initial contact with host and immune cells during infection. Therefore, the exosporium has been a topic of great interest, and over the past decade much progress has been made to understand its composition, biosynthesis, and potential roles. Several key aspects of this spore structure, however, are still debated and remain undetermined. Although insights have been gained on the interaction of exosporium with the host during infection, the exact role and significance of this complex structure remain to be determined. Furthermore, because the exosporium is a highly antigenic structure, future strategies for the next-generation anthrax vaccine should pursue its inclusion as a component to provide protection against the spore itself during the initial stages of anthrax. PMID:26542035

  9. Immunological Correlates for Protection against Intranasal Challenge of Bacillus anthracis Spores Conferred by a Protective Antigen-Based Vaccine in Rabbits

    OpenAIRE

    Weiss, Shay; Kobiler, David; Levy, Haim; Marcus, Hadar; Pass, Avi; Rothschild, Nili; Altboum, Zeev

    2006-01-01

    Correlates between immunological parameters and protection against Bacillus anthracis infection in animals vaccinated with protective antigen (PA)-based vaccines could provide surrogate markers to evaluate the putative protective efficiency of immunization in humans. In previous studies we demonstrated that neutralizing antibody levels serve as correlates for protection in guinea pigs (S. Reuveny et al., Infect. Immun. 69:2888-2893, 2001; H. Marcus et al., Infect. Immun. 72:3471-3477, 2004). ...

  10. Bacillus anthracis Factors for Phagosomal Escape

    Directory of Open Access Journals (Sweden)

    Irene Zornetta

    2012-07-01

    Full Text Available The mechanism of phagosome escape by intracellular pathogens is an important step in the infectious cycle. During the establishment of anthrax, Bacillus anthracis undergoes a transient intracellular phase in which spores are engulfed by local phagocytes. Spores germinate inside phagosomes and grow to vegetative bacilli, which emerge from their resident intracellular compartments, replicate and eventually exit from the plasma membrane. During germination, B. anthracis secretes multiple factors that can help its resistance to the phagocytes. Here the possible role of B. anthracis toxins, phospholipases, antioxidant enzymes and capsules in the phagosomal escape and survival, is analyzed and compared with that of factors of other microbial pathogens involved in the same type of process.

  11. False-negative rate, limit of detection and recovery efficiency performance of a validated macrofoam-swab sampling method for low surface concentrations of Bacillus anthracis Sterne and Bacillus atrophaeus spores

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, G. F. [Applied Statistics and Computational Sciences, Pacific Northwest National Laboratory, Richland WA USA; Deatherage Kaiser, B. L. [Chemical and Biological Signature Science Group, Pacific Northwest National Laboratory, Richland WA USA; Amidan, B. G. [Applied Statistics and Computational Sciences, Pacific Northwest National Laboratory, Richland WA USA; Sydor, M. A. [Chemical and Biological Signature Science Group, Pacific Northwest National Laboratory, Richland WA USA; Barrett, C. A. [Analytical Chemistry of Nuclear Materials, Pacific Northwest National Laboratory, Richland WA USA; Hutchison, J. R. [Chemical and Biological Signature Science Group, Pacific Northwest National Laboratory, Richland WA USA

    2016-05-06

    The performance of a macrofoam-swab sampling method was evaluated using Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus Nakamura (BG) spores applied at nine low target amounts (2-500 spores) to positive-control plates and test coupons (2 in × 2 in) of four surface materials (glass, stainless steel, vinyl tile, and plastic). Test results from cultured samples were used to evaluate the effects of surrogate, surface concentration, and surface material on recovery efficiency (RE), false negative rate (FNR), and limit of detection. For RE, surrogate and surface material had statistically significant effects, but concentration did not. Mean REs were the lowest for vinyl tile (50.8% with BAS and 40.2% with BG) and the highest for glass (92.8% with BAS and 71.4% with BG). FNR values ranged from 0 to 0.833 for BAS and 0 to 0.806 for BG; values increased as concentration decreased in the range tested (0.078 to 19.375 CFU/cm2). Surface material also had a statistically significant effect. A FNR-concentration curve was fit for each combination of surrogate and surface material. For both surrogates, the FNR curves tended to be the lowest for glass and highest for vinyl title. The FNR curves for BG tended to be higher than for BAS at lower concentrations, especially for glass. Results using a modified Rapid Viability-Polymerase Chain Reaction (mRV-PCR) analysis method were also obtained. The mRV-PCR results and comparisons to the culture results will be discussed in a subsequent article.

  12. Defensive strategies of Bacillus anthracis that promote a fatal disease

    OpenAIRE

    Mogridge, Jeremy

    2007-01-01

    Bacillus anthracis is a Gram-positive bacterium that causes anthrax. Bacterial spores that enter the host germinate into metabolically active bacilli that disseminate throughout the body and replicate to high numbers. Two virulence factors are essential for this unrestrained growth. The first is a weakly immunogenic poly γ-D-glutamic acid capsule that surrounds the bacilli and confers resistance to phagocytosis. The second virulence factor, anthrax toxin, disrupts multiple host functions to d...

  13. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis

    OpenAIRE

    Chad W Stratilo; Crichton, Melissa K. F.; Sawyer, Thomas W.

    2015-01-01

    Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin), compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in ...

  14. Bacillus anthracis secretes proteins that mediate heme acquisition from hemoglobin.

    Directory of Open Access Journals (Sweden)

    Anthony W Maresso

    Full Text Available Acquisition of iron is necessary for the replication of nearly all bacterial pathogens; however, iron of vertebrate hosts is mostly sequestered by heme and bound to hemoglobin within red blood cells. In Bacillus anthracis, the spore-forming agent of anthrax, the mechanisms of iron scavenging from hemoglobin are unknown. We report here that B. anthracis secretes IsdX1 and IsdX2, two NEAT domain proteins, to remove heme from hemoglobin, thereby retrieving iron for bacterial growth. Unlike other Gram-positive bacteria, which rely on cell wall anchored Isd proteins for heme scavenging, B. anthracis seems to have also evolved NEAT domain proteins in the extracellular milieu and in the bacterial envelope to provide for the passage of heme.

  15. Ground Anthrax Bacillus Refined Isolation (GABRI) method for analyzing environmental samples with low levels of Bacillus anthracis contamination

    OpenAIRE

    Fasanella, Antonio; Di Taranto, Pietro; Garofolo, Giuliano; Colao, Valeriana; Marino, Leonardo; Buonavoglia, Domenico; Pedarra, Carmine; Adone, Rosanna; Hugh-Jones, Martin

    2013-01-01

    Background In this work are reported the results of a qualitative analytical method capable of detecting Bacillus anthracis spores when they are present in very low concentration in the soil. The Ground Anthrax Bacillus Refined Isolation (GABRI) method, assessed in our laboratory, was compared with the classic method. The comparison involved artificially anthrax-contaminated soil samples (500 spores/7.5 grams soil) and naturally contaminated soil samples collected in Bangladesh during a field...

  16. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Chad W Stratilo

    Full Text Available Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin, compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in human skin keratinocyte primary cultures. The chlorine dioxide decontaminant was similarly effective to sodium hypochlorite in reducing spore numbers of Bacillus anthracis Ames in liquid suspension after a 10 minute exposure. After five minutes, the chlorine dioxide product was significantly more efficacious. Decontamination of isolated swine skin contaminated with Bacillus anthracis Sterne with the chlorine dioxide product resulted in no viable spores sampled. The toxicity of the chlorine dioxide decontaminant was up to two orders of magnitude less than that of sodium hypochlorite in human skin keratinocyte cultures. In summary, the chlorine dioxide based decontaminant efficiently killed Bacillus anthracis spores in liquid suspension, as well as on isolated swine skin, and was less toxic than sodium hypochlorite in cultures of human skin keratinocytes.

  17. Bacillus anthracis-like bacteria and other B. cereus group members in a microbial community within the international space station: a challenge for rapid and easy molecular detection of virulent B. anthracis.

    OpenAIRE

    Tongeren, van, F.W.; Roest, H.I.J.; Degener, J. E.; Harmsen, H. J. M.

    2014-01-01

    For some microbial species, such as Bacillus anthracis, the etiologic agent of the disease anthrax, correct detection and identification by molecular methods can be problematic. The detection of virulent B. anthracis is challenging due to multiple virulence markers that need to be present in order for B. anthracis to be virulent and its close relationship to Bacillus cereus and other members of the B. cereus group. This is especially the case in environments where build-up of Bacillus spores ...

  18. Glycosylation of BclA Glycoprotein from Bacillus cereus and Bacillus anthracis Exosporium Is Domain-specific.

    Science.gov (United States)

    Maes, Emmanuel; Krzewinski, Frederic; Garenaux, Estelle; Lequette, Yannick; Coddeville, Bernadette; Trivelli, Xavier; Ronse, Annette; Faille, Christine; Guerardel, Yann

    2016-04-29

    The spores of the Bacillus cereus group (B. cereus, Bacillus anthracis, and Bacillus thuringiensis) are surrounded by a paracrystalline flexible yet resistant layer called exosporium that plays a major role in spore adhesion and virulence. The major constituent of its hairlike surface, the trimerized glycoprotein BclA, is attached to the basal layer through an N-terminal domain. It is then followed by a repetitive collagen-like neck bearing a globular head (C-terminal domain) that promotes glycoprotein trimerization. The collagen-like region of B. anthracis is known to be densely substituted by unusual O-glycans that may be used for developing species-specific diagnostics of B. anthracis spores and thus targeted therapeutic interventions. In the present study, we have explored the species and domain specificity of BclA glycosylation within the B. cereus group. First, we have established that the collagen-like regions of both B. anthracis and B. cereus are similarly substituted by short O-glycans that bear the species-specific deoxyhexose residues anthrose and the newly observed cereose, respectively. Second we have discovered that the C-terminal globular domains of BclA from both species are substituted by polysaccharide-like O-linked glycans whose structures are also species-specific. The presence of large carbohydrate polymers covering the surface of Bacillus spores may have a profound impact on the way that spores regulate their interactions with biotic and abiotic surfaces and represents potential new diagnostic targets. PMID:26921321

  19. Aerosolized Bacillus anthracis Infection in New Zealand White Rabbits: Natural History and Intravenous Levofloxacin Treatment

    OpenAIRE

    Yee, Steven B.; Hatkin, Joshua M; Dyer, David N; Orr, Steven A.; Pitt, M. Louise M.

    2010-01-01

    The natural history for inhalational Bacillus anthracis (Ames strain) exposure in New Zealand white rabbits was investigated to better identify potential, early biomarkers of anthrax. Twelve SPF Bordetella-free rabbits were exposed to 150 LD50 aerosolized B. anthracis spores, and clinical signs, body temperature, complete blood count, bacteremia, and presence of protective antigen in the blood (that is, antigenemia) were examined. The development of antigenemia and bacteremia coincided and pr...

  20. What sets Bacillus anthracis apart from other Bacillus species?

    Science.gov (United States)

    Kolstø, Anne-Brit; Tourasse, Nicolas J; Økstad, Ole Andreas

    2009-01-01

    Bacillus anthracis is the cause of anthrax, and two large plasmids are essential for toxicity: pXO1, which contains the toxin genes, and pXO2, which encodes a capsule. B. anthracis forms a highly monomorphic lineage within the B. cereus group, but strains of Bacillus thuringiensis and B. cereus exist that are genetically closely related to the B. anthracis cluster. During the past five years B. cereus strains that contain the pXO1 virulence plasmid were discovered, and strains with both pXO1 and pXO2 have been isolated from great apes in Africa. Therefore, the presence of pXO1 and pXO2 no longer principally separates B. anthracis from other Bacilli. The B. anthracis lineage carries a specific mutation in the global regulator PlcR, which controls the transcription of secreted virulence factors in B. cereus and B. thuringiensis. Coevolution of the B. anthracis chromosome with its plasmids may be the basis for the successful development and uniqueness of the B. anthracis lineage. PMID:19514852

  1. Noncapsulated Toxinogenic Bacillus anthracis Presents a Specific Growth and Dissemination Pattern in Naive and Protective Antigen-Immune Mice▿

    OpenAIRE

    Glomski, Ian J.; Corre, Jean-Philippe; Mock, Michèle; Goossens, Pierre L

    2007-01-01

    Bacillus anthracis is a spore-forming bacterium that causes anthrax. B. anthracis has three major virulence factors, namely, lethal toxin, edema toxin, and a poly-γ-d-glutamic acid capsule. The toxins modulate host immune responses, and the capsule inhibits phagocytosis. With the goal of increasing safety, decreasing security concerns, and taking advantage of mammalian genetic tools and reagents, mouse models of B. anthracis infection have been developed using attenuated bacteria that produce...

  2. Differential Effects of Linezolid and Ciprofloxacin on Toxin Production by Bacillus anthracis in an In Vitro Pharmacodynamic System

    OpenAIRE

    Louie, Arnold; VanScoy, Brian D.; Heine, Henry S.; Liu, Weiguo; Abshire, Terry; Holman, Kari; Kulawy, Robert; Brown, David L.; Drusano, George L.

    2012-01-01

    Bacillus anthracis causes anthrax. Ciprofloxacin is a gold standard for the treatment of anthrax. Previously, using the non-toxin-producing ΔSterne strain of B. anthracis, we demonstrated that linezolid was equivalent to ciprofloxacin for reducing the total (vegetative and spore) bacterial population. With ciprofloxacin therapy, the total population consisted of spores. With linezolid therapy, the population consisted primarily of vegetative bacteria. Linezolid is a protein synthesis inhibito...

  3. A novel multiplex PCR discriminates Bacillus anthracis and its genetically related strains from other Bacillus cereus group species.

    Directory of Open Access Journals (Sweden)

    Hirohito Ogawa

    Full Text Available Anthrax is an important zoonotic disease worldwide that is caused by Bacillus anthracis, a spore-forming pathogenic bacterium. A rapid and sensitive method to detect B. anthracis is important for anthrax risk management and control in animal cases to address public health issues. However, it has recently become difficult to identify B. anthracis by using previously reported molecular-based methods because of the emergence of B. cereus, which causes severe extra-intestinal infection, as well as the human pathogenic B. thuringiensis, both of which are genetically related to B. anthracis. The close genetic relation of chromosomal backgrounds has led to complexity of molecular-based diagnosis. In this study, we established a B. anthracis multiplex PCR that can screen for the presence of B. anthracis virulent plasmids and differentiate B. anthracis and its genetically related strains from other B. cereus group species. Six sets of primers targeting a chromosome of B. anthracis and B. anthracis-like strains, two virulent plasmids, pXO1 and pXO2, a bacterial gene, 16S rRNA gene, and a mammalian gene, actin-beta gene, were designed. The multiplex PCR detected approximately 3.0 CFU of B. anthracis DNA per PCR reaction and was sensitive to B. anthracis. The internal control primers also detected all bacterial and mammalian DNAs examined, indicating the practical applicability of this assay as it enables monitoring of appropriate amplification. The assay was also applied for detection of clinical strains genetically related to B. anthracis, which were B. cereus strains isolated from outbreaks of hospital infections in Japan, and field strains isolated in Zambia, and the assay differentiated B. anthracis and its genetically related strains from other B. cereus group strains. Taken together, the results indicate that the newly developed multiplex PCR is a sensitive and practical method for detecting B. anthracis.

  4. Passive protection by polyclonal antibodies against Bacillus anthracis infection in guinea pigs.

    OpenAIRE

    Little, S F; Ivins, B E; Fellows, P F; Friedlander, A M

    1997-01-01

    The protective effects of polyclonal antisera produced by injecting guinea pigs with protective antigen (PA), the chemical anthrax vaccine AVA, or Sterne spore vaccine, as well as those of toxin-neutralizing monoclonal antibodies (MAbs) produced against PA, lethal factor, and edema factor, were examined in animals infected with Bacillus anthracis spores. Only the anti-PA polyclonal serum significantly protected the guinea pigs from death, with 67% of infected animals surviving. Although none ...

  5. Analysis of the sporicidal activity of chlorine dioxide disinfectant against Bacillus anthracis (Sterne strain)

    OpenAIRE

    Chatuev, B.A.; Peterson, J W

    2010-01-01

    Routine surface decontamination is an essential hospital and laboratory procedure, but the list of effective, noncorrosive disinfectants that kill spores is limited. We investigated the sporicidal potential of an aqueous chlorine dioxide solution and encountered some unanticipated problems. Quantitative bacteriological culture methods were used to determine the log10 reduction of Bacillus anthracis (Sterne strain) spores following 3 min exposure to various concentrations of aqueous chlorine d...

  6. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—One Species on the Basis of Genetic Evidence

    OpenAIRE

    Helgason, Erlendur; Økstad, Ole Andreas; Dominique A. Caugant; Johansen, Henning A.; Fouet, Agnes; Mock, Michéle; Hegna, Ida; Kolstø, Anne-Brit

    2000-01-01

    Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are members of the Bacillus cereus group of bacteria, demonstrating widely different phenotypes and pathological effects. B. anthracis causes the acute fatal disease anthrax and is a potential biological weapon due to its high toxicity. B. thuringiensis produces intracellular protein crystals toxic to a wide number of insect larvae and is the most commonly used biological pesticide worldwide. B. cereus is a probably ubiquitous so...

  7. Genotype Analysis of Bacillus anthracis Strains Circulating in Bangladesh.

    Science.gov (United States)

    Rume, Farzana Islam; Affuso, Alessia; Serrecchia, Luigina; Rondinone, Valeria; Manzulli, Viviana; Campese, Emanuele; Di Taranto, Pietro; Biswas, Paritosh Kumar; Ahsan, Chowdhury Rafiqul; Yasmin, Mahmuda; Fasanella, Antonio; Hugh-Jones, Martin

    2016-01-01

    In Bangladesh, anthrax, caused by the bacterium Bacillus anthracis, is considered an endemic disease affecting ruminants with sporadic zoonotic occurrences in humans. Due to the lack of knowledge about risks from an incorrect removal of infected carcasses, the disease is not properly monitored, and because of the socio-economic conditions, the situation is under-reported and under-diagnosed. For sensitive species, anthrax represents a fatal outcome with sudden death and sometimes bleeding from natural orifices. The most common source of infection for ruminants is ingestion of spores during grazing in contaminated pastures or through grass and water contaminated with anthrax spores. Domestic cattle, sheep and goats can also become infected through contaminated bone meal (used as feed) originating from anthrax-infected carcasses. The present investigation was conducted to isolate B. anthracis organisms from 169 samples (73 soil, 1 tissue, 4 bone and 91 bone meal samples) collected from 12 different districts of Bangladesh. The sampling was carried out from 2012 to 2015. Twelve samples resulted positive for B. anthracis. Biomolecular analyses were conducted starting from the Canonical Single Nucleotide Polymorphism (CanSNP) to analyze the phylogenetic origin of strains. The analysis of genotype, obtained through the Multiple Locus Variable Number Tandem Repeat Analysis (MLVA) with the analysis of 15 Variable Number Tandem Repeats (VNTR), demonstrated four different genotypes: two of them were previously identified in the district of Sirajganj. The sub-genotyping, conducted with Single Nucleotide Repeats analysis, revealed the presence of eight subgenotypes. The data of the present study concluded that there was no observed correlation between imported cattle feed and anthrax occurrence in Bangladesh and that the remarkable genetic variations of B. anthracis were found in the soil of numerous outbreaks in this country. PMID:27082248

  8. Hydrazine vapor inactivates Bacillus spores

    Science.gov (United States)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  9. Application of gaseous ozone for inactivation of Bacillus subtilis spores.

    Science.gov (United States)

    Aydogan, Ahmet; Gurol, Mirat D

    2006-02-01

    The effectiveness of gaseous ozone (O3) as a disinfectant was tested on Bacillus subtilis spores, which share the same physiological characteristics as Bacillus anthracis spores that cause the anthrax disease. Spores dried on surfaces of different carrier material were exposed to O3 gas in the range of 500-5000 ppm and at relative humidity (RH) of 70-95%. Gaseous O3 was found to be very effective against the B. subtilis spores, and at O3 concentrations as low as 3 mg/L (1500 ppm), approximately 3-log inactivation was obtained within 4 hr of exposure. The inactivation curves consisted of a short lag phase followed by an exponential decrease in the number of surviving spores. Prehydration of the bacterial spores has eliminated the initial lag phase. The inactivation rate increased with increasing O3 concentration but not >3 mg/L. The inactivation rate also increased with increase in RH. Different survival curves were obtained for various surfaces used to carry spores. Inactivation rates of spores on glass, a vinyl floor tile, and office paper were nearly the same. Whereas cut pile carpet and hardwood flooring surfaces resulted in much lower inactivation rates, another type of carpet (loop pile) showed significant enhancement in the inactivation of the spores. PMID:16568801

  10. Sequencing of 16S rRNA Gene: A Rapid Tool for Identification of Bacillus anthracis

    OpenAIRE

    Sacchi, Claudio T.; Whitney, Anne M.; Mayer, Leonard W.; Morey, Roger; Steigerwalt, Arnold; Boras, Ariana; Weyant, Robin S.; Popovic, Tanja

    2002-01-01

    In a bioterrorism event, a tool is needed to rapidly differentiate Bacillus anthracis from other closely related spore-forming Bacillus species. During the recent outbreak of bioterrorism-associated anthrax, we sequenced the 16S rRNA generom these species to evaluate the potential of 16S rRNA gene sequencing as a diagnostic tool. We found eight distinct 16S types among all 107 16S rRNA gene seqs fuences that differed from each other at 1 to 8 positions (0.06% to 0.5%). All 86 B. anthracis had...

  11. Bacillus thuringiensis as a surrogate for Bacillus anthracis in aerosol research.

    Science.gov (United States)

    Tufts, Jenia A M; Calfee, M Worth; Lee, Sang Don; Ryan, Shawn P

    2014-05-01

    Characterization of candidate surrogate spores prior to experimental use is critical to confirm that the surrogate characteristics are as closely similar as possible to those of the pathogenic agent of interest. This review compares the physical properties inherent to spores of Bacillus anthracis (Ba) and Bacillus thuringiensis (Bt) that impact their movement in air and interaction with surfaces, including size, shape, density, surface morphology, structure and hydrophobicity. Also evaluated is the impact of irradiation on the physical properties of both Bacillus species. Many physical features of Bt and Ba have been found to be similar and, while Bt is considered typically non-pathogenic, it is in the B. cereus group, as is Ba. When cultured and sporulated under similar conditions, both microorganisms share a similar cylindrical pellet shape, an aerodynamic diameter of approximately 1 μm (in the respirable size range), have an exosporium with a hairy nap, and have higher relative hydrophobicities than other Bacillus species. While spore size, morphology, and other physical properties can vary among strains of the same species, the variations can be due to growth/sporulation conditions and may, therefore, be controlled. Growth and sporulation conditions are likely among the most important factors that influence the representativeness of one species, or preparation, to another. All Bt spores may, therefore, not be representative of all Ba spores. Irradiated spores do not appear to be a good surrogate to predict the behavior of non-irradiated spores due to structural damage caused by the irradiation. While the use of Bt as a surrogate for Ba in aerosol testing appears to be well supported, this review does not attempt to narrow selection between Bt strains. Comparative studies should be performed to test the hypothesis that viable Ba and Bt spores will behave similarly when suspended in the air (as an aerosol) and to compare the known microscale characteristics

  12. High-Resolution Spore Coat Architecture and Assembly of Bacillus Spores

    Energy Technology Data Exchange (ETDEWEB)

    Malkin, A J; Elhadj, S; Plomp, M

    2011-03-14

    Elucidating the molecular architecture of bacterial and cellular surfaces and its structural dynamics is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance, and provide the means for identifying spore formulation and processing attributes. I will discuss the application of in vitro atomic force microscopy (AFM) for studies of high-resolution coat architecture and assembly of several Bacillus spore species. We have demonstrated that bacterial spore coat structures are phylogenetically and growth medium determined. We have proposed that strikingly different species-dependent coat structures of bacterial spore species are a consequence of sporulation media-dependent nucleation and crystallization mechanisms that regulate the assembly of the outer spore coat. Spore coat layers were found to exhibit screw dislocations and two-dimensional nuclei typically observed on inorganic and macromolecular crystals. This presents the first case of non-mineral crystal growth patterns being revealed for a biological organism, which provides an unexpected example of nature exploiting fundamental materials science mechanisms for the morphogenetic control of biological ultrastructures. We have discovered and validated, distinctive formulation-specific high-resolution structural spore coat and dimensional signatures of B. anthracis spores (Sterne strain) grown in different formulation condition. We further demonstrated that measurement of the dimensional characteristics of B. anthracis spores provides formulation classification and sample matching with high sensitivity and specificity. I will present data on the development of an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures on the B. anthracis surfaces. These studies demonstrate that AFM can probe microbial surface architecture, environmental dynamics and the life cycle of bacterial and cellular systems at near

  13. Triple fixation of Bacillus subtilis dormant spores.

    OpenAIRE

    Kozuka, S; Tochikubo, K

    1983-01-01

    A triple-fixation method with a sequential application of 5% glutaraldehyde, 1% osmium tetroxide, and 2% potassium permanganate gave superior preservation of the ultrastructure of Bacillus subtilis dormant spores with a thick spore coat.

  14. Bacillus anthracis interacts with plasmin(ogen to evade C3b-dependent innate immunity.

    Directory of Open Access Journals (Sweden)

    Myung-Chul Chung

    Full Text Available The causative agent of anthrax, Bacillus anthracis, is capable of circumventing the humoral and innate immune defense of the host and modulating the blood chemistry in circulation to initiate a productive infection. It has been shown that the pathogen employs a number of strategies against immune cells using secreted pathogenic factors such as toxins. However, interference of B. anthracis with the innate immune system through specific interaction of the spore surface with host proteins such as the complement system has heretofore attracted little attention. In order to assess the mechanisms by which B. anthracis evades the defense system, we employed a proteomic analysis to identify human serum proteins interacting with B. anthracis spores, and found that plasminogen (PLG is a major surface-bound protein. PLG efficiently bound to spores in a lysine- and exosporium-dependent manner. We identified α-enolase and elongation factor tu as PLG receptors. PLG-bound spores were capable of exhibiting anti-opsonic properties by cleaving C3b molecules in vitro and in rabbit bronchoalveolar lavage fluid, resulting in a decrease in macrophage phagocytosis. Our findings represent a step forward in understanding the mechanisms involved in the evasion of innate immunity by B. anthracis through recruitment of PLG resulting in the enhancement of anti-complement and anti-opsonization properties of the pathogen.

  15. Colonic immune suppression, barrier dysfunction, and dysbiosis by gastrointestinal bacillus anthracis Infection.

    Directory of Open Access Journals (Sweden)

    Yaíma L Lightfoot

    Full Text Available Gastrointestinal (GI anthrax results from the ingestion of Bacillus anthracis. Herein, we investigated the pathogenesis of GI anthrax in animals orally infected with toxigenic non-encapsulated B. anthracis Sterne strain (pXO1+ pXO2- spores that resulted in rapid animal death. B. anthracis Sterne induced significant breakdown of intestinal barrier function and led to gut dysbiosis, resulting in systemic dissemination of not only B. anthracis, but also of commensals. Disease progression significantly correlated with the deterioration of innate and T cell functions. Our studies provide critical immunologic and physiologic insights into the pathogenesis of GI anthrax infection, whereupon cleavage of mitogen-activated protein kinases (MAPKs in immune cells may play a central role in promoting dysfunctional immune responses against this deadly pathogen.

  16. Genome Differences That Distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis

    OpenAIRE

    Radnedge, Lyndsay; Agron, Peter G.; Hill, Karen K.; Jackson, Paul J.; Ticknor, Lawrence O; Keim, Paul; Andersen, Gary L.

    2003-01-01

    The three species of the group 1 bacilli, Bacillus anthracis, B. cereus, and B. thuringiensis, are genetically very closely related. All inhabit soil habitats but exhibit different phenotypes. B. anthracis is the causative agent of anthrax and is phylogenetically monomorphic, while B. cereus and B. thuringiensis are genetically more diverse. An amplified fragment length polymorphism analysis described here demonstrates genetic diversity among a collection of non-anthrax-causing Bacillus speci...

  17. Rapid detection methods for Bacillus anthracis in environmental samples: a review.

    OpenAIRE

    Irenge, Léonid; Gala, Jean-Luc

    2012-01-01

    Bacillus anthracis is a Gram-positive, spore-forming bacterium, which causes anthrax, an often lethal disease of animals and humans. Although the disease has been well studied since the nineteenth century, it has witnessed a renewed interest during the past decade, due to its use as a bioterrorist agent in the fall of 2001 in the USA. A number of techniques aimed at rapidly detecting B. anthracis, in environmental samples as well as in point-of-care settings for humans suspected of exposure t...

  18. Genetic Characterization of Bacillus anthracis 17 JB strain

    Directory of Open Access Journals (Sweden)

    Sakineh Seyed-Mohamadi

    2015-11-01

    Full Text Available Background and Objectives: Bacillus anthracis is one of the most homogenous bacteria ever described. Bacillus anthracis 17JB is a laboratory strain. It is broadly used as a challenge strain in guinea pigs for potency test of anthrax vaccine.Material and Methods: This work describes genetic characterization of B. anthracis 17 JB strain using the SNPs and MLVA genotyping.Results and Conclusion: In SNPs typing, the originally French 17JB strain represented the A. Br. 008/009 subgroup. In Levy's genotyping method, 843, 451 and 864 bp long fragments were identified at AA03, AJ03 and AA07 loci, respectively. In the vaccine manufacturer perspective these findings are much valuable on their own account, but similar research is required to extend molecular knowledge of B. anthracis epidemiology in Persia.Keywords: Bacillus anthracis 17JB, Genetic characterization, SNPs typing

  19. Genetic analysis of petrobactin transport in Bacillus anthracis.

    Science.gov (United States)

    Carlson, Paul E; Dixon, Shandee D; Janes, Brian K; Carr, Katherine A; Nusca, Tyler D; Anderson, Erica C; Keene, Sarra E; Sherman, David H; Hanna, Philip C

    2010-02-01

    Iron acquisition mechanisms play an important role in the pathogenesis of many infectious microbes. In Bacillus anthracis, the siderophore petrobactin is required for both growth in iron-depleted conditions and for full virulence of the bacterium. Here we demonstrate the roles of two putative petrobactin binding proteins FatB and FpuA (encoded by GBAA5330 and GBAA4766 respectively) in B. anthracis iron acquisition and pathogenesis. Markerless deletion mutants were created using allelic exchange. The Delta fatB strain was capable of wild-type levels of growth in iron-depleted conditions, indicating that FatB does not play an essential role in petrobactin uptake. In contrast, Delta fpuA bacteria exhibited a significant decrease in growth under low-iron conditions when compared with wild-type bacteria. This mutant could not be rescued by the addition of exogenous purified petrobactin. Further examination of this strain demonstrated increased levels of petrobactin accumulation in the culture supernatants, suggesting no defect in siderophore synthesis or export but, instead, an inability of Delta fpuA to import this siderophore. Delta fpuA spores were also significantly attenuated in a murine model of inhalational anthrax. These results provide the first genetic evidence demonstrating the role of FpuA in petrobactin uptake. PMID:20487286

  20. Development of an Inhalational Bacillus anthracis Exposure Therapeutic Model in Cynomolgus Macaques

    OpenAIRE

    Henning, Lisa N.; Comer, Jason E.; Stark, Gregory V.; Ray, Bryan D.; Tordoff, Kevin P.; Knostman, Katherine A. B.; Meister, Gabriel T.

    2012-01-01

    Appropriate animal models are required to test medical countermeasures to bioterrorist threats. To that end, we characterized a nonhuman primate (NHP) inhalational anthrax therapeutic model for use in testing anthrax therapeutic medical countermeasures according to the U.S. Food and Drug Administration Animal Rule. A clinical profile was recorded for each NHP exposed to a lethal dose of Bacillus anthracis Ames spores. Specific diagnostic parameters were detected relatively early in disease pr...

  1. Application of In Vivo Induced Antigen Technology (IVIAT) to Bacillus anthracis

    OpenAIRE

    Peppercorn, Amanda; Young, John S; Drysdale, Melissa; Baresch, Andrea; Bikowski, Margaret V.; Ashford, David A.; Quinn, Conrad P.; Handfield, Martin; Hillman, Jeffrey D.; Lyons, C. Rick; Koehler, Theresa M.; Sonenshein, Abraham L.; Rollins, Sean McKenzie; Calderwood, Stephen Beaven; Ryan, Edward Thomas

    2008-01-01

    In vivo induced antigen technology (IVIAT) is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase Nar...

  2. Forensic Application of Microbiological Culture Analysis To Identify Mail Intentionally Contaminated with Bacillus anthracis Spores†

    OpenAIRE

    Beecher, Douglas J.

    2006-01-01

    The discovery of a letter intentionally filled with dried Bacillus anthracis spores in the office of a United States senator prompted the collection and quarantine of all mail in congressional buildings. This mail was subsequently searched for additional intentionally contaminated letters. A microbiological sampling strategy was used to locate heavy contamination within the 642 separate plastic bags containing the mail. Swab sampling identified 20 bags for manual and visual examination. Air s...

  3. Genetic analysis of petrobactin transport in Bacillus anthracis

    OpenAIRE

    Carlson, Paul E.; Dixon, Shandee D.; Janes, Brian K.; Carr, Katherine A.; Nusca, Tyler D.; Anderson, Erica C.; Keene, Sarra E.; Sherman, David H.; Hanna, Philip C.

    2010-01-01

    Iron acquisition mechanisms play an important role in the pathogenesis of many infectious microbes. In Bacillus anthracis, the siderophore petrobactin is required for both growth in iron depleted conditions and for full virulence of the bacterium. Here we demonstrate the roles of two putative petrobactin binding proteins FatB and FpuA (encoded by GBAA5330 and GBAA4766, respectively) in Bacillus anthracis iron acquisition and pathogenesis. Markerless deletion mutants were created using allelic...

  4. Measurement of 100 B. anthracis Ames spores within 15 minutes by SERS at the US Army Edgewood Chemical Biological Ctr.

    Science.gov (United States)

    Farquharson, Stuart; Shende, Chetan; Smith, Wayne; Huang, Hermes; Sperry, Jay; Sickler, Todd; Prugh, Amber; Guicheteau, Jason

    2014-05-01

    Since the distribution of Bacillus anthracis-Ames spores through the US Postal System, there has been a persistent fear that biological warfare agents will be used by terrorists against our military abroad and our civilians at home. While there has been substantial effort since the anthrax attack of 2001 to develop analyzers to detect this and other biological warfare agents, the analyzers remain either too slow, lack sensitivity, produce high false-positive rates, or cannot be fielded. In an effort to overcome these limitations we have been developing a surface-enhanced Raman spectroscopy system. Here we describe the use of silver nanoparticles functionalized with a short peptide to selectively capture Bacillus anthracis spores and produce SER scattering. Specifically, measurements of 100 B. anthracis-Ames spores/mL in ~25 minutes performed at the US Army's Edgewood Chemical Biological Center are presented. The measurements provide a basis for the development of systems that can detect spores collected from the air or water supplies with the potential of saving lives during a biological warfare attack.

  5. Quantitative Determination of Lethal Toxin Proteins in Culture Supernatant of Human Live Anthrax Vaccine Bacillus anthracis A16R

    OpenAIRE

    Zai, Xiaodong; Zhang, Jun; Liu, Ju; Liu,Jie; Li, Liangliang; Yin, Ying; Fu, Ling; Xu, Junjie; Chen, Wei

    2016-01-01

    Bacillus anthracis (B. anthracis) is the etiological agent of anthrax affecting both humans and animals. Anthrax toxin (AT) plays a major role in pathogenesis. It includes lethal toxin (LT) and edema toxin (ET), which are formed by the combination of protective antigen (PA) and lethal factor (LF) or edema factor (EF), respectively. The currently used human anthrax vaccine in China utilizes live-attenuated B. anthracis spores (A16R; pXO1+, pXO2−) that produce anthrax toxin but cannot produce t...

  6. Detection of Anthrax Simulants with Microcalorimetric Spectroscopy: Bacillus subtilis and Bacillus cereus Spores

    Science.gov (United States)

    Arakawa, Edward T.; Lavrik, Nickolay V.; Datskos, Panos G.

    2003-04-01

    Recent advances in the development of ultrasensitive micromechanical thermal detectors have led to the advent of novel subfemtojoule microcalorimetric spectroscopy (CalSpec). On the basis of principles of photothermal IR spectroscopy combined with efficient thermomechanical transduction, CalSpec provides acquisition of vibrational spectra of microscopic samples and absorbates. We use CalSpec as a method of identifying nanogram quantities of biological micro-organisms. Our studies focus on Bacillus subtilis and Bacillus cereus spores as simulants for Bacillus anthracis spores. Using CalSpec, we measured IR spectra of B. subtilis and B. cereus spores present on surfaces in nanogram quantities (approximately 100 -1000 spores). The spectra acquired in the wavelength range of 690 -4000 cm-1 (2.5 -14.5 μm) contain information-rich vibrational signatures that reflect the different ratios of biochemical makeup of the micro-organisms. The distinctive features in the spectra obtained for the two types of micro-organism can be used to distinguish between the spores of the Bacillus family. As compared with conventional IR and Fourier-transform IR microscopic spectroscopy techniques, the advantages of the present technique include significantly improved sensitivity (at least a full order of magnitude), absence of expensive IR detectors, and excellent potential for miniaturization.

  7. Anthrax vaccine design: strategies to achieve comprehensive protection against spore, bacillus, and toxin

    OpenAIRE

    Roehrl, Michael H.; Wang, Jun-Xia

    2005-01-01

    The successful use of Bacillus anthracis as a lethal biological weapon has prompted renewed research interest in the development of more effective vaccines against anthrax. The disease consists of three critical components: spore, bacillus, and toxin, elimination of any of which confers at least partial protection against anthrax. Current remedies rely on postexposure antibiotics to eliminate bacilli and pre- and postexposure vaccination to target primarily toxins. Vaccines effective against ...

  8. Structure of 5-formyltetrahydrofolate cyclo-ligase from Bacillus anthracis (BA4489)

    International Nuclear Information System (INIS)

    The structure of 5-formyltetrahydrofolate cyclo-ligase from B. anthracis determined by X-ray crystallography at a resolution of 1.6 Å is described. Bacillus anthracis is a spore-forming bacterium and the causative agent of the disease anthrax. The Oxford Protein Production Facility has been targeting proteins from B. anthracis in order to develop high-throughput technologies within the Structural Proteomics in Europe project. As part of this work, the structure of 5-formyltetrahydrofolate cyclo-ligase (BA4489) has been determined by X-ray crystallography to 1.6 Å resolution. The structure, solved in complex with magnesium-ion-bound ADP and phosphate, gives a detailed picture of the proposed catalytic mechanism of the enzyme. Chemical differences from other cyclo-ligase structures close to the active site that could be exploited to design specific inhibitors are also highlighted

  9. Rapid detection methods for Bacillus anthracis in environmental samples: a review.

    Science.gov (United States)

    Irenge, Léonid M; Gala, Jean-Luc

    2012-02-01

    Bacillus anthracis is a Gram-positive, spore-forming bacterium, which causes anthrax, an often lethal disease of animals and humans. Although the disease has been well studied since the nineteenth century, it has witnessed a renewed interest during the past decade, due to its use as a bioterrorist agent in the fall of 2001 in the USA. A number of techniques aimed at rapidly detecting B. anthracis, in environmental samples as well as in point-of-care settings for humans suspected of exposure to the pathogen, are now available. These technologies range from culture-based methods to portable DNA amplification devices. Despite recent developments, specific identification of B. anthracis still remains difficult because of its phenotypic and genotypic similarities with other Bacillus species. Accordingly, many efforts are being made to improve the specificity of B. anthracis identification. This mini-review discusses the current challenges around B. anthracis identification, not only in reach-back laboratories but also in the field (in operational conditions). PMID:22262227

  10. Fluorescent Amplified Fragment Length Polymorphism Analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis Isolates

    OpenAIRE

    Hill, Karen K.; Ticknor, Lawrence O.; Okinaka, Richard T.; Asay, Michelle; Blair, Heather; Bliss, Katherine A.; Laker, Mariam; Pardington, Paige E.; Richardson, Amber P.; Tonks, Melinda; Beecher, Douglas J.; Kemp, John D.; Kolstø, Anne-Brit; Wong, Amy C. Lee; Keim, Paul

    2004-01-01

    DNA from over 300 Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis isolates was analyzed by fluorescent amplified fragment length polymorphism (AFLP). B. thuringiensis and B. cereus isolates were from diverse sources and locations, including soil, clinical isolates and food products causing diarrheal and emetic outbreaks, and type strains from the American Type Culture Collection, and over 200 B. thuringiensis isolates representing 36 serovars or subspecies were from the U.S. D...

  11. Functional Comparison of the Two Bacillus anthracis Glutamate Racemases▿

    OpenAIRE

    Dodd, Dylan; Reese, Joseph G.; Louer, Craig R.; Ballard, Jimmy D.; Spies, M. Ashley; Blanke, Steven R.

    2007-01-01

    Glutamate racemase activity in Bacillus anthracis is of significant interest with respect to chemotherapeutic drug design, because l-glutamate stereoisomerization to d-glutamate is predicted to be closely associated with peptidoglycan and capsule biosynthesis, which are important for growth and virulence, respectively. In contrast to most bacteria, which harbor a single glutamate racemase gene, the genomic sequence of B. anthracis predicts two genes encoding glutamate racemases, racE1 and rac...

  12. Molecular Epidemiology of Bacillus anthracis: Determining the Correct Origin▿

    OpenAIRE

    Pilo, Paola; Perreten, Vincent; Frey, Joachim

    2008-01-01

    We analyzed and compared strains of Bacillus anthracis isolated from husbandry and industrial anthrax cases in Switzerland between 1952 and 1981 with published data using multiple-locus variable-number tandem repeat analysis. Strains isolated from autochthonous cases of anthrax in cattle belong to genotype B2, together with strains from continental Europe, while human B. anthracis strains clustered with genotype A4. These strains could be traced back to outbreaks of human anthrax that occurre...

  13. Production and purification of Bacillus anthracis protective antigen

    OpenAIRE

    2005-01-01

    Protective antigen (PA) plays crucial roles in the pathogenicity and virulence of Bacillus anthracis. Animals or human immunised with the protein acquire a complete protection against the disease. In addition to vaccine, PA can also be developed into a sensitive diagnostic test for anthrax. The purpose of this study was to produce PA using a culture medium easily obtained, and to develop a simple and effective technique for purification of the protein. To produce PA, B. anthracis Sterne 34F2 ...

  14. Bacillus anthracis IsdG, a Heme-Degrading Monooxygenase

    OpenAIRE

    Skaar, Eric P.; Gaspar, Andrew H.; Schneewind, Olaf

    2006-01-01

    Bacillus anthracis, the causative agent of anthrax, utilizes hemin and hemoglobin for growth in culture, suggesting that these host molecules serve as sources for the nutrient iron during bacterial infection. Bioinformatic analyses of the B. anthracis genome revealed genes with similarity to the iron-regulated surface determinant (isd) system responsible for heme uptake in Staphylococcus aureus. We show that the protein product of one of these genes, isdG, binds hemin in a manner resembling t...

  15. Detection of Bacillus anthracis DNA by LightCycler PCR

    OpenAIRE

    Bell, Constance A.; Uhl, James R.; Hadfield, Ted L.; David, John C.; Meyer, Richard F.; Smith, Thomas F.; Cockerill III, Franklin R.

    2002-01-01

    Anthrax is a zoonotic disease that is also well recognized as a potential agent of bioterrorism. Routine culture and biochemical testing methods are useful for the identification of Bacillus anthracis, but a definitive identification may take 24 to 48 h or longer and may require that specimens be referred to another laboratory. Virulent isolates of B. anthracis contain two plasmids (pX01 and pX02) with unique targets that allow the rapid and specific identification of B. anthracis by PCR. We ...

  16. Novel giant siphovirus from Bacillus anthracis features unusual genome characteristics.

    Directory of Open Access Journals (Sweden)

    Holly H Ganz

    Full Text Available Here we present vB_BanS-Tsamsa, a novel temperate phage isolated from Bacillus anthracis, the agent responsible for anthrax infections in wildlife, livestock and humans. Tsamsa phage is a giant siphovirus (order Caudovirales, featuring a long, flexible and non-contractile tail of 440 nm (not including baseplate structure and an isometric head of 82 nm in diameter. We induced Tsamsa phage in samples from two different carcass sites in Etosha National Park, Namibia. The Tsamsa phage genome is the largest sequenced Bacillus siphovirus, containing 168,876 bp and 272 ORFs. The genome features an integrase/recombinase enzyme, indicative of a temperate lifestyle. Among bacterial strains tested, the phage infected only certain members of the Bacillus cereus sensu lato group (B. anthracis, B. cereus and B. thuringiensis and exhibited moderate specificity for B. anthracis. Tsamsa lysed seven out of 25 B. cereus strains, two out of five B. thuringiensis strains and six out of seven B. anthracis strains tested. It did not lyse B. anthracis PAK-1, an atypical strain that is also resistant to both gamma phage and cherry phage. The Tsamsa endolysin features a broader lytic spectrum than the phage host range, indicating possible use of the enzyme in Bacillus biocontrol.

  17. Measurements of the Ultraviolet Fluorescence Cross Sections and Spectra of Bacillus Anthracis Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, J.R.

    1998-09-01

    Measurements of the ultraviolet autofluorescence spectra and absolute cross sections of the Bacillus anthracis (Ba) simulants Bacillus globigii (Bg), Bacillus megaterium (Bm), Bacillus subtilis (Bs), and Bacillus cereus (Bc) were measured. Fluorescence spectra and cross sections of pine pollen (Pina echinata) were measured for comparison. Both dried vegetative cells and spores separated from the sporulated vegetative material were studied. The spectra were obtained by suspending a small number (<10) of particles in air in our Single Particle Spectroscopy Apparatus (SPSA), illuminating the particles with light from a spectrally filtered arc lamp, and measuring the fluorescence spectra of the particles. The illumination was 280 nm (20 nm FWHM) and the fluorescence spectra was measured between 300 and 450 nm. The fluorescence cross section of vegetative Bg peaks at 320 nm with a maximum cross section of 5 X 10{sup -14} cm{sup 2}/sr-nm-particle while the Bg spore fluorescence peaks at 310 nm with peak fluorescence of 8 X 10{sup -15} cm{sup 2}/sr-nm-particle. Pine pollen particles showed a higher fluorescence peaking at 355 nm with a cross section of 1.7 X 10{sup -13} cm{sup 2}/sr-nm-particle. Integrated cross sections ranged from 3.0 X 10{sup -13} for the Bg spores through 2.25 X 10{sup -12} (cm{sup 2}/sr-particle) for the vegetative cells.

  18. Application of in vivo induced antigen technology (IVIAT to Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Sean M Rollins

    Full Text Available In vivo induced antigen technology (IVIAT is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase NarG, and three proteins of unknown function. Using quantitative real-time PCR comparing RNA isolated from in vitro cultured B. anthracis to RNA isolated from BALB/c mice infected with virulent Ames strain B. anthracis, we confirmed induced expression in vivo for a subset of B. anthracis genes identified by IVIAT, including L-alanine amidases BA3767, BA4073, and amiA (pXO2-42; the bacteriophage holin gene BA4074; and pagA (pXO1-110. The exogenous addition of two purified putative autolysins identified by IVIAT, N-acetylmuramoyl-L-alanine amidases BA0485 and BA2446, to vegetative B. anthracis cell suspensions induced a species-specific change in bacterial morphology and reduction in viable bacterial cells. Many of the proteins identified in our screen are predicted to affect peptidoglycan re-modeling, and our results support significant cell wall structural remodeling activity during B. anthracis infection. Identification of L-alanine amidases with B. anthracis specificity may suggest new potential therapeutic targets.

  19. Fate of Bacillus anthracis during production of laboratory-scale cream cheese and homemade-style yoghurt.

    Science.gov (United States)

    Mertens, Katja; Schneider, Oda; Schmoock, Gernot; Melzer, Falk; Elschner, Mandy C

    2015-04-01

    The viability of Bacillus anthracis during production and storage of cream cheese and yoghurt was evaluated. Experimental cheeses were manufactured from whole milk inoculated with a suspension of B. anthracis vegetative cells and spores at a final concentration of 10(4) cfu/ml. Lactic acid bacteria (LAB) and lab ferment were used to induce milk ripening and milk coagulation. The pH-value of the contaminated milk dropped below 4.5 within the first 6 h and the amount of LAB increased by approximately 2-logs. During cheese production and storage at 5-9 °C for 24 days no growth of B. anthracis was observed. The amount of vegetative cells and spores fluctuated by 1-log. Inoculation of whole milk with heat-treated spores at 10(4) cfu/ml resulted in a slight increase of vegetative cell counts during the first 6 h. This indicated that germination occurred, but replication of vegetative cells was still inhibited in the produced cheese. Incubation of cheeses at room temperature or heating after milk coagulation strongly reduced the amount of LAB but had no effect on the growth behaviour of B. anthracis. The vegetative cell and spore content remained steady at 10(4) cfu/100 mg. During yoghurt production the pH-value decreased within 5 h below 5 and growth of B. anthracis was inhibited throughout storage. A pH-value of 5 or less is likely a critical factor to control the growth of B. anthracis. However, spores remained viable in experimental cream cheeses and yoghurts and are a potential risk of infection. PMID:25475304

  20. New aspects of the infection mechanisms of Bacillus anthracis.

    Science.gov (United States)

    Zakowska, Dorota; Bartoszcze, Michał; Niemcewicz, Marcin; Bielawska-Drózd, Agata; Kocik, Janusz

    2012-01-01

    Articles concerning new aspects of B. anthracis mechanisms of infection were reviewed. It was found, that the hair follicle plays an important role in the spore germination process. The hair follicle represent an important portal of entry in the course of the cutaneous form of disease infections. After mouse exposition to aerosol of spores prepared from B. anthracis strains, an increase in the level of TNF-α cytokines was observed. The TNF-α cytokines were produced after intrusion into the host by the microorganism. This process may play a significant role in the induced migration of infected cells APCs (Antigen Presenting Cells) via chemotactic signals to the lymph nodes. It was explained that IgG, which binds to the spore surface, activates the adaptive immune system response. As a result, the release C3b opsonin from the spore surface, and mediating of C3 protein fragments of B. anthracis spores phagocytosis by human macrophages, was observed. The genes coding germination spores protein in mutant strains of B. anthracis MIGD was a crucial discovery. According to this, it could be assumed that the activity of B. anthracis spores germination process is dependent upon the sleB, cwlJ1 and cwlJ2 genes, which code the GSLEs lithic enzymes. It was also discovered that the specific antibody for PA20, which binds to the PA20 antigenic determinant, are able to block further PA83 proteolytic fission on the surface of cells. This process neutralized PA functions and weakened the activity of free PA20, which is produced during the PA83 enzyme fission process. Interaction between PA63 monomer and LF may be helpful in the PA63 oligomerization and grouping process, and the creation of LF/PA63 complexes may be a part of an alternative process of assembling the anthrax toxin on the surface of cells. It was found that actin-dependent endocytosis plays an important role in the PA heptamerisation process and leads to blocking the toxin activity. Chaperones, a protein derived from

  1. Secretion Genes as Determinants of Bacillus anthracis Chain Length

    OpenAIRE

    Nguyen-Mau, Sao-Mai; Oh, So-Young; Kern, Valerie J.; Missiakas, Dominique M.; Schneewind, Olaf

    2012-01-01

    Bacillus anthracis grows in chains of rod-shaped cells, a trait that contributes to its escape from phagocytic clearance in host tissues. Using a genetic approach to search for determinants of B. anthracis chain length, we identified mutants with insertional lesions in secA2. All isolated secA2 mutants exhibited an exaggerated chain length, whereas the dimensions of individual cells were not changed. Complementation studies revealed that slaP (S-layer assembly protein), a gene immediately dow...

  2. DNA probe functionalized QCM biosensor based on gold nanoparticle amplification for Bacillus anthracis detection.

    Science.gov (United States)

    Hao, Rong-Zhang; Song, Hong-Bin; Zuo, Guo-Min; Yang, Rui-Fu; Wei, Hong-Ping; Wang, Dian-Bing; Cui, Zong-Qiang; Zhang, ZhiPing; Cheng, Zhen-Xing; Zhang, Xian-En

    2011-04-15

    The rapid detection of Bacillus anthracis, the causative agent of anthrax disease, has gained much attention since the anthrax spore bioterrorism attacks in the United States in 2001. In this work, a DNA probe functionalized quartz crystal microbalance (QCM) biosensor was developed to detect B. anthracis based on the recognition of its specific DNA sequences, i.e., the 168 bp fragment of the Ba813 gene in chromosomes and the 340 bp fragment of the pag gene in plasmid pXO1. A thiol DNA probe was immobilized onto the QCM gold surface through self-assembly via Au-S bond formation to hybridize with the target ss-DNA sequence obtained by asymmetric PCR. Hybridization between the target DNA and the DNA probe resulted in an increase in mass and a decrease in the resonance frequency of the QCM biosensor. Moreover, to amplify the signal, a thiol-DNA fragment complementary to the other end of the target DNA was functionalized with gold nanoparticles. The results indicate that the DNA probe functionalized QCM biosensor could specifically recognize the target DNA fragment of B. anthracis from that of its closest species, such as Bacillus thuringiensis, and that the limit of detection (LOD) reached 3.5 × 10(2)CFU/ml of B. anthracis vegetative cells just after asymmetric PCR amplification, but without culture enrichment. The DNA probe functionalized QCM biosensor demonstrated stable, pollution-free, real-time sensing, and could find application in the rapid detection of B. anthracis. PMID:21315574

  3. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Karen Elizabeth Kempsell

    2015-08-01

    Full Text Available A commercial Bacillus anthracis (Anthrax whole genome protein microarray has been used to identify immunogenic Anthrax proteins using sera from groups of donors with (a confirmed B. anthracis naturally acquired cutaneous infection, (b confirmed B. anthracis intravenous drug use-acquired infection (c occupational exposure in a wool-sorters factory (d humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups.Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However a number of other chromosomally-located and plasmid encoded open reading frames were also recognised by infected or exposed groups in comparison to controls. Some of these antigens e.g. BA4182 are not recognised by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo and are not currently found in the UK licensed Anthrax Vaccine (AVP. These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis ‘infectome’. These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesised, tested in mouse immunogenicity studies and validated in parallel using human sera from the

  4. A Randomly Amplified Polymorphic DNA Marker Specific for the Bacillus cereus Group Is Diagnostic for Bacillus anthracis

    OpenAIRE

    Daffonchio, Daniele; Borin, Sara; Frova, Giuseppe; Gallo, Romina; Mori, Elena; Fani, Renato; Sorlini, Claudia

    1999-01-01

    Aiming to develop a DNA marker specific for Bacillus anthracis and able to discriminate this species from Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides, we applied the randomly amplified polymorphic DNA (RAPD) fingerprinting technique to a collection of 101 strains of the genus Bacillus, including 61 strains of the B. cereus group. An 838-bp RAPD marker (SG-850) specific for B. cereus, B. thuringiensis, B. anthracis, and B. mycoides was identified. This fragment included a pu...

  5. Proteomics Reveals that Proteins Expressed During the Early Stage of Bacillus anthracis Infection Are Potential Targets for the Development of Vaccines and Drugs

    Institute of Scientific and Technical Information of China (English)

    Chun-Ming Huang; Craig A. Elmets; De-chu C. Tang; Fuming Li; Nabiha Yusuf

    2004-01-01

    In this review, we advance a new concept in developing vaccines and/or drugs to target specific proteins expressed during the early stage of Bacillus anthracis (an thrax) infection and address existing challenges to this concept. Three proteins (immune inhibitor A, GPR-like spore protease, and alanine racemase) initially identified by proteomics in our laboratory were found to have differential expres sions during anthrax spore germination and early outgrowth. Other studies of different bacillus strains indicate that these three proteins are involved in either germination or cytotoxicity of spores, suggesting that they may serve as potential targets for the design of anti-anthrax vaccines and drugs.

  6. Evaluation of surface sampling method performance for Bacillus Spores on clean and dirty outdoor surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Einfeld, Wayne; Boucher, Raymond M.; Brown, Gary Stephen; Tezak, Matthew Stephen

    2011-06-01

    Recovery of Bacillus atrophaeous spores from grime-treated and clean surfaces was measured in a controlled chamber study to assess sampling method performance. Outdoor surfaces investigated by wipe and vacuum sampling methods included stainless steel, glass, marble and concrete. Bacillus atrophaeous spores were used as a surrogate for Bacillus anthracis spores in this study designed to assess whether grime-coated surfaces significantly affected surface sampling method performance when compared to clean surfaces. A series of chamber tests were carried out in which known amounts of spores were allowed to gravitationally settle onto both clean and dirty surfaces. Reference coupons were co-located with test coupons in all chamber experiments to provide a quantitative measure of initial surface concentrations of spores on all surfaces, thereby allowing sampling recovery calculations. Results from these tests, carried out under both low and high humidity conditions, show that spore recovery from grime-coated surfaces is the same as or better than spore recovery from clean surfaces. Statistically significant differences between method performance for grime-coated and clean surfaces were observed in only about half of the chamber tests conducted.

  7. Bacillus anthracis infections – new possibilities of treatment

    OpenAIRE

    Dorota Żakowska; Michał Bartoszcze; Marcin Niemcewicz; Agata Bielawska-Drózd; Józef Knap; Piotr Cieślik; Krzysztof Chomiczewski; Janusz Kocik

    2015-01-01

    [b]Introduction and objective[/b]. [i]Bacillus anthracis[/i] is one of biological agents which may be used in bioterrorism attacks. The aim of this study a review of the new treatment possibilities of anthrax, with particular emphasis on the treatment of pulmonary anthrax. [b]Abbreviated description of the state of knowledge[/b]. Pulmonary anthrax, as the most dangerous clinical form of the disease, is also extremely difficult to treat. Recently, considerable progress in finding new dru...

  8. Molecular analysis of adenylyl cyclase: Bacillus anthracis edema factor exotoxin

    OpenAIRE

    Mohammed, Hesham Hamada Taha

    2010-01-01

    Bacillus anthracis causes anthrax disease and exerts its deleterious effects by the release of three exotoxins, i.e. lethal factor, protective antigen and edema factor EF), a highly active calmodulin-dependent adenylyl cyclase (AC). However, conventional antibiotic treatment is ineffective against either toxemia or antibiotic- resistant strains. Thus, more effective drugs for anthrax treatment are needed. We successfully purified the recombinant full-length EF and EF3(F586A) from E. coli with...

  9. Historical Distribution and Molecular Diversity of Bacillus anthracis, Kazakhstan

    OpenAIRE

    Aikembayev, Alim M.; Lukhnova, Larissa; Temiraliyeva, Gulnara; Meka-Mechenko, Tatyana; Pazylov, Yerlan; Zakaryan, Sarkis; Denissov, Georgiy; Easterday, W. Ryan; Matthew N. Van Ert; Keim, Paul; Francesconi, Stephen C.; Jason K Blackburn; Hugh-Jones, Martin; Hadfield, Ted

    2010-01-01

    To map the distribution of anthrax outbreaks and strain subtypes in Kazakhstan during 1937–2005, we combined geographic information system technology and genetic analysis by using archived cultures and data. Biochemical and genetic tests confirmed the identity of 93 archived cultures in the Kazakhstan National Culture Collection as Bacillus anthracis. Multilocus variable number tandem repeat analysis genotyping identified 12 genotypes. Cluster analysis comparing these genotypes with previousl...

  10. Glycerol Monolaurate Inhibits Virulence Factor Production in Bacillus anthracis

    OpenAIRE

    Vetter, Sara M; Schlievert, Patrick M.

    2005-01-01

    Anthrax, caused by Bacillus anthracis, has been brought to the public's attention because of the 2001 bioterrorism attacks. However, anthrax is a disease that poses agricultural threats in the United States as well as human populations in Europe, China, Africa, and Australia. Glycerol monolaurate (GML) is a compound that has been shown to inhibit exotoxin production by Staphylococcus aureus and other gram-positive bacteria. Here, we study the effects of GML on growth and toxin production in B...

