WorldWideScience

Sample records for babel multigroup neutron

  1. PHISICS multi-group transport neutronic capabilities for RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    Epiney, A.; Rabiti, C.; Alfonsi, A.; Wang, Y.; Cogliati, J.; Strydom, G. [Idaho National Laboratory (INL), 2525 N. Fremont Ave., Idaho Falls, ID 83402 (United States)

    2012-07-01

    PHISICS is a neutronic code system currently under development at INL. Its goal is to provide state of the art simulation capability to reactor designers. This paper reports on the effort of coupling this package to the thermal hydraulic system code RELAP5. This will enable full prismatic core and system modeling and the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5 (NESTLE). The paper describes the capabilities of the coupling and illustrates them with a set of sample problems. (authors)

  2. Unstructured Grids and the Multigroup Neutron Diffusion Equation

    Directory of Open Access Journals (Sweden)

    German Theler

    2013-01-01

    Full Text Available The neutron diffusion equation is often used to perform core-level neutronic calculations. It consists of a set of second-order partial differential equations over the spatial coordinates that are, both in the academia and in the industry, usually solved by discretizing the neutron leakage term using a structured grid. This work introduces the alternatives that unstructured grids can provide to aid the engineers to solve the neutron diffusion problem and gives a brief overview of the variety of possibilities they offer. It is by understanding the basic mathematics that lie beneath the equations that model real physical systems; better technical decisions can be made. It is in this spirit that this paper is written, giving a first introduction to the basic concepts which can be incorporated into core-level neutron flux computations. A simple two-dimensional homogeneous circular reactor is solved using a coarse unstructured grid in order to illustrate some basic differences between the finite volumes and the finite elements method. Also, the classic 2D IAEA PWR benchmark problem is solved for eighty combinations of symmetries, meshing algorithms, basic geometric entities, discretization schemes, and characteristic grid lengths, giving even more insight into the peculiarities that arise when solving the neutron diffusion equation using unstructured grids.

  3. Non linear prompt neutron kinetics in multigroup diffusion theory

    Energy Technology Data Exchange (ETDEWEB)

    Ghatak, Ajoy Kumar

    1963-06-15

    It is shown that in the usual point kinetics formulation of the Fuch's model the assumption that the basic quantity is the ratio of prompt negative temperature coefficient to prompt neutron lifetime is correct in the limit that the higher mode effects can be neglected. The criticality calculation needed to calculate this coefficient is defined. The effect on the Fuch's model when the heat capacity and temperature coefficient vary linearly with temperature and delayed neutrons are taken into account is considered. The higher mode contributions in the presence of temperature feed-back effects are estimated. A method for calculating the space-dependent effects in non-linear kinetics is outlined. An analysis of the transient behavior of the TREAT reactor is also given. (C.E.S.)

  4. Validation of multigroup neutron cross sections and calculational methods for the advanced neutron source against the FOEHN critical experiments measurements

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.A.; Gallmeier, F.X. [Oak Ridge Institute for Science and Energy, TN (United States); Gehin, J.C. [Oak Ridge National Lab., TN (United States)] [and others

    1995-05-01

    The FOEHN critical experiment was analyzed to validate the use of multigroup cross sections and Oak Ridge National Laboratory neutronics computer codes in the design of the Advanced Neutron Source. The ANSL-V 99-group master cross section library was used for all the calculations. Three different critical configurations were evaluated using the multigroup KENO Monte Carlo transport code, the multigroup DORT discrete ordinates transport code, and the multigroup diffusion theory code VENTURE. The simple configuration consists of only the fuel and control elements with the heavy water reflector. The intermediate configuration includes boron endplates at the upper and lower edges of the fuel element. The complex configuration includes both the boron endplates and components in the reflector. Cross sections were processed using modules from the AMPX system. Both 99-group and 20-group cross sections were created and used in two-dimensional models of the FOEHN experiment. KENO calculations were performed using both 99-group and 20-group cross sections. The DORT and VENTURE calculations were performed using 20-group cross sections. Because the simple and intermediate configurations are azimuthally symmetric, these configurations can be explicitly modeled in R-Z geometry. Since the reflector components cannot be modeled explicitly using the current versions of these codes, three reflector component homogenization schemes were developed and evaluated for the complex configuration. Power density distributions were calculated with KENO using 99-group cross sections and with DORT and VENTURE using 20-group cross sections. The average differences between the measured values and the values calculated with the different computer codes range from 2.45 to 5.74%. The maximum differences between the measured and calculated thermal flux values for the simple and intermediate configurations are {approx} 13%, while the average differences are < 8%.

  5. Sample problems for the novice user of the AMPX-II system. [For generating coupled multigroup neutron--gamma libraries, in FORTRAN IV for IBM 360/91

    Energy Technology Data Exchange (ETDEWEB)

    Ford, W.E. III; Roussin, R.W.; Petrie, L.M.; Diggs, B.R.; Comolander, H.E.

    1979-01-01

    Contents of the IBM version of the APMX system distributed by the Radiation Shielding Information Center (APMX-II) are described. Sample problems which demonstrate the procedure for implementing AMPX-II modules to generate point cross sections; generate multigroup neutron, photon production, and photon interaction cross sections for various transport codes; collapse multigroup cross sections; check, edit, and punch multigroup cross sections; and execute a one-dimensional discrete ordinates transport calculation are detailed. 25 figures, 9 tables.

  6. An analytical representation for the solution of neutron kinetic transport equation in slab-geometry multigroup discrete ordinates formulation

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschewski, Fernanda K.; Segatto, Cynthia F., E-mail: fernandasls_89@hotmail.com, E-mail: cynthia.segatto@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada; Barros, Ricardo C., E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Departamento de Modelagem Computacional

    2015-07-01

    Presented here is a decomposition method based on series representation of the group angular fluxes and delayed neutron precursors in smoothly continuous functions for energy multigroups, slab-geometry discrete ordinates kinetics equations supplemented with a prescribed number of delayed neutron precursors. Numerical results to a non-reflected sub-critical slab stabilized by steady-state sources are given to illustrate the accuracy and efficiency of the o offered method. (author)

  7. VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A.; Huria, H.C.; Cho, K.W. (Cincinnati Univ., OH (United States))

    1991-12-01

    VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing to disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.

  8. VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system. Version 3

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A.; Huria, H.C.; Cho, K.W. [Cincinnati Univ., OH (United States)

    1991-12-01

    VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing to disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.

  9. Three-dimensional h-adaptivity for the multigroup neutron diffusion equations

    KAUST Repository

    Wang, Yaqi

    2009-04-01

    Adaptive mesh refinement (AMR) has been shown to allow solving partial differential equations to significantly higher accuracy at reduced numerical cost. This paper presents a state-of-the-art AMR algorithm applied to the multigroup neutron diffusion equation for reactor applications. In order to follow the physics closely, energy group-dependent meshes are employed. We present a novel algorithm for assembling the terms coupling shape functions from different meshes and show how it can be made efficient by deriving all meshes from a common coarse mesh by hierarchic refinement. Our methods are formulated using conforming finite elements of any order, for any number of energy groups. The spatial error distribution is assessed with a generalization of an error estimator originally derived for the Poisson equation. Our implementation of this algorithm is based on the widely used Open Source adaptive finite element library deal.II and is made available as part of this library\\'s extensively documented tutorial. We illustrate our methods with results for 2-D and 3-D reactor simulations using 2 and 7 energy groups, and using conforming finite elements of polynomial degree up to 6. © 2008 Elsevier Ltd. All rights reserved.

  10. MENDF71x. Multigroup Neutron Cross Section Data Tables Based upon ENDF/B-VII.1

    Energy Technology Data Exchange (ETDEWEB)

    Conlin, Jeremy Lloyd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parsons, Donald Kent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gardiner, Steven J. [Univ. of California, Davis, CA (United States); Gray, Mark Girard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lee, Mary Beth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Morgan Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-17

    A new multi-group neutron cross section library has been released along with the release of NDI version 2.0.20. The library is named MENDF71x and is based upon the evaluations released in ENDF/B-VII.1 which was made publicly available in December 2011. ENDF/B-VII.1 consists of 423 evaluations of which ten are excited states evaluations and 413 are ground state evaluations. MENDF71x was created by processing the 423 evaluations into 618-group, downscatter only NDI data tables. The ENDF/B evaluation files were processed using NJOY version 99.393 with the exception of 35Cl and 233U. Those two isotopes had unique properties that required that we process the evaluation using NJOY version 2012. The MENDF71x library was only processed to room temperature, i.e., 293.6 K. In the future, we plan on producing a multi-temperature library based on ENDF/B-VII.1 and compatible with MENDF71x.

  11. Advanced Neutron Source Cross Section Libraries (ANSL-V): ENDF/B-V based multigroup cross-section libraries for advanced neutron source (ANS) reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Moses, D.L.; Petrie, L.M.; Primm, R.T. III; Slater, C.O.; Westfall, R.M.; Wright, R.Q.

    1990-09-01

    Pseudo-problem-independent, multigroup cross-section libraries were generated to support Advanced Neutron Source (ANS) Reactor design studies. The ANS is a proposed reactor which would be fueled with highly enriched uranium and cooled with heavy water. The libraries, designated ANSL-V (Advanced Neutron Source Cross Section Libraries based on ENDF/B-V), are data bases in AMPX master format for subsequent generation of problem-dependent cross-sections for use with codes such as KENO, ANISN, XSDRNPM, VENTURE, DOT, DORT, TORT, and MORSE. Included in ANSL-V are 99-group and 39-group neutron, 39-neutron-group 44-gamma-ray-group secondary gamma-ray production (SGRP), 44-group gamma-ray interaction (GRI), and coupled, 39-neutron group 44-gamma-ray group (CNG) cross-section libraries. The neutron and SGRP libraries were generated primarily from ENDF/B-V data; the GRI library was generated from DLC-99/HUGO data, which is recognized as the ENDF/B-V photon interaction data. Modules from the AMPX and NJOY systems were used to process the multigroup data. Validity of selected data from the fine- and broad-group neutron libraries was satisfactorily tested in performance parameter calculations.

  12. Development of a Multi-Group Neutron Cross Section Library Generation System for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Hong, Ser Gi; Song, Jae Seung; Lee, Kyung Hoon; Cho, Jin Young; Kim, Ha Yong; Koo, Bon Seung; Shim, Hyung Jin; Park, Sang Yoon

    2008-10-15

    This report describes a generation system of multi-group cross section library which is used in the KARMA lattice calculation code. In particular, the theoretical methodologies, program structures, and input preparations for the constituent programs of the system are described in detail. The library generation system consists of the following five programs : ANJOY, GREDIT, MERIT, SUBDATA, and LIBGEN. ANJOY generates automatically the NJOY input files and two batch files for automatic NJOY run for all the nuclides considered. The automatic NJOY run gives TAPE 23 (PENDF output file of BROADR module of NJOY) and TAPE24 (GENDF output file of GROUPR module of NJOY) files for each nuclide. GREDIT prepares a formatted multi-group cross section file in which the cross sections are tabulated versus temperature and background cross section after reading the TAPE24 file. MERIT generates the hydrogen equivalence factors and the resonance integral tables by solving the slowing down equation with ultra-fine group cross sections which are prepared with the TAPE 23 file. SUBDATA generates the subgroup data including subgroup levels and weights after reading the MERIT output file. Finally, LIBGEN generates the final multi-group library file by assembling the data prepared in the previous steps and by reading the other data such as fission product yield data and decay data.The multi-group cross section library includes general multi-group cross sections, resonance data, subgroup data, fission product yield data, kappa-values (energy release per fission), and all the data which are required in the depletion calculation. The addition or elimination of the cross sections for some nuclides can be easily done by changing the LIBGEN input file if the general multi-group cross section and the subgroup data files are prepared.

  13. Procedure to Generate the MPACT Multigroup Library

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-17

    The CASL neutronics simulator MPACT is under development for the neutronics and T-H coupled simulation for the light water reactor. The objective of this document is focused on reviewing the current procedure to generate the MPACT multigroup library. Detailed methodologies and procedures are included in this document for further discussion to improve the MPACT multigroup library.

  14. Status report on multigroup cross section generation code development for high-fidelity deterministic neutronics simulation system.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W. S.; Lee, C. H. (Nuclear Engineering Division)

    2008-05-16

    Under the fast reactor simulation program launched in April 2007, development of an advanced multigroup cross section generation code was initiated in July 2007, in conjunction with the development of the high-fidelity deterministic neutron transport code UNIC. The general objectives are to simplify the existing multi-step schemes and to improve the resolved and unresolved resonance treatments. Based on the review results of current methods and the fact that they have been applied successfully to fast critical experiment analyses and fast reactor designs for last three decades, the methodologies of the ETOE-2/MC{sup 2}-2/SDX code system were selected as the starting set of methodologies for multigroup cross section generation for fast reactor analysis. As the first step for coupling with the UNIC code and use in a parallel computing environment, the MC{sup 2}-2 code was updated by modernizing the memory structure and replacing old data management package subroutines and functions with FORTRAN 90 based routines. Various modifications were also made in the ETOE-2 and MC{sup 2}-2 codes to process the ENDF/B-VII.0 data properly. Using the updated ETOE-2/MC{sup 2}-2 code system, the ENDF/B-VII.0 data was successfully processed for major heavy and intermediate nuclides employed in sodium-cooled fast reactors. Initial verification tests of the MC{sup 2}-2 libraries generated from ENDF/B-VII.0 data were performed by inter-comparison of twenty-one group infinite dilute total cross sections obtained from MC{sup 2}-2, VIM, and NJOY. For almost all nuclides considered, MC{sup 2}-2 cross sections agreed very well with those from VIM and NJOY. Preliminary validation tests of the ENDF/B-VII.0 libraries of MC{sup 2}-2 were also performed using a set of sixteen fast critical benchmark problems. The deterministic results based on MC{sup 2}-2/TWODANT calculations were in good agreement with MCNP solutions within {approx}0.25% {Delta}{rho}, except a few small LANL fast assemblies

  15. An algorithm for multi-group two-dimensional neutron diffusion kinetics in nuclear reactor cores

    OpenAIRE

    Marcelo Schramm

    2016-01-01

    The objective of this thesis is to introduce a new methodology for two{dimensional multi{ group neutron diffusion kinetics in a reactor core. The presented methodology uses a polyno- mial approximation in a rectangular homogeneous domain with non{homogeneous boundary conditions. As it consists on a truncated Taylor series, its error estimates varies with the size of the rectangle. The coefficients are obtained mainly by their relations with the independent term, which is determined by the dif...

  16. The numerical analysis of eigenvalue problem solutions in the multigroup neutron diffusion theory

    Energy Technology Data Exchange (ETDEWEB)

    Woznicki, Z.I. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1994-12-31

    The main goal of this paper is to present a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations equivalent mathematically to an eigenvalue problem. Usually a solution method is based on different levels of iterations. The presented matrix formalism allows us to visualize explicitly how the used matrix splitting influences the matrix structure in an eigenvalue problem to be solved as well as the interdependence between inner and outer iteration within global iterations. Particular interactive strategies are illustrated by numerical results obtained for several reactor problems. (author). 21 refs, 32 figs, 15 tabs.

  17. The numerical analysis of eigenvalue problem solutions in multigroup neutron diffusion theory

    Energy Technology Data Exchange (ETDEWEB)

    Woznicki, Z.I. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1995-12-31

    The main goal of this paper is to present a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations equivalent mathematically to an eigenvalue problem. Usually a solution method is based on different levels of iterations. The presented matrix formalism allows us to visualize explicitly how the used matrix splitting influences the matrix structure in an eigenvalue problem to be solved as well as the interdependence between inner and outer iterations within global iterations. Particular iterative strategies are illustrated by numerical results obtained for several reactor problems. (author). 21 refs, 35 figs, 16 tabs.

  18. On an evaluation of the continuous flux and dominant Eigenvalue problem for the steady state multi-group multi-layer neutron diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Ceolin, C.; Schramm, M.; Vilhena, M.T.; Bodmann, B.E.J., E-mail: celina.ceolin@gmail.com, E-mail: marceloschramm@hotmail.com, E-mail: vilhena@pq.cnpq.br, E-mail: bardo.bodmann@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

    2013-07-01

    In this work the authors solved the steady state neutron diffusion equation for a multi-layer slab assuming the multi-group energy model. The method to solve the equation system is based on a expansion in Taylor Series, which was proven to be useful in [1] [2] [3]. The results obtained can be used as initial condition for neutron space kinetics problems. The neutron scalar flux was expanded in a power series, and the coefficients were found by using the ordinary differential equation and the boundary and interface conditions. The effective multiplication factor k was evaluated using the power method [4]. We divided the domain into several slabs to guarantee the convergence with a low truncation order. We present the formalism together with some numerical simulations. (author)

  19. On an analytical evaluation of the flux and dominant eigenvalue problem for the steady state multi-group multi-layer neutron diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Ceolin, Celina; Schramm, Marcelo; Bodmann, Bardo Ernst Josef; Vilhena, Marco Tullio Mena Barreto de [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Bogado Leite, Sergio de Queiroz [Comissao Nacional de Energia Nuclear, Rio de Janeiro (Brazil)

    2014-11-15

    In this work the authors solved the steady state neutron diffusion equation for a multi-layer slab assuming the multi-group energy model. The method to solve the equation system is based on an expansion in Taylor Series resulting in an analytical expression. The results obtained can be used as initial condition for neutron space kinetics problems. The neutron scalar flux was expanded in a power series, and the coefficients were found by using the ordinary differential equation and the boundary and interface conditions. The effective multiplication factor k was evaluated using the power method. We divided the domain into several slabs to guarantee the convergence with a low truncation order. We present the formalism together with some numerical simulations.

  20. Lost in Babel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The translation industry in China has to address myriad problems to reap huge returns from building the Tower of Babel By day, Chen Jing is a customs dec-laration clerk at a Shanghai-based shipping company.

  1. Analytical synthetic methods of solution of neutron transport equation with diffusion theory approaches energy multigroup; Metodos sinteticos analiticos de solucao da equacao de transporte de neutrons com aproximacoes da teoria da difusao multigrupo de energia

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Pedro Gabriel B.; Leite, Michel C.A.; Barros, Ricardo C., E-mail: pgbmoraes@gmail.com, E-mail: chell_leite@hotmail.com, E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Departamento de Modelagem Computacional

    2013-07-01

    In this work we developed a software to model and generate results in tables and graphs of one-dimensional neutron transport problems in multi-group formulation of energy. The numerical method we use to solve the problem of neutron diffusion is analytic, thus eliminating the truncation errors that appear in classical numerical methods, e.g., the method of finite differences. This numerical analytical method increases the computational efficiency, since they are not refined spatial discretization necessary because for any spatial discretization grids used, the numerical result generated for the same point of the domain remains unchanged unless the rounding errors of computational finite arithmetic. We chose to develop a computational application in MatLab platform for numerical computation and program interface is simple and easy with knobs. We consider important to model this neutron transport problem with a fixed source in the context of shielding calculations of radiation that protects the biosphere, and could be sensitive to ionizing radiation.

  2. Coupled multi-group neutron photon transport for the simulation of high-resolution gamma-ray spectroscopy applications

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Kimberly A. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2009-08-01

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples.

  3. Applying full multigroup cell characteristics from MCU code to finite difference calculations of neutron field in VVER core

    Energy Technology Data Exchange (ETDEWEB)

    Gorodkov, S.S.; Kalugin, M.A. [Nuclear Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2015-09-15

    Up to now core calculations with Monte Carlo provided only average cross-sections of mesh cells for further use either in finite difference calculations or as benchmark ones for approximate spectral algorithms. Now MCU code is capable to handle functions, which may be interpreted as average diffusion coefficients. Subsequently the results of finite difference calculations with cells characteristic sets obtained in such a way can be compared with Monte Carlo results as benchmarks, giving reliable information on quality of production code under consideration. As an example of such analysis, the results of mesh calculations with 1-, 2-, 4-, 8- and 12 neutron groups of some model VVER fuel assembly are presented in comparison with the exact Monte Carlo solution. As a second example, an analysis is presented of water gap approximate enlargement between fuel assemblies, allowing VVER core region be covered by regular mesh.

  4. Babel de papel

    Directory of Open Access Journals (Sweden)

    Gloria Regina Alves de Carvalho Amaral

    2013-11-01

    Full Text Available A densidade da leitura lida e traduzida nas palavras de um outro. A densidade que permite esboroar fronteiras: culturais, de gênero, de línguas. Referências que atravessam, narrativas deslocadas, discursos embaralhados. A Trilogia de Nova Iorque é a Babel de Paul Auster: a literatura, a crítica, a história, a arte. Apresentando, representando, reconhecendo a leitura como a grande possibilidade de abarcar em uma mesma torre as diferenças, os atrasos, as discrepâncias, mas também aos encontros e as relevâncias. Mais que ficção ou crítica, a trilogia, qual performance, parece teorizar a filosofia, ficcionalizar a teoria, filosofar com a literatura, historicizar a... Ou nada disso. Talvez, e apenas talvez, seja nada mais que um chamado para dançar com as palavras, seguir os fios dos fios que seguem seus traços...

  5. Analytical solution of the multigroup neutron diffusion kinetic equation in one-dimensional cartesian geometry by the integral transform technique; Solucao analitica da equacao cinetica de difusao multigrupo de neutrons em geometria cartesiana unidimensional pela tecnica da transformada integral

    Energy Technology Data Exchange (ETDEWEB)

    Ceolin, Celina

    2010-07-01

    The objective of this work is to obtain an analytical solution of the neutron diffusion kinetic equation in one-dimensional cartesian geometry, to monoenergetic and multigroup problems. These equations are of the type stiff, due to large differences in the orders of magnitude of the time scales of the physical phenomena involved, which make them difficult to solve. The basic idea of the proposed method is applying the spectral expansion in the scalar flux and in the precursor concentration, taking moments and solving the resulting matrix problem by the Laplace transform technique. Bearing in mind that the equation for the precursor concentration is a first order linear differential equation in the time variable, to enable the application of the spectral method we introduce a fictitious diffusion term multiplied by a positive value which tends to zero. This procedure opened the possibility to find an analytical solution to the problem studied. We report numerical simulations and analysis of the results obtained with the precision controlled by the truncation order of the series. (author)

  6. AMPX-77: A modular code system for generating coupled multigroup neutron-gamma cross-section libraries from ENDF/B-IV and/or ENDF/B-V

    Energy Technology Data Exchange (ETDEWEB)

    Greene, N.M.; Ford, W.E. III; Petrie, L.M.; Arwood, J.W.

    1992-10-01

    AMPX-77 is a modular system of computer programs that pertain to nuclear analyses, with a primary emphasis on tasks associated with the production and use of multigroup cross sections. AH basic cross-section data are to be input in the formats used by the Evaluated Nuclear Data Files (ENDF/B), and output can be obtained in a variety of formats, including its own internal and very general formats, along with a variety of other useful formats used by major transport, diffusion theory, and Monte Carlo codes. Processing is provided for both neutron and gamma-my data. The present release contains codes all written in the FORTRAN-77 dialect of FORTRAN and wig process ENDF/B-V and earlier evaluations, though major modules are being upgraded in order to process ENDF/B-VI and will be released when a complete collection of usable routines is available.

  7. MCNP: Multigroup/adjoint capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.; Redmond, E.L. II; Palmtag, S.P.; Hendricks, J.S.

    1994-04-01

    This report discusses various aspects related to the use and validity of the general purpose Monte Carlo code MCNP for multigroup/adjoint calculations. The increased desire to perform comparisons between Monte Carlo and deterministic codes, along with the ever-present desire to increase the efficiency of large MCNP calculations has produced a greater user demand for the multigroup/adjoint capabilities. To more fully utilize these capabilities, we review the applications of the Monte Carlo multigroup/adjoint method, describe how to generate multigroup cross sections for MCNP with the auxiliary CRSRD code, describe how to use the multigroup/adjoint capability in MCNP, and provide examples and results indicating the effectiveness and validity of the MCNP multigroup/adjoint treatment. This information should assist users in taking advantage of the MCNP multigroup/adjoint capabilities.

  8. Borger i det moderne Babel

    DEFF Research Database (Denmark)

    Delman, Thomas Fabian

    2011-01-01

    Hvordan agerer borgerne i den grænseløse by? Er vi blevet borgere i et moderne Babel, hvor vi ikke længere taler samme sprog? Hvorfor vil vi ikke have de fælles projekter i vores baghave? Og kan nyaktivisme måske være en mulig vej frem? Artiklen forsøger at give svar på nogle af disse spørgsmål....

  9. Le mythe de Babel The Myth of Babel El mito de Babel

    Directory of Open Access Journals (Sweden)

    James Dauphiné

    1996-05-01

    Full Text Available Marqué par le triple sceau de la théologie, de la littérature et de la critique, le mythe de Babel engendre une réflexion sur les fondements de la pensée occidentale. Le texte de la Genèse XI est une source considérable de création et de questionnement qui, de saint Augustin à Joyce ou Perec, demeure particulièrement féconde.As a myth which bears the triple hallmark of theology, literature and criticism, Babel is an opportunity to take into consideration the very foundations of western thought and civilization. The « tale of origins » in Gen. XI has been a source of outstanding creation and questioning which, from saint Augustine to Joyce or Perec, has remained extraordinary fruitful.Como mito que lleva el triple sello de la teología, la literatura y la crítica, Babel permite reflexionar sobre los datos fundamentales del pensamiento y de la literatura occidentales. A partir del « relato de los orígenes » de Génesis XI, han brotado una creación y una interrogación dignas de consideración y siempre, desde San Agustín a Joyce o Perec, ha sido una fuente de inspiración asombrosamente fecunda.

  10. The Suppression of Energy Discretization Errors in Multigroup Transport Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Edward [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences

    2013-06-17

    The Objective of this project is to develop, implement, and test new deterministric methods to solve, as efficiently as possible, multigroup neutron transport problems having an extremely large number of groups. Our approach was to (i) use the standard CMFD method to "coarsen" the space-angle grid, yielding a multigroup diffusion equation, and (ii) use a new multigrid-in-space-and-energy technique to efficiently solve the multigroup diffusion problem. The overall strategy of (i) how to coarsen the spatial an energy grids, and (ii) how to navigate through the various grids, has the goal of minimizing the overall computational effort. This approach yields not only the fine-grid solution, but also coarse-group flux-weighted cross sections that can be used for other related problems.

  11. Recursive solutions for multi-group neutron kinetics diffusion equations in homogeneous three-dimensional rectangular domains with time dependent perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Claudio Z. [Universidade Federal de Pelotas, Capao do Leao (Brazil). Programa de Pos Graduacao em Modelagem Matematica; Bodmann, Bardo E.J.; Vilhena, Marco T. [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Mecanica; Barros, Ricardo C. [Universidade do Estado do Rio de Janeiro, Nova Friburgo, RJ (Brazil). Inst. Politecnico

    2014-12-15

    In the present work we solve in analytical representation the three dimensional neutron kinetic diffusion problem in rectangular Cartesian geometry for homogeneous and bounded domains for any number of energy groups and precursor concentrations. The solution in analytical representation is constructed using a hierarchical procedure, i.e. the original problem is reduced to a problem previously solved by the authors making use of a combination of the spectral method and a recursive decomposition approach. Time dependent absorption cross sections of the thermal energy group are considered with step, ramp and Chebyshev polynomial variations. For these three cases, we present numerical results and discuss convergence properties and compare our results to those available in the literature.

  12. ANSL-V: ENDF/B-V based multigroup cross-section libraries for Advanced Neutron Source (ANS) reactor studies. Supplement 1

    Energy Technology Data Exchange (ETDEWEB)

    Wright, R.Q.; Renier, J.P.; Bucholz, J.A.

    1995-08-01

    The original ANSL-V cross-section libraries (ORNL-6618) were developed over a period of several years for the physics analysis of the ANS reactor, with little thought toward including the materials commonly needed for shielding applications. Materials commonly used for shielding applications include calcium barium, sulfur, phosphorous, and bismuth. These materials, as well as {sup 6}Li, {sup 7}Li, and the naturally occurring isotopes of hafnium, have been added to the ANSL-V libraries. The gamma-ray production and gamma-ray interaction cross sections were completely regenerated for the ANSL-V 99n/44g library which did not exist previously. The MALOCS module was used to collapse the 99n/44g coupled library to the 39n/44g broad- group library. COMET was used to renormalize the two-dimensional (2- D) neutron matrix sums to agree with the one-dimensional (1-D) averaged values. The FRESH module was used to adjust the thermal scattering matrices on the 99n/44g and 39n/44g ANSL-V libraries. PERFUME was used to correct the original XLACS Legendre polynomial fits to produce acceptable distributions. The final ANSL-V 99n/44g and 39n/44g cross-section libraries were both checked by running RADE. The AIM module was used to convert the master cross-section libraries from binary coded decimal to binary format (or vice versa).

  13. Multi-language Struct Support in Babel

    Energy Technology Data Exchange (ETDEWEB)

    Ebner, D; Prantl, A; Epperly, T W

    2011-03-22

    Babel is an open-source language interoperability framework tailored to the needs of high-performance scientific computing. As an integral element of the Common Component Architecture (CCA) it is used in a wide range of research projects. In this paper we describe how we extended Babel to support interoperable tuple data types (structs). Structs are a common idiom in scientific APIs; they are an efficient way to pass tuples of nonuniform data between functions, and are supported natively by most programming languages. Using our extended version of Babel, developers of scientific code can now pass structs as arguments between functions implemented in any of the supported languages. In C, C++ and Fortran 2003, structs can be passed without the overhead of data marshaling or copying, providing language interoperability at minimal cost. Other supported languages are Fortran 77, Fortran 90, Java and Python. We will show how we designed a struct implementation that is interoperable with all of the supported languages and present benchmark data compare the performance of all language bindings, highlighting the differences between languages that offer native struct support and an object-oriented interface with getter/setter methods.

  14. Reflections on After Babel:Aspects of Language and Translation

    Institute of Scientific and Technical Information of China (English)

    陶子凤

    2015-01-01

    The publication of his book After Babel:Aspects of Language and Translation in 1975,which was a landmark in the field of translation and linguistics and the first systematical study in translation theory since the 1800s in western academic circles,brought George Steiner worldwide attention.This paper will mainly introduce the hermeneutic motion of After Babel:Aspects of Language and Translation and present application of Steiner’s hermeneutic motion in analyzing translator’s subjectivity.

  15. A numerical model for multigroup radiation hydrodynamics

    CERN Document Server

    Vaytet, N M H; Dubroca, B; Delahaye, F

    2011-01-01

    We present in this paper a multigroup model for radiation hydrodynamics to account for variations of the gas opacity as a function of frequency. The entropy closure model (M1) is applied to multigroup radiation transfer in a radiation hydrodynamics code. In difference from the previous grey model, we are able to reproduce the crucial effects of frequency-variable gas opacities, a situation omnipresent in physics and astrophysics. We also account for the energy exchange between neighbouring groups which is important in flows with strong velocity divergence. These terms were computed using a finite volume method in the frequency domain. The radiative transfer aspect of the method was first tested separately for global consistency (reversion to grey model) and against a well established kinetic model through Marshak wave tests with frequency dependent opacities. Very good agreement between the multigroup M1 and kinetic models was observed in all tests. The successful coupling of the multigroup radiative transfer...

  16. Daniel Quinn e a Biblioteca de Babel

    Directory of Open Access Journals (Sweden)

    Leonardo Vieira de Almeida

    2011-06-01

    Full Text Available http://dx.doi.org/10.5007/2175-7917.2011v16n1p119 Em "A cidade de vidro" (City of glass, novela de Paul Auster, a tarefa do detetive e a do leitor se confundem na tentativa de decifrar uma cartografia em constante flutuação. O mapa urbano sobre o qual Daniel Quinn precisa seguir as pistas do mistério de Peter Stillman se torna o espaço que representa a impossibilidade de qualquer resposta. Ler Nova York é caminhar por uma Babel de textos, um inventário de citações que desarticulam a cidade e Quinn em sua busca do Nome incomunicável.

  17. Evaluation of the HTTR criticality and burnup calculations with continuous-energy and multigroup cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Min-Han; Wang, Jui-Yu [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Sheu, Rong-Jiun, E-mail: rjsheu@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Department of Engineering System and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Liu, Yen-Wan Hsueh [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Department of Engineering System and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China)

    2014-05-01

    The High Temperature Engineering Test Reactor (HTTR) in Japan is a helium-cooled graphite-moderated reactor designed and operated for the future development of high-temperature gas-cooled reactors. Two detailed full-core models of HTTR have been established by using SCALE6 and MCNP5/X, respectively, to study its neutronic properties. Several benchmark problems were repeated first to validate the calculation models. Careful code-to-code comparisons were made to ensure that two calculation models are both correct and equivalent. Compared with experimental data, the two models show a consistent bias of approximately 20–30 mk overestimation in effective multiplication factor for a wide range of core states. Most of the bias could be related to the ENDF/B-VII.0 cross-section library or incomplete modeling of impurities in graphite. After that, a series of systematic analyses was performed to investigate the effects of cross sections on the HTTR criticality and burnup calculations, with special interest in the comparison between continuous-energy and multigroup results. Multigroup calculations in this study were carried out in 238-group structure and adopted the SCALE double-heterogeneity treatment for resonance self-shielding. The results show that multigroup calculations tend to underestimate the system eigenvalue by a constant amount of ∼5 mk compared to their continuous-energy counterparts. Further sensitivity studies suggest the differences between multigroup and continuous-energy results appear to be temperature independent and also insensitive to burnup effects.

  18. New Multi-group Transport Neutronics (PHISICS) Capabilities for RELAP5-3D and its Application to Phase I of the OECD/NEA MHTGR-350 MW Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard Strydom; Cristian Rabiti; Andrea Alfonsi

    2012-10-01

    PHISICS is a neutronics code system currently under development at the Idaho National Laboratory (INL). Its goal is to provide state of the art simulation capability to reactor designers. The different modules for PHISICS currently under development are a nodal and semi-structured transport core solver (INSTANT), a depletion module (MRTAU) and a cross section interpolation (MIXER) module. The INSTANT module is the most developed of the mentioned above. Basic functionalities are ready to use, but the code is still in continuous development to extend its capabilities. This paper reports on the effort of coupling the nodal kinetics code package PHISICS (INSTANT/MRTAU/MIXER) to the thermal hydraulics system code RELAP5-3D, to enable full core and system modeling. This will enable the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5-3D (NESTLE). In the second part of the paper, an overview of the OECD/NEA MHTGR-350 MW benchmark is given. This benchmark has been approved by the OECD, and is based on the General Atomics 350 MW Modular High Temperature Gas Reactor (MHTGR) design. The benchmark includes coupled neutronics thermal hydraulics exercises that require more capabilities than RELAP5-3D with NESTLE offers. Therefore, the MHTGR benchmark makes extensive use of the new PHISICS/RELAP5-3D coupling capabilities. The paper presents the preliminary results of the three steady state exercises specified in Phase I of the benchmark using PHISICS/RELAP5-3D.

  19. La Tour de Babel ou la Part du Diable

    Directory of Open Access Journals (Sweden)

    James Dauphiné

    2000-06-01

    Full Text Available Denis de Rougemont dans son essai La Part du Diable s’est efforcé de prouver que la Tour de Babel est exemplaire de l’action du « diable dans nos dieux et dans nos maladies ». Plus proche des analyses contenues dans les Mythologies de Barthes que de celles rencontrées au fil des traités de démonologie, Denis de Rougemont dénonce le modernisme qui a, de fait, consacré Babel « grand mythe de notre temps » (p. 146. La thèse avancée a pour fondement « la babélisation des cadres matériels de notr...

  20. Modelling and simulations of macroscopic multi-group pedestrian flow

    CERN Document Server

    Mahato, Naveen K; Tiwari, Sudarshan

    2016-01-01

    We consider a multi-group microscopic model for pedestrian flow describing the behaviour of large groups. It is based on an interacting particle system coupled to an eikonal equation. Hydrodynamic multi-group models are derived from the underlying particle system as well as scalar multi-group models. The eikonal equation is used to compute optimal paths for the pedestrians. Particle methods are used to solve the macroscopic equations. Numerical test cases are investigated and the models and, in particular, the resulting evacuation times are compared for a wide range of different parameters.

  1. Multigroup Free-atom Doppler-broadening Approximation. Theory

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Mark Girard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-06

    Multigroup cross sections at a one target temperature can be Doppler-broadened to multigroup cross sections at a higher target temperature by matrix multiplication if the group structure suf- ficiently resolves the original temperature continuous energy cross section. Matrix elements are the higher temperature group weighted averages of the integral over the lower temperature group boundaries of the free-atom Doppler-broadening kernel. The results match theory for constant and 1/v multigroup cross sections at 618 lanl group structure resolution.

  2. The high-energy multi-group HEST1.0 library based on ENDF/B-VII.0: development, verification and preliminary application

    Science.gov (United States)

    Wu, Jun; Chen, Yi-Xue; Wang, Wei-Jin; Yin, Wen; Liang, Tian-Jiao; Jia, Xue-Jun

    2012-03-01

    ENDF/B-VII.0, which was released by the USA Cross Section Evaluation Working Group (CSEWG) in December 2006, was demonstrated to perform much better than previous ENDF evaluations over a broad range of benchmark experiments. A high-energy (up to 150 MeV) multi-group library set named HEST1.0 with 253-neutron and 48-photon groups has been developed based on ENDF/B-VII.0 using the NJOY code. This paper provides a summary of the procedure to produce the library set and a detailed description of the verification of the multi-group library set by several shielding benchmark devices, in particular for high-energy neutron data. In addition, the first application of HEST1.0 to the shielding design of the China Spallation Neutron Source (CSNS) is demonstrated.