  11. Evaluation of the FilmArray® system for detection of Bacillus anthracis, Francisella tularensis, and Yersinia pestis

    Energy Technology Data Exchange (ETDEWEB)

    Seiner, Derrick R.; Colburn, Heather A.; Baird, Cheryl L.; Bartholomew, Rachel A.; Straub, Tim M.; Victry, Kristin D.; Hutchison, Janine R.; Valentine, Nancy B.; Bruckner-Lea, Cindy J.

    2013-04-29

    To evaluate the sensitivity and specificity of the Idaho Technologies FilmArray® Biothreat Panel for the detection of Bacillus anthracis (Ba), Francisella tularensis (Ft), and Yersinia pestis (Yp) DNA, and demonstrate the detection of Ba spores. Methods and Results: DNA samples from Ba, Ft and Yp strains and near-neighbors, and live Ba spores were analyzed using the Biothreat Panel, a multiplexed PCR-based assay for 17 pathogens and toxins. Sensitivity studies with DNA suggest a limit of detection of 250 genome equivalents (GEs) per sample. Furthermore, the correct call of Ft, Yp or Bacillus species was made in 63 of 72 samples tested at 25 GE or less. With samples containing 25 Ba Sterne spores, at least one of the two possible Ba markers were identified in all samples tested. We observed no cross-reactivity with near-neighbor DNAs.

  12. Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: past, present and future.

    Science.gov (United States)

    Gillis, Annika; Mahillon, Jacques

    2014-07-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here. PMID:25010767

  13. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    Directory of Open Access Journals (Sweden)

    Annika Gillis

    2014-07-01

    Full Text Available Many bacteriophages (phages have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here.

  14. Modeling the potential distribution of Bacillus anthracis under multiple climate change scenarios for Kazakhstan.

    Directory of Open Access Journals (Sweden)

    Timothy Andrew Joyner

    Full Text Available Anthrax, caused by the bacterium Bacillus anthracis, is a zoonotic disease that persists throughout much of the world in livestock, wildlife, and secondarily infects humans. This is true across much of Central Asia, and particularly the Steppe region, including Kazakhstan. This study employed the Genetic Algorithm for Rule-set Prediction (GARP to model the current and future geographic distribution of Bacillus anthracis in Kazakhstan based on the A2 and B2 IPCC SRES climate change scenarios using a 5-variable data set at 55 km(2 and 8 km(2 and a 6-variable BioClim data set at 8 km(2. Future models suggest large areas predicted under current conditions may be reduced by 2050 with the A2 model predicting approximately 14-16% loss across the three spatial resolutions. There was greater variability in the B2 models across scenarios predicting approximately 15% loss at 55 km(2, approximately 34% loss at 8 km(2, and approximately 30% loss with the BioClim variables. Only very small areas of habitat expansion into new areas were predicted by either A2 or B2 in any models. Greater areas of habitat loss are predicted in the southern regions of Kazakhstan by A2 and B2 models, while moderate habitat loss is also predicted in the northern regions by either B2 model at 8 km(2. Anthrax disease control relies mainly on livestock vaccination and proper carcass disposal, both of which require adequate surveillance. In many situations, including that of Kazakhstan, vaccine resources are limited, and understanding the geographic distribution of the organism, in tandem with current data on livestock population dynamics, can aid in properly allocating doses. While speculative, contemplating future changes in livestock distributions and B. anthracis spore promoting environments can be useful for establishing future surveillance priorities. This study may also have broader applications to global public health surveillance relating to other diseases in addition to B

  15. Bacillus subtilis Spore Inner Membrane Proteome.

    Science.gov (United States)

    Zheng, Linli; Abhyankar, Wishwas; Ouwerling, Natasja; Dekker, Henk L; van Veen, Henk; van der Wel, Nicole N; Roseboom, Winfried; de Koning, Leo J; Brul, Stanley; de Koster, Chris G

    2016-02-01

    The endospore is the dormant form of Bacillus subtilis and many other Firmicutes. By sporulation, these spore formers can survive very harsh physical and chemical conditions. Yet, they need to go through germination to return to their growing form. The spore inner membrane (IM) has been shown to play an essential role in triggering the initiation of germination. In this study, we isolated the IM of bacterial spores, in parallel with the isolation of the membrane of vegetative cells. With the use of GeLC-MS/MS, over 900 proteins were identified from the B. subtilis spore IM preparations. By bioinformatics-based membrane protein predictions, ca. one-third could be predicted to be membrane-localized. A large number of unique proteins as well as proteins common to the two membrane proteomes were identified. In addition to previously known IM proteins, a number of IM proteins were newly identified, at least some of which are likely to provide new insights into IM physiology, unveiling proteins putatively involved in spore germination machinery and hence putative germination inhibition targets. PMID:26731423

  16. Fate of pathogenic Bacillus cereus spores after ingestion by protist grazers

    DEFF Research Database (Denmark)

    Winding, Anne; Santos, Susana; Hendriksen, Niels Bohse; Jakobsen, Hans

    evolution of Bacillus cereus group bacteria (e.g. B. cereus, B. anthracis, B. thuringiensis) as a pathogen. It has been hypothesized that the spore stage protects against digestion by predating protists. Indeed, B. thuringiensis spores have been shown to be readily ingested by ciliated protists but failed...... to be digested (Manasherob et al 1998 AEM 64:1750-). Here we report how diverse protist grazers grow on both vegetative cells and spores of B. cereus and how the bacteria survive ingestion and digestion, and even proliferate inside the digestive vacuoles of ciliated protists. The survival ability of...... B. cereus was initially investigated in microcosms inoculated with pure cultures of the protists Acanthamoeba castellanii, Tetrahymena pyriformis and Cercomonas sp. as grazers. Individual protist cultures were fed with fluorescently labelled (CellTracker™RedCMTPX) B. cereus spores or vegetative...

  17. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.

  18. Laboratory studies on surface sampling of Bacillus anthracis contamination: summary, gaps and recommendations.

    Science.gov (United States)

    Piepel, G F; Amidan, B G; Hu, R

    2012-12-01

    This article summarizes previous laboratory studies to characterize the performance of methods for collecting, storing/transporting, processing and analysing samples from surfaces contaminated by Bacillus anthracis or related surrogates. The focus is on plate culture and count estimates of surface contamination for swab, wipe and vacuum samples of porous and nonporous surfaces. Summaries of the previous studies and their results were assessed to identify gaps in information needed as inputs to calculate key parameters critical to risk management in biothreat incidents. One key parameter is the number of samples needed to make characterization or clearance decisions with specified statistical confidence. Other key parameters include the ability to calculate, following contamination incidents, the (i) estimates of B. anthracis contamination, as well as the bias and uncertainties in the estimates and (ii) confidence in characterization and clearance decisions for contaminated or decontaminated buildings. Gaps in knowledge and understanding identified during the summary of the studies are discussed. Additional work is needed to quantify (i) the false-negative rates of surface-sampling methods with lower concentrations on various surfaces and (ii) the effects on performance characteristics of: aerosol vs liquid deposition of spores, using surrogates instead of B. anthracis, real-world vs laboratory conditions and storage and transportation conditions. Recommendations are given for future evaluations of data from existing studies and possible new studies. PMID:22747878

  19. Historical distribution and molecular diversity of Bacillus anthracis, Kazakhstan.

    Science.gov (United States)

    Aikembayev, Alim M; Lukhnova, Larissa; Temiraliyeva, Gulnara; Meka-Mechenko, Tatyana; Pazylov, Yerlan; Zakaryan, Sarkis; Denissov, Georgiy; Easterday, W Ryan; Van Ert, Matthew N; Keim, Paul; Francesconi, Stephen C; Blackburn, Jason K; Hugh-Jones, Martin; Hadfield, Ted

    2010-05-01

    To map the distribution of anthrax outbreaks and strain subtypes in Kazakhstan during 1937-2005, we combined geographic information system technology and genetic analysis by using archived cultures and data. Biochemical and genetic tests confirmed the identity of 93 archived cultures in the Kazakhstan National Culture Collection as Bacillus anthracis. Multilocus variable number tandem repeat analysis genotyping identified 12 genotypes. Cluster analysis comparing these genotypes with previously published genotypes indicated that most (n = 78) isolates belonged to the previously described A1.a genetic cluster, 6 isolates belonged to the A3.b cluster, and 2 belonged to the A4 cluster. Two genotypes in the collection appeared to represent novel genetic sublineages; 1 of these isolates was from Krygystan. Our data provide a description of the historical, geographic, and genetic diversity of B. anthracis in this Central Asian region. PMID:20409368

  20. Aerosolized Bacillus anthracis infection in New Zealand white rabbits: natural history and intravenous levofloxacin treatment.

    Science.gov (United States)

    Yee, Steven B; Hatkin, Joshua M; Dyer, David N; Orr, Steven A; Pitt, M Louise M

    2010-12-01

    The natural history for inhalational Bacillus anthracis (Ames strain) exposure in New Zealand white rabbits was investigated to better identify potential, early biomarkers of anthrax. Twelve SPF Bordetella-free rabbits were exposed to 150 LD(50) aerosolized B. anthracis spores, and clinical signs, body temperature, complete blood count, bacteremia, and presence of protective antigen in the blood (that is, antigenemia) were examined. The development of antigenemia and bacteremia coincided and preceded both pyrexia and inversion of the heterophil:lymphocyte ratio, an indicator of infection. Antigenemia was determined within 1 h by electrochemiluminescence immunoassay, compared with the 24-h traditional culture needed for bacteremia determination. Rabbits appeared clinically normal until shortly before succumbing to anthrax approximately 47 h after challenge or approximately 22 h after antigenemia, which suggests a relatively narrow therapeutic window of opportunity. To evaluate the therapeutic rabbit model, B. anthracis-exposed rabbits were treated (after determination of antigenemia and later confirmed to be bacteremic) intravenously with the fluoroquinolone antibiotic levofloxacin for 5 d at a total daily dose of 25 or 12.5 mg/kg, resulting in nearly 90% and 70% survival, respectively, to the study end (28 d after challenge). The peak level for 12.5 mg/kg was equivalent to that observed for a 500-mg daily levofloxacin dose in humans. These results suggest that intravenous levofloxacin is an effective therapeutic against inhalational anthrax. Taken together, our findings indicate that antigenemia is a viable and early biomarker for B. anthracis infection that can be used as a treatment trigger to allow for timely intervention against this highly pathogenic disease. PMID:21262133

  1. Molecular characterization of the circulating Bacillus anthracis in Jordan.

    Science.gov (United States)

    Aqel, Amin Abdelfattah; Hailat, Ekhlas; Serrecchia, Luigina; Aqel, Suad; Campese, Emanuele; Vicari, Nadia; Fasanella, Antonio

    2015-12-01

    To understand the biomolecular charcteristics of Bacillus anthracis in Jordan, 20 blood smear slides from dead animals with suspected anthrax were analyzed using conventional and molecular approaches. All slides were positive for B. anthracis by conventional staining but no growth of the organism on selective media was detected. However, of the 20 samples, 16 were B. anthracis DNA-positive using polymerase chain reaction (PCR). Seven samples provided enough quantity and quality of DNA, and their multilocus variable tandem repeat analysis (MLVA)-15 loci analysis revealed two different genotypes. All genotypes were belonging to A.B..r. 008/009 which is very common in Asia and Europe. Single nucleotide repeat (SNR) analysis revealed that there were no sub genotypes. Molecular diagnosis of animal anthrax in Jordan is not used routinely; henceforth, official diagnosis of anthrax is based on the observation of the slides by optical microscope and this can often cause reading errors. Therefore, the prevalence of the disease in Jordan might be slightly lower than that reported by the official bodies. PMID:26156620

  2. Bacillus anthracis-like bacteria and other B. cereus group members in a microbial community within the International Space Station: a challenge for rapid and easy molecular detection of virulent B. anthracis.

    Directory of Open Access Journals (Sweden)

    Sandra P van Tongeren

    Full Text Available For some microbial species, such as Bacillus anthracis, the etiologic agent of the disease anthrax, correct detection and identification by molecular methods can be problematic. The detection of virulent B. anthracis is challenging due to multiple virulence markers that need to be present in order for B. anthracis to be virulent and its close relationship to Bacillus cereus and other members of the B. cereus group. This is especially the case in environments where build-up of Bacillus spores can occur and several representatives of the B. cereus group may be present, which increases the chance for false-positives. In this study we show the presence of B. anthracis-like bacteria and other members of the B. cereus group in a microbial community within the human environment of the International Space Station and their preliminary identification by using conventional culturing as well as molecular techniques including 16S rDNA sequencing, PCR and real-time PCR. Our study shows that when monitoring the microbial hygiene in a given human environment, health risk assessment is troublesome in the case of virulent B. anthracis, especially if this should be done with rapid, easy to apply and on-site molecular methods.

  3. Production and purification of Bacillus anthracis protective antigen from Escherichia coli.

    Science.gov (United States)

    Laird, Michael W; Zukauskas, David; Johnson, Kelly; Sampey, Gavin C; Olsen, Henrik; Garcia, Andy; Karwoski, Jeffrey D; Cooksey, Bridget A; Choi, Gil H; Askins, Janine; Tsai, Amos; Pierre, Jennifer; Gwinn, William

    2004-11-01

    Anthrax is caused by the gram-positive, spore-forming bacterium, Bacillus anthracis. The anthrax toxin consists of three proteins, protective antigen (PA), lethal factor, and edema factor. Current vaccines against anthrax use PA as their primary component since it confers protective immunity. In this work, we expressed soluble, recombinant PA in relatively high amounts in the periplasm of E. coli from shake flasks and bioreactors. The PA protein was purified using Q-Sepharose-HP and hydroxyapatite chromatography, and routinely found to be 96-98% pure. Yields of purified PA varied depending on the method of production; however, medium cell density fermentations resulted in approximately 370 mg/L of highly pure biologically active PA protein. These results exhibit the ability to generate gram quantities of PA from E. coli. PMID:15477093

  4. Bacillus anthracis Virulent Plasmid pX02 Genes Found in Large Plasmids of Two Other Bacillus Species

    OpenAIRE

    Luna, Vicki A.; King, Debra S.; Peak, K. Kealy; Reeves, Frank; Heberlein-Larson, Lea; Veguilla, William; Heller, L.; Duncan, Kathleen E; Cannons, Andrew C.; Amuso, Philip; Cattani, Jacqueline

    2006-01-01

    In order to cause the disease anthrax, Bacillus anthracis requires two plasmids, pX01 and pX02, which carry toxin and capsule genes, respectively, that are used as genetic targets in the laboratory detection of the bacterium. Clinical, forensic, and environmental samples that test positive by PCR protocols established by the Centers for Disease Control and Prevention for B. anthracis are considered to be potentially B. anthracis until confirmed by culture and a secondary battery of tests. We ...

  5. Killed but Metabolically Active Bacillus anthracis Vaccines Induce Broad and Protective Immunity against Anthrax▿

    OpenAIRE

    Skoble, Justin; Beaber, John W.; Gao, Yi; Lovchik, Julie A.; Sower, Laurie E.; Liu, Weiqun; Luckett, William; Johnny W. Peterson; Calendar, Richard; Daniel A Portnoy; Lyons, C. Rick; Dubensky, Thomas W

    2009-01-01

    Bacillus anthracis is the causative agent of anthrax. We have developed a novel whole-bacterial-cell anthrax vaccine utilizing B. anthracis that is killed but metabolically active (KBMA). Vaccine strains that are asporogenic and nucleotide excision repair deficient were engineered by deleting the spoIIE and uvrAB genes, rendering B. anthracis extremely sensitive to photochemical inactivation with S-59 psoralen and UV light. We also introduced point mutations into the lef and cya genes, which ...

  6. Detection of Bacillus anthracis in the air, soil and animal tissue

    OpenAIRE

    Kušar D.; Pate M.; Hubad B.; Avberšek J.; Logar K.; Lapanje A.; Zrimec A.; Ocepek M.

    2012-01-01

    The objective of the present work was to establish effective and rapid diagnostic methods for the detection of Bacillus anthracis, a highly virulent zoonotic pathogen, in the air, soil and animal (or human) tissue samples. Liquid culture of B. anthracis was aerosolized and four air sampling procedures were employed. Detection of B. anthracis in the air samples was successful with RCS High Flow sampler (culturebased detection) and when sampling through the a...

  7. Bacillus anthracis HssRS signaling to HrtAB regulates heme resistance during infection

    OpenAIRE

    Stauff, Devin L; Skaar, Eric P.

    2009-01-01

    Bacillus anthracis proliferates to high levels within vertebrate tissues during the pathogenesis of anthrax. This growth is facilitated by the acquisition of nutrient iron from host heme. However, heme acquisition can lead to the accumulation of toxic amounts of heme within B. anthracis. Here, we show that B. anthracis resists heme toxicity by sensing heme through the HssRS two-component system, which regulates expression of the heme-detoxifying transporter HrtAB. In addition, we demonstrate ...

  8. A Field Investigation of Bacillus anthracis Contamination of U.S. Department of Agriculture and Other Washington, D.C., Buildings during the Anthrax Attack of October 2001

    OpenAIRE

    Higgins, James A.; Cooper, Mary; Schroeder-Tucker, Linda; Black, Scott; Miller, David; Karns, Jeffrey S.; Manthey, Erlynn; Breeze, Roger; Perdue, Michael L

    2003-01-01

    In response to a bioterrorism attack in the Washington, D.C., area in October 2001, a mobile laboratory (ML) was set up in the city to conduct rapid molecular tests on environmental samples for the presence of Bacillus anthracis spores and to route samples for further culture analysis. The ML contained class I laminar-flow hoods, a portable autoclave, two portable real-time PCR devices (Ruggedized Advanced Pathogen Identification Device [RAPID]), and miscellaneous supplies and equipment to pr...

  9. Genome Sequence of Bacillus anthracis Strain Stendal, Isolated from an Anthrax Outbreak in Cattle in Germany

    OpenAIRE

    Antwerpen, Markus; Elschner, Mandy; Gaede, Wolfgang; Schliephake, Annette; Grass, Gregor; Tomaso, Herbert

    2016-01-01

    In July 2012, an anthrax outbreak occurred among cattle in northern Germany resulting in ten losses. Here, we report the draft genome sequence of Bacillus anthracis strain Stendal, isolated from one of the diseased cows.

  10. Anthrax Spores under a microscope

    Science.gov (United States)

    2003-01-01

    Anthrax spores are inactive forms of Bacillus anthracis. They can survive for decades inside a spore's tough protective coating; they become active when inhaled by humans. A result of NASA- and industry-sponsored research to develop small greenhouses for space research is the unique AiroCide TiO2 system that kills anthrax spores and other pathogens.

  11. Noncapsulated toxinogenic Bacillus anthracis presents a specific growth and dissemination pattern in naive and protective antigen-immune mice.

    Science.gov (United States)

    Glomski, Ian J; Corre, Jean-Philippe; Mock, Michèle; Goossens, Pierre L

    2007-10-01

    Bacillus anthracis is a spore-forming bacterium that causes anthrax. B. anthracis has three major virulence factors, namely, lethal toxin, edema toxin, and a poly-gamma-D-glutamic acid capsule. The toxins modulate host immune responses, and the capsule inhibits phagocytosis. With the goal of increasing safety, decreasing security concerns, and taking advantage of mammalian genetic tools and reagents, mouse models of B. anthracis infection have been developed using attenuated bacteria that produce toxins but no capsule. While these models have been useful in studying both toxinogenic infections and antitoxin vaccine efficacy, we questioned whether eliminating the capsule changed bacterial growth and dissemination characteristics. Thus, the progression of infection by toxinogenic noncapsulated B. anthracis was analyzed and compared to that by previously reported nontoxinogenic capsulated bacteria, using in vivo bioluminescence imaging. The influence of immunization with the toxin component protective antigen (PA) on the development of infection was also examined. The toxinogenic noncapsulated bacteria were initially confined to the cutaneous site of infection. Bacteria then progressed to the draining lymph nodes and, finally, late in the infection, to the lungs, kidneys, and frequently the gastrointestinal tract. There was minimal colonization of the spleen. PA immunization reduced bacterial growth from the outset and limited infection to the site of inoculation. These in vivo observations show that dissemination by toxinogenic noncapsulated strains differs markedly from that by nontoxinogenic capsulated strains. Additionally, PA immunization counters bacterial growth and dissemination in vivo from the onset of infection. PMID:17635863

  12. Crystal structure of Bacillus anthracis transpeptidase enzyme CapD.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.; Richter, S.; Zhang, R.; Anderson, V. J.; Missiakas, D.; Joachimiak, A.; Biosciences Division; Univ. of Chicago

    2009-09-04

    Bacillus anthracis elaborates a poly-{gamma}-d-glutamic acid capsule that protects bacilli from phagocytic killing during infection. The enzyme CapD generates amide bonds with peptidoglycan cross-bridges to anchor capsular material within the cell wall envelope of B. anthracis. The capsular biosynthetic pathway is essential for virulence during anthrax infections and can be targeted for anti-infective inhibition with small molecules. Here, we present the crystal structures of the {gamma}-glutamyltranspeptidase CapD with and without {alpha}-l-Glu-l-Glu dipeptide, a non-hydrolyzable analog of poly-{gamma}-d-glutamic acid, in the active site. Purified CapD displays transpeptidation activity in vitro, and its structure reveals an active site broadly accessible for poly-{gamma}-glutamate binding and processing. Using structural and biochemical information, we derive a mechanistic model for CapD catalysis whereby Pro{sup 427}, Gly{sup 428}, and Gly{sup 429} activate the catalytic residue of the enzyme, Thr{sup 352}, and stabilize an oxyanion hole via main chain amide hydrogen bonds.

  13. Bacillus anthracis genome organization in light of whole transcriptome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey; Zhu, Wenhan; Passalacqua, Karla D.; Bergman, Nicholas; Borodovsky, Mark

    2010-03-22

    Emerging knowledge of whole prokaryotic transcriptomes could validate a number of theoretical concepts introduced in the early days of genomics. What are the rules connecting gene expression levels with sequence determinants such as quantitative scores of promoters and terminators? Are translation efficiency measures, e.g. codon adaptation index and RBS score related to gene expression? We used the whole transcriptome shotgun sequencing of a bacterial pathogen Bacillus anthracis to assess correlation of gene expression level with promoter, terminator and RBS scores, codon adaptation index, as well as with a new measure of gene translational efficiency, average translation speed. We compared computational predictions of operon topologies with the transcript borders inferred from RNA-Seq reads. Transcriptome mapping may also improve existing gene annotation. Upon assessment of accuracy of current annotation of protein-coding genes in the B. anthracis genome we have shown that the transcriptome data indicate existence of more than a hundred genes missing in the annotation though predicted by an ab initio gene finder. Interestingly, we observed that many pseudogenes possess not only a sequence with detectable coding potential but also promoters that maintain transcriptional activity.

  14. Impact of Gastrointestinal Bacillus anthracis Infection on Hepatic B Cells

    Directory of Open Access Journals (Sweden)

    Natacha Colliou

    2015-09-01

    Full Text Available Ingestion of Bacillus anthracis results in rapid gastrointestinal (GI infection, known as GI anthrax. We previously showed that during GI anthrax, there is swift deterioration of intestinal barrier function leading to translocation of gut-associated bacteria into systemic circulation. Additionally, we described dysfunction in colonic B cells. In concordance with our previous studies, here, we report early migration of the Sterne strain of B. anthracis along with other gut-resident bacteria into the infected murine liver. Additionally, despite a global decrease in the B cell population, we observed an increase in both B-1a and marginal zone (MZ-like B cells. Both of these cell types are capable of producing immunoglobulins against common pathogens and commensals, which act as a general antibody barrier before an antigen-specific antibody response. Accumulation of these cells in the liver was associated with an increase in chemokine expression. These data suggest that the presence of Sterne and other commensals in the liver trigger migration of MZ-like B cells from the spleen to the liver to neutralize systemic spread. Further research is required to evaluate the possible cause of their failure to clear the infection within the liver, including the potential role of dysfunctional mitogen-activated protein kinase (MAPK signaling.

  15. Modulation of the Bacillus anthracis Secretome by the Immune Inhibitor A1 Protease

    OpenAIRE

    Pflughoeft, Kathryn J.; Swick, Michelle C.; Engler, David A.; Yeo, Hye-Jeong; Koehler, Theresa M.

    2014-01-01

    The Bacillus anthracis secretome includes protective antigen, lethal factor, and edema factor, which are the components of anthrax toxin, and other proteins with known or potential roles in anthrax disease. Immune inhibitor A1 (InhA1) is a secreted metalloprotease that is unique to pathogenic members of the Bacillus genus and has been associated with cleavage of host proteins during infection. Here, we report the effect of InhA1 on the B. anthracis secretome. Differential in-gel electrophores...

  16. The Silicon Layer Supports Acid Resistance of Bacillus cereus Spores

    OpenAIRE

    Hirota, Ryuichi; Hata, Yumehiro; Ikeda, Takeshi; Ishida, Takenori; Kuroda, Akio

    2010-01-01

    Silicon (Si) is considered to be a “quasiessential” element for most living organisms. However, silicate uptake in bacteria and its physiological functions have remained obscure. We observed that Si is deposited in a spore coat layer of nanometer-sized particles in Bacillus cereus and that the Si layer enhances acid resistance. The novel acid resistance of the spore mediated by Si encapsulation was also observed in other Bacillus strains, representing a general adaptation enhancing survival u...

  17. The Pathogenomic Sequence Analysis of B. cereus and B. Thuringiensis isolates closely related to Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Han, C S; Xie, G; Challacombe, J F; Altherr, M R; Bhotika, S S; Bruce, D; Campbell, C S; Campbell, M L; Chen, J; Chertkov, O; Cleland, C; Dimitrijevic-Bussod, M; Doggett, N A; Fawcett, J J; Glavina, T; Goodwin, L A; Hill, K K; Hitchcock, P; Jackson, P J; Keim, P; Kewalramani, A R; Longmire, J; Lucas, S; Malfatti, S; McMurry, K; Meincke, L J; Misra, M; Moseman, B L; Mundt, M; Munk, A C; Okinaka, R T; Parson-Quintana, B; Reilly, L P; Richardson, P; Robinson, D L; Rubin, E; Saunders, E; Tapia, R; Tesmer, J G; Thayer, N; Thompson, L S; Tice, H; Ticknor, L O; Wills, P L; Gilna, P; Brettin, T S

    2005-10-12

    The sequencing and analysis of two close relatives of Bacillus anthracis are reported. AFLP analysis of over 300 isolates of B. cereus, B. thuringiensis and B. anthracis identified two isolates as being very closely related to B. anthracis. One, a B. cereus, BcE33L, was isolated from a zebra carcass in Nambia; the second, a B. thuringiensis, 97-27, was isolated from a necrotic human wound. The B. cereus appears to be the closest anthracis relative sequenced to date. A core genome of over 3,900 genes was compiled for the Bacillus cereus group, including B anthracis. Comparative analysis of these two genomes with other members of the B. cereus group provides insight into the evolutionary relationships among these organisms. Evidence is presented that differential regulation modulates virulence, rather than simple acquisition of virulence factors. These genome sequences provide insight into the molecular mechanisms contributing to the host range and virulence of this group of organisms.

  18. Live-imaging of Bacillus subtilis spore germination and outgrowth

    OpenAIRE

    Pandey, R

    2014-01-01

    Spores of Gram-positive bacteria such as Bacillus and Clostridium cause huge economic losses to the food industry. In food products, spores survive under food preservation conditions and subsequent germination and outgrowth eventually causes food spoilage. Therefore efforts are being made to eliminate or inactivate these bacterial spores in foods. In this regard food industry uses different preservation methods such as thermal-treatment, weak acids, antimicrobial compounds etc. Complete therm...

  19. Bacillus atrophaeus Outer Spore Coat Assembly and Ultrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Leighton, T J; Wheeler, K E; Pitesky, M E; Malkin, A J

    2005-11-21

    Our previous atomic force microscopy (AFM) studies successfully visualized native Bacillus atrophaeus spore coat ultrastructure and surface morphology. We have shown that the outer spore coat surface is formed by a crystalline array of {approx}11 nm thick rodlets, having a periodicity of {approx}8 nm. We present here further AFM ultrastructural investigations of air-dried and fully hydrated spore surface architecture. In the rodlet layer, planar and point defects, as well as domain boundaries, similar to those described for inorganic and macromolecular crystals, were identified. For several Bacillus species, rodlet structure assembly and architectural variation appear to be a consequence of species-specific nucleation and crystallization mechanisms that regulate the formation of the outer spore coat. We propose a unifying mechanism for nucleation and self-assembly of this crystalline layer on the outer spore coat surface.

  20. Heat Resistance and Population Stability of Lyophilized Bacillus subtilis Spores

    OpenAIRE

    Odlaug, Theron E.; Caputo, Ross A.; Graham, Gary S.

    1981-01-01

    Bacillus subtilis 5230 spores were lyophilized in 0.067 M phosphate buffer and stored at 2 to 8°C for 9 to 27 months. The lyophilized spores were reconstituted with buffer or 0.9% saline, and the heat resistance was determined in a thermoresistometer. Lyophilization had no effect on the heat resistance of the spores but did result in a slight decrease in population (≤0.3-logarithm reduction). The lyophilized spores maintained heat resistance and population levels over the test periods. The D-...

  1. Identification of Bacillus anthracis specific chromosomal sequences by suppressive subtractive hybridization

    Directory of Open Access Journals (Sweden)

    Redkar Rajendra

    2004-02-01

    Full Text Available Abstract Background Bacillus anthracis, Bacillus thuringiensis and Bacillus cereus are closely related members of the B. cereus-group of bacilli. Suppressive subtractive hybridization (SSH was used to identify specific chromosomal sequences unique to B. anthracis. Results Two SSH libraries were generated. Genomic DNA from plasmid-cured B. anthracis was used as the tester DNA in both libraries, while genomic DNA from either B. cereus or B. thuringiensis served as the driver DNA. Progressive screening of the libraries by colony filter and Southern blot analyses identified 29 different clones that were specific for the B. anthracis chromosome relative not only to the respective driver DNAs, but also to seven other different strains of B. cereus and B. thuringiensis included in the process. The nucleotide sequences of the clones were compared with those found in genomic databases, revealing that over half of the clones were located into 2 regions on the B. anthracis chromosome. Conclusions Genes encoding potential cell wall synthesis proteins dominated one region, while bacteriophage-related sequences dominated the other region. The latter supports the hypothesis that acquisition of these bacteriophage sequences occurred during or after speciation of B. anthracis relative to B. cereus and B. thuringiensis. This study provides insight into the chromosomal differences between B. anthracis and its closest phylogenetic relatives.

  2. Macrophage-Enhanced Germination of Bacillus anthracis Endospores Requires gerS

    OpenAIRE

    Ireland, John A. W.; Hanna, Philip C.

    2002-01-01

    Germination of Bacillus anthracis Sterne and plasmidless Δ-Sterne endospores was dramatically enhanced in RAW264.7 macrophage-like cells, while germination of nonpathogenic Bacillus endospores was not. Elimination of gerS, a germinant receptor locus, caused a complete loss of cell-enhanced germination, implicating gerS in the breaking of endospore dormancy in vivo.

  3. Activation of the latent PlcR regulon in Bacillus anthracis

    OpenAIRE

    Sastalla, Inka; Maltese, Lauren M.; Pomerantseva, Olga M.; Pomerantsev, Andrei P; Keane-Myers, Andrea; Stephen H Leppla

    2010-01-01

    Many genes in Bacillus cereus and Bacillus thuringiensis are under the control of the transcriptional regulator PlcR and its regulatory peptide, PapR. In Bacillus anthracis, the causative agent of anthrax, PlcR is inactivated by truncation, and consequently genes having PlcR binding sites are expressed at very low levels when compared with B. cereus. We found that activation of the PlcR regulon in B. anthracis by expression of a PlcR–PapR fusion protein does not alter sporulation in strains c...

  4. False Negative Rates of a Macrofoam-Swab Sampling Method with Low Surface Concentrations of Two Bacillus anthracis Surrogates via Real-Time PCR

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, Janine R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Amidan, Brett G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sydor, Michael A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kaiser, Brooke L.D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-01

    Surface sampling for Bacillus anthracis spores has traditionally relied on detection via bacterial cultivation methods. Although effective, this approach does not provide the level of organism specificity that can be gained through molecular techniques. False negative rates (FNR) and limits of detection (LOD) were determined for two B. anthracis surrogates with modified rapid viability-polymerase chain reaction (mRV-PCR) following macrofoam-swab sampling. This study was conducted in parallel with a previously reported study that analyzed spores using a plate-culture method. B. anthracis Sterne (BAS) or B. atrophaeus Nakamura (BG) spores were deposited onto four surface materials (glass, stainless steel, vinyl tile, and plastic) at nine target concentrations (2 to 500 spores/coupon; 0.078 to 19.375 colony-forming units [CFU] per cm2). Mean FNR values for mRV-PCR analysis ranged from 0 to 0.917 for BAS and 0 to 0.875 for BG and increased as spore concentration decreased (over the concentrations investigated) for each surface material. FNRs based on mRV-PCR data were not statistically different for BAS and BG, but were significantly lower for glass than for vinyl tile. FNRs also tended to be lower for the mRV-PCR method compared to the culture method. The mRV-PCR LOD95 was lowest for glass (0.429 CFU/cm2 with BAS and 0.341 CFU/cm2 with BG) and highest for vinyl tile (0.919 CFU/cm2 with BAS and 0.917 CFU/cm2 with BG). These mRV-PCR LOD95 values were lower than the culture values (BAS: 0.678 to 1.023 CFU/cm2 and BG: 0.820 to 1.489 CFU/cm2). The FNR and LOD95 values reported in this work provide guidance for environmental sampling of Bacillus spores at low concentrations.

  5. False Negative Rates of a Macrofoam-Swab Sampling Method with Low Surface Concentrations of Two Bacillus anthracis Surrogates via Real-Time PCR

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, Janine R.; Piepel, Gregory F.; Amidan, Brett G.; Sydor, Michael A.; Kaiser, Brooke LD

    2016-06-28

    Surface sampling for Bacillus anthracis spores has traditionally relied on detection via bacterial cultivation methods. Although effective, this approach does not provide the level of organism specificity that can be gained through molecular techniques. False negative rates (FNR) and limits of detection (LOD) were determined for two B. anthracis surrogates with modified rapid viability-polymerase chain reaction (mRV-PCR) following macrofoam-swab sampling. This study was conducted in parallel with a previously reported study that analyzed spores using a plate-culture method. B. anthracis Sterne (BAS) or B. atrophaeus Nakamura (BG) spores were deposited onto four surface materials (glass, stainless steel, vinyl tile, and plastic) at nine target concentrations (2 to 500 spores/coupon; 0.078 to 19.375 colony-forming units [CFU] per cm2). Mean FNR values for mRV-PCR analysis ranged from 0 to 0.917 for BAS and 0 to 0.875 for BG and increased as spore concentration decreased (over the concentrations investigated) for each surface material. FNRs based on mRV-PCR data were not statistically different for BAS and BG, but were significantly lower for glass than for vinyl tile. FNRs also tended to be lower for the mRV-PCR method compared to the culture method. The mRV-PCR LOD95 was lowest for glass (0.429 CFU/cm2 with BAS and 0.341 CFU/cm2 with BG) and highest for vinyl tile (0.919 CFU/cm2 with BAS and 0.917 CFU/cm2 with BG). These mRV-PCR LOD95 values were lower than the culture values (BAS: 0.678 to 1.023 CFU/cm2 and BG: 0.820 to 1.489 CFU/cm2). The FNR and LOD95 values reported in this work provide guidance for environmental sampling of Bacillus spores at low concentrations.

  6. Human Monoclonal Antibody AVP-21D9 to Protective Antigen Reduces Dissemination of the Bacillus anthracis Ames Strain from the Lungs in a Rabbit Model▿

    Science.gov (United States)

    Peterson, Johnny W.; Comer, Jason E.; Baze, Wallace B.; Noffsinger, David M.; Wenglikowski, Autumn; Walberg, Kristin G.; Hardcastle, Jason; Pawlik, Jennifer; Bush, Kathryn; Taormina, Joanna; Moen, Scott; Thomas, John; Chatuev, Bagram M.; Sower, Laurie; Chopra, Ashok K.; Stanberry, Lawrence R.; Sawada, Ritsuko; Scholz, Wolfgang W.; Sircar, Jagadish

    2007-01-01

    Dutch-belted and New Zealand White rabbits were passively immunized with AVP-21D9, a human monoclonal antibody to protective antigen (PA), at the time of Bacillus anthracis spore challenge using either nasal instillation or aerosol challenge techniques. AVP-21D9 (10 mg/kg) completely protected both rabbit strains against lethal infection with Bacillus anthracis Ames spores, regardless of the inoculation method. Further, all but one of the passively immunized animals (23/24) were completely resistant to rechallenge with spores by either respiratory challenge method at 5 weeks after primary challenge. Analysis of the sera at 5 weeks after primary challenge showed that residual human anti-PA levels decreased by 85 to 95%, but low titers of rabbit-specific anti-PA titers were also measured. Both sources of anti-PA could have contributed to protection from rechallenge. In a subsequent study, bacteriological and histopathology analyses revealed that B. anthracis disseminated to the bloodstream in some naïve animals as early as 24 h postchallenge and increased in frequency with time. AVP-21D9 significantly reduced the dissemination of the bacteria to the bloodstream and to various organs following infection. Examination of tissue sections from infected control animals, stained with hematoxylin-eosin and the Gram stain, showed edema and/or hemorrhage in the lungs and the presence of bacteria in mediastinal lymph nodes, with necrosis and inflammation. Tissue sections from infected rabbits dosed with AVP-21D9 appeared comparable to corresponding tissues from uninfected animals despite lethal challenge with B. anthracis Ames spores. Concomitant treatment with AVP-21D9 at the time of challenge conferred complete protection in the rabbit inhalation anthrax model. Early treatment increased the efficacy progressively and in a dose-dependent manner. Thus, AVP-21D9 could offer an adjunct or alternative clinical treatment regimen against inhalation anthrax. PMID:17452469

  7. Human monoclonal antibody AVP-21D9 to protective antigen reduces dissemination of the Bacillus anthracis Ames strain from the lungs in a rabbit model.

    Science.gov (United States)

    Peterson, Johnny W; Comer, Jason E; Baze, Wallace B; Noffsinger, David M; Wenglikowski, Autumn; Walberg, Kristin G; Hardcastle, Jason; Pawlik, Jennifer; Bush, Kathryn; Taormina, Joanna; Moen, Scott; Thomas, John; Chatuev, Bagram M; Sower, Laurie; Chopra, Ashok K; Stanberry, Lawrence R; Sawada, Ritsuko; Scholz, Wolfgang W; Sircar, Jagadish

    2007-07-01

    Dutch-belted and New Zealand White rabbits were passively immunized with AVP-21D9, a human monoclonal antibody to protective antigen (PA), at the time of Bacillus anthracis spore challenge using either nasal instillation or aerosol challenge techniques. AVP-21D9 (10 mg/kg) completely protected both rabbit strains against lethal infection with Bacillus anthracis Ames spores, regardless of the inoculation method. Further, all but one of the passively immunized animals (23/24) were completely resistant to rechallenge with spores by either respiratory challenge method at 5 weeks after primary challenge. Analysis of the sera at 5 weeks after primary challenge showed that residual human anti-PA levels decreased by 85 to 95%, but low titers of rabbit-specific anti-PA titers were also measured. Both sources of anti-PA could have contributed to protection from rechallenge. In a subsequent study, bacteriological and histopathology analyses revealed that B. anthracis disseminated to the bloodstream in some naïve animals as early as 24 h postchallenge and increased in frequency with time. AVP-21D9 significantly reduced the dissemination of the bacteria to the bloodstream and to various organs following infection. Examination of tissue sections from infected control animals, stained with hematoxylin-eosin and the Gram stain, showed edema and/or hemorrhage in the lungs and the presence of bacteria in mediastinal lymph nodes, with necrosis and inflammation. Tissue sections from infected rabbits dosed with AVP-21D9 appeared comparable to corresponding tissues from uninfected animals despite lethal challenge with B. anthracis Ames spores. Concomitant treatment with AVP-21D9 at the time of challenge conferred complete protection in the rabbit inhalation anthrax model. Early treatment increased the efficacy progressively and in a dose-dependent manner. Thus, AVP-21D9 could offer an adjunct or alternative clinical treatment regimen against inhalation anthrax. PMID:17452469

  8. Synthetic and Crystallographic Studies of a New Inhibitor Series Targeting Bacillus anthracis Dihydrofolate Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Beierlein, J.; Frey, K; Bolstad, D; Pelphrey, P; Joska, T; Smith, A; Priestley, N; Wright, D; Anderson, A

    2008-01-01

    Bacillus anthracis, the causative agent of anthrax, poses a significant biodefense danger. Serious limitations in approved therapeutics and the generation of resistance have produced a compelling need for new therapeutic agents against this organism. Bacillus anthracis is known to be insensitive to the clinically used antifolate, trimethoprim, because of a lack of potency against the dihydrofolate reductase enzyme. Herein, we describe a novel lead series of B. anthracis dihydrofolate reductase inhibitors characterized by an extended trimethoprim-like scaffold. The best lead compound adds only 22 Da to the molecular weight and is 82-fold more potent than trimethoprim. An X-ray crystal structure of this lead compound bound to B. anthracis dihydrofolate reductase in the presence of NADPH was determined to 2.25 A resolution. The structure reveals several features that can be exploited for further development of this lead series.

  9. Quantitative Determination of Lethal Toxin Proteins in Culture Supernatant of Human Live Anthrax Vaccine Bacillus anthracis A16R.

    Science.gov (United States)

    Zai, Xiaodong; Zhang, Jun; Liu, Ju; Liu, Jie; Li, Liangliang; Yin, Ying; Fu, Ling; Xu, Junjie; Chen, Wei

    2016-03-01

    Bacillus anthracis (B. anthracis) is the etiological agent of anthrax affecting both humans and animals. Anthrax toxin (AT) plays a major role in pathogenesis. It includes lethal toxin (LT) and edema toxin (ET), which are formed by the combination of protective antigen (PA) and lethal factor (LF) or edema factor (EF), respectively. The currently used human anthrax vaccine in China utilizes live-attenuated B. anthracis spores (A16R; pXO1+, pXO2-) that produce anthrax toxin but cannot produce the capsule. Anthrax toxins, especially LT, have key effects on both the immunogenicity and toxicity of human anthrax vaccines. Thus, determining quantities and biological activities of LT proteins expressed by the A16R strain is meaningful. Here, we explored LT expression patterns of the A16R strain in culture conditions using another vaccine strain Sterne as a control. We developed a sandwich ELISA and cytotoxicity-based method for quantitative detection of PA and LF. Expression and degradation of LT proteins were observed in culture supernatants over time. Additionally, LT proteins expressed by the A16R and Sterne strains were found to be monomeric and showed cytotoxic activity, which may be the main reason for side effects of live anthrax vaccines. Our work facilitates the characterization of anthrax vaccines components and establishment of a quality control standard for vaccine production which may ultimately help to ensure the efficacy and safety of the human anthrax vaccine A16R. PMID:26927174

  10. Microbial forensics: fiber optic microarray subtyping of Bacillus anthracis

    Science.gov (United States)

    Shepard, Jason R. E.

    2009-05-01

    The past decade has seen increased development and subsequent adoption of rapid molecular techniques involving DNA analysis for detection of pathogenic microorganisms, also termed microbial forensics. The continued accumulation of microbial sequence information in genomic databases now better positions the field of high-throughput DNA analysis to proceed in a more manageable fashion. The potential to build off of these databases exists as technology continues to develop, which will enable more rapid, cost effective analyses. This wealth of genetic information, along with new technologies, has the potential to better address some of the current problems and solve the key issues involved in DNA analysis of pathogenic microorganisms. To this end, a high density fiber optic microarray has been employed, housing numerous DNA sequences simultaneously for detection of various pathogenic microorganisms, including Bacillus anthracis, among others. Each organism is analyzed with multiple sequences and can be sub-typed against other closely related organisms. For public health labs, real-time PCR methods have been developed as an initial preliminary screen, but culture and growth are still considered the gold standard. Technologies employing higher throughput than these standard methods are better suited to capitalize on the limitless potential garnered from the sequence information. Microarray analyses are one such format positioned to exploit this potential, and our array platform is reusable, allowing repetitive tests on a single array, providing an increase in throughput and decrease in cost, along with a certainty of detection, down to the individual strain level.

  11. Structure of nicotinic acid mononucleotide adenylyltransferase from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S.; Smith, C.; Yang, Z.; Pruett, P.; Nagy, L.; McCombs, D; DeLucas, L.; Brouillette, W.; Brouillette, C. (UAB)

    2008-11-25

    Nicotinic acid mononucleotide adenylyltransferase (NaMNAT; EC 2.7.7.18) is the penultimate enzyme in the biosynthesis of NAD{sup +} and catalyzes the adenylation of nicotinic acid mononucleotide (NaMN) by ATP to form nicotinic acid adenine dinucleotide (NaAD). This enzyme is regarded as a suitable candidate for antibacterial drug development; as such, Bacillus anthracis NaMNAT (BA NaMNAT) was heterologously expressed in Escherichia coli for the purpose of inhibitor discovery and crystallography. The crystal structure of BA NaMNAT was determined by molecular replacement, revealing two dimers per asymmetric unit, and was refined to an R factor and R{sub free} of 0.228 and 0.263, respectively, at 2.3 {angstrom} resolution. The structure is very similar to that of B. subtilis NaMNAT (BS NaMNAT), which is also a dimer, and another independently solved structure of BA NaMNAT recently released from the PDB along with two ligated forms. Comparison of these and other less related bacterial NaMNAT structures support the presence of considerable conformational heterogeneity and flexibility in three loops surrounding the substrate-binding area.

  12. Structure of nicotinic acid mononucleotide adenylyltransferase from Bacillus anthracis

    Science.gov (United States)

    Lu, Shanyun; Smith, Craig D.; Yang, Zhengrong; Pruett, Pamela S.; Nagy, Lisa; McCombs, Deborah; DeLucas, Lawrence J.; Brouillette, Wayne J.; Brouillette, Christie G.

    2008-01-01

    Nicotinic acid mononucleotide adenylyltransferase (NaMNAT; EC 2.7.7.18) is the penultimate enzyme in the biosynthesis of NAD+ and catalyzes the adenylation of nicotinic acid mononucleotide (NaMN) by ATP to form nicotinic acid adenine dinucleotide (NaAD). This enzyme is regarded as a suitable candidate for antibacterial drug development; as such, Bacillus anthracis NaMNAT (BA NaMNAT) was heterologously expressed in Escherichia coli for the purpose of inhibitor discovery and crystallography. The crystal structure of BA NaMNAT was determined by molecular replacement, revealing two dimers per asymmetric unit, and was refined to an R factor and R free of 0.228 and 0.263, respectively, at 2.3 Å resolution. The structure is very similar to that of B. subtilis NaMNAT (BS NaMNAT), which is also a dimer, and another independently solved structure of BA NaMNAT recently released from the PDB along with two ligated forms. Comparison of these and other less related bacterial NaMNAT structures support the presence of considerable conformational heterogeneity and flexibility in three loops surrounding the substrate-binding area. PMID:18931430

  13. Scalable purification of Bacillus anthracis protective antigen from Escherichia coli.

    Science.gov (United States)

    Gwinn, William; Zhang, Mei; Mon, Sandii; Sampey, Darryl; Zukauskas, David; Kassebaum, Corby; Zmuda, Jonathan F; Tsai, Amos; Laird, Michael W

    2006-01-01

    The anthrax toxin consists of three proteins, protective antigen (PA), lethal factor, and edema factor that are produced by the Gram-positive bacterium, Bacillus anthracis. Current vaccines against anthrax use PA as their primary component. In this study, we developed a scalable process to produce and purify multi-gram quantities of highly pure, recombinant PA (rPA) from Escherichia coli. The rPA protein was produced in a 50-L fermentor and purified to >99% purity using anion-exchange, hydrophobic interaction, and hydroxyapatite chromatography. The final yield of purified rPA from medium cell density fermentations resulted in approximately 2.7 g of rPA per kg of cell paste (approximately 270 mg/L) of highly pure, biologically active rPA protein. The results presented here exhibit the ability to generate multi-gram quantities of rPA from E. coli that may be used for the development of new anthrax vaccines and anthrax therapeutics. PMID:15935696

  14. Glyconanobiotics: Novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis.

    Science.gov (United States)

    Abeylath, Sampath C; Turos, Edward; Dickey, Sonja; Lim, Daniel V

    2008-03-01

    This report describes the synthesis and evaluation of glycosylated polyacrylate nanoparticles that have covalently-bound antibiotics within their framework. The requisite glycosylated drug monomers were prepared from one of three known antibiotics, an N-sec-butylthio beta-lactam, ciprofloxacin, and a penicillin, by acylation with 3-O-acryloyl-1,2-O-isopropylidene-5,6 bis((chlorosuccinyl)oxy)-d-glucofuranose (7) or 6-O-acetyl-3-O-acryloyl-1,2-O-isopropylidene-5-(chlorosuccinyl)oxy-alpha-d-glucofuranose (10). These acrylated monomers were subjected to emulsion polymerization in a 7:3 (w:w) mixture of butyl acrylate-styrene in the presence of sodium dodecyl sulfate as surfactant (3 weight %) and potassium persulfate as a radical initiator (1 weight %). The resulting nanoparticle emulsions were characterized by dynamic light scattering and found to have similar diameters ( approximately 40 nm) and size distributions to those of our previously studied systems. Microbiological testing showed that the N-sec-butylthio beta-lactam and ciprofloxacin nanoparticles both have powerful in vitro activities against methicillin-resistant Staphylococcus aureus and Bacillus anthracis, while the penicillin-bound nanoparticles have no antimicrobial activity. This indicates the need for matching a suitable antibiotic with the nanoparticle carrier. Overall, the study shows that even relatively large, polar acrylate monomers (MW>1000 amu) can be efficiently incorporated into the nanoparticle matrix by emulsion polymerization, providing opportunities for further advances in nanomedicine. PMID:18063370

  15. A recombinant Bacillus anthracis strain producing the Clostridium perfringens Ib component induces protection against iota toxins.

    OpenAIRE

    Sirard, J C; Weber, M.; Duflot, E; Popoff, M R; Mock, M

    1997-01-01

    The Bacillus anthracis toxinogenic Sterne strain is currently used as a live veterinary vaccine against anthrax. The capacity of a toxin-deficient derivative strain to produce a heterologous antigen by using the strong inducible promoter of the B. anthracis pag gene was investigated. The expression of the foreign gene ibp, encoding the Ib component of iota toxin from Clostridium perfringens, was analyzed. A pag-ibp fusion was introduced by allelic exchange into a toxin-deficient Sterne strain...

  16. Inflammatory Cytokine Response to Bacillus anthracis Peptidoglycan Requires Phagocytosis and Lysosomal Trafficking▿

    OpenAIRE

    Iyer, Janaki K.; Khurana, Taruna; Langer, Marybeth; West, Christopher M.; Ballard, Jimmy D.; Metcalf, Jordan P.; Merkel, Tod J.; Coggeshall, K. Mark

    2010-01-01

    During advanced stages of inhalation anthrax, Bacillus anthracis accumulates at high levels in the bloodstream of the infected host. This bacteremia leads to sepsis during late-stage anthrax; however, the mechanisms through which B. anthracis-derived factors contribute to the pathology of infected hosts are poorly defined. Peptidoglycan, a major component of the cell wall of Gram-positive bacteria, can provoke symptoms of sepsis in animal models. We have previously shown that peptidoglycan of...

  17. Mechanisms of DNA Binding and Regulation of Bacillus anthracis DNA Primase

    OpenAIRE

    Biswas, Subhasis B; Wydra, Eric; Biswas, Esther E.

    2009-01-01

    DNA primases are pivotal enzymes in chromosomal DNA replication in all organisms. In this article, we report unique mechanistic characteristics of recombinant DNA primase from Bacillus anthracis (B. anthracis). The mechanism of action of B. anthracis DNA primase (DnaGBA) may be described in several distinct steps as follows. Its mechanism of action is initiated when it binds to single-stranded DNA (ssDNA) in the form of a trimer. Although DnaGBA binds to different DNA sequences with moderate ...

  18. Architecture and High-Resolution Structure of Bacillus thuringiensis and Bacillus cereus Spore Coat Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Leighton, T; Wheeler, K; Malkin, A

    2005-02-18

    We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereus was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.

  19. Unlocking the Sporicidal Potential of Ethanol: Induced Sporicidal Activity of Ethanol against Clostridium difficile and Bacillus Spores under Altered Physical and Chemical Conditions.

    Directory of Open Access Journals (Sweden)

    Michelle M Nerandzic

    Full Text Available Due to their efficacy and convenience, alcohol-based hand sanitizers have been widely adopted as the primary method of hand hygiene in healthcare settings. However, alcohols lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We hypothesized that sporicidal activity could be induced in alcohols through alteration of physical or chemical conditions that have been shown to degrade or allow penetration of spore coats.Acidification, alkalinization, and heating of ethanol induced rapid sporicidal activity against C. difficile, and to a lesser extent Bacillus thuringiensis and Bacillus subtilis. The sporicidal activity of acidified ethanol was enhanced by increasing ionic strength and mild elevations in temperature. On skin, sporicidal ethanol formulations were as effective as soap and water hand washing in reducing levels of C. difficile spores.These findings demonstrate that novel ethanol-based sporicidal hand hygiene formulations can be developed through alteration of physical and chemical conditions.

  20. Bacillus anthracis infections – new possibilities of treatment

    Directory of Open Access Journals (Sweden)

    Dorota Żakowska

    2015-05-01

    Full Text Available [b]Introduction and objective[/b]. [i]Bacillus anthracis[/i] is one of biological agents which may be used in bioterrorism attacks. The aim of this study a review of the new treatment possibilities of anthrax, with particular emphasis on the treatment of pulmonary anthrax. [b]Abbreviated description of the state of knowledge[/b]. Pulmonary anthrax, as the most dangerous clinical form of the disease, is also extremely difficult to treat. Recently, considerable progress in finding new drugs and suitable therapy for anthrax has been achieved, for example, new antibiotics worth to mentioning, levofloxacin, daptomycin, gatifloxacin and dalbavancin. However, alternative therapeutic options should also be considered, among them the antimicrobial peptides, characterized by lack of inducible mechanisms of pathogen resistance. Very promising research considers bacteriophages lytic enzymes against selected bacteria species, including antibiotic-resistant strains. [b]Results[/b]. Interesting results were obtained using monoclonal antibodies: raxibacumab, cAb29 or cocktails of antibodies. The application of CpG oligodeoxynucleotides to boost the immune response elicited by Anthrax Vaccine Adsorbed and CMG2 protein complexes, also produced satisfying therapy results. Furthermore, the IFN-α and IFN-β, PA-dominant negative mutant, human inter-alpha inhibitor proteins and LF inhibitors in combination with ciprofloxacin, also showed very promising results. [b]Conclusions[/b]. Recently, progress has been achieved in inhalation anthrax treatment. The most promising new possibilities include: new antibiotics, peptides and bacteriophages enzymes, monoclonal antibodies, antigen PA mutants, and inter alpha inhibitors applications. In the case of the possibility of bioterrorist attacks, the examination of inhalation anthrax treatment should be intensively continued.

  1. Comparison of hand hygiene procedures for removing Bacillus cereus spores.

    Science.gov (United States)

    Sasahara, Teppei; Hayashi, Shunji; Hosoda, Kouichi; Morisawa, Yuji; Hirai, Yoshikazu

    2014-01-01

    Bacillus cereus is a spore-forming bacterium. B. cereus occasionally causes nosocomial infections, in which hand contamination with the spores plays an important role. Therefore, hand hygiene is the most important practice for controlling nosocomial B. cereus infections. This study aimed to determine the appropriate hand hygiene procedure for removing B. cereus spores. Thirty volunteers' hands were experimentally contaminated with B. cereus spores, after which they performed 6 different hand hygiene procedures. We compared the efficacy of the procedures in removing the spores from hands. The alcohol-based hand-rubbing procedures scarcely removed them. The soap washing procedures reduced the number of spores by more than 2 log10. Extending the washing time increased the spore-removing efficacy of the washing procedures. There was no significant difference in efficacy between the use of plain soap and antiseptic soap. Handwashing with soap is appropriate for removing B. cereus spores from hands. Alcohol-based hand-rubbing is not effective. PMID:25252644

  2. Structures of two superoxide dismutases from Bacillus anthracis reveal a novel active centre

    International Nuclear Information System (INIS)

    The crystal structures of two manganese superoxide dismutases from B. anthracis were solved by X-ray crystallography using molecular replacement. The BA4499 and BA5696 genes of Bacillus anthracis encode proteins homologous to manganese superoxide dismutase, suggesting that this organism has an expanded repertoire of antioxidant proteins. Differences in metal specificity and quaternary structure between the dismutases of prokaryotes and higher eukaryotes may be exploited in the development of therapeutic antibacterial compounds. Here, the crystal structure of two Mn superoxide dismutases from B. anthracis solved to high resolution are reported. Comparison of their structures reveals that a highly conserved residue near the active centre is substituted in one of the proteins and that this is a characteristic feature of superoxide dismutases from the B. cereus/B. anthracis/B. thuringiensis group of organisms

  3. BAC Library Construction and Physical Mapping of Bacillus anthracis A16R

    Institute of Scientific and Technical Information of China (English)

    Zhang Da; Zhu Houchu; Huang Liuyu

    2013-01-01

    Bacillus anthracis is an endospore-forming bacterium that causes severe inhalational anthrax, and bacillus anthracis A16R is an attenuated strain derived from Bacillus anthracis A16. The development of bacterial artificial chromosome (BAC) system has allowed the construction of large insert-size DNA libraries, and the bacterial artificial chromosomes (BACs) have become the preferred large insert cloning system for genomic analysis because such libraries are characteristically stable, high in ifdelity and easy to handle. To facilitate genome studies of this bacterium, a bacterial artiifcial chromosome library (BAC) has been established from genome DNA of Bacillus anthracis A16R. This library consisted of 9 600 clones randomly selected from more than 15 000 recombinant clones carrying inserts in the plindigoBAC-5 vectors. The mean insert size was 56 kbp, representing an approximate 12-fold genome coverage, while end sequences were obtained from 700 randomly selected clones. Sequences were compared with Bacillus anthracis Ames and Bacillus cereus ATCC 14579 Genome Project databases using the NCBI BLASTN search project. And most BLASTN results showed high identities and that the sequences’ sites could be used as STSs. To construct this physical map, Excel was used for the array of STSs and some gaps of the map were iflled up by PCR walking. Artemis-V4 was used in the construction of a genome-wide physical map with 93%genome coverage. The A16R BAC library proved to be a vital tool for the generation of a map that would not only allow the subsequent sequencing of defined areas of genome, but also provide immediate access to clones that were stable and convenient for functional genomic researches.

  4. BAC Library Construction and Physical Mapping of Bacillus anthracis A16R

    Directory of Open Access Journals (Sweden)

    Da Zhang

    2013-12-01

    Full Text Available Bacillus anthracis is an endospore-forming bacterium that causes severe inhalational anthrax, and bacillus anthracis A16R is an attenuated strain derived from Bacillus anthracis A16. The development of bacterial artificial chromosome (BAC system has allowed the construction of large insert-size DNA libraries, and the bacterial artificial chromosomes (BACs have become the preferred large insert cloning system for genomic analysis because such libraries are characteristically stable, high in fidelity and easy to handle. To facilitate genome studies of this bacterium, a bacterial artificial chromosome library (BAC has been established from genome DNA of Bacillus anthracis A16R. This library consisted of 9 600 clones randomly selected from more than 15 000 recombinant clones carrying inserts in the plindigoBAC-5 vectors. The mean insert size was 56 kbp, representing an approximate 12-fold genome coverage, while end sequences were obtained from 700 randomly selected clones. Sequences were compared with Bacillus anthracis Ames and Bacillus cereus ATCC 14579 Genome Project databases using the NCBI BLASTN search project. And most BLASTN results showed high identities and that the sequences’ sites could be used as STSs. To construct this physical map, Excel was used for the array of STSs and some gaps of the map were filled up by PCR walking. Artemis-V4 was used in the construction of a genome-wide physical map with 93% genome coverage. The A16R BAC library proved to be a vital tool for the generation of a map that would not only allow the subsequent sequencing of defined areas of genome, but also provide immediate access to clones that were stable and convenient for functional genomic researches.