  3. The high-energy multi-group HEST1.0 library based on ENDF/B-Ⅶ.0: development, verification and preliminary application

    Institute of Scientific and Technical Information of China (English)

    WU Jun; CHEN Yi-Xue; WANG Wei-Jin; YIN Wen; LIANG Tian-Jiao; JIA Xue-Jun

    2012-01-01

    ENDF/B-Ⅶ.0,which was released by the USA Cross Section Evaluation Working Group (CSEWG)in December 2006,was demonstrated to perform much better than previous ENDF evaluations over a broad range of benchmark experiments.A high-energy (up to 150 MeV) multi-group library set named HEST1.0with 253-neutron and 48-photon groups has been developed based on ENDF/B-Ⅶ.0 using the N JOY code.This paper provides a summary of the procedure to produce the library set and a detailed description of the verification of the multi-group library set by several shielding benchmark devices,in particular for high-energy neutron data.In addition,the first application of HEST1.0 to the shielding design of the China Spallation Neutron Source (CSNS) is demonstrated.

  4. BABEL - A method for digitization and restoration of contour maps

    Science.gov (United States)

    Westphalen, Gernot

    1995-03-01

    We have developed BABEL as a method for digitization and restoration of contour maps. The results of the comparison between restoration and template are encouraging and first applications are proving very useful. The restoration method is now quite flexible and fast. The result is available as a standard fits file, so that the restored map can be transferred into various coordinate systems and projections and can be used for further digital processing, e.g. for comparison of older radio data with new infrared or X-ray data. So far we have digitized various HI line and 11.1 cm continuum contour maps, for which we know that the original digital data were lost or did never exist in a machine readable format.

  5. A new multigroup method for cross-sections that vary rapidly in energy

    Science.gov (United States)

    Haut, T. S.; Ahrens, C.; Jonko, A.; Lowrie, R.; Till, A.

    2017-01-01

    We present a numerical method for solving the time-independent thermal radiative transfer (TRT) equation or the neutron transport (NT) equation when the opacity (cross-section) varies rapidly in frequency (energy) on the microscale ε; ε corresponds to the characteristic spacing between absorption lines or resonances, and is much smaller than the macroscopic frequency (energy) variation of interest. The approach is based on a rigorous homogenization of the TRT/NT equation in the frequency (energy) variable. Discretization of the homogenized TRT/NT equation results in a multigroup-type system, and can therefore be solved by standard methods. We demonstrate the accuracy and efficiency of the approach on three model problems. First we consider the Elsasser band model with constant temperature and a line spacing ε =10-4 . Second, we consider a neutron transport application for fast neutrons incident on iron, where the characteristic resonance spacing ε necessitates ≈ 16 , 000 energy discretization parameters if Planck-weighted cross sections are used. Third, we consider an atmospheric TRT problem for an opacity corresponding to water vapor over a frequency range 1000-2000 cm-1, where we take 12 homogeneous layers between 1-15 km, and temperature/pressure values in each layer from the standard US atmosphere. For all three problems, we demonstrate that we can achieve between 0.1 and 1 percent relative error in the solution, and with several orders of magnitude fewer parameters than a standard multigroup formulation using Planck-weighted (source-weighted) opacities for a comparable accuracy.

  6. New multigroup Monte Carlo scattering algorithm suitable for neutral- and charged-particle Boltzmann and Fokker-Planck calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, D.P.

    1983-05-01

    Morel (1981) has developed multigroup Legendre cross sections suitable for input to standard discrete ordinates transport codes for performing charged-particle Fokker-Planck calculations in one-dimensional slab and spherical geometries. Since the Monte Carlo neutron transport code, MORSE, uses the same multigroup cross section data that discrete ordinates codes use, it was natural to consider whether Fokker-Planck calculations could be performed with MORSE. In order to extend the unique three-dimensional forward or adjoint capability of MORSE to Fokker-Planck calculations, the MORSE code was modified to correctly treat the delta-function scattering of the energy operator, and a new set of physically acceptable cross sections was derived to model the angular operator. Morel (1979) has also developed multigroup Legendre cross sections suitable for input to standard discrete ordinates codes for performing electron Boltzmann calculations. These electron cross sections may be treated in MORSE with the same methods developed to treat the Fokker-Planck cross sections. The large magnitude of the elastic scattering cross section, however, severely increases the computation or run time. It is well-known that approximate elastic cross sections are easily obtained by applying the extended transport (or delta function) correction to the Legendre coefficients of the exact cross section. An exact method for performing the extended transport cross section correction produces cross sections which are physically acceptable. Sample calculations using electron cross sections have demonstrated this new technique to be very effective in decreasing the large magnitude of the cross sections.

  7. Multigroup Moderation Test in Generalized Structured Component Analysis

    Directory of Open Access Journals (Sweden)

    Angga Dwi Mulyanto

    2016-05-01

    Full Text Available Generalized Structured Component Analysis (GSCA is an alternative method in structural modeling using alternating least squares. GSCA can be used for the complex analysis including multigroup. GSCA can be run with a free software called GeSCA, but in GeSCA there is no multigroup moderation test to compare the effect between groups. In this research we propose to use the T test in PLS for testing moderation Multigroup on GSCA. T test only requires sample size, estimate path coefficient, and standard error of each group that are already available on the output of GeSCA and the formula is simple so the user does not need a long time for analysis.

  8. Compilation of multigroup cross-section covariance matrices for several important reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Drischler, J.D.; Weisbin, C.R.

    1977-10-01

    Multigroup cross-section covariance matrices are presented for fission in /sup 235/U, /sup 238/U, /sup 239/Pu, and /sup 241/Pu; capture in /sup 235/U, /sup 238/U, /sup 239/Pu, /sup 240/Pu, and /sup 241/Pu; fission neutron yield (anti nu) for /sup 235/U, /sup 238/U, /sup 239/Pu, and /sup 240/Pu; elastic scattering for Na and Fe; non-elastic reactions for Na and Fe; first-level inelastic scattering for /sup 238/U; and all reactions provided in the ENDF/B-IV covariance description of N, O, and C. Other data files generated are included for reference but have not yet been tested. The report presents the nultigroup data in six, ten, and fifteen energy group forms corresponding to weighting of the covariance data with fission (GODIVA), LMFBR (ZPR-6/7) and 1/E spectra, respectively.

  9. System of adjoint P1 equations for neutron moderation; Sistema de equacoes P1 adjuntas para a moderacao de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2000-07-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, this procedure is questioned and the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. (author)

  10. Application de la methode des sous-groupes au calcul Monte-Carlo multigroupe

    Science.gov (United States)

    Martin, Nicolas

    This thesis is dedicated to the development of a Monte Carlo neutron transport solver based on the subgroup (or multiband) method. In this formalism, cross sections for resonant isotopes are represented in the form of probability tables on the whole energy spectrum. This study is intended in order to test and validate this approach in lattice physics and criticality-safety applications. The probability table method seems promising since it introduces an alternative computational way between the legacy continuous-energy representation and the multigroup method. In the first case, the amount of data invoked in continuous-energy Monte Carlo calculations can be very important and tend to slow down the overall computational time. In addition, this model preserves the quality of the physical laws present in the ENDF format. Due to its cheap computational cost, the multigroup Monte Carlo way is usually at the basis of production codes in criticality-safety studies. However, the use of a multigroup representation of the cross sections implies a preliminary calculation to take into account self-shielding effects for resonant isotopes. This is generally performed by deterministic lattice codes relying on the collision probability method. Using cross-section probability tables on the whole energy range permits to directly take into account self-shielding effects and can be employed in both lattice physics and criticality-safety calculations. Several aspects have been thoroughly studied: (1) The consistent computation of probability tables with a energy grid comprising only 295 or 361 groups. The CALENDF moment approach conducted to probability tables suitable for a Monte Carlo code. (2) The combination of the probability table sampling for the energy variable with the delta-tracking rejection technique for the space variable, and its impact on the overall efficiency of the proposed Monte Carlo algorithm. (3) The derivation of a model for taking into account anisotropic

  11. New Reflections on Mirror Neuron Research, the Tower of Babel, and Intercultural Education

    Science.gov (United States)

    Westbrook, Timothy Paul

    2015-01-01

    Studies of the human mirror neuron system demonstrate how mental mimicking of one's social environment affects learning. The mirror neuron system also has implications for intercultural encounters. This article explores the common ground between the mirror neuron system and theological principles from the Tower of Babel narrative and applies them…

  12. Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit

    Directory of Open Access Journals (Sweden)

    Morley Chris

    2008-03-01

    Full Text Available Abstract Background Scripting languages such as Python are ideally suited to common programming tasks in cheminformatics such as data analysis and parsing information from files. However, for reasons of efficiency, cheminformatics toolkits such as the OpenBabel toolkit are often implemented in compiled languages such as C++. We describe Pybel, a Python module that provides access to the OpenBabel toolkit. Results Pybel wraps the direct toolkit bindings to simplify common tasks such as reading and writing molecular files and calculating fingerprints. Extensive use is made of Python iterators to simplify loops such as that over all the molecules in a file. A Pybel Molecule can be easily interconverted to an OpenBabel OBMol to access those methods or attributes not wrapped by Pybel. Conclusion Pybel allows cheminformaticians to rapidly develop Python scripts that manipulate chemical information. It is open source, available cross-platform, and offers the power of the OpenBabel toolkit to Python programmers.

  13. Babel. Revista de Libros: formular el propio presente entre los finales y el fin

    Directory of Open Access Journals (Sweden)

    Mariana Catalin

    2013-08-01

    Full Text Available El presente artículo realiza un abordaje de la revista Babel. Revista de libros,  publicada en Buenos Aires entre abril de 1988 y marzo de 1991, a partir de un eje singular: la temporalidad que la revista construye y problematiza a partir de pensar su propio presente como un presente en crisis. Como modo de insertarse en el campo intelectual y literario argentino y como estrategia para poder articular las lecturas que le interesa volver centrales, Babel construye una temporalidad entre dos épocas, que supone discutir el fin de la modernidad. Para ver cómo esa temporalidad se construye en la revista, tomaremos dos caminos: por una parte, analizaremos el funcionamiento del discurso sobre lo posmoderno en los primeros dos números de la revista y, por otra parte, intentaremos un recorrido por una sección central de la misma: los “Dossier”.

  14. Reframing the Tower of Babel narrative for economic justice within the South African context

    Directory of Open Access Journals (Sweden)

    Mark Rathbone

    2016-04-01

    Full Text Available The Tower of Babel narrative is profoundly connected to the history of South Africa and its interpretation in the Dutch Reformed Church document entitled Human Relations and the South African Scene in the Light of Scripture (1976, which was used to justify apartheid. In this article, it is argued that this understanding of the narrative is due to racist framing that morally justified the larger apartheid narrative. The Tower of Babel narrative was later reframed for liberation and reconciliation by Desmond Tutu. However, apartheid had an impact not only on the sociopolitical dynamics of South Africa. Submissions to the Truth and Reconciliation Commission by business and labour highlight the impact of apartheid on the economy and specifically black labour. These revelations are responsible for new questions regarding the economics of the narrative that arise and may enrich the understanding of the Tower of Babel narrative. This focus on the economic aspect of the narrative is also supported by historical research on the Tower of Babel narrative that reveals that the dispersion of the people on the plain of Shinar may refer to the demise of the Sumerian empire, which was among other influences brought about by a labour revolt. In this regard, the narrative is a theological reflection on the demise of an unjust economic system that exploited workers. The purpose of this article is to critically explore this economic justice aspect embedded in the narrative in order to determine whether this reframing of the narrative is plausible. This is particularly important within the post-apartheid context and the increase of economic problems such as unemployment, poverty and economic inequality.

  15. Multi-Group Formulation of the Temperature-Dependent Resonance Scattering Model and its Impact on Reactor Core Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ghrayeb, Shadi Z. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Ougouag, Abderrafi M. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Ouisloumen, Mohamed [Westinghouse Electric Company, Cranberry Township, PA (United States); Ivanov, Kostadin N. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering

    2014-01-01

    A multi-group formulation for the exact neutron elastic scattering kernel is developed. It incorporates the neutron up-scattering effects, stemming from lattice atoms thermal motion and accounts for it within the resulting effective nuclear cross-section data. The effects pertain essentially to resonant scattering off of heavy nuclei. The formulation, implemented into a standalone code, produces effective nuclear scattering data that are then supplied directly into the DRAGON lattice physics code where the effects on Doppler Reactivity and neutron flux are demonstrated. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. The results show an increase in values of Doppler temperature feedback coefficients up to -10% for UOX and MOX LWR fuels compared to the corresponding values derived using the traditional asymptotic elastic scattering kernel. This paper also summarizes the results done on this topic to date.

  16. MUXS: a code to generate multigroup cross sections for sputtering calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, T.J.; Robinson, M.T.; Dodds, H.L. Jr.

    1982-10-01

    This report documents MUXS, a computer code to generate multigroup cross sections for charged particle transport problems. Cross sections generated by MUXS can be used in many multigroup transport codes, with minor modifications to these codes, to calculate sputtering yields, reflection coefficients, penetration distances, etc.

  17. Multigroup Equivalence Analysis for High-Dimensional Expression Data

    Science.gov (United States)

    Yang, Celeste; Bartolucci, Alfred A.; Cui, Xiangqin

    2015-01-01

    Hypothesis tests of equivalence are typically known for their application in bioequivalence studies and acceptance sampling. Their application to gene expression data, in particular high-dimensional gene expression data, has only recently been studied. In this paper, we examine how two multigroup equivalence tests, the F-test and the range test, perform when applied to microarray expression data. We adapted these tests to a well-known equivalence criterion, the difference ratio. Our simulation results showed that both tests can achieve moderate power while controlling the type I error at nominal level for typical expression microarray studies with the benefit of easy-to-interpret equivalence limits. For the range of parameters simulated in this paper, the F-test is more powerful than the range test. However, for comparing three groups, their powers are similar. Finally, the two multigroup tests were applied to a prostate cancer microarray dataset to identify genes whose expression follows a prespecified trajectory across five prostate cancer stages. PMID:26628859

  18. Multigroup Equivalence Analysis for High-Dimensional Expression Data.

    Science.gov (United States)

    Yang, Celeste; Bartolucci, Alfred A; Cui, Xiangqin

    2015-01-01

    Hypothesis tests of equivalence are typically known for their application in bioequivalence studies and acceptance sampling. Their application to gene expression data, in particular high-dimensional gene expression data, has only recently been studied. In this paper, we examine how two multigroup equivalence tests, the F-test and the range test, perform when applied to microarray expression data. We adapted these tests to a well-known equivalence criterion, the difference ratio. Our simulation results showed that both tests can achieve moderate power while controlling the type I error at nominal level for typical expression microarray studies with the benefit of easy-to-interpret equivalence limits. For the range of parameters simulated in this paper, the F-test is more powerful than the range test. However, for comparing three groups, their powers are similar. Finally, the two multigroup tests were applied to a prostate cancer microarray dataset to identify genes whose expression follows a prespecified trajectory across five prostate cancer stages.

  19. Neutron logging tool readings and neutron parameters of formations

    Science.gov (United States)

    Czubek, Jan A.

    1995-03-01

    A case history of the calibration of neutron porosity tools is given in the paper. The calibration of neutron porosity tools is one of the most difficult, complicated, and time consuming tasks in the well logging operations in geophysics. A semi empirical approach to this problem is given in the paper. It is based on the correlation of the tool readings observed in known environments with the apparent neutron parameters sensed by the tools. The apparent neutron parameters are functions of the true neutron parameters of geological formations and of the borehole material, borehole diameter, and the tool position inside the borehole. The true integral neutron transport parameters are obtained by the multigroup diffusion approximation for slowing down of neutrons and by one thermal neutron group for the diffusion. In the latter, the effective neutron temperature is taken into account. The problem of the thermal neutron absorption cross section of rocks is discussed in detail from the point of view of its importance for the well logging results and for the experimental techniques being used.

  20. Multigroup covariance matrices for fast-reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.D. III; Broadhead, B.L.

    1981-04-01

    This report presents the multigroup covariance matrices based on the ENDF/B-V nuclear data evaluations. The materials and reactions have been chosen according to the specifications of ORNL-5517. Several cross section covariances, other than those specified by that report, are included due to the derived nature of the uncertainty files in ENDF/B-V. The materials represented are Ni, Cr, /sup 16/O, /sup 12/C, Fe, Na, /sup 235/U, /sup 238/U, /sup 239/Pu, /sup 240/Pu, /sup 241/Pu, and /sup 10/B (present due to its correlation to /sup 238/U). The data have been originally processed into a 52-group energy structure by PUFF-II and subsequently collapsed to smaller subgroup strutures. The results are illustrated in 52-group correlation matrix plots and tabulated into thirteen groups for convenience.

  1. Multi-group dynamic quantum secret sharing with single photons

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongwei [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Ma, Haiqiang, E-mail: hqma@bupt.edu.cn [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Wei, Kejin [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Yang, Xiuqing [School of Science, Beijing Jiaotong University, Beijing 100044 (China); Qu, Wenxiu; Dou, Tianqi; Chen, Yitian; Li, Ruixue; Zhu, Wu [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2016-07-15

    In this letter, we propose a novel scheme for the realization of single-photon dynamic quantum secret sharing between a boss and three dynamic agent groups. In our system, the boss can not only choose one of these three groups to share the secret with, but also can share two sets of independent keys with two groups without redistribution. Furthermore, the security of communication is enhanced by using a control mode. Compared with previous schemes, our scheme is more flexible and will contribute to a practical application. - Highlights: • A multi-group dynamic quantum secret sharing with single photons scheme is proposed. • Any one of the groups can be chosen to share secret through controlling the polarization of photons. • Two sets of keys can be shared simultaneously without redistribution.

  2. Informe sobre el Proyecto Alfa Biblioteca de Babel: ¿Un atajo para la administración de bibliotecas universitarias? Biblioteca de Babel Alfa Project Report: A shortcut for the academic libraries management?

    Directory of Open Access Journals (Sweden)

    Liliana Laura Rega

    2006-12-01

    Full Text Available El Proyecto Alfa Biblioteca de Babel que reúne bibliotecas universitarias de América Latina y Europa comenzó en marzo de 2005 y prevé su conclusión en marzo de 2007. El presente trabajo intenta describir los objetivos y los resultados esperados, e informa las actividades realizadas por la Red Biblioteca de Babel. Finalmente se analizan las propuestas del proyecto en cuanto al rol de las bibliotecas universitarias, y su relación con la innovación en las prácticas pedagógicas.Biblioteca de Babel Alfa Project that assembles academic libraries from Latin America and Europe was approved on March, 2005 and its conclusion is foreseen on March, 2007. This article attempts to describe the aims and the expected results, and reports the activities of the Biblioteca de Babel Network. Finally it analizes the proposals of the project about the role of academic libraries and their relationship with innovations in pedagogical practices.

  3. English as an International Language (EIL), World Englishes within an International Context, and the Tower of Babel

    Science.gov (United States)

    Smith, Jerry

    2015-01-01

    This paper discusses the similarities between the Bible record of the Tower of Babel and the resulting confusion of languages and how it relates to modern times and the trend we see of English as an International Language (EIL). This paper then briefly examines the trend of being culturally sensitive in EIL by accepting cultural or "world…

  4. Self-shielding phenomenon modelling in multigroup transport code Apollo-2; Modelisation du phenomene d'autoprotection dans le code de transport multigroupe Apollo 2

    Energy Technology Data Exchange (ETDEWEB)

    Coste-Delclaux, M

    2006-03-15

    This document describes the improvements carried out for modelling the self-shielding phenomenon in the multigroup transport code APOLLO2. They concern the space and energy treatment of the slowing-down equation, the setting up of quadrature formulas to calculate reaction rates, the setting-up of a method that treats directly a resonant mixture and the development of a sub-group method. We validate these improvements either in an elementary or in a global way. Now, we obtain, more accurate multigroup reaction rates and we are able to carry out a reference self-shielding calculation on a very fine multigroup mesh. To end, we draw a conclusion and give some prospects on the remaining work. (author)

  5. Influence of density and chemical composition of soils in the neutrons probes answer; Influencia da densidade e da composicao quimica dos solos na resposta de sondas de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Crispino, Marcos Luiz; Antonino, Antonio Celso Dantas; Dall`Olio, Attilio; Oliveira Lira, Carlos Alberto Brayner de [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear; Carneiro, Clemente J. Gusmao [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    1996-08-01

    The determination of soil humidity with neutron probes is based in the measure of the thermal neutron flux intensity and its behavior with the soil depend: soil`s chemical composition; soils physical parameters; neutrons` energetic spectrum and neutron-source detector geometry.The objective of this paper is to apply the multigroup function theory to calculate a neutron probe calibration curve utilizing representatives parameters and coefficients of soils horizons in a experimental station in Zona da Mata, Pernambuco, Brazil 2 tabs., 3 figs.

  6. Silvana Borutti – Ute Heidmann, La Babele in cui viviamo. Traduzioni, Riscritture, Culture

    Directory of Open Access Journals (Sweden)

    Manfredi Bernardini

    2013-12-01

    Full Text Available Cosa implica l’atto di tradurre da una lingua all’altra? Come si pone la traduzione in rapporto al concetto di cultura? È possibile rintracciare un’etica della traduzione che valorizzi le differenze linguistiche, e quindi culturali, piuttosto che annullarle? Che mutazioni subisce l’identità nelle sue varie sfaccettature nel corso del processo della traduzione? Sono questi alcuni degli interrogativi cui cercano di dare risposta Silvana Borutti e Ute Heidmann in La Babele in cui viviamo. Traduzioni, Riscritture, Culture. La prima insegna Filosofia teoretica all’Università di Pavia, mentre Ute Heidmann è docente di Letterature comparate all’Università di Losanna. Prendendo le mosse da una doppia prospettiva fornita dalla filosofia del linguaggio e dalla comparatistica, le autrici offrono una lettura interdisciplinare del tema della traduzione. 

  7. Simulations of protostellar collapse using multigroup radiation hydrodynamics. I. The first collapse

    CERN Document Server

    Vaytet, Neil; Chabrier, Gilles; Commercon, Benoit; Masson, Jacques

    2012-01-01

    Radiative transfer plays a major role in the process of star formation. Many simulations of gravitational collapse of a cold gas cloud followed by the formation of a protostellar core use a grey treatment of radiative transfer coupled to the hydrodynamics. However, dust opacities which dominate extinction show large variations as a function of frequency. In this paper, we used frequency-dependent radiative transfer to investigate the influence of the opacity variations on the properties of Larson's first core. We used a multigroup M1 moment model in a 1D radiation hydrodynamics code to simulate the spherically symmetric collapse of a 1 solar mass cloud core. Monochromatic dust opacities for five different temperature ranges were used to compute Planck and Rosseland means inside each frequency group. The results are very consistent with previous studies and only small differences were observed between the grey and multigroup simulations. For a same central density, the multigroup simulations tend to produce fi...

  8. El doble subjetivo y el enigma de la locura criminal en / Babel-ville / de Joseph Bialot

    Directory of Open Access Journals (Sweden)

    Ramón García Pradas

    2011-12-01

    Full Text Available Through this article we would like to explore not only the image of the double but also its functions in Bialot’s novel Babel-ville. To do so, we would like to take into account those theoretical studies that Jung, Rank or Jourde and Tortonese (among others have carried out on this subject from a literary and s psychological point of view. We will analyse the main character’s criminal madness as a procedure to generate a double which does not match up with the figure of a human being, as if our main character’s pulsions (his unconscious part were not human at all. So our main purpose in this article will focus on the study of Bernard, the main male character of Bialot’s novel, Babel-ville, which should be considered as a good sample of what literary criticism is inclined to call black novel. That’s why we will try to see how Babel-ville sticks to the main characteristics of these literary manifestations, which, by the way, seem to appear really suitable when an author tries to look into the enigmatic mystery of the double-being in literature.

  9. I confini, le fondamenta e la fisica di Babele: lo studio interdisciplinare delle lingue e del linguaggio

    Directory of Open Access Journals (Sweden)

    Emanulele Serrelli

    2013-06-01

    Full Text Available If, by “Babel”, we mean the set languages that have appeared in the world, we may want to research the ‘boundaries of Babel’ by asking whether the expansion of Babel is prevented (i.e., whether unobserved languages are impossible languages, and, if so, by which factors. The boundaries of Babel are being explored by partnerships of linguists and neuroscientists. Neo-chomskian approaches find evidence of neural networks dedicated to language processing, and study how these networks constrain the space of possible grammars, whereas lexico-grammar looks at neuroscientific evidence that syntax is not a separate function in the brain. Research questions also expand beyond a tight focus on the brain-language relationship. By “foundations of Babel” we refer to broader, ancient brain functions in which articulated language is embedded. Imitation can be one of those functions. “Physics of Babel” refers to many extra-brain factors that are lacking in non-human species, and that together make language possible. Research on the boundaries of Babel is a fascinating and open scenario, not only interdisciplinary, but also multi-directional, beyond the language function and beyond the exclusive role of the brain.

  10. Multigroup Analysis in Partial Least Squares (PLS) Path Modeling: Alternative Methods and Empirical Results

    NARCIS (Netherlands)

    Sarstedt, Marko; Henseler, Jörg; Ringle, Christian M.

    2011-01-01

    Purpose – Partial least squares (PLS) path modeling has become a pivotal empirical research method in international marketing. Owing to group comparisons' important role in research on international marketing, we provide researchers with recommendations on how to conduct multigroup analyses in PLS p

  11. The LTS{sub N} method used for the determination of parameters in heterogeneous shielding for neutrons and photons; O uso do metodo LTS{sub N} na obtencao de parametros de blindagens multiplas para neutrons e fotons

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Volnei [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Nuclear; Francio, Laci Maria; Brigoni, Justina Ines Fronza [Universidade de Caxias do Sul, RS (Brazil). Dept. de Ciencias Exatas e da Natureza

    2002-07-01

    In this work the LTS{sub N} methodology is used for determination of the radiation flux distribution into the homogeneous and heterogeneous shielding, using the multigroup model in energy, for photons and neutrons. Numerical results for emergent flux, absorbed dose rates and buildup factor are reported. (author)

  12. 'The Tower of Babel' or 'after Babel in contemporary psychoanalysis'? Some historical and theoretical notes on the linguistic and cultural strategies implied by the foundation of the International Journal of Psycho-Analysis, and on its relevance today.

    Science.gov (United States)

    Steiner, R

    1994-12-01

    The author uses private correspondence and documents referring to the foundation of the 'International Journal of Psycho-Analysis' and the 'Glossary' for translating Freud's work, to try to delineate the political and cultural strategy of Jones in founding and developing the 'International Journal of Psycho-Analysis'. Both strategies were based on the wish to have administrative and cultural control of psychoanalysis in the English-speaking countries. In the end Jones and his colleagues succeeded in making the language they created the official language of the IPA; through control of Freud's translations, through the 'Glossary' and particularly through its diffusion in the 'Journal'. The author briefly illustrates the various cultural sources of this attempt and tries to show the similarities between the project of Jones and the first generation of pioneers of psychoanalysis in Great Britain and the myth of the tower of Babel--one of its most important foundation stones being the 'International Journal'. Finally, the author stresses that those issues are still extremely alive in psychoanalysis today. But, confronted with the near-Babel of languages of contemporary psychoanalysis, can we still imply the existence of this universal common language and use it? Can the 'International Journal' still maintain its hegemony? Do we really understand each other even when we use the same technical terminology in English? Or shall we accept that today we should live without a tower of Babel in psychoanalysis? The author concludes that there is some hope, provided that we do not pursue meanings to the forbidden limit of the absolute.

  13. Rem Koolhaas y la nueva Babel. De la torre metropolitana al monumento al vacío

    Directory of Open Access Journals (Sweden)

    José Antonio Tallón

    2015-05-01

    Full Text Available Un primer acercamiento a las reflexiones de Rem Koolhaas en torno a la tipología de torre introduce al rascacielos neoyorquino como la alegoría del “automonumen­to”: una construcción en esencia destinada a reafirmar su sola presencia y que se distingue del resto por medio de su estatura, que la monumentaliza. La torre de Babel, símbolo inquebrantable de la leyenda de la construcción en altura, escenifi­ca una historia de construcción y destrucción que está vinculada ineludiblemente al pensamiento crítico de Rem Koolhaas en torno a la torre como tipología desa­creditada. Un recorrido por las distintas “Babel” que Rem Koolhaas cataloga en el glosario de términos incluido en el texto SMLXL construye un discurso en torno a la destrucción de la torre bíblica y la construcción de la nueva Babel koolhaasiana que inicia su recorrido con el rascacielos para acabar reclamando un nuevo estado de monumentalidad: la ausencia en su estado más puro representado por el muro, el máximo ejemplo de ausencia como la forma más elevada de presencia monu­mental. Una mirada crítica que comienza con la torre metropolitana como la nueva Babel para finalizar con el muro como el monumento al vacío

  14. Development of Library Processing System for Neutron Transport Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Song, J. S.; Park, S. Y.; Kim, H. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)] (and others)

    2008-12-15

    A system for library generation was developed for the lattice neutron transport program for pressurized water reactor core analysis. The system extracts multi energy group nuclear data for requested nuclides from ENDF/B whose data are based on continuous energy, generates hydrogen equivalent factor and resonance integral table as functions of temperature and background cross section for resonance nuclides, generates subgroup data for the lattice program to treat resonance exactly as possible, and generates multi-group neutron library file including nuclide depletion data for use of the lattice program.

  15. Gray and multigroup radiation transport through 3D binary stochastic media with different sphere radii distributions

    Science.gov (United States)

    Olson, Gordon L.

    2017-03-01

    Gray and multigroup radiation is transported through 3D media consisting of spheres randomly placed in a uniform background. Comparisons are made between using constant radii spheres and three different distributions of sphere radii. Because of the computational cost of 3D calculations, only the lowest angle order, n=1, is tested. If the mean chord length is held constant, using different radii distributions makes little difference. This is true for both gray and multigroup solutions. 3D transport solutions are compared to 2D and 1D solutions with the same mean chord lengths. 2D disk and 3D sphere media give solutions that are nearly identical while 1D slab solutions are fundamentally different.

  16. EXTENSION OF THE 1D FOUR-GROUP ANALYTIC NODAL METHOD TO FULL MULTIGROUP

    Energy Technology Data Exchange (ETDEWEB)

    B. D. Ganapol; D. W. Nigg

    2008-09-01

    In the mid 80’s, a four-group/two-region, entirely analytical 1D nodal benchmark appeared. It was readily acknowledged that this special case was as far as one could go in terms of group number and still achieve an analytical solution. In this work, we show that by decomposing the solution to the multigroup diffusion equation into homogeneous and particular solutions, extension to any number of groups is a relatively straightforward exercise using the mathematics of linear algebra.

  17. A multigroup radiation diffusion test problem: Comparison of code results with analytic solution

    Energy Technology Data Exchange (ETDEWEB)

    Shestakov, A I; Harte, J A; Bolstad, J H; Offner, S R

    2006-12-21

    We consider a 1D, slab-symmetric test problem for the multigroup radiation diffusion and matter energy balance equations. The test simulates diffusion of energy from a hot central region. Opacities vary with the cube of the frequency and radiation emission is given by a Wien spectrum. We compare results from two LLNL codes, Raptor and Lasnex, with tabular data that define the analytic solution.

  18. Estimation of multi-group cross section covariances for {sup 235,238}U, {sup 239}Pu, {sup 241}Am, {sup 56}Fe, {sup 23}Na and {sup 27}Al

    Energy Technology Data Exchange (ETDEWEB)

    De Saint Jean, C.; Archier, P.; Noguere, G.; Litaize, O.; Vaglio-Gaudard, C.; Bernard, D.; Leray, O. [CEA, DEN, DER, Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2012-07-01

    This paper presents the methodology used to estimate multi-group covariances for some major isotopes used in reactor physics. The starting point of this evaluation is the modelling of the neutron induced reactions based on nuclear reaction models with parameters. These latest are the vectors of uncertainties as they are absorbing uncertainties and correlation arising from the confrontation of nuclear reaction model to microscopic experiment. These uncertainties are then propagated towards multi-group cross sections. As major breakthroughs were then asked by nuclear reactor physicists to assess proper uncertainties to be used in applications, a solution is proposed by the use of integral experiment information at two different stages in the covariance estimation. In this paper, we will explain briefly the treatment of all type of uncertainties, including experimental ones (statistical and systematic) as well as those coming from validation of nuclear data on dedicated integral experiment (nuclear data oriented). We will illustrate the use of this methodology with various isotopes such as {sup 235,238}U, {sup 239}Pu, {sup 241}Am, {sup 56}Fe, {sup 23}Na and {sup 27}Al. (authors)

  19. On collapsing the Pu94242 average number of neutrons released per fission from the IAEA.LIB library with the WIMSD-5b code

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, Alexandre D. [Centro Tecnico Aeroespacial (CTA), Instituto de Estudos Avancados (IEAv), 12231-970 Sao Jose dos Campos, SP (Brazil)]. E-mail: alexdc@ieav.cta.br; Claro, Luiz H. [Centro Tecnico Aeroespacial (CTA), Instituto de Estudos Avancados (IEAv), 12231-970 Sao Jose dos Campos, SP (Brazil)

    2007-01-15

    It was verified after a fuel burnup calculation with the WIMSD-5b code using the IAEA.LIB library that the computed average number of neutrons released per fission of Pu94242 shows up as a Not-a-Number (NaN) for some energy groups. As this problem does not permit the use of the generated multigroup microscopic cross sections by a reactor calculation code, the value of 1.0E-38 barns was attributed to all energy groups of the IAEA.LIB library that have null values of multigroup microscopic fission cross sections for this material.

  20. Conformity Between LR0 Mock-Ups and Vvers Npp Rpv Neutron Flux Attenuation

    Science.gov (United States)

    Belousov, Sergey; Ilieva, Krassimira; Kirilova, Desislava

    2009-08-01

    The conformity of the mock-up results and those for reactor pressure vessel (RPV) of nuclear power plants (NPP) has been evaluated in order to qualify if the mock-ups data could be used for benchmark's purpose only, or/and for simulating of the NPP irradiation conditions. Neutron transport through the vessel has been calculated by the three-dimensional discrete ordinate code TORT with problem oriented multigroup energy neutron cross-section library BGL. Neutron flux/fluence and spectrum shape represented by normalized group neutron fluxes in the multigroup energy structure, for neutrons with energy above 0.5 MeV, have been used for conformity analysis. It has been demonstrated that the relative difference of the attenuation factor as well as the group neutron fluxes did not exceed 10% at all considered positions for VVER-440. For VVER-1000, it has been obtained the same consistency, except for the location behind the RPV. The neutron flux attenuation behind the RPV is 18% higher than the mock-up attenuation. It has been shown that this difference arises from the dissimilarity of the biological shielding. The obtained results have demonstrated that the VVERs' mock-ups are appropriate for simulating the NPP irradiation conditions. The mock-up results for VVER-1000 have to be applied more carefully i.e. taking into account the existing peculiarity of the biological shielding and RPV attenuation azimuthal dependence.

  1. Measurement invariance via multigroup SEM: Issues and solutions with chi-square-difference tests.

    Science.gov (United States)

    Yuan, Ke-Hai; Chan, Wai

    2016-09-01

    Multigroup structural equation modeling (SEM) plays a key role in studying measurement invariance and in group comparison. When population covariance matrices are deemed not equal across groups, the next step to substantiate measurement invariance is to see whether the sample covariance matrices in all the groups can be adequately fitted by the same factor model, called configural invariance. After configural invariance is established, cross-group equalities of factor loadings, error variances, and factor variances-covariances are then examined in sequence. With mean structures, cross-group equalities of intercepts and factor means are also examined. The established rule is that if the statistic at the current model is not significant at the level of .05, one then moves on to testing the next more restricted model using a chi-square-difference statistic. This article argues that such an established rule is unable to control either Type I or Type II errors. Analysis, an example, and Monte Carlo results show why and how chi-square-difference tests are easily misused. The fundamental issue is that chi-square-difference tests are developed under the assumption that the base model is sufficiently close to the population, and a nonsignificant chi-square statistic tells little about how good the model is. To overcome this issue, this article further proposes that null hypothesis testing in multigroup SEM be replaced by equivalence testing, which allows researchers to effectively control the size of misspecification before moving on to testing a more restricted model. R code is also provided to facilitate the applications of equivalence testing for multigroup SEM. (PsycINFO Database Record

  2. Asymptotic behavior of stochastic multi-group epidemic models with distributed delays

    Science.gov (United States)

    Liu, Qun; Jiang, Daqing; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed

    2017-02-01

    In this paper, we introduce stochasticity into multi-group epidemic models with distributed delays and general kernel functions. The stochasticity in the model is a standard technique in stochastic population modeling. When the perturbations are small, by using the method of stochastic Lyapunov functions, we carry out a detailed analysis on the asymptotic behavior of the stochastic model regarding of the basic reproduction number R0. If R0 ≤ 1, the solution of the stochastic system oscillates around the disease-free equilibrium E0, while if R0 > 1, the solution of the stochastic model fluctuates around the endemic equilibrium E∗. Moreover, we also establish sufficient conditions of these results.

  3. Multi-group pin power reconstruction method based on colorset form functions

    Institute of Scientific and Technical Information of China (English)

    HUANG Hao

    2009-01-01

    A multi-group pin power reconstruction method that fully exploits nodal information obtained from global coarse mesh solution has been developed.It expands the intra-nodal flux distributions into nonseparable semi-analytic basis functions,and a colorset based form function generating method is proposed,which can accurately model the spectral interaction occurring at assembly interface.To demonstrate its accuracy and applicability to realistic problems,the new method is tested against two benchmark problems,including a mixed-oxide fuel problem.The results show that the new method is comparable in accuracy to fine-mesh methods.