  5. Study of Immunization against Anthrax with the Purified Recombinant Protective Antigen of Bacillus anthracis

    OpenAIRE

    Singh,Yogendra; Ivins, Bruce E.; Leppla, Stephen H.

    1998-01-01

    Protective antigen (PA) of anthrax toxin is the major component of human anthrax vaccine. Currently available human vaccines in the United States and Europe consist of alum-precipitated supernatant material from cultures of toxigenic, nonencapsulated strains of Bacillus anthracis. Immunization with these vaccines requires several boosters and occasionally causes local pain and edema. We previously described the biological activity of a nontoxic mutant of PA expressed in Bacillus subtilis. In ...

  6. Siderophore-mediated iron acquisition in Bacillus anthracis and related strains.

    Science.gov (United States)

    Hotta, Kinya; Kim, Chu-Young; Fox, David T; Koppisch, Andrew T

    2010-07-01

    Recent observations have shed light on some of the endogenous iron-acquisition mechanisms of members of the Bacillus cereus sensu lato group. In particular, pathogens in the B. cereus group use siderophores with both unique chemical structures and biological roles. This review will focus on recent discoveries in siderophore biosynthesis and biology in this group, which contains numerous human pathogens, most notably the causative agent of anthrax, Bacillus anthracis. PMID:20466767

  7. Comparison of Growth and Toxin Production in Two Vaccine Strains of Bacillus anthracis

    OpenAIRE

    Johnson, Anna D; Spero, Leonard

    1981-01-01

    Two vaccine strains of Bacillus anthracis were monitored in a 10-liter fermentor to compare growth patterns and toxin production. Under identical conditions, the Sterne strain produced all three components of anthrax toxin, whereas strain V770 produced only the protective antigen.

  8. Feeding Anthrax: The Crystal Structure of Bacillus anthracis InhA Protease.

    Science.gov (United States)

    Schacherl, Magdalena; Baumann, Ulrich

    2016-01-01

    Pathogenic bacteria secrete proteases to evade host defense and to acquire nutrients. In this issue of Structure, Arolas et al. (2016) describe the structural basis of activation and latency of InhA, a major secreted protease of Bacillus anthracis. PMID:26745525

  9. A method for the determination of bacterial spore DNA content based on isotopic labelling, spore germination and diphenylamine assay; ploidy of spores of several Bacillus species

    International Nuclear Information System (INIS)

    A reliable method for measuring the spore DNA content, based on radioactive DNA labelling, spore germination in absence of DNA replication and diphenylamine assay, was developed. The accuracy of the method, within 10 - 15%, is adequate for determining the number of chromosomes per spore, provided that the genome size is known. B subtilis spores were shown to be invariably monogenomic, while those of larger bacilli Bacillus megaterium, Bacillus cereus and Bacillus thuringiensis, often, if not invariably, contain two genomes. Attempts to modify the spore DNA content of B subtilis by altering the richness of the sporulation medium, the sporulation conditions (liquid or solid medium), or by mutation, were apparently unsuccessful. An increase of spore size with medium richness, not accompanied by an increase in DNA content, was observed. The implication of the apparently species-specific spore ploidy and the influence of the sporulation conditions on spore size and shape are discussed

  10. Activity of essential oils against Bacillus subtilis spores.

    Science.gov (United States)

    Lawrence, Hayley A; Palombo, Enzo A

    2009-12-01

    Alternative methods for controlling bacterial endospore contamination are desired in a range of industries and applications. Attention has recently turned to natural products, such as essential oils, which have sporicidal activity. In this study, a selection of essential oils was investigated to identify those with activity against Bacillus subtilis spores. Spores were exposed to thirteen essential oils, and surviving spores were enumerated. Cardamom, tea tree, and juniper leaf oils were the most effective, reducing the number of viable spores by 3 logs at concentrations above 1%. Sporicidal activity was enhanced at high temperatures (60 degrees C) or longer exposure times (up to one week). Gas chromatography-mass spectrometry analysis identified the components of the active essential oils. However, none of the major oil components exhibited equivalent activity to the whole oils. The fact that oil components, either alone or in combination, did not show the same level of sporicidal activity as the complete oils suggested that minor components may be involved, or that these act synergistically with major components. Scanning electron microscopy was used to examine spores after exposure to essential oils and suggested that leakage of spore contents was the likely mode of sporicidal action. Our data have shown that essential oils exert sporicidal activity and may be useful in applications where bacterial spore reduction is desired. PMID:20075624

  11. Protective Role of Spore Structural Components in Determining Bacillus subtilis Spore Resistance to Simulated Mars Surface Conditions

    OpenAIRE

    Moeller, Ralf; Schuerger, Andrew C.; Reitz, Günther; Nicholson, Wayne L.

    2012-01-01

    Spores of wild-type and mutant Bacillus subtilis strains lacking various structural components were exposed to simulated Martian atmospheric and UV irradiation conditions. Spore survival and mutagenesis were strongly dependent on the functionality of all of the structural components, with small acid-soluble spore proteins, coat layers, and dipicolinic acid as key protectants.

  12. [The flotation characteristics of Bacillus cells and spores].

    Science.gov (United States)

    Stabnikova, E V; Gregirchak, N N; Taranenko, T O

    1991-01-01

    Variations in hydrophobicity of the surface of bacillary cells and their capacity to flotation in the process of batch cultivation have been studied. It is shown that hydrophobicity of the cell surface increases in the course of batch cultivation of Bacillus thuringiensis, B. licheniformis and B. megaterium. Hydrophobicity of spores of the mentioned cultures is considerably higher than that of the vegetative cells. The increase of hydrophobicity of bacillary cells positively correlated with their capacity to flotation. That is why the use of flotation for the age fractionation of bacillary cells is possible: spores are concentrated in the foam while vegetative cells remain in the culture liquid. PMID:1779906

  13. Inflammatory cytokine response to Bacillus anthracis peptidoglycan requires phagocytosis and lysosomal trafficking.

    Science.gov (United States)

    Iyer, Janaki K; Khurana, Taruna; Langer, Marybeth; West, Christopher M; Ballard, Jimmy D; Metcalf, Jordan P; Merkel, Tod J; Coggeshall, K Mark

    2010-06-01

    During advanced stages of inhalation anthrax, Bacillus anthracis accumulates at high levels in the bloodstream of the infected host. This bacteremia leads to sepsis during late-stage anthrax; however, the mechanisms through which B. anthracis-derived factors contribute to the pathology of infected hosts are poorly defined. Peptidoglycan, a major component of the cell wall of Gram-positive bacteria, can provoke symptoms of sepsis in animal models. We have previously shown that peptidoglycan of B. anthracis can induce the production of proinflammatory cytokines by cells in human blood. Here, we show that biologically active peptidoglycan is shed from an active culture of encapsulated B. anthracis strain Ames in blood. Peptidoglycan is able to bind to surfaces of responding cells, and internalization of peptidoglycan is required for the production of inflammatory cytokines. We also show that the peptidoglycan traffics to lysosomes, and lysosomal function is required for cytokine production. We conclude that peptidoglycan of B. anthracis is initially bound by an unknown extracellular receptor, is phagocytosed, and traffics to lysosomes, where it is degraded to a product recognized by an intracellular receptor. Binding of the peptidoglycan product to the intracellular receptor causes a proinflammatory response. These findings provide new insight into the mechanism by which B. anthracis triggers sepsis during a critical stage of anthrax disease. PMID:20308305

  14. Circulating lethal toxin decreases the ability of neutrophils to respond to Bacillus anthracis.

    Science.gov (United States)

    Weiner, Zachary P; Ernst, Stephen M; Boyer, Anne E; Gallegos-Candela, Maribel; Barr, John R; Glomski, Ian J

    2014-04-01

    Polymorphonuclear leucocytes (PMNs) play a protective role during Bacillus anthracis infection. However, B. anthracis is able to subvert the PMN response effectively as evidenced by the high mortality rates of anthrax. One major virulence factor produced by B. anthracis, lethal toxin (LT), is necessary for dissemination in the BSL2 model of mouse infection. While human and mouse PMNs kill vegetative B. anthracis, short in vitro half-lives of PMNs have made it difficult to determine how or if LT alters their bactericidal function. Additionally, the role of LT intoxication on PMN's ability to migrate to inflammatory signals remains controversial. LF concentrations in both serum and major organs were determined from mice infected with B. anthracis Sterne strain at defined stages of infection to guide subsequent administration of purified toxin. Bactericidal activity of PMNs assessed using ex vivo cell culture assays showed significant defects in killing B. anthracis. In vivo PMN recruitment to inflammatory stimuli was significantly impaired at 24 h as assessed by real-time analysis of light-producing PMNs within the mouse. The observations described above suggest that LT serves dual functions; it both attenuates accumulation of PMNs at sites of inflammation and impairs PMNs bactericidal activity against vegetative B. anthracis. PMID:24152301

  15. Protection Afforded by Fluoroquinolones in Animal Models of Respiratory Infections with Bacillus anthracis, Yersinia pestis, and Francisella tularensis.

    Science.gov (United States)

    Peterson, Johnny W; Moen, Scott T; Healy, Daniel; Pawlik, Jennifer E; Taormina, Joanna; Hardcastle, Jason; Thomas, John M; Lawrence, William S; Ponce, Cindy; Chatuev, Bagram M; Gnade, Bryan T; Foltz, Sheri M; Agar, Stacy L; Sha, Jian; Klimpel, Gary R; Kirtley, Michelle L; Eaves-Pyles, Tonyia; Chopra, Ashok K

    2010-01-01

    Successful treatment of inhalation anthrax, pneumonic plague and tularemia can be achieved with fluoroquinolone antibiotics, such as ciprofloxacin and levofloxacin, and initiation of treatment is most effective when administered as soon as possible following exposure. Bacillus anthracis Ames, Yersinia pestis CO92, and Francisella tularensis SCHU S4 have equivalent susceptibility in vitro to ciprofloxacin and levofloxacin (minimal inhibitory concentration is 0.03 μg/ml); however, limited information is available regarding in vivo susceptibility of these infectious agents to the fluoroquinolone antibiotics in small animal models. Mice, guinea pig, and rabbit models have been developed to evaluate the protective efficacy of antibiotic therapy against these life-threatening infections. Our results indicated that doses of ciprofloxacin and levofloxacin required to protect mice against inhalation anthrax were approximately 18-fold higher than the doses of levofloxacin required to protect against pneumonic plague and tularemia. Further, the critical period following aerosol exposure of mice to either B. anthracis spores or Y. pestis was 24 h, while mice challenged with F. tularensis could be effectively protected when treatment was delayed for as long as 72 h postchallenge. In addition, it was apparent that prolonged antibiotic treatment was important in the effective treatment of inhalation anthrax in mice, but short-term treatment of mice with pneumonic plague or tularemia infections were usually successful. These results provide effective antibiotic dosages in mice, guinea pigs, and rabbits and lay the foundation for the development and evaluation of combinational treatment modalities. PMID:21127743

  16. Genome Sequence of Bacillus anthracis Isolated from an Anthrax Burial Site in Pollino National Park, Basilicata Region (Southern Italy)

    OpenAIRE

    Fasanella, Antonio; Braun, Peter; Grass, Gregor; Hanczaruk, Matthias; Aceti, Angela; Serrecchia, Luigina; Leonzio, Giuseppe; Tolve, Francesco; Georgi, Enrico; Antwerpen, Markus

    2015-01-01

    A Bacillus anthracis strain was isolated from a burial-site in Pollino National Park where a bovine died of anthrax and was buried in 2004. We report the first genome sequence of B. anthracis isolated in the Basilicata region (southern Italy), which is the highest risk area of anthrax infection in Italy.

  17. Tip-enhanced Raman scattering of bacillus subtilis spores

    Science.gov (United States)

    Rusciano, G.; Zito, G.; Pesce, G.; Sasso, A.; Isticato, R.; Ricca, E.

    2015-07-01

    Understanding of the complex interactions of molecules at biological interfaces is a fundamental issue in biochemistry, biotechnology as well as biomedicine. A plethora of biological processes are ruled by the molecular texture of cellular membrane: cellular communications, drug transportations and cellular recognition are just a few examples of such chemically-mediated processes. Tip-Enhanced Raman Scattering (TERS) is a novel, Raman-based technique which is ideally suited for this purpose. TERS relies on the combination of scanning probe microscopy and Raman spectroscopy. The basic idea is the use of a metalled tip as a sort of optical nano-antenna, which gives place to SERS effect close to the tip end. Herein, we present the application of TERS to analyze the surface of Bacillus subtilis spores. The choice of this biological systems is related to the fact that a number of reasons support the use of spores as a mucosal delivery system. The remarkable and well-documented resistance of spores to various environmental and toxic effects make them clear potentials as a novel, surface-display system. Our experimental outcomes demonstrate that TERS is able to provide a nano-scale chemical imaging of spore surface. Moreover, we demonstrate that TERS allows differentiation between wilde-type spore and genetically modified strains. These results hold promise for the characterization and optimization of spore surface for drug-delivery applications.

  18. Confirmation of Bacillus anthracis from flesh-eating flies collected during a West Texas anthrax season.

    Science.gov (United States)

    Blackburn, Jason K; Curtis, Andrew; Hadfield, Ted L; O'Shea, Bob; Mitchell, Mark A; Hugh-Jones, Martin E

    2010-07-01

    This case study confirms the interaction between necrophilic flies and white-tailed deer, Odocoileus virginianus, during an anthrax outbreak in West Texas (summer 2005). Bacillus anthracis was identified by culture and PCR from one of eight pooled fly collections from deer carcasses on a deer ranch with a well-documented history of anthrax. These results provide the first known isolation of B. anthracis from flesh-eating flies associated with a wildlife anthrax outbreak in North America and are discussed in the context of wildlife ecology and anthrax epizootics. PMID:20688697

  19. Vacuum-induced Mutations In Bacillus Subtilis Spores

    Science.gov (United States)

    Munakata, N.; Maeda, M.; Hieda, K.

    During irradiation experiments with vacuum-UV radiation using synchrotron sources, we made unexpected observation that Bacillus subtilis spores of several recombination-deficient strains lost colony-forming ability by the exposure to high vacuum alone. Since this suggested the possible injury in spore DNA, we looked for mutation induction using the spores of strains HA101 (wild-type repair capability) and TKJ6312 (excision and spore repair deficient) that did not lose survivability. It was found that the frequency of nalidixic-acid resistant mutation increased several times in both of these strains by the exposure to high vacuum (10e-4 Pa after 24 hours). The analysis of sequence changes in gyrA gene showed that the majority of mutations carried a unique allele (gyrA12) of tandem double-base substitutions from CA to TT. The observation has been extended to rifampicin resistant mutations, the majority of that carried substitutions from CA to TT or AT in rpoB gene. On the other hand, when the spores of strains PS578 and PS2319 (obtained from P. Setlow) that are defective in a group of small acidic proteins (alpha/beta-type SASP) were similarly treated, none of the mutants analyzed carried such changes. This suggests that the unique mutations might be induced by the interaction of small acidic proteins with spore DNA under forced dehydration. The results indicate that extreme vacuum causes severe damage in spore DNA, and provide additional constraint to the long-term survival of bacterial spores in the space environment.

  20. Development and field testing of a mobile chlorine dioxide generation system for the decontamination of buildings contaminated with Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Joseph P., E-mail: wood.joe@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Homeland Security Research Center, MC-E343-06, Research Triangle Park, NC 27711 (United States); Blair Martin, G., E-mail: martin.blair@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, MC-E340-C, Research Triangle Park, NC 27711 (United States)

    2009-05-30

    The numerous buildings that became contaminated with Bacillus anthracis (the bacterium causing the disease anthrax) in 2001, and more recent B. anthracis - related events, point to the need to have effective decontamination technologies for buildings contaminated with biological threat agents. The U.S. Government developed a portable chlorine dioxide (ClO{sub 2}) generation system to decontaminate buildings contaminated with B. anthracis spores, and this so-called mobile decontamination trailer (MDT) prototype was tested through a series of three field trials. The first test of the MDT was conducted at Fort McClellan in Anniston, AL. during October 2004. Four test attempts occurred over two weekends; however, a number of system problems resulted in termination of the activity prior to any ClO{sub 2} introduction into the test building. After making several design enhancements and equipment changes, the MDT was subjected to a second test. During this test, extensive leak checks were made using argon and nitrogen in lieu of chlorine gas; each subsystem was checked for functionality, and the MDT was operated for 24 h. This second test demonstrated the MDT flow and control systems functioned satisfactorily, and thus it was decided to proceed to a third, more challenging field trial. In the last field test, ClO{sub 2} was generated and routed directly to the scrubber in a 12-h continuous run. Measurement of ClO{sub 2} levels at the generator outlet showed that the desired production rate was not achieved. Additionally, only one of the two scrubbers performed adequately with regard to maintaining ClO{sub 2} emissions below the limit. Numerous lessons were learned in the field trials of this ClO{sub 2} decontamination technology.

  1. Development and field testing of a mobile chlorine dioxide generation system for the decontamination of buildings contaminated with Bacillus anthracis

    International Nuclear Information System (INIS)

    The numerous buildings that became contaminated with Bacillus anthracis (the bacterium causing the disease anthrax) in 2001, and more recent B. anthracis - related events, point to the need to have effective decontamination technologies for buildings contaminated with biological threat agents. The U.S. Government developed a portable chlorine dioxide (ClO2) generation system to decontaminate buildings contaminated with B. anthracis spores, and this so-called mobile decontamination trailer (MDT) prototype was tested through a series of three field trials. The first test of the MDT was conducted at Fort McClellan in Anniston, AL. during October 2004. Four test attempts occurred over two weekends; however, a number of system problems resulted in termination of the activity prior to any ClO2 introduction into the test building. After making several design enhancements and equipment changes, the MDT was subjected to a second test. During this test, extensive leak checks were made using argon and nitrogen in lieu of chlorine gas; each subsystem was checked for functionality, and the MDT was operated for 24 h. This second test demonstrated the MDT flow and control systems functioned satisfactorily, and thus it was decided to proceed to a third, more challenging field trial. In the last field test, ClO2 was generated and routed directly to the scrubber in a 12-h continuous run. Measurement of ClO2 levels at the generator outlet showed that the desired production rate was not achieved. Additionally, only one of the two scrubbers performed adequately with regard to maintaining ClO2 emissions below the limit. Numerous lessons were learned in the field trials of this ClO2 decontamination technology.

  2. 炭疽杆菌表面四糖抗原全合成的研究进展%Research progress in the synthesis of antigen Bacillus anthracis tetrasaccharide

    Institute of Scientific and Technical Information of China (English)

    黄蕾; 许克寒; 吴俊琪; 姚阔; 俞世冲; 吴秋业

    2015-01-01

    炭疽是由炭疽杆菌引起的人畜共患的传染病。炭疽杆菌属于需氧芽孢杆菌属,为G+菌,其病原体是芽孢。炭疽芽孢最外层含有特定结构的四糖抗原,可用于制备糖缀合物疫苗,诱导免疫反应。综述近10年来文献报道对炭疽四糖化学合成的研究进展,并结合国内外最新研究成果介绍各条制备路线,比较各种方法的主要优缺点。%Objective Anthrax is an anthropozoonosis caused by the bacterium Bacillus anthracis .Bacillus anthracis is an aerobic ,spore-forming ,rod-shaped bacterium ,which infects human through ingestion or inhalation of the spores .The exos-porium of spores of Bacillus anthracis contains tetrasaccharide antigen with specific chemical structure ,which can be used in preparation of glycoconjugates vaccines ,inducing an immune response .This paper reviewed articles in the last decade that re-ported research advances in chemical synthesis of anthrax tetrasaccharide ,presented the methods for synthesis ,and compared the advantages and limitations among different methods .

  3. Revisiting the Concept of Targeting Only Bacillus anthracis Toxins as a Treatment for Anthrax.

    Science.gov (United States)

    Glinert, Itai; Bar-David, Elad; Sittner, Assa; Weiss, Shay; Schlomovitz, Josef; Ben-Shmuel, Amir; Mechaly, Adva; Altboum, Zeev; Kobiler, David; Levy, Haim

    2016-08-01

    Protective antigen (PA)-based vaccines are effective in preventing the development of fatal anthrax disease both in humans and in relevant animal models. The Bacillus anthracis toxins lethal toxin (lethal factor [LF] plus PA) and edema toxin (edema factor [EF] plus PA) are essential for the establishment of the infection, as inactivation of these toxins results in attenuation of the pathogen. Since the toxins reach high toxemia levels at the bacteremic stages of the disease, the CDC's recommendations include combining antibiotic treatment with antitoxin (anti-PA) immunotherapy. We demonstrate here that while treatment with a highly potent neutralizing monoclonal antibody was highly efficient as postexposure prophylaxis treatment, it failed to protect rabbits with any detectable bacteremia (≥10 CFU/ml). In addition, we show that while PA vaccination was effective against a subcutaneous spore challenge, it failed to protect rabbits against systemic challenges (intravenous injection of vegetative bacteria) with the wild-type Vollum strain or a toxin-deficient mutant. To test the possibility that additional proteins, which are secreted by the bacteria under pathogenicity-stimulating conditions in vitro, may contribute to the vaccine's potency, we immunized rabbits with a secreted protein fraction from a toxin-null mutant. The antiserum raised against the secreted fraction reacts with the bacteria in an immunofluorescence assay. Immunization with the secreted protein fraction did not protect the rabbits against a systemic challenge with the fully pathogenic bacteria. Full protection was obtained only by a combined vaccination with PA and the secreted protein fraction. Therefore, these results indicate that an effective antiserum treatment in advanced stages of anthrax must include toxin-neutralizing antibodies in combination with antibodies against bacterial cell targets. PMID:27270276

  4. Composite sampling of a Bacillus anthracis surrogate with cellulose sponge surface samplers from a nonporous surface.

    Directory of Open Access Journals (Sweden)

    Jenia A M Tufts

    Full Text Available A series of experiments was conducted to explore the utility of composite-based collection of surface samples for the detection of a Bacillus anthracis surrogate using cellulose sponge samplers on a nonporous stainless steel surface. Two composite-based collection approaches were evaluated over a surface area of 3716 cm2 (four separate 929 cm2 areas, larger than the 645 cm2 prescribed by the standard Centers for Disease Control (CDC and Prevention cellulose sponge sampling protocol for use on nonporous surfaces. The CDC method was also compared to a modified protocol where only one surface of the sponge sampler was used for each of the four areas composited. Differences in collection efficiency compared to positive controls and the potential for contaminant transfer for each protocol were assessed. The impact of the loss of wetting buffer from the sponge sampler onto additional surface areas sampled was evaluated. Statistical tests of the results using ANOVA indicate that the collection of composite samples using the modified sampling protocol is comparable to the collection of composite samples using the standard CDC protocol (p  =  0.261. Most of the surface-bound spores are collected on the first sampling pass, suggesting that multiple passes with the sponge sampler over the same surface may be unnecessary. The effect of moisture loss from the sponge sampler on collection efficiency was not significant (p  =  0.720 for both methods. Contaminant transfer occurs with both sampling protocols, but the magnitude of transfer is significantly greater when using the standard protocol than when the modified protocol is used (p<0.001. The results of this study suggest that composite surface sampling, by either method presented here, could successfully be used to increase the surface area sampled per sponge sampler, resulting in reduced sampling times in the field and decreased laboratory processing cost and turn-around times.

  5. Examination of serological memory in rabbits injected with Bacillus anthracis protective antigen adsorbed to Alhydrogel

    Directory of Open Access Journals (Sweden)

    Stephen F. Little

    2015-01-01

    Full Text Available Serological memory after inoculation of protective antigen (PA combined with Alhydrogel adjuvant (PA/Alhydrogel was examined in New Zealand white rabbits, an animal model for anthrax. A threshold dose of 0.1 μg of PA/Alhydrogel was identified which resulted in an ELISA titer 2 weeks after a primary immunization of only 0.168 μg anti-PA IgG per ml and a toxin-neutralizing antibody titer (TNA ED50 of 1.8 (n = 40. A significant increase in anti-PA IgG and TNA ED50 titers were measured (p < 0.0001 2 weeks after a booster immunization with 0.1 μg of PA/Alhydrogel at 14 days (n = 10; 40.9 μg anti-PA IgG per ml; 522 TNA ED50 and 28 days (n = 10; 63.8 μg anti-PA IgG per ml; 501 TNA ED50. At this threshold dose of PA/Alhydrogel, protection against an aerosol exposure to Bacillus anthracis Ames spores improved as the booster immunization was administered from 4 days (40% survival, to 8 days (50% survival, and to 12 days (80% survival before challenge. The partial protection of rabbits, even in the absence of protective antibody titers (0.9 μg anti-PA IgG per ml and 26 TNA ED50 when the booster immunization was administered 4 days before challenge, suggested a protective potential for serologic memory.

  6. Development of an inhalational Bacillus anthracis exposure therapeutic model in cynomolgus macaques.

    Science.gov (United States)

    Henning, Lisa N; Comer, Jason E; Stark, Gregory V; Ray, Bryan D; Tordoff, Kevin P; Knostman, Katherine A B; Meister, Gabriel T

    2012-11-01

    Appropriate animal models are required to test medical countermeasures to bioterrorist threats. To that end, we characterized a nonhuman primate (NHP) inhalational anthrax therapeutic model for use in testing anthrax therapeutic medical countermeasures according to the U.S. Food and Drug Administration Animal Rule. A clinical profile was recorded for each NHP exposed to a lethal dose of Bacillus anthracis Ames spores. Specific diagnostic parameters were detected relatively early in disease progression, i.e., by blood culture (∼37 h postchallenge) and the presence of circulating protective antigen (PA) detected by electrochemiluminescence (ECL) ∼38 h postchallenge, whereas nonspecific clinical signs of disease, i.e., changes in body temperature, hematologic parameters (ca. 52 to 66 h), and clinical observations, were delayed. To determine whether the presentation of antigenemia (PA in the blood) was an appropriate trigger for therapeutic intervention, a monoclonal antibody specific for PA was administered to 12 additional animals after the circulating levels of PA were detected by ECL. Seventy-five percent of the monoclonal antibody-treated animals survived compared to 17% of the untreated controls, suggesting that intervention at the onset of antigenemia is an appropriate treatment trigger for this model. Moreover, the onset of antigenemia correlated with bacteremia, and NHPs were treated in a therapeutic manner. Interestingly, brain lesions were observed by histopathology in the treated nonsurviving animals, whereas this observation was absent from 90% of the nonsurviving untreated animals. Our results support the use of the cynomolgus macaque as an appropriate therapeutic animal model for assessing the efficacy of medical countermeasures developed against anthrax when administered after a confirmation of infection. PMID:22956657

  7. Rapid Focused Sequencing: A Multiplexed Assay for Simultaneous Detection and Strain Typing of Bacillus anthracis, Francisella tularensis, and Yersinia pestis

    OpenAIRE

    Turingan, Rosemary S.; Thomann, Hans-Ulrich; Zolotova, Anna; Tan, Eugene; Selden, Richard F.

    2013-01-01

    Background The intentional release of Bacillus anthracis in the United States in 2001 has heightened concern about the use of pathogenic microorganisms in bioterrorism attacks. Many of the deadliest bacteria, including the Class A Select Agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis, are highly infectious via the pulmonary route when released in aerosolized form. Hence, rapid, sensitive, and reliable methods for detection of these biothreats and characterization of th...

  8. Herstellung monoklonaler Antikörper gegen thermostabile Antigene von Bacillus anthracis zur Anwendung in der Anthraxdiagnostik

    OpenAIRE

    Hilss, Karen

    2012-01-01

    Bei dem Ascoli Präzipitin Test (ASCOLI, 1911) handelt es sich um eine schnelle und kostengünstige Diagnostikmethode, bei der polyklonales Serum gegen thermostabile Antigene von B. anthracis eingesetzt wird. Allerdings ist dieser Test ungeeignet für Umweltproben, da Kreuzreaktionen mit anderen Bacillus Spezies auftreten. Durch die Verwendung monoklonaler Antikörper gegen spezifische thermostabile Antigene von B. anthracis könnte jedoch die Kreuzreaktivität mit anderen Bacillus Spezies eliminie...

  9. [Species-specific sera against surface antigens of Bacillus anthracis strains].

    Science.gov (United States)

    Barkova, I A; Barkov, A M; Alekseev, V V; Lipnitskiĭ, A V

    2010-11-01

    The species-related specificity of sera against 94-KD proteins isolated from culture filtrates of B. anthracis strains with different levels of virulence plasmids was studied to determine whether they might be used to identify the pathogen of anthrax. Sera against fractions 1 of culture filtrates of B. anthracis strains CTI (pXO1+ pXO2-), 81/1TR (pXO1- pXO2-), Davies (pXO1- pXO) separated by gel chromatography on Sephacryl S-300 were examined. In the gel immunodiffusion test with growing cultures, the sera exhibited non-identical antigens and differed in the presence of antibodies to antigens of related bacilli. The sera against fractions 1 of culture filtrates of toxin-producing and plasmidless strains displayed antigens produced only by B. anthracis strains into nutrient agar. Electroimmunotransblotting revealed that they contained antibodies mainly to 94-kD proteins and failed to react with B. cereus proteins with a molecular weight of 94 kD and with B. thuringiensis proteins with a molecular weight of 97 kD, which were extracted from autonomous cells. In the immunofluorescence test, immunoglobulins of sera against fractions 1 of culture filtrates of three strains stained autonomous cells and spores of 23 B. anthracis strains with different levels of virulence plasmids. In working dilutions, they did not react with antigens of 18 strains of related bacilli, which presents a possibility of using them for species identification of B. anthracis. PMID:21319392

  10. Structure of purine nucleoside phosphorylase (DeoD) from Bacillus anthracis

    International Nuclear Information System (INIS)

    The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis was solved by X-ray crystallography using molecular replacement and refined at a resolution of 2.24 Å. Protein structures from the causative agent of anthrax (Bacillus anthracis) are being determined as part of a structural genomics programme. Amongst initial candidates for crystallographic analysis are enzymes involved in nucleotide biosynthesis, since these are recognized as potential targets in antibacterial therapy. Purine nucleoside phosphorylase is a key enzyme in the purine-salvage pathway. The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis has been solved by molecular replacement at 2.24 Å resolution and refined to an R factor of 18.4%. This is the first report of a DeoD structure from a Gram-positive bacterium

  11. Automated thermochemolysis reactor for detection of Bacillus anthracis endospores by gas chromatography–mass spectrometry

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •An automated sample preparation system for Bacillus anthracis endospores was developed. •A thermochemolysis method was applied to produce and derivatize biomarkers for Bacillus anthracis detection. •The autoreactor controlled the precise delivery of reagents, and TCM reaction times and temperatures. •Solid phase microextraction was used to extract biomarkers, and GC–MS was used for final identification. •This autoreactor was successfully applied to the identification of Bacillus anthracis endospores. -- Abstract: An automated sample preparation system was developed and tested for the rapid detection of Bacillus anthracis endospores by gas chromatography–mass spectrometry (GC–MS) for eventual use in the field. This reactor is capable of automatically processing suspected bio-threat agents to release and derivatize unique chemical biomarkers by thermochemolysis (TCM). The system automatically controls the movement of sample vials from one position to another, crimping of septum caps onto the vials, precise delivery of reagents, and TCM reaction times and temperatures. The specific operations of introduction of sample vials, solid phase microextraction (SPME) sampling, injection into the GC–MS system, and ejection of used vials from the system were performed manually in this study, although they can be integrated into the automated system. Manual SPME sampling is performed by following visual and audible signal prompts for inserting the fiber into and retracting it from the sampling port. A rotating carousel design allows for simultaneous sample collection, reaction, biomarker extraction and analysis of sequential samples. Dipicolinic acid methyl ester (DPAME), 3-methyl-2-butenoic acid methyl ester (a fragment of anthrose) and two methylated sugars were used to compare the performance of the autoreactor with manual TCM. Statistical algorithms were used to construct reliable bacterial endospore signatures, and 24

  12. Evaluation of sampling methods for Bacillus spore-contaminated HVAC filters

    Science.gov (United States)

    Calfee, M. Worth; Rose, Laura J.; Tufts, Jenia; Morse, Stephen; Clayton, Matt; Touati, Abderrahmane; Griffin-Gatchalian, Nicole; Slone, Christina; McSweeney, Neal

    2016-01-01

    The objective of this study was to compare an extraction-based sampling method to two vacuum-based sampling methods (vacuum sock and 37 mm cassette filter) with regards to their ability to recover Bacillus atrophaeus spores (surrogate for Bacillus anthracis) from pleated heating, ventilation, and air conditioning (HVAC) filters that are typically found in commercial and residential buildings. Electrostatic and mechanical HVAC filters were tested, both without and after loading with dust to 50% of their total holding capacity. The results were analyzed by one-way ANOVA across material types, presence or absence of dust, and sampling device. The extraction method gave higher relative recoveries than the two vacuum methods evaluated (p ≤ 0.001). On average, recoveries obtained by the vacuum methods were about 30% of those achieved by the extraction method. Relative recoveries between the two vacuum methods were not significantly different (p > 0.05). Although extraction methods yielded higher recoveries than vacuum methods, either HVAC filter sampling approach may provide a rapid and inexpensive mechanism for understanding the extent of contamination following a wide-area biological release incident. PMID:24184312

  13. Curing of plasmid pXO1 from Bacillus anthracis using plasmid incompatibility.

    Directory of Open Access Journals (Sweden)

    Xiankai Liu

    Full Text Available The large plasmid pXO1 encoding the anthrax toxin is important for the virulence of Bacillus anthracis. It is essential to cure pXO1 from B. anthracis to evaluate its role in the pathogenesis of anthrax infection. Because conventional methods for curing plasmids (e.g., curing agents or growth at elevated temperatures can induce mutations in the host chromosomal DNA, we developed a specific and reliable method to eliminate pXO1 from B. anthracis using plasmid incompatibility. Three putative replication origins of pXO1 were inserted into a temperature-sensitive plasmid to generate three incompatible plasmids. One of the three plasmids successfully eliminated the large plasmid pXO1 from B. anthracis vaccine strain A16R and wild type strain A16. These findings provided additional information about the replication/partitioning of pXO1 and demonstrated that introducing a small incompatible plasmid can generate plasmid-cured strains of B. anthracis without inducing spontaneous mutations in the host chromosome.

  14. Rapid detection of Bacillus anthracis by γ phage amplification and lateral flow immunochromatography.

    Science.gov (United States)

    Cox, Christopher R; Jensen, Kirk R; Mondesire, Roy R; Voorhees, Kent J

    2015-11-01

    New, rapid point-of-need diagnostic methods for Bacillus anthracis detection can enhance civil and military responses to accidental or deliberate dispersal of anthrax as a biological weapon. Current laboratory-based methods for clinical identification of B. anthracis require 12 to 120h, and are confirmed by plaque assay using the well-characterized γ typing phage, which requires an additional minimum of 24h for bacterial culture. To reduce testing time, the natural specificity of γ phage amplification was investigated in combination with lateral flow immunochromatography (LFI) for rapid, point-of-need B. anthracis detection. Phage-based LFI detection of B. anthracis Sterne was validated over a range of bacterial and phage concentrations with optimal detection achieved in as little as 2h from the onset of amplification with a threshold sensitivity of 2.5×10(4)cfu/mL. The novel use of γ phage amplification detected with a simple, inexpensive LFI assay provides a rapid, sensitive, highly accurate, and field-deployable method for diagnostic ID of B. anthracis in a fraction of the time required by conventional techniques, and without the need for extensive laboratory culture. PMID:26310605

  15. Functional characterization of WalRK: A two-component signal transduction system from Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Alisha Dhiman

    2014-01-01

    Full Text Available Two-component signal transduction systems (TCS, consisting of a sensor histidine protein kinase and its cognate response regulator, are an important mode of environmental sensing in bacteria. Additionally, they have been found to regulate virulence determinants in several pathogens. Bacillus anthracis, the causative agent of anthrax and a bioterrorism agent, harbours 41 pairs of TCS. However, their role in its pathogenicity has remained largely unexplored. Here, we show that WalRK of B. anthracis forms a functional TCS which exhibits some species-specific functions. Biochemical studies showed that domain variants of WalK, the histidine kinase, exhibit classical properties of autophosphorylation and phosphotransfer to its cognate response regulator WalR. Interestingly, these domain variants also show phosphatase activity towards phosphorylated WalR, thereby making WalK a bifunctional histidine kinase/phosphatase. An in silico regulon determination approach, using a consensus binding sequence from Bacillus subtilis, provided a list of 30 genes that could form a putative WalR regulon in B. anthracis. Further, electrophoretic mobility shift assay was used to show direct binding of purified WalR to the upstream regions of three putative regulon candidates, an S-layer protein EA1, a cell division ABC transporter FtsE and a sporulation histidine kinase KinB3. Our work lends insight into the species-specific functions and mode of action of B. anthracis WalRK.

  16. Inhibitory effect of novobiocin on ribonucleic acid synthesis during germination of Bacillus subtilis spores.

    OpenAIRE

    Matsuda, M; Kameyama, T

    1980-01-01

    Novobiocin inhibited ribonculeic acid synthesis during germination of Bacillus subtilis spores. Transcription of certain kinds of genes probably required a preceding conformational change in deoxyribonucleic acid.

  17. Laboratory Studies on Surface Sampling of Bacillus anthracis Contamination: Summary, Gaps, and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F.; Amidan, Brett G.; Hu, Rebecca

    2011-11-28

    This report summarizes previous laboratory studies to characterize the performance of methods for collecting, storing/transporting, processing, and analyzing samples from surfaces contaminated by Bacillus anthracis or related surrogates. The focus is on plate culture and count estimates of surface contamination for swab, wipe, and vacuum samples of porous and nonporous surfaces. Summaries of the previous studies and their results were assessed to identify gaps in information needed as inputs to calculate key parameters critical to risk management in biothreat incidents. One key parameter is the number of samples needed to make characterization or clearance decisions with specified statistical confidence. Other key parameters include the ability to calculate, following contamination incidents, the (1) estimates of Bacillus anthracis contamination, as well as the bias and uncertainties in the estimates, and (2) confidence in characterization and clearance decisions for contaminated or decontaminated buildings. Gaps in knowledge and understanding identified during the summary of the studies are discussed and recommendations are given for future studies.

  18. False Negative Rates of a Macrofoam-Swab Sampling Method with Low Surface Concentrations of Two Bacillus anthracis Surrogates via Real-Time PCR

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, Janine R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Amidan, Brett G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sydor, Michael A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deatherage Kaiser, Brooke L [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-01

    Surface sampling for Bacillus anthracis spores has traditionally relied on detection via bacterial cultivation methods. Although effective, this approach does not provide the level of organism specificity that can be gained through molecular techniques. False negative rates (FNR) and limits of detection (LOD) were determined for two B. anthracis surrogates with modified rapid viability-polymerase chain reaction (mRV-PCR) following macrofoam-swab sampling. This study was conducted in parallel with a previously reported study that analyzed spores using a plate-culture method. B. anthracis Sterne (BAS) or B. atrophaeus Nakamura (BG) spores were deposited onto four surface materials (glass, stainless steel, vinyl tile, and plastic) at nine target concentrations (2 to 500 spores/coupon; 0.078 to 19.375 colony-forming units [CFU] per cm²). Mean FNR values for mRV-PCR analysis ranged from 0 to 0.917 for BAS and 0 to 0.875 for BG and increased as spore concentration decreased (over the concentrations investigated) for each surface material. FNRs based on mRV-PCR data were not statistically different for BAS and BG, but were significantly lower for glass than for vinyl tile. FNRs also tended to be lower for the mRV-PCR method compared to the culture method. The mRV-PCR LOD₉₅ was lowest for glass (0.429 CFU/cm² with BAS and 0.341 CFU/cm² with BG) and highest for vinyl tile (0.919 CFU/cm² with BAS and 0.917 CFU/cm² with BG). These mRV-PCR LOD₉₅ values were lower than the culture values (BAS: 0.678 to 1.023 CFU/cm² and BG: 0.820 to 1.489 CFU/cm²). The FNR and LOD₉₅ values reported in this work provide guidance for environmental sampling of Bacillus spores at low concentrations.

  19. New Developments in Vaccines, Inhibitors of Anthrax Toxins, and Antibiotic Therapeutics for Bacillus anthracis

    OpenAIRE

    Beierlein, J.M.; Anderson, A. C.

    2011-01-01

    Bacillus anthracis, the causative agent responsible for anthrax infections, poses a significant biodefense threat. There is a high mortality rate associated with untreated anthrax infections; specifically, inhalation anthrax is a particularly virulent form of infection with mortality rates close to 100%, even with aggressive treatment. Currently, a vaccine is not available to the general public and few antibiotics have been approved by the FDA for the treatment of inhalation anthrax. With the...

  20. The Early Humoral Immune Response to Bacillus anthracis Toxins in Patients Infected with Cutaneous Anthrax

    OpenAIRE

    Doganay, Mehmet; Brenneman, Karen E.; Akmal, Arya; Goldman, Stanley; Galloway, Darrell R.; Mateczun, Alfred J; Cross, Alan S.; Baillie, Leslie W.

    2011-01-01

    Bacillus anthracis, the causative agent of anthrax, elaborates a tripartite toxin composed of two enzymatically active subunits, lethal factor (LF) and edema factor (EF) which, when associated with a cell-binding component, protective antigen (PA), form lethal toxin (LT) and edema toxin (ET), respectively. In this preliminary study we characterised the toxin-specific antibody responses observed in 17 individuals infected with cutaneous anthrax. The majority of the toxin-specific antibody resp...

  1. GcoGSA-BA: A Global Core Genome SNP Analysis for Bacillus anthracis

    OpenAIRE

    Yamashita, Akifmi; Sekizuka, Tsuyoshi; Kuroda, Makoto

    2015-01-01

    As an issue of biosecurity, it is important to identify the origin of a suspected sample to distinguish whether it originated from the release of a bioterrorism agent or from environmental contamination with a virulent agent. Here we have developed an analytical pipeline that can infer the phylogenetic position of Bacillus cereus group species, including B. anthracis, from next-generation sequencing reads without extensive genomics skills. GcoGSA-BA can also detect the existence of anthrax pl...

  2. Soluble Expression and Characterization of Biologically Active Bacillus anthracis Protective Antigen in Escherichia coli

    OpenAIRE

    Nagendra Suryanarayana; Vanlalhmuaka,; Bharti Mankere; Monika Verma; Kulanthaivel Thavachelvam; Urmil Tuteja

    2016-01-01

    Bacillus anthracis secretory protein protective antigen (PA) is primary candidate for subunit vaccine against anthrax. Attempts to obtain large quantity of PA from Escherichia coli expression system often result in the formation of insoluble inclusion bodies. Therefore, it is always better to produce recombinant proteins in a soluble form. In the present study, we have obtained biologically active recombinant PA in small scale E. coli shake culture system using three different expression cons...

  3. EXPRESSION OF BACILLUS ANTHRACIS PROTECTIVE ANTIGEN IN VACCINE STRAIN BRUCELLA ABORTUS RB51

    OpenAIRE

    Poff, Sherry Ann

    1997-01-01

    Bacillus anthracis is a facultative intracellular bacterial pathogen that can cause cutaneous, gastrointestinal or respiratory disease in many vertebrates, including humans. Commercially available anthrax vaccines for immunization of humans are of limited duration and do not protect against the respiratory form of the disease. Brucella abortus is a facultative intracellular bacterium that causes chronic infection in animals and humans. As with other intracellular pathogens, cell mediated im...

  4. Effective Antimicrobial Regimens for Use in Humans for Therapy of Bacillus anthracis Infections and Postexposure Prophylaxis†

    OpenAIRE

    Deziel, Mark R.; Heine, Henry; Louie, Arnold; Kao, Mark; Byrne, William R.; Basset, Jennifer; Miller, Lynda; Bush, Karen; Kelly, Michael; Drusano, G L

    2005-01-01

    Expanded options for treatments directed against pathogens that can be used for bioterrorism are urgently needed. Treatment regimens directed against such pathogens can be identified only by using data derived from in vitro and animal studies. It is crucial that these studies reliably predict the efficacy of proposed treatments in humans. The objective of this study was to identify a levofloxacin treatment regimen that will serve as an effective therapy for Bacillus anthracis infections and p...

  5. Recombinant Expression and Purification of a Tumor-Targeted Toxin in Bacillus anthracis

    OpenAIRE

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui; Leppla, Stephen H.

    2012-01-01

    Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple pr...

  6. The role of anthrolysin O in gut epithelial barrier disruption during Bacillus anthracis infection

    OpenAIRE

    Bishop, Brian L.; Lodolce, James P.; Kolodziej, Lauren; Boone, David L.; Tang, Wei Jen

    2010-01-01

    Gastrointestinal (GI) anthrax, caused by the bacterial infection of Bacillus anthracis, posts a significant bioterrorism threat by its relatively high mortality rate in humans. Different from inhalational anthrax by the route of infection, accumulating evidence indicates the bypass of vegetative bacteria across GI epithelium is required to initiate GI anthrax. Previously, we reported that purified anthrolysin O (ALO), instead of tripartite anthrax edema and lethal toxins, is capable of disrup...

  7. A Cumulative Spore Killing Approach: Synergistic Sporicidal Activity of Dilute Peracetic Acid and Ethanol at Low pH Against Clostridium difficile and Bacillus subtilis Spores.

    Science.gov (United States)

    Nerandzic, Michelle M; Sankar C, Thriveen; Setlow, Peter; Donskey, Curtis J

    2016-01-01

    Background.  Alcohol-based hand sanitizers are the primary method of hand hygiene in healthcare settings, but they lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We previously demonstrated that acidification of ethanol induced rapid sporicidal activity, resulting in ethanol formulations with pH 1.5-2 that were as effective as soap and water washing in reducing levels of C difficile spores on hands. We hypothesized that the addition of dilute peracetic acid (PAA) to acidified ethanol would enhance sporicidal activity while allowing elevation of the pH to a level likely to be well tolerated on skin (ie, >3). Methods.  We tested the efficacy of acidified ethanol solutions alone or in combination with PAA against C difficile and Bacillus subtilis spores in vitro and against nontoxigenic C difficile spores on hands of volunteers. Results.  Acidification of ethanol induced rapid sporicidal activity against C difficile and to a lesser extent B subtilis. The addition of dilute PAA to acidified ethanol resulted in synergistic enhancement of sporicidal activity in a dose-dependent fashion in vitro. On hands, the addition of 1200-2000 ppm PAA enhanced the effectiveness of acidified ethanol formulations, resulting in formulations with pH >3 that were as effective as soap and water washing. Conclusions.  Acidification and the addition of dilute PAA induced rapid sporicidal activity in ethanol. Our findings suggest that it may be feasible to develop effective sporicidal ethanol formulations that are safe and tolerable on skin. PMID:26885539

  8. Optimization Studies on Cellulase Production from Bacillus Anthracis and Ochrobactrum Anthropic (YZ1 Isolated from Soil

    Directory of Open Access Journals (Sweden)

    Mohammad Badrud Duza

    2015-06-01

    Full Text Available The present study was carried out to demonstrate the optimization of growth conditions of bacteria with high cellulase activity. Cellulose degrading bacteria were isolated from soil samples collected from different areas of Guntur district, A.P. The bacteria were isolated using serial dilution and pour plate methods. The isolated bacteria were identified by morphological, biochemical and molecular procedures. The isolated bacterial species were screened for cellulase production in sub-merged fermentation process. The two tested bacterial species showed maximum yield for cellulase production. These two bacteria were identified as Bacillus anthracis and Ochrobactrum anthropi (YZ1. Supplementation of glucose, peptone, tyrosine and EDTA to the fermentation medium is favoured enzyme secretion. The optimum pH and temperature for the activity of crude enzyme was 8 and 45°C, respectively for Ochrobactrum anthropi (YZ1 while for Bacillus anthracis, it was 8 and 4°C, respectively.14% of inoculum level and 96 h of incubation period showed the maximum yield by both the species bacteria for cellulase production. The results of present study indicated that favorable fermentation conditions and the selection of a suitable growth medium played a key role in the production of cellulase from newly isolated Bacillus anthracis and Ochrobactrum anthropi (YZ1.

  9. Experimental Design for a Macrofoam-Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F.; Hutchison, Janine R.

    2014-12-05

    This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam-swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (culture and polymerase chain reaction) will be used. Only one previous study has investigated how the false negative rate depends on test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam-swab sampling at low concentrations.

  10. Experimental Design for a Macrofoam Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F.; Hutchison, Janine R.

    2014-04-16

    This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (plating/counting and polymerase chain reaction) will be used. Only one previous study has investigated false negative as a function of affecting test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam swab sampling at low concentrations.

  11. Sporicidal characteristics of heated dolomite powder against Bacillus subtilis spores.

    Science.gov (United States)

    Yasue, Syogo; Sawai, Jun; Kikuchi, Mikio; Nakakuki, Takahito; Sano, Kazuo; Kikuchi, Takahide

    2014-01-01

    Dolomite is a double salt composed of calcium carbonate (CaCO3) and magnesium carbonate (MgCO3). The heat treatment of CaCO3 and MgCO3 respectively generates calcium oxide (CaO) and magnesium oxide (MgO), which have antimicrobial activity. In this study, heated dolomite powder (HDP) slurry was investigated for its sporicidal activity against Bacillus subtilis ATCC 6633 spores. The B. subtilis spores used in this study were not affected by acidic (pH 1) or alkaline (pH 13) conditions, indicating that they were highly resistant. However, dolomite powder heated to 1000℃ for 1 h could kill B. subtilis spores, even at pH 12.7. Sporicidal activity was only apparent when the dolomite powder was heated to 800℃ or higher, and sporicidal activity increased with increases in the heating temperature. This temperature corresponded to that of the generation of CaO. We determined that MgO did not contribute to the sporicidal activity of HDP. To elucidate the sporicidal mechanism of the HDP against B. subtilis spores, the generation of active oxygen from HDP slurry was examined by chemiluminescence analysis. The generation of active oxygen increased when the HDP slurry concentration rose. The results suggested that, in addition to its alkalinity, the active oxygen species generated from HDP were associated with sporicidal activity. PMID:25252642

  12. Adhesion of Spores of Bacillus thuringiensis on a Planar Surface

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Joy, David Charles [ORNL; Palumbo, Anthony Vito [ORNL; Tsouris, Costas [ORNL

    2010-01-01

    Adhesion of spores of Bacillus thuringiensis (Bt) and spherical silica particles on surfaces was experimentally and theoretically investigated in this study. Topography analysis via atomic force microscopy (AFM) and electron microscopy indicates that Bt spores are rod shaped, {approx}1.3 {mu}m in length and {approx}0.8 {mu}m in diameter. The adhesion force of Bt spores and silica particles on gold-coated glass was measured at various relative humidity (RH) levels by AFM. It was expected that the adhesion force would vary with RH because the individual force components contributing to the adhesion force depend on RH. The adhesion force between a particle and a planar surface in atmospheric environments was modeled as the contribution of three major force components: capillary, van der Waals, and electrostatic interaction forces. Adhesion force measurements for Bt spore (silica particle) and the gold surface system were comparable with calculations. Modeling results show that there is a critical RH value, which depends on the hydrophobicity of the materials involved, below which the water meniscus does not form and the contribution of the capillary force is zero. As RH increases, the van der Waals force decreases while the capillary force increases to a maximum value.

  13. Localization of the Cortex Lytic Enzyme CwlJ in Spores of Bacillus subtilis

    OpenAIRE

    Bagyan, Irina; Setlow, Peter

    2002-01-01

    The enzyme CwlJ is involved in the depolymerization of cortex peptidoglycan during germination of spores of Bacillus subtilis. CwlJ with a C-terminal His tag was functional and was extracted from spores by procedures that remove spore coat proteins. However, this CwlJ was not extracted from disrupted spores by dilute buffer, high salt concentrations, Triton X-100, Ca2+-dipicolinic acid, dithiothreitol, or peptidoglycan digestion, disappeared during spore germination, and was not present in co...

  14. Detection of spore coat protein of Bacillus subtilis by immunological method

    International Nuclear Information System (INIS)

    The spore coat protein of Bacillus subtilis was separated, and the qualitative assay for the spore coat protein was made by use of the immunological technique. The immunological method was found to be useful for judging the maturation of spore coat in the course of sporulation. The spore coat protein antigen appeared at t2 stage of sporulation. The addition of rifampicin at the earlier stages of sporulation inhibited the increase in content of the spore coat antigen. (auth.)

  15. Quantitative Analysis of Spatial-Temporal Correlations during Germination of Spores of Bacillus Species ▿

    OpenAIRE

    Zhang, JinQiao; Garner, Will; Setlow, Peter; Yu, Ji

    2011-01-01

    Bacteria of Bacillus species sporulate upon starvation, and the resultant dormant spores germinate when the environment appears likely to allow the resumption of vegetative growth. Normally, the rates of germination of individual spores in populations are very heterogeneous, and the current work has investigated whether spore-to-spore communication enhances the synchronicity of germination. In order to do this work, time-lapse optical images of thousands of individual spores were captured dur...

  16. Transfer of Bacillus cereus spores from packaging paper into food.

    Science.gov (United States)

    Ekman, Jaakko; Tsitko, Irina; Weber, Assi; Nielsen-LeRoux, Christina; Lereclus, Didier; Salkinoja-Salonen, Mirja

    2009-11-01

    Food packaging papers are not sterile, as the manufacturing is an open process, and the raw materials contain bacteria. We modeled the potential transfer of the Bacillus cereus spores from packaging paper to food by using a green fluorescent protein-expressing construct of Bacillus thuringiensis Bt 407Cry(-) [pHT315Omega(papha3-gfp)], abbreviated BT-1. Paper (260 g m(-2)) containing BT-1 was manufactured with equipment that allowed fiber formation similar to that of full-scale manufactured paper. BT-1 adhered to pulp during papermaking and survived similar to an authentic B. cereus. Rice and chocolate were exposed to the BT-1-containing paper for 10 or 30 days at 40 or 20 degrees C at relative air humidity of 10 to 60%. The majority of the spores remained immobilized inside the fiber web; only 0.001 to 0.03% transferred to the foods. This amount is low compared with the process hygiene criteria and densities commonly found in food, and it does not endanger food safety. To measure this, we introduced BT-1 spores into the paper in densities of 100 to 1,000 times higher than the amounts of the B. cereus group bacteria found in commercial paper. Of BT-1 spores, 0.03 to 0.1% transferred from the paper to fresh agar surface within 5 min of contact, which is more than to food during 10 to 30 days of exposure. The findings indicate that transfer from paper to dry food is restricted to those microbes that are exposed on the paper surface and readily detectable with a contact agar method. PMID:19903384

  17. Modulation of the Bacillus anthracis secretome by the immune inhibitor A1 protease.

    Science.gov (United States)

    Pflughoeft, Kathryn J; Swick, Michelle C; Engler, David A; Yeo, Hye-Jeong; Koehler, Theresa M

    2014-01-01

    The Bacillus anthracis secretome includes protective antigen, lethal factor, and edema factor, which are the components of anthrax toxin, and other proteins with known or potential roles in anthrax disease. Immune inhibitor A1 (InhA1) is a secreted metalloprotease that is unique to pathogenic members of the Bacillus genus and has been associated with cleavage of host proteins during infection. Here, we report the effect of InhA1 on the B. anthracis secretome. Differential in-gel electrophoresis of proteins present in culture supernatants from a parent strain and an isogenic inhA1-null mutant revealed multiple differences. Of the 1,340 protein spots observed, approximately one-third were less abundant and one-third were more abundant in the inhA1 secretome than in the parent strain secretome. Proteases were strongly represented among those proteins exhibiting a 9-fold or greater change. InhA1 purified from a B. anthracis culture supernatant directly cleaved each of the anthrax toxin proteins as well as an additional secreted protease, Npr599. The conserved zinc binding motif HEXXH of InhA1 (HEYGH) was critical for its proteolytic activity. Our data reveal that InhA1 directly and indirectly modulates the form and/or abundance of over half of all the secreted proteins of B. anthracis. The proteolytic activity of InhA1 on established secreted virulence factors, additional proteases, and other secreted proteins suggests that this major protease plays an important role in virulence not only by cleaving mammalian substrates but also by modulating the B. anthracis secretome itself. PMID:24214942

  18. Activation of the latent PlcR regulon in Bacillus anthracis.

    Science.gov (United States)

    Sastalla, Inka; Maltese, Lauren M; Pomerantseva, Olga M; Pomerantsev, Andrei P; Keane-Myers, Andrea; Leppla, Stephen H

    2010-10-01

    Many genes in Bacillus cereus and Bacillus thuringiensis are under the control of the transcriptional regulator PlcR and its regulatory peptide, PapR. In Bacillus anthracis, the causative agent of anthrax, PlcR is inactivated by truncation, and consequently genes having PlcR binding sites are expressed at very low levels when compared with B. cereus. We found that activation of the PlcR regulon in B. anthracis by expression of a PlcR-PapR fusion protein does not alter sporulation in strains containing the virulence plasmid pXO1 and thereby the global regulator AtxA. Using comparative 2D gel electrophoresis, we showed that activation of the PlcR regulon in B. anthracis leads to upregulation of many proteins found in the secretome of B. cereus, including phospholipases and proteases, such as the putative protease BA1995. Transcriptional analysis demonstrated expression of BA1995 to be dependent on PlcR-PapR, even though the putative PlcR recognition site of the BA1995 gene does not exactly match the PlcR consensus sequence, explaining why this protein had escaped recognition as belonging to the PlcR regulon. Additionally, while transcription of major PlcR-dependent haemolysins, sphingomyelinase and anthrolysin O is enhanced in response to PlcR activation in B. anthracis, only anthrolysin O contributes significantly to lysis of human erythrocytes. In contrast, the toxicity of bacterial culture supernatants from a PlcR-positive strain towards murine macrophages occurred independently of anthrolysin O expression in vitro and in vivo. PMID:20688829

  19. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    OpenAIRE

    Annika Gillis; Jacques Mahillon

    2014-01-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages inf...

  20. The Pathogenomic Sequence Analysis of B. cereus and B.thuringiensis Isolates Closely Related to Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Cliff S.; Xie, Gary; Challacombe, Jean F.; Altherr, MichaelR.; Smriti, B.; Bruce, David; Campbell, Connie S.; Campbell, Mary L.; Chen, Jin; Chertkov, Olga; Cleland, Cathy; Dimitrijevic-Bussod, M.; Doggett, Norman A.; Fawcett, John J.; Glavina, Tijana; Goodwin, Lynne A.; Hill, Karen K.; Hitchcock, Penny; Jackson, Paul J.; Keim, Paul; Kewalramani, Avinash Ramesh; Longmire, Jon; Lucas, Susan; Malfatti,Stephanie; McMurry, Kim; Meincke, Linda J.; Misra, Monica; Moseman,Bernice L.; Mundt, Mark; Munk, A. Christine; Okinaka, Richard T.; Parson-Quintana, B.; Reilly, Lee P.; Richardson, Paul; Robinson, DonnaL.; Rubin, Eddy; Saunders, Elizabeth; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Ticknor, Lawrence O.; Wills, Patti L.; Gilna, Payl; Brettin, Thomas S.

    2005-08-18

    The sequencing and analysis of two close relatives of Bacillus anthracis are reported. AFLP analysis of over 300 isolates of B.cereus, B. thuringiensis and B. anthracis identified two isolates as being very closely related to B. anthracis. One, a B. cereus, BcE33L, was isolated from a zebra carcass in Nambia; the second, a B. thuringiensis, 97-27, was isolated from a necrotic human wound. The B. cereus appears to be the closest anthracis relative sequenced to date. A core genome of over 3,900 genes was compiled for the Bacillus cereus group, including Banthracis. Comparative analysis of these two genomes with other members of the B. cereus group provides insight into the evolutionary relationships among these organisms. Evidence is presented that differential regulation modulates virulence, rather than simple acquisition of virulence factors. These genome sequences provide insight into the molecular mechanisms contributing to the host range and virulence of this group of organisms.