  4. Longitudinal multigroup invariance analysis of the satisfaction with food-related life scale in university students

    DEFF Research Database (Denmark)

    Schnettler, Berta; Miranda, Horacio; Edgardo, Miranda-Zapata

    2017-01-01

    This study examined longitudinal measurement invariance in the Satisfaction with Food-related Life (SWFL) scale using follow-up data from university students. We examined this measure of the SWFL in different groups of students, separated by various characteristics. Through non-probabilistic long......This study examined longitudinal measurement invariance in the Satisfaction with Food-related Life (SWFL) scale using follow-up data from university students. We examined this measure of the SWFL in different groups of students, separated by various characteristics. Through non...... invariance by time, and second, a multigroup longitudinal invariance by sex, age, socio-economic status and place of residence during the study period. Results showed that the 3-item version of the SWFL exhibited strong longitudinal invariance (equal factor loadings and equal indicator intercepts......). Longitudinal multigroup invariance analysis also showed that the 3-item version of the SWFL displays strong invariance by socio-economic status and place of residence during the study period over time. Nevertheless, it was only possible to demonstrate equivalence of the longitudinal factor structure among...

  5. The group-level consequences of sexual conflict in multigroup populations.

    Directory of Open Access Journals (Sweden)

    Omar Tonsi Eldakar

    Full Text Available In typical sexual conflict scenarios, males best equipped to exploit females are favored locally over more prudent males, despite reducing female fitness. However, local advantage is not the only relevant form of selection. In multigroup populations, groups with less sexual conflict will contribute more offspring to the next generation than higher conflict groups, countering the local advantage of harmful males. Here, we varied male aggression within- and between-groups in a laboratory population of water striders and measured resulting differences in local population growth over a period of three weeks. The overall pool fitness (i.e., adults produced of less aggressive pools exceeded that of high aggression pools by a factor of three, with the high aggression pools essentially experiencing no population growth over the course of the study. When comparing the fitness of individuals across groups, aggression appeared to be under stabilizing selection in the multigroup population. The use of contextual analysis revealed that overall stabilizing selection was a product of selection favoring aggression within groups, but selected against it at the group-level. Therefore, this report provides further evidence to show that what evolves in the total population is not merely an extension of within-group dynamics.

  6. Longitudinal multigroup invariance analysis of the satisfaction with food-related life scale in university students.

    Science.gov (United States)

    Schnettler, Berta; Miranda, Horacio; Miranda-Zapata, Edgardo; Salinas-Oñate, Natalia; Grunert, Klaus G; Lobos, Germán; Sepúlveda, José; Orellana, Ligia; Hueche, Clementina; Bonilla, Héctor

    2017-06-01

    This study examined longitudinal measurement invariance in the Satisfaction with Food-related Life (SWFL) scale using follow-up data from university students. We examined this measure of the SWFL in different groups of students, separated by various characteristics. Through non-probabilistic longitudinal sampling, 114 university students (65.8% female, mean age: 22.5) completed the SWFL questionnaire three times, over intervals of approximately one year. Confirmatory factor analysis was used to examine longitudinal measurement invariance. Two types of analysis were conducted: first, a longitudinal invariance by time, and second, a multigroup longitudinal invariance by sex, age, socio-economic status and place of residence during the study period. Results showed that the 3-item version of the SWFL exhibited strong longitudinal invariance (equal factor loadings and equal indicator intercepts). Longitudinal multigroup invariance analysis also showed that the 3-item version of the SWFL displays strong invariance by socio-economic status and place of residence during the study period over time. Nevertheless, it was only possible to demonstrate equivalence of the longitudinal factor structure among students of both sexes, and among those older and younger than 22 years. Generally, these findings suggest that the SWFL scale has satisfactory psychometric properties for longitudinal measurement invariance in university students with similar characteristics as the students that participated in this research. It is also possible to suggest that satisfaction with food-related life is associated with sex and age.

  7. Consistent Multigroup Theory Enabling Accurate Course-Group Simulation of Gen IV Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rahnema, Farzad; Haghighat, Alireza; Ougouag, Abderrafi

    2013-11-29

    The objective of this proposal is the development of a consistent multi-group theory that accurately accounts for the energy-angle coupling associated with collapsed-group cross sections. This will allow for coarse-group transport and diffusion theory calculations that exhibit continuous energy accuracy and implicitly treat cross- section resonances. This is of particular importance when considering the highly heterogeneous and optically thin reactor designs within the Next Generation Nuclear Plant (NGNP) framework. In such reactors, ignoring the influence of anisotropy in the angular flux on the collapsed cross section, especially at the interface between core and reflector near which control rods are located, results in inaccurate estimates of the rod worth, a serious safety concern. The scope of this project will include the development and verification of a new multi-group theory enabling high-fidelity transport and diffusion calculations in coarse groups, as well as a methodology for the implementation of this method in existing codes. This will allow for a higher accuracy solution of reactor problems while using fewer groups and will reduce the computational expense. The proposed research represents a fundamental advancement in the understanding and improvement of multi- group theory for reactor analysis.

  8. GLOBAL STABILITY OF EXTENDED MULTI-GROUP SIR EPIDEMIC MODELS WITH PATCHES THROUGH MIGRATION AND CROSS PATCH INFECTION

    Institute of Scientific and Technical Information of China (English)

    Yoshiaki MUROYA; Yoichi ENATSU; Toshikazu KUNIYA

    2013-01-01

    In this article,we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models,which have not only an exchange of individuals between patches through migration but also cross patch infection between different groups.As a result,we partially generalize the recent result in the article [16].

  9. Neutrino signatures and the neutrino-driven wind in Binary Neutron Star Mergers

    CERN Document Server

    Dessart, Luc; Burrows, Adam; Rosswog, Stefan; Livne, Eli

    2008-01-01

    We present VULCAN/2D multi-group flux-limited-diffusion radiation hydrodynamics simulations of binary neutron star (BNS) mergers, using the Shen equation of state, covering ~100 ms, and starting from azimuthal-averaged 2D slices obtained from 3D SPH simulations of Rosswog & Price for 1.4 Msun (baryonic) neutron stars with no initial spins, co-rotating spins, and counter-rotating spins. Snapshots are post-processed at 10 ms intervals with a multi-angle neutrino-transport solver. We find polar-enhanced neutrino luminosities, dominated by $\\bar{\

  10. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors

    Science.gov (United States)

    Recktenwald, Geoff; Deinert, Mark

    2010-03-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks.

  11. Global dynamics of a novel multi-group model for computer worms

    Institute of Scientific and Technical Information of China (English)

    Gong Yong-Wang; Song Yu-Rong; Jiang Guo-Ping

    2013-01-01

    In this paper,we study worm dynamics in computer networks composed of many autonomous systems.A novel multigroup SIQR (susceptible-infected-quarantined-removed) model is proposed for computer worms by explicitly considering anti-virus measures and the network infrastructure.Then,the basic reproduction number of worm R0 is derived and the global dynamics of the model are established.It is shown that if R0 is less than or equal to 1,the disease-free equilibrium is globally asymptotically stable and the worm dies out eventually,whereas,if R0 is greater than 1,one unique endemic equilibrium exists and it is globally asymptotically stable,thus the worm persists in the network.Finally,numerical simulations are given to illustrate the theoretical results.

  12. Validation of the Resilience Scale for Adolescents (READ) in Ireland: a multi-group analysis.

    Science.gov (United States)

    Kelly, Yvonne; Fitzgerald, Amanda; Dooley, Barbara

    2016-04-29

    Resilience is a process reflecting positive adaptation in the face of adversity. The Resilience Scale for Adolescence (READ) incorporates intrapersonal and interpersonal protective factors mapping onto the three salient domains of resilience, including individual, family and external environment. This study investigated the validity and reliability of the READ by means of factor analysis, multi-group analysis, inter-correlations and internal consistency measures. Participants were 6085 young people in Ireland aged 12-18 years. Participants completed the My World Survey - Second Level (MWS-SL), assessing risk and protective factors of mental health. Confirmatory factor analysis validated the original five-factor structure of the READ including Personal Competence, Social Competence, Structured Style, Family Cohesion, and Social Resources, χ(2) (340) = 6146.02, p resilience factors among adolescents in Ireland, demonstrating its applicability in a different cultural context and with a wider age range of adolescents. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Radiation Transport for Explosive Outflows: A Multigroup Hybrid Monte Carlo Method

    CERN Document Server

    Wollaeger, Ryan T; Graziani, Carlo; Couch, Sean M; Jordan, George C; Lamb, Donald Q; Moses, Gregory A

    2013-01-01

    We explore the application of Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) to radiation transport in strong fluid outflows with structured opacity. The IMC method of Fleck & Cummings is a stochastic computational technique for nonlinear radiation transport. IMC is partially implicit in time and may suffer in efficiency when tracking Monte Carlo particles through optically thick materials. The DDMC method of Densmore accelerates an IMC computation where the domain is diffusive. Recently, Abdikamalov extended IMC and DDMC to multigroup, velocity-dependent neutrino transport with the intent of modeling neutrino dynamics in core-collapse supernovae. Densmore has also formulated a multifrequency extension to the originally grey DDMC method. In this article we rigorously formulate IMC and DDMC over a high-velocity Lagrangian grid for possible application to photon transport in the post-explosion phase of Type Ia supernovae. The method described is suitable for a large variety of non-mono...

  14. SIRIUS - A one-dimensional multigroup analytic nodal diffusion theory code

    Energy Technology Data Exchange (ETDEWEB)

    Forslund, P. [Westinghouse Atom AB, Vaesteraas (Sweden)

    2000-09-01

    In order to evaluate relative merits of some proposed intranodal cross sections models, a computer code called Sirius has been developed. Sirius is a one-dimensional, multigroup analytic nodal diffusion theory code with microscopic depletion capability. Sirius provides the possibility of performing a spatial homogenization and energy collapsing of cross sections. In addition a so called pin power reconstruction method is available for the purpose of reconstructing 'heterogeneous' pin qualities. consequently, Sirius has the capability of performing all the calculations (incl. depletion calculations) which are an integral part of the nodal calculation procedure. In this way, an unambiguous numerical analysis of intranodal cross section models is made possible. In this report, the theory of the nodal models implemented in sirius as well as the verification of the most important features of these models are addressed.

  15. Ethnic Residential Segregation: A Multilevel, Multigroup, Multiscale Approach Exemplified by London in 2011.

    Science.gov (United States)

    Jones, Kelvyn; Johnston, Ron; Manley, David; Owen, Dewi; Charlton, Chris

    2015-12-01

    We develop and apply a multilevel modeling approach that is simultaneously capable of assessing multigroup and multiscale segregation in the presence of substantial stochastic variation that accompanies ethnicity rates based on small absolute counts. Bayesian MCMC estimation of a log-normal Poisson model allows the calculation of the variance estimates of the degree of segregation in a single overall model, and credible intervals are obtained to provide a measure of uncertainty around those estimates. The procedure partitions the variance at different levels and implicitly models the dependency (or autocorrelation) at each spatial scale below the topmost one. Substantively, we apply the model to 2011 census data for London, one of the world's most ethnically diverse cities. We find that the degree of segregation depends both on scale and group.

  16. Testing a new multigroup inference approach to reconstructing past environmental conditions

    Directory of Open Access Journals (Sweden)

    Maria RIERADEVALL

    2008-08-01

    Full Text Available A new, quantitative, inference model for environmental reconstruction (transfer function, based for the first time on the simultaneous analysis of multigroup species, has been developed. Quantitative reconstructions based on palaeoecological transfer functions provide a powerful tool for addressing questions of environmental change in a wide range of environments, from oceans to mountain lakes, and over a range of timescales, from decades to millions of years. Much progress has been made in the development of inferences based on multiple proxies but usually these have been considered separately, and the different numeric reconstructions compared and reconciled post-hoc. This paper presents a new method to combine information from multiple biological groups at the reconstruction stage. The aim of the multigroup work was to test the potential of the new approach to making improved inferences of past environmental change by improving upon current reconstruction methodologies. The taxonomic groups analysed include diatoms, chironomids and chrysophyte cysts. We test the new methodology using two cold-environment training-sets, namely mountain lakes from the Pyrenees and the Alps. The use of multiple groups, as opposed to single groupings, was only found to increase the reconstruction skill slightly, as measured by the root mean square error of prediction (leave-one-out cross-validation, in the case of alkalinity, dissolved inorganic carbon and altitude (a surrogate for air-temperature, but not for pH or dissolved CO2. Reasons why the improvement was less than might have been anticipated are discussed. These can include the different life-forms, environmental responses and reaction times of the groups under study.

  17. Neutron Repulsion

    OpenAIRE

    Manuel, Oliver K.

    2011-01-01

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch...

  18. Neutron cross-section probability tables in TRIPOLI-3 Monte Carlo transport code

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, S.H.; Vergnaud, T.; Nimal, J.C. [Commissariat a l`Energie Atomique, Gif-sur-Yvette (France). Lab. d`Etudes de Protection et de Probabilite

    1998-03-01

    Neutron transport calculations need an accurate treatment of cross sections. Two methods (multi-group and pointwise) are usually used. A third one, the probability table (PT) method, has been developed to produce a set of cross-section libraries, well adapted to describe the neutron interaction in the unresolved resonance energy range. Its advantage is to present properly the neutron cross-section fluctuation within a given energy group, allowing correct calculation of the self-shielding effect. Also, this PT cross-section representation is suitable for simulation of neutron propagation by the Monte Carlo method. The implementation of PTs in the TRIPOLI-3 three-dimensional general Monte Carlo transport code, developed at Commissariat a l`Energie Atomique, and several validation calculations are presented. The PT method is proved to be valid not only in the unresolved resonance range but also in all the other energy ranges.

  19. Conception and development of an adaptive energy mesher for multigroup library generation of the transport codes; Conception et developpement d'un mailleur energetique adaptatif pour la generation des bibliotheques multigroupes des codes de transport

    Energy Technology Data Exchange (ETDEWEB)

    Mosca, P.

    2009-12-15

    The deterministic transport codes solve the stationary Boltzmann equation in a discretized energy formalism called multigroup. The transformation of continuous data in a multigroup form is obtained by averaging the highly variable cross sections of the resonant isotopes with the solution of the self-shielding models and the remaining ones with the coarse energy spectrum of the reactor type. So far the error of such an approach could only be evaluated retrospectively. To remedy this, we studied in this thesis a set of methods to control a priori the accuracy and the cost of the multigroup transport computation. The energy mesh optimisation is achieved using a two step process: the creation of a reference mesh and its optimized condensation. In the first stage, by refining locally and globally the energy mesh, we seek, on a fine energy mesh with subgroup self-shielding, a solution equivalent to a reference solver (Monte Carlo or pointwise deterministic solver). In the second step, once fixed the number of groups, depending on the acceptable computational cost, and chosen the most appropriate self-shielding models to the reactor type, we look for the best bounds of the reference mesh minimizing reaction rate errors by the particle swarm optimization algorithm. This new approach allows us to define new meshes for fast reactors as accurate as the currently used ones, but with fewer groups. (author)

  20. Conceptual study of advanced PWR core design. Development of advanced PWR core neutronics analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyo; Kim, Seung Cho; Kim, Taek Kyum; Cho, Jin Young; Lee, Hyun Cheol; Lee, Jung Hun; Jung, Gu Young [Seoul National University, Seoul (Korea, Republic of)

    1995-08-01

    The neutronics design system of the advanced PWR consists of (i) hexagonal cell and fuel assembly code for generation of homogenized few-group cross sections and (ii) global core neutronics analysis code for computations of steady-state pin-wise or assembly-wise core power distribution, core reactivity with fuel burnup, control rod worth and reactivity coefficients, transient core power, etc.. The major research target of the first year is to establish the numerical method and solution of multi-group diffusion equations for neutronics code development. Specifically, the following studies are planned; (i) Formulation of various numerical methods such as finite element method(FEM), analytical nodal method(ANM), analytic function expansion nodal(AFEN) method, polynomial expansion nodal(PEN) method that can be applicable for the hexagonal core geometry. (ii) Comparative evaluation of the numerical effectiveness of these methods based on numerical solutions to various hexagonal core neutronics benchmark problems. Results are follows: (i) Formulation of numerical solutions to multi-group diffusion equations based on numerical methods. (ii) Numerical computations by above methods for the hexagonal neutronics benchmark problems such as -VVER-1000 Problem Without Reflector -VVER-440 Problem I With Reflector -Modified IAEA PWR Problem Without Reflector -Modified IAEA PWR Problem With Reflector -ANL Large Heavy Water Reactor Problem -Small HTGR Problem -VVER-440 Problem II With Reactor (iii) Comparative evaluation on the numerical effectiveness of various numerical methods. (iv) Development of HEXFEM code, a multi-dimensional hexagonal core neutronics analysis code based on FEM. In the target year of this research, the spatial neutronics analysis code for hexagonal core geometry(called NEMSNAP-H temporarily) will be completed. Combination of NEMSNAP-H with hexagonal cell and assembly code will then equip us with hexagonal core neutronics design system. (Abstract Truncated)

  1. Non-Regenerative Multi-Antenna Multi-Group Multi-Way Relaying

    Directory of Open Access Journals (Sweden)

    Klein Anja

    2011-01-01

    Full Text Available Abstract We consider non-regenerative multi-group multi-way (MGMW relaying. A half-duplex non-regenerative multi-antenna relay station (RS assists multiple communication groups. In each group, multiple half-duplex nodes exchange messages. In our proposal, the required number of communication phases is equal to the maximum number of nodes among the groups. In the first phase, all nodes transmit simultaneously to the RS. Assuming perfect channel state information is available at the RS, in the following broadcast (BC phases the RS applies transceive beamforming to its received signal and transmits simultaneously to all nodes. We propose three BC strategies for the BC phases: unicasting, multicasting and hybrid uni/multicasting. For the multicasting strategy, network coding is applied to maintain the same number of communication phases as for the other strategies. We address transceive beamforming maximising the sum rate of non-regenerative MGMW relaying. Due to the high complexity of finding the optimum transceive beamforming maximising the sum rate, we design generalised low complexity transceive beamforming algorithms for all BC strategies: matched filter, zero forcing, minimisation of mean square error and BC-strategy-aware transceive beamforming. It is shown that the sum rate performance of non-regenerative MGMW relaying depends both on the chosen BC strategies and the applied transceive beamforming at the RS.

  2. Multigroup radiation hydrodynamics with flux-limited diffusion and adaptive mesh refinement

    CERN Document Server

    González, Matthias; Commerçon, Benoît; Masson, Jacques

    2015-01-01

    Radiative transfer plays a key role in the star formation process. Due to a high computational cost, radiation-hydrodynamics simulations performed up to now have mainly been carried out in the grey approximation. In recent years, multi-frequency radiation-hydrodynamics models have started to emerge, in an attempt to better account for the large variations of opacities as a function of frequency. We wish to develop an efficient multigroup algorithm for the adaptive mesh refinement code RAMSES which is suited to heavy proto-stellar collapse calculations. Due to prohibitive timestep constraints of an explicit radiative transfer method, we constructed a time-implicit solver based on a stabilised bi-conjugate gradient algorithm, and implemented it in RAMSES under the flux-limited diffusion approximation. We present a series of tests which demonstrate the high performance of our scheme in dealing with frequency-dependent radiation-hydrodynamic flows. We also present a preliminary simulation of a three-dimensional p...