  1. Identification of anthrax-specific signature sequence from Bacillus anthracis

    Science.gov (United States)

    Rastogi, Vipin K.; Cheng, Tu-chen

    2001-08-01

    The primary objective was to identify and clone novel chromosomal DNA fragments for use as B. anthracis-specific markers. Towards this goal, 300 random primers (RAPD technology, randomly amplified polymorphic DNA) were screened to identify polymorphic loci on the anthrax chromosome. Five such DNA fragments uniquely amplifying from anthrax chromosome were identified and isolated. These fragments were cloned in pCR vector and sequenced. Database (genebank) analysis of one of the cloned probe, VRTC899, revealed the presence of specific chromosomal DNA probe, Ba813 from anthrax. This prove also contains flanking DNA with no homology to known sequences. Availability of signature DNA probes for detection of antrax-causing agent in environmental samples is critical for field application of DNA-based sensor technologies. In conclusion, we have demonstrated application of RAPD technology for identification of anthrax-specific signature sequences. This strategy can be extended to identify signature sequences from other BW agents.

  2. Quantum dot incorporated Bacillus spore as nanosensor for viral infection.

    Science.gov (United States)

    Zhang, Xinya; Zhou, Qian; Shen, Zhongfeng; Li, Zheng; Fei, Ruihua; Ji, Eoon Hye; Hu, Shen; Hu, Yonggang

    2015-12-15

    In this paper, we report a high-throughput biological method to prepare spore-based monodisperse microparticles (SMMs) and then form the nanocomposites of CdTe quantum dot (QD)-loaded SMMs by utilizing the endogenous functional groups from Bacillus spores. The SMMs and QD-incorporated spore microspheres (QDSMs) were characterized by using transmission electron microscopy, high-resolution transmission electron microscopy, fluorescence microscopy, fluorescence and UV-visible absorption spectroscopy, zeta potential analysis, Fourier-transform infrared spectroscopy, potentiometric titrations, X-ray photo-electron spectroscopy. The thermodynamics of QD/SMM interaction and antigen/QDSM interaction was also investigated by isothermal titration microcalorimetry (ITC). Fluorescent QDSMs coded either with a single luminescence color or with multiple colors of controlled emission intensity ratios were obtained. Green QDSMs were used as a model system to detect porcine parvovirus antibody in swine sera via flow cytometry, and the results demonstrated a great potential of QDSMs in high-throughput immunoassays. Due to the advantages such as simplicity, low cost, high throughput and eco-friendliness, our developed platform may find wide applications in disease detection, food safety evaluation and environmental assessment. PMID:26190468

  3. Mutagenesis of Bacillus subtilis spores exposed to simulated space environment

    Science.gov (United States)

    Munakata, N.; Natsume, T.; Takahashi, K.; Hieda, K.; Panitz, C.; Horneck, G.

    Bacterial spores can endure in a variety of extreme earthly environments. However, some conditions encountered during the space flight could be detrimental to DNA in the spore, delimiting the possibility of transpermia. We investigate the genetic consequences of the exposure to space environments in a series of preflight simulation project of EXPOSE. Using Bacillus subtilis spores of repair-proficient HA101 and repair-deficient TKJ6312 strains, the mutations conferring resistance to rifampicin were detected, isolated and sequenced. Most of the mutations were located in a N-terminal region of the rpoB gene encoding RNA polymerase beta-subunit. Among several potentially mutagenic factors, high vacuum, UV radiation, heat, and accelerated heavy ions induced mutations with varying efficiencies. A majority of mutations induced by vacuum exposure carried a tandem double-base change (CA to TT) at a unique sequence context of TCAGC. Results indicate that the vacuum and high temperature may act synergistically for the induction of mutations.

  4. Implications of Limits of Detection of Various Methods for Bacillus anthracis in Computing Risks to Human Health▿ †

    OpenAIRE

    Herzog, Amanda B.; McLennan, S. Devin; Pandey, Alok K.; Gerba, Charles P.; Haas, Charles N.; Joan B. Rose; Hashsham, Syed A.

    2009-01-01

    Used for decades for biological warfare, Bacillus anthracis (category A agent) has proven to be highly stable and lethal. Quantitative risk assessment modeling requires descriptive statistics of the limit of detection to assist in defining the exposure. Furthermore, the sensitivities of various detection methods in environmental matrices are vital information for first responders. A literature review of peer-reviewed journal articles related to methods for detection of B. anthracis was undert...

  5. Bacillus anthracis Phospholipases C Facilitate Macrophage-Associated Growth and Contribute to Virulence in a Murine Model of Inhalation Anthrax

    OpenAIRE

    Heffernan, Brian J.; Thomason, Brendan; Herring-Palmer, Amy; Shaughnessy, Lee; McDonald, Rod; Fisher, Nathan; Huffnagle, Gary B.; Hanna, Philip

    2006-01-01

    Several models of anthrax pathogenesis suggest that early in the infectious process Bacillus anthracis endospores germinate and outgrow into vegetative bacilli within phagocytes before being released into the blood. Here, we define the respective contributions of three phospholipases C (PLCs) to the pathogenesis of B. anthracis. Genetic deletions of the PLCs were made in the Sterne 7702 background, resulting in the respective loss of their activities. The PLCs were redundant both in tissue cu...

  6. Anthrolysin O and fermentation products mediate the toxicity of Bacillus anthracis to lung epithelial cells under microaerobic conditions

    OpenAIRE

    Popova, Taissia G.; Millis, Bryan; Chung, Myung-Chul; Bailey, Charles; Popov, Serguei G

    2010-01-01

    Bacillus anthracis generates virulence factors such as lethal and edema toxins, capsule, and hemolytic proteins under conditions of reduced oxygenation. Here, we report on the acute cytotoxicity of culture supernatants (Sups) of six nonencapsulated B. anthracis strains grown till the stationary phase under static microaerobic conditions. Human small airway epithelial, umbilical vein endothelial, Caco-2, and Hep-G2 cells were found to be susceptible. Sups displayed a reduction of pH to 5.3–5.5...

  7. A Bacillus anthracis strain deleted for six proteases serves as an effective host for production of recombinant proteins

    OpenAIRE

    Pomerantsev, Andrei P.; Pomerantseva, Olga M.; Moayeri, Mahtab; Fattah, Rasem; Tallant, Cynthia; Leppla, Stephen H.

    2011-01-01

    Bacillus anthracis produces a number of extracellular proteases that impact the integrity and yield of other proteins in the B. anthracis secretome. In this study we show that anthrolysin O (ALO) and the three anthrax toxin proteins, protective antigen (PA), lethal factor (LF), and edema factor (EF), produced from the B. anthracis Ames 35 strain (pXO1+, pXO2−), are completely degraded at the onset of stationary phase due to the action of proteases. An improved Cre-loxP gene knockout system wa...

  8. In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences

    OpenAIRE

    Ågren, Joakim; Hamidjaja, Raditijo A; Hansen, Trine; Ruuls, Robin; Thierry, Simon; Vigre, Håkan; Janse, Ingmar; Sundström, Anders; Segerman, Bo; Koene, Miriam; Löfström, Charlotta; van Rotterdam, Bart; Derzelle, Sylviane

    2013-01-01

    Bacillus anthracis, the causative agent of anthrax, is a zoonotic pathogen that is relatively common throughout the world and may cause life threatening diseases in animals and humans. There are many PCR-based assays in use for the detection of B. anthracis. While most of the developed assays rely on unique markers present on virulence plasmids pXO1 and pXO2, relatively few assays incorporate chromosomal DNA markers due to the close relatedness of B. anthracis to the B. cereus group strains. ...

  9. Protection of rhesus macaques against inhalational anthrax with a Bacillus anthracis capsule conjugate vaccine.

    Science.gov (United States)

    Chabot, Donald J; Ribot, Wilson J; Joyce, Joseph; Cook, James; Hepler, Robert; Nahas, Debbie; Chua, Jennifer; Friedlander, Arthur M

    2016-07-25

    The efficacy of currently licensed anthrax vaccines is largely attributable to a single Bacillus anthracis immunogen, protective antigen. To broaden protection against possible strains resistant to protective antigen-based vaccines, we previously developed a vaccine in which the anthrax polyglutamic acid capsule was covalently conjugated to the outer membrane protein complex of Neisseria meningitidis serotype B and demonstrated that two doses of 2.5μg of this vaccine conferred partial protection of rhesus macaques against inhalational anthrax . Here, we demonstrate complete protection of rhesus macaques against inhalational anthrax with a higher 50μg dose of the same capsule conjugate vaccine. These results indicate that B. anthracis capsule is a highly effective vaccine component that should be considered for incorporation in future generation anthrax vaccines. PMID:27329184

  10. NanoSIMS analysis of Bacillus spores for forensics

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P K; Davisson, M L; Velsko, S P

    2010-02-23

    The threat associated with the potential use of radiological, nuclear, chemical and biological materials in terrorist acts has resulted in new fields of forensic science requiring the application of state-of-the-science analytical techniques. Since the anthrax letter attacks in the United States in the fall of 2001, there has been increased interest in physical and chemical characterization of bacterial spores. While molecular methods are powerful tools for identifying genetic differences, other methods may be able to differentiate genetically identical samples based on physical and chemical properties, as well as provide complimentary information, such as methods of production and approximate date of production. Microanalysis has the potential to contribute significantly to microbial forensics. Bacillus spores are highly structured, consisting of a core, cortex, coat, and in some species, an exosporium. This structure provides a template for constraining elemental abundance differences at the nanometer scale. The primary controls on the distribution of major elements in spores are likely structural and physiological. For example, P and Ca are known to be abundant in the spore core because that is where P-rich nucleic acids and Cadipicolinic acid are located, respectively. Trace elements are known to bind to the spore coat but the controls on these elements are less well understood. Elemental distributions and abundances may be directly related to spore production, purification and stabilization methodologies, which are of particular interest for forensic investigation. To this end, we are developing a high-resolution secondary ion mass spectrometry method using a Cameca NanoSIMS 50 to study the distribution and abundance of trace elements in bacterial spores. In this presentation we will review and compare methods for preparing and analyzing samples, as well as review results on the distribution and abundance of elements in bacterial spores. We use NanoSIMS to

  11. Anthrax Spores Make an Essential Contribution to Vaccine Efficacy

    OpenAIRE

    Brossier, Fabien; Levy, Martine; Mock, Michèle

    2002-01-01

    Anthrax is caused by Bacillus anthracis, a gram-positive spore-forming bacterium. Septicemia and toxemia rapidly lead to death in infected mammal hosts. Currently used acellular vaccines against anthrax consist of protective antigen (PA), one of the anthrax toxin components. However, in experimental animals such vaccines are less protective than live attenuated strains. Here we demonstrate that the addition of formaldehyde-inactivated spores (FIS) of B. anthracis to PA elicits total protectio...

  12. Culturability of Bacillus spores on aerosol collection filters exposed to airborne combustion products of Al, Mg, and B·Ti.

    Science.gov (United States)

    Adhikari, Atin; Yermakov, Michael; Indugula, Reshmi; Reponen, Tiina; Driks, Adam; Grinshpun, Sergey A

    2016-05-01

    Destruction of bioweapon facilities due to explosion or fire could aerosolize highly pathogenic microorganisms. The post-event air quality assessment is conducted through air sampling. A bioaerosol sample (often collected on a filter for further culture-based analysis) also contains combustion products, which may influence the microbial culturability and, thus, impact the outcome. We have examined the interaction between spores deposited on collection filters using two simulants of Bacillus anthracis [B. thuringiensis (Bt) and B. atrophaeus (referred to as BG)] and incoming combustion products of Al as well as Mg and B·Ti (common ingredient of metalized explosives). Spores extracted from Teflon, polycarbonate, mixed cellulose ester (MCE), and gelatin filters (most common filter media for bioaerosol sampling), which were exposed to combustion products during a short-term sampling, were analyzed by cultivation. Surprisingly, we observed that aluminum combustion products enhanced the culturability of Bt (but not BG) spores on Teflon filters increasing the culturable count by more than an order of magnitude. Testing polycarbonate and MCE filter materials also revealed a moderate increase of culturability although gelatin did not. No effect was observed with either of the two species interacting on either filter media with products originated by combustion of Mg and B·Ti. Sample contamination, spore agglomeration, effect of a filter material on the spore survival, changes in the spore wall ultrastructure and germination, as well as other factors were explored to interpret the findings. The study raises a question about the reliability of certain filter materials for collecting airborne bio-threat agents in combustion environments. PMID:26914458

  13. The Bacillus anthracis cholesterol-dependent cytolysin, Anthrolysin O, kills human neutrophils, monocytes and macrophages

    Directory of Open Access Journals (Sweden)

    Rest Richard F

    2006-06-01

    Full Text Available Abstract Background Bacillus anthracis is an animal and human pathogen whose virulence is characterized by lethal and edema toxin, as well as a poly-glutamic acid capsule. In addition to these well characterized toxins, B. anthracis secretes several proteases and phospholipases, and a newly described toxin of the cholesterol-dependent cytolysin (CDC family, Anthrolysin O (ALO. Results In the present studies we show that recombinant ALO (rALO or native ALO, secreted by viable B. anthracis, is lethal to human primary polymorphonuclear leukocytes (PMNs, monocytes, monocyte-derived macrophages (MDMs, lymphocytes, THP-1 monocytic human cell line and ME-180, Detroit 562, and A549 epithelial cells by trypan blue exclusion or lactate dehydrogenase (LDH release viability assays. ALO cytotoxicity is dose and time dependent and susceptibility to ALO-mediated lysis differs between cell types. In addition, the viability of monocytes and hMDMs was assayed in the presence of vegetative Sterne strains 7702 (ALO+, UT231 (ALO-, and a complemented strain expressing ALO, UT231 (pUTE544, and was dependent upon the expression of ALO. Cytotoxicity of rALO is seen as low as 0.070 nM in the absence of serum. All direct cytotoxic activity is inhibited by the addition of cholesterol or serum concentration as low as 10%. Conclusion The lethality of rALO and native ALO on human monocytes, neutrophils, macrophages and lymphocytes supports the idea that ALO may represent a previously unidentified virulence factor of B. anthracis. The study of other factors produced by B. anthracis, along with the major anthrax toxins, will lead to a better understanding of this bacterium's pathogenesis, as well as provide information for the development of antitoxin vaccines for treating and preventing anthrax.

  14. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    International Nuclear Information System (INIS)

    Highlights: ► Non-infectious and protease-deficient Bacillus anthracis protein expression system. ► Successful expression and purification of a tumor-targeted fusion protein drug. ► Very low endotoxin contamination of purified protein. ► Efficient protein secretion simplifies purification. ► Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGFα). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGFα). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  15. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui [National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Leppla, Stephen H., E-mail: sleppla@niaid.nih.gov [National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Non-infectious and protease-deficient Bacillus anthracis protein expression system. Black-Right-Pointing-Pointer Successful expression and purification of a tumor-targeted fusion protein drug. Black-Right-Pointing-Pointer Very low endotoxin contamination of purified protein. Black-Right-Pointing-Pointer Efficient protein secretion simplifies purification. Black-Right-Pointing-Pointer Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGF{alpha}). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGF{alpha}). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  16. Bacillus anthracis in China and its relationship to worldwide lineages

    Directory of Open Access Journals (Sweden)

    Schupp James M

    2009-04-01

    Full Text Available Abstract Background The global pattern of distribution of 1033 B. anthracis isolates has previously been defined by a set of 12 conserved canonical single nucleotide polymorphisms (canSNP. These studies reinforced the presence of three major lineages and 12 sub-lineages and sub-groups of this anthrax-causing pathogen. Isolates that form the A lineage (unlike the B and C lineages have become widely dispersed throughout the world and form the basis for the geographical disposition of "modern" anthrax. An archival collection of 191 different B. anthracis isolates from China provides a glimpse into the possible role of Chinese trade and commerce in the spread of certain sub-lineages of this pathogen. Canonical single nucleotide polymorphism (canSNP and multiple locus VNTR analysis (MLVA typing has been used to examine this archival collection of isolates. Results The canSNP study indicates that there are 5 different sub-lineages/sub-groups in China out of 12 previously described world-wide canSNP genotypes. Three of these canSNP genotypes were only found in the western-most province of China, Xinjiang. These genotypes were A.Br.008/009, a sub-group that is spread across most of Europe and Asia; A.Br.Aust 94, a sub-lineage that is present in Europe and India, and A.Br.Vollum, a lineage that is also present in Europe. The remaining two canSNP genotypes are spread across the whole of China and belong to sub-group A.Br.001/002 and the A.Br.Ames sub-lineage, two closely related genotypes. MLVA typing adds resolution to the isolates in each canSNP genotype and diversity indices for the A.Br.008/009 and A.Br.001/002 sub-groups suggest that these represent older and established clades in China. Conclusion B. anthracis isolates were recovered from three canSNP sub-groups (A.Br.008/009, A.Br.Aust94, and A.Br.Vollum in the western most portion of the large Chinese province of Xinjiang. The city of Kashi in this province appears to have served as a crossroads

  17. Protein profiles of field isolates ofBacillus anthracis from different endemic areas of Indonesia

    Directory of Open Access Journals (Sweden)

    M Bhakti Poerwadikarta

    1998-03-01

    Full Text Available Sonicated cell-free extract proteins of 14 field isolates ofBacillus anthracis from six different endemic areas of Indonesia were analyzed by the use of sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE methods . The protein profiles of each field isolate tested demonstrated slightly different at the protein bands with molecular weights of 18, 37, 52, 65 and 70 kDa, and varied between the field isolates and vaccine strains. The variation could provide clues to the source of anthrax transmission whether it was originated from similar strain or not.

  18. An Essential DnaB Helicase of Bacillus anthracis: Identification, Characterization, and Mechanism of Action▿

    OpenAIRE

    Biswas, Esther E.; Barnes, Marjorie H.; Moir, Donald T.; Biswas, Subhasis B

    2008-01-01

    We have described a novel essential replicative DNA helicase from Bacillus anthracis, the identification of its gene, and the elucidation of its enzymatic characteristics. Anthrax DnaB helicase (DnaBBA) is a 453-amino-acid, 50-kDa polypeptide with ATPase and DNA helicase activities. DnaBBA displayed distinct enzymatic and kinetic properties. DnaBBA has low single-stranded DNA (ssDNA)-dependent ATPase activity but possesses a strong 5′→3′ DNA helicase activity. The stimulation of ATPase activi...

  19. Physical Sequestration of Bacillus anthracis in the Pulmonary Capillaries in Terminal Infection.

    Science.gov (United States)

    Jouvion, Gregory; Corre, Jean-Philippe; Khun, Huot; Moya-Nilges, Marie; Roux, Pascal; Latroche, Claire; Tournier, Jean-Nicolas; Huerre, Michel; Chrétien, Fabrice; Goossens, Pierre L

    2016-07-15

    The lung is the terminal target of Bacillus anthracis before death, whatever the route of infection (cutaneous, inhalational, or digestive). During a cutaneous infection in absence of toxins, we observed encapsulated bacteria colonizing the alveolar capillary network, bacteria and hemorrhages in alveolar and bronchiolar spaces, and hypoxic foci in the lung (endothelial cells) and brain (neurons and neuropil). Circulating encapsulated bacteria were as chains of approximately 13 µm in length. Bacteria of such size were immediately trapped within the lung capillary network, but bacteria of shorter length were not. Controlling lung-targeted pathology would be beneficial for anthrax treatment. PMID:26977051

  20. Importance of srtA and srtB for Growth of Bacillus anthracis in Macrophages

    OpenAIRE

    Zink, Steven D.; Burns, Drusilla L.

    2005-01-01

    We examined the effect of mutation of two sortase genes of Bacillus anthracis, srtA and srtB, on the ability of the bacterium to grow in J774A.1 cells, a mouse macrophage-like cell line. While disruption of either srtA or srtB had no effect on the ability of the bacteria to grow in rich culture media, mutations in each of these genes dramatically attenuated growth of the bacterium in J774A.1 cells. Complementation of the mutation restored the ability of bacteria to grow in the cells. Since th...

  1. Genomics of Bacillus Species

    Science.gov (United States)

    Økstad, Ole Andreas; Kolstø, Anne-Brit

    Members of the genus Bacillus are rod-shaped spore-forming bacteria belonging to the Firmicutes, the low G+C gram-positive bacteria. The Bacillus genus was first described and classified by Ferdinand Cohn in Cohn (1872), and Bacillus subtilis was defined as the type species (Soule, 1932). Several Bacilli may be linked to opportunistic infections. However, pathogenicity among Bacillus spp. is mainly a feature of bacteria belonging to the Bacillus cereus group, including B. cereus, Bacillus anthracis, and Bacillus thuringiensis. Here we review the genomics of B. cereus group bacteria in relation to their roles as etiological agents of two food poisoning syndromes (emetic and diarrhoeal).

  2. Crystallization and initial crystallographic analysis of phosphoglucosamine mutase from Bacillus anthracis

    International Nuclear Information System (INIS)

    The enzyme phosphoglucosamine mutase from B. anthracis participates in the peptidoglycan-biosynthetic pathway. The expression, purification and crystallization of this enzyme are described; diffraction data have been collected to 2.7 Å resolution. The enzyme phosphoglucosamine mutase catalyzes the conversion of glucosamine 6-phosphate to glucosamine 1-phosphate, an early step in the formation of the nucleotide sugar UDP-N-acetylglucosamine, which is involved in peptidoglycan biosynthesis. These enzymes are part of the large α-d-phosphohexomutase enzyme superfamily, but no proteins from the phosphoglucosamine mutase subgroup have been structurally characterized to date. Here, the crystallization of phosphoglucosamine mutase from Bacillus anthracis in space group P3221 by hanging-drop vapor diffusion is reported. The crystals diffracted to 2.7 Å resolution under cryocooling conditions. Structure determination by molecular replacement was successful and refinement is under way. The crystal structure of B. anthracis phosphoglucosamine mutase should shed light on the substrate-specificity of these enzymes and will also serve as a template for inhibitor design

  3. Potential role of autophagy in the bactericidal activity of human PMNs for Bacillus anthracis.

    Science.gov (United States)

    Ramachandran, Girish; Gade, Padmaja; Tsai, Pei; Lu, Wuyuan; Kalvakolanu, Dhananjaya V; Rosen, Gerald M; Cross, Alan S

    2015-12-01

    Bacillus anthracis, the causative agent of anthrax, is acquired by mammalian hosts from the environment, as quiescent endospores. These endospores must germinate inside host cells, forming vegetative bacilli, before they can express the virulence factors that enable them to evade host defenses and disseminate throughout the body. While the role of macrophages and dendritic cells in this initial interaction has been established, the role of polymorphonuclear leukocytes (PMNs) has not been adequately defined. We discovered that while B. anthracis 34F2 Sterne endospores germinate poorly within non-activated human PMNs, these phagocytes exhibit rapid microbicidal activity toward the outgrown vegetative bacilli, independent of superoxide and nitric oxide. These findings suggest that a non-free radical pathway kills B. anthracis bacilli. We also find in PMNs an autophagic mechanism of bacterial killing based on the rapid induction of LC-3 conversion, beclin-1 expression, sequestosome 1 (SQSTM1) degradation and inhibition of bactericidal activity by the inhibitor, 3-methyladenine. These findings extend to PMNs an autophagic bactericidal mechanism previously described for other phagocytes. PMID:26424808

  4. Bacillus anthracis TIR Domain-Containing Protein Localises to Cellular Microtubule Structures and Induces Autophagy.

    Science.gov (United States)

    Carlsson, Emil; Thwaite, Joanne E; Jenner, Dominic C; Spear, Abigail M; Flick-Smith, Helen; Atkins, Helen S; Byrne, Bernadette; Ding, Jeak Ling

    2016-01-01

    Toll-like receptors (TLRs) recognise invading pathogens and mediate downstream immune signalling via Toll/IL-1 receptor (TIR) domains. TIR domain proteins (Tdps) have been identified in multiple pathogenic bacteria and have recently been implicated as negative regulators of host innate immune activation. A Tdp has been identified in Bacillus anthracis, the causative agent of anthrax. Here we present the first study of this protein, designated BaTdp. Recombinantly expressed and purified BaTdp TIR domain interacted with several human TIR domains, including that of the key TLR adaptor MyD88, although BaTdp expression in cultured HEK293 cells had no effect on TLR4- or TLR2- mediated immune activation. During expression in mammalian cells, BaTdp localised to microtubular networks and caused an increase in lipidated cytosolic microtubule-associated protein 1A/1B-light chain 3 (LC3), indicative of autophagosome formation. In vivo intra-nasal infection experiments in mice showed that a BaTdp knockout strain colonised host tissue faster with higher bacterial load within 4 days post-infection compared to the wild type B. anthracis. Taken together, these findings indicate that BaTdp does not play an immune suppressive role, but rather, its absence increases virulence. BaTdp present in wild type B. anthracis plausibly interact with the infected host cell, which undergoes autophagy in self-defence. PMID:27391310

  5. Ecological niche modeling of Bacillus anthracis on three continents: evidence for genetic-ecological divergence?

    Directory of Open Access Journals (Sweden)

    Jocelyn C Mullins

    Full Text Available We modeled the ecological niche of a globally successful Bacillus anthracis sublineage in the United States, Italy and Kazakhstan to better understand the geographic distribution of anthrax and potential associations between regional populations and ecology. Country-specific ecological-niche models were developed and reciprocally transferred to the other countries to determine if pathogen presence could be accurately predicted on novel landscapes. Native models accurately predicted endemic areas within each country, but transferred models failed to predict known occurrences in the outside countries. While the effects of variable selection and limitations of the genetic data should be considered, results suggest differing ecological associations for the B. anthracis populations within each country and may reflect niche specialization within the sublineage. Our findings provide guidance for developing accurate ecological niche models for this pathogen; models should be developed regionally, on the native landscape, and with consideration to population genetics. Further genomic analysis will improve our understanding of the genetic-ecological dynamics of B. anthracis across these countries and may lead to more refined predictive models for surveillance and proactive vaccination programs. Further studies should evaluate the impact of variable selection of native and transferred models.

  6. Global metabolomic analysis of a mammalian host infected with Bacillus anthracis.

    Science.gov (United States)

    Nguyen, Chinh T Q; Shetty, Vivekananda; Maresso, Anthony W

    2015-12-01

    Whereas DNA provides the information to design life and proteins provide the materials to construct it, the metabolome can be viewed as the physiology that powers it. As such, metabolomics, the field charged with the study of the dynamic small-molecule fluctuations that occur in response to changing biology, is now being used to study the basis of disease. Here, we describe a comprehensive metabolomic analysis of a systemic bacterial infection using Bacillus anthracis, the etiological agent of anthrax disease, as the model pathogen. An organ and blood analysis identified approximately 400 metabolites, including several key classes of lipids involved in inflammation, as being suppressed by B. anthracis. Metabolite changes were detected as early as 1 day postinfection, well before the onset of disease or the spread of bacteria to organs, which testifies to the sensitivity of this methodology. Functional studies using pharmacologic inhibition of host phospholipases support the idea of a role of these key enzymes and lipid mediators in host survival during anthrax disease. Finally, the results are integrated to provide a comprehensive picture of how B. anthracis alters host physiology. Collectively, the results of this study provide a blueprint for using metabolomics as a platform to identify and study novel host-pathogen interactions that shape the outcome of an infection. PMID:26438791

  7. Structural study and thermodynamic characterization of inhibitor binding to lumazine synthase from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Morgunova, Ekaterina [Karolinska Institutet NOVUM, Center of Structural Biochemistry, Hälsovägen 7-9, 141 57 Huddinge (Sweden); Illarionov, Boris; Saller, Sabine [Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Popov, Aleksander [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble CEDEX 09 (France); Sambaiah, Thota [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University (United States); Bacher, Adelbert [Chemistry Department, Technical University of Munich, 85747 Garching (Germany); Cushman, Mark [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University (United States); Fischer, Markus [Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Ladenstein, Rudolf, E-mail: rudolf.ladenstein@ki.se [Karolinska Institutet NOVUM, Center of Structural Biochemistry, Hälsovägen 7-9, 141 57 Huddinge (Sweden)

    2010-09-01

    Crystallographic studies of lumazine synthase, the penultimate enzyme of the riboflavin-biosynthetic pathway in B. anthracis, provide a structural framework for the design of antibiotic inhibitors, together with calorimetric and kinetic investigations of inhibitor binding. The crystal structure of lumazine synthase from Bacillus anthracis was solved by molecular replacement and refined to R{sub cryst} = 23.7% (R{sub free} = 28.4%) at a resolution of 3.5 Å. The structure reveals the icosahedral symmetry of the enzyme and specific features of the active site that are unique in comparison with previously determined orthologues. The application of isothermal titration calorimetry in combination with enzyme kinetics showed that three designed pyrimidine derivatives bind to lumazine synthase with micromolar dissociation constants and competitively inhibit the catalytic reaction. Structure-based modelling suggested the binding modes of the inhibitors in the active site and allowed an estimation of the possible contacts formed upon binding. The results provide a structural framework for the design of antibiotics active against B. anthracis.

  8. Over-expression, purification, and confirmation of Bacillus anthracis transcriptional regulator NprR.

    Science.gov (United States)

    Rice, Amy J; Woo, Jerry K; Khan, Attiya; Szypulinski, Michael Z; Johnson, Michael E; Lee, Hyunwoo; Lee, Hyun

    2016-09-01

    Quorum sensing (QS) has been recognized as an important biological phenomenon in which bacterial cells communicate and coordinate their gene expression and cellular processes with respect to population density. Bacillus anthracis is the etiological agent of fatal pulmonary anthrax infections, and the NprR/NprX QS system may be involved in its pathogenesis. NprR, renamed as aqsR for anthrax quorum sensing Regulator, is a transcriptional regulator that may control the expression of genes required for proliferation and survival. Currently, there is no protocol reported to over-express and purify B. anthracis AqsR. In this study, we describe cloning, purification, and confirmation of functional full-length B. anthracis AqsR protein. The AqsR gene was cloned into the pQE-30 vector with an HRV 3C protease recognition site between AqsR and the N-terminal His6-tag in order to yield near native AqsR after the His-tag cleavage, leaving only two additional amino acid residues at the N-terminus. PMID:26344899

  9. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis.

    Science.gov (United States)

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J; Liu, Shihui; Leppla, Stephen H

    2013-01-01

    Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGFα). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGFα). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein. PMID:23200832

  10. The role of anthrolysin O in gut epithelial barrier disruption during Bacillus anthracis infection.

    Science.gov (United States)

    Bishop, Brian L; Lodolce, James P; Kolodziej, Lauren E; Boone, David L; Tang, Wei Jen

    2010-04-01

    Gastrointestinal (GI) anthrax, caused by the bacterial infection of Bacillus anthracis, posts a significant bioterrorism threat by its relatively high mortality rate in humans. Different from inhalational anthrax by the route of infection, accumulating evidence indicates the bypass of vegetative bacteria across GI epithelium is required to initiate GI anthrax. Previously, we reported that purified anthrolysin O (ALO), instead of tripartite anthrax edema and lethal toxins, is capable of disrupting gut epithelial tight junctions and barrier function in cultured cells. Here, we show that ALO can disrupt intestinal tissue barrier function in an ex vivo mouse model. To explore the effects of ALO in a cell culture model of B. anthracis infection, we showed that anthrax bacteria can effectively reduce the monolayer integrity of human Caco-2 brush-border expressor (C2BBE) cells based on the reduced transepithelial resistance and the increased leakage of fluorescent dye. This disruption is likely caused by tight junction dysfunction observed by the reorganization of the tight junction protein occludin. Consequently, we observe significant passage of vegetative anthrax bacteria across C2BBE cells. This barrier disruption and bacterial crossover requires ALO since ALO-deficient B. anthracis strains fail to induce monolayer dysfunction and allow the passage of anthrax bacteria. Together these findings point to a pivotal role for ALO within the establishment of GI anthrax infection and the initial bypass of the epithelial barrier. PMID:20188700

  11. Discerning Viable from Nonviable Yersinia pestis pgm- and Bacillus anthracis Sterne using Propidium Monoazide in the Presence of White Powders

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Becky M.; Kaiser, Brooke LD; Sydor, Michael A.; Wunschel, David S.; Bruckner-Lea, Cindy J.; Hutchison, Janine R.

    2015-12-23

    ABSTRACT Aims To develop and optimize an assay to determine viability status of Bacillus anthracis Sterne and Yersinia pestis pgm- strains in the presence of white powders by coupling propidium monoazide (PMA) treatment with real-time PCR (qPCR) analysis. Methods and Results PMA selectively enters nonviable cells and binds DNA, thereby increasing qPCR assay cycle threshold (CT) values compared to untreated samples. Dye concentration, cell number and fitness, incubation time, inactivation methods, and assay buffer were optimized for B. anthracis Sterne and Y. pestis pgm-. Differences in CT values in nonviable cells compared to untreated samples were consistently > 9 for both B. anthracis Sterne vegetative cells and Y. pestis pgm- in the presence and absence of three different white powders. Our method eliminates the need for a DNA extraction step prior to detection by qPCR. Conclusions The developed assay enables simultaneous identification and viability assessment for B. anthracis Sterne and Y. pestis pgm- under laboratory conditions, even in the presence of white powders. Eliminating the DNA extraction step that is typically used reduces total assay time and labor requirements for sample analysis. Significance and Impact of the Study The method developed for simultaneous detection and viability assessment for B. anthracis and Y. pestis can be employed in forming decisions about the severity of a biothreat event or the safety of food. Keywords Bacillus anthracis, Yersinia pestis, Propidium Monoazide, qPCR, White Powders, Rapid Viability Detection

  12. Identification of the pXO1 plasmid in attenuated Bacillus anthracis vaccine strains.

    Science.gov (United States)

    Liang, Xudong; Zhang, Huijuan; Zhang, Enmin; Wei, Jianchun; Li, Wei; Wang, Bingxiang; Dong, Shulin; Zhu, Jin

    2016-07-01

    Anthrax toxins and capsule are the major virulence factors of Bacillus anthracis. They are encoded by genes located on the plasmids pXO1 and pXO2, respectively. The vaccine strain Pasteur II was produced from high temperature subcultures of B. anthracis, which resulted in virulence attenuation through the loss of the plasmid pXO1. However, it is unclear whether the high temperature culture completely abolishes the plasmid DNA or affects the replication of the plasmid pXO1. In this study, we tested 3 B. anthracis vaccine strains, including Pasteur II from France, Qiankefusiji II from Russia, and Rentian II from Japan, which were all generated from subcultures at high temperatures. Surprisingly, we detected the presence of pXO1 plasmid DNA using overlap PCR in all these vaccine strains. DNA sequencing analysis of overlap PCR products further confirmed the presence of pXO1. Moreover, the expression of the protective antigen (PA) encoded on pXO1 was determined by using SDS-PAGE and western blotting. In addition, we mimicked Pasteur's method and exposed the A16R vaccine strain, which lacks the pXO2 plasmid, to high temperature, and identified the pXO1 plasmid in the subcultures at high temperatures. This indicated that the high temperature treatment at 42.5°C was unable to eliminate pXO1 plasmid DNA from B. anthracis. Our results suggest that the attenuation of the Pasteur II vaccine strain is likely due to the impact of high temperature stress on plasmid replication, which in turn limits the copy number of pXO1. Our data provide new insights into the mechanisms of the remaining immunogenicity and toxicity of the vaccine strains. PMID:27029580

  13. Allelic variation on murine chromosome 11 modifies host inflammatory responses and resistance to Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Jill K Terra

    2011-12-01

    Full Text Available Anthrax is a potentially fatal disease resulting from infection with Bacillus anthracis. The outcome of infection is influenced by pathogen-encoded virulence factors such as lethal toxin (LT, as well as by genetic variation within the host. To identify host genes controlling susceptibility to anthrax, a library of congenic mice consisting of strains with homozygous chromosomal segments from the LT-responsive CAST/Ei strain introgressed on a LT-resistant C57BL/6 (B6 background was screened for response to LT. Three congenic strains containing CAST/Ei regions of chromosome 11 were identified that displayed a rapid inflammatory response to LT similar to, but more severe than that driven by a LT-responsive allele of the inflammasome constituent NRLP1B. Importantly, increased response to LT in congenic mice correlated with greater resistance to infection by the Sterne strain of B. anthracis. The genomic region controlling the inflammatory response to LT was mapped to 66.36-74.67 Mb on chromosome 11, a region that encodes the LT-responsive CAST/Ei allele of Nlrp1b. However, known downstream effects of NLRP1B activation, including macrophage pyroptosis, cytokine release, and leukocyte infiltration could not fully explain the response to LT or the resistance to B. anthracis Sterne in congenic mice. Further, the exacerbated response in congenic mice is inherited in a recessive manner while the Nlrp1b-mediated response to LT is dominant. Finally, congenic mice displayed increased responsiveness in a model of sepsis compared with B6 mice. In total, these data suggest that allelic variation of one or more chromosome 11 genes in addition to Nlrp1b controls the severity of host response to multiple inflammatory stimuli and contributes to resistance to B. anthracis Sterne. Expression quantitative trait locus analysis revealed 25 genes within this region as high priority candidates for contributing to the host response to LT.

  14. Laboratory studies on surface sampling of Bacillus anthracis contamination: summary, gaps, and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F.; Amidan, Brett G.; Hu, Rebecca

    2012-12-01

    This article summarizes previous laboratory studies to characterize the performance of methods for collecting, storing/transporting, processing, and analyzing samples from surfaces contaminated by Bacillus anthracis or related surrogates. The focus is on plate culture and count estimates of surface contamination for swab, wipe, and vacuum samples of porous and nonporous surfaces. Summaries of the previous studies and their results were assessed to identify gaps in information needed as inputs to calculate key parameters critical to risk management in biothreat incidents. One key parameter is the number of samples needed to make characterization or clearance decisions with specified statistical confidence. Other key parameters include the ability to calculate, following contamination incidents, the 1) estimates of Bacillus anthracis contamination, as well as the bias and uncertainties in the estimates, and 2) confidence in characterization and clearance decisions for contaminated or decontaminated buildings. Gaps in knowledge and understanding identified during the summary of the studies are discussed. Recommendations are given for future evaluations of data from existing studies and possible new studies.

  15. In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences

    DEFF Research Database (Denmark)

    Ågren, Joakim; Hamidjaja, Raditijo A.; Hansen, Trine;

    2013-01-01

    -layer, and prophage-lambda. Following a review of the literature, an in silico analysis of all signature sequences reported for identification of B. anthracis was conducted. Published primer and probe sequences were compared for specificity against 134 available Bacillus spp. genomes. Although many of the chromosomal...

  16. Gene expression profiling of human alveolar macrophages infected by B. anthracis spores demonstrates TNF-α and NF-κb are key components of the innate immune response to the pathogen

    Directory of Open Access Journals (Sweden)

    Hurst Robert E

    2009-09-01

    Full Text Available Abstract Background Bacillus anthracis, the etiologic agent of anthrax, has recently been used as an agent of bioterrorism. The innate immune system initially appears to contain the pathogen at the site of entry. Because the human alveolar macrophage (HAM plays a key role in lung innate immune responses, studying the HAM response to B. anthracis is important in understanding the pathogenesis of the pulmonary form of this disease. Methods In this paper, the transcriptional profile of B. anthracis spore-treated HAM was compared with that of mock-infected cells, and differentially expressed genes were identified by Affymetrix microarray analysis. A portion of the results were verified by Luminex protein analysis. Results The majority of genes modulated by spores were upregulated, and a lesser number were downregulated. The differentially expressed genes were subjected to Ingenuity Pathway analysis, the Database for Annotation, Visualization and Integrated Discovery (DAVID analysis, the Promoter Analysis and Interaction Network Toolset (PAINT and Oncomine analysis. Among the upregulated genes, we identified a group of chemokine ligand, apoptosis, and, interestingly, keratin filament genes. Central hubs regulating the activated genes were TNF-α, NF-κB and their ligands/receptors. In addition to TNF-α, a broad range of cytokines was induced, and this was confirmed at the level of translation by Luminex multiplex protein analysis. PAINT analysis revealed that many of the genes affected by spores contain the binding site for c-Rel, a member of the NF-κB family of transcription factors. Other transcription regulatory elements contained in many of the upregulated genes were c-Myb, CP2, Barbie Box, E2F and CRE-BP1. However, many of the genes are poorly annotated, indicating that they represent novel functions. Four of the genes most highly regulated by spores have only previously been associated with head and neck and lung carcinomas. Conclusion The

  17. Physical Characteristics of Spores of Food-Associated Isolates of the Bacillus cereus Group ▿

    OpenAIRE

    Ankolekar, Chandrakant; Labbé, Ronald G.

    2009-01-01

    All 47 food-borne isolates of Bacillus cereus sensu stricto, as well as 10 of 12 food-borne, enterotoxigenic isolates of Bacillus thuringiensis, possessed appendages. Spores were moderately to highly hydrophobic, and each had a net negative charge. These characteristics indicate that spores of food-associated B. thuringiensis and not only B. cereus sensu stricto have high potential to adhere to inert surfaces.

  18. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores.

    Science.gov (United States)

    Tseng, Shawn; Abramzon, Nina; Jackson, James O; Lin, Wei-Jen

    2012-03-01

    Bacterial spores are the most resistant form of life and have been a major threat to public health and food safety. Nonthermal atmospheric gas discharge plasma is a novel sterilization method that leaves no chemical residue. In our study, a helium radio-frequency cold plasma jet was used to examine its sporicidal effect on selected strains of Bacillus and Clostridium. The species tested included Bacillus subtilis, Bacillus stearothermophilus, Clostridium sporogenes, Clostridium perfringens, Clostridium difficile, and Clostridium botulinum type A and type E. The plasmas were effective in inactivating selected Bacillus and Clostridia spores with D values (decimal reduction time) ranging from 2 to 8 min. Among all spores tested, C. botulinum type A and C. sporogenes were significantly more resistant to plasma inactivation than other species. Observations by phase contrast microscopy showed that B. subtilis spores were severely damaged by plasmas and the majority of the treated spores were unable to initiate the germination process. There was no detectable fragmentation of the DNA when the spores were treated for up to 20 min. The release of dipicolinic acid was observed almost immediately after the plasma treatment, indicating the spore envelope damage could occur quickly resulting in dipicolinic acid release and the reduction of spore resistance. PMID:22075631

  19. Structural and Functional Analysis of the GerD Spore Germination Protein of Bacillus Species

    OpenAIRE

    Li, Yunfeng; Jin, Kai; Ghosh, Sonali; Devarakonda, Parvathimadhavi; Carlson, Kristina; Davis, Andrew; Stewart, Kerry-Ann V.; Cammett, Elizabeth; Rossi, Patricia Pelczar; Setlow, Barbara; Lu, Min; Setlow, Peter; Hao, Bing

    2014-01-01

    Spore germination in Bacillus species represents an excellent model system with which to study the molecular mechanisms underlying the nutritional control of growth and development. Binding of specific chemical nutrients to their cognate receptors located in the spore inner membrane triggers the germination process that leads to a resumption of metabolism in spore outgrowth. Recent studies suggest that the inner membrane GerD lipoprotein plays a critical role in the receptor-mediated activati...

  20. Comparative Study of Pressure-Induced Germination of Bacillus subtilis Spores at Low and High Pressures

    OpenAIRE

    Wuytack, Elke Y.; Boven, Steven; Michiels, Chris W.

    1998-01-01

    We have studied pressure-induced germination of Bacillus subtilis spores at moderate (100 MPa) and high (500 to 600 MPa) pressures. Although we found comparable germination efficiencies under both conditions by using heat sensitivity as a criterion for germination, the sensitivity of pressure-germinated spores to some other agents was found to depend on the pressure used. Spores germinated at 100 MPa were more sensitive to pressure (>200 MPa), UV light, and hydrogen peroxide than were those g...

  1. Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments

    OpenAIRE

    Nagler, Katja; Setlow, Peter; Reineke, Kai; Driks, Adam; Moeller, Ralf

    2015-01-01

    The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the...

  2. Improvement of Biological Indicators by Uniformly Distributing Bacillus subtilis Spores in Monolayers To Evaluate Enhanced Spore Decontamination Technologies.

    Science.gov (United States)

    Raguse, Marina; Fiebrandt, Marcel; Stapelmann, Katharina; Madela, Kazimierz; Laue, Michael; Lackmann, Jan-Wilm; Thwaite, Joanne E; Setlow, Peter; Awakowicz, Peter; Moeller, Ralf

    2016-04-01

    Novel decontamination technologies, including cold low-pressure plasma and blue light (400 nm), are promising alternatives to conventional surface decontamination methods. However, the standardization of the assessment of such sterilization processes remains to be accomplished. Bacterial endospores of the genera Bacillus and Geobacillus are frequently used as biological indicators (BIs) of sterility. Ensuring standardized and reproducible BIs for reliable testing procedures is a significant problem in industrial settings. In this study, an electrically driven spray deposition device was developed, allowing fast, reproducible, and homogeneous preparation of Bacillus subtilis 168 spore monolayers on glass surfaces. A detailed description of the structural design as well as the operating principle of the spraying device is given. The reproducible formation of spore monolayers of up to 5 × 10(7) spores per sample was verified by scanning electron microscopy. Surface inactivation studies revealed that monolayered spores were inactivated by UV-C (254 nm), low-pressure argon plasma (500 W, 10 Pa, 100 standard cubic cm per min), and blue light (400 nm) significantly faster than multilayered spores were. We have thus succeeded in the uniform preparation of reproducible, highly concentrated spore monolayers with the potential to generate BIs for a variety of nonpenetrating surface decontamination techniques. PMID:26801572

  3. Immunization with a Recombinant, Pseudomonas fluorescens-Expressed, Mutant Form of Bacillus anthracis-Derived Protective Antigen Protects Rabbits from Anthrax Infection.

    Directory of Open Access Journals (Sweden)

    Matthew D Reed

    Full Text Available Protective antigen (PA, one of the components of the anthrax toxin, is the major component of human anthrax vaccine (Biothrax. Human anthrax vaccines approved in the United States and Europe consist of an alum-adsorbed or precipitated (respectively supernatant material derived from cultures of toxigenic, non-encapsulated strains of Bacillus anthracis. Approved vaccination schedules in humans with either of these vaccines requires several booster shots and occasionally causes adverse injection site reactions. Mutant derivatives of the protective antigen that will not form the anthrax toxins have been described. We have cloned and expressed both mutant (PA SNKE167-ΔFF-315-E308D and native PA molecules recombinantly and purified them. In this study, both the mutant and native PA molecules, formulated with alum (Alhydrogel, elicited high titers of anthrax toxin neutralizing anti-PA antibodies in New Zealand White rabbits. Both mutant and native PA vaccine preparations protected rabbits from lethal, aerosolized, B. anthracis spore challenge subsequent to two immunizations at doses of less than 1 μg.

  4. In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences.

    Science.gov (United States)

    Ågren, Joakim; Hamidjaja, Raditijo A; Hansen, Trine; Ruuls, Robin; Thierry, Simon; Vigre, Håkan; Janse, Ingmar; Sundström, Anders; Segerman, Bo; Koene, Miriam; Löfström, Charlotta; Van Rotterdam, Bart; Derzelle, Sylviane

    2013-11-15

    Bacillus anthracis, the causative agent of anthrax, is a zoonotic pathogen that is relatively common throughout the world and may cause life threatening diseases in animals and humans. There are many PCR-based assays in use for the detection of B. anthracis. While most of the developed assays rely on unique markers present on virulence plasmids pXO1 and pXO2, relatively few assays incorporate chromosomal DNA markers due to the close relatedness of B. anthracis to the B. cereus group strains. For the detection of chromosomal DNA, different genes have been used, such as BA813, rpoB, gyrA, plcR, S-layer, and prophage-lambda. Following a review of the literature, an in silico analysis of all signature sequences reported for identification of B. anthracis was conducted. Published primer and probe sequences were compared for specificity against 134 available Bacillus spp. genomes. Although many of the chromosomal targets evaluated are claimed to be specific to B. anthracis, cross-reactions with closely related B. cereus and B. thuringiensis strains were often observed. Of the 35 investigated PCR assays, only 4 were 100% specific for the B. anthracis chromosome. An interlaboratory ring trial among five European laboratories was then performed to evaluate six assays, including the WHO recommended procedures, using a collection of 90 Bacillus strains. Three assays performed adequately, yielding no false positive or negative results. All three assays target chromosomal markers located within the lambdaBa03 prophage region (PL3, BA5345, and BA5357). Detection limit was further assessed for one of these highly specific assays. PMID:24005110

  5. A strain-variable bacteriocin in Bacillus anthracis and Bacillus cereus with repeated Cys-Xaa-Xaa motifs

    Directory of Open Access Journals (Sweden)

    Haft Daniel H

    2009-04-01

    Full Text Available Abstract Bacteriocins are peptide antibiotics from ribosomally translated precursors, produced by bacteria often through extensive post-translational modification. Minimal sequence conservation, short gene lengths, and low complexity sequence can hinder bacteriocin identification, even during gene calling, so they are often discovered by proximity to accessory genes encoding maturation, immunity, and export functions. This work reports a new subfamily of putative thiazole-containing heterocyclic bacteriocins. It appears universal in all strains of Bacillus anthracis and B. cereus, but has gone unrecognized because it is always encoded far from its maturation protein operon. Patterns of insertions and deletions among twenty-four variants suggest a repeating functional unit of Cys-Xaa-Xaa. Reviewers This article was reviewed by Andrei Osterman and Lakshminarayan Iyer.

  6. Bacillus anthracis secretome time course under host-simulated conditions and identification of immunogenic proteins

    Directory of Open Access Journals (Sweden)

    Whittington Jessica

    2007-07-01

    Full Text Available Abstract Background The secretion time course of Bacillus anthracis strain RA3R (pXO1+/pXO2- during early, mid, and late log phase were investigated under conditions that simulate those encountered in the host. All of the identified proteins were analyzed by different software algorithms to characterize their predicted mode of secretion and cellular localization. In addition, immunogenic proteins were identified using sera from humans with cutaneous anthrax. Results A total of 275 extracellular proteins were identified by a combination of LC MS/MS and MALDI-TOF MS. All of the identified proteins were analyzed by SignalP, SecretomeP, PSORT, LipoP, TMHMM, and PROSITE to characterize their predicted mode of secretion, cellular localization, and protein domains. Fifty-three proteins were predicted by SignalP to harbor the cleavable N-terminal signal peptides and were therefore secreted via the classical Sec pathway. Twenty-three proteins were predicted by SecretomeP for secretion by the alternative Sec pathway characterized by the lack of typical export signal. In contrast to SignalP and SecretomeP predictions, PSORT predicted 171 extracellular proteins, 7 cell wall-associated proteins, and 6 cytoplasmic proteins. Moreover, 51 proteins were predicted by LipoP to contain putative Sec signal peptides (38 have SpI sites, lipoprotein signal peptides (13 have SpII sites, and N-terminal membrane helices (9 have transmembrane helices. The TMHMM algorithm predicted 25 membrane-associated proteins with one to ten transmembrane helices. Immunogenic proteins were also identified using sera from patients who have recovered from anthrax. The charge variants (83 and 63 kDa of protective antigen (PA were the most immunodominant secreted antigens, followed by charge variants of enolase and transketolase. Conclusion This is the first description of the time course of protein secretion for the pathogen Bacillus anthracis. Time course studies of protein secretion and

  7. Application of gaseous disinfectants ozone and chlorine dioxide for inactivation of Bacillus subtilis spores

    OpenAIRE

    Aydogan, Ahmet

    2006-01-01

    A terrorist attack involving chemical and/or biological warfare agents is a growing possibility. Since anthrax is considered as an immediate public-health threat that can be created by a warfare agent, it is imperative to investigate the potential remediation technologies effective against this threat. In this study, the effectiveness of two gaseous disinfectants, ozone and chlorine dioxide, to inactivate B.subtilis spores - as surrogate to B.anthracis that can cause the infectious anthrax di...

  8. Mechanical transmission of Bacillus anthracis by stable flies (Stomoxys calcitrans) and mosquitoes (Aedes aegypti and Aedes taeniorhynchus).

    OpenAIRE

    Turell, M J; Knudson, G B

    1987-01-01

    We evaluated the potential of stable flies, Stomoxys calcitrans, and two species of mosquitoes, Aedes aegypti and Aedes taeniorhynchus, to transmit Bacillus anthracis Vollum 1B mechanically. After probing on Hartley guinea pigs with a bacteremia of ca. 10(8.6) CFU of B. anthracis per ml of blood, individual or pools of two to four stable flies or mosquitoes were allowed to continue feeding on either uninfected guinea pigs or A/J mice. All three insect species transmitted lethal anthrax infect...

  9. cis-Acting Elements That Control Expression of the Master Virulence Regulatory Gene atxA in Bacillus anthracis

    OpenAIRE

    Dale, Jennifer L.; Raynor, Malik J.; Dwivedi, Prabhat; Koehler, Theresa M.

    2012-01-01

    Transcription of the Bacillus anthracis structural genes for the anthrax toxin proteins and biosynthetic operon for capsule is positively regulated by AtxA, a transcription regulator with unique properties. Consistent with the role of atxA in virulence factor expression, a B. anthracis atxA-null mutant is avirulent in a murine model for anthrax. In culture, multiple signals impact atxA transcript levels, and the timing and steady-state level of atxA expression are critical for optimal toxin a...

  10. Molecular cloning and expression of the Bacillus anthracis edema factor toxin gene: a calmodulin-dependent adenylate cyclase.

    OpenAIRE

    Tippetts, M T; Robertson, D L

    1988-01-01

    The Bacillus anthracis exotoxin is composed of a lethal factor, a protective antigen, and an edema factor (EF). EF is a calmodulin-dependent adenylate cyclase which elevates cyclic AMP levels within cells. The entire EF gene (cya) has been cloned in Escherichia coli, but EF gene expression by its own B. anthracis promoter could not be detected in E. coli. However, when the EF gene was placed downstream from the lac or the T7 promoter, enzymatically active EF was produced. The EF gene, like th...

  11. A Study on molecular characterization of Razi Bacillus anthracis Sterne 34F2 substrain in Iran

    Directory of Open Access Journals (Sweden)

    Tadayon, K.

    2016-07-01

    Full Text Available Anthrax, a zoonotic disease caused by Bacillus anthracis, has affected humans since ancient times. For genomic characterization of Razi B. anthracis Sterne 34F2 substrain, single nucleotide polymorphism (SNP genotyping method developed by Van Erth, variable-number tandem-repeat (VNTR-8 analysis proposed by Keim, and multiple-locus VNTR analysis (MLVA-3 introduced by Levy were employed. In the SNPs typing system, where the nucleotide content of the genome at 13 evolutionary canonical loci was collectively analyzed, the originally South African 34F2 substrain was categorized in the A.Br.001/002 subgroup. In the VNTR-8 analysis, fragments with lengths of 314, 229, 162, 580, 532, 158, and 137 bp were identified at the following loci: vrrA, vrrB1, vrrB2, vrrC1, vrrC2, CG3, and pxO1, respectively. In addition, application of Levy's MLVA-3 genotyping method revealed that the genome of this strain carried 941, 451, and 864 bp fragments at AA03, AJ03, and AA07 loci, respectively. The present findings are undoubtedly helpful in meeting the requirements set by the World Organization for Animal Health (OIE and World Health Organization (WHO for anthrax vaccine manufacturers including Razi Institute. However, further similar studies are required to promote the current epidemiological knowledge of anthrax in Iran.

  12. Effects of microbial loading and sporulation temperature on atmospheric plasma inactivation of Bacillus subtilis spores

    Science.gov (United States)

    Deng, X. T.; Shi, J. J.; Shama, G.; Kong, M. G.

    2005-10-01

    Current inactivation studies of Bacillus subtilis spores using atmospheric-pressure glow discharges (APGD) do not consider two important factors, namely microbial loading at the surface of a substrate and sporulation temperature. Yet these are known to affect significantly microbial resistance to heat and hydrogen peroxide. This letter investigates effects of microbial loading and sporulation temperature on spore resistance to APGD. It is shown that microbial loading can lead to a stacking structure as a protective shield against APGD treatment and that high sporulation temperature increases spore resistance by altering core water content and cross-linked muramic acid content of B. subtilis spores.

  13. Secondary cell wall polysaccharides in Bacillus anthracis and Bacillus cereus strains

    OpenAIRE

    Leoff, Christine

    2009-01-01

    This thesis presents a systematic comparison of cell wall carbohydrates, in particular the non classical secondary cell wall polysaccharides from closely related strains within the Bacillus cereus group. The results suggest that the cell wall glycosyl composition of the various Bacillus cereus group strains display differences that correlate with their phylogenetic relatedness. Comparative structural analysis of polysaccharide components that were released from the cell walls of the various s...

  14. Spores

    Science.gov (United States)

    A spore is a cell that certain fungi, plants (moss, ferns), and bacteria produce. Spores are involved in reproduction. Certain bacteria make spores as a way to defend themselves. These spores have thick walls. They can resist high temperatures, ...

  15. Detection of Anthrax Toxin in the Serum of Animals Infected with Bacillus anthracis by Using Engineered Immunoassays

    OpenAIRE

    Mabry, Robert; Brasky, Kathleen; Geiger, Robert; Carrion, Ricardo; Hubbard, Gene B; Leppla, Stephen; Patterson, Jean L.; Georgiou, George; Iverson, B L

    2006-01-01

    Several strategies that target anthrax toxin are being developed as therapies for infection by Bacillus anthracis. Although the action of the tripartite anthrax toxin has been extensively studied in vitro, relatively little is known about the presence of toxins during an infection in vivo. We developed a series of sensitive sandwich enzyme-linked immunosorbent assays (ELISAs) for detection of both the protective antigen (PA) and lethal factor (LF) components of the anthrax exotoxin in serum. ...

  16. Baulamycins A and B, Broad-Spectrum Antibiotics Identified as Inhibitors of Siderophore Biosynthesis in Staphylococcus aureus and Bacillus anthracis

    OpenAIRE

    Tripathi, Ashootosh; Schofield, Michael M.; Chlipala, George E.; Schultz, Pamela J.; Yim, Isaiah; Newmister, Sean A.; Nusca, Tyler D.; Scaglione, Jamie B.; Hanna, Philip C.; Tamayo-Castillo, Giselle; Sherman, David H.

    2014-01-01

    Siderophores are high-affinity iron chelators produced by microorganisms and frequently contribute to the virulence of human pathogens. Targeted inhibition of the biosynthesis of siderophores staphyloferrin B of Staphylococcus aureus and petrobactin of Bacillus anthracis hold considerable potential as a single or combined treatment for methicillin-resistant S. aureus (MRSA) and anthrax infection, respectively. The biosynthetic pathways for both siderophores involve a nonribosomal peptide synt...

  17. Immunoassay for Capsular Antigen of Bacillus anthracis Enables Rapid Diagnosis in a Rabbit Model of Inhalational Anthrax

    OpenAIRE

    Marcellene A Gates-Hollingsworth; Perry, Mark R.; Chen, Hongjing; Needham, James; Houghton, Raymond L.; Raychaudhuri, Syamal; Mark A Hubbard; Thomas R Kozel

    2015-01-01

    Inhalational anthrax is a serious biothreat. Effective antibiotic treatment of inhalational anthrax requires early diagnosis; the further the disease has progressed, the less the likelihood for cure. Current means for diagnosis such as blood culture require several days to a result and require advanced laboratory infrastructure. An alternative approach to diagnosis is detection of a Bacillus anthracis antigen that is shed into blood and can be detected by rapid immunoassay. The goal of the st...

  18. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores.

    Science.gov (United States)

    van Bokhorst-van de Veen, Hermien; Xie, Houyu; Esveld, Erik; Abee, Tjakko; Mastwijk, Hennie; Nierop Groot, Masja

    2015-02-01

    Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is still not fully understood. In this study, the biocidal effect by nitrogen CAP was determined for chemical (hypochlorite and hydrogen peroxide), physical (UV) and heat-resistant spores. The three different sporeformers used are Bacillus cereus a food-borne pathogen, and Bacillus atrophaeus and Geobacillus stearothermophilus that are used as biological indicators for validation of chemical sterilization and thermal processes, respectively. The different spores showed variation in their degree of inactivation by applied heat, hypochlorite, hydrogen peroxide, and UV treatments, whereas similar inactivation results were obtained with the different spores treated with nitrogen CAP. G. stearothermophilus spores displayed high resistance to heat, hypochlorite, hydrogen peroxide, while for UV treatment B. atrophaeus spores are most tolerant. Scanning electron microscopy analysis revealed distinct morphological changes for nitrogen CAP-treated B. cereus spores including etching effects and the appearance of rough spore surfaces, whereas morphology of spores treated with heat or disinfectants showed no such changes. Moreover, microscopy analysis revealed CAP-exposed B. cereus spores to turn phase grey conceivably because of water influx indicating damage of the spores, a phenomenon that was not observed for non-treated spores. In addition, data are supplied that exclude UV radiation as determinant of antimicrobial activity of nitrogen CAP. Overall, this study shows that nitrogen CAP treatment has a biocidal effect on selected Bacillus and Geobacillus spores associated with alterations in spore surface morphology and loss of spore integrity. PMID:25481059

  19. The Adsorption Properties of Bacillus atrophaeus Spores on Single-Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    P. Cortes

    2009-01-01

    Full Text Available An adsorption equilibrium and a kinetic study of Bacillus atrophaeus on Single-Wall Carbon Nanotubes (SWCNTs were here performed to provide the basis for developing biosensor devices for detecting threatening micro-organisms in water supply systems. B. atrophaeus spores and carbon nanotubes were subjected to a batch adsorption process to document their equilibria and kinetics. Here, commercial nanotubes were either studied as received or were acid-purified before adsorption experiments. The Bacillus spores appear to show higher affinity towards the purified nanotubes than to the as-received nanomaterial. The effective diffusivity of the spores onto the purified nanotubes was found to be approximately 30 percent higher than onto the as-received nanotubes. It seems that the removal of amorphous carbon from the as-received nanotubes through a purification process yielded an intimate nantoubes-spore interaction as revealed by transmission electron microscopy. Freundlich model successfully correlated the adsorption equilibrium data for the nanotubes-spore interaction. Transmission electron micrographs showed extensive contact between the Bacillus and the purified nanotubes, but the association appeared less intimate between the spores and the as-received nanotubes.

  20. Bridging the gap between detection and confirmation of B. anthracis in blood cultures

    OpenAIRE

    Hawkey, Suzanna

    2015-01-01

    The spore forming bacterium, Bacillus anthracis is the aetiological agent of anthrax. The 2001 US anthrax letter attacks and the 2009‐2010 outbreak of injectional anthrax in the UK highlighted the importance of early detection and confirmation of this agent, both for patient outcome and forensic investigations. A reliable and consistent method was used in this study to safely simulate blood cultures with B. anthracis and used to determine the time to positive detection. This was performed...

  1. A Bacillus anthracis strain deleted for six proteases serves as an effective host for production of recombinant proteins.

    Science.gov (United States)

    Pomerantsev, Andrei P; Pomerantseva, Olga M; Moayeri, Mahtab; Fattah, Rasem; Tallant, Cynthia; Leppla, Stephen H

    2011-11-01

    Bacillus anthracis produces a number of extracellular proteases that impact the integrity and yield of other proteins in the B. anthracis secretome. In this study we show that anthrolysin O (ALO) and the three anthrax toxin proteins, protective antigen (PA), lethal factor (LF), and edema factor (EF), produced from the B. anthracis Ames 35 strain (pXO1⁺, pXO2⁻), are completely degraded at the onset of stationary phase due to the action of proteases. An improved Cre-loxP gene knockout system was used to sequentially delete the genes encoding six proteases (InhA1, InhA2, camelysin, TasA, NprB, and MmpZ). The role of each protease in degradation of the B. anthracis toxin components and ALO was demonstrated. Levels of the anthrax toxin components and ALO in the supernatant of the sporulation defective, pXO1⁺ A35HMS mutant strain deleted for the six proteases were significantly increased and remained stable over 24 h. A pXO1-free variant of this six-protease mutant strain, designated BH460, provides an improved host strain for the preparation of recombinant proteins. As an example, BH460 was used to produce recombinant EF, which previously has been difficult to obtain from B. anthracis. The EF protein produced from BH460 had the highest in vivo potency of any EF previously purified from B. anthracis or Escherichia coli hosts. BH460 is recommended as an effective host strain for recombinant protein production, typically yielding greater than 10mg pure protein per liter of culture. PMID:21827967

  2. ON THE USE OF FROTH FLOTATION IN THE RECOVERY OF Bacillus sphaericus SPORES

    OpenAIRE

    RIOS E.M.; LOPES C.E.; F.P. de FRANÇA

    1997-01-01

    Abstract - The recovery of Bacillus sphaericus strain 2362 spores from fermented medium by batch flotation was tested under different conditions. Flotation kinetic studies were performed at 800 rpm and 3 l air/min. The pH values were adjusted at the following set of values: 5.0, 7.0 and 9.0. The results showed that the spore removal rate is influenced by the pH value. At pH equal to 5.0 we observe an adverse effect on the spore concentrate obtention. In this situation the maximum value of the...

  3. Recovery Efficiency, False Negative Rate, and Limit of Detection Performance of a Validated Macrofoam-Swab Sampling Method with Low Surface Concentrations of Two Bacillus anthracis Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hutchison, Janine R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deatherage Kaiser, Brooke L [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Amidan, Brett G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sydor, Michael A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barrett, Christopher A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-31

    The performance of a macrofoam-swab sampling method was evaluated using Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus Nakamura (BG) spores applied at nine low target amounts (2-500 spores) to positive-control plates and test coupons (2 in. × 2 in.) of four surface materials (glass, stainless steel, vinyl tile, and plastic). Test results from cultured samples were used to evaluate the effects of surrogate, surface concentration, and surface material on recovery efficiency (RE), false negative rate (FNR), and limit of detection. For RE, surrogate and surface material had statistically significant effects, but concentration did not. Mean REs were the lowest for vinyl tile (50.8% with BAS, 40.2% with BG) and the highest for glass (92.8% with BAS, 71.4% with BG). FNR values ranged from 0 to 0.833 for BAS and 0 to 0.806 for BG, with values increasing as concentration decreased in the range tested (0.078 to 19.375 CFU/cm2, where CFU denotes ‘colony forming units’). Surface material also had a statistically significant effect. A FNR-concentration curve was fit for each combination of surrogate and surface material. For both surrogates, the FNR curves tended to be the lowest for glass and highest for vinyl title. The FNR curves for BG tended to be higher than for BAS at lower concentrations, especially for glass. Results using a modified Rapid Viability-Polymerase Chain Reaction (mRV-PCR) analysis method were also obtained. The mRV-PCR results and comparisons to the culture results will be discussed in a subsequent report.

  4. A Spontaneous Translational Fusion of Bacillus cereus PlcR and PapR Activates Transcription of PlcR-Dependent Genes in Bacillus anthracis via Binding with a Specific Palindromic Sequence

    OpenAIRE

    Pomerantsev, Andrei P; Pomerantseva, Olga M.; Stephen H Leppla

    2004-01-01

    Transformation of Bacillus anthracis with plasmid pUTE29-plcR-papR carrying the native Bacillus cereus plcR-papR gene cluster did not activate expression of B. anthracis hemolysin genes, even though these are expected to be responsive to activation by the global regulator PlcR. To further characterize the action of PlcR, we examined approximately 3,000 B. anthracis transformants containing pUTE29-plcR-papR and found a single hemolytic colony. The hemolytic strain contained a plasmid having a ...

  5. Effect of sporulation conditions on the resistance of Bacillus subtilis spores to heat and high pressure.

    Science.gov (United States)

    Nguyen Thi Minh, Hue; Durand, Alain; Loison, Pauline; Perrier-Cornet, Jean-Marie; Gervais, Patrick

    2011-05-01

    Bacillus subtilis(B. subtilis) cells were placed in various environmental conditions to study the effects of aeration, water activity of the medium, temperature, pH, and calcium content on spore formation and the resulting properties. Modification of the sporulation conditions lengthened the growth period of B. subtilis and its sporulation. In some cases, it reduced the final spore concentration. The sporulation conditions significantly affected the spore properties, including germination capacity and resistance to heat treatment in water (30 min at 97°C) or to high pressure (60 min at 350 MPa and 40°C). The relationship between the modifications of these spore properties and the change in the spore structure induced by different sporulation conditions is also considered. According to this study, sporulation conditions must be carefully taken into account during settling sterilization processes applied in the food industry. PMID:21380515

  6. Friction and Adhesion Forces of Bacillus thuringiensis Spores on Planar Surfaces in Atmospheric Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2011-01-01

    The kinetic friction force and the adhesion force of Bacillus thuringiensis spores on planar surfaces in atmospheric systems were studied using atomic force microscopy. The influence of relative humidity (RH) on these forces varied for different surface properties including hydrophobicity, roughness, and surface charge. The friction force of the spore was greater on a rougher surface than on mica, which is atomically flat. As RH increases, the friction force of the spores decreases on mica whereas it increases on rough surfaces. The influence of RH on the interaction forces between hydrophobic surfaces is not as strong as for hydrophilic surfaces. The friction force of the spore is linear to the sum of the adhesion force and normal load on the hydrophobic surface. The poorly defined surface structure of the spore and the adsorption of contaminants from the surrounding atmosphere are believed to cause a discrepancy between the calculated and measured adhesion forces.

  7. Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production.

    Science.gov (United States)

    Posada-Uribe, Luisa F; Romero-Tabarez, Magally; Villegas-Escobar, Valeska

    2015-10-01

    Bacillus subtilis spores have important biotechnological applications; however, achieving both, high spore cell densities and sporulation efficiencies in fermentation, is poorly reported. In this study, medium components and culture conditions were optimized with different statistical methods to increase spore production of the plant growth promoting rhizobacteria B. subtilis EA-CB0575. Key medium components were determined with Plackett-Burman (PB) design, and the optimum concentration levels of two components (glucose, MgSO4·7H2O) were optimized with a full factorial and central composite design, achieving 1.37 × 10(9) CFU/mL of spore cell density and 93.5 % of sporulation efficiency in shake flask. The optimized medium was used to determine the effect of culture conditions on spore production at bioreactor level, finding that maintaining pH control did not affect significantly spore production, while the interaction of agitation and aeration rates had a significant effect on spore cell density. The overall optimization generated a 17.2-fold increase in spore cell density (8.78 × 10(9) CFU/mL) and 1.9-fold increase in sporulation efficiency (94.2 %) compared to that of PB design. These results indicate the potential of B. subtilis EA-CB0575 to produce both, high spore cell densities and sporulation efficiencies, with very low nutrient requirements and short incubation period which can represent savings of process production. PMID:26135004

  8. Bacillus anthracis Diversity and Geographic Potential across Nigeria, Cameroon and Chad: Further Support of a Novel West African Lineage.

    Directory of Open Access Journals (Sweden)

    Jason K Blackburn

    Full Text Available Zoonoses, diseases affecting both humans and animals, can exert tremendous pressures on human and veterinary health systems, particularly in resource limited countries. Anthrax is one such zoonosis of concern and is a disease requiring greater public health attention in Nigeria. Here we describe the genetic diversity of Bacillus anthracis in Nigeria and compare it to Chad, Cameroon and a broader global dataset based on the multiple locus variable number tandem repeat (MLVA-25 genetic typing system. Nigerian B. anthracis isolates had identical MLVA genotypes and could only be resolved by measuring highly mutable single nucleotide repeats (SNRs. The Nigerian MLVA genotype was identical or highly genetically similar to those in the neighboring countries, confirming the strains belong to this unique West African lineage. Interestingly, sequence data from a Nigerian isolate shares the anthrose deficient genotypes previously described for strains in this region, which may be associated with vaccine evasion. Strains in this study were isolated over six decades, indicating a high level of temporal strain stability regionally. Ecological niche models were used to predict the geographic distribution of the pathogen for all three countries. We describe a west-east habitat corridor through northern Nigeria extending into Chad and Cameroon. Ecological niche models and genetic results show B. anthracis to be ecologically established in Nigeria. These findings expand our understanding of the global B. anthracis population structure and can guide regional anthrax surveillance and control planning.

  9. Technical Note: Simple, scalable, and sensitive protocol for retrieving Bacillus anthracis (and other live bacteria) from heroin.

    Science.gov (United States)

    Grass, Gregor; Ahrens, Bjoern; Schleenbecker, Uwe; Dobrzykowski, Linda; Wagner, Matthias; Krüger, Christian; Wölfel, Roman

    2016-02-01

    We describe a culture-based method suitable for isolating Bacillus anthracis and other live bacteria from heroin. This protocol was developed as a consequence of the bioforensic need to retrieve bacteria from batches of the drug associated with cases of injectional anthrax among heroin-consumers in Europe. This uncommon manifestation of infection with the notorious pathogen B. anthracis has resulted in 26 deaths between the years 2000 to 2013. Thus far, no life disease agent has been isolated from heroin during forensic investigations surrounding these incidences. Because of the conjectured very small number of disease-causing endospores in the contaminated drug it is likely that too few target sequences are available for molecular genetic analysis. Therefore, a direct culture-based approach was chosen here. Endospores of attenuated B. anthracis artificially spiked into heroin were successfully retrieved at 84-98% recovery rates using a wash solution consisting of 0.5% Tween 20 in water. Using this approach, 82 samples of un-cut heroin originating from the German Federal Criminal Police Office's heroin analysis program seized during the period between 2000 and 2014 were tested and found to be surprisingly poor in retrievable bacteria. Notably, while no B. anthracis was isolated from the drug batches, other bacteria were successfully cultured. The resulting methodical protocol is therefore suitable for analyzing un-cut heroin which can be anticipated to comprise the original microbiota from the drug's original source without interference from contaminations introduced by cutting. PMID:26734987

  10. Ultrastructural localization of dipicolinic acid in dormant spores of Bacillus subtilis by immunoelectron microscopy with colloidal gold particles.

    OpenAIRE

    Kozuka, S; Yasuda, Y.; Tochikubo, K

    1985-01-01

    The localization of dipicolinic acid in dormant spores of Bacillus subtilis was examined by an immunoelectron microscopy method with colloidal gold-immunoglobulin G complex. The colloidal gold particles were distributed mainly in the core regions of dormant spores and were not observed in those of germinated or autoclaved spores. This result clearly demonstrates that dipicolinic acid is localized in the cores of dormant spores.

  11. Soluble Expression and Characterization of Biologically Active Bacillus anthracis Protective Antigen in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Nagendra Suryanarayana

    2016-01-01

    Full Text Available Bacillus anthracis secretory protein protective antigen (PA is primary candidate for subunit vaccine against anthrax. Attempts to obtain large quantity of PA from Escherichia coli expression system often result in the formation of insoluble inclusion bodies. Therefore, it is always better to produce recombinant proteins in a soluble form. In the present study, we have obtained biologically active recombinant PA in small scale E. coli shake culture system using three different expression constructs. The PA gene was cloned in expression vectors bearing trc, T5, and T7 promoters and transformed into their respective E. coli hosts. The growth conditions were optimized to obtain maximum expression of PA in soluble form. The expression construct PA-pET32c in DE3-pLysS E. coli host resulted in a maximum production of soluble PA (15 mg L−1 compared to other combinations. Purified PA was subjected to trypsin digestion and binding assay with lethal factor to confirm the protein’s functionality. Biological activity was confirmed by cytotoxicity assay on J774.1 cells. Balb/c mice were immunized with PA and the immunogenicity was tested by ELISA and toxin neutralization assay. This study highlights the expression of soluble and biologically active recombinant PA in larger quantity using simpler E. coli production platform.

  12. Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term immunological memory response.

    Science.gov (United States)

    Woo, Sun-Je; Kang, Seok-Seong; Park, Sung-Moo; Yang, Jae Seung; Song, Man Ki; Yun, Cheol-Heui; Han, Seung Hyun

    2015-10-01

    Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity. PMID:26278659

  13. Soluble Expression and Characterization of Biologically Active Bacillus anthracis Protective Antigen in Escherichia coli.

    Science.gov (United States)

    Suryanarayana, Nagendra; Vanlalhmuaka; Mankere, Bharti; Verma, Monika; Thavachelvam, Kulanthaivel; Tuteja, Urmil

    2016-01-01

    Bacillus anthracis secretory protein protective antigen (PA) is primary candidate for subunit vaccine against anthrax. Attempts to obtain large quantity of PA from Escherichia coli expression system often result in the formation of insoluble inclusion bodies. Therefore, it is always better to produce recombinant proteins in a soluble form. In the present study, we have obtained biologically active recombinant PA in small scale E. coli shake culture system using three different expression constructs. The PA gene was cloned in expression vectors bearing trc, T5, and T7 promoters and transformed into their respective E. coli hosts. The growth conditions were optimized to obtain maximum expression of PA in soluble form. The expression construct PA-pET32c in DE3-pLysS E. coli host resulted in a maximum production of soluble PA (15 mg L(-1)) compared to other combinations. Purified PA was subjected to trypsin digestion and binding assay with lethal factor to confirm the protein's functionality. Biological activity was confirmed by cytotoxicity assay on J774.1 cells. Balb/c mice were immunized with PA and the immunogenicity was tested by ELISA and toxin neutralization assay. This study highlights the expression of soluble and biologically active recombinant PA in larger quantity using simpler E. coli production platform. PMID:26966576

  14. Bacillus anthracis Co-Opts Nitric Oxide and Host Serum Albumin for Pathogenicity in Hypoxic Conditions

    Directory of Open Access Journals (Sweden)

    Stephen eSt John

    2013-05-01

    Full Text Available Bacillus anthracis is a dangerous pathogen of humans and many animal species. Its virulence has been mainly attributed to the production of Lethal and Edema toxins as well as the antiphagocytic capsule. Recent data indicate that the nitric oxide (NO synthase (baNOS plays an important pathogenic role at the early stage of disease by protecting bacteria from the host reactive species and S-nytrosylating the mitochondrial proteins in macrophages. In this study we for the first time present evidence that bacteria-derived NO participates in the generation of highly reactive oxidizing species which could be abolished by the NOS inhibitor L-NAME, free thiols, and superoxide dismutase but not catalase. The formation of toxicants is likely a result of the simultaneous formation of NO and superoxide leading to a labile peroxynitrite and its stable decomposition product, nitrogen dioxide. The toxicity of bacteria could be potentiated in the presence of bovine serum albumin. This effect is consistent with the property of serum albumin to serves as a trap of a volatile NO accelerating its reactions. Our data suggest that during infection in the hypoxic environment of pre-mortal host the accumulated NO is expected to have a broad toxic impact on host cell functions.

  15. Contractile actin cables induced by Bacillus anthracis lethal toxin depend on the histone acetylation machinery.

    Science.gov (United States)

    Rolando, Monica; Stefani, Caroline; Doye, Anne; Acosta, Maria I; Visvikis, Orane; Yevick, Hannah G; Buchrieser, Carmen; Mettouchi, Amel; Bassereau, Patricia; Lemichez, Emmanuel

    2015-10-01

    It remains a challenge to decode the molecular basis of the long-term actin cytoskeleton rearrangements that are governed by the reprogramming of gene expression. Bacillus anthracis lethal toxin (LT) inhibits mitogen-activated protein kinase (MAPK) signaling, thereby modulating gene expression, with major consequences for actin cytoskeleton organization and the loss of endothelial barrier function. Using a laser ablation approach, we characterized the contractile and tensile mechanical properties of LT-induced stress fibers. These actin cables resist pulling forces that are transmitted at cell-matrix interfaces and at cell-cell discontinuous adherens junctions. We report that treating the cells with trichostatin A (TSA), a broad range inhibitor of histone deacetylases (HDACs), or with MS-275, which targets HDAC1, 2 and 3, induces stress fibers. LT decreased the cellular levels of HDAC1, 2 and 3 and reduced the global HDAC activity in the nucleus. Both the LT and TSA treatments induced Rnd3 expression, which is required for the LT-mediated induction of actin stress fibers. Furthermore, we reveal that treating the LT-intoxicated cells with garcinol, an inhibitor of histone acetyl-transferases (HATs), disrupts the stress fibers and limits the monolayer barrier dysfunctions. These data demonstrate the importance of modulating the flux of protein acetylation in order to control actin cytoskeleton organization and the endothelial cell monolayer barrier. PMID:26403219

  16. In Silico Genomic Fingerprints of the Bacillus anthracis Group Obtained by Virtual Hybridization

    Directory of Open Access Journals (Sweden)

    Hueman Jaimes-Díaz

    2015-02-01

    Full Text Available In this study we evaluate the capacity of Virtual Hybridization to identify between highly related bacterial strains. Eight genomic fingerprints were obtained by virtual hybridization for the Bacillus anthracis genome set, and a set of 15,264 13-nucleotide short probes designed to produce genomic fingerprints unique for each organism. The data obtained from each genomic fingerprint were used to obtain hybridization patterns simulating a DNA microarray. Two virtual hybridization methods were used: the Direct and the Extended method to identify the number of potential hybridization sites and thus determine the minimum sensitivity value to discriminate between genomes with 99.9% similarity. Genomic fingerprints were compared using both methods and phylogenomic trees were constructed to verify that the minimum detection value is 0.000017. Results obtained from the genomic fingerprints suggest that the distribution in the trees is correct, as compared to other taxonomic methods. Specific virtual hybridization sites for each of the genomes studied were also identified.

  17. A poly-γ-(D)-glutamic acid depolymerase that degrades the protective capsule of Bacillus anthracis.

    Science.gov (United States)

    Negus, David; Taylor, Peter W

    2014-03-01

    A mixed culture of Pseudomonas fluorescens and Pusillimonas noertemanii, obtained by soil enrichment, elaborated an enzyme (EnvD) which rapidly hydrolysed poly-γ-d-glutamic acid (PDGA), the constituent of the anti-phagocytic capsule conferring virulence on Bacillus anthracis. The EnvD gene is carried on the P. noertemanii genome but co-culture is required for the elaboration of PDGA depolymerase activity. EnvD showed strong sequence homology to dienelactone hydrolases from other Gram-negative bacteria, possessed no general protease activity but cleaved γ-links in both d- and l-glutamic acid-containing polymers. The stability at 37°C was markedly superior to that of CapD, a γ-glutamyltranspeptidase with PDGA depolymerase activity. Recombinant EnvD was recovered from inclusion bodies in soluble form from an Escherichia coli expression vector and the enzyme stripped the PDGA capsule from the surface of B. anthracis Pasteur within 5 min. We conclude from this in vitro study that rEnvD shows promise as a potential therapeutic for the treatment of anthrax. PMID:24428662

  18. Expression and Purification of the Bacillus anthracis Protective Antigen Receptor-binding Domain

    Institute of Scientific and Technical Information of China (English)

    葛猛; 徐俊杰; 李冰; 董大勇; 宋小红; 郭强; 赵剑; 陈薇

    2004-01-01

    The aim of this study is to express the receptor-binding domain of Bacillus anthracis protective antigen in E. coli. Signal sequence of the outer membrane protein A (OmpA) of E. coli was attached to the 5' end of the gene encoding protective antigen receptor-binding domain (the 4th domain of PA, PALM). The plasmid carrying the fusion gene was then transformed into E. coli and induced to express recombinant PAlM by IFFG. The recombinant protein was purified by chromatography and then identified by N-terrainal sequencing and Western blot. The recombinant protein, about 10% of the total bacterial protein in volume, was secreted to the periplasmic space of the cell. After a purification procedure including ionexchange chromatography and gel filtration, about 10 mg of homogenous recombinant PAD4 was obtained from 1 L culture. Data from N-terminal sequencing suggested that the amino acid sequence of recombinant PAD4 was identical with its natural counterpart. And the result of Western blot showed the recombinant protein could bind with anti-PA serum from rabbit. High level secreted expression of PAD4 was obtained in E. coli. The results reported here are parts of a continuing research to evaluate PAD4 as a potential drug for anthrax therapy or a candidate of new vaccine.

  19. 40 CFR 180.1011 - Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the requirement of a tolerance. 180.1011 Section 180.1011 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL...

  20. Draft Genome Sequence of the Spore-Forming Probiotic Strain Bacillus coagulans Unique IS-2.

    Science.gov (United States)

    Upadrasta, Aditya; Pitta, Swetha; Madempudi, Ratna Sudha

    2016-01-01

    ITALIC! Bacillus coagulansUnique IS-2 is a potential spore-forming probiotic that is commercially available on the market. The draft genome sequence presented here provides deep insight into the beneficial features of this strain for its safe use as a probiotic for various human and animal health applications. PMID:27103709

  1. Draft Genome Sequence of the Spore-Forming Probiotic Strain Bacillus coagulans Unique IS-2

    Science.gov (United States)

    Upadrasta, Aditya; Pitta, Swetha

    2016-01-01

    Bacillus coagulans Unique IS-2 is a potential spore-forming probiotic that is commercially available on the market. The draft genome sequence presented here provides deep insight into the beneficial features of this strain for its safe use as a probiotic for various human and animal health applications. PMID:27103709

  2. Gel-free proteomic identification of the Bacillus subtilis insoluble spore coat protein fraction

    NARCIS (Netherlands)

    Abhyankar, W.; Beek, A.T.; Dekker, H.; Kort, R.; Brul, S.; Koster, C.G. de

    2011-01-01

    Species from the genus Bacillus have the ability to form endospores, dormant cellular forms that are able to survive heat and acid preservation techniques commonly used in the food industry. Resistance characteristics of spores towards various environmental stresses are in part attributed to their c

  3. Bacillus subtilis spores as vaccine adjuvants: further insights into the mechanisms of action.

    Directory of Open Access Journals (Sweden)

    Renata Damásio de Souza

    Full Text Available Bacillus subtilis spores have received growing attention regarding potential biotechnological applications, including the use as probiotics and in vaccine formulations. B. subtilis spores have also been shown to behave as particulate vaccine adjuvants, promoting the increase of antibody responses after co-administration with antigens either admixed or adsorbed on the spore surface. In this study, we further evaluated the immune modulatory properties of B. subtilis spores using a recombinant HIV gag p24 protein as a model antigen. The adjuvant effects of B. subtilis spores were not affected by the genetic background of the mouse lineage and did not induce significant inflammatory or deleterious effects after parenteral administration. Our results demonstrated that co-administration, but not adsorption to the spore surface, enhanced the immunogenicity of that target antigen after subcutaneous administration to BALB/c and C57BL/6 mice. Spores promoted activation of antigen presenting cells as demonstrated by the upregulation of MHC and CD40 molecules and enhanced secretion of pro-inflammatory cytokines by murine dendritic cells. In addition, in vivo studies indicated a direct role of the innate immunity on the immunomodulatory properties of B. subtilis spores, as demonstrated by the lack of adjuvant effects on MyD88 and TLR2 knockout mouse strains.

  4. A Novel FtsZ-Like Protein Is Involved in Replication of the Anthrax Toxin-Encoding pXO1 Plasmid in Bacillus anthracis

    OpenAIRE

    Tinsley, Eowyn; Khan, Saleem A.

    2006-01-01

    Plasmid pXO1 encodes the tripartite anthrax toxin, which is the major virulence factor of Bacillus anthracis. In spite of the important role of pXO1 in anthrax pathogenesis, very little is known about its replication and maintenance in B. anthracis. We cloned a 5-kb region of the pXO1 plasmid into an Escherichia coli vector and showed that this plasmid can replicate when introduced into B. anthracis. Mutational analysis showed that open reading frame 45 (repX) of pXO1 was required for the rep...

  5. Rapid Antimicrobial Susceptibility Testing of Bacillus anthracis, Yersinia pestis, and Burkholderia pseudomallei by Use of Laser Light Scattering Technology.

    Science.gov (United States)

    Bugrysheva, Julia V; Lascols, Christine; Sue, David; Weigel, Linda M

    2016-06-01

    Rapid methods to determine antimicrobial susceptibility would assist in the timely distribution of effective treatment or postexposure prophylaxis in the aftermath of the release of bacterial biothreat agents such as Bacillus anthracis, Yersinia pestis, or Burkholderia pseudomallei Conventional susceptibility tests require 16 to 48 h of incubation, depending on the bacterial species. We evaluated a method that is based on laser light scattering technology that measures cell density in real time. We determined that it has the ability to rapidly differentiate between growth (resistant) and no growth (susceptible) of several bacterial threat agents in the presence of clinically relevant antimicrobials. Results were available in 10 h of incubation. Use of laser scattering technology decreased the time required to determine antimicrobial susceptibility by 50% to 75% for B. anthracis, Y. pestis, and B. pseudomallei compared to conventional methods. PMID:26984973

  6. Expression, purification, crystallization and preliminary X-ray studies of a prolyl-4-hydroxylase protein from Bacillus anthracis

    International Nuclear Information System (INIS)

    Prolyl-4-hydroxylase from B. anthracis has been cloned, expressed and crystallized. A complete MAD data set has been collected to 1.4 Å resolution. Collagen prolyl-4-hydroxylase (C-P4H) catalyzes the hydroxylation of specific proline residues in procollagen, which is an essential step in collagen biosynthesis. A new form of P4H from Bacillus anthracis (anthrax-P4H) that shares many characteristics with the type I C-P4H from human has recently been characterized. The structure of anthrax-P4H could provide important insight into the chemistry of C-P4Hs and into the function of this unique homodimeric P4H. X-ray diffraction data of selenomethionine-labeled anthrax-P4H recombinantly expressed in Escherichia coli have been collected to 1.4 Å resolution

  7. Cloning, expression, and characterization of recombinant nitric oxide synthase-like protein from Bacillus anthracis

    International Nuclear Information System (INIS)

    Nitric oxide synthase (NOS) is amongst a family of evolutionarily conserved enzymes, involved in a multi-turnover process that results in NO as a product. The significant role of NO in various pathological and physiological processes has created an interest in this enzyme from several perspectives. This study describes for the first time, cloning and expression of a NOS-like protein, baNOS, from Bacillus anthracis, a pathogenic bacterium responsible for causing anthrax. baNOS was expressed in Escherichia coli as a soluble and catalytically active enzyme. Homology models generated for baNOS indicated that the key structural features that are involved in the substrate and active site interaction have been highly conserved. Further, the behavior of baNOS in terms of heme-substrate interactions and heme-transitions was studied in detail. The optical perturbation spectra of the heme domain demonstrated that the ligands perturb the heme site in a ligand specific manner. baNOS forms a five-coordinate, high-spin complex with L-arginine analogs and a six-coordinate low-spin complex with inhibitor imidazole. Studies indicated that the binding of L-arginine, N ω-hydroxy-L-arginine, and imidazole produces various spectroscopic species that closely correspond to the equivalent complexes of mammalian NOS. The values of spectral binding constants further corroborated these results. The overall conservation of the key structural features and the correlation of heme-substrate interactions in baNOS and mammalian NOS, thus, point towards an interesting phenomenon of convergent evolution. Importantly, the NO generated by NOS of mammalian macrophages plays a potent role in antimicrobicidal activity. Because of the existence of high structural and behavioral similarity between mammalian NOS and baNOS, we propose that NO produced by B. anthracis may also have a pivotal pathophysiological role in anthrax infection. Therefore, this first report of characterization of a NOS-like protein

  8. Radiosensitization of Bacillus cereus spores in minced meat treated with cinnamaldehyde

    Science.gov (United States)

    Ayari, S.; Dussault, D.; Jerbi, T.; Hamdi, M.; Lacroix, M.

    2012-08-01

    Minced meat beef inoculated with Bacillus cereus spores was treated with four essential oil constituents. The active compounds were sprayed separately onto the meat in order to determine the concentration needed to reduce by 1 log the population of B. cereus spores. Cinnamaldehyde was the best antimicrobial compound selected. It was mixed with ascorbic acid and/or sodium pyrophosphate decahydrate and tested for its efficiency to increase the relative radiation sensitivity (RRS) of B. cereus spores in minced meat packed under air. Results demonstrated that the radiation treatment in presence of the cinnamaldehyde and sodium phosphate decahydrate increased the RRS of B. cereus spores by two fold. The study revealed also that the irradiation of raw beef meat pre-treated with cinnamaldehyde produced an inhibition of the growth of B. cereus count during refrigerated storage. This technology seems to be compatible with industrial meat processing.

  9. Radiosensitization of Bacillus cereus spores in minced meat treated with cinnamaldehyde

    International Nuclear Information System (INIS)

    Minced meat beef inoculated with Bacillus cereus spores was treated with four essential oil constituents. The active compounds were sprayed separately onto the meat in order to determine the concentration needed to reduce by 1 log the population of B. cereus spores. Cinnamaldehyde was the best antimicrobial compound selected. It was mixed with ascorbic acid and/or sodium pyrophosphate decahydrate and tested for its efficiency to increase the relative radiation sensitivity (RRS) of B. cereus spores in minced meat packed under air. Results demonstrated that the radiation treatment in presence of the cinnamaldehyde and sodium phosphate decahydrate increased the RRS of B. cereus spores by two fold. The study revealed also that the irradiation of raw beef meat pre-treated with cinnamaldehyde produced an inhibition of the growth of B. cereus count during refrigerated storage. This technology seems to be compatible with industrial meat processing.

  10. Roles of Small, Acid-Soluble Spore Proteins and Core Water Content in Survival of Bacillus subtilis Spores Exposed to Environmental Solar UV Radiation▿

    OpenAIRE

    Moeller, Ralf; Setlow, Peter; Reitz, Günther; Nicholson, Wayne L.

    2009-01-01

    Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water conte...

  11. Comparative analysis of two-component signal transduction systems of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis

    NARCIS (Netherlands)

    Been, M.W.H.J. de; Francke, C.; Moezelaar, R.; Abee, T.; Siezen, R.J.

    2006-01-01

    Members of the Bacillus cereus group are ubiquitously present in the environment and can adapt to a wide range of environmental fluctuations. In bacteria, these adaptive responses are generally mediated by two-component signal transduction systems (TCSs), which consist of a histidine kinase (HK) and

  12. Investigating the thermodynamic stability of Bacillus subtilis spore-uranium(VI) adsorption though surface complexation modeling

    Science.gov (United States)

    Harrold, Z.; Hertel, M.; Gorman-Lewis, D.

    2012-12-01

    Dissolved uranium speciation, mobility, and remediation are increasingly important topics given continued and potential uranium (U) release from mining operations and nuclear waste. Vegetative bacterial cell surfaces are known to adsorb uranium and may influence uranium speciation in the environment. Previous investigations regarding U(VI) adsorption to bacterial spores, a differentiated and dormant cell type with a tough proteinaceous coat, include U adsorption affinity and XAFS data. We investigated the thermodynamic stability of aerobic, pH dependent uranium adsorption to bacterial spore surfaces using purified Bacillus subtilis spores in solution with 5ppm uranium. Adsorption reversibility and kinetic experiments indicate that uranium does not precipitate over the duration of the experiments and equilibrium is reached within 20 minutes. Uranium-spore adsorption edges exhibited adsorption at all pH measured between 2 and 10. Maximum adsorption was achieved around pH 7 and decreased as pH increased above 7. We used surface complexation modeling (SCM) to quantify uranium adsorption based on balanced chemical equations and derive thermodynamic stability constants for discrete uranium-spore adsorption reactions. Site specific thermodynamic stability constants provide insight on interactions occurring between aqueous uranium species and spore surface ligands. The uranium adsorption data and SCM parameters described herein, also provide a basis for predicting the influence of bacterial spores on uranium speciation in natural systems and investigating their potential as biosorption agents in engineered systems.

  13. Effect of ethanol perturbation on viscosity and permeability of an inner membrane in Bacillus subtilis spores.

    Science.gov (United States)

    Loison, Pauline; Gervais, Patrick; Perrier-Cornet, Jean-Marie; Kuimova, Marina K

    2016-09-01

    In this work, we investigated how a combination of ethanol and high temperature (70°C), affect the properties of the inner membrane of Bacillus subtilis spores. We observed membrane permeabilization for ethanol concentrations ≥50%, as indicated by the staining of the spores' DNA by the cell impermeable dye Propidium Iodide. The loss of membrane integrity was also confirmed by a decrease in the peak corresponding to dipicolinic acid using infrared spectroscopy. Finally, the spore refractivity (as measured by phase contrast microscopy) was decreased after the ethanol-heat treatment, suggesting a partial rehydration of the protoplast. Previously we have used fluorescent lifetime imaging microscopy (FLIM) combined with the fluorescent molecular rotor Bodipy-C12 to study the microscopic viscosity in the inner membrane of B. subtilis spores, and showed that at normal conditions it is characterized by a very high viscosity. Here we demonstrate that the ethanol/high temperature treatment led to a decrease of the viscosity of the inner membrane, from 1000cP to 860cP for wild type spores at 50% of ethanol. Altogether, our present work confirms the deleterious effect of ethanol on the structure of B. subtilis spores, as well as demonstrates the ability of FLIM - Bodipy-C12 to measure changes in the microviscosity of the spores upon perturbation. PMID:27267704

  14. The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids.

    Directory of Open Access Journals (Sweden)

    Silke R Klee

    Full Text Available Anthrax is a fatal disease caused by strains of Bacillus anthracis. Members of this monophyletic species are non motile and are all characterized by the presence of four prophages and a nonsense mutation in the plcR regulator gene. Here we report the complete genome sequence of a Bacillus strain isolated from a chimpanzee that had died with clinical symptoms of anthrax. Unlike classic B. anthracis, this strain was motile and lacked the four prohages and the nonsense mutation. Four replicons were identified, a chromosome and three plasmids. Comparative genome analysis revealed that the chromosome resembles those of non-B. anthracis members of the Bacillus cereus group, whereas two plasmids were identical to the anthrax virulence plasmids pXO1 and pXO2. The function of the newly discovered third plasmid with a length of 14 kbp is unknown. A detailed comparison of genomic loci encoding key features confirmed a higher similarity to B. thuringiensis serovar konkukian strain 97-27 and B. cereus E33L than to B. anthracis strains. For the first time we describe the sequence of an anthrax causing bacterium possessing both anthrax plasmids that apparently does not belong to the monophyletic group of all so far known B. anthracis strains and that differs in important diagnostic features. The data suggest that this bacterium has evolved from a B. cereus strain independently from the classic B. anthracis strains and established a B. anthracis lifestyle. Therefore we suggest to designate this isolate as "B. cereus variety (var. anthracis".

  15. Rapid focused sequencing: a multiplexed assay for simultaneous detection and strain typing of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Rosemary S Turingan

    Full Text Available BACKGROUND: The intentional release of Bacillus anthracis in the United States in 2001 has heightened concern about the use of pathogenic microorganisms in bioterrorism attacks. Many of the deadliest bacteria, including the Class A Select Agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis, are highly infectious via the pulmonary route when released in aerosolized form. Hence, rapid, sensitive, and reliable methods for detection of these biothreats and characterization of their potential impact on the exposed population are of critical importance to initiate and support rapid military, public health, and clinical responses. METHODOLOGY/PRINCIPAL FINDINGS: We have developed microfluidic multiplexed PCR and sequencing assays based on the simultaneous interrogation of three pathogens per assay and ten loci per pathogen. Microfluidic separation of amplified fluorescently labeled fragments generated characteristic electrophoretic signatures for identification of each agent. The three sets of primers allowed significant strain typing and discrimination from non-pathogenic closely-related species and environmental background strains based on amplicon sizes alone. Furthermore, sequencing of the 10 amplicons per pathogen, termed "Rapid Focused Sequencing," allowed an even greater degree of strain discrimination and, in some cases, can be used to determine virulence. Both amplification and sequencing assays were performed in microfluidic biochips developed for fast thermal cycling and requiring 7 µL per reaction. The 30-plex sequencing assay resulted in genotypic resolution of 84 representative strains belonging to each of the three biothreat species. CONCLUSIONS/SIGNIFICANCE: The microfluidic multiplexed assays allowed identification and strain differentiation of the biothreat agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis and clear discrimination from closely-related species and several environmental

  16. Understanding of the importance of the spore coat structure and pigmentation in the Bacillus subtilis spore resistance to low-pressure plasma sterilization

    Science.gov (United States)

    Raguse, Marina; Fiebrandt, Marcel; Denis, Benjamin; Stapelmann, Katharina; Eichenberger, Patrick; Driks, Adam; Eaton, Peter; Awakowicz, Peter; Moeller, Ralf

    2016-07-01

    Low-pressure plasmas have been evaluated for their potential in biomedical and defense purposes. The sterilizing effect of plasma can be attributed to several active agents, including (V)UV radiation, charged particles, radical species, neutral and excited atoms and molecules, and the electric field. Spores of Bacillus subtilis were used as a bioindicator and a genetic model system to study the sporicidal effects of low-pressure plasma decontamination. Wild-type spores, spores lacking the major protective coat layers (inner, outer, and crust), pigmentation-deficient spores or spore impaired in encasement (a late step in coat assembly) were systematically tested for their resistance to low-pressure argon, hydrogen, and oxygen plasmas with and without admixtures. We demonstrate that low-pressure plasma discharges of argon and oxygen discharges cause significant physical damage to spore surface structures as visualized by atomic force microscopy. Spore resistance to low-pressure plasma was primarily dependent on the presence of the inner, and outer spore coat layers as well as spore encasement, with minor or less importance of the crust and spore pigmentation, whereas spore inactivation itself was strongly influenced by the gas composition and operational settings.

  17. Characterization of heavy ion-induced damage in Bacillus subtilis spores and their global transcriptional response during spore germination. First results

    International Nuclear Information System (INIS)

    The proposed research project is aimed to provide new insights on the spore resistance to heavy ions and the effects on different linear energy transfer (LET)-charged HZE particles. With this project, spores of Bacillus subtilis 168, (wild-type and several selected DNA repair-deficient strains) were used for studying the microbial response heavy ions irradiation. DNA repair and mutation induction events were investigated be the determination of the spore survivability, behavior to selected antibiotics, spore-specific protection mechanisms after irradiation. The activation of DNA repair genes were detected during germination by using DNA microarrays. For studying the DNA repair of treated spores during germination an integrated systems approach was used, id est (i.e.) all experiments were performed in a combination of various biochemical and molecular biological methods to study the spore resistance to heavy ion bombardment. (author)

  18. Activated protein C ameliorates Bacillus anthracis lethal toxin-induced lethal pathogenesis in rats

    Directory of Open Access Journals (Sweden)

    Kau Jyh-Hwa

    2012-11-01

    Full Text Available Abstract Background Lethal toxin (LT is a major virulence factor of Bacillus anthracis. Sprague Dawley rats manifest pronounced lung edema and shock after LT treatments, resulting in high mortality. The heart failure that is induced by LT has been suggested to be a principal mechanism of lung edema and mortality in rodents. Since LT-induced death occurs more rapidly in rats than in mice, suggesting that other mechanisms in addition to the heart dysfunction may be contributed to the fast progression of LT-induced pathogenesis in rats. Coagulopathy may contribute to circulatory failure and lung injury. However, the effect of LT on coagulation-induced lung dysfunction is unclear. Methods To investigate the involvement of coagulopathy in LT-mediated pathogenesis, the mortality, lung histology and coagulant levels of LT-treated rats were examined. The effects of activated protein C (aPC on LT-mediated pathogenesis were also evaluated. Results Fibrin depositions were detected in the lungs of LT-treated rats, indicating that coagulation was activated. Increased levels of plasma D-dimer and thrombomodulin, and the ameliorative effect of aPC further suggested that the activation of coagulation-fibrinolysis pathways plays a role in LT-mediated pathogenesis in rats. Reduced mortality was associated with decreased plasma levels of D-dimer and thrombomodulin following aPC treatments in rats with LT-mediated pathogenesis. Conclusions These findings suggest that the activation of coagulation in lung tissue contributes to mortality in LT-mediated pathogenesis in rats. In addition, anticoagulant aPC may help to develop a feasible therapeutic strategy.

  19. Bacillus anthracis Prolyl 4-Hydroxylase Modifies Collagen-like Substrates in Asymmetric Patterns.

    Science.gov (United States)

    Schnicker, Nicholas J; Dey, Mishtu

    2016-06-17

    Proline hydroxylation is the most prevalent post-translational modification in collagen. The resulting product trans-4-hydroxyproline (Hyp) is of critical importance for the stability and thus function of collagen, with defects leading to several diseases. Prolyl 4-hydroxylases (P4Hs) are mononuclear non-heme iron α-ketoglutarate (αKG)-dependent dioxygenases that catalyze Hyp formation. Although animal and plant P4Hs target peptidyl proline, prokaryotes have been known to use free l-proline as a precursor to form Hyp. The P4H from Bacillus anthracis (BaP4H) has been postulated to act on peptidyl proline in collagen peptides, making it unusual within the bacterial clade, but its true physiological substrate remains enigmatic. Here we use mass spectrometry, fluorescence binding, x-ray crystallography, and docking experiments to confirm that BaP4H recognizes and acts on peptidyl substrates but not free l-proline, using elements characteristic of an Fe(II)/αKG-dependent dioxygenases. We further show that BaP4H can hydroxylate unique peptidyl proline sites in collagen-derived peptides with asymmetric hydroxylation patterns. The cofactor-bound crystal structures of BaP4H reveal active site conformational changes that define open and closed forms and mimic "ready" and "product-released" states of the enzyme in the catalytic cycle. These results help to clarify the role of BaP4H as well as provide broader insights into human collagen P4H and proteins with poly-l-proline type II helices. PMID:27129244

  20. The ecology of anthrax spores: tough but not invincible.

    OpenAIRE

    Dragon, D C; Rennie, R P

    1995-01-01

    Bacillus anthracis is the causative agent of anthrax, a serious and often fatal disease of wild and domestic animals. Central to the persistence of anthrax in an area is the ability of B. anthracis to form long-lasting, highly resistant spores. Understanding the ecology of anthrax spores is essential if one hopes to control epidemics. Studies on the ecology of anthrax have found a correlation between the disease and specific soil factors, such as alkaline pH, high moisture, and high organic c...

  1. CotC-CotU Heterodimerization during Assembly of the Bacillus subtilis Spore Coat▿

    OpenAIRE

    Isticato, Rachele; Pelosi, Assunta; Zilhão, Rita, 1959-; Baccigalupi, Loredana; Henriques, Adriano O.; De Felice, Maurilio; Ricca, Ezio

    2007-01-01

    We report evidence that CotC and CotU, two previously identified components of the Bacillus subtilis spore coat, are produced concurrently in the mother cell chamber of the sporulating cell under the control of σK and GerE and immediately assembled around the forming spore. In the coat, the two proteins interact to form a coat component of 23 kDa. The CotU-CotC interaction was not detected in two heterologous hosts, suggesting that it occurs only in B. subtilis. Monomeric forms of both CotU a...

  2. The action of ionizing radiation on Bacillus subtilis spores in a dry and wet system

    International Nuclear Information System (INIS)

    The action of water in combination with ionizing radiation was examined using different strains of Bacillus subtilis spores. The parameter of the experiments was a modification of water content; maximal degree of desiccation was achieved by high vacuum. The Fricke-method for X-ray dosimetry was compared to the ionizing-chamber method. In the dry state spores of both wild and mutant strain appeared to be more sensitive than in the wet state. This contradicts to the opinion of dose enhancement by the indirect action of water. (orig.)

  3. Identification of Novel Raft Marker Protein, FlotP in Bacillus anthracis.

    Science.gov (United States)

    Somani, Vikas K; Aggarwal, Somya; Singh, Damini; Prasad, Tulika; Bhatnagar, Rakesh

    2016-01-01

    Lipid rafts are dynamic, nanoscale assemblies of specific proteins and lipids, distributed heterogeneously on eukaryotic membrane. Flotillin-1, a conserved eukaryotic raft marker protein (RMP) harbor SPFH (Stomatin, Prohibitin, Flotillin, and HflK/C) and oligomerization domains to regulate various cellular processes through its interactions with other signaling or transport proteins. Rafts were thought to be absent in prokaryotes hitherto, but recent report of its presence and significance in physiology of Bacillus subtilis prompted us to investigate the same in pathogenic bacteria (PB) also. In prokaryotes, proteins of SPFH2a subfamily show highest identity to SPFH domain of Flotillin-1. Moreover, bacterial genome organization revealed that Flotillin homolog harboring SPFH2a domain exists in an operon with an upstream gene containing NFeD domain. Here, presence of RMP in PB was initially investigated in silico by analyzing the presence of SPFH2a, oligomerization domains in the concerned gene and NfeD domain in the adjacent upstream gene. After investigating 300 PB, four were found to harbor RMP. Among them, domains of Bas0525 (FlotP) of Bacillus anthracis (BA) showed highest identity with characteristic domains of RMP. Considering the global threat of BA as the bioterror agent, it was selected as a model for further in vitro characterization of rafts in PB. In silico and in vitro analysis showed significant similarity of FlotP with numerous attributes of Flotillin-1. Its punctate distribution on membrane with exclusive localization in detergent resistant membrane fraction; strongly favors presence of raft with RMP FlotP in BA. Furthermore, significant effect of Zaragozic acid (ZA), a raft associated lipid biosynthesis inhibitor, on several patho-physiological attributes of BA such as growth, morphology, membrane rigidity etc., were also observed. Specifically, a considerable decrease in membrane rigidity, strongly recommended presence of an unknown raft associated

  4. Identification of novel raft marker protein, FlotP in Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Vikas Kumar Somani

    2016-02-01

    Full Text Available Lipid rafts are dynamic, nanoscale assemblies of specific proteins and lipids, distributed heterogeneously on eukaryotic membrane. Flotillin-1, a conserved eukaryotic raft marker protein (RMP harbor SPFH (Stomatin, Prohibitin, Flotillin, and HflK/C and oligomerization domains to regulate various cellular processes through its interactions with other signaling or transport proteins. Rafts were thought to be absent in prokaryotes hitherto, but recent report of its presence and significance in physiology of Bacillus subtilis prompted us to investigate the same in pathogenic bacteria (PB also. In prokaryotes, proteins of SPFH2a subfamily show highest identity to SPFH domain of Flotillin-1. Moreover, bacterial genome organization revealed that Flotillin homologue harbouring SPFH2a domain exists in an operon with an upstream gene containing NFeD domain. Here, presence of RMP in PB was initially investigated in silico by analyzing the presence of SPFH2a, oligomerization domains in the concerned gene and NfeD domain in the adjacent upstream gene. After investigating 300 PB, 4 were found to harbor RMP. Among them, domains of Bas0525 (FlotP of Bacillus anthracis (BA showed highest identity with characteristic domains of RMP. Considering the global threat of BA as the bioterror agent, it was selected as a model for further in vitro characterization of rafts in PB. In silico and in vitro analysis showed significant similarity of FlotP with numerous attributes of Flotillin-1. Its punctate distribution on membrane with exclusive localization in detergent resistant membrane fraction; strongly favors presence of raft with RMP FlotP in BA. Furthermore, significant effect of Zaragozic acid (ZA, a raft associated lipid biosynthesis inhibitor, on several patho-physiological attributes of BA such as growth, morphology, membrane rigidity etc., were also observed. Specifically, a considerable decrease in membrane rigidity, strongly recommended presence of an unknown

  5. Anthrolysin O and fermentation products mediate the toxicity of Bacillus anthracis to lung epithelial cells under microaerobic conditions.

    Science.gov (United States)

    Popova, Taissia G; Millis, Bryan; Chung, Myung-Chul; Bailey, Charles; Popov, Serguei G

    2011-02-01

    Bacillus anthracis generates virulence factors such as lethal and edema toxins, capsule, and hemolytic proteins under conditions of reduced oxygenation. Here, we report on the acute cytotoxicity of culture supernatants (Sups) of six nonencapsulated B. anthracis strains grown till the stationary phase under static microaerobic conditions. Human small airway epithelial, umbilical vein endothelial, Caco-2, and Hep-G2 cells were found to be susceptible. Sups displayed a reduction of pH to 5.3-5.5, indicating the onset of acid anaerobic fermentation; however, low pH itself was not a major factor of toxicity. The pore-forming hemolysin, anthrolysin O (ALO), contributed to the toxicity in a concentration-dependent manner. Its effect was found to be synergistic with a metabolic product of B. anthracis, succinic acid. Cells exposed to Sups demonstrated cytoplasmic membrane blebbing, increased permeability, loss of ATP, mitochondrial membrane potential collapse, and arrest of cell respiration. The toxicity was reduced by inhibition of ALO by cholesterol, decomposition of reactive oxygen species, and inhibition of mitochondrial succinate dehydrogenase. Cell death appears to be caused by an acute primary membrane permeabilization by ALO, followed by a burst of reactive radicals from the mitochondria fuelled by the succinate, which is generated by bacteria in the hypoxic environment. This mechanism of metabolic toxicity is relevant to the late-stage conditions of hypoxia and acidosis found in anthrax patients and might operate at anatomical locations of the host deprived from oxygen supply. PMID:20946354

  6. Immunoassay for Capsular Antigen of Bacillus anthracis Enables Rapid Diagnosis in a Rabbit Model of Inhalational Anthrax.

    Directory of Open Access Journals (Sweden)

    Marcellene A Gates-Hollingsworth

    Full Text Available Inhalational anthrax is a serious biothreat. Effective antibiotic treatment of inhalational anthrax requires early diagnosis; the further the disease has progressed, the less the likelihood for cure. Current means for diagnosis such as blood culture require several days to a result and require advanced laboratory infrastructure. An alternative approach to diagnosis is detection of a Bacillus anthracis antigen that is shed into blood and can be detected by rapid immunoassay. The goal of the study was to evaluate detection of poly-γ-D-glutamic acid (PGA, the capsular antigen of B. anthracis, as a biomarker surrogate for blood culture in a rabbit model of inhalational anthrax. The mean time to a positive blood culture was 26 ± 5.7 h (mean ± standard deviation, whereas the mean time to a positive ELISA was 22 ± 4.2 h; P = 0.005 in comparison with blood culture. A lateral flow immunoassay was constructed for detection of PGA in plasma at concentrations of less than 1 ng PGA/ml. Use of the lateral flow immunoassay for detection of PGA in the rabbit model found that antigen was detected somewhat earlier than the earliest time point at which the blood culture became positive. The low cost, ease of use, and rapid time to result of the lateral flow immunoassay format make an immunoassay for PGA a viable surrogate for blood culture for detection of infection in individuals who have a likelihood of exposure to B. anthracis.

  7. Immunoassay for Capsular Antigen of Bacillus anthracis Enables Rapid Diagnosis in a Rabbit Model of Inhalational Anthrax.

    Science.gov (United States)

    Gates-Hollingsworth, Marcellene A; Perry, Mark R; Chen, Hongjing; Needham, James; Houghton, Raymond L; Raychaudhuri, Syamal; Hubbard, Mark A; Kozel, Thomas R

    2015-01-01

    Inhalational anthrax is a serious biothreat. Effective antibiotic treatment of inhalational anthrax requires early diagnosis; the further the disease has progressed, the less the likelihood for cure. Current means for diagnosis such as blood culture require several days to a result and require advanced laboratory infrastructure. An alternative approach to diagnosis is detection of a Bacillus anthracis antigen that is shed into blood and can be detected by rapid immunoassay. The goal of the study was to evaluate detection of poly-γ-D-glutamic acid (PGA), the capsular antigen of B. anthracis, as a biomarker surrogate for blood culture in a rabbit model of inhalational anthrax. The mean time to a positive blood culture was 26 ± 5.7 h (mean ± standard deviation), whereas the mean time to a positive ELISA was 22 ± 4.2 h; P = 0.005 in comparison with blood culture. A lateral flow immunoassay was constructed for detection of PGA in plasma at concentrations of less than 1 ng PGA/ml. Use of the lateral flow immunoassay for detection of PGA in the rabbit model found that antigen was detected somewhat earlier than the earliest time point at which the blood culture became positive. The low cost, ease of use, and rapid time to result of the lateral flow immunoassay format make an immunoassay for PGA a viable surrogate for blood culture for detection of infection in individuals who have a likelihood of exposure to B. anthracis. PMID:25942409

  8. Germination and inactivation of Bacillus subtilis spores induced by moderate hydrostatic pressure.

    Science.gov (United States)

    Nguyen Thi Minh, Hue; Dantigny, Philippe; Perrier-Cornet, Jean-Marie; Gervais, Patrick

    2010-12-01

    In this study, we investigated the mechanisms of spore inactivation by high pressure at moderate temperatures to optimize the sterilization efficiency of high-pressure treatments. Bacillus subtilis spores were first subjected to different pressure treatments ranging from 90 to 550 MPa at 40°C, with holding times from 10 min to 4 h. These treatments alone caused slight inactivation, which was related to the pressure-induced germination of the spores. After these pressures treatments, the sensitivity of these processed spores to heat (80°C/10 min) or to high pressure (350 MPa/40°C/10 min) was tested to determine the pressure-induced germination rate and the advancement of the spores in the germination process. The subsequent heat or pressure treatments were applied immediately after decompression from the first pressure treatment or after a holding time at atmospheric pressure. As already known, the spore germination is more efficient at low pressure level than at high pressure level. Our results show that this low germination efficiency at high pressure seemed not to be related either to a lower induction or a difference in the induction mechanisms but rather to an inhibition of enzyme activities which are involved in germination process. In fact, high pressure was necessary and very efficient in inducing spore germination. However, it seemed to slow the enzymatic digestion of the cortex, which is required for germinated spores to be inactivated by pressure. Although these results indicate that high-pressure treatments are more efficient when the two treatments are combined, a small spore population still remained dormant and was not inactivated with any holding time or pressure level. PMID:20589839

  9. Genomic analysis of three African strains of Bacillus anthracis demonstrates that they are part of the clonal expansion of an exclusively pathogenic bacterium.

    Science.gov (United States)

    Rouli, L; MBengue, M; Robert, C; Ndiaye, M; La Scola, B; Raoult, D

    2014-11-01

    Bacillus anthracis is the causative agent of anthrax and is classified as a 'Category A' biological weapon. Six complete genomes of B. anthracis (A0248, Ames, Ames Ancestor, CDC684, H0491, and Sterne) are currently available. In this report, we add three African strain genomes: Sen2Col2, Sen3 and Gmb1. To study the pan-genome of B. anthracis, we used bioinformatics tools, such as Cluster of Orthologous Groups, and performed phylogenetic analysis. We found that the three African strains contained the pX01 and pX02 plasmids, the nonsense mutation in the plcR gene and the four known prophages. These strains are most similar to the CDC684 strain and belong to the A cluster. We estimated that the B. anthracis pan-genome has 2893 core genes (99% of the genome size) and 85 accessory genes. We validated the hypothesis that B. anthracis has a closed pan-genome and found that the three African strains carry the two plasmids associated with bacterial virulence. The pan-genome nature of B. anthracis confirms its lack of exchange (similar to Clostridium tetani) and supports its exclusively pathogenic role, despite its survival in the environment. Moreover, thanks to the study of the core content single nucleotide polymorphisms, we can see that our three African strains diverged very recently from the other B. anthracis strains. PMID:25566394

  10. Genomic analysis of three African strains of Bacillus anthracis demonstrates that they are part of the clonal expansion of an exclusively pathogenic bacterium

    Directory of Open Access Journals (Sweden)

    L. Rouli

    2014-11-01

    Full Text Available Bacillus anthracis is the causative agent of anthrax and is classified as a ‘Category A’ biological weapon. Six complete genomes of B. anthracis (A0248, Ames, Ames Ancestor, CDC684, H0491, and Sterne are currently available. In this report, we add three African strain genomes: Sen2Col2, Sen3 and Gmb1. To study the pan‐genome of B. anthracis, we used bioinformatics tools, such as Cluster of Orthologous Groups, and performed phylogenetic analysis. We found that the three African strains contained the pX01 and pX02 plasmids, the nonsense mutation in the plcR gene and the four known prophages. These strains are most similar to the CDC684 strain and belong to the A cluster. We estimated that the B. anthracis pan‐genome has 2893 core genes (99% of the genome size and 85 accessory genes. We validated the hypothesis that B. anthracis has a closed pan‐genome and found that the three African strains carry the two plasmids associated with bacterial virulence. The pan‐genome nature of B. anthracis confirms its lack of exchange (similar to Clostridium tetani and supports its exclusively pathogenic role, despite its survival in the environment. Moreover, thanks to the study of the core content single nucleotide polymorphisms, we can see that our three African strains diverged very recently from the other B. anthracis strains.

  11. Ultrasensitive electrochemical immunoassay for surface array protein, a Bacillus anthracis biomarker using Au-Pd nanocrystals loaded on boron-nitride nanosheets as catalytic labels.