  3. Simulations of protostellar collapse using multigroup radiation hydrodynamics. II. The second collapse

    CERN Document Server

    Vaytet, N; Audit, E; Commercon, B; Masson, J; Ferguson, J; Delahaye, F

    2013-01-01

    Star formation begins with the gravitational collapse of a dense core inside a molecular cloud. As the collapse progresses, the centre of the core begins to heat up as it becomes optically thick. The temperature and density in the centre eventually reach high enough values where fusion reactions can ignite; the protostar is born. This sequence of events entail many physical processes, of which radiative transfer is of paramount importance. Many simulations of protostellar collapse make use of a grey treatment of radiative transfer coupled to the hydrodynamics. However, interstellar gas and dust opacities present large variations as a function of frequency. In this paper, we follow-up on a previous paper on the collapse and formation of Larson's first core using multigroup radiation hydrodynamics (Paper I) by extending the calculations to the second phase of the collapse and the formation of Larson's second core. We have made the use of a non-ideal gas equation of state as well as an extensive set of spectral ...

  4. Sample-size calculations for multi-group comparison in population pharmacokinetic experiments.

    Science.gov (United States)

    Ogungbenro, Kayode; Aarons, Leon

    2010-01-01

    This paper describes an approach for calculating sample size for population pharmacokinetic experiments that involve hypothesis testing based on multi-group comparison detecting the difference in parameters between groups under mixed-effects modelling. This approach extends what has been described for generalized linear models and nonlinear population pharmacokinetic models that involve only binary covariates to more complex nonlinear population pharmacokinetic models. The structural nonlinear model is linearized around the random effects to obtain the marginal model and the hypothesis testing involving model parameters is based on Wald's test. This approach provides an efficient and fast method for calculating sample size for hypothesis testing in population pharmacokinetic models. The approach can also handle different design problems such as unequal allocation of subjects to groups and unbalanced sampling times between and within groups. The results obtained following application to a one compartment intravenous bolus dose model that involved three different hypotheses under different scenarios showed good agreement between the power obtained from NONMEM simulations and nominal power.

  5. Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate

    Science.gov (United States)

    Wang, Zhi-Gang; Gao, Rui-Mei; Fan, Xiao-Ming; Han, Qi-Xing

    2014-09-01

    We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number ℛ0, a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if ℛ0 is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If ℛ0 is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of ℛ0, when the stochastic system obeys some conditions and ℛ0 is greater than 1, we deduce the stochastic system is stochastically asymptotically stable. Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations.

  6. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  7. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  8. Radiation Transport for Explosive Outflows: A Multigroup Hybrid Monte Carlo Method

    Science.gov (United States)

    Wollaeger, Ryan T.; van Rossum, Daniel R.; Graziani, Carlo; Couch, Sean M.; Jordan, George C., IV; Lamb, Donald Q.; Moses, Gregory A.

    2013-12-01

    We explore Implicit Monte Carlo (IMC) and discrete diffusion Monte Carlo (DDMC) for radiation transport in high-velocity outflows with structured opacity. The IMC method is a stochastic computational technique for nonlinear radiation transport. IMC is partially implicit in time and may suffer in efficiency when tracking MC particles through optically thick materials. DDMC accelerates IMC in diffusive domains. Abdikamalov extended IMC and DDMC to multigroup, velocity-dependent transport with the intent of modeling neutrino dynamics in core-collapse supernovae. Densmore has also formulated a multifrequency extension to the originally gray DDMC method. We rigorously formulate IMC and DDMC over a high-velocity Lagrangian grid for possible application to photon transport in the post-explosion phase of Type Ia supernovae. This formulation includes an analysis that yields an additional factor in the standard IMC-to-DDMC spatial interface condition. To our knowledge the new boundary condition is distinct from others presented in prior DDMC literature. The method is suitable for a variety of opacity distributions and may be applied to semi-relativistic radiation transport in simple fluids and geometries. Additionally, we test the code, called SuperNu, using an analytic solution having static material, as well as with a manufactured solution for moving material with structured opacities. Finally, we demonstrate with a simple source and 10 group logarithmic wavelength grid that IMC-DDMC performs better than pure IMC in terms of accuracy and speed when there are large disparities between the magnitudes of opacities in adjacent groups. We also present and test our implementation of the new boundary condition.

  9. Symmetry breaking in the opinion dynamics of a multi-group project organization

    Institute of Scientific and Technical Information of China (English)

    Zhu Zhen-Tao; Zhou Jing; Li Ping; Chen Xing-Guang

    2012-01-01

    A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group's opinion evolution is driven by two types of forces:(i) the group's cohesive force which tends to restore the opinion back towards the initial status because of its company culture; and (ii) nonlinear coupling forces with other groups which attempt to bring opinions closer due to collaboration willingness.Bifurcation analysis for the case of a two-group project shows a cusp catastrophe phenomenon and three distinctive evolutionary regimes,i.e.,a deadlock regime,a convergence regime,and a bifurcation regime in opinion dynamics.The critical value of initial discord between the two groups is derived to discriminate which regime the opinion evolution belongs to.In the case of a three-group project with a symmetric social network,both bifurcation analysis and simulation results demonstrate that if each pair has a high initial discord,instead of symmetrically converging to consensus with the increase of coupling scale as expected by Gabbay's result (Physica A 378 (2007) p.125 Fig.5),project organization (PO) may be split into two distinct clusters because of the symmetry breaking phenomenon caused by pitchfork bifurcations,which urges that apart from divergence in participants' interests,nonlinear interaction can also make conflict inevitable in the PO.The effects of two asymmetric level parameters are tested in order to explore the ways of inducing dominant opinion in the whole PO.It is found that the strong influence imposed by a leader group with firm faith on the flexible and open minded follower groups can promote the formation of a positive dominant opinion in the PO.

  10. Symmetry breaking in the opinion dynamics of a multi-group project organization

    Science.gov (United States)

    Zhu, Zhen-Tao; Zhou, Jing; Li, Ping; Chen, Xing-Guang

    2012-10-01

    A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group's opinion evolution is driven by two types of forces: (i) the group's cohesive force which tends to restore the opinion back towards the initial status because of its company culture; and (ii) nonlinear coupling forces with other groups which attempt to bring opinions closer due to collaboration willingness. Bifurcation analysis for the case of a two-group project shows a cusp catastrophe phenomenon and three distinctive evolutionary regimes, i.e., a deadlock regime, a convergence regime, and a bifurcation regime in opinion dynamics. The critical value of initial discord between the two groups is derived to discriminate which regime the opinion evolution belongs to. In the case of a three-group project with a symmetric social network, both bifurcation analysis and simulation results demonstrate that if each pair has a high initial discord, instead of symmetrically converging to consensus with the increase of coupling scale as expected by Gabbay's result (Physica A 378 (2007) p. 125 Fig. 5), project organization (PO) may be split into two distinct clusters because of the symmetry breaking phenomenon caused by pitchfork bifurcations, which urges that apart from divergence in participants' interests, nonlinear interaction can also make conflict inevitable in the PO. The effects of two asymmetric level parameters are tested in order to explore the ways of inducing dominant opinion in the whole PO. It is found that the strong influence imposed by a leader group with firm faith on the flexible and open minded follower groups can promote the formation of a positive dominant opinion in the PO.

  11. Neutronic calculation of fast reactors by the EUCLID/V1 integrated code

    Science.gov (United States)

    Koltashev, D. A.; Stakhanova, A. A.

    2017-01-01

    This article considers neutronic calculation of a fast-neutron lead-cooled reactor BREST-OD-300 by the EUCLID/V1 integrated code. The main goal of development and application of integrated codes is a nuclear power plant safety justification. EUCLID/V1 is integrated code designed for coupled neutronics, thermomechanical and thermohydraulic fast reactor calculations under normal and abnormal operating conditions. EUCLID/V1 code is being developed in the Nuclear Safety Institute of the Russian Academy of Sciences. The integrated code has a modular structure and consists of three main modules: thermohydraulic module HYDRA-IBRAE/LM/V1, thermomechanical module BERKUT and neutronic module DN3D. In addition, the integrated code includes databases with fuel, coolant and structural materials properties. Neutronic module DN3D provides full-scale simulation of neutronic processes in fast reactors. Heat sources distribution, control rods movement, reactivity level changes and other processes can be simulated. Neutron transport equation in multigroup diffusion approximation is solved. This paper contains some calculations implemented as a part of EUCLID/V1 code validation. A fast-neutron lead-cooled reactor BREST-OD-300 transient simulation (fuel assembly floating, decompression of passive feedback system channel) and cross-validation with MCU-FR code results are presented in this paper. The calculations demonstrate EUCLID/V1 code application for BREST-OD-300 simulating and safety justification.

  12. Questionnaires for Students with Special Educational Needs in the Area of Learning: Results from Multi-Group Analysis

    Directory of Open Access Journals (Sweden)

    Lena Nusser

    2015-05-01

    Full Text Available This article focuses on measurement invariance of the assessment of educationally relevant constructs via written questionnaires for students at special schools and at low track schools attending 5th grade. To examine optimal conditions of administration for students with special educational needs in the area of learning an experimental design was implemented. If accommodated questionnaires, different school enrollments as well as competence differences allow equivalent assessment of reading motivation and academic self-concepts will be investigated with multi-group comparison of confirmatory factor analysis. The results indicate that comparisons between groups of students at special schools and low track schools are meaningful for certain constructs.

  13. Multi-group acculturation orientations in a changing context: Palestinian Christian Arab adolescents in Israel after the lost decade.

    Science.gov (United States)

    Munayer, Salim J; Horenczyk, Gabriel

    2014-10-01

    Grounded in a contextual approach to acculturation of minorities, this study examines changes in acculturation orientations among Palestinian Christian Arab adolescents in Israel following the "lost decade of Arab-Jewish coexistence." Multi-group acculturation orientations among 237 respondents were assessed vis-à-vis two majorities--Muslim Arabs and Israeli Jews--and compared to 1998 data. Separation was the strongest endorsed orientation towards both majority groups. Comparisons with the 1998 data also show a weakening of the Integration attitude towards Israeli Jews, and also distancing from Muslim Arabs. For the examination of the "Westernisation" hypothesis, multi-dimensional scaling (MDS) analyses of perceptions of Self and group values clearly showed that, after 10 years, Palestinian Christian Arabs perceive Israeli Jewish culture as less close to Western culture, and that Self and the Christian Arab group have become much closer, suggesting an increasing identification of Palestinian Christian Arab adolescents with their ethnoreligious culture. We discuss the value of a multi-group, multi-method, and multi-wave approach to the examination of the role of the political context in acculturation processes.

  14. Neutron Repulsion

    CERN Document Server

    Manuel, Oliver K

    2011-01-01

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding...

  15. Multi-Population Invariance with Dichotomous Measures: Combining Multi-Group and MIMIC Methodologies in Evaluating the General Aptitude Test in the Arabic Language

    Science.gov (United States)

    Sideridis, Georgios D.; Tsaousis, Ioannis; Al-harbi, Khaleel A.

    2015-01-01

    The purpose of the present study was to extend the model of measurement invariance by simultaneously estimating invariance across multiple populations in the dichotomous instrument case using multi-group confirmatory factor analytic and multiple indicator multiple causes (MIMIC) methodologies. Using the Arabic version of the General Aptitude Test…

  16. A Multigroup diffusion solver using pseudo transient continuation for a radiation-hydrodynamic code with patch-based AMR

    Energy Technology Data Exchange (ETDEWEB)

    Shestakov, A I; Offner, S R

    2006-09-21

    We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {Psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory

  17. A Multigroup diffusion Solver Using Pseudo Transient Continuation for a Radiaiton-Hydrodynamic Code with Patch-Based AMR

    Energy Technology Data Exchange (ETDEWEB)

    Shestakov, A I; Offner, S R

    2007-03-02

    We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {Psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory

  18. Neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Heger, G. [Rheinisch-Westfaelische Technische Hochschule Aachen, Inst. fuer Kristallographie, Aachen (Germany)

    1996-12-31

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs.

  19. Integral Data Test of HENDL1.0/MG and VisualBUS with Neutronics Shielding Experiments (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    高纯静; 许德政; 李静惊; 吴宜灿; 邓铁如

    2004-01-01

    HENDL1.0/MG, a multi-group working library of the Hybrid Evaluated Nuclear Data Library, was home-developed by the FDS Team of ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences) on the basis of several national data libraries. To validate and qualify the process of producing HENDL1.0/MG, simulating calculations of a series of existent spherical shell benchmark experiments (Al, Mo, Co, Ti, Mn, W, Be and V) have been performed with HENDL1.0/MG and the multifunctional neutronics code system named VisualBUS home-developed also by FDS Team.

  20. Nuclear Data Uncertainty Propagation in Depletion Calculations Using Cross Section Uncertainties in One-group or Multi-group

    Science.gov (United States)

    Díez, C. J.; Cabellos, O.; Martínez, J. S.

    2015-01-01

    Several approaches have been developed in last decades to tackle nuclear data uncertainty propagation problems of burn-up calculations. One approach proposed was the Hybrid Method, where uncertainties in nuclear data are propagated only on the depletion part of a burn-up problem. Because only depletion is addressed, only one-group cross sections are necessary, and hence, their collapsed one-group uncertainties. This approach has been applied successfully in several advanced reactor systems like EFIT (ADS-like reactor) or ESFR (Sodium fast reactor) to assess uncertainties on the isotopic composition. However, a comparison with using multi-group energy structures was not carried out, and has to be performed in order to analyse the limitations of using one-group uncertainties.

  1. Time-dependent Multi-group Multidimensional Relativistic Radiative Transfer Code Based On Spherical Harmonic Discrete Ordinate Method

    CERN Document Server

    Tominaga, Nozomu; Blinnikov, Sergei I

    2015-01-01

    We develop a time-dependent multi-group multidimensional relativistic radiative transfer code, which is required to numerically investigate radiation from relativistic fluids involved in, e.g., gamma-ray bursts and active galactic nuclei. The code is based on the spherical harmonic discrete ordinate method (SHDOM) that evaluates a source function including anisotropic scattering in spherical harmonics and implicitly solves the static radiative transfer equation with a ray tracing in discrete ordinates. We implement treatments of time dependence, multi-frequency bins, Lorentz transformation, and elastic Thomson and inelastic Compton scattering to the publicly available SHDOM code. Our code adopts a mixed frame approach; the source function is evaluated in the comoving frame whereas the radiative transfer equation is solved in the laboratory frame. This implementation is validated with various test problems and comparisons with results of a relativistic Monte Carlo code. These validations confirm that the code ...

  2. Improved neutron kinetics for coupled three-dimensional boiling water reactor analysis

    Science.gov (United States)

    Akdeniz, Bedirhan

    The need for a more accurate method of modelling cross section variations for off-nominal core conditions is becoming an important issue with the increased use of coupled three-dimensional (3-D) thermal-hydraulics/neutronics simulations. In traditional reactor core analysis, thermal reactor core calculations are customarily performed with 3-D two-group nodal diffusion methods. Steady-state multi-group transport theory calculations on heterogeneous single assembly domains subject to reflective boundary conditions are normally used to prepare the equivalent two-group spatially homogenized nodal parameters. For steady-state applications, the equivalent nodal parameters are theoretically well-defined; but, for transient applications, the definition of the nodal kinetics parameters, in particular, delayed neutron precursor data is somewhat unclear. The fact that delayed neutrons are emitted at considerably lower energies than prompt neutrons and that this difference cannot be accounted for in a two-group representation is of particular concern. To compensate for this inherent deficiency of the two-group model a correction is applied to the nodal values of the delayed neutron fractions; however, the adequacy of this correction has never been tested thoroughly for Boiling Water Reactor (BWR) applications, especially where the instantaneous thermal-hydraulic conditions play an important role on the core neutron kinetics calculations. This thesis proposes a systematic approach to improve the 3-D neutron kinetics modelling in coupled BWR transient calculations by developing, implementing and validating methods for consistent generation of neutron kinetics and delayed neutron data for such coupled thermal-hydraulics/neutronics simulations.

  3. PRACTICAL METHOD FOR ESTIMATING NEUTRON CROSS SECTION COVARIANCES IN THE RESONANCE REGION

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.S.; Oblozinsky, P.; Mughabghab,S.F.; Mattoon,C.M.; Herman,M.

    2010-04-30

    Recent evaluations of neutron cross section covariances in the resolved resonance region reveal the need for further research in this area. Major issues include declining uncertainties in multigroup representations and proper treatment of scattering radius uncertainty. To address these issues, the present work introduces a practical method based on kernel approximation using resonance parameter uncertainties from the Atlas of Neutron Resonances. Analytical expressions derived for average cross sections in broader energy bins along with their sensitivities provide transparent tool for determining cross section uncertainties. The role of resonance-resonance and bin-bin correlations is specifically studied. As an example we apply this approach to estimate (n,{gamma}) and (n,el) covariances for the structural material {sup 55}Mn.

  4. Neutron Scattering in Hydrogenous Moderators, Studied by Time Dependent Reaction Rate Method

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, L.G.; Moeller, E.; Purohit, S.N.

    1966-03-15

    The moderation and absorption of a neutron burst in water, poisoned with the non-1/v absorbers cadmium and gadolinium, has been followed on the time scale by multigroup calculations, using scattering kernels for the proton gas and the Nelkin model. The time dependent reaction rate curves for each absorber display clear differences for the two models, and the separation between the curves does not depend much on the absorber concentration. An experimental method for the measurement of infinite medium reaction rate curves in a limited geometry has been investigated. This method makes the measurement of the time dependent reaction rate generally useful for thermalization studies in a small geometry of a liquid hydrogenous moderator, provided that the experiment is coupled to programs for the calculation of scattering kernels and time dependent neutron spectra. Good agreement has been found between the reaction rate curve, measured with cadmium in water, and a calculated curve, where the Haywood kernel has been used.

  5. Neutron tomography

    Science.gov (United States)

    Crump, James C., III; Richards, Wade J.; Shields, Kevin C.

    1995-07-01

    The McClellan Nuclear Radiation Center's (MNRC) staff in conjunction with a Cooperative Research and Development Agreement (CRDA) with the U.C. Santa Barbara facility has developed a system that can be used for aircraft inspection of jet engine blades. The problem was to develop an inspection system that can detect very low concentrations of hydrogen (i.e., greater than 100 ppm) in metal matricies. Specifically in Titanium alloy jet engine blades. Entrapment and precipitation of hydrogen in metals is an undesirable phenomenon which occurs in many alloys of steel and titanium. In general, metals suffer a loss of mechanical properties after long exposures to hydrogen, especially at high temperatures and pressures, thereby becoming embrittled. Neutron radiography has been used as a nondestructive testing technique for many years. Neutrons, because of their unique interactions with materials, are especially useful in the detection of hydrogen. They have an extremely high interaction cross section for low atomic number nuclei (i.e., hydrogen). Thus hydrogen in a metal matrix can be visualized using neutrons. Traditional radiography is sensitive to the total attenuation integrated over the path of radiation through the material. Increased sensitivity and quantitative cross section resolution can be obtained using three-dimensional volumetric imaging techniques such as tomography. The solution used to solve the problem was to develop a neutron tomography system. The neutron source is the McClellan Nuclear Radiation Center's 1 MW TRIGA reactor. This paper describes the hardware used in the system as well as some of the preliminary results.