    Science.gov (United States)

    Sharma, Mukesh Kumar; Narayanan, J; Pardasani, Deepak; Srivastava, Divesh N; Upadhyay, Sanjay; Goel, Ajay Kumar

    2016-06-15

    Bacillus anthracis, the causative agent of anthrax, is a well known bioterrorism agent. The determination of surface array protein (Sap), a unique biomarker for B. anthracis can offer an opportunity for specific detection of B. anthracis in culture broth. In this study, we designed a new catalytic bionanolabel and fabricated a novel electrochemical immunosensor for ultrasensitive detection of B. anthracis Sap antigen. Bimetallic gold-palladium nanoparticles were in-situ grown on poly (diallyldimethylammonium chloride) functionalized boron nitride nanosheets (Au-Pd NPs@BNNSs) and conjugated with the mouse anti-B. anthracis Sap antibodies (Ab2); named Au-Pd NPs@BNNSs/Ab2. The resulting Au-Pd NPs@BNNSs/Ab2 bionanolabel demonstrated high catalytic activity towards reduction of 4-nitrophenol. The sensitivity of the electrochemical immunosensor along with redox cycling of 4-aminophenol to 4-quinoneimine was improved to a great extent. Under optimal conditions, the proposed immunosensor exhibited a wide working range from 5 pg/mL to 100 ng/mL with a minimum detection limit of 1 pg/mL B. anthracis Sap antigen. The practical applicability of the immunosensor was demonstrated by specific detection of Sap secreted by the B. anthracis in culture broth just after 1h of growth. These labels open a new direction for the ultrasensitive detection of different biological warfare agents and their markers in different matrices. PMID:26874112

  12. Dry heat exposures of surface exposed and embedded Bacillus spores

    Science.gov (United States)

    Schubert, Wayne

    Dry heat microbial reduction (DHMR) is the primary technique used to reduce the microbial load of spacecraft and component parts. Often, manufacturing procedures require heating flight hardware to high temperatures for purposes other than planetary protection DHMR. The existing specifications, however, do not allow for additional planetary protection bioburden reduction credit if the hardware is exposed without controlled relative humidity. The intent of this study was to provide adequate data on the DHMR technique to support modification of four aspects of current requirements; expansion of acceptable time and temperature combinations used for spacecraft dry heat microbial reduction processes above 125° C, determining the effect that humidity has on spore lethality as a function of temperature, understanding the lethality for spores with exceptionally high thermal resistance and to investigate the extended exposure requirement for materials that might contain embedded microorganisms. Spores from two bacterial species were tested, B. atrophaeus ATCC 9372 and B. sp. ATCC 29669, under three conditions encompassing 5 temperature points. Embedded experiments utilized a silicone rubber polymer that is commonly used on robotic spacecraft, and surface exposed experiments were performed under both ambient and vacuum-controlled humidity conditions. The results obtained support the use of DHMR protocols that extend the maximum temperature range from 125° C to 170° C, with either controlled or ambient humidity. If implemented, this will give projects bioburden reduction credit for shorter treatments at extended temperatures, and allow spacecraft to be processed in more readily available and less expensive facilities that do not have humidity control, with significant cost and schedule benefits. The study also demonstrated that the required heating time for materials presumed to have embedded bioburden is conservative.

  13. Resistance of Bacillus amyloliquefaciens spores to melt extrusion process conditions

    OpenAIRE

    Ciera, Lucy Wanjiru; Beladjal, Lynda; Almeras, Xavier; Gheysens, Tom; Nierstrasz, Vincent; Van Langenhove, Lieva; Mertens, Johan

    2014-01-01

    With the increasing demand for functionalised textile materials, industry is focusing on research that will add novel properties to textiles. Bioactive compounds and their benefits have been and are still considered as a possible source of unique functionalities to be explored. However, incorporating bioactive compounds into textiles and their resistance to textile process parameters has not yet been studied. In this study, we developed a system to study the resistance of Bacillus amyloliquef...

  14. Crystallization and preliminary X-ray characterization of arylamine N-acetyltransferase C (BanatC) from Bacillus anthracis

    International Nuclear Information System (INIS)

    Bacillus anthracis arylamine N-acetyltransferase C (BanatC) is an enzyme that metabolizes the drug sulfamethoxazole. Crystals of the purified enzyme that diffract at 1.95 Å are reported. The arylamine N-acetyltransferase (NAT) enzymes are xenobiotic metabolizing enzymes that have been found in a large range of eukaryotes and prokaryotes. These enzymes catalyse the acetylation of arylamine drugs and/or pollutants. Recently, a Bacillus anthracis NAT isoform (BanatC) has been cloned and shown to acetylate the sulfonamide antimicrobial sulfamethoxazole (SMX). Subsequently, it was shown that BanatC contributes to the resistance of this bacterium to SMX. Here, the crystallization and the X-ray characterization of BanatC (Y38F mutant) are reported. The crystals belong to the tetragonal space group P41212 or P43212, with unit-cell parameters a = b = 53.70, c = 172.40 Å, and diffract to 1.95 Å resolution on a synchrotron source

  15. Loss of σI affects heat-shock response and virulence gene expression in Bacillus anthracis.

    Science.gov (United States)

    Kim, Jenny Gi Yae; Wilson, Adam C

    2016-02-01

    The pathogenesis of Bacillus anthracis depends on several virulence factors, including the anthrax toxin. Loss of the alternative sigma factor σI results in a coordinate decrease in expression of all three toxin subunits. Our observations suggest that loss of σI alters the activity of the master virulence regulator AtxA, but atxA transcription is unaffected by loss of σI. σI-containing RNA polymerase does not appear to directly transcribe either atxA or the toxin gene pagA. As in Bacillus subtilis, loss of σI in B. anthracis results in increased sensitivity to heat shock and transcription of sigI, encoding σI, is induced by elevated temperature. Encoded immediately downstream of and part of a bicistronic message with sigI is an anti-sigma factor, RsgI, which controls σI activity. Loss of RsgI has no direct effect on virulence gene expression. sigI appears to be expressed from both the σI and σA promoters, and transcription from the σA promoter is likely more significant to virulence regulation. We propose a model in which σI can be induced in response to heat shock, whilst, independently, σI is produced under non-heat-shock, toxin-inducing conditions to indirectly regulate virulence gene expression. PMID:26744224

  16. Structural Basis for Latency and Function of Immune Inhibitor A Metallopeptidase, a Modulator of the Bacillus anthracis Secretome.

    Science.gov (United States)

    Arolas, Joan L; Goulas, Theodoros; Pomerantsev, Andrei P; Leppla, Stephen H; Gomis-Rüth, F Xavier

    2016-01-01

    Immune inhibitor A(InhA)-type metallopeptidases are potential virulence factors secreted by members of the Bacillus cereus group. Two paralogs from anthrax-causing Bacillus anthracis (BaInhA1 and BaInhA2) were shown to degrade host tissue proteins with broad substrate specificity. Analysis of their activation mechanism and the crystal structure of a zymogenic BaInhA2 variant revealed a ∼750-residue four-domain structure featuring a pro-peptide, a catalytic domain, a domain reminiscent of viral envelope glycoproteins, and a MAM domain grafted into the latter. This domain, previously found only in eukaryotes, is required for proper protein expression in B. anthracis and evinces certain flexibility. Latency is uniquely modulated by the N-terminal segment of the pro-peptide, which binds the catalytic zinc through its α-amino group and occupies the primed side of the active-site cleft. The present results further our understanding of the modus operandi of an anthrax secretome regulator. PMID:26745529

  17. Bacillus anthracis lethal toxin disrupts TCR signaling in CD1d-restricted NKT cells leading to functional anergy.

    Directory of Open Access Journals (Sweden)

    Sunil K Joshi

    2009-09-01

    Full Text Available Exogenous CD1d-binding glycolipid (alpha-Galactosylceramide, alpha-GC stimulates TCR signaling and activation of type-1 natural killer-like T (NKT cells. Activated NKT cells play a central role in the regulation of adaptive and protective immune responses against pathogens and tumors. In the present study, we tested the effect of Bacillus anthracis lethal toxin (LT on NKT cells both in vivo and in vitro. LT is a binary toxin known to suppress host immune responses during anthrax disease and intoxicates cells by protective antigen (PA-mediated intracellular delivery of lethal factor (LF, a potent metalloprotease. We observed that NKT cells expressed anthrax toxin receptors (CMG-2 and TEM-8 and bound more PA than other immune cell types. A sub-lethal dose of LT administered in vivo in C57BL/6 mice decreased expression of the activation receptor NKG2D by NKT cells but not by NK cells. The in vivo administration of LT led to decreased TCR-induced cytokine secretion but did not affect TCR expression. Further analysis revealed LT-dependent inhibition of TCR-stimulated MAP kinase signaling in NKT cells attributable to LT cleavage of the MAP kinase kinase MEK-2. We propose that Bacillus anthracis-derived LT causes a novel form of functional anergy in NKT cells and therefore has potential for contributing to immune evasion by the pathogen.

  18. Lactoferrin and transferrin fragments react with nitrite to form an inhibitor of Bacillus cereus spore outgrowth.

    OpenAIRE

    Custer, M C; Hansen, J N

    1983-01-01

    Tryptone is a pancreatic digest of casein which contains a heterogeneous mixture of substances that react with nitrite when heated in the presence of sodium thioglycolate to form a bacteriostatic agent which inhibits outgrowth of Bacillus cereus T spores. The substances which are precursors to the bacteriostatic agent can be fractionated on the basis of molecular size and charge and have properties which indicate that they are fragments of lactoferrin, an iron-binding glycoprotein. The bacter...

  19. Modeling the inactivation of Bacillus subtilis spores by ethylene oxide processing

    OpenAIRE

    Mendes, G. C.; Brandão, T. R. S.; Silva, C. L. M.

    2011-01-01

    Ethylene oxide is currently a dominant agent in medical device sterilization. This work intends to study the main effects and interactions of temperature, ethylene oxide concentration, and relative humidity on commercial spore strips of Bacillus subtilis, var. niger (ATCC 9372) inactivation, the most common microorganism used in controlling the efficacy of the process. Experiments were carried out using a full factorial experimental design at two levels (23 factorial design). Limit targ...

  20. Modelling the inactivation of Bacillus subtilis spores by ethylene oxide processing

    OpenAIRE

    Mendes, G. C.; Brandão, T. R. S.; Silva, C. L. M.

    2009-01-01

    Ethylene oxide is currently a dominant agent in medical devices sterilization. This work intends to study the main effects and interactions of temperature (T), ethylene oxide (EO) concentration and relative humidity (RH) on commercial spore strips of Bacillus subtilis, var. niger (ATCC 9372) inactivation, the most common microorganism used in controlling the efficacy of the process. Experiments were carried out using a full factorial experimental design at two levels (23 factorial desig...

  1. Possible use of bacteriophages active against Bacillus anthracis and other B. cereus group members in the face of a bioterrorism threat.

    Science.gov (United States)

    Jończyk-Matysiak, Ewa; Kłak, Marlena; Weber-Dąbrowska, Beata; Borysowski, Jan; Górski, Andrzej

    2014-01-01

    Anthrax is an infectious fatal disease with epidemic potential. Nowadays, bioterrorism using Bacillus anthracis is a real possibility, and thus society needs an effective weapon to neutralize this threat. The pathogen may be easily transmitted to human populations. It is easy to store, transport, and disseminate and may survive for many decades. Recent data strongly support the effectiveness of bacteriophage in treating bacterial diseases. Moreover, it is clear that bacteriophages should be considered a potential incapacitative agent against bioterrorism using bacteria belonging to B. cereus group, especially B. anthracis. Therefore, we have reviewed the possibility of using bacteriophages active against Bacillus anthracis and other species of the B. cereus group in the face of a bioterrorism threat. PMID:25247187

  2. Survival of Bacillus pumilus spores for a prolonged period of time in real space conditions.

    Science.gov (United States)

    Vaishampayan, Parag A; Rabbow, Elke; Horneck, Gerda; Venkateswaran, Kasthuri J

    2012-05-01

    To prevent forward contamination and maintain the scientific integrity of future life-detection missions, it is important to characterize and attempt to eliminate terrestrial microorganisms associated with exploratory spacecraft and landing vehicles. Among the organisms isolated from spacecraft-associated surfaces, spores of Bacillus pumilus SAFR-032 exhibited unusually high resistance to decontamination techniques such as UV radiation and peroxide treatment. Subsequently, B. pumilus SAFR-032 was flown to the International Space Station (ISS) and exposed to a variety of space conditions via the European Technology Exposure Facility (EuTEF). After 18 months of exposure in the EXPOSE facility of the European Space Agency (ESA) on EuTEF under dark space conditions, SAFR-032 spores showed 10-40% survivability, whereas a survival rate of 85-100% was observed when these spores were kept aboard the ISS under dark simulated martian atmospheric conditions. In contrast, when UV (>110 nm) was applied on SAFR-032 spores for the same time period and under the same conditions used in EXPOSE, a ∼7-log reduction in viability was observed. A parallel experiment was conducted on Earth with identical samples under simulated space conditions. Spores exposed to ground simulations showed less of a reduction in viability when compared with the "real space" exposed spores (∼3-log reduction in viability for "UV-Mars," and ∼4-log reduction in viability for "UV-Space"). A comparative proteomics analysis indicated that proteins conferring resistant traits (superoxide dismutase) were present in higher concentration in space-exposed spores when compared to controls. Also, the first-generation cells and spores derived from space-exposed samples exhibited elevated UVC resistance when compared with their ground control counterparts. The data generated are important for calculating the probability and mechanisms of microbial survival in space conditions and assessing microbial contaminants

  3. Rapid identification of Bacillus anthracis by cell wall and capsule components direct fluorescent antibody assay

    OpenAIRE

    Lily Natalia; Rahmat Setya AdjI

    2008-01-01

    During the outbreak of anthrax, early diagnosis is critical for effective treatment. Numerous attempts have been made to design antigen based detection tests and to rapidly identify truly anthrax specific antigens for B. anthracis. In Indonesia, standard identification of B. anthracis relies on a combination of time consuming steps including bacterial culture and Ascoli precipitin test, which can take several days to provide a diagnosis. In this study, two component (cell wall and capsule) di...

  4. Human monoclonal antibodies against anthrax lethal factor and protective antigen act independently to protect against Bacillus anthracis infection and enhance endogenous immunity to anthrax

    NARCIS (Netherlands)

    Albrecht, Mark T.; Li, Han; Williamson, E. Diane; LeButt, Chris S.; Flick-Smith, Helen C.; Quinn, Conrad P.; Westra, Hans; Galloway, Darrell; Mateczun, Alfred; Goldman, Stanley; Groen, Herman; Baillie, Les W. J.

    2007-01-01

    The unpredictable nature of bioterrorism and the absence of real-time detection systems have highlighted the need for an efficient postexposure therapy for Bacillus anthracis infection. One approach is passive immunization through the administration of antibodies that mitigate the biological action

  5. The Exosporium Layer of Bacterial Spores: a Connection to the Environment and the Infected Host.

    Science.gov (United States)

    Stewart, George C

    2015-12-01

    Much of what we know regarding bacterial spore structure and function has been learned from studies of the genetically well-characterized bacterium Bacillus subtilis. Molecular aspects of spore structure, assembly, and function are well defined. However, certain bacteria produce spores with an outer spore layer, the exosporium, which is not present on B. subtilis spores. Our understanding of the composition and biological functions of the exosporium layer is much more limited than that of other aspects of the spore. Because the bacterial spore surface is important for the spore's interactions with the environment, as well as being the site of interaction of the spore with the host's innate immune system in the case of spore-forming bacterial pathogens, the exosporium is worthy of continued investigation. Recent exosporium studies have focused largely on members of the Bacillus cereus family, principally Bacillus anthracis and Bacillus cereus. Our understanding of the composition of the exosporium, the pathway of its assembly, and its role in spore biology is now coming into sharper focus. This review expands on a 2007 review of spore surface layers which provided an excellent conceptual framework of exosporium structure and function (A. O. Henriques and C. P. Moran, Jr., Annu Rev Microbiol 61:555-588, 2007, http://dx.doi.org/10.1146/annurev.micro.61.080706.093224). That review began a process of considering outer spore layers as an integrated, multilayered structure rather than simply regarding the outer spore components as independent parts. PMID:26512126

  6. Identification of a Protein Subset of the Anthrax Spore Immunome in Humans Immunized with the Anthrax Vaccine Adsorbed Preparation

    OpenAIRE

    Kudva, Indira T.; Griffin, Robert W.; Garren, Jeonifer M.; Calderwood, Stephen B.; John, Manohar

    2005-01-01

    We identified spore targets of Anthrax Vaccine Adsorbed (AVA)-induced immunity in humans by screening recombinant clones of a previously generated, limited genomic Bacillus anthracis Sterne (pXO1+, pXO2−) expression library of putative spore surface (spore-associated [SA]) proteins with pooled sera from human adults immunized with AVA (immune sera), the anthrax vaccine currently approved for use by humans in the United States. We identified 69 clones that reacted specifically with pooled immu...

  7. Capsules, toxins and AtxA as virulence factors of emerging Bacillus cereus biovar anthracis.

    Directory of Open Access Journals (Sweden)

    Christophe Brézillon

    2015-04-01

    Full Text Available Emerging B. cereus strains that cause anthrax-like disease have been isolated in Cameroon (CA strain and Côte d'Ivoire (CI strain. These strains are unusual, because their genomic characterisation shows that they belong to the B. cereus species, although they harbour two plasmids, pBCXO1 and pBCXO2, that are highly similar to the pXO1 and pXO2 plasmids of B. anthracis that encode the toxins and the polyglutamate capsule respectively. The virulence factors implicated in the pathogenicity of these B. cereus bv anthracis strains remain to be characterised. We tested their virulence by cutaneous and intranasal delivery in mice and guinea pigs; they were as virulent as wild-type B. anthracis. Unlike as described for pXO2-cured B. anthracis, the CA strain cured of the pBCXO2 plasmid was still highly virulent, showing the existence of other virulence factors. Indeed, these strains concomitantly expressed a hyaluronic acid (HA capsule and the B. anthracis polyglutamate (PDGA capsule. The HA capsule was encoded by the hasACB operon on pBCXO1, and its expression was regulated by the global transcription regulator AtxA, which controls anthrax toxins and PDGA capsule in B. anthracis. Thus, the HA and PDGA capsules and toxins were co-regulated by AtxA. We explored the respective effect of the virulence factors on colonisation and dissemination of CA within its host by constructing bioluminescent mutants. Expression of the HA capsule by itself led to local multiplication and, during intranasal infection, to local dissemination to the adjacent brain tissue. Co-expression of either toxins or PDGA capsule with HA capsule enabled systemic dissemination, thus providing a clear evolutionary advantage. Protection against infection by B. cereus bv anthracis required the same vaccination formulation as that used against B. anthracis. Thus, these strains, at the frontier between B. anthracis and B. cereus, provide insight into how the monomorphic B. anthracis may have

  8. Naturally acquired antibodies to Bacillus anthracis protective antigen in vultures of southern Africa

    Directory of Open Access Journals (Sweden)

    P. C.B. Turnbull

    2008-08-01

    Full Text Available TURNBULLP, P.C.B. DIEKMANNM,M., KILIAN, J.W., VERSFELDW, W.,DE VOS, V., ARNTZENL, L.,WOLTER, K., BARTELS, P. & KOTZE, A. 2008.N aturally acquired antibodies to Bacillusa nthracisp rotective antigeni n vultureso f southern Africa. Onderstepoort Journal of Veterinary Research, T5:95-102 Sera from 19 wild caught vultures in northern Namibia and 15 (12 wild caught and three captive bred but with minimal histories in North West Province, South Africa, were examined by an enzyme-linked immunosorbenats say( ELISAf or antibodiesto the Bacillus anthracis toxin protective antigen (PA. As assessed from the baseline established with a control group of ten captive reared vultures with well-documented histories, elevated titres were found in 12 of the 19 (63% wild caught Namibian birds as compared with none of the 15 South African ones. There was a highly significant difference between the Namibian group as a hole and the other groups (P < 0.001 and no significant difference between the South African and control groups (P > 0.05. Numbers in the Namibian group were too small to determine any significances in species-, sex- or age-related differences within the raw data showing elevated titres in four out of six Cape Vultures, Gyps coprotheress, six out of ten Whitebacked Vultures, Gyps africanus, and one out of three Lappet-faced Vultures, Aegypiust racheliotus, or in five of six males versus three of seven females, and ten of 15 adults versus one of four juveniles. The results are in line with the available data on the incidence of anthrax in northern Namibia and South Africa and the likely contact of the vultures tested with anthrax carcasses. lt is not known whether elevated titre indicates infection per se in vultures or absorption of incompletely digested epitopes of the toxin or both. The results are discussed in relation to distances travelled by vultures as determined by new tracking techniques, how serology can reveal anthrax activity in an area and

  9. CD4+ T cells targeting dominant and cryptic epitopes from Bacillus anthracis Lethal Factor

    Directory of Open Access Journals (Sweden)

    Stephanie eAscough

    2016-01-01

    Full Text Available Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called ‘cryptic’ or ‘subdominant’ epitopes. We analysed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISPOT assays we characterised epitopes that elicited a response following immunisation with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 trangenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were

  10. Live cell imaging of germination and outgrowth of individual bacillus subtilis spores; the effect of heat stress quantitatively analyzed with SporeTracker.

    Directory of Open Access Journals (Sweden)

    Rachna Pandey

    Full Text Available Spore-forming bacteria are a special problem for the food industry as some of them are able to survive preservation processes. Bacillus spp. spores can remain in a dormant, stress resistant state for a long period of time. Vegetative cells are formed by germination of spores followed by a more extended outgrowth phase. Spore germination and outgrowth progression are often very heterogeneous and therefore, predictions of microbial stability of food products are exceedingly difficult. Mechanistic details of the cause of this heterogeneity are necessary. In order to examine spore heterogeneity we made a novel closed air-containing chamber for live imaging. This chamber was used to analyze Bacillus subtilis spore germination, outgrowth, as well as subsequent vegetative growth. Typically, we examined around 90 starting spores/cells for ≥4 hours per experiment. Image analysis with the purposely built program "SporeTracker" allows for automated data processing from germination to outgrowth and vegetative doubling. In order to check the efficiency of the chamber, growth and division of B. subtilis vegetative cells were monitored. The observed generation times of vegetative cells were comparable to those obtained in well-aerated shake flask cultures. The influence of a heat stress of 85°C for 10 min on germination, outgrowth, and subsequent vegetative growth was investigated in detail. Compared to control samples fewer spores germinated (41.1% less and fewer grew out (48.4% less after the treatment. The heat treatment had a significant influence on the average time to the start of germination (increased and the distribution and average of the duration of germination itself (increased. However, the distribution and the mean outgrowth time and the generation time of vegetative cells, emerging from untreated and thermally injured spores, were similar.

  11. Increased resistance to detachment of adherent microspheres and Bacillus spores subjected to a drying step.

    Science.gov (United States)

    Faille, Christine; Bihi, Ilyesse; Ronse, Annette; Ronse, Gilles; Baudoin, Michael; Zoueshtiagh, Farzam

    2016-07-01

    In various environments, including that of food processing, adherent bacteria are often subjected to drying conditions. These conditions have been shown to result in changes in the ability of biofilms to cross-contaminate food in contact with them. In this study, we investigated the consequences of a drying step on the further ability of adherent bacterial spores to resist detachment. An initial series of experiment was set up with latex microspheres as a model. A microsphere suspension was deposited on a glass slide and incubated at 25, 35 and 50°C for times ranging from 1h to 48h. By subjecting the dried slides to increasing water flow rates, we showed that both time and temperature affected the ease of microsphere detachment. Similar observations were made for three Bacillus spores despite differences in their surface properties, especially regarding their surface physicochemistry. The differences in ease of adherent spore detachment could not be clearly linked to the minor changes in spore morphology, observed after drying in various environmental conditions. In order to explain the increased interaction between spheres or spores and glass slides, the authors made several assumptions regarding the possible underlying mechanisms: the shape of the liquid bridge between the sphere and the substratum, which is greatly influenced by the hydrophilic/hydrophobic characters of both surfaces; the accumulation of soil at the liquid/air interface; the presence of trapped nano-bubbles around and/or under the sphere. PMID:27022869

  12. Development of bioprocesses for the production of a biological indicator for sterilization processes from Bacillus atrophaeus spores

    OpenAIRE

    Sella, Sandra Regina Barroso Ruiz

    2013-01-01

    Abstract: The genus Bacillus includes a great diversity of industrially important strains, including Bacillus atrophaeus (formerly Bacillus subtilis var. niger). This spore-forming bacterium has been established as industrial bacteria in the production of biological sterilization indicators, in studies of biodefense and astrobiology methods, and as potential adjuvants or vehicles for vaccines, among other applications. Two novels, cost-effective B. atrophaeus Sterilization Bioindicator System...

  13. Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from being killed by freeze-drying.

    OpenAIRE

    Fairhead, H; Setlow, B; Waites, W M; Setlow, P

    1994-01-01

    Wild-type spores of Bacillus subtilis were resistant to eight cycles of freeze-drying, whereas about 90% of spores lacking the two major DNA-binding proteins (small, acid-soluble proteins alpha and beta) were killed by three to four cycles of freeze-dryings, with significant mutagenesis and DNA damage accompanying the killing. This role for alpha/beta-type small, acid-soluble proteins in spore resistance to freeze-drying may be important in spore survival in the environment.

  14. Role of Dipicolinic Acid in Survival of Bacillus subtilis Spores Exposed to Artificial and Solar UV Radiation

    OpenAIRE

    Slieman, Tony A.; Nicholson, Wayne L.

    2001-01-01

    Pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA]) constitutes approximately 10% of Bacillus subtilis spore dry weight and has been shown to play a significant role in the survival of B. subtilis spores exposed to wet heat and to 254-nm UV radiation in the laboratory. However, to date, no work has addressed the importance of DPA in the survival of spores exposed to environmentally relevant solar UV radiation. Air-dried films of spores containing DPA or lacking DPA due to a null mutation ...

  15. Untersuchung der Virulenz Bacillus anthracis-ähnlicher Isolate aus West- und Zentralafrika

    OpenAIRE

    Dupke, Susann

    2011-01-01

    In 2001 and 2004 several great apes died of an Anthrax-like disease in Cameroon and the Côte d´Ivoire on the African continent. PCR analysis and histological studies of carcasses led to the assumption that the animals died due to infection with a new strain of B. anthracis. Further molecular genetic methods and sequencing of one of the isolates from Côte d´Ivoire revealed a close relationship of the new strains to B. cereus rather than B. anthracis, even though both characteristic virulence p...

  16. Gamma radiation effect on Bacillus cereus spores inoculated in black pepper

    International Nuclear Information System (INIS)

    It had been analyzed 37 samples of worn out black pepper and in 85% of these samples was observed the presence of Bacillus cereus in numbers of up to 4,6 x 104 UFC/g. The population of aerobic mesofilis bacteria varied of 2,8 x 105 the 1,9 x 108 UFC/g. The black pepper used during the experiment was evaluated, evidencing the aerobic presence of one aerobic mesofilis microbiota of, approximately, 2,6 x 106 UFC/g, consisting, mainly, for species of the Bacillus sort. It was observed that the absence of B. cereus, coliforms, filamentous fungus and leavenings. The evaluation of the irradiation of the black pepper inoculated with 106 UFC/g of B. cereus spores of with doses of gamma radiation varying between 2 and 10 kGy evidenced that doses up to 5 kGy had been enough to reduce the counting of, approximately, 106 UFC/g of aerobic mesofilis organisms and 104 UFC/g of B. cereus spores the not detectable numbers by the used methodology. The dose of reduction decimal (D10) for the inoculated B. cereus spores in black pepper was of 1,78 kGy

  17. gyrB as a phylogenetic discriminator for members of the Bacillus anthracis-cereus-thuringiensis group

    Science.gov (United States)

    La Duc, Myron T.; Satomi, Masataka; Agata, Norio; Venkateswaran, Kasthuri

    2004-01-01

    Bacillus anthracis, the causative agent of the human disease anthrax, Bacillus cereus, a food-borne pathogen capable of causing human illness, and Bacillus thuringiensis, a well-characterized insecticidal toxin producer, all cluster together within a very tight clade (B. cereus group) phylogenetically and are indistinguishable from one another via 16S rDNA sequence analysis. As new pathogens are continually emerging, it is imperative to devise a system capable of rapidly and accurately differentiating closely related, yet phenotypically distinct species. Although the gyrB gene has proven useful in discriminating closely related species, its sequence analysis has not yet been validated by DNA:DNA hybridization, the taxonomically accepted "gold standard". We phylogenetically characterized the gyrB sequences of various species and serotypes encompassed in the "B. cereus group," including lab strains and environmental isolates. Results were compared to those obtained from analyses of phenotypic characteristics, 16S rDNA sequence, DNA:DNA hybridization, and virulence factors. The gyrB gene proved more highly differential than 16S, while, at the same time, as analytical as costly and laborious DNA:DNA hybridization techniques in differentiating species within the B. cereus group.

  18. Evaluation of New Dihydrophthalazine-Appended 2,4-Diaminopyrimidines against Bacillus anthracis: Improved Syntheses Using a New Pincer Complex

    Directory of Open Access Journals (Sweden)

    Nagendra Prasad Muddala

    2015-04-01

    Full Text Available The synthesis and evaluation of ten new dihydrophthalazine-appended 2,4-diaminopyrimidines as potential drugs to treat Bacillus anthracis is reported. An improved synthesis utilizing a new pincer catalyst, dichlorobis[1-(dicyclohexylphosphanyl-piperidine]palladium(II, allows the final Heck coupling to be performed at 90 °C using triethylamine as the base. These milder conditions have been used to achieve improved yields for new and previously reported substrates with functional groups that degrade or react at the normal 140 °C reaction temperature. An analytical protocol for separating the S and R enantiomers of two of the most active compounds is also disclosed. Finally, the X-ray structure for the most active enantiomer of the lead compound, (S-RAB1, is given.

  19. A multiplex bead-based suspension array assay for interrogation of phylogenetically informative single nucleotide polymorphisms for Bacillus anthracis

    DEFF Research Database (Denmark)

    Thierry, Simon; Hamidjaja, Raditijo A.; Girault, Guillaume;

    2013-01-01

    reaction for signal amplification and labeling of ligation products carrying SNP targets. These innovations significantly reduce cross-reactivity observed when initial MOLigo probes were used and enhance hybridization efficiency onto the microsphere array, respectively. When evaluated on 73 representative...... need. By using the versatile Luminex® xTAG technology, we developed an efficient multiplexed SNP genotyping assay to score 13 phylogenetically informative SNPs within the genome of Bacillus anthracis. The Multiplex Oligonucleotide Ligation-PCR procedure (MOL-PCR) described by Deshpande et al., 2010 has...... been modified and adapted for simultaneous interrogation of 13 biallelic canonical SNPs in a 13-plex assay. Changes made to the originally published method include the design of allele-specific dual-priming-oligonucleotides (DPOs) as competing detection probes (MOLigo probes) and use of asymmetric PCR...

  20. Changes in ultraviolet resistance and photoproduct formation as early events in spore germination of Bacillus cereus T

    International Nuclear Information System (INIS)

    In order to determine the timing of the change in the state of DNA in bacterial spores during the course of germination, L-alanine-induced germination of Bacillus cereus spores was interrupted by 0.3M CaCl2 as an inhibitor, and the resulting semi-refractive spores (spores at the end of the first phase of germination) were examined for UV-resistance and photoproduct formation. Upon UV-irradiation, these spores, still having a semi-refractile core as observed under a phase-contrast microscope, gave rise to mainly the cyclobutane-type thymine dimer. It was concluded that change in the stats of the spore DNA occurs early in the process of germination, i.e. before the refractility of the core is lost. It was also found that CaCl2 markedly prolonged the duration of the transient UV-resistant stage. (author)

  1. Disinfection and regrowth potential of bacillus subtilis spores by ozone, ultraviolet rays and gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Yeon; Lee, O Mi; Kim, Tae Hun; Lee, Myun Joo; Yu, Seung Ho [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-06-15

    Chlorination has been the most commonly adopted disinfection process for the treatment of drinking water. However, Cryptosporidium parvum oocysts and Giardia lamblia cysts were not treated effectively by the common chlorine-based disinfectants. Additionally the regrowth of pathogenic microorganisms is associated with hygienic and aesthetic problems for the consumers of drinking water. Study on alternative disinfection processes such as ozone, UV-C, VUV and gamma irradiation were conducted. Bacillus subtilis spores have been used as a surrogate microorganism for Cryptosporidium parvum oocysts and Giardia lamblia cyst. Inactivation efficiency by ozone was from 30% to 96% within the range of 5 min to 120 min exposures. Inactivation efficiencies by UV-C and VUV were 95.18%, 95.07% at 30 sec, respectively. Inactivation efficiency at gamma irradiation dose of 2 kGy was 99.4%. Microbial regrowths after ozone, UV-C, VUV and gamma irradiation disinfections were also evaluated for 4 days. Bacillus subtilis spores after ozone treatment for 120 min exposure at the rate of 1.68 mg {center_dot} min{sup -1} showed 96.02% disinfection efficiency and significant microbial regrowth. Bacillus subtilis spores after UV-C (99.25% disinfection efficiency) and VUV (99.67% disinfection efficiency) treatments for 5 min showed gradual regrowth. However, inactivation efficiency of gamma irradiation at dose of 1 kGy was 98.8% and the disinfected sample showed no microbial regrowth for 4 days. Therefore, gamma irradiation is the most effective process for the disinfection of pathogenic microorganisms such as oocysts of protozoan parasites among four disinfection process.

  2. Disinfection and regrowth potential of bacillus subtilis spores by ozone, ultraviolet rays and gamma irradiation

    International Nuclear Information System (INIS)

    Chlorination has been the most commonly adopted disinfection process for the treatment of drinking water. However, Cryptosporidium parvum oocysts and Giardia lamblia cysts were not treated effectively by the common chlorine-based disinfectants. Additionally the regrowth of pathogenic microorganisms is associated with hygienic and aesthetic problems for the consumers of drinking water. Study on alternative disinfection processes such as ozone, UV-C, VUV and gamma irradiation were conducted. Bacillus subtilis spores have been used as a surrogate microorganism for Cryptosporidium parvum oocysts and Giardia lamblia cyst. Inactivation efficiency by ozone was from 30% to 96% within the range of 5 min to 120 min exposures. Inactivation efficiencies by UV-C and VUV were 95.18%, 95.07% at 30 sec, respectively. Inactivation efficiency at gamma irradiation dose of 2 kGy was 99.4%. Microbial regrowths after ozone, UV-C, VUV and gamma irradiation disinfections were also evaluated for 4 days. Bacillus subtilis spores after ozone treatment for 120 min exposure at the rate of 1.68 mg · min-1 showed 96.02% disinfection efficiency and significant microbial regrowth. Bacillus subtilis spores after UV-C (99.25% disinfection efficiency) and VUV (99.67% disinfection efficiency) treatments for 5 min showed gradual regrowth. However, inactivation efficiency of gamma irradiation at dose of 1 kGy was 98.8% and the disinfected sample showed no microbial regrowth for 4 days. Therefore, gamma irradiation is the most effective process for the disinfection of pathogenic microorganisms such as oocysts of protozoan parasites among four disinfection process

  3. Genotyping of Bacillus anthracis strains based on automated capillary 25-loci Multiple Locus Variable-Number Tandem Repeats Analysis

    Directory of Open Access Journals (Sweden)

    Ciervo Alessandra

    2006-04-01

    Full Text Available Abstract Background The genome of Bacillus anthracis, the etiological agent of anthrax, is highly monomorphic which makes differentiation between strains difficult. A Multiple Locus Variable-number tandem repeats (VNTR Analysis (MLVA assay based on 20 markers was previously described. It has considerable discrimination power, reproducibility, and low cost, especially since the markers proposed can be typed by agarose-gel electrophoresis. However in an emergency situation, faster genotyping and access to representative databases is necessary. Results Genotyping of B. anthracis reference strains and isolates from France and Italy was done using a 25 loci MLVA assay combining 21 previously described loci and 4 new ones. DNA was amplified in 4 multiplex PCR reactions and the length of the resulting 25 amplicons was estimated by automated capillary electrophoresis. The results were reproducible and the data were consistent with other gel based methods once differences in mobility patterns were taken into account. Some alleles previously unresolved by agarose gel electrophoresis could be resolved by capillary electrophoresis, thus further increasing the assay resolution. One particular locus, Bams30, is the result of a recombination between a 27 bp tandem repeat and a 9 bp tandem repeat. The analysis of the array illustrates the evolution process of tandem repeats. Conclusion In a crisis situation of suspected bioterrorism, standardization, speed and accuracy, together with the availability of reference typing data are important issues, as illustrated by the 2001 anthrax letters event. In this report we describe an upgrade of the previously published MLVA method for genotyping of B. anthracis and apply the method to the typing of French and Italian B. anthracis strain collections. The increased number of markers studied compared to reports using only 8 loci greatly improves the discrimination power of the technique. An Italian strain belonging to the

  4. Discrimination of Bacillus anthracis from closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microchips

    Science.gov (United States)

    Bavykin, Sergei G.; Mirzabekov, Andrei D.

    2007-10-30

    The present invention is directed to a novel method of discriminating a highly infectious bacterium Bacillus anthracis from a group of closely related microorganisms. Sequence variations in the 16S and 23S rRNA of the B. cereus subgroup including B. anthracis are utilized to construct an array that can detect these sequence variations through selective hybridizations. The identification and analysis of these sequence variations enables positive discrimination of isolates of the B. cereus group that includes B. anthracis. Discrimination of single base differences in rRNA was achieved with a microchip during analysis of B. cereus group isolates from both single and in mixed probes, as well as identification of polymorphic sites. Successful use of a microchip to determine the appropriate subgroup classification using eight reference microorganisms from the B. cereus group as a study set, was demonstrated.

  5. Recovery of Bacillus sphaericus spores by flocculation/sedimentation and flotation

    OpenAIRE

    Christine Lamenha Luna; Carlos Edison Lopes; Giulio Massarani

    2005-01-01

    The aim of this work was use flocculation/sedimentation and flotation for recovery of spores of the Bacillus sphaericus. Microorganism was produced batchwise using culture medium based skimmed milk, corn steep liquor and mineral salts. The best results of flocculation were obtained using CaCl2.2H2O, FeCl3.6H2O, Al2(SO4)3 and tannin as flocculating agents, with optimal flocculation concentrations of 1,500, 3,000, 2,000 and 1,700ppm, respectively. Flocculent suspensions were characterized based...

  6. Kinetics of Mn(II) oxidation by spores of the marine Bacillus sp. SG-1

    Science.gov (United States)

    Toyoda, Kazuhiro; Tebo, Bradley M.

    2016-09-01

    The kinetics of Mn(II) oxidation by spores of the marine Bacillus sp. SG-1 was measured under controlled conditions of the initial Mn(II) concentration, spore concentration, chemical speciation, pH, O2, and temperature. Mn(II) oxidation experiments were performed with spore concentrations ranging from 0.7 to 11 × 109 spores/L, a pH range from 5.8 to 8.1, temperatures between 4 and 58 °C, a range of dissolved oxygen from 2 to 270 μM, and initial Mn(II) concentrations from 1 to 200 μM. The Mn(II) oxidation rates were directly proportional to the spore concentrations over these ranges of concentration. The Mn(II) oxidation rate increased with increasing initial Mn(II) concentration to a critical concentration, as described by the Michaelis-Menten model (Km = ca. 3 μM). Whereas with starting Mn(II) concentrations above the critical concentration, the rate was almost constant in low ionic solution (I = 0.05, 0.08). At high ionic solution (I = 0.53, 0.68), the rate was inversely correlated with Mn(II) concentration. Increase in the Mn(II) oxidation rate with the dissolved oxygen concentration followed the Michaelis-Menten model (Km = 12-19 μM DO) in both a HEPES-buffered commercial drinking (soft) water and in artificial and natural seawater. Overall, our results suggest that the mass transport limitations of Mn(II) ions due to secondary Mn oxide products accumulating on the spores cause a significant decrease of the oxidation rate at higher initial Mn(II) concentration on a spore basis, as well as in more concentrated ionic solutions. The optimum pH for Mn(II) oxidation was approximately 7.0 in low ionic solutions (I = 0.08). The high rates at the alkaline side (pH > 7.5) may suggest a contribution by heterogeneous reactions on manganese bio-oxides. The effect of temperature on the Mn(II) oxidation rate was studied in three solutions (500 mM NaCl, ASW, NSW solutions). Thermal denaturation occurred at 58 °C and spore germination was evident at 40 °C in all three

  7. Panning of a phage display library against a synthetic capsule for peptide ligands that bind to the native capsule of Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Michael Beer

    Full Text Available Bacillus anthracis is the causative agent of anthrax with the ability to not only produce a tripartite toxin, but also an enveloping capsule comprised primarily of γ-D-glutamic acid residues. The purpose of this study was to isolate peptide ligands capable of binding to the native capsule of B. anthracis from a commercial phage display peptide library using a synthetic form of the capsule consisting of 12 γ-D-glutamic acid residues. Following four rounds of selection, 80 clones were selected randomly and analysed by DNA sequencing. Four clones, each containing a unique consensus sequence, were identified by sequence alignment analysis. Phage particles were prepared and their derived 12-mer peptides were also chemically synthesized and conjugated to BSA. Both the phage particles and free peptide-BSA conjugates were evaluated by ELISA for binding to encapsulated cells of B. anthracis as well as a B. anthracis capsule extract. All the phage particles tested except one were able to bind to both the encapsulated cells and the capsule extract. However, the peptide-BSA conjugates could only bind to the encapsulated cells. One of the peptide-BSA conjugates, with the sequence DSSRIPMQWHPQ (termed G1, was fluorescently labelled and its binding to the encapsulated cells was further confirmed by confocal microscopy. The results demonstrated that the synthetic capsule was effective in isolating phage-displayed peptides with binding affinity for the native capsule of B. anthracis.

  8. Immunization with a Recombinant, Pseudomonas fluorescens-Expressed, Mutant Form of Bacillus anthracis-Derived Protective Antigen Protects Rabbits from Anthrax Infection

    OpenAIRE

    Reed, Matthew D.; Wilder, Julie A.; Mega, William M.; Hutt, Julie A.; Kuehl, Philip J.; Valderas, Michelle W.; Chew, Lawrence L.; Liang, Bertrand C.; Squires, Charles H.

    2015-01-01

    Protective antigen (PA), one of the components of the anthrax toxin, is the major component of human anthrax vaccine (Biothrax). Human anthrax vaccines approved in the United States and Europe consist of an alum-adsorbed or precipitated (respectively) supernatant material derived from cultures of toxigenic, non-encapsulated strains of Bacillus anthracis. Approved vaccination schedules in humans with either of these vaccines requires several booster shots and occasionally causes adverse inject...

  9. Cloning and Expression of Fusion Genes of Domain A-1 Protective Antigen of Bacillus Anthracis and Shigella Enterotoxin B Subunit (Stxb In E. Coil

    Directory of Open Access Journals (Sweden)

    AH ahmadi

    2015-02-01

    Conclusion: The findings of the current study revealed that this antigen can be raised as an anti-cancer and recombinant vaccine candidate against types of Shigella, Escherichia coli and Bacillus anthracis which can be due to such factors as identification of antigen(PA by antibody PA20, its apoptosis induction properties, property of immunogenicity, adjuvant and delivery of STxB protein and high expression levels of Gb3 in human cancer cells.

  10. Anthrax toxin targeting of myeloid cells through the CMG2 receptor is essential for establishment of Bacillus anthracis infections in mice

    OpenAIRE

    Liu, Shihui; Miller-Randolph, Sharmina; Crown, Devorah; Moayeri, Mahtab; Sastalla, Inka; Okugawa, Shu; Leppla, Stephen H.

    2010-01-01

    Bacillus anthracis kills through a combination of bacterial infection and toxemia. Anthrax toxin working via the CMG2 receptor mediates lethality late in infection, but its roles early in infection remain unclear. We generated myeloid-lineage specific CMG2-deficient mice to examine the roles of macrophages, neutrophils, and other myeloid cells in anthrax pathogenesis. Macrophages and neutrophils isolated from these mice were resistant to anthrax toxin. However, the myeloid-specific CMG2-defic...

  11. Matrix Assisted Laser Desorption Ionization Mass Spectrometric Analysis of Bacillus anthracis: From Fingerprint Analysis of the Bacterium to Quantification of its Toxins in Clinical Samples

    Science.gov (United States)

    Woolfitt, Adrian R.; Boyer, Anne E.; Quinn, Conrad P.; Hoffmaster, Alex R.; Kozel, Thomas R.; de, Barun K.; Gallegos, Maribel; Moura, Hercules; Pirkle, James L.; Barr, John R.

    A range of mass spectrometry-based techniques have been used to identify, characterize and differentiate Bacillus anthracis, both in culture for forensic applications and for diagnosis during infection. This range of techniques could usefully be considered to exist as a continuum, based on the degrees of specificity involved. We show two examples here, a whole-organism fingerprinting method and a high-specificity assay for one unique protein, anthrax lethal factor.

  12. Bacillus anthracis Capsule Activates Caspase-1 and Induces Interleukin-1β Release from Differentiated THP-1 and Human Monocyte-Derived Dendritic Cells▿ †

    OpenAIRE

    Cho, Min-Hee; Ahn, Hae-Jeong; Ha, Hyun-Joon; Park, Jungchan; Chun, Jeong-Hoon; Kim, Bong-Su; Oh, Hee-Bok; Rhie, Gi-eun

    2009-01-01

    The poly-γ-d-glutamic acid (PGA) capsule is one of the major virulence factors of Bacillus anthracis, which causes a highly lethal infection. The antiphagocytic PGA capsule disguises the bacilli from immune surveillance and allows unimpeded growth of bacilli in the host. Recently, efforts have been made to include PGA as a component of anthrax vaccine; however, the innate immune response of PGA itself has been poorly investigated. In this study, we characterized the innate immune response eli...

  13. Characterization of Bacillus anthracis-Like Bacteria Isolated from Wild Great Apes from Côte d'Ivoire and Cameroon

    OpenAIRE

    Klee, Silke R.; Özel, Muhsin; Appel, Bernd; Boesch, Christophe; Ellerbrok, Heinz; Jacob, Daniela; Holland, Gudrun; Leendertz, Fabian H; Pauli, Georg; Grunow, Roland; Nattermann, Herbert

    2006-01-01

    We present the microbiological and molecular characterization of bacteria isolated from four chimpanzees and one gorilla thought to have died of an anthrax-like disease in Côte d'Ivoire and Cameroon. These isolates differed significantly from classic Bacillus anthracis by the following criteria: motility, resistance to the gamma phage, and, for isolates from Cameroon, resistance to penicillin G. A capsule was expressed not only after induction by CO2 and bicarbonate but also under normal grow...

  14. Immunoelectrophoretic analysis, toxicity, and kinetics of in vitro production of the protective antigen and lethal factor components of Bacillus anthracis toxin.

    OpenAIRE

    Ezzell, J W; Ivins, B E; Leppla, S H

    1984-01-01

    The kinetics of Bacillus anthracis toxin production in culture and its lethal activity in rats, mice, and guinea pigs were investigated. Lethal toxin activity was produced in vitro throughout exponential growth at essentially identical rates in both encapsulated virulent and nonencapsulated avirulent strains. The two toxin proteins which produce lethality when in combination, lethal factor (LF) and protective antigen (PA), could be quantitated directly from culture fluids by rocket immunoelec...

  15. Inactivation, mutation induction and repair in Bacillus subtilis spores irradiated with heavy ions

    Science.gov (United States)

    Horneck, G.; Bücker, H.

    Studies on the response of bacterial spores to accelerated heavy ions (HZE particles) help in understanding problems of space radiobiology and exobiology. Layers of spores of Bacillus subtilis strains, differing in repair capabilities, were irradiated with accelerated boron, carbon and neon ions of linear energy transfer (LET) values up to 14000 MeV cm2/g. Inactivation as measured by loss of colony forming ability and induction of mutations as measured by reversion to histidine prototrophy and resistance to 150 μg/ml sodium azide were tested, as well as the influence of repair processes on these effects. For inactivation, the cross-sectional values σ plotted as a function of LET follow a saturation curve. The plateau, which is reached around a LET of 2000 MeV cm2/g, occurs at 2.5 × 10-9 cm2, a value in good agreement with the dimensions of the spore protoplast. Lethal damage produced at LET values < 2000 MeV cm2/g is reparable. Recombination repair is more effective than excision repair. At higher LET values, lethal damage could not be reconstituted by the repair mechanisms studied. In addition, at these high LET values, the frequency of induced mutations was drastically decreased. The data support the assumption of at least two qualitatively different types of lesion, depending on the LET of the affecting heavy ion.

  16. Scanning Surface Potential Microscopy of Spore Adhesion on Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ida [University of Tennessee, Knoxville (UTK); Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2012-01-01

    The adhesion of spores of Bacillus anthracis - the cause of anthrax and a likely biological threat - to solid surfaces is an important consideration in cleanup after an accidental or deliberate release. However, because of safety concerns, directly studying B. anthracis spores with advanced instrumentation is problematic. As a first step, we are examining the electrostatic potential of Bacillus thuringiensis (Bt), which is a closely related species that is often used as a simulant to study B. anthracis. Scanning surface potential microscopy (SSPM), also known as Kelvin probe force microscopy (KPFM), was used to investigate the influence of relative humidity (RH) on the surface electrostatic potential of Bt that had adhered to silica, mica, or gold substrates. AFM/SSPM side-by-side images were obtained separately in air, at various values of RH, after an aqueous droplet with spores was applied on each surface and allowed to dry before measurements. In the SSPM images, a negative potential on the surface of the spores was observed compared with that of the substrates. The surface potential decreased as the humidity increased. Spores were unable to adhere to a surface with an extremely negative potential, such as mica.

  17. Direct investigation of viscosity of an atypical inner membrane of Bacillus spores: a molecular rotor/FLIM study.

    Science.gov (United States)

    Loison, Pauline; Hosny, Neveen A; Gervais, Patrick; Champion, Dominique; Kuimova, Marina K; Perrier-Cornet, Jean-Marie

    2013-11-01

    We utilize the fluorescent molecular rotor Bodipy-C12 to investigate the viscoelastic properties of hydrophobic layers of bacterial spores Bacillus subtilis. The molecular rotor shows a marked increase in fluorescence lifetime, from 0.3 to 4ns, upon viscosity increase from 1 to 1500cP and can be incorporated into the hydrophobic layers within the spores from dormant state through to germination. We use fluorescence lifetime imaging microscopy to visualize the viscosity inside different compartments of the bacterial spore in order to investigate the inner membrane and relate its compaction to the extreme resistance observed during exposure of spores to toxic chemicals. We demonstrate that the bacterial spores possess an inner membrane that is characterized by a very high viscosity, exceeding 1000cP, where the lipid bilayer is likely in a gel state. We also show that this membrane evolves during germination to reach a viscosity value close to that of a vegetative cell membrane, ca. 600cP. The present study demonstrates quantitative imaging of the microscopic viscosity in hydrophobic layers of bacterial spores Bacillus subtilis and shows the potential for further investigation of spore membranes under environmental stress. PMID:23831602

  18. Low persistence of Bacillus thuringiensis serovar israelensis spores in four mosquito biotopes of a salt marsh in southern France.

    Science.gov (United States)

    Hajaij, Myriam; Carron, Alexandre; Deleuze, Julien; Gaven, Bruno; Setier-Rio, Marie-Laure; Vigo, Gerard; Thiéry, Isabelle; Nielsen-LeRoux, Christina; Lagneau, Christophe

    2005-11-01

    We studied the persistence of Bacillus thuringiensis serovar israelensis (Bti) in a typical breeding site of the mosquito Ochlerotatus caspius in a particularly sensitive salt marsh ecosystem following two Bti-based larvicidal applications (Vectobac 12AS, 1.95 L/ha). The treated area was composed of four larval biotopes that differed in terms of the most representative plant species (Sarcocornia fruticosa, Bolboschoenus maritimus, Phragmites australis, and Juncus maritimus) and the physical and chemical characteristics of the soil. We sampled water, soil, and plants at various times before and after the applications (from spring to autumn, 2001) and quantified the spores of B. thuringiensis (Bt) and Bacillus species. The B. cereus group accounted for between 0% and 20% of all Bacillus spp. before application depending on the larval biotope. No Bti were found before application. The variation in the quantity of bacilli during the mosquito breeding season depended more on the larval biotope than on the season or the larvicidal application. More bacilli were found in soil (10(4)-10(6) spores/g) than on plant samples (10(2)-10(4) spores/g). The abundance in water (10(5) to 10(7) spores/L) appeared to be correlated to the water level of the breeding site. The number of Bti spores increased just after application, after declining; no spores were detected in soil or water 3 months after application. However, low numbers of Bti spores were present on foliage from three of the four studied plant strata. In conclusion, the larvicidal application has very little impact on Bacillus spp. flora after one breeding season (two applications). PMID:16328650

  19. Spores from mesophilic Bacillus cereus strains germinate better and grow faster in simulated gastro-intestinal conditions than spores from psychrotrophic strains.

    OpenAIRE

    Wijnands, L. M.; Dufrenne, J. B.; Zwietering, M.H.; van Leusden, F. M.

    2006-01-01

    The species Bacillus cereus, known for its ability to cause food borne disease, consists of a large variety of strains. An important property for discrimination of strains is their growth temperature range. Psychrotrophic strains can grow well at refrigerator temperatures but grow at 37 degrees C with difficulty. Mesophilic strains on the other hand are unable to grow below 10 degrees C, but grow well at 37 degrees C. Spores of six psychrotrophic and six mesophilic strains were investigated f...

  20. The central nervous system as target of Bacillus anthracis toxin independent virulence in rabbits and guinea pigs.

    Directory of Open Access Journals (Sweden)

    Haim Levy

    Full Text Available Infection of the central nervous system is considered a complication of Anthrax and was reported in humans and non-human primates. Previously we have reported that Bacillus anthracis possesses a toxin-independent virulent trait that, like the toxins, is regulated by the major virulence regulator, AtxA, in the presence of pXO2. This toxin-independent lethal trait is exhibited in rabbits and Guinea pigs following significant bacteremia and organ dissemination. Various findings, including meningitis seen in humans and primates, suggested that the CNS is a possible target for this AtxA-mediated activity. In order to penetrate into the brain tissue, the bacteria have to overcome the barriers isolating the CNS from the blood stream. Taking a systematic genetic approach, we compared intracranial (IC inoculation and IV/SC inoculation for the outcome of the infection in rabbits/GP, respectively. The outstanding difference between the two models is exhibited by the encapsulated strain VollumΔpXO1, which is lethal when injected IC, but asymptomatic when inoculated IV/SC. The findings demonstrate that there is an apparent bottleneck in the ability of mutants to penetrate into the brain. Any mutant carrying either pXO1 or pXO2 will kill the host upon IC injection, but only those carrying AtxA either on pXO1 or in the chromosome in the background of pXO2 can penetrate into the brain following peripheral inoculation. The findings were corroborated by histological examination by H&E staining and immunofluorescence of rabbits' brains following IV and IC inoculations. These findings may have major implications on future research both on B. anthracis pathogenicity and on vaccine development.

  1. Two-component system cross-regulation integrates Bacillus anthracis response to heme and cell envelope stress.

    Directory of Open Access Journals (Sweden)

    Laura A Mike

    2014-03-01

    Full Text Available Two-component signaling systems (TCSs are one of the mechanisms that bacteria employ to sense and adapt to changes in the environment. A prototypical TCS functions as a phosphorelay from a membrane-bound sensor histidine kinase (HK to a cytoplasmic response regulator (RR that controls target gene expression. Despite significant homology in the signaling domains of HKs and RRs, TCSs are thought to typically function as linear systems with little to no cross-talk between non-cognate HK-RR pairs. Here we have identified several cell envelope acting compounds that stimulate a previously uncharacterized Bacillus anthracis TCS. Furthermore, this TCS cross-signals with the heme sensing TCS HssRS; therefore, we have named it HssRS interfacing TCS (HitRS. HssRS reciprocates cross-talk to HitRS, suggesting a link between heme toxicity and cell envelope stress. The signaling between HssRS and HitRS occurs in the parental B. anthracis strain; therefore, we classify HssRS-HitRS interactions as cross-regulation. Cross-talk between HssRS and HitRS occurs at both HK-RR and post-RR signaling junctions. Finally, HitRS also regulates a previously unstudied ABC transporter implicating this transporter in the response to cell envelope stress. This chemical biology approach to probing TCS signaling provides a new model for understanding how bacterial signaling networks are integrated to enable adaptation to complex environments such as those encountered during colonization of the vertebrate host.

  2. Baulamycins A and B, broad-spectrum antibiotics identified as inhibitors of siderophore biosynthesis in Staphylococcus aureus and Bacillus anthracis.

    Science.gov (United States)

    Tripathi, Ashootosh; Schofield, Michael M; Chlipala, George E; Schultz, Pamela J; Yim, Isaiah; Newmister, Sean A; Nusca, Tyler D; Scaglione, Jamie B; Hanna, Philip C; Tamayo-Castillo, Giselle; Sherman, David H

    2014-01-29

    Siderophores are high-affinity iron chelators produced by microorganisms and frequently contribute to the virulence of human pathogens. Targeted inhibition of the biosynthesis of siderophores staphyloferrin B of Staphylococcus aureus and petrobactin of Bacillus anthracis hold considerable potential as a single or combined treatment for methicillin-resistant S. aureus (MRSA) and anthrax infection, respectively. The biosynthetic pathways for both siderophores involve a nonribosomal peptide synthetase independent siderophore (NIS) synthetase, including SbnE in staphyloferrin B and AsbA in petrobactin. In this study, we developed a biochemical assay specific for NIS synthetases to screen for inhibitors of SbnE and AsbA against a library of marine microbial-derived natural product extracts (NPEs). Analysis of the NPE derived from Streptomyces tempisquensis led to the isolation of the novel antibiotics baulamycins A (BmcA, 6) and B (BmcB, 7). BmcA and BmcB displayed in vitro activity with IC50 values of 4.8 μM and 19 μM against SbnE and 180 μM and 200 μM against AsbA, respectively. Kinetic analysis showed that the compounds function as reversible competitive enzyme inhibitors. Liquid culture studies with S. aureus , B. anthracis , E. coli , and several other bacterial pathogens demonstrated the capacity of these natural products to penetrate bacterial barriers and inhibit growth of both Gram-positive and Gram-negative species. These studies provide proof-of-concept that natural product inhibitors targeting siderophore virulence factors can provide access to novel broad-spectrum antibiotics, which may serve as important leads for the development of potent anti-infective agents. PMID:24401083

  3. cis-Acting elements that control expression of the master virulence regulatory gene atxA in Bacillus anthracis.

    Science.gov (United States)

    Dale, Jennifer L; Raynor, Malik J; Dwivedi, Prabhat; Koehler, Theresa M

    2012-08-01

    Transcription of the Bacillus anthracis structural genes for the anthrax toxin proteins and biosynthetic operon for capsule is positively regulated by AtxA, a transcription regulator with unique properties. Consistent with the role of atxA in virulence factor expression, a B. anthracis atxA-null mutant is avirulent in a murine model for anthrax. In culture, multiple signals impact atxA transcript levels, and the timing and steady-state level of atxA expression are critical for optimal toxin and capsule synthesis. Despite the apparent complex control of atxA transcription, only one trans-acting protein, the transition state regulator AbrB, has been demonstrated to interact directly with the atxA promoter. Here we employ 5' and 3' deletion analysis and site-directed mutagenesis of the atxA control region to demonstrate that atxA transcription from the major start site P1 is dependent upon a consensus sequence for the housekeeping sigma factor SigA and an A+T-rich upstream element for RNA polymerase. We also show that an additional trans-acting protein(s) binds specifically to atxA promoter sequences located between -13 and +36 relative to P1 and negatively impacts transcription. Deletion of this region increases promoter activity up to 15-fold. Site-directed mutagenesis of a 9-bp palindromic sequence within the region prevents binding of the trans-acting protein(s), increasing promoter activity 7-fold and resulting in a corresponding increase in AtxA and anthrax toxin production. Notably, an atxA promoter mutant that produced elevated levels of AtxA and toxin proteins during culture was unaffected for virulence in a murine model for anthrax. PMID:22636778

  4. Decontamination of Bacillus subtilis var.niger spores on selected surfaces by chlorine dioxide gas

    Institute of Scientific and Technical Information of China (English)

    Yan-ju LI; Neng ZHU; Hai-quan JIA; Jin-hui WU; Ying YI; Jian-cheng QI

    2012-01-01

    Objective:Chlorine dioxide (CD) gas has been used as a fumigant in the disinfection of biosafety laboratories.In this study,some experiments were conducted to assess the inactivation of spores inoculated on six materials [stainless steel (SS),painted steel (PS),polyvinyl chlorid (PVC),polyurethane (PU),glass (GS),and cotton cloth (CC)] by CD gas.The main aims of the study were to determine the sporicidal efficacy of CD gas and the effect of prehumidification before decontamination on sporicidal efficacy.Methods:Material coupons (1.2 cm diameter of SS,PS,and PU; 1.0 cm×1.0 cm for PVC,GS,and CC) were contaminated with 10 μl of Bacillus subtilis var.niger(ATCC 9372) spore suspension in mixed organic burden and then dried in a biosafety cabinet for 12 h.The spores were recovered by soaking the coupons in 5 ml of extraction liquid for 1 h and then vortexing the liquid for 1 min.Results:The log reductions in spore numbers on inoculated test materials exposed to CD gas [0.080% (volume ratio,v/v) for 3 h]were in the range of from 1.80 to 6.64.Statistically significant differences were found in decontamination efficacies on test material coupons of SS,PS,PU,and CC between with and without a 1-h prehumidification treatment.With the extraction method,there were no statistically significant differences in the recovery ratios between the porous and non-porous materials.Conclusions:The results reported from this study could provide information for developing decontamination technology based on CD gas for targeting surface microbial contamination.