  6. RADSAT Benchmarks for Prompt Gamma Neutron Activation Analysis Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Kimberly A.; Gesh, Christopher J.

    2011-07-01

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. High-resolution gamma-ray spectrometers are used in these applications to measure the spectrum of the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used simulation tool for this type of problem, but computational times can be prohibitively long. This work explores the use of multi-group deterministic methods for the simulation of coupled neutron-photon problems. The main purpose of this work is to benchmark several problems modeled with RADSAT and MCNP to experimental data. Additionally, the cross section libraries for RADSAT are updated to include ENDF/B-VII cross sections. Preliminary findings show promising results when compared to MCNP and experimental data, but also areas where additional inquiry and testing are needed. The potential benefits and shortcomings of the multi-group-based approach are discussed in terms of accuracy and computational efficiency.

  7. Os afazeres de Babel

    Directory of Open Access Journals (Sweden)

    José Quintão de Oliveira

    2012-11-01

    Full Text Available We live in a time that might be called a time of translation.Everywhere, we need to read or to listen to utterances that wereoriginally written or spoken in languages that are strange to us. So,we do not need a theoretical approach to conclude that it is possibleto translate a text from one language to a different one. But, is thisreal? Especially, is this real when we talk about Literature? Is possibleto translate a poem? Beginning with Cicero in Ancient Rome, wetrace a rout through Saint Jerome, Ortega y Gasset and other thinkersto discuss the answers to these questions. This short essay is just afirst approach which more than supplying answers, seeks for adebate on the important questions related to this subject. It hasonly one conclusion: two thousand years of reflections on theproblem of translation has not been sufficient to solve it.“Non solum fateor, sed libera uoce profiteor me ininterpretatione Graecorum absque scripturis sanctis,ubi et uerborum ordo mysteriam est, non uerbum euerbo sed sensum exprimere de sensu.”(Eusebius Hieronymus

  8. Towers of Babel

    Science.gov (United States)

    2017-02-01

    Exoplanetary science warns us against the use of improper terminology, which increases the risk of new discoveries being misinterpreted by researchers as well as the general public. Both the scientific community and journal editors can help to avoid this significant danger.

  9. Projeto BaBel: uma proposta de desenvolvimento comunitário sustentável em Baselstrasse (Lucerna –Suíça (The BaBeL Project, Sustainable Neighbourhood Development in Lucerne’s Baselstrasse/Bernstrasse Neighbourhood

    Directory of Open Access Journals (Sweden)

    Alex Willener

    2008-01-01

    Full Text Available Resumo: A comunidade de Baselstrasse/Bernstrasse em Lucerna, Suíça, é caracterizada por conter uma população multinacional formada por mais de 70 nações, todas mantendo seus específicos estilos de vida. O aumento da população economicamente pobre refletiu na reputação da comunidade de forma negativa. A dinâmica social dessa comunidade repercutiu, também, nos aspectos educacionais e sócio-culturais da região, levando professores e outros profissionais a enfrentarem grandes desafios. Uma equipe interdisciplinar formada por professores da Universidade de Ciências Sociais Aplicadas de Lucerna aceitou o desafio de trabalhar com a comunidade e desenvolveu um projeto denominado BaBel. O principal objetivo do Projeto BaBel era desenvolver um trabalho que trouxesse benefícios para os diferentes grupos que vivem na comunidade, para as instituições presentes no local, bem como criar espaços para os futuros stakeholders. Todos esses atores foram envolvidos no desenvolvimento do projeto. Diferentes metodologias foram utilizadas para fomentar a participação progressiva da população, tais como: ‘desenvolvimento de cenários’, grupos de intervenção, análise da comunidade realizada pelas crianças e pelos jovens. A implementação do projeto envolveu 16 diferentes campos de ação, os quais abarcaram temas como economia de energia e poluição sonora (projetos pilotos, projetos na área da infância (curricular e extracurricular, melhoria das áreas de proteção ambiental das margens do rio que corta a comunidade, melhoria dos espaços de lazer, saúde e prevenção, estabelecimento de pontos de encontro na área, melhoria nas estruturas comerciais e otimização do tráfego local.Abstract: The Baselstrasse/Bernstrasse neighbourhood is characterized by its multinational population hailing from 70 nations, all maintaining their specific lifestyles. The increase in the number of economically weak people to a level above average

  10. La invención de la asimetría: Las columnas de María Moreno en Babel, revista de libros(1988-1989

    Directory of Open Access Journals (Sweden)

    Luz Rodríguez Carranza

    2011-09-01

    Full Text Available La periodista María Moreno escribió, durante doce números de la revista Babel, revista de libros de Buenos Aires (1988-1989 la columna "La mujer pública". En una publicación cuyos directores decretaron la inexistencia del lugar de enunciación, separarse es un acto militante. Los textos de Moreno ocupan -en el sentido de usurpar un espacio- el lugar de la mujer en la revista, que se vuelve visible precisamente en la violencia de la ocupación. No estaba vacío ni mucho menos: la invasora se apropia de las voces de las mujeres públicas, aquellas que salieron del cuarto propio e invadieron la escena. Algunas quedaron desolladas en el intento. Otras consiguieron no solo sobrevivir, sino hacer suyo el lenguaje que las destrozaba. El lugar se vuelve asimétrico, la palabra es objeto y es sujeto, el estilo es cuerpo y es mirada: consigue así "dejar de ser la herida para convertirse en su observación" (Moreno, 2004.During twelve issues of the Argentine journal Babel, revista de libros (Buenos Aires, 1988-1989, the journalist María Moreno wrote the column "La mujer pública" (The public woman. In a publication whose directors proclaimed the inexistence of the locus of enunciation, to dissociate is a militant act. In this journal, the writings of Moreno occupy- in the sense of usurping a space - the place of the women, one that exists and becomes visible precisely in the violence of the occupation. And this time, the space is not empty. On the contrary: the invader uses the voices of the public women, those who abandoned their private quarters and invaded the scene. Some of them got slaughtered during the attempt. Others managed to survive. And not only did they survive; they have successfully appropriated this destructive language . The locus becomes asymmetric, the word is object and subject, the style is body and gaze: and in this way it procures to "stop being the injury in order to become its observation" (Moreno, 2004.

  11. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  12. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  13. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  14. Study of the angular energy distribution of secondary gamma radiation resulting from interactions of reactor neutrons with iron and lead barriers

    Energy Technology Data Exchange (ETDEWEB)

    Makarious, A.S.; Maayouf, R.M.A.; Megahid, R.M. (Atomic Energy Establishment, Inshas (Egypt))

    1980-07-01

    The present work deals with the experimental study of the angular energy distributions of the secondary gamma-radiation resulting from interaction of reactor neutrons with iron and lead barriers of infinite diameters and of 5 cm thickness. The measurements were carried out both with the bare neutron beam, emitted from the ET-RR-1 reactor, and with the beam being transmitted through a B/sub 4/C filter. The pulse height distributions of gamma-rays, emitted from the used barriers, were measured with a gamma-ray spectrometer with a single stilbene scintillator. The experimental results were compared with theoretical calculations carried out using a multigroup coupled neutron gamma cross-sections and a discrete ordinates transport theory code. The comparison shows a reasonable agreement between both experimental results and theoretical calculations.

  15. An Investigation of Neutrino-Driven Convection and the Core Collapse Supernova Mechanism Using Multigroup Neutrino Transport

    CERN Document Server

    Mezzacappa, A; Bruenn, S W; Blondin, J M; Guidry, M W; Strayer, M R; Umar, A S

    1996-01-01

    We investigate neutrino-driven convection in core collapse supernovae and its ramifications for the explosion mechanism. We begin with an ``optimistic'' 15 solar mass precollapse model, which is representative of the class of stars with compact iron cores. This model is evolved through core collapse and bounce in one dimension using multigroup (neutrino-energy--dependent) flux-limited diffusion (MGFLD) neutrino transport and Lagrangian hydrodynamics, providing realistic initial conditions for the postbounce convection and evolution. Our two-dimensional simulation begins at 106 ms after bounce at a time when there is a well-developed gain region, and proceeds for 400 ms. We couple two-dimensional (PPM) hydrodynamics to one-dimensional MGFLD neutrino transport. At 225 ms after bounce we see large-scale convection behind the shock, characterized by high-entropy, mushroom-like, expanding upflows and dense, low-entropy, finger-like downflows. The upflows reach the shock and distort it from sphericity. The radial c...

  16. Pathways among exposure to violence, maternal depression, family structure, and child outcomes through parenting: a multigroup analysis.

    Science.gov (United States)

    Westbrook, T'pring R; Harden, Brenda Jones

    2010-07-01

    The present study examined the impact of proximal (maternal depression, family structure) and distal (exposure to violence) risk factors on parenting characteristics (warmth, control), which were in turn hypothesized to affect child social-emotional functioning. Using the Family and Child Experiences Study (FACES) 2000 cohort, findings revealed that study variables were significant predictors of child social-emotional functioning. Despite limited significant pathways in the structural equation models, the cumulative effect of the variables resulted in models accounting for 21%-37% of the outcome. Multigroup analysis revealed that although the amount of variance explained varied, the model held across subgroups. Findings support theories such as the family stress model that suggest that family risk factors negatively influencing children's development through influencing parenting behaviors. Findings also support considering both warmth and control as key parenting dimensions. It may be impractical for practitioners to address the myriad of potential risks encountered by low-income families, but parents can be equipped with mental health services, parent education, and other assistance to help them maintain positive parenting practices in the face of challenges.

  17. Knowledge extraction algorithm for variances handling of CP using integrated hybrid genetic double multi-group cooperative PSO and DPSO.

    Science.gov (United States)

    Du, Gang; Jiang, Zhibin; Diao, Xiaodi; Yao, Yang

    2012-04-01

    Although the clinical pathway (CP) predefines predictable standardized care process for a particular diagnosis or procedure, many variances may still unavoidably occur. Some key index parameters have strong relationship with variances handling measures of CP. In real world, these problems are highly nonlinear in nature so that it's hard to develop a comprehensive mathematic model. In this paper, a rule extraction approach based on combing hybrid genetic double multi-group cooperative particle swarm optimization algorithm (PSO) and discrete PSO algorithm (named HGDMCPSO/DPSO) is developed to discovery the previously unknown and potentially complicated nonlinear relationship between key parameters and variances handling measures of CP. Then these extracted rules can provide abnormal variances handling warning for medical professionals. Three numerical experiments on Iris of UCI data sets, Wisconsin breast cancer data sets and CP variances data sets of osteosarcoma preoperative chemotherapy are used to validate the proposed method. When compared with the previous researches, the proposed rule extraction algorithm can obtain the high prediction accuracy, less computing time, more stability and easily comprehended by users, thus it is an effective knowledge extraction tool for CP variances handling.

  18. Computational Methods for Multi-dimensional Neutron Diffusion Problems

    Energy Technology Data Exchange (ETDEWEB)

    Song Han

    2009-10-15

    Lead-cooled fast reactor (LFR) has potential for becoming one of the advanced reactor types in the future. Innovative computational tools for system design and safety analysis on such NPP systems are needed. One of the most popular trends is coupling multi-dimensional neutron kinetics (NK) with thermal-hydraulic (T-H) to enhance the capability of simulation of the NPP systems under abnormal conditions or during rare severe accidents. Therefore, various numerical methods applied in the NK module should be reevaluated to adapt the scheme of coupled code system. In the author's present work a neutronic module for the solution of two dimensional steady-state multigroup diffusion problems in nuclear reactor cores is developed. The module can produce both direct fluxes as well as adjoints, i.e. neutron importances. Different numerical schemes are employed. A standard finite-difference (FD) approach is firstly implemented, mainly to serve as a reference for less computationally challenging schemes, such as transverse-integrated nodal methods (TINM) and boundary element methods (BEM), which are considered in the second part of the work. The validation of the methods proposed is carried out by comparisons of the results for some reference structures. In particular a critical problem for a homogeneous reactor for which an analytical solution exists is considered as a benchmark. The computational module is then applied to a fast spectrum system, having physical characteristics similar to the proposed European Lead-cooled System (ELSY) project. The results show the effectiveness of the numerical techniques presented. The flexibility and the possibility to obtain neutron importances allow the use of the module for parametric studies, design assessments and integral parameter evaluations, as well as for future sensitivity and perturbation analyses and as a shape solver for time-dependent procedures

  19. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  20. Neutron Capture Nucleosynthesis

    CERN Document Server

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these results most of the nuclei can formed at medium neutron capture density environment e.g. in some kind of AGB stars. Besides these observations our model is capable to use educational purpose.

  1. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    Neutron (and X-ray) reflectometry constitute complementary interfacially sensitive techniques that open access to studying the structure within thin films of both soft and hard condensed matter. Film thickness starts oxide surfaces on bulk substrates, proceeding to (pauci-)molecular layers and up...... of new material. Understanding self-assembly of 2D-3D nanostructures at surfaces and the related interfaces in layered films is a precondition for the development of tailored tools with distributed functions, like new clothes (self-cleaning surfaces combined with mechanical resistance, low permeability...... of polar molecules like water and high permeability for gases), films to be applied as specific sensors or for packaging, surface coverage for implants with incorporated antibiotics, thin magnetic material with designed domain distributions, … . The structures of interest range from a few Ǻngstrøm up...

  2. Weapons Neutron Research Facility (WNR)

    Data.gov (United States)

    Federal Laboratory Consortium — The Weapons Neutron Research Facility (WNR) provides neutron and proton beams for basic, applied, and defense-related research. Neutron beams with energies ranging...

  3. 基于连续能量蒙特卡罗方法的均匀化群常数计算%Continuous energy Monte Carlo method based homogenization multi-group constants calculation

    Institute of Scientific and Technical Information of China (English)

    李满仓; 王侃; 姚栋

    2012-01-01

    两步法反应堆物理计算流程中,组件均匀化群常数显著影响堆芯计算精度.相比确定论方法,连续能量蒙特卡罗方法均匀化精确描述各种几何构型栅格,避免繁琐共振自屏计算,保留更多连续能量信息,不仅产生的群常数更精确,而且普适性也更强.作为实现连续能量蒙特卡罗组件均匀化的第一步,本文应用径迹长度方法统计计算一般群截面和群常数,提出并使用散射事件方法获得不能直接应用确定论方法计算群间散射截面和高阶勒让德系数,应用P1截面计算扩散系数.为还原两步法计算流程中组件在堆芯的临界状态,本文应用BN理论对均匀化群常数进行泄漏修正.在4种类型组件和简化压水堆堆芯上数值验证蒙特卡罗均匀化群常数.验证结果表明:连续能量蒙特卡罗方法组件均匀化群常数具有良好几何适应性,显著提高堆芯计算精度.%The efficiency of the standard two-step reactor physics calculation relies on the accuracy of multi-group constants from the assembly-level homogenization process. In contrast to the traditional deterministic methods, generating the homogenization cross sections via Monte Carlo method overcomes the difficulties in geometry and treats energy in continuum, thus provides more accuracy parameters. Besides, the same code and data bank can be used for a wide range of applications, resulting in the versatility using Monte Carlo codes for homogenization. As the first stage to realize Monte Carlo based lattice homogenization, the track length scheme is used as the foundation of cross section generation, which is straight forward. The scattering matrix and Legendre components, however, require special techniques. The Scattering Event method was proposed to solve the problem. There are no continuous energy counterparts in the Monte Carlo calculation for neutron diffusion coefficients. P1 cross sections were used to calculate the diffusion

  4. Neutronics code VALE for two-dimensional triagonal (hexagonal) and three-dimensional geometries

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Fowler, T.B.

    1981-08-01

    This report documents the computer code VALE designed to solve multigroup neutronics problems with the diffusion theory approximation to neutron transport for a triagonal arrangement of mesh points on planes in two- and three-dimensional geometry. This code parallels the VENTURE neutronics code in the local computation system, making exposure and fuel management capabilities available. It uses and generates interface data files adopted in the cooperative effort sponsored by Reactor Physics RRT Division of the US DOE. The programming in FORTRAN is straightforward, although data is transferred in blocks between auxiliary storage devices and main core, and direct access schemes are used. The size of problems which can be handled is essentially limited only by cost of calculation since the arrays are variably dimensioned. The memory requirement is held down while data transfer during iteration is increased only as necessary with problem size. There is provision for the more common boundary conditions including the repeating boundary, 180/sup 0/ rotational symmetry, and the rotational symmetry conditions for the 30/sup 0/, 60/sup 0/, and 120/sup 0/ triangular grids on planes. A variety of types of problems may be solved: the usual neutron flux eignevalue problem, or a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations. The adjoint problem and fixed source problem may be solved, as well as the dominating higher harmonic, or the importance problem for an arbitrary fixed source.

  5. Neutronic evaluation of two proposed fuel lattice pitches for ET-RR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ashoub, N.; Saleh, H.G

    2000-04-01

    The present fuel element of the ET-RR1 research reactor has a 1.75 cm lattice pitch. The neutronic studies were proved that, this lattice pitch is over moderated and not the suitable one from the fuel economic point of view. Two fuel lattice pitches are proposed, one has 1.4 cm lattice pitch with 10% U{sup 235} enrichment and the other has 1.75 cm lattice pitch with 15% U{sup 235} enrichment. The comparative neutronic study was done between these two proposed fuel lattice pitches against the present one in two cases, one for the complete core configuration of the ET-RR-1 which includes 52 fuel elements and the other for one of the actual core configuration load contains 47 fuel elements. This study is included the calculations of different neutronic parameters as the infinite and effective multiplication factor, the multi-group neutron flux along the reactor core, and the power peaking factor. The above factors were calculated by using the WIMSD4 code for lattice cell calculation, and the DIXY2 code for diffusion calculations. The results are represented in some tables and figures.

  6. Development and Testing of the VITAMIN-B7/BUGLE-B7 Coupled Neutron-Gamma Multigroup Cross-Section Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Risner, Joel M [ORNL; Wiarda, Dorothea [ORNL; Miller, Thomas Martin [ORNL; Peplow, Douglas E. [ORNL; Patton, Bruce W [ORNL; Dunn, Michael E [ORNL; Parks, Benjamin T [NRC

    2011-01-01

    The U.S. Nuclear Regulatory Commission s Regulatory Guide 1.190 states that calculational methods used to estimate reactor pressure vessel (RPV) fluence should use the latest version of the Evaluated Nuclear Data File (ENDF). The VITAMIN-B6 fine-group library and BUGLE-96 broad-group library, which are widely used for RPV fluence calculations, were generated using ENDF/B-VI data, which was the most current data when Regulatory Guide 1.190 was issued. We have developed new fine-group (VITAMIN-B7) and broad-group (BUGLE-B7) libraries based on ENDF/B-VII. These new libraries, which were processed using the AMPX code system, maintain the same group structures as the VITAMIN-B6 and BUGLE-96 libraries. Verification and validation of the new libraries was accomplished using diagnostic checks in AMPX, unit tests for each element in VITAMIN-B7, and a diverse set of benchmark experiments including critical evaluations for fast and thermal systems, a set of experimental benchmarks that are used for SCALE regression tests, and three RPV fluence benchmarks. The benchmark evaluation results demonstrate that VITAMIN-B7 and BUGLE-B7 are appropriate for use in LWR shielding applications, and meet the calculational uncertainty criterion in Regulatory Guide 1.190.