  5. Determining the Role of Multicopper Oxidases in Manganese(II) Oxidation by Marine Bacillus Spores

    Science.gov (United States)

    Dick, G. J.; Tebo, B. M.

    2005-12-01

    Bacteria play an important role in the environmental cycling of Mn by oxidizing soluble Mn(II) and forming insoluble Mn(III/IV) oxides. These biogenic Mn oxides are renowned for their strong sorptive and oxidative properties, which control the speciation and availability of many metals and organic compounds. A wide variety of bacteria are known to catalyze the oxidation of Mn(II); one of the most frequently isolated types are Bacillus species that oxidize Mn(II) only as metabolically dormant spores. We are using genetic and biochemical methods to study the molecular mechanisms of this process in these organisms. mnxG, a gene related to the multicopper oxidase (MCO) family of enzymes, is required for Mn(II) oxidation in the model organism, Bacillus sp. strain SG-1. Mn(II)-oxidizing activity can be detected in crude protein extracts of the exosporium and as a discrete band in SDS-PAGE gels, however previous attempts to purify or identify this Mn(II)-oxidizing enzyme have failed. A direct link between the Mn(II)-oxidizing enzyme and the MCO gene suspected to encode it has never been made. We used genetic and biochemical methods to investigate the role of the MCO in the mechanism of Mn(II) oxidation. Comparative analysis of the mnx operon from several diverse Mn(II)-oxidizing Bacillus spores revealed that mnxG is the most highly conserved gene in the operon, and that copper binding sites are highly conserved. As with Mn(II) oxidases from other organisms, heterologous expression of the Bacillus mnxG in E. coli did not yield an active Mn(II) oxidase. Purifying sufficient quantities of the native Mn(II) oxidase from Bacillus species for biochemical characterization has proven difficult because the enzyme does not appear to be abundant, and it is highly insoluble. We were able to partially purify the Mn(II) oxidase, and to analyze the active band by in-gel trypsin digestion followed by tandem mass spectrometry (MS/MS). MS/MS spectra provided a conclusive match to mnx

  6. Biochip for the Detection of Bacillus anthracis Lethal Factor and Therapeutic Agents against Anthrax Toxins.

    Science.gov (United States)

    Silin, Vitalii; Kasianowicz, John J; Michelman-Ribeiro, Ariel; Panchal, Rekha G; Bavari, Sina; Robertson, Joseph W F

    2016-01-01

    Tethered lipid bilayer membranes (tBLMs) have been used in many applications, including biosensing and membrane protein structure studies. This report describes a biosensor for anthrax toxins that was fabricated through the self-assembly of a tBLM with B. anthracis protective antigen ion channels that are both the recognition element and electrochemical transducer. We characterize the sensor and its properties with electrochemical impedance spectroscopy and surface plasmon resonance. The sensor shows a sensitivity similar to ELISA and can also be used to rapidly screen for molecules that bind to the toxins and potentially inhibit their lethal effects. PMID:27348008

  7. Adsorption of β-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutants spores of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Sirec Teja

    2012-08-01

    Full Text Available Abstract Background The Bacillus subtilis spore has long been used as a surface display system with potential applications in a variety of fields ranging from mucosal vaccine delivery, bioremediation and biocatalyst development. More recently, a non-recombinant approach of spore display has been proposed and heterologous proteins adsorbed on the spore surface. We used the well-characterized β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius as a model to study enzyme adsorption, to analyze whether and how spore-adsorption affects the properties of the enzyme and to improve the efficiency of the process. Results We report that purified β-galactosidase molecules were adsorbed to purified spores of a wild type strain of B. subtilis retaining ca. 50% of their enzymatic activity. Optimal pH and temperature of the enzyme were not altered by the presence of the spore, that protected the adsorbed β-galactosidase from exposure to acidic pH conditions. A collection of mutant strains of B. subtilis lacking a single or several spore coat proteins was compared to the isogenic parental strain for the adsorption efficiency. Mutants with an altered outermost spore layer (crust were able to adsorb 60-80% of the enzyme, while mutants with a severely altered or totally lacking outer coat adsorbed 100% of the β-galactosidase molecules present in the adsorption reaction. Conclusion Our results indicate that the spore surface structures, the crust and the outer coat layer, have an negative effect on the adhesion of the β-galactosidase. Electrostatic forces, previously suggested as main determinants of spore adsorption, do not seem to play an essential role in the spore-β-galactosidase interaction. The analysis of mutants with altered spore surface has shown that the process of spore adsorption can be improved and has suggested that such improvement has to be based on a better understanding of the spore surface structure

  8. On-chip Detection of Rolling Circle Amplified DNA Molecules from Bacillus Globigii spores and Vibrio Cholerae

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Donolato, Marco;

    2014-01-01

    , which makes the setup very compact. Limits of detection down to 500 Bacillus globigii spores and 2 pM of Vibrio cholerae are demonstrated, which are on the same order of magnitude or lower than those achieved previously using a commercial macro-scale AC susceptometer. The chipbased readout is an...

  9. Draft Genome Sequence of Bacillus farraginis R-6540T (DSM 16013), a Spore-Forming Bacterium Isolated at Dairy Farms

    Science.gov (United States)

    Wang, Jie-ping; Liu, Guo-hong; Ge, Ci-bin; Xiao, Rong-feng; Zheng, Xue-fang; Shi, Huai

    2016-01-01

    Bacillus farraginis R-6540T is a Gram-positive, aerobic, and spore-forming bacterium with very high intrinsic heat resistance. Here, we report the 5.32-Mb draft genome sequence of B. farraginis R-6540T, which is the first genome sequence of this species and will promote its fundamental research. PMID:27313303

  10. Cereulide synthetase gene cluster from emetic Bacillus cereus: Structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1

    Directory of Open Access Journals (Sweden)

    Wagner Martin

    2006-03-01

    Full Text Available Abstract Background Cereulide, a depsipeptide structurally related to valinomycin, is responsible for the emetic type of gastrointestinal disease caused by Bacillus cereus. Recently, it has been shown that this toxin is produced by a nonribosomal peptide synthetase (NRPS, but its exact genetic organization and biochemical synthesis is unknown. Results The complete sequence of the cereulide synthetase (ces gene cluster, which encodes the enzymatic machinery required for the biosynthesis of cereulide, was dissected. The 24 kb ces gene cluster comprises 7 CDSs and includes, besides the typical NRPS genes like a phosphopantetheinyl transferase and two CDSs encoding enzyme modules for the activation and incorporation of monomers in the growing peptide chain, a CDS encoding a putative hydrolase in the upstream region and an ABC transporter in the downstream part. The enzyme modules responsible for incorporation of the hydroxyl acids showed an unusual structure while the modules responsible for the activation of the amino acids Ala and Val showed the typical domain organization of NRPS. The ces gene locus is flanked by genetic regions with high homology to virulence plasmids of B. cereus, Bacillus thuringiensis and Bacillus anthracis. PFGE and Southern hybridization showed that the ces genes are restricted to emetic B. cereus and indeed located on a 208 kb megaplasmid, which has high similarities to pXO1-like plasmids. Conclusion The ces gene cluster that is located on a pXO1-like virulence plasmid represents, beside the insecticidal and the anthrax toxins, a third type of B. cereus group toxins encoded on megaplasmids. The ces genes are restricted to emetic toxin producers, but pXO1-like plasmids are also present in emetic-like strains. These data might indicate the presence of an ancient plasmid in B. cereus which has acquired different virulence genes over time. Due to the unusual structure of the hydroxyl acid incorporating enzyme modules of Ces

  11. Genome Sequence of Bacillus anthracis Strain Stendal, Isolated from an Anthrax Outbreak in Cattle in Germany.

    Science.gov (United States)

    Antwerpen, Markus; Elschner, Mandy; Gaede, Wolfgang; Schliephake, Annette; Grass, Gregor; Tomaso, Herbert

    2016-01-01

    In July 2012, an anthrax outbreak occurred among cattle in northern Germany resulting in ten losses. Here, we report the draft genome sequence ofBacillus anthracisstrain Stendal, isolated from one of the diseased cows. PMID:27056225

  12. Multifactorial Resistance of Bacillus subtilis Spores to High-Energy Proton Radiation: Role of Spore Structural Components and the Homologous Recombination and Non-Homologous End Joining DNA Repair Pathways

    OpenAIRE

    Moeller, Ralf; Reitz, Günther; Li, Zuofeng; Klein, Stuart; Nicholson, Wayne L.

    2012-01-01

    The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiati...

  13. Role of visible light-activated photocatalyst on the reduction of anthrax spore-induced mortality in mice.

    Directory of Open Access Journals (Sweden)

    Jyh-Hwa Kau

    Full Text Available BACKGROUND: Photocatalysis of titanium dioxide (TiO(2 substrates is primarily induced by ultraviolet light irradiation. Anion-doped TiO(2 substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated. We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Standard plating method was used to determine the inactivation of anthrax spore by visible light-induced photocatalysis. Mouse models were further employed to investigate the suppressive effects of the photocatalysis on anthrax toxin- and spore-mediated mortality. We found that anti-spore activities of visible light illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores. Even though the spore-killing efficiency is only approximately 25%, our data indicate that spores from photocatalyzed groups but not untreated groups have a less survival rate after macrophage clearance. In addition, the photocatalysis could directly inactivate lethal toxin, the major virulence factor of B. anthracis. In agreement with these results, we found that the photocatalyzed spores have tenfold less potency to induce mortality in mice. These data suggest that the photocatalysis might injury the spores through inactivating spore components. CONCLUSION/SIGNIFICANCE: Photocatalysis induced injuries of the spores might be more important than direct killing of spores to reduce pathogenicity in the host.

  14. Neutralizing antibody and functional mapping of Bacillus anthracis protective antigen-The first step toward a rationally designed anthrax vaccine.

    Science.gov (United States)

    McComb, Ryan C; Martchenko, Mikhail

    2016-01-01

    Anthrax is defined by the Centers for Disease Control and Prevention as a Category A pathogen for its potential use as a bioweapon. Current prevention treatments include Anthrax Vaccine Adsorbed (AVA). AVA is an undefined formulation of Bacillus anthracis culture supernatant adsorbed to aluminum hydroxide. It has an onerous vaccination schedule, is slow and cumbersome to produce and is slightly reactogenic. Next-generation vaccines are focused on producing recombinant forms of anthrax toxin in a well-defined formulation but these vaccines have been shown to lose potency as they are stored. In addition, studies have shown that a proportion of the antibody response against these vaccines is focused on non-functional, non-neutralizing regions of the anthrax toxin while some essential functional regions are shielded from eliciting an antibody response. Rational vaccinology is a developing field that focuses on designing vaccine antigens based on structural information provided by neutralizing antibody epitope mapping, crystal structure analysis, and functional mapping through amino acid mutations. This information provides an opportunity to design antigens that target only functionally important and conserved regions of a pathogen in order to make a more optimal vaccine product. This review provides an overview of the literature related to functional and neutralizing antibody epitope mapping of the Protective Antigen (PA) component of anthrax toxin. PMID:26611201

  15. Black-backed jackal exposure to rabies virus, canine distemper virus, and Bacillus anthracis in Etosha National Park, Namibia.

    Science.gov (United States)

    Bellan, Steve E; Cizauskas, Carrie A; Miyen, Jacobeth; Ebersohn, Karen; Küsters, Martina; Prager, K C; Van Vuuren, Moritz; Sabeta, Claude; Getz, Wayne M

    2012-04-01

    Canine distemper virus (CDV) and rabies virus (RABV) occur worldwide in wild carnivore and domestic dog populations and pose threats to wildlife conservation and public health. In Etosha National Park (ENP), Namibia, anthrax is endemic and generates carcasses frequently fed on by an unusually dense population of black-backed jackals (Canis mesomelas). Using serology, phylogenetic analyses (on samples obtained from February 2009-July 2010), and historical mortality records (1975-2011), we assessed jackal exposure to Bacillus anthracis (BA; the causal bacterial agent of anthrax), CDV, and RABV. Prevalence of antibodies against BA (95%, n = 86) and CDV (71%, n = 80) was relatively high, while that of antibodies against RABV was low (9%, n = 81). Exposure to BA increased significantly with age, and all animals >6 mo old were antibody-positive. As with BA, prevalence of antibodies against CDV increased significantly with age, with similar age-specific trends during both years of the study. No significant effect of age was found on the prevalence of antibodies against RABV. Three of the seven animals with antibodies against RABV were monitored for more than 1 yr after sampling and showed no signs of active infection. Mortality records revealed that rabid animals are destroyed nearly every year inside the ENP tourist camps. Phylogenetic analyses demonstrated that jackal RABV in ENP is part of the same transmission cycle as other dog-jackal RABV cycles in Namibia. PMID:22493112

  16. Different Roles of N-Terminal and C-Terminal Domains in Calmodulin for Activation of Bacillus anthracis Edema Factor

    Directory of Open Access Journals (Sweden)

    Carolin Lübker

    2015-07-01

    Full Text Available Bacillus anthracis adenylyl cyclase toxin edema factor (EF is one component of the anthrax toxin and is essential for establishing anthrax disease. EF activation by the eukaryotic Ca2+-sensor calmodulin (CaM leads to massive cAMP production resulting in edema. cAMP also inhibits the nicotinamide adenine dinucleotide phosphate (NADPH-oxidase, thus reducing production of reactive oxygen species (ROS used for host defense in activated neutrophils and thereby facilitating bacterial growth. Methionine (Met residues in CaM, important for interactions between CaM and its binding partners, can be oxidized by ROS. We investigated the impact of site-specific oxidation of Met in CaM on EF activation using thirteen CaM-mutants (CaM-mut with Met to leucine (Leu substitutions. EF activation shows high resistance to oxidative modifications in CaM. An intact structure in the C-terminal region of oxidized CaM is sufficient for major EF activation despite altered secondary structure in the N-terminal region associated with Met oxidation. The secondary structures of CaM-mut were determined and described in previous studies from our group. Thus, excess cAMP production and the associated impairment of host defence may be afforded even under oxidative conditions in activated neutrophils.

  17. Cellular Functions and X-ray Structure of Anthrolysin O, a Cholesterol-dependent Cytolysin Secreted by Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Bourdeau, Raymond W.; Malito, Enrico; Chenal, Alexandre; Bishop, Brian L.; Musch, Mark W.; Villereal, Mitch L.; Chang, Eugene B.; Mosser, Elise M.; Rest, Richard F.; Tang, Wei-Jen; (CNRS-UMR); (Drexel-MED); (UC)

    2009-06-02

    Anthrolysin O (ALO) is a pore-forming, cholesterol-dependent cytolysin (CDC) secreted by Bacillus anthracis, the etiologic agent for anthrax. Growing evidence suggests the involvement of ALO in anthrax pathogenesis. Here, we show that the apical application of ALO decreases the barrier function of human polarized epithelial cells as well as increases intracellular calcium and the internalization of the tight junction protein occludin. Using pharmacological agents, we also found that barrier function disruption requires increased intracellular calcium and protein degradation. We also report a crystal structure of the soluble state of ALO. Based on our analytical ultracentrifugation and light scattering studies, ALO exists as a monomer. Our ALO structure provides the molecular basis as to how ALO is locked in a monomeric state, in contrast to other CDCs that undergo antiparallel dimerization or higher order oligomerization in solution. ALO has four domains and is globally similar to perfringolysin O (PFO) and intermedilysin (ILY), yet the highly conserved undecapeptide region in domain 4 (D4) adopts a completely different conformation in all three CDCs. Consistent with the differences within D4 and at the D2-D4 interface, we found that ALO D4 plays a key role in affecting the barrier function of C2BBE cells, whereas PFO domain 4 cannot substitute for this role. Novel structural elements and unique cellular functions of ALO revealed by our studies provide new insight into the molecular basis for the diverse nature of the CDC family.

  18. Bacillus subtilis spore survival and expression of germination-induced bioluminescence after prolonged incubation under simulated Mars atmospheric pressure and composition: implications for planetary protection and lithopanspermia

    Science.gov (United States)

    Nicholson, Wayne L.; Schuerger, Andrew C.

    2005-01-01

    Bacterial endospores in the genus Bacillus are considered good models for studying interplanetary transfer of microbes by natural or human processes. Although spore survival during transfer itself has been the subject of considerable study, the fate of spores in extraterrestrial environments has received less attention. In this report we subjected spores of a strain of Bacillus subtilis, containing luciferase resulting from expression of an sspB-luxAB gene fusion, to simulated martian atmospheric pressure (7-18 mbar) and composition (100% CO(2)) for up to 19 days in a Mars simulation chamber. We report here that survival was similar between spores exposed to Earth conditions and spores exposed up to 19 days to simulated martian conditions. However, germination-induced bioluminescence was lower in spores exposed to simulated martian atmosphere, which suggests sublethal impairment of some endogenous spore germination processes.

  19. Greater enhancement of Bacillus subtilis spore yields in submerged cultures by optimization of medium composition through statistical experimental designs.

    Science.gov (United States)

    Chen, Zhen-Min; Li, Qing; Liu, Hua-Mei; Yu, Na; Xie, Tian-Jian; Yang, Ming-Yuan; Shen, Ping; Chen, Xiang-Dong

    2010-02-01

    Bacillus subtilis spore preparations are promising probiotics and biocontrol agents, which can be used in plants, animals, and humans. The aim of this work was to optimize the nutritional conditions using a statistical approach for the production of B. subtilis (WHK-Z12) spores. Our preliminary experiments show that corn starch, corn flour, and wheat bran were the best carbon sources. Using Plackett-Burman design, corn steep liquor, soybean flour, and yeast extract were found to be the best nitrogen source ingredients for enhancing spore production and were studied for further optimization using central composite design. The key medium components in our optimization medium were 16.18 g/l of corn steep liquor, 17.53 g/l of soybean flour, and 8.14 g/l of yeast extract. The improved medium produced spores as high as 1.52 +/- 0.06 x 10(10) spores/ml under flask cultivation conditions, and 1.56 +/- 0.07 x 10(10) spores/ml could be achieved in a 30-l fermenter after 40 h of cultivation. To the best of our knowledge, these results compared favorably to the documented spore yields produced by B. subtilis strains. PMID:19697022

  20. Survivability of bare, individual Bacillus subtilis spores to high-velocity surface impact: Implications for microbial transfer through space

    Science.gov (United States)

    Barney, Brandon L.; Pratt, Sara N.; Austin, Daniel E.

    2016-06-01

    Laboratory experiments show that endospores of Bacillus subtilis survive impact against a solid surface at velocities as high as 299 ±28 m/s. During impact, spores experience and survive accelerations of at least 1010 m/s2. The spores were introduced into a vacuum chamber using an electrospray source and accelerated to a narrow velocity distribution by entrainment in a differentially pumped gas flow. Different velocity ranges were studied by modifying the gas flow parameters. The spores were electrically charged, allowing direct measurement of the velocity of each spore as it passed through an image charge detector prior to surface impact. Spores impacted a glass surface and were collected for subsequent analysis by culturing. Most spores survived impact at all measured velocities. These experiments differ fundamentally from other studies that show either shock or impact survivability of bacteria embedded within or on the surface of a projectile. Bacteria in the present experiments undergo a single interaction with a solid surface at the full impact velocity, in the absence of any other effects such as cushioning due to microbe agglomerations, deceleration due to air or vapor, or transfer of impact shock through solid or liquid media. During these full-velocity impact events, the spores experience extremely high decelerations. This study is the first reported instance of accelerations of this magnitude experienced during a bacteria impact event. These results are discussed in the context of potential transfer of viable microbes in space and other scenarios involving surface impacts at high velocities.

  1. Microevolution of Anthrax from a Young Ancestor (M.A.Y.A. Suggests a Soil-Borne Life Cycle of Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Peter Braun

    Full Text Available During an anthrax outbreak at the Pollino National Park (Basilicata, Italy in 2004, diseased cattle were buried and from these anthrax-foci Bacillus anthracis endospores still diffuse to the surface resulting in local accumulations. Recent data suggest that B. anthracis multiplies in soil outside the animal-host body. This notion is supported by the frequent isolation of B. anthracis from soil lacking one or both virulence plasmids. Such strains represent an evolutionary dead end, as they are likely no longer able to successfully infect new hosts. This loss of virulence plasmids is explained most simply by postulating a soil-borne life cycle of the pathogen. To test this hypothesis we investigated possible microevolution at two natural anthrax foci from the 2004 outbreak. If valid, then genotypes of strains isolated from near the surface at these foci should be on a different evolutionary trajectory from those below residing in deeper-laying horizons close to the carcass. Thus, the genetic diversity of B. anthracis isolates was compared conducting Progressive Hierarchical Resolving Assays using Nucleic Acids (PHRANA and next generation Whole Genome Sequencing (WGS. PHRANA was not discriminatory enough to resolve the fine genetic relationships between the isolates. Conversely, WGS of nine isolates from near-surface and nine from near-carcass revealed five isolate specific SNPs, four of which were found only in different near-surface isolates. In support of our hypothesis, one surface-isolate lacked plasmid pXO1 and also harbored one of the unique SNPs. Taken together, our results suggest a limited soil-borne life cycle of B. anthracis.

  2. Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk

    OpenAIRE

    Dong, Peng; Georget, Erika S.; Aganovic, Kemal; Heinz, Volker; Mathys, Alexander

    2015-01-01

    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of ~106 CFU/mL were subjecte...

  3. Transitory UV resistance during germination of UV-sensitive spores produced by a mutant of Bacillus cereus 569

    International Nuclear Information System (INIS)

    A mutant of Bacillus cereus 569, designated 2422 is unable to excise cyclobutane-type dimers and spore-specific photoproducts from the DNA of UV-irradiated vegetative cells and dormant spores. The deficiency in the excision repair mechanism was found to be at the post-incision step in the exonuclease-mediated removal of the photoproducts. During germination, the mutant B. cereus 2422 exhibits UV-resistance and an efficient photoproduct removal which is followed by DNA repair synthesis. The data presented indicate the existence of germinative excision repair in B. cereus 569. (author)

  4. Recovery of Heat Treated Bacillus cereus Spores Is Affected by Matrix Composition and Factors with Putative Functions in Damage Repair.

    Science.gov (United States)

    Warda, Alicja K; Tempelaars, Marcel H; Abee, Tjakko; Nierop Groot, Masja N

    2016-01-01

    The ability of spores to recover and grow out after food processing is affected by cellular factors and by the outgrowth conditions. In the current communication we studied the recovery and outgrowth of individually sorted spores in BHI and rice broth media and on agar plates using flow cytometry. We show that recovery of wet heat treated Bacillus cereus ATCC 14579 spores is affected by matrix composition with highest recovery in BHI broth or on rice agar plates, compared to BHI agar plates and rice broth. Data show that not only media composition but also its liquid or solid state affect the recovery of heat treated spores. To determine the impact of factors with putative roles in recovery of heat treated spores, specific genes previously shown to be highly expressed in outgrowing heat-treated spores were selected for mutant construction. Spores of nine B. cereus ATCC 14579 deletion mutants were obtained and their recovery from wet heat treatment was evaluated using BHI and rice broth and agar plates. Deletion mutant spores showed different capacity to recover from heat treatment compared to wild type with the most pronounced effect for a mutant lacking BC5242, a gene encoding a membrane protein with C2C2 zinc finger which resulted in over 95% reduction in recovery compared to the wild type in BHI broth. Notably, similar relative performance of wild type and mutants was observed using the other recovery conditions. We obtained insights on the impact of matrix composition and state on recovery of individually sorted heat treated spores and identified cellular factors with putative roles in this process. These results may provide leads for future developments in design of more efficient combined preservation treatments. PMID:27486443

  5. Production of Functionally Active and Immunogenic Non-Glycosylated Protective Antigen from Bacillus anthracis in Nicotiana benthamiana by Co-Expression with Peptide-N-Glycosidase F (PNGase F) of Flavobacterium meningosepticum.

    Science.gov (United States)

    Mamedov, Tarlan; Chichester, Jessica A; Jones, R Mark; Ghosh, Ananya; Coffin, Megan V; Herschbach, Kristina; Prokhnevsky, Alexey I; Streatfield, Stephen J; Yusibov, Vidadi

    2016-01-01

    Bacillus anthracis has long been considered a potential biological warfare agent, and therefore, there is a need for a safe, low-cost and highly efficient anthrax vaccine with demonstrated long-term stability for mass vaccination in case of an emergency. Many efforts have been made towards developing an anthrax vaccine based on recombinant protective antigen (rPA) of B. anthracis, a key component of the anthrax toxin, produced using different expression systems. Plants represent a promising recombinant protein production platform due to their relatively low cost, rapid scalability and favorable safety profile. Previous studies have shown that full-length rPA produced in Nicotiana benthamiana (pp-PA83) is immunogenic and can provide full protection against lethal spore challenge; however, further improvement in the potency and stability of the vaccine candidate is necessary. PA of B. anthracis is not a glycoprotein in its native host; however, this protein contains potential N-linked glycosylation sites, which can be aberrantly glycosylated during expression in eukaryotic systems including plants. This glycosylation could affect the availability of certain key epitopes either due to masking or misfolding of the protein. Therefore, a non-glycosylated form of pp-PA83 was engineered and produced in N. benthamiana using an in vivo deglycosylation approach based on co-expression of peptide-N-glycosidase F (PNGase F) from Flavobacterium meningosepticum. For comparison, versions of pp-PA83 containing point mutations in six potential N-glycosylation sites were also engineered and expressed in N. benthamiana. The in vivo deglycosylated pp-PA83 (pp-dPA83) was shown to have in vitro activity, in contrast to glycosylated pp-PA83, and to induce significantly higher levels of toxin-neutralizing antibody responses in mice compared with glycosylated pp-PA83, in vitro deglycosylated pp-PA83 or the mutated versions of pp-PA83. These results suggest that pp-dPA83 may offer advantages

  6. The poly-γ-d-glutamic acid capsule surrogate of the Bacillus anthracis capsule induces nitric oxide production via the platelet activating factor receptor signaling pathway.

    Science.gov (United States)

    Lee, Hae-Ri; Jeon, Jun Ho; Park, Ok-Kyu; Chun, Jeong-Hoon; Park, Jungchan; Rhie, Gi-Eun

    2015-12-01

    The poly-γ-d-glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis, confers protection of the bacillus from phagocytosis and allows its unimpeded growth in the host. PGA capsules released from B. anthracis are associated with lethal toxin in the blood of experimentally infected animals and enhance the cytotoxic effect of lethal toxin on macrophages. In addition, PGA capsule itself activates macrophages and dendritic cells to produce proinflammatory cytokine such as IL-1β, indicating multiple roles of PGA capsule in anthrax pathogenesis. Here we report that PGA capsule of Bacillus licheniformis, a surrogate of B. anthracis capsule, induces production of nitric oxide (NO) in RAW264.7 cells and bone marrow-derived macrophages. NO production was induced by PGA in a dose-dependent manner and was markedly reduced by inhibitors of inducible NO synthase (iNOS), suggesting iNOS-dependent production of NO. Induction of NO production by PGA was not observed in macrophages from TLR2-deficient mice and was also substantially inhibited in RAW264.7 cells by pretreatment of TLR2 blocking antibody. Subsequently, the downstream signaling events such as ERK, JNK and p38 of MAPK pathways as well as NF-κB activation were required for PGA-induced NO production. In addition, the induced NO production was significantly suppressed by treatment with antagonists of platelet activating factor receptor (PAFR) or PAFR siRNA, and mediated through PAFR/Jak2/STAT-1 signaling pathway. These findings suggest that PGA capsule induces NO production in macrophages by triggering both TLR2 and PAFR signaling pathways which lead to activation of NF-kB and STAT-1, respectively. PMID:26350415

  7. Screening foods for processing-resistant bacterial spores and characterization of a pressure- and heat-resistant Bacillus licheniformis isolate.

    Science.gov (United States)

    Ahn, Juhee; Balasubramaniam, V M

    2014-06-01

    This study was carried out to isolate pressure- and heat-resistant indicator spores from selected food matrices (black pepper, red pepper, garlic, and potato peel). Food samples were processed under various thermal (90 to 105°C) and pressure (700 MPa) combination conditions, and surviving microorganisms were isolated. An isolate from red pepper powder, Bacillus licheniformis, was highly resistant to pressure-thermal treatments. Spores of the isolate in deionized water were subjected to the combination treatments of pressure (0.1 to 700 MPa) and heat (90 to 121°C). Compared with the thermal treatment, the combined pressure-thermal treatments considerably reduced the numbers of B. licheniformis spores to less than 1.0 log CFU/g at 700 MPa plus 105°C and at 300 to 700 MPa plus 121°C. The inactivation kinetic parameters of the isolated B. licheniformis spores were estimated using linear and nonlinear models. Within the range of the experimental conditions tested, the pressure sensitivity (zP) of the spores decreased with increasing temperature (up to 121°C), and the temperature sensitivity (zT) was maximum at atmospheric pressure (0.1 MPa). These results will be useful for developing a combined pressure-thermal inactivation kinetics database for various bacterial spores. PMID:24853517

  8. Effect of combined radiation and NaOCl/ultrasonication on reduction of Bacillus cereus spores in rice

    Science.gov (United States)

    Ha, Ji-Hyoung; Kim, Hyun-Joo; Ha, Sang-Do

    2012-08-01

    In this study, ionizing radiation in combination with sodium hypochlorite (NaOCl) and ultrasonication (US) was examined for its effectiveness in reducing Bacillus cereus F4810/72 spores in raw rice. We also evaluated whether the combined processing would produce synergistic effects compared to the individual treatments. The concentration of the initial B. cereus spore was approximately 2.9 log10 CFU/g. After 0.1, 0.2 and 0.3 kGy irradiation treatment, spore populations were reduced by 1.3, 1.4 and 1.6 log10 CFU/g, respectively. In the case of combined gamma irradiation and NaOCl/US treatment, the reduction was higher than those of each single treatment. The combined treatment of 0.1, 0.2 and 0.3 kGy and NaOCl (600-1000 ppm)/US (5-20 min) completely destroyed the spores in raw rice while the spores were not completely destroyed in the control treatment (0 kGy). These results indicated that it could be more effective to combine NaOCl with low dose gamma irradiation than high dose (concentration) of individual disinfection treatment to destroy B. cereus spores in food such as raw rice.

  9. Fluorimetric Detection of a Bacillus stearothermophilus Spore-Bound Enzyme, α-d-Glucosidase, for Rapid Indication of Flash Sterilization Failure

    OpenAIRE

    Vesley, Donald; Langholz, Ann C.; Rohlfing, Stephen R.; Foltz, William E.

    1992-01-01

    A biological indicator based on fluorimetric detection within 60 min of a Bacillus stearothermophilus spore-bound enzyme, α-d-glucosidase, has been developed. Results indicate that the enzyme survived slightly longer than spores observed after 24 h of incubation. The new system shows promise for evaluating flash sterilization cycles within 60 min compared with conventional 24-h systems.

  10. Germination of Bacillus cereus spores is induced by germinants from differentiated caco-2 cells, a human cell line mimicking the epithelial cells of the small intestine

    OpenAIRE

    Wijnands, L. M.; Dufrenne, J. B.; Leusden, van, F.M.; Abee, T.

    2007-01-01

    Spores of 11 enterotoxigenic strains of Bacillus cereus isolated from foods and humans adhered with similar efficiencies to Caco-2 cells, whereas subsequent germination triggering was observed with only 8 of these strains. Notably, Hep-2 cells did not trigger germination, while spores of all strains displayed similar germination efficiencies in brain heart infusion broth.

  11. Modelling the influence of palmitic, palmitoleic, stearic and oleic acids on apparent heat resistance of spores of Bacillus cereus NTCC 11145 and Clostridium sporogenes Pasteur 79.3

    OpenAIRE

    Mvou Lekogo, Brice; Coroller, Louis; Mathot, Anne Gabrielle; Mafart, Pierre; Leguérinel, Ivan

    2010-01-01

    Heat resistance of spores is affected by many factors such as temperature, pH, water activity (aw) and others. Previous studies have reported that free fatty acids can affect the germination and growth of bacterial spores. In this study, we investigated the influence of free fatty acids in heating medium or in recovery medium on the heat resistance of spores of Bacillus cereus NTCC 11145 and Clostridium sporogenes Pasteur 79.3. Four free fatty acids were studied: palmitic, palmitoleic, steari...

  12. Rapid identification of genetic modifications in Bacillus anthracis using whole genome draft sequences generated by 454 pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Peter E Chen

    Full Text Available BACKGROUND: The anthrax letter attacks of 2001 highlighted the need for rapid identification of biothreat agents not only for epidemiological surveillance of the intentional outbreak but also for implementing appropriate countermeasures, such as antibiotic treatment, in a timely manner to prevent further casualties. It is clear from the 2001 cases that survival may be markedly improved by administration of antimicrobial therapy during the early symptomatic phase of the illness; i.e., within 3 days of appearance of symptoms. Microbiological detection methods are feasible only for organisms that can be cultured in vitro and cannot detect all genetic modifications with the exception of antibiotic resistance. Currently available immuno or nucleic acid-based rapid detection assays utilize known, organism-specific proteins or genomic DNA signatures respectively. Hence, these assays lack the ability to detect novel natural variations or intentional genetic modifications that circumvent the targets of the detection assays or in the case of a biological attack using an antibiotic resistant or virulence enhanced Bacillus anthracis, to advise on therapeutic treatments. METHODOLOGY/PRINCIPAL FINDINGS: We show here that the Roche 454-based pyrosequencing can generate whole genome draft sequences of deep and broad enough coverage of a bacterial genome in less than 24 hours. Furthermore, using the unfinished draft sequences, we demonstrate that unbiased identification of known as well as heretofore-unreported genetic modifications that include indels and single nucleotide polymorphisms conferring antibiotic and phage resistances is feasible within the next 12 hours. CONCLUSIONS/SIGNIFICANCE: Second generation sequencing technologies have paved the way for sequence-based rapid identification of both known and previously undocumented genetic modifications in cultured, conventional and newly emerging biothreat agents. Our findings have significant implications in

  13. Postincision steps of photoproduct removal in a mutant of Bacillus cereus 569 that produces UV-sensitive spores.

    OpenAIRE

    Weinberger, S; Evenchick, Z; Hertman, I

    1983-01-01

    An excision-defective mutant of Bacillus cereus 569 is normal in incision and repair synthesis, but rejoining of incision breaks is defective, resulting in accumulation of low-molecular-weight DNA after UV irradiation. The defect in removal of photoproducts by exonuclease after incision renders both vegetative cells and dormant spores of the mutant sensitive to UV. A similarity is indicated to the uvrD mutation described recently in Escherichia coli.

  14. Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk.

    Science.gov (United States)

    Dong, Peng; Georget, Erika S; Aganovic, Kemal; Heinz, Volker; Mathys, Alexander

    2015-01-01

    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of ~10(6) CFU/mL were subjected to UHPH treatments at 200, 300, and 350 MPa with an inlet temperature at ~80°C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using first-order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125°C caused no reduction of spores. A reduction of 3.5 log10CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150°C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation. PMID:26236296

  15. Structures of an alanine racemase from Bacillus anthracis (BA0252) in the presence and absence of (R)-1-aminoethylphosphonic acid (l-Ala-P)

    International Nuclear Information System (INIS)

    Structures of BA0252, an alanine racemase from B. anthracis, in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) and determined by X-ray crystallography to resolutions of 2.1 and 1.47 Å, respectively, are described. Bacillus anthracis, the causative agent of anthrax, has been targeted by the Oxford Protein Production Facility to validate high-throughput protocols within the Structural Proteomics in Europe project. As part of this work, the structures of an alanine racemase (BA0252) in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) have determined by X-ray crystallo@@graphy to resolutions of 2.1 and 1.47 Å, respectively. Difficulties in crystallizing this protein were overcome by the use of reductive methylation. Alanine racemase has attracted much interest as a possible target for anti-anthrax drugs: not only is d-alanine a vital component of the bacterial cell wall, but recent studies also indicate that alanine racemase, which is accessible in the exosporium, plays a key role in inhibition of germination in B. anthracis. These structures confirm the binding mode of l-Ala-P but suggest an unexpected mechanism of inhibition of alanine racemase by this compound and could provide a basis for the design of improved alanine racemase inhibitors with potential as anti-anthrax therapies

  16. Characterization of the N-Acetyl-[alpha]-d-glucosaminyl l-Malate Synthase and Deacetylase Functions for Bacillithiol Biosynthesis in Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Parsonage, Derek; Newton, Gerald L.; Holder, Robert C.; Wallace, Bret D.; Paige, Carleitta; Hamilton, Chris J.; Dos Santos, Patricia C.; Redinbo, Matthew R.; Reid, Sean D.; Claiborne, Al (Wake Forest); (UNC); (East Anglia); (UCSD)

    2012-02-21

    Bacillithiol (Cys-GlcN-malate, BSH) has recently been identified as a novel low-molecular weight thiol in Bacillus anthracis, Staphylococcus aureus, and several other Gram-positive bacteria lacking glutathione and mycothiol. We have now characterized the first two enzymes for the BSH biosynthetic pathway in B. anthracis, which combine to produce {alpha}-D-glucosaminyl L-malate (GlcN-malate) from UDP-GlcNAc and L-malate. The structure of the GlcNAc-malate intermediate has been determined, as have the kinetic parameters for the BaBshA glycosyltransferase ({yields}GlcNAc-malate) and the BaBshB deacetylase ({yields}GlcN-malate). BSH is one of only two natural products reported to contain a malyl glycoside, and the crystal structure of the BaBshA-UDP-malate ternary complex, determined in this work at 3.3 {angstrom} resolution, identifies several active-site interactions important for the specific recognition of L-malate, but not other {alpha}-hydroxy acids, as the acceptor substrate. In sharp contrast to the structures reported for the GlcNAc-1-D-myo-inositol-3-phosphate synthase (MshA) apo and ternary complex forms, there is no major conformational change observed in the structures of the corresponding BaBshA forms. A mutant strain of B. anthracis deficient in the BshA glycosyltransferase fails to produce BSH, as predicted. This B. anthracis bshA locus (BA1558) has been identified in a transposon-site hybridization study as required for growth, sporulation, or germination [Day, W. A., Jr., Rasmussen, S. L., Carpenter, B. M., Peterson, S. N., and Friedlander, A. M. (2007) J. Bacteriol. 189, 3296-3301], suggesting that the biosynthesis of BSH could represent a target for the development of novel antimicrobials with broad-spectrum activity against Gram-positive pathogens like B. anthracis. The metabolites that function in thiol redox buffering and homeostasis in Bacillus are not well understood, and we present a composite picture based on this and other recent work.

  17. Anthrose Biosynthetic Operon of Bacillus anthracis▿

    OpenAIRE

    Dong, Shengli; McPherson, Sylvia A.; Tan, Li; Chesnokova, Olga N.; Turnbough, Charles L.; Pritchard, David G.

    2008-01-01

    The exosporium of Bacillus anthracis spores consists of a basal layer and an external hair-like nap. The nap is composed primarily of the glycoprotein BclA, which contains a collagen-like region with multiple copies of a pentasaccharide side chain. This oligosaccharide possesses an unusual terminal sugar called anthrose, followed by three rhamnose residues and a protein-bound N-acetylgalactosamine. Based on the structure of anthrose, we proposed an enzymatic pathway for its biosynthesis. Exam...

  18. The prevalence and control of Bacillus and related spore-forming bacteria in the dairy industry

    Directory of Open Access Journals (Sweden)

    Nidhi eGopal

    2015-12-01

    Full Text Available Milk produced in udder cells is sterile but due to its high nutrient content, it can be a good growth substrate for contaminating bacteria. The quality of milk is monitored via somatic cell counts and total bacterial counts, with prescribed regulatory limits to ensure quality and safety. Bacterial contaminants can cause disease, or spoilage of milk and its secondary products. Aerobic spore-forming bacteria, such as those from the genera Sporosarcina, Paenisporosarcina, Brevibacillus, Paenibacillus, Geobacillus and Bacillus, are a particular concern in this regard as they are able to survive industrial pasteurisation and form biofilms within pipes and stainless steel equipment. These single or multiple-species biofilms become a reservoir of spoilage microorganisms and a cycle of contamination can be initiated. Indeed, previous studies have highlighted that these microorganisms are highly prevalent in dead ends, corners, cracks, crevices, gaskets, valves and the joints of stainless steel equipment used in the dairy manufacturing plants. Hence, adequate monitoring and control measures are essential to prevent spoilage and ensure consumer safety. Common controlling approaches include specific cleaning-in-place processes, chemical and biological biocides and other novel methods. In this review, we highlight the problems caused by these microorganisms, and discuss issues relating to their prevalence, monitoring thereof and control with respect to the dairy industry.

  19. Nanosensors having dipicolinic acid imprinted nanoshell for Bacillus cereus spores detection

    International Nuclear Information System (INIS)

    Molecular imprinted polymers (MIPs) as a recognition element for sensors are increasingly of interest and MIP nanoclusters have started to appear in the literature. In this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamido-cysteine (MAC) attached to gold-silver nanoclusters, reminiscent of a self-assembled monolayer and have reconstructed surface shell by synthetic host polymers based on molecular imprinting method for recognition. In this method, methacryloylamidoantipyrine-terbium ((MAAP)2-Tb(III)) has been used as a new metal-chelating monomer via metal coordination-chelation interactions and dipicolinic acid (DPA) which is main participant of Bacillus cereus spores used as a model. Nanoshell sensors with templates give a cavity that is selective for DPA. The DPA can simultaneously chelate to Tb(III) metal ion and fit into the shape-selective cavity. Thus, the interaction between Tb(III) ion and free coordination spheres has an effect on the binding ability of the gold-silver nanoclusters nanosensor. The binding affinity of the DPA imprinted nanoclusters has been investigated by using the Langmuir and Scatchard methods, and the respective affinity constants (Kaffinity) determined were found to be 1.43 x 104 and 9.1 x 106 mol L-1.

  20. Nanosensors having dipicolinic acid imprinted nanoshell for Bacillus cereus spores detection

    Energy Technology Data Exchange (ETDEWEB)

    Gueltekin, Aytac [Trakya University, Department of Chemistry (Turkey); Ersoez, Arzu [Anadolu University, Department of Chemistry, Faculty of Science, Yunusemre Campus (Turkey); Sarioezlue, Nalan Yilmaz [Anadolu University, Department of Biology (Turkey); Denizli, Adil [Hacettepe University, Department of Chemistry (Turkey); Say, Ridvan, E-mail: rsay@anadolu.edu.t [Anadolu University, Department of Chemistry, Faculty of Science, Yunusemre Campus (Turkey)

    2010-08-15

    Molecular imprinted polymers (MIPs) as a recognition element for sensors are increasingly of interest and MIP nanoclusters have started to appear in the literature. In this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamido-cysteine (MAC) attached to gold-silver nanoclusters, reminiscent of a self-assembled monolayer and have reconstructed surface shell by synthetic host polymers based on molecular imprinting method for recognition. In this method, methacryloylamidoantipyrine-terbium ((MAAP){sub 2}-Tb(III)) has been used as a new metal-chelating monomer via metal coordination-chelation interactions and dipicolinic acid (DPA) which is main participant of Bacillus cereus spores used as a model. Nanoshell sensors with templates give a cavity that is selective for DPA. The DPA can simultaneously chelate to Tb(III) metal ion and fit into the shape-selective cavity. Thus, the interaction between Tb(III) ion and free coordination spheres has an effect on the binding ability of the gold-silver nanoclusters nanosensor. The binding affinity of the DPA imprinted nanoclusters has been investigated by using the Langmuir and Scatchard methods, and the respective affinity constants (K{sub affinity}) determined were found to be 1.43 x 10{sup 4} and 9.1 x 10{sup 6} mol L{sup -1}.

  1. Assessment of a new selective chromogenic Bacillus cereus group plating medium and use of enterobacterial autoinducer of growth for cultural identification of Bacillus species.

    Science.gov (United States)

    Reissbrodt, R; Rassbach, A; Burghardt, B; Rienäcker, I; Mietke, H; Schleif, J; Tschäpe, H; Lyte, M; Williams, P H

    2004-08-01

    A new chromogenic Bacillus cereus group plating medium permits differentiation of pathogenic Bacillus species by colony morphology and color. Probiotic B. cereus mutants were distinguished from wild-type strains by their susceptibilities to penicillin G or cefazolin. The enterobacterial autoinducer increased the sensitivity and the speed of enrichment of B. cereus and B. anthracis spores in serum-supplemented minimal salts medium (based on the standard American Petroleum Institute medium) and buffered peptone water. PMID:15297532

  2. Characterization of heavy ion-induced damage in bacillus subtilis spores and their global transcriptional response during spore germination-role of B. subtilis's apurinic/apyrimidinic (AP) endonucleases in the resistance to heavy ion radiation

    International Nuclear Information System (INIS)

    The proposed research project is aimed to provide new insights on the spore resistance to heavy ions and the effects on different linear energy transfer (LET)-charged HZE particles. With this project, spores of Bacillus subtilis 168, (wild-type and several selected DNA repairdeficient strains) were used for studying the microbial response heavy ions irradiation. DNA repair capabilities were investigated be the determination of the spore survivability and spore-specific protection mechanisms after irradiation. The activation of DNA repair genes were detected during germination by using DNA microarrays. For studying the DNA repair of treated spores during germination an integrated systems approach was used, id est (i.e.) all experiments were performed in a combination of various biochemical and molecular biological methods to study the spore resistance to heavy ion bombardment. (author)

  3. Infection of Tribolium castaneum with Bacillus thuringiensis: quantification of bacterial replication within cadavers, transmission via cannibalism, and inhibition of spore germination.

    Science.gov (United States)

    Milutinović, Barbara; Höfling, Christina; Futo, Momir; Scharsack, Jörn P; Kurtz, Joachim

    2015-12-01

    Reproduction within a host and transmission to the next host are crucial for the virulence and fitness of pathogens. Nevertheless, basic knowledge about such parameters is often missing from the literature, even for well-studied bacteria, such as Bacillus thuringiensis, an endospore-forming insect pathogen, which infects its hosts via the oral route. To characterize bacterial replication success, we made use of an experimental oral infection system for the red flour beetle Tribolium castaneum and developed a flow cytometric assay for the quantification of both spore ingestion by the individual beetle larvae and the resulting spore load after bacterial replication and resporulation within cadavers. On average, spore numbers increased 460-fold, showing that Bacillus thuringiensis grows and replicates successfully in insect cadavers. By inoculating cadaver-derived spores and spores from bacterial stock cultures into nutrient medium, we next investigated outgrowth characteristics of vegetative cells and found that cadaver-derived bacteria showed reduced growth compared to bacteria from the stock cultures. Interestingly, this reduced growth was a consequence of inhibited spore germination, probably originating from the host and resulting in reduced host mortality in subsequent infections by cadaver-derived spores. Nevertheless, we further showed that Bacillus thuringiensis transmission was possible via larval cannibalism when no other food was offered. These results contribute to our understanding of the ecology of Bacillus thuringiensis as an insect pathogen. PMID:26386058

  4. Effect of combined radiation and NaOCl/ultrasonication on reduction of Bacillus cereus spores in rice

    International Nuclear Information System (INIS)

    In this study, ionizing radiation in combination with sodium hypochlorite (NaOCl) and ultrasonication (US) was examined for its effectiveness in reducing Bacillus cereus F4810/72 spores in raw rice. We also evaluated whether the combined processing would produce synergistic effects compared to the individual treatments. The concentration of the initial B. cereus spore was approximately 2.9 log10 CFU/g. After 0.1, 0.2 and 0.3 kGy irradiation treatment, spore populations were reduced by 1.3, 1.4 and 1.6 log10 CFU/g, respectively. In the case of combined gamma irradiation and NaOCl/US treatment, the reduction was higher than those of each single treatment. The combined treatment of 0.1, 0.2 and 0.3 kGy and NaOCl (600–1000 ppm)/US (5–20 min) completely destroyed the spores in raw rice while the spores were not completely destroyed in the control treatment (0 kGy). These results indicated that it could be more effective to combine NaOCl with low dose gamma irradiation than high dose (concentration) of individual disinfection treatment to destroy B. cereus spores in food such as raw rice. - Highlights: ► B. cereus spores are frequently found in raw rice. ► Following irradiation, the raw rice were treated with NaOCl and US simultaneously. ► Significantly, combined disinfection treatments destroyed B. cereus in raw rice. ► Synergistic effects against B. cereus were observed for all combined treatment. ► Combined methods could be more efficient than a single disinfection method.

  5. Structural Analysis of a Putative Aminoglycoside N-Acetyltransferase from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Klimecka, Maria M.; Chruszcz, Maksymilian; Font, Jose; Skarina, Tatiana; Shumilin, Igor; Onopryienko, Olena; Porebski, Przemyslaw J.; Cymborowski, Marcin; Zimmerman, Matthew D.; Hasseman, Jeremy; Glomski, Ian J.; Lebioda, Lukasz; Savchenko, Alexei; Edwards, Aled; Minor, Wladek (SC); (Toronto); (UV)

    2012-02-15

    For the last decade, worldwide efforts for the treatment of anthrax infection have focused on developing effective vaccines. Patients that are already infected are still treated traditionally using different types of standard antimicrobial agents. The most popular are antibiotics such as tetracyclines and fluoroquinolones. While aminoglycosides appear to be less effective antimicrobial agents than other antibiotics, synthetic aminoglycosides have been shown to act as potent inhibitors of anthrax lethal factor and may have potential application as antitoxins. Here, we present a structural analysis of the BA2930 protein, a putative aminoglycoside acetyltransferase, which may be a component of the bacterium's aminoglycoside resistance mechanism. The determined structures revealed details of a fold characteristic only for one other protein structure in the Protein Data Bank, namely, YokD from Bacillus subtilis. Both BA2930 and YokD are members of the Antibiotic-NAT superfamily (PF02522). Sequential and structural analyses showed that residues conserved throughout the Antibiotic-NAT superfamily are responsible for the binding of the cofactor acetyl coenzyme A. The interaction of BA2930 with cofactors was characterized by both crystallographic and binding studies.

  6. Role of DNA Repair by Nonhomologous-End Joining in Bacillus subtilis Spore Resistance to Extreme Dryness, Mono- and Polychromatic UV, and Ionizing Radiation▿

    OpenAIRE

    Moeller, Ralf; Stackebrandt, Erko; Reitz, Günther; Berger, Thomas; Rettberg, Petra; Doherty, Aidan J; Horneck, Gerda; Nicholson, Wayne L.

    2007-01-01

    The role of DNA repair by nonhomologous-end joining (NHEJ) in spore resistance to UV, ionizing radiation, and ultrahigh vacuum was studied in wild-type and DNA repair mutants (recA, splB, ykoU, ykoV, and ykoU ykoV mutants) of Bacillus subtilis. NHEJ-defective spores with mutations in ykoU, ykoV, and ykoU ykoV were significantly more sensitive to UV, ionizing radiation, and ultrahigh vacuum than wild-type spores, indicating that NHEJ provides an important pathway during spore germination for r...

  7. Transcriptome analysis of Bacillus thuringiensis spore life, germination and cell outgrowth in a vegetable-based food model.

    Science.gov (United States)

    Bassi, Daniela; Colla, Francesca; Gazzola, Simona; Puglisi, Edoardo; Delledonne, Massimo; Cocconcelli, Pier Sandro

    2016-05-01

    Toxigenic species belonging to Bacillus cereus sensu lato, including Bacillus thuringiensis, cause foodborne outbreaks thanks to their capacity to survive as spores and to grow in food matrixes. The goal of this work was to assess by means of a genome-wide transcriptional assay, in the food isolate B. thuringiensis UC10070, the gene expression behind the process of spore germination and consequent outgrowth in a vegetable-based food model. Scanning electron microscopy and Energy Dispersive X-ray microanalysis were applied to select the key steps of B. thuringiensis UC10070 cell cycle to be analyzed with DNA-microarrays. At only 40 min from heat activation, germination started rapidly and in less than two hours spores transformed in active growing cells. A total of 1646 genes were found to be differentially expressed and modulated during the entire B. cereus life cycle in the food model, with most of the significant genes belonging to transport, transcriptional regulation and protein synthesis, cell wall and motility and DNA repair groups. Gene expression studies revealed that toxin-coding genes nheC, cytK and hblC were found to be expressed in vegetative cells growing in the food model. PMID:26742618

  8. Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727

    Directory of Open Access Journals (Sweden)

    Mahillon Jacques

    2005-07-01

    Full Text Available Abstract Background Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis belong to the genetically close-knit Bacillus cereus sensu lato group, a family of rod-shaped Gram-positive bacteria. pAW63 is the first conjugative plasmid from the B. cereus group to be completely sequenced. Results The 71,777 bp nucleotide sequence of pAW63 reveals a modular structure, including a 42 kb tra region encoding homologs of the Type IV secretion systems components VirB11, VirB4 and VirD4, as well as homologs of Gram-positive conjugation genes from Enterococcus, Lactococcus, Listeria, Streptococcus and Staphylococcus species. It also firmly establishes the existence of a common backbone between pAW63, pXO2 from Bacillus anthracis and pBT9727 from the pathogenic Bacillus thuringiensis serovar konkukian strain 97-27. The alignment of these three plasmids highlights the presence of well conserved segments, in contrast to distinct regions of high sequence plasticity. The study of their specific differences has provided a three-point reference framework that can be exploited to formulate solid hypotheses concerning the functionalities and the molecular evolution of these three closely related plasmids. This has provided insight into the chronology of their divergence, and led to the discovery of two Type II introns on pAW63, matching copies of the mobile element IS231L in different loci of pXO2 and pBT9727, and the identification on pXO2 of a 37 kb pathogenicity island (PAI containing the anthrax capsule genes. Conclusion The complete sequence determination of pAW63 has led to a functional map of the plasmid yielding insights into its conjugative apparatus, which includes T4SS-like components, as well as its resemblance to other large plasmids of Gram-positive bacteria. Of particular interest is the extensive homology shared between pAW63 and pXO2, the second virulence plasmid of B. anthracis, as well as pBT9727 from the pathogenic strain B. thuringiensis

  9. Recovery of Bacillus sphaericus spores by flocculation/sedimentation and flotation

    Directory of Open Access Journals (Sweden)

    Christine Lamenha Luna

    2005-06-01

    Full Text Available The aim of this work was use flocculation/sedimentation and flotation for recovery of spores of the Bacillus sphaericus. Microorganism was produced batchwise using culture medium based skimmed milk, corn steep liquor and mineral salts. The best results of flocculation were obtained using CaCl2.2H2O, FeCl3.6H2O, Al2(SO43 and tannin as flocculating agents, with optimal flocculation concentrations of 1,500, 3,000, 2,000 and 1,700ppm, respectively. Flocculent suspensions were characterized based on floc diameter and density. Settling tests were performed in batch at different concentrations of the cellular suspensions and revealed high recovery of the solids in suspension in all cases. Flotation tests were accomplished using a mechanical agitated flotation cell and the process was favoured by the increase of the system agitation and for the presence of a cationic collector.O trabalho aborda a recuperação de esporos da bactéria Bacillus sphaericus por floculação/sedimentação e flotação. O microrganismo foi produzido em batelada, utilizando-se meio de cultivo à base de leite desnatado, milhocina e sais minerais. Os melhores resultados de floculação foram obtidos com os floculantes CaCl2.2H2O, FeCl3.6H2O, Al2(SO43 e tanino, com concentrações ótimas de 1.500, 3.000, 2.000 e 1.700ppm, respectivamente. Os sistemas floculentos foram caracterizados através da determinação da densidade e do diâmetro médio dos flocos. Testes de sedimentação em batelada a diferentes concentrações das suspensões celulares revelaram elevados índices de recuperação dos sólidos em suspensão em todos os casos. Os ensaios de flotação foram realizados em célula de flotação mecânica, e o processo foi favorecido pelo aumento da agitação do sistema e pela presença de um coletor catiônico.

  10. Gold nanoparticles having dipicolinic acid imprinted nanoshell for Bacillus cereus spores recognition

    Energy Technology Data Exchange (ETDEWEB)

    Gueltekin, Aytac [Department of Chemistry, Trakya University, Edirne (Turkey); Ersoez, Arzu; Huer, Deniz [Department of Chemistry, Anadolu University, Eskisehir (Turkey); Sarioezlue, Nalan Yilmaz [Department of Biology, Anadolu University, Eskisehir (Turkey); Denizli, Adil [Department of Chemistry, Hacettepe University, Ankara (Turkey); Say, Ridvan, E-mail: rsay@anadolu.edu.tr [Department of Chemistry, Anadolu University, Eskisehir (Turkey); BIBAM (Plant, Drug and Scientific Research Center) Anadolu University (Turkey)

    2009-10-15

    Taking into account the recognition element for sensors linked to molecular imprinted polymers (MIPs), a proliferation of interest has been witnessed by those who are interested in this subject. Indeed, MIP nanoparticles are theme which recently has come to light in the literature. In this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamidocysteine (MAC) attached to gold nanoparticles, reminiscent of a self-assembled monolayer. Furthermore, a surface shell by synthetic host polymers based on molecular imprinting method for recognition has been reconstructed. In this method, methacryloyl iminodiacetic acid-chrome (MAIDA-Cr(III)) has been used as a new metal-chelating monomer via metal coordination-chelation interactions and dipicolinic acid (DPA) which is the main participant of Bacillus cereus spores has been used as a template. Nanoshell sensors with templates produce a cavity that is selective for DPA. The DPA can simultaneously chelate to Cr(III) metal ion and fit into the shape-selective cavity. Thus, the interaction between Cr(III) ion and free coordination spheres has an effect on the binding ability of the gold nanoparticles nanosensor. The interactions between DPA and MIP particles were studied observing fluorescence measurements. DPA addition caused significant decreases in fluorescence intensity because they induced photoluminescence emission from Au nanoparticles through the specific binding to the recognition sites of the crosslinked nanoshell polymer matrix. The binding affinity of the DPA imprinted nanoparticles has been explored by using the Langmuir and Scatchard methods and the analysis of the quenching results has been performed in terms of the Stern-Volmer equation.

  11. Gold nanoparticles having dipicolinic acid imprinted nanoshell for Bacillus cereus spores recognition

    International Nuclear Information System (INIS)

    Taking into account the recognition element for sensors linked to molecular imprinted polymers (MIPs), a proliferation of interest has been witnessed by those who are interested in this subject. Indeed, MIP nanoparticles are theme which recently has come to light in the literature. In this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamidocysteine (MAC) attached to gold nanoparticles, reminiscent of a self-assembled monolayer. Furthermore, a surface shell by synthetic host polymers based on molecular imprinting method for recognition has been reconstructed. In this method, methacryloyl iminodiacetic acid-chrome (MAIDA-Cr(III)) has been used as a new metal-chelating monomer via metal coordination-chelation interactions and dipicolinic acid (DPA) which is the main participant of Bacillus cereus spores has been used as a template. Nanoshell sensors with templates produce a cavity that is selective for DPA. The DPA can simultaneously chelate to Cr(III) metal ion and fit into the shape-selective cavity. Thus, the interaction between Cr(III) ion and free coordination spheres has an effect on the binding ability of the gold nanoparticles nanosensor. The interactions between DPA and MIP particles were studied observing fluorescence measurements. DPA addition caused significant decreases in fluorescence intensity because they induced photoluminescence emission from Au nanoparticles through the specific binding to the recognition sites of the crosslinked nanoshell polymer matrix. The binding affinity of the DPA imprinted nanoparticles has been explored by using the Langmuir and Scatchard methods and the analysis of the quenching results has been performed in terms of the Stern-Volmer equation.

  12. Gold nanoparticles having dipicolinic acid imprinted nanoshell for Bacillus cereus spores recognition

    Science.gov (United States)

    Gültekin, Aytaç; Ersöz, Arzu; Hür, Deniz; Sarıözlü, Nalan Yılmaz; Denizli, Adil; Say, Rıdvan

    2009-10-01

    Taking into account the recognition element for sensors linked to molecular imprinted polymers (MIPs), a proliferation of interest has been witnessed by those who are interested in this subject. Indeed, MIP nanoparticles are theme which recently has come to light in the literature. In this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamidocysteine (MAC) attached to gold nanoparticles, reminiscent of a self-assembled monolayer. Furthermore, a surface shell by synthetic host polymers based on molecular imprinting method for recognition has been reconstructed. In this method, methacryloyl iminodiacetic acid-chrome (MAIDA-Cr(III)) has been used as a new metal-chelating monomer via metal coordination-chelation interactions and dipicolinic acid (DPA) which is the main participant of Bacillus cereus spores has been used as a template. Nanoshell sensors with templates produce a cavity that is selective for DPA. The DPA can simultaneously chelate to Cr(III) metal ion and fit into the shape-selective cavity. Thus, the interaction between Cr(III) ion and free coordination spheres has an effect on the binding ability of the gold nanoparticles nanosensor. The interactions between DPA and MIP particles were studied observing fluorescence measurements. DPA addition caused significant decreases in fluorescence intensity because they induced photoluminescence emission from Au nanoparticles through the specific binding to the recognition sites of the crosslinked nanoshell polymer matrix. The binding affinity of the DPA imprinted nanoparticles has been explored by using the Langmuir and Scatchard methods and the analysis of the quenching results has been performed in terms of the Stern-Volmer equation.

  13. Redefining the Australian Anthrax Belt: Modeling the Ecological Niche and Predicting the Geographic Distribution of Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Alassane S Barro

    2016-06-01

    Full Text Available The ecology and distribution of B. anthracis in Australia is not well understood, despite the continued occurrence of anthrax outbreaks in the eastern states of the country. Efforts to estimate the spatial extent of the risk of disease have been limited to a qualitative definition of an anthrax belt extending from southeast Queensland through the centre of New South Wales and into northern Victoria. This definition of the anthrax belt does not consider the role of environmental conditions in the distribution of B. anthracis. Here, we used the genetic algorithm for rule-set prediction model system (GARP, historical anthrax outbreaks and environmental data to model the ecological niche of B. anthracis and predict its potential geographic distribution in Australia. Our models reveal the niche of B. anthracis in Australia is characterized by a narrow range of ecological conditions concentrated in two disjunct corridors. The most dominant corridor, used to redefine a new anthrax belt, parallels the Eastern Highlands and runs from north Victoria to central east Queensland through the centre of New South Wales. This study has redefined the anthrax belt in eastern Australia and provides insights about the ecological factors that limit the distribution of B. anthracis at the continental scale for Australia. The geographic distributions identified can help inform anthrax surveillance strategies by public and veterinary health agencies.

  14. Redefining the Australian Anthrax Belt: Modeling the Ecological Niche and Predicting the Geographic Distribution of Bacillus anthracis.

    Science.gov (United States)

    Barro, Alassane S; Fegan, Mark; Moloney, Barbara; Porter, Kelly; Muller, Janine; Warner, Simone; Blackburn, Jason K

    2016-06-01

    The ecology and distribution of B. anthracis in Australia is not well understood, despite the continued occurrence of anthrax outbreaks in the eastern states of the country. Efforts to estimate the spatial extent of the risk of disease have been limited to a qualitative definition of an anthrax belt extending from southeast Queensland through the centre of New South Wales and into northern Victoria. This definition of the anthrax belt does not consider the role of environmental conditions in the distribution of B. anthracis. Here, we used the genetic algorithm for rule-set prediction model system (GARP), historical anthrax outbreaks and environmental data to model the ecological niche of B. anthracis and predict its potential geographic distribution in Australia. Our models reveal the niche of B. anthracis in Australia is characterized by a narrow range of ecological conditions concentrated in two disjunct corridors. The most dominant corridor, used to redefine a new anthrax belt, parallels the Eastern Highlands and runs from north Victoria to central east Queensland through the centre of New South Wales. This study has redefined the anthrax belt in eastern Australia and provides insights about the ecological factors that limit the distribution of B. anthracis at the continental scale for Australia. The geographic distributions identified can help inform anthrax surveillance strategies by public and veterinary health agencies. PMID:27280981

  15. Redefining the Australian Anthrax Belt: Modeling the Ecological Niche and Predicting the Geographic Distribution of Bacillus anthracis

    Science.gov (United States)

    Barro, Alassane S.; Fegan, Mark; Moloney, Barbara; Porter, Kelly; Muller, Janine; Warner, Simone; Blackburn, Jason K.

    2016-01-01

    The ecology and distribution of B. anthracis in Australia is not well understood, despite the continued occurrence of anthrax outbreaks in the eastern states of the country. Efforts to estimate the spatial extent of the risk of disease have been limited to a qualitative definition of an anthrax belt extending from southeast Queensland through the centre of New South Wales and into northern Victoria. This definition of the anthrax belt does not consider the role of environmental conditions in the distribution of B. anthracis. Here, we used the genetic algorithm for rule-set prediction model system (GARP), historical anthrax outbreaks and environmental data to model the ecological niche of B. anthracis and predict its potential geographic distribution in Australia. Our models reveal the niche of B. anthracis in Australia is characterized by a narrow range of ecological conditions concentrated in two disjunct corridors. The most dominant corridor, used to redefine a new anthrax belt, parallels the Eastern Highlands and runs from north Victoria to central east Queensland through the centre of New South Wales. This study has redefined the anthrax belt in eastern Australia and provides insights about the ecological factors that limit the distribution of B. anthracis at the continental scale for Australia. The geographic distributions identified can help inform anthrax surveillance strategies by public and veterinary health agencies. PMID:27280981

  16. Study of the antibacterial effects of chitosans on Bacillus cereus (and its spores) by atomic force microscopy imaging and nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Joao C. [Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Eaton, Peter, E-mail: peter.eaton@fc.up.pt [REQUIMTE, Departamento de Quimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); Gomes, Ana M.; Pintado, Manuela E.; Xavier Malcata, F. [Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)

    2009-07-15

    Bacillus cereus is a Gram-positive, spore-forming bacterium that is widely distributed in nature. Its intrinsic thermal resistance coupled with the extraordinary resistance against common food preservation techniques makes it one of the most frequent food-poisoning microorganisms causing both intoxications and infections. In order to control B. cereus growth/sporulation, and hence minimize the aforementioned hazards, several antimicrobial compounds have been tested. The aim of this work was to assess by atomic force microscopy (AFM) the relationship between the molecular weight (MW) of chitosan and its antimicrobial activity upon both vegetative and resistance forms of B. cereus. The use of AFM imaging studies helped us to understand how chitosans with different MW act differently upon B. cereus. Higher MW chitosans (628 and 100 kDa) surrounded both forms of B. cereus cells by forming a polymer layer-which eventually led to the death of the vegetative form by preventing the uptake of nutrients yet did not affect the spores since these can survive for extended periods without nutrients. Chitooligosaccharides (COS) (<3 kDa), on the other hand, provoked more visible damages in the B. cereus vegetative form-most probably due to the penetration of the cells by the COS. The use of COS by itself on B. cereus spores was not enough for the destruction of a large number of cells, but it may well weaken the spore structure and its ability to contaminate, by inducing exosporium loss.

  17. Study of the antibacterial effects of chitosans on Bacillus cereus (and its spores) by atomic force microscopy imaging and nanoindentation

    International Nuclear Information System (INIS)

    Bacillus cereus is a Gram-positive, spore-forming bacterium that is widely distributed in nature. Its intrinsic thermal resistance coupled with the extraordinary resistance against common food preservation techniques makes it one of the most frequent food-poisoning microorganisms causing both intoxications and infections. In order to control B. cereus growth/sporulation, and hence minimize the aforementioned hazards, several antimicrobial compounds have been tested. The aim of this work was to assess by atomic force microscopy (AFM) the relationship between the molecular weight (MW) of chitosan and its antimicrobial activity upon both vegetative and resistance forms of B. cereus. The use of AFM imaging studies helped us to understand how chitosans with different MW act differently upon B. cereus. Higher MW chitosans (628 and 100 kDa) surrounded both forms of B. cereus cells by forming a polymer layer-which eventually led to the death of the vegetative form by preventing the uptake of nutrients yet did not affect the spores since these can survive for extended periods without nutrients. Chitooligosaccharides (COS) (<3 kDa), on the other hand, provoked more visible damages in the B. cereus vegetative form-most probably due to the penetration of the cells by the COS. The use of COS by itself on B. cereus spores was not enough for the destruction of a large number of cells, but it may well weaken the spore structure and its ability to contaminate, by inducing exosporium loss.

  18. Comprehensive assignment of mass spectral signatures from individual Bacillus atrophaeus spores in matrix-free laser desorption/ionization bioaerosol mass spectrometry.

    Science.gov (United States)

    Srivastava, Abneesh; Pitesky, Maurice E; Steele, Paul T; Tobias, Herbert J; Fergenson, David P; Horn, Joanne M; Russell, Scott C; Czerwieniec, Gregg A; Lebrilla, Carlito B; Gard, Eric E; Frank, Matthias

    2005-05-15

    We have fully characterized the mass spectral signatures of individual Bacillus atrophaeus spores obtained using matrix-free laser desorption/ionization bioaerosol mass spectrometry (BAMS). Mass spectra of spores grown in unlabeled, 13C-labeled, and 15N-labeled growth media were used to determine the number of carbon and nitrogen atoms associated with each mass peak observed in mass spectra from positive and negative ions. To determine the parent ion structure associated with fragment ion peaks, the fragmentation patterns of several chemical standards were independently determined. Our results confirm prior assignments of dipicolinic acid, amino acids, and calcium complex ions made in the spore mass spectra. The identities of several previously unidentified mass peaks, key to the recognition of Bacillus spores by BAMS, have also been revealed. Specifically, a set of fragment peaks in the negative polarity is shown to be consistent with the fragmentation pattern of purine nucleobase-containing compounds. The identity of m/z = +74, a marker peak that helps discriminate B. atrophaeus from Bacillus thuringiensis spores grown in rich media is [N1C4H12]+. A probable precursor molecule for the [N1C4H12]+ ion observed in spore spectra is trimethylglycine (+N(CH3)3CH2COOH), which produces a m/z = +74 peak when ionized in the presence of dipicolinic acid. A clear assignment of all the mass peaks in the spectra from bacterial spores, as presented in this work, establishes their relationship to the spore chemical composition and facilitates the evaluation of the robustness of "marker" peaks. This is especially relevant for peaks that have been used to discriminate Bacillus spore species, B. thuringiensis and B. atrophaeus, in our previous studies. PMID:15889924

  19. Radiosensibilisation of bacteria on beef minced by essential oils with special reference to the spores of Bacillus cereus ATCC 7004

    International Nuclear Information System (INIS)

    The radiosensitization of Bacillus Cereus ATCC 7004 spores was evaluated in the presence of thymol, thyme, D-L menthol, trans-cinnamaldehyde and eugenol in ground beef. Meat cattle minced (5 % fat) was inoculated with spores of Bacillus Cereus (10 5 - 10 6 CFU / g), and each compound was added separately at various concentrations. The antimicrobial potential was evaluated in unirradiated meat by determining the MIC in percentage (wt / wt) after 24 h of storage at 4± 1C. Results showed that the best antimicrobial compound was the trans-cinnamaldehyde with MIC of 1.47%, wt/wt. In presence of cinnamaldehyde, the addition of sodium pyrophosphate decahydrate (0.1%, wt/wt) increased significantly (p < 0.05) the relative sensitivity of Bacillus Cereus spores 2 times. However, the presence of ascorbic acid in the media reduced significantly (p < 0.05) the radiosensitivity of bacteria. The combined effect of gamma irradiation in presence of cinnamaldehyde, added with ascorbic acid or sodium pyrophosphate decahydrate, on the microbiological and physico-chemical characteristic of meat samples was evaluated at 2 kGy under air. The use of the active compounds with the irradiation reduced significantly (p < 0.05) the count of total bacteria with a concomitant effect in the extension periods of shelf life. The addition of the cinnamaldehyde induced a significant reduction (p < 0.05) in TVN and free amino acids of irradiated samples. In presence of ascorbic acid the thiobarbituric acid-reactive substances (TBARS) concentration was significantly reduced (P...0.05). A significant reduction (p < 0.05) of a* and C* of color values and a significant increase (p < 0.05 ) of b* value were obtained for the samples treated by the cinnamaldehyde. The application of bioactive films for the immobilization of the essential oils is a good alternate to check their stability during storage time. (Author). 155 refs

  20. Enhancement of intrinsic antitumor activity in spore-endotoxin mixtures of Bacillus thuringiensis by exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    Irradiation of spore-endotoxin mixtures from Bacillus thuringiensis cultures at 254 nm (60 μW cm-2) enhances their intrinsic antitumor potency as well as that of either component. The extent of enhancement depends on the length of exposure (optimum: 35 min) and may thus be due to photochemical changes of the endotoxin protein or/and to photoproduction of additional compounds with antitumor activity. Antitumor effects, expressed as survival rates of C57BL/6 mice inoculated with Lewis' mouse lung carcinoma and subjected to treatments 24 h later, depended on the number of doses of preparations administered (mixture, separated components). (author)

  1. Pyridine Nucleotide Complexes with Bacillus anthracis Coenzyme A-Disulfide Reductase: A Structural Analysis of Dual NAD(P)H Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Wallen,J.; Paige, C.; Mallett, T.; Karplus, P.; Claiborne, A.

    2008-01-01

    We have recently reported that CoASH is the major low-molecular weight thiol in Bacillus anthracis, and we have now characterized the kinetic and redox properties of the B. anthracis coenzyme A-disulfide reductase (CoADR, BACoADR) and determined the crystal structure at 2.30 Angstroms resolution. While the Staphylococcus aureus and Borrelia burgdorferi CoADRs exhibit strong preferences for NADPH and NADH, respectively, B. anthracis CoADR can use either pyridine nucleotide equally well. Sequence elements within the respective NAD(P)H-binding motifs correctly reflect the preferences for S. aureus and Bo. burgdorferi CoADRs, but leave questions as to how BACoADR can interact with both pyridine nucleotides. The structures of the NADH and NADPH complexes at ca. 2.3 Angstroms resolution reveal that a loop consisting of residues Glu180-Thr187 becomes ordered and changes conformation on NAD(P)H binding. NADH and NADPH interact with nearly identical conformations of this loop; the latter interaction, however, involves a novel binding mode in which the 2'-phosphate of NADPH points out toward solvent. In addition, the NAD(P)H-reduced BACoADR structures provide the first view of the reduced form (Cys42-SH/CoASH) of the Cys42-SSCoA redox center. The Cys42-SH side chain adopts a new conformation in which the conserved Tyr367'-OH and Tyr425'-OH interact with the nascent thiol(ate) on the flavin si-face. Kinetic data with Y367F, Y425F, and Y367, 425F BACoADR mutants indicate that Tyr425' is the primary proton donor in catalysis, with Tyr367' functioning as a cryptic alternate donor in the absence of Tyr425'.

  2. Bacillus anthracis capsule activates caspase-1 and induces interleukin-1beta release from differentiated THP-1 and human monocyte-derived dendritic cells.

    Science.gov (United States)

    Cho, Min-Hee; Ahn, Hae-Jeong; Ha, Hyun-Joon; Park, Jungchan; Chun, Jeong-Hoon; Kim, Bong-Su; Oh, Hee-Bok; Rhie, Gi-Eun

    2010-01-01

    The poly-gamma-d-glutamic acid (PGA) capsule is one of the major virulence factors of Bacillus anthracis, which causes a highly lethal infection. The antiphagocytic PGA capsule disguises the bacilli from immune surveillance and allows unimpeded growth of bacilli in the host. Recently, efforts have been made to include PGA as a component of anthrax vaccine; however, the innate immune response of PGA itself has been poorly investigated. In this study, we characterized the innate immune response elicited by PGA in the human monocytic cell line THP-1, which was differentiated into macrophages with phorbol 12-myristate 13-acetate (PMA) and human monocyte-derived dendritic cells (hMoDCs). PGA capsules were isolated from the culture supernatant of either the pXO1-cured strain of B. anthracis H9401 or B. licheniformis ATCC 9945a. PGA treatment of differentiated THP-1 cells and hMoDCs led to the specific extracellular release of interleukin-1beta (IL-1beta) in a dose-dependent manner. Evaluation of IL-1beta processing by Western blotting revealed that cleaved IL-1beta increased in THP-1 cells and hMoDCs after PGA treatment. Enhanced processing of IL-1beta directly correlated with increased activation of its upstream regulator, caspase-1, also known as IL-1beta-converting enzyme (ICE). The extracellular release of IL-1beta in response to PGA was ICE dependent, since the administration of an ICE inhibitor prior to PGA treatment blocked induction of IL-1beta. These results demonstrate that B. anthracis PGA elicits IL-1beta production through activation of ICE in PMA-differentiated THP-1 cells and hMoDCs, suggesting the potential for PGA as a therapeutic target for anthrax. PMID:19737897

  3. Atmospheric pressure-thermal desorption (AP-TD)/electrospray ionization-mass spectrometry for the rapid analysis of Bacillus spores.

    Science.gov (United States)

    Basile, Franco; Zhang, Shaofeng; Shin, Yong-Seung; Drolet, Barbara

    2010-04-01

    A technique is described where an atmospheric pressure-thermal desorption (AP-TD) device and electrospray ionization (ESI)-mass spectrometry (MS) are coupled and used for the rapid analysis of Bacillus subtilis spores in complex matrices. The resulting AP-TD/ESI-MS technique combines the generation of volatile compounds and/or pyrolysis products with soft-ionization MS detection. In the AP-TD/ESI-MS approach, an electrospray solvent plume was used as the ionization vehicle of thermally desorbed neutrals at atmospheric pressure prior to mass spectrometric analysis using a quadrupole ion trap mass spectrometer. The approach is quantitative with the volatile standard dimethyl methylphosphonate (DMMP) and with the use of an internal standard (diethyl methylphosphonate, DEMP). A linear response was obtained as tested in the 1-50 ppm range (R(2) = 0.991) with a standard error of the estimate of 0.193 (0.9% RSD, n = 5). Bacterial spores were detected by performing pyrolysis in situ methylation with the reagent tetramethylammonium hydroxide (TMAH) for the detection of the bacterial spore biomarker dipicolinic acid (DPA) as the dimethylated derivative (2Me-DPA). This approach allowed spore detection even in the presence of growth media in crude lyophilized samples. Repetitive analyses could be performed with a duty cycle of less than 5 min total analysis time (including sample loading, heating and data acquisition). This strategy proved successful over other direct ambient MS approaches like DESI-MS and AP-TD/ESI-MS without the in situ derivatization step to detect the dipicolinic acid biomarker from spores. A detection limit for the dimethylated DPA biomarker was estimated at 1 ppm (equivalent to 0.01 mug of DPA deposited in the thermal desorption tube), which corresponded to a calculated detection limit of 10(5) spores deposited or 0.1% by weight spore composition in solid samples (assuming a 1 mg sample size). The AP-TD/ESI source used in conjunction with the in situ

  4. Recombinant expression of Bacillus anthracis lethal toxin components of Indian isolate in Escherichia coli and determination of its acute toxicity level in mouse model.

    Science.gov (United States)

    Nagendra, Suryanarayana; Vanlalhmuaka; Verma, Sarika; Tuteja, Urmil; Thavachelvam, Kulanthaivel

    2015-12-15

    Bacillus anthracis lethal toxin (LeTx) is the principle factor responsible for toxaemia and anthrax related death. Lethal toxin consist of two proteins viz protective antigen (PA) and lethal factor which combines in a typical fashion similar to other toxins belonging to A-B toxin super family. The amount of LeTx required to kill a particular organism generally differs among strains owing to their geographical distributions and genetic variation. In the present study, we have cloned PA and LF genes from B. anthracis clinical isolate of Indian origin and expressed them in soluble form employing Escherichia coli expression system. Both the proteins were purified to near homogeneity level using Immobilized metal ion affinity chromatography (IMAC). Further we have used equal ratio of both the proteins to form LeTx and determined its acute toxicity level in Balb/c mice by graphical method of Miller and Tainter. The LD50 value of LeTx by intravenous (i.v) route was found to be 0.97 ± 0.634 mg kg(-1) Balb/c mice. This study highlights the expression of recombinant LeTx from E. coli and assessing its acute toxicity level in experimental mouse model. PMID:26472254

  5. Dynamics of Bacillus thuringiensis var. israelensis and Lysinibacillus sphaericus spores in urban catch basins after simultaneous application against mosquito larvae.

    Directory of Open Access Journals (Sweden)

    Valeria Guidi

    Full Text Available Bacillus thuringiensis var. israelensis (Bti and Lysinibacillus sphaericus (Lsph are extensively used in mosquito control programs. These biocides are the active ingredients of a commercial larvicide. Quantitative data on the fate of both Bti and Lsph applied together for the control of mosquitoes in urban drainage structures such as catch basins are lacking. We evaluated the dynamics and persistence of Bti and Lsph spores released through their concomitant application in urban catch basins in southern Switzerland. Detection and quantification of spores over time in water and sludge samples from catch basins were carried out using quantitative real-time PCR targeting both cry4A and cry4B toxin genes for Bti and the binA gene for Lsph. After treatment, Bti and Lsph spores attained concentrations of 3.76 (± 0.08 and 4.13 (± 0.09 log ml(-1 in water, then decreased progressively over time, reaching baseline values. For both Bti and Lsph, spore levels in the order of 10(5 g(-1 were observed in the bottom sludge two days after the treatment and remained constant for the whole test period (275 days. Indigenous Lsph strains were isolated from previously untreated catch basins. A selection of those was genotyped using pulsed field gel electrophoresis of SmaI-digested chromosomal DNA, revealing that a subset of isolates were members of the clonal population of strain 2362. No safety issues related to the use of this biopesticide in the environment have been observed during this study, because no significant increase in the number of spores was seen during the long observation period. The isolation of native Lysinibacillus sphaericus strains belonging to the same clonal population as strain 2362 from catch basins never treated with Lsph-based products indicates that the use of a combination of Bti and Lsph for the control of mosquitoes does not introduce non-indigenous microorganisms in this area.

  6. Isolation and identification of protective compounds from culture media of growing spores of Bacillus cereus

    International Nuclear Information System (INIS)

    A fraction increasing the resistance of resting spores to UV-irradiation and high temperature has been isolated from the culture medium at the stage of B. cereus at. 96 spore initiation. Amino acid analysis, gas chromatography, electrophoresis, and TLC of the products of acidic and alkaline hydrolysis of the isolated fraction demonstrated that the active component of the fraction was the lipoteichoic acid

  7. Does Bacillus anthracis Lethal Toxin Directly Depress Myocardial Function? A Review of Clinical Cases and Preclinical Studies.

    Science.gov (United States)

    Suffredini, Dante A; Sampath-Kumar, Hanish; Li, Yan; Ohanjanian, Lernik; Remy, Kenneth E; Cui, Xizhong; Eichacker, Peter Q

    2015-12-01

    The US outbreak of B.anthracis infection in 2001 and subsequent cases in the US and Europe demonstrate that anthrax is a continuing risk for the developed world. While several bacterial components contribute to the pathogenesis of B. anthracis, production of lethal toxin (LT) is strongly associated with the development of hypotension and lethality. However, the mechanisms underlying the cardiovascular instability LT produces are unclear. Some evidence suggests that LT causes shock by impairing the peripheral vasculature, effects consistent with the substantial extravasation of fluid in patients dying with B. anthracis. Other data suggests that LT directly depresses myocardial function. However a clinical correlate for this latter possibility is less evident since functional studies and post-mortem examination in patients demonstrate absent or minimal cardiac changes. The purposes of this review were to first present clinical studies of cardiac functional and histologic pathology with B. anthracis infection and to then examine in vivo, in vitro, and ex vivo preclinical studies of LT's myocardial effects. Together, these data suggest that it is unclear whether that LT directly depresses cardiac function. This question is important for the clinical management and development of new therapies for anthrax and efforts should continue to be made to answer it. PMID:26703730

  8. Does Bacillus anthracis Lethal Toxin Directly Depress Myocardial Function? A Review of Clinical Cases and Preclinical Studies

    Directory of Open Access Journals (Sweden)

    Dante A. Suffredini

    2015-12-01

    Full Text Available The US outbreak of B.anthracis infection in 2001 and subsequent cases in the US and Europe demonstrate that anthrax is a continuing risk for the developed world. While several bacterial components contribute to the pathogenesis of B. anthracis, production of lethal toxin (LT is strongly associated with the development of hypotension and lethality. However, the mechanisms underlying the cardiovascular instability LT produces are unclear. Some evidence suggests that LT causes shock by impairing the peripheral vasculature, effects consistent with the substantial extravasation of fluid in patients dying with B. anthracis. Other data suggests that LT directly depresses myocardial function. However a clinical correlate for this latter possibility is less evident since functional studies and post-mortem examination in patients demonstrate absent or minimal cardiac changes. The purposes of this review were to first present clinical studies of cardiac functional and histologic pathology with B. anthracis infection and to then examine in vivo, in vitro, and ex vivo preclinical studies of LT’s myocardial effects. Together, these data suggest that it is unclear whether that LT directly depresses cardiac function. This question is important for the clinical management and development of new therapies for anthrax and efforts should continue to be made to answer it.

  9. Discrimination of bacillus anthracis and closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microarray.

    Energy Technology Data Exchange (ETDEWEB)

    Bavykin, S. G.; Mikhailovich, V. M.; Zakharyev, V. M.; Lysov, Y. P.; Kelly, J. J.; Alferov, O. S.; Jackman, J.; Stahl, D. A.; Mirzabekov, A. D.; Gavin, I. M.; Kukhtin, A. V.; Chandler, D. (Biochip Technology Center); (Engelhardt Inst. of Molecular Biology); (Northwestern Univ.); (Georgetown Univ.)

    2008-01-30

    Analysis of 16S rRNA sequences is a commonly used method for the identification and discrimination of microorganisms. However, the high similarity of 16S and 23S rRNA sequences of Bacillus cereus group organisms (up to 99-100%) and repeatedly failed attempts to develop molecular typing systems that would use DNA sequences to discriminate between species within this group have resulted in several suggestions to consider B. cereus and B. thuringiensis, or these two species together with B. anthracis, as one species. Recently, we divided the B. cereus group into seven subgroups, Anthracis, Cereus A and B, Thuringiensis A and B, and Mycoides A and B, based on 16S rRNA, 23S rRNA and gyrB gene sequences and identified subgroup-specific makers in each of these three genes. Here we for the first time demonstrated discrimination of these seven subgroups, including subgroup Anthracis, with a 3D gel element microarray of oligonucleotide probes targeting 16S and 23S rRNA markers. This is the first microarray enabled identification of B. anthracis and discrimination of these seven subgroups in pure cell cultures and in environmental samples using rRNA sequences. The microarray bearing perfect match/mismatch (p/mm) probe pairs was specific enough to discriminate single nucleotide polymorphisms (SNPs) and was able to identify targeted organisms in 5 min. We also demonstrated the ability of the microarray to determine subgroup affiliations for B. cereus group isolates without rRNA sequencing. Correlation of these seven subgroups with groupings based on multilocus sequence typing (MLST), fluorescent amplified fragment length polymorphism analysis (AFLP) and multilocus enzyme electrophoresis (MME) analysis of a wide spectrum of different genes, and the demonstration of subgroup-specific differences in toxin profiles, psychrotolerance, and the ability to harbor some plasmids, suggest that these seven subgroups are not based solely on neutral genomic polymorphisms, but instead reflect

  10. Detecting invisible bacillus spores on surfaces using a portable surface-enhanced Raman analyzer

    Science.gov (United States)

    Farquharson, Stuart; Inscore, Frank; Sperry, Jay F.

    2006-10-01

    Since the distribution of anthrax causing spores through the U.S. Postal System in the autumn of 2001, numerous methods have been developed to detect spores with the goal of minimizing casualties. During and following an attack it is also important to detect spores on surfaces, to assess extent of an attack, to quantify risk of infection by contact, as well as to evaluate post-attack clean-up. To perform useful measurements, analyzers and/or methods must be capable of detecting as few as 10 spores/cm2, in under 5-minutes, with little or no sample preparation or false-positive responses, using a portable device. In an effort to develop such a device, we have been investigating the ability of surfaceenhanced Raman spectroscopy (SERS) to detect dipicolinic acid (DPA) as a chemical signature of bacilli spores. In 2003 we employed SERS to measure DPA extracted from a 10,000 spores per μL sample using hot dodecylamine. Although the entire measurement was performed in 2 minutes, the need to heat the dodecylamine limits field portability of the method. Here we describe the use of a room temperature digesting agent in combination with SERS to detect 220 spores collected from a surface in a 1 μL sample within 3 minutes.

  11. A procedure for estimating Bacillus cereus spores in soil and stream-sediment samples - A potential exploration technique

    Science.gov (United States)

    Watterson, J.R.

    1985-01-01

    The presence of bacterial spores of the Bacillus cereus group in soils and stream sediments appears to be a sensitive indicator of several types of concealed mineral deposits, including vein-type gold deposits. The B. cereus assay is rapid, inexpensive, and inherently reproducible. The test, currently under investigation for its potential in mineral exploration, is recommended for use on a research basis. Among the aerobic spore-forming bacilli, only B. cereus and closely related strains produce an opaque zone in egg-yolk emulsion agar. This characteristic, also known as the Nagler of lecitho-vitellin reaction, has long been used to rapidly indentify and estimate presumptive B. cereus. The test is here adapted to permit rapid estimation of B. cereus spores in soil and stream-sediment samples. Relative standard deviation was 10.3% on counts obtained from two 40-replicate pour-plate determinations. As many as 40 samples per day can be processed. Enough procedural detail is included to permit investigation of the test in conventional geochemical laboratories using standard microbiological safety precautions. ?? 1985.

  12. Characterization of the spore-forming Bacillus cereus sensu lato group and Clostridium perfringens bacteria isolated from the Australian dairy farm environment

    OpenAIRE

    Dréan, Paul; McAuley, Catherine M.; Moore, Sean C.; Fegan, Narelle; Fox, Edward M.

    2015-01-01

    Background The Bacillus cereus sensu lato group and Clostridium perfringens are spore-forming bacteria often associated with food spoilage and which can cause emetic and diarrheal syndromes in humans and ruminants. This study characterised the phenotypes and genotypes of 50 Bacillus cereus s. l. isolates and 26 Clostridium perfringens isolates from dairy farms environments in Victoria, Australia. Results Five of the seven B. cereus s. l. species were isolated, and analysis of the population d...

  13. Involvement of calcium and dipicolinic acid in the resistance of Bacillus cereus BIS-59 spores to u.v. and gamma radiations

    International Nuclear Information System (INIS)

    The role of dipicolinic acid (DPA) in determining the resistance of Bacillus cereus spores to u.v. and gamma radiation was investigated. B. cereus BIS-59 spores containing varying amounts of DPA were prepared by appropriate compositional adjustments in the secondary media. Compared with spores containing 6% DPA (dry weight) those containing 0.8% DPA were far more sensitive to u.v. radiation. Similar u.v. radiation sensitivity was also found in respect of a DPA-less mutant of B. cereus T 6A 1. Pre-treatment of DPA deficient spores (of wild type or mutant B. cereus) with DPA or the presence of DPA during irradiation resulted in increased resistance of these spores to u.v. radiation. In the range 0.2 to 1% DPA content of spores of B. cereus BIS-59, a striking inverse relationship could be discerned between the DPA content and the number of spore photo-products (5-thymidyl, 5,6-dihydrothymine) formed in DNA and spore viability. The resistance of B. cereus spores to gamma radiation did not seem to be influenced by their DPA content. (author)

  14. Beetroot-Pigment-Derived Colorimetric Sensor for Detection of Calcium Dipicolinate in Bacterial Spores

    OpenAIRE

    Letícia Christina Pires Gonçalves; Sandra Maria Da Silva; DeRose, Paul C.; Rômulo Augusto Ando; Erick Leite Bastos

    2013-01-01

    In this proof-of-concept study, we describe the use of the main red beet pigment betanin for the quantification of calcium dipicolinate in bacterial spores, including Bacillus anthracis. In the presence of europium(III) ions, betanin is converted to a water-soluble, non-luminescent orange 1∶1 complex with a stability constant of 1.4 × 10(5) L mol(-1). The addition of calcium dipicolinate, largely found in bacterial spores, changes the color of the aqueous solution of [Eu(Bn)(+)] from orange t...

  15. Germination properties as marker events characterizing later stages of Bacillus subtilis spore formation.

    OpenAIRE

    Dion, P; Mandelstam, J

    1980-01-01

    At various stages during spore formation sporangia were shocked by cold treatment or with toluene, and the germination requirements of the prespores were examined. Up to 5 h after induction of sporulation (t5) germination was spontaneous; i.e., it occurred without any added germinants. After t5, during stages V and VI, the capacity for spontaneous germination diminished progressively, and the spores acquired a need for externally added germinants. At t6 this need was satisfied by either L-ala...

  16. Mechanism and site of inhibition of Bacillus cereus spore outgrowth by nitrosothiols

    International Nuclear Information System (INIS)

    Structure vs. activity studies demonstrate that nitrosothiols inhibit outgrowth of B. cereus spores by reversible covalent bond formation with sensitive spore components. Kinetic studies of the binding of nitrosothiols and iodoacetate, a known sulfhydryl reagent, show that they complete for the same spore sites. Since two other nitrite derivatives, the Perigo factor and the transferrin inhibitor, interfere with iodoacetate label uptake in a kinetically similar fashion, all of these compounds may inhibit spore outgrowth by interacting with the same spore thiol groups. Disruption of spores which have been inhibited by radioactive iodoacetate demonstrates that much of the label is incorporated into a membrane-rich fraction that sediments as a single peak on a sucrose density gradient. SDS gel electrophoresis and autofluorography allows the identification of four intensely labelled proteins with molecular weights of 13,000, 28,000, 29,000, and 30,000. If the iodoacetate labelling is carried out in the presence of nitrosothiol, incorporation is greatly reduced into all components. When germinating spores are labelled with succinate or the lactose analog, o-nitrophenylgalactopyranoside, a significant reduction in the amount of label bound is also observed suggesting that two iodoacetate-reactive sites may be the succinate and lactose permease systems. Severe decreases in the transport of succinate and lactose into iodoacetate and nitrosothiol inhibited spores further implicates a nitrosothiol (iodoacetate) permease interaction. Iodoacetate and nitrosothiols therefore may exert their inhibitory effects by interfering with critical membrane protein sulfhydryl groups, possibly by a a covalent modification mechanism. Some of these sensitive thiols may be involved in active transport processes

  17. Small acid soluble proteins for rapid spore identification.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.; Jokerst, Amanda S.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescence detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.

  18. Impact of different water activities (a w) adjusted by solutes on high pressure high temperature inactivation of Bacillus amyloliquefaciens spores.

    Science.gov (United States)

    Sevenich, Robert; Reineke, Kai; Hecht, Philipp; Fröhling, Antje; Rauh, Cornelia; Schlüter, Oliver; Knorr, Dietrich

    2015-01-01

    Much research has been conducted to comprehend the mechanisms of high pressure (HP) inactivation of spores in aqueous systems but for food model systems these information are scarce. In these systems spores can interact with ingredients which then could possibly lead to retarded or reduced inactivation, which can cause a problem for the sterilization process. The protective mechanism of a reduced a w-value is still unclear. HP processing might prove valuable to overcome protective effects of solutes and achieve shorter process times for sterilization under HP. To gain insight into the underlying mechanisms five a w-values (0.9, 0.92, 0.94, 0.96, 1) were adjusted with two different solutes (NaCl, sucrose). Solutions were inoculated with spores of Bacillus amyloliquefaciens and treated at 105, 110, and 115°C at 600 MPa. Further a thermal inactivation was conducted at the same temperatures for a comparison with the HP data. Afterward, the influence of HP high temperature treatment on the inactivation, the dipicolinic acid (DPA)-release and membrane constitution was assessed by plate count, HPLC and flow cytometry (FCM). The results show that during HP treatments sucrose and salt both have a protective effect, in which the influence of sucrose on the retarded inactivation is higher. The threshold water activities (a w), which is 0.94, here salt and sucrose have a significant influence on the inactivation. The comparison of thermal (105-115°C) and HP and high temperature (600 MPa, 105-115°C) treated samples showed that the time needed to achieve a 4-5 log10 inactivation is reduced from 45 (a w = 1) to 75 (a w = 0.9) min at 105°C to 3 (a w = 1) to 15 (a w = 0.9) minutes at 600 MPa and 105°C. The release of DPA is the rate limiting step of the inactivation and therefore monitoring the release is of great interest. The DPA-release is slowed down in high concentrated solutions (e.g., sucrose, salt) in comparison to a w 1. Since there is a difference in the way the

  19. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    International Nuclear Information System (INIS)

    Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300–2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine

  20. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    Science.gov (United States)

    Tringe, J. W.; Létant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S.; Pantoya, M. L.

    2013-12-01

    Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300-2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%-1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.

  1. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J. W.; Létant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Pantoya, M. L. [Mechanical Engineering Department, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-12-21

    Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300–2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.

  2. Determination of thermobacteriological parameters and size of Bacillus stearothermophilus ATCC 7953 spores

    Directory of Open Access Journals (Sweden)

    Marcos Fraiha

    2010-12-01

    Full Text Available In order to determine thermobacteriological parameters for B. stearothermophilus spores, they were diluted in a saline solution medium and in ground corn-soybean mix, distributed in TDT tube, and submitted to heat for a specific period of time. The D value (time to reduce 1 log cycle of microbial count under a certain temperature and z value (variation of temperature to cause 10-fold change in D value were estimated. To estimate their dimensions, the spores were visualized by using a scanning electron microscope. D121.1 ºC and z values for these spores, as determined in the saline solution, were 8.8 minutes and 12.8 ºC, respectively. D121,1 ºC and z values determined in the corn-soy mix were 14.2 minutes and 23.7 ºC, respectively. The micrographs indicated that the spores have homogeneous shape and size, with length and diameter of 2 and 1 µm, respectively. These results confirm that the spore is highly thermal-resistant, and it is a good biological indicator to evaluate the extrusion process as a feed sterilizer.

  3. Generierung und genotypische Untersuchung eines Ciprofloxacin-resistenten Bacillus cereus Stammes und Entwicklung von real-time-PCR-Schnelltests zum Nachweis von Resistenzen gegen Ciprofloxacin in Bacillus anthracis

    OpenAIRE

    Hübner, Anika

    2014-01-01

    Die gebräuchliche Therapie gegen Milzbrand besteht aus der Gabe von Antibiotika. Als Therapie der Wahl gilt hierbei das Fluorochinolon Ciprofloxacin. Resistenzen gegen dieses Antibiotikum wurden bei B. anthracis in vivo noch nicht, in vitro jedoch im Rahmen mehrerer Studien beschrieben. Es existieren herkömmliche Resistenztests, wie der Gradientendiffusions- oder der Mikrodilutionstest, welche bei einer Milzbranderkrankung genutzt werden können. Diese nehmen jedoch aufgrund der kulturellen An...

  4. Differential detection of a surrogate biological threat agent (Bacillus globigii) with a portable surface plasmon resonance biosensor.

    Science.gov (United States)

    Adducci, Benjamin A; Gruszewski, Hope A; Khatibi, Piyum A; Schmale, David G

    2016-04-15

    New methods and technology are needed to quickly and accurately detect potential biological warfare agents, such as Bacillus anthracis, causal agent of anthrax in humans and animals. Here, we report the detection of a simulant of B. anthracis (B. globigii) alone and in a mixture with a different species of Bacillus to test non-specific interference using a portable surface plasmon resonance (SPR) biosensor (SPIRIT 4.0, Seattle Sensor Systems). Both direct capture and antibody amplification were used to determine the limit of detection for spores of B. globigii, and to detect spores of B. globigii in a mixed sample containing another Bacillus spp. Spores of B. globigii were detected by anti-B. globigii (anti-Bg) coated sensors by direct capture at a concentration of 10(7)spores/mL, and with a secondary antibody amplification at a concentration of 10(5)spores/mL. Spores of B. globigii were differentially detected in a 1:1 mixture with B. pumilus spores from equal concentrations (10(7)spores/mL) with a secondary antibody amplification. To our knowledge, this is the first report of the differential detection of B. globigii with SPR in a mixed sample containing at least one additional Bacillus spp., highlighting the potential for SPR to detect any target bacterium in a mixed sample of closely related species. With the availability of portable instrumentation to accurately detect biological warfare agents such as B. anthracis, emergency responders can implement protocols in a timely fashion, limiting the amount of exposed individuals. PMID:26606307

  5. Bacillus anthracis ω-amino acid:pyruvate transaminase employs a different mechanism for dual substrate recognition than other amine transaminases.

    Science.gov (United States)

    Steffen-Munsberg, Fabian; Matzel, Philipp; Sowa, Miriam A; Berglund, Per; Bornscheuer, Uwe T; Höhne, Matthias

    2016-05-01

    Understanding the metabolic potential of organisms or a bacterial community based on their (meta) genome requires the reliable prediction of an enzyme's function from its amino acid sequence. Besides a remarkable development in prediction algorithms, the substrate scope of sequences with low identity to well-characterized enzymes remains often very elusive. From a recently conducted structure function analysis study of PLP-dependent enzymes, we identified a putative transaminase from Bacillus anthracis (Ban-TA) with the crystal structure 3N5M (deposited in the protein data bank in 2011, but not yet published). The active site residues of Ban-TA differ from those in related (class III) transaminases, which thereby have prevented function predictions. By investigating 50 substrate combinations its amine and ω-amino acid:pyruvate transaminase activity was revealed. Even though Ban-TA showed a relatively narrow amine substrate scope within the tested substrates, it accepts 2-propylamine, which is a prerequisite for industrial asymmetric amine synthesis. Structural information implied that the so-called dual substrate recognition of chemically different substrates (i.e. amines and amino acids) differs from that in formerly known enzymes. It lacks the normally conserved 'flipping' arginine, which enables dual substrate recognition by its side chain flexibility in other ω-amino acid:pyruvate transaminases. Molecular dynamics studies suggested that another arginine (R162) binds ω-amino acids in Ban-TA, but no side chain movements are required for amine and amino acid binding. These results, supported by mutagenesis studies, provide functional insights for the B. anthracis enzyme, enable function predictions of related proteins, and broadened the knowledge regarding ω-amino acid and amine converting transaminases. PMID:26795966

  6. Resistance of Bacillus subtilis spores to 12C ion beams, stimulation of high-energy charged particles in space

    Science.gov (United States)

    Zhang, Li; Dang, Bingrong; Li, Junxiong; Chen, Jinsong; Liu, Mei; Liu, Zhiheng; Zhang, Lixin

    To monitor the response of live microbes in space radiation environment with high-energy charged particles, we carry out ground stimulation radiation experiments. Spores of Bacillus (CGMCC 1.1849) species are one of the model systems used for astro- and radiobiological studies. (12) C ion beams served as stimulated space radiation from 5gry, 10gry, 20gry, 40gry, to 80gry at a rate of 15gry/min Death rates are measured and mutant strains are isolated. Five representative strains are analyzed for their corresponding gene sequences, protein sequences and gene expression index of DNA repair system gene recA and recO. The statistic results showed the strains resistance to (12) C ion beams radiation is partially due to the increase of gene expression index of recA and recO. In conclusion, our research provide a surrogate system to monitor the live microbial response in resistant to space radiation environment.

  7. Rapid onsite assessment of spore viability.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven; Lane, Todd W.; VanderNoot, Victoria A.; Gaucher, Sara P.; Jokerst, Amanda S.

    2005-12-01

    This one year LDRD addresses problems of threat assessment and restoration of facilities following a bioterror incident like the incident that closed down mail facilities in late 2001. Facilities that are contaminated with pathogenic spores such as B. anthracis spores must be shut down while they are treated with a sporicidal agent and the effectiveness of the treatment is ascertained. This process involves measuring the viability of spore test strips, laid out in a grid throughout the facility; the CDC accepted methodologies require transporting the samples to a laboratory and carrying out a 48 hr outgrowth experiment. We proposed developing a technique that will ultimately lead to a fieldable microfluidic device that can rapidly assess (ideally less than 30 min) spore viability and effectiveness of sporicidal treatment, returning facilities to use in hours not days. The proposed method will determine viability of spores by detecting early protein synthesis after chemical germination. During this year, we established the feasibility of this approach and gathered preliminary results that should fuel a future more comprehensive effort. Such a proposal is currently under review with the NIH. Proteomic signatures of Bacillus spores and vegetative cells were assessed by both slab gel electrophoresis as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection. The conditions for germination using a number of chemical germinants were evaluated and optimized and the time course of protein synthesis was ascertained. Microseparations were carried out using both viable spores and spores inactivated by two different methods. A select number of the early synthesis proteins were digested into peptides for analysis by mass spectrometry.

  8. Candidate genes that may be responsible for the unusual resistances exhibited by Bacillus pumilus SAFR-032 spores.

    Directory of Open Access Journals (Sweden)

    Madhan R Tirumalai

    Full Text Available The spores of several Bacillus species, including Bacillus pumilus SAFR-032 and B. safensis FO-36b, which were isolated from the spacecraft assembly facility at NASA's Jet Propulsion Laboratory, are unusually resistant to UV radiation and hydrogen peroxide. In order to identify candidate genes that might be associated with these resistances, the whole genome of B. pumilus SAFR-032, and the draft genome of B. safensis FO-36b were compared in detail with the very closely related type strain B. pumilus ATCC7061(T. 170 genes are considered characteristic of SAFR-032, because they are absent from both FO-36b and ATCC7061(T. Forty of these SAFR-032 characteristic genes are entirely unique open reading frames. In addition, four genes are unique to the genomes of the resistant SAFR-032 and FO-36b. Fifty three genes involved in spore coat formation, regulation and germination, DNA repair, and peroxide resistance, are missing from all three genomes. The vast majority of these are cleanly deleted from their usual genomic context without any obvious replacement. Several DNA repair and peroxide resistance genes earlier reported to be unique to SAFR-032 are in fact shared with ATCC7061(T and no longer considered to be promising candidates for association with the elevated resistances. Instead, several SAFR-032 characteristic genes were identified, which along with one or more of the unique SAFR-032 genes may be responsible for the elevated resistances. These new candidates include five genes associated with DNA repair, namely, BPUM_0608 a helicase, BPUM_0652 an ATP binding protein, BPUM_0653 an endonuclease, BPUM_0656 a DNA cytosine-5- methyltransferase, and BPUM_3674 a DNA helicase. Three of these candidate genes are in immediate proximity of two conserved hypothetical proteins, BPUM_0654 and BPUM_0655 that are also absent from both FO-36b and ATCC7061(T. This cluster of five genes is considered to be an especially promising target for future experimental

  9. - Bacillus anthracis, utilización de un Sistema de Información Geográfico (SIG, para el análisis espacio temporal de 54 brotes de carbunclo rural en el partido de Azul, Bs. As., Argentina (Bacillus anthracis, use of a Geographical infoormation Service (GIS, for the temporary space analysis of 54 outbreaks of rural anthax in the county of Azul, Province of Buenos Aires, Argentina

    Directory of Open Access Journals (Sweden)

    Vazquez P.

    2006-02-01

    Full Text Available Resumen. El objeto de este trabajo es utilizar un Sistema de Información Geográfico (SIG para el análisis epidemiológico del Carbunclo Rural aplicado a un ecosistema ganadero, integrado por 618.000 bovinos, distribuidos en 1.350 establecimientos del partido de Azul, Provincia de Buenos Aires, Argentina. Esto permitió estudiar hechos epidemiológicos de una enfermedad de antigua data como es el Carbunclo Rural. Su agente causal el Bacillus anthracis, posee la característica de formar esporos que permite mantenerse durante decenas de años en el ambiente com capacidad de transmitir la enfermedad a otrois animales susceptibles. Se describe la metodología para su diagnóstico y los distintos elementos que integran el Sistema de Información Geográfico. Los 54 brotes identificados entre los años 1989 / 2005 fueron georreferenciados para posteriormente relacionarlos con las vías de avenamiento de aguas del partido de Azul, lãs características de sus suelos y la ubicación de las poblaciones de las poblaciones rurales que comparten la zona de isorriesgo. Se plantea un sistema de alerta epidemiológico temprano para establecimientos ganaderos que comparten vías de avenamiento de agua en común con el brote de Carbunclo diagnosticado. El 93 % de los brotes ocurrieron en establecimientos que comparten vías de avenamiento, mientras que el 7 % restante en establecimientos ganaderos ubicados fuera del área de influencia de estas vías Summary. The objjective of this study was the use of a Geographical Information Service (GIS for the epidemiologiacal analysis of rural Anthrax applied to a catle ecosystem, which includes 618.000 cattle, distributed on 1.350 farms in the county of Azul, Province of Buenos Aires, Argentina. This allowed studying long past epidemiological occurrences of a disease such as rural carbuncle Its causing egent is Bacillus anthracis, which has the property of forming spores That permit being maintained dozens of years in

  10. Decontamination of Streptococci biofilms and Bacillus cereus spores on plastic surfaces with DC and pulsed corona discharges

    Science.gov (United States)

    Koval'ová, Zuzana; Tarabová, Kataŕna; Hensel, Karol; Machala, Zdenko

    2013-02-01

    Cold air plasmas of DC and pulsed corona discharges: positive streamers and negative Trichel pulses were used for bio-decontamination of Streptococci biofilm and Bacillus cereus spores on polypropylene plastic surfaces. The reduction of bacterial population (evaluated as log10) in the biofilm on plastic surfaces treated by DC corona reached 2.4 logs with 10 min treatment time and 3.3 logs with 2 min treatment time with water spraying. The enhancement of plasma biocidal effects on the biofilm by electro-spraying of water through a hollow needle high-voltage electrode was investigated. No significant polarity effect was found with DC corona. Pulsed corona was demonstrated slightly more bactericidal for spores, especially in the negative polarity where the bacterial population reduction reached up to 2.2 logs at 10 min exposure time. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  11. Photoproduct formation and repair capacity in a mutant of Bacillus cereus 569 producing UV-sensitive spores

    International Nuclear Information System (INIS)

    A mutant of Bacillus cereus 569 UV sensitive in both vegetative and sporal stages was isolated by N-methyl-N'-nitro-N-nitrosoguanidine (NTG) mutagenesis followed by selection on mitomycin C. The UV-sensitive mutant designated as B. cereus 2422 exhibited normal content of dipicolinic acid (DPA) and resistance to X-rays and ethyl methanesulphonate. The photoproduct type and amount, induced by a given UV dose, was similar in either cells or spores of both the mutant 2422 and the wild-type ancestor. The mutant 2422 excised cyclobutane thymine dimers only to a limited extent (20%) as compared with 80% removal in the wild type. Removal of a spore-specific photoproduct (TDHT) during germination proceeded to a similar extent in B. cereus 2422 and the wild-type parent. However, under growing conditions, an additional removal of the TDHT was observed only in the wild-type strain. Liquid holding recovery occurred in irradiated wild-type cells, but not in mutant cells. Spontaneous revertants were isolated that regained UV resistance simultaneously in both the vegetative and sporal stage. (orig./AJ)

  12. Purification and partial characterization of a novel calcium-binding protein from Bacillus cereus T spores and inhibition of germination by calmodulin antagonists

    International Nuclear Information System (INIS)

    A novel calcium-binding protein has been purified from the dormant spores of Bacillus cereus T. B. cereus T spores were extensively washed, broken, and heated at 90 degree C for 2 min. Using calcium-dependent hydrophobic interaction chromatography plus DEAE-cellulose and hydroxylapatite columns, a single protein was obtained which possessed calcium-binding capacity and some characteristics of calmodulin. This heat-stable protein was retained by hydrophobic matrices or a calmodulin antagonist in a calcium-dependent manner. The crude spore extract displaced bovine brain calmodulin from its antibody in a radioimmunoassay and the immunoreactive specific activity of the partially purified fraction which eluted from phenyl-Sepharose was ca. 200-fold greater than the crude spore extract. Purity of this protein was verified by sodium dodecyl sulfate-polyarcylamide gel electrophoresis and reversed-phase HPLC. Calcium-binding ability was verified with a competitive calcium binding assay using Chelex-100 resin and 45Ca autoradiography. SDS-PAGE and amino acid composition indicated the molecular weight of the protein was 24-kDa. The effects of two calmodulin antagonists, trifluoperazine (TFP) and N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7) on L-alanine-induced germination of Bacillus cereus T spores were examined by measuring commitment to germination, loss of heat resistance, release of calcium, decrease in optical density at 660 nm and phase-contrast microscopy

  13. Differential modification of oxic and anoxic components of radiation damage in Bacillus megaterium spores by caffeine

    International Nuclear Information System (INIS)

    Studies were carried out on the effect of caffeine on the X-irradiation sensitivity of B. megaterium spores with the following results: Caffeine exerts a concentration-dependent modifying action on oxygen-dependent components of X-ray-induced damage in B. megaterium spore suspensions causing an 'over-O2 effect' at about 1 x 10-4 mol dm-3, and as the concentration is increased to 1 10-3 mol dm-3 or above, a small but consistent protection is seen. In the absence of O2, at a wide range of concentrations (8.5 x 10-5 to 1 x 10-1 mol dm-3), caffeine enhances the inactivation constant, k, from 1.17 to about 1.50 kGy-1. Both ethanol and t-butanol (5 x 10-2 mol dm-3) remove the 'over O2-effect' produced by 1 x 10-4 mol dm-3 caffeine in O2; such an effect, however, is not accompanied by reduction in the H2O2 concentrations in the spore suspensions. Ethanol prevents caffeine-induced anoxic sensitization, as well as H2O2 buildup. t-BuOH has no influence on either the low dose part of the log fraction survival curve or on the H2O2 yield in the spore suspensions. Caffeine reacts with radiation-induced e-sub(aq) and radicalOH with rate constants of 1.5 x 1010 and 6.9 x 109 dm3 mol-1 s-1, respectively. (author)

  14. Draft Genome Sequence of Bacillus clausii UBBC07, a Spore-Forming Probiotic Strain.

    Science.gov (United States)

    Upadrasta, Aditya; Pitta, Swetha; Madempudi, Ratna Sudha

    2016-01-01

    ITALIC! Bacillus clausiiUBBC07 is a safe endospore-forming strain, characterized for defined therapeutic effects. The finished draft whole-genome sequence is presented here to scan its genetic constitution for its expanded use as a probiotic in various health sectors. PMID:27103711

  15. Separation of Protein Crystals from Spores of Bacillus thuringiensis by Ludox Gradient Centrifugation

    OpenAIRE

    Zhu, Yu Sheng; Brookes, Allan; Carlson, Ken; Filner, Philip

    1989-01-01

    A method is described for the purification of Bacillus thuringiensis protein crystals by Ludox gradient centrifugation. This method is simple, inexpensive, fast, and efficient compared with other techniques. It has been successfully used to purify and characterize the protein crystals from several B. thuringiensis strains.

  16. Draft Genome Sequence of Bacillus clausii UBBC07, a Spore-Forming Probiotic Strain

    Science.gov (United States)

    Upadrasta, Aditya; Pitta, Swetha

    2016-01-01

    Bacillus clausii UBBC07 is a safe endospore-forming strain, characterized for defined therapeutic effects. The finished draft whole-genome sequence is presented here to scan its genetic constitution for its expanded use as a probiotic in various health sectors. PMID:27103711

  17. Expression and refolding of the protective antigen of Bacillus anthracis: A model for high-throughput screening of antigenic recombinant protein refolding.

    Science.gov (United States)

    Pavan, María Elisa; Pavan, Esteban Enrique; Cairó, Fabián Martín; Pettinari, María Julia

    2016-01-01

    Bacillus anthracis protective antigen (PA) is a well known and relevant immunogenic protein that is the basis for both anthrax vaccines and diagnostic methods. Properly folded antigenic PA is necessary for these applications. In this study a high level of PA was obtained in recombinant Escherichia coli. The protein was initially accumulated in inclusion bodies, which facilitated its efficient purification by simple washing steps; however, it could not be recognized by specific antibodies. Refolding conditions were subsequently analyzed in a high-throughput manner that enabled nearly a hundred different conditions to be tested simultaneously. The recovery of the ability of PA to be recognized by antibodies was screened by dot blot using a coefficient that provided a measure of properly refolded protein levels with a high degree of discrimination. The best refolding conditions resulted in a tenfold increase in the intensity of the dot blot compared to the control. The only refolding additive that consistently yielded good results was L-arginine. The statistical analysis identified both cooperative and negative interactions between the different refolding additives. The high-throughput approach described in this study that enabled overproduction, purification and refolding of PA in a simple and straightforward manner, can be potentially useful for the rapid screening of adequate refolding conditions for other overexpressed antigenic proteins. PMID:26777581

  18. Cloning, expression and purification of binding domains of lethal factor and protective antigen of Bacillus anthracis in Escherichia coli and evaluation of their related murine antibody.

    Science.gov (United States)

    Rezaee, Mehdi; Honari, Hossein; Kooshk, Mohammad Reza Ashrafi

    2014-01-01

    Anthrax is common disease between human and animals caused by Bacillus anthracis. The cell binding domain of protective antigen (PAD4) and the binding domain of lethal factor (LFD1) have high immunogenicity potential and always were considered as a vaccine candidate against anthrax. The aims of this study are cloning and expressing of PAD4 and LFD1 in Escherichia coli, purification of the recombinant proteins and determination of their immunogenicity through evaluating of the relative produced polyclonal antibodies in mice. PAD4 and LFD1 genes were cloned in pET28a(+) vector and expressed in E. coli Bl21(DE3)PlysS. Expression and purification of the two recombinant proteins were confirmed by SDS-PAGE and Western blotting techniques. The PAD4 and LFD1 were purified using Ni(+)-NTA affinity chromatography (95-98 %), yielding 37.5 and 45 mg/l of culture, respectively. The antigens were injected three times into mice and production of relative antibodies was evaluated by ELISA test. The results showed that both PAD4 and LFD1 are immunogenic, but LFD1 has higher potential to stimulate Murine immune system. With regard to the high level of LFD1 and PAD4 expression and also significant increment in produced polyclonal antibodies, these recombinant proteins can be considered as a recombinant vaccine candidate against anthrax. PMID:24430302

  19. Comparative Study of Pressure- and Nutrient-Induced Germination of Bacillus subtilis Spores

    OpenAIRE

    Wuytack, Elke Y.; Soons, Johan; Poschet, Filip; Michiels, Chris W.

    2000-01-01

    Germination experiments with specific germination mutants of Bacillus subtilis, including a newly isolated mutant affected in pressure-induced germination, suggest that a pressure of 100 MPa triggers the germination cascades that are induced by the nutrient germinant alanine (Ala) and by a mixture of asparagine, glucose, fructose, and potassium ions (AGFK), by activating the receptors for alanine and asparagine, GerA and GerB, respectively. As opposed to germination at 100 MPa, germination at...

  20. Mechanisms of Bacillus spore germination and inactivation during high pressure processing

    OpenAIRE

    Reineke, Kai

    2013-01-01

    Hochdruck in Kombination mit hohen Prozesstemperaturen ermöglicht es, hochwertige sterile Lebensmittel herzustellen. Da unter anderem die Inaktivierungsmechanismen bakterieller Sporen nicht vollständig geklärt sind, wird diese Technologie bisher noch nicht industriell verwendet. Ziel der Arbeit war es, das Keimungs- und Inaktivierungsverhalten von Bacillus subtilis Sporen sowie von isogenen mutierten Stämmen, denen ein Teil des Keimungsmechanismus fehlt, in einem großen Druck-Temperatur-Zeitb...