  7. Development and testing of the VITAMIN-B7/BUGLE-B7 coupled neutron-gamma multigroup cross-section libraries

    Energy Technology Data Exchange (ETDEWEB)

    Risner, J.M.; Wiarda, D.; Miller, T.M.; Peplow, D.E.; Patton, B.W.; Dunn, M.E. [Oak Ridge National Laboratory, MS 6170, P.O. Box 2008, Oak Ridge, TN 37831-6170 (United States); Parks, B.T. [U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, Mail Stop O10-B3, 11555 Rockville Pike, Rockville, MD 20852 (United States)

    2011-07-01

    The U.S. Nuclear Regulatory Commission's Regulatory Guide 1.190 states that calculational methods used to estimate reactor pressure vessel (RPV) fluence should use the latest version of the evaluated nuclear data file (ENDF). The VITAMIN-B6 fine-group library and BUGLE-96 broad-group library, which are widely used for RPV fluence calculations, were generated using ENDF/B-VI.3 data, which was the most current data when Regulatory Guide 1.190 was issued. We have developed new fine-group (VITAMIN-B7) and broad-group (BUGLE-B7) libraries based on ENDF/B-VII.0. These new libraries, which were processed using the AMPX code system, maintain the same group structures as the VITAMIN-B6 and BUGLE-96 libraries. Verification and validation of the new libraries were accomplished using diagnostic checks in AMPX, 'unit tests' for each element in VITAMIN-B7, and a diverse set of benchmark experiments including critical evaluations for fast and thermal systems, a set of experimental benchmarks that are used for SCALE regression tests, and three RPV fluence benchmarks. The benchmark evaluation results demonstrate that VITAMIN-B7 and BUGLE-B7 are appropriate for use in RPV fluence calculations and meet the calculational uncertainty criterion in Regulatory Guide 1.190. (authors)

  8. Superheated drop neutron spectrometer

    CERN Document Server

    Das, M; Roy, B; Roy, S C; Das, Mala

    2000-01-01

    Superheated drops are known to detect neutrons through the nucleation caused by the recoil nuclei produced by the interactions of neutrons with the atoms constituting the superheated liquid molecule. A novel method of finding the neutron energy from the temperature dependence response of SDD has been developed. From the equivalence between the dependence of threshold energy for nucleation on temperature of SDD and the dependence of dE/dx of the recoil ions with the energy of the neutron, a new method of finding the neutron energy spectrum of a polychromatic as well as monochromatic neutron source has been developed.

  9. Neutron streak camera

    Science.gov (United States)

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  10. A portable, parallel, object-oriented Monte Carlo neutron transport code in C++

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.R.; Cummings, J.C. [Los Alamos National Lab., NM (United States); Nolen, S.D. [Texas A and M Univ., College Station, TX (United States)]|[Los Alamos National Lab., NM (United States)

    1997-05-01

    We have developed a multi-group Monte Carlo neutron transport code using C++ and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and {alpha}-eigenvalues and is portable to and runs parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities of MC++ are discussed, along with physics and performance results on a variety of hardware, including all Accelerated Strategic Computing Initiative (ASCI) hardware. Current parallel performance indicates the ability to compute {alpha}-eigenvalues in seconds to minutes rather than hours to days. Future plans and the implementation of a general transport physics framework are also discussed.

  11. Neutron anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, G.E. [Univ. of Sheffield (United Kingdom)

    1994-12-31

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone.

  12. Processing Neutron Cross Section Covariances using NJOY-99 and PUFF-IV

    Energy Technology Data Exchange (ETDEWEB)

    Arcilla,R.; Kahler, A.C.; Oblozinsky, P.; Herman, M.

    2008-06-24

    With the growing demand for multigroup covariances, the National Nuclear Data Center (NNDC) has been experiencing an upsurge in its covariance data processing activities using the two US codes NJOY-99 (LANL) and PUFF-IV (ORNL). The code NJOY-99 was upgraded by incorporating the new module ERRORJ-2.3, while the NNDC served as the active user and provided feedback. The NNDC has been primarily processing neutron cross section covariances on its 64-bit Linux cluster in support of two DOE programs, the Global Nuclear Energy Partnership (GNEP) and the Nuclear Criticality Safety Program (NCSP). For GNEP, the NNDC used NJOY-99.259 to generate multigroup covariance matrices of {sup 56}Fe, {sup 23}Na, {sup 239}Pu, {sup 235}U and {sup 238}U from the JENDL-3.3 library using the 15-, 33-, and 230-energy group structures. These covariance matrices will be used to test a new collapsing algorithm which will subsequently be employed to calculate uncertainties on integral parameters in different fast neutron-based systems. For NCSP, we used PUFF-IV 1.0.4 to verify the processability of new evaluated covariance data of {sup 55}Mn, {sup 239}Pu, {sup 233}U, {sup 235}U and {sup 238}U generated by a collaboration of ORNL and LANL. For the data end-users at large, the NNDC has made available a Web site which provides a static visualization interface for all materials with covariance data in the four major data libraries: ENDF/B-VI.8 (47 materials), ENDF/B-VII.0 (26 materials), JEFF-3.1 (37 materials) and JENDL-3.3 (20 materials).

  13. Imaging with Scattered Neutrons

    OpenAIRE

    Ballhausen, H.; Abele, H.; Gaehler, R.; Trapp, M.; Van Overberghe, A.

    2006-01-01

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-re...

  14. Monte Carlo and deterministic computational methods for the calculation of the effective delayed neutron fraction

    Science.gov (United States)

    Zhong, Zhaopeng; Talamo, Alberto; Gohar, Yousry

    2013-07-01

    The effective delayed neutron fraction β plays an important role in kinetics and static analysis of the reactor physics experiments. It is used as reactivity unit referred to as "dollar". Usually, it is obtained by computer simulation due to the difficulty in measuring it experimentally. In 1965, Keepin proposed a method, widely used in the literature, for the calculation of the effective delayed neutron fraction β. This method requires calculation of the adjoint neutron flux as a weighting function of the phase space inner products and is easy to implement by deterministic codes. With Monte Carlo codes, the solution of the adjoint neutron transport equation is much more difficult because of the continuous-energy treatment of nuclear data. Consequently, alternative methods, which do not require the explicit calculation of the adjoint neutron flux, have been proposed. In 1997, Bretscher introduced the k-ratio method for calculating the effective delayed neutron fraction; this method is based on calculating the multiplication factor of a nuclear reactor core with and without the contribution of delayed neutrons. The multiplication factor set by the delayed neutrons (the delayed multiplication factor) is obtained as the difference between the total and the prompt multiplication factors. Using Monte Carlo calculation Bretscher evaluated the β as the ratio between the delayed and total multiplication factors (therefore the method is often referred to as the k-ratio method). In the present work, the k-ratio method is applied by Monte Carlo (MCNPX) and deterministic (PARTISN) codes. In the latter case, the ENDF/B nuclear data library of the fuel isotopes (235U and 238U) has been processed by the NJOY code with and without the delayed neutron data to prepare multi-group WIMSD neutron libraries for the lattice physics code DRAGON, which was used to generate the PARTISN macroscopic cross sections. In recent years Meulekamp and van der Marck in 2006 and Nauchi and Kameyama

  15. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  16. Advanced neutron absorber materials

    Science.gov (United States)

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  17. Application of Laplace transform for determination of albedo type boundary conditions for neutronic calculations; Aplicacao da transformada de Laplace para determinacao de condicoes de contorno tipo albedo para calculos neutronicos

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Claudio Zen

    2008-07-01

    In this dissertation we use the Laplace transform to derive expressions for nonstandard albedo boundary conditions for one and two non-multiplying regions at the ends of one dimensional domains. In practice, the fuel regions of reactor cores are surrounded by reflector regions that reduce neutron leakage. In order to exclude the reflector regions from the calculations, we introduce a reflection coefficient or albedo. We use the present albedo boundary conditions to solve numerically slab-geometry monoenergetic and multigroup diffusion equations using the conventional finite difference method. Numerical results are generated for fixed source and eigenvalue diffusion problems in slab geometry(author)

  18. Anisotropies in the Neutrino Fluxes and Heating Profiles in Two-dimensional, Time-dependent, Multi-group Radiation Hydrodynamics Simulations of Rotating Core-Collapse Supernovae

    CERN Document Server

    Walder, R; Ott, C D; Livne, E; Jarrah, M

    2004-01-01

    Using the 2D multi-group, flux-limited diffusion version of the code VULCAN/2D, that also incorporates rotation, we have calculated the collapse, bounce, shock formation, and early post-bounce evolutionary phases of a core-collapse supernova for a variety of initial rotation rates. This is the first series of such multi-group calculations undertaken in supernova theory with fully multi-D tools. We find that though rotation generates pole-to-equator angular anisotropies in the neutrino radiation fields, the magnitude of the asymmetries is not as large as previously estimated. Moreover, we find that the radiation field is always more spherically symmetric than the matter distribution, with its plumes and convective eddies. We present the dependence of the angular anisotropy of the neutrino fields on neutrino species, neutrino energy, and initial rotation rate. Only for our most rapidly rotating model do we start to see qualitatively different hydrodynamics, but for the lower rates consistent with the pre-collap...

  19. Neutronic and Thermal-Hydraulic Safety Analysis for the Optimization of the Uranium Foil Target in the RSG-GAS Reactor

    Directory of Open Access Journals (Sweden)

    S. Pinem

    2016-12-01

    Full Text Available The G. A. Siwabessy Multipurpose Reactor (Reaktor Serba Guna G.A. Siwabessy, RSG-GAS has an average thermal neutron flux of 2×1014 neutron/(cm2 sec at the nominal power of 30 MW. With such a high thermal neutron flux, the reactor is suitable for the production of Mo-99 which is widely used as a medical diagnostic radioisotope. This paper describes a safety analysis to determine the optimum LEU foil target by using a coupled neutronic and thermal-hydraulic code, MTR-DYN. The code has been developed based on the three-dimensional multigroup neutron diffusion theory. The best estimated results can be achieved by using a coupled neutronic and thermal-hydraulic code. The calculation results show that the optimum LEU foil target is 54 g corresponding to the reactivity change of less than the limit value of 500 pcm. From the safety analysis for the case when the primary flow rate decreased by 15% from its nominal value, it was found that the peak temperatures of the coolant and cladding are 69.5°C and 127.9°C, respectively. It can be concluded that the optimum LEU foil target can be irradiated safely without exceeding the limit value.

  20. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  1. Grazing Incidence Neutron Optics

    Science.gov (United States)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  2. Neutron scatter camera

    Science.gov (United States)

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  3. Advances in neutron tomography

    Indian Academy of Sciences (India)

    W Treimer

    2008-11-01

    In the last decade neutron radiography (NR) and tomography (NCT) have experienced a number of improvements, due to the well-known properties of neutrons interacting with matter, i.e. the low attenuation by many materials, the strong attenuation by hydrogenous constituent in samples, the wavelength-dependent attenuation in the neighbourhood of Bragg edges and due to better 2D neutron detectors. So NR and NCT were improved by sophisticated techniques that are based on the attenuation of neutrons or on phase changes of the associated neutron waves if they pass through structured materials. Up to now the interaction of the neutron spin with magnetic fields in samples has not been applied to imaging techniques despite the fact that it was proposed many years ago. About ten years ago neutron depolarization as imaging signal for neutron radiography or tomography was demonstrated and in principle it works. Now one can present much improved test experiments using polarized neutrons for radiographic imaging. For this purpose the CONRAD instrument of the HMI was equipped with polarizing and analysing benders very similar to conventional scattering experiments using polarized neutrons. Magnetic fields in different coils and in samples (superconductors) at low temperatures could be visualized. In this lecture a summary about standard signals (attenuation) and the more `sophisticated' imaging signals as refraction, small angle scattering and polarized neutrons will be given.

  4. Neutronic Reactor Shield

    Science.gov (United States)

    Fermi, Enrico; Zinn, Walter H.

    The argument of the present Patent is a radiation shield suitable for protection of personnel from both gamma rays and neutrons. Such a shield from dangerous radiations is achieved to the best by the combined action of a neutron slowing material (a moderator) and a neutron absorbing material. Hydrogen is particularly effective for this shield since it is a good absorber of slow neutrons and a good moderator of fast neutrons. The neutrons slowed down by hydrogen may, then, be absorbed by other materials such as boron, cadmium, gadolinium, samarium or steel. Steel is particularly convenient for the purpose, given its effectiveness in absorbing also the gamma rays from the reactor (both primary gamma rays and secondary ones produced by the moderation of neutrons). In particular, in the present Patent a shield is described, made of alternate layers of steel and Masonite (an hydrolized ligno-cellulose material). The object of the present Patent is not discussed in any other published paper.

  5. El orden de Babel: algunas notas sobre la conciencia lingüística de la clerecía letrada castellana en la primera mitad del siglo xiii

    Directory of Open Access Journals (Sweden)

    Amaia Arizaleta

    2012-06-01

    Full Text Available Se comentan aquí una serie” de discursos redactados entre 1200 y 1250, todos ellos relacionados con el relato de la torre de Babel. Dichos textos dan fe de la existencia de un pensamiento común relativo a las lenguas y los pueblos en clérigos contemporáneos y de semejante alta cultura libresca, castellanos de origen o bien afectos a la causa de Castilla: Diego García, Rodrigo Jiménez de Rada y el anónimo de cuyo cálamo surgió el (Libro de Alexandre. Estos letrados, que participaron en permanencia de la lengua romance y la lengua latina, dieron prueba de su interés por la diversidad lingüística, e incluso propusieron algunas ideas innovadoras sobre la cuestión. Testigos y artífices de una cultura que ya no podía ser monolingüe, supieron escribir acerca del mito de la separación de las naciones.Il est ici question de quelques discours en rapport avec le récit de la tour de Babel qui furent composés entre 1200 et 1250. Leurs auteurs, Diego García, Rodrigo Jiménez de Rada et le poète anonyme auteur du (Libro de Alexandre, qui entretenaient des liens avec la cour et la chancellerie, semblent avoir partagé une pensée commune relative aux langues et aux peuples. Ces lettrés, d’origine castillane ou qui avaient épousé la cause castillane, s’intéressèrent à la diversité linguistique, et allèrent jusqu’à défendre certaines idées novatrices sur le fonctionnement d’une culture qui ne pouvait plus être monolingue.

  6. Status of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  7. Analytical three-dimensional neutron transport benchmarks for verification of nuclear engineering codes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ganapol, B.D.; Kornreich, D.E. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Nuclear Engineering

    1997-07-01

    Because of the requirement of accountability and quality control in the scientific world, a demand for high-quality analytical benchmark calculations has arisen in the neutron transport community. The intent of these benchmarks is to provide a numerical standard to which production neutron transport codes may be compared in order to verify proper operation. The overall investigation as modified in the second year renewal application includes the following three primary tasks. Task 1 on two dimensional neutron transport is divided into (a) single medium searchlight problem (SLP) and (b) two-adjacent half-space SLP. Task 2 on three-dimensional neutron transport covers (a) point source in arbitrary geometry, (b) single medium SLP, and (c) two-adjacent half-space SLP. Task 3 on code verification, includes deterministic and probabilistic codes. The primary aim of the proposed investigation was to provide a suite of comprehensive two- and three-dimensional analytical benchmarks for neutron transport theory applications. This objective has been achieved. The suite of benchmarks in infinite media and the three-dimensional SLP are a relatively comprehensive set of one-group benchmarks for isotropically scattering media. Because of time and resource limitations, the extensions of the benchmarks to include multi-group and anisotropic scattering are not included here. Presently, however, enormous advances in the solution for the planar Green`s function in an anisotropically scattering medium have been made and will eventually be implemented in the two- and three-dimensional solutions considered under this grant. Of particular note in this work are the numerical results for the three-dimensional SLP, which have never before been presented. The results presented were made possible only because of the tremendous advances in computing power that have occurred during the past decade.

  8. Neutron sources and applications

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  9. Prototype Stilbene Neutron Collar

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shumaker, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verbeke, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  10. The DIORAMA Neutron Emitter

    Energy Technology Data Exchange (ETDEWEB)

    Terry, James Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    Emission of neutrons in a given event is modeled by the DioramaEmitterNeutron object, a subclass of the abstract DioramaEmitterModule object. The GenerateEmission method of this object is the entry point for generation of a neutron population for a given event. Shown in table 1, this method requires a number of parameters to be defined in the event definition.

  11. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2014-07-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  12. Neutron-emission measurements at a white neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C [Los Alamos National Laboratory

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  13. Using Multigroup-Multiphase Latent State-Trait Models to Study Treatment-Induced Changes in Intra-Individual State Variability: An Application to Smokers' Affect.

    Science.gov (United States)

    Geiser, Christian; Griffin, Daniel; Shiffman, Saul

    2016-01-01

    Sometimes, researchers are interested in whether an intervention, experimental manipulation, or other treatment causes changes in intra-individual state variability. The authors show how multigroup-multiphase latent state-trait (MG-MP-LST) models can be used to examine treatment effects with regard to both mean differences and differences in state variability. The approach is illustrated based on a randomized controlled trial in which N = 338 smokers were randomly assigned to nicotine replacement therapy (NRT) vs. placebo prior to quitting smoking. We found that post quitting, smokers in both the NRT and placebo group had significantly reduced intra-individual affect state variability with respect to the affect items calm and content relative to the pre-quitting phase. This reduction in state variability did not differ between the NRT and placebo groups, indicating that quitting smoking may lead to a stabilization of individuals' affect states regardless of whether or not individuals receive NRT.

  14. Using Multigroup-Multiphase Latent State-Trait Models to Study Treatment-Induced Changes in Intra-Individual State Variability: An Application to Smokers’ Affect

    Directory of Open Access Journals (Sweden)

    Christian Geiser

    2016-07-01

    Full Text Available Sometimes, researchers are interested in whether an intervention, experimental manipulation, or other treatment causes changes in intra-individual state variability. The authors show how multigroup-multiphase latent state-trait (MG-MP-LST models can be used to examine treatment effects with regard to both mean differences and differences in state variability. The approach is illustrated based on a randomized controlled trial in which N = 338 smokers were randomly assigned to nicotine replacement therapy (NRT versus placebo prior to quitting smoking. We found that post quitting, smokers in both the NRT and placebo group had significantly reduced intra-individual affect variability with respect to the affect items calm and content relative to the pre-quitting phase. This reduction in state variability did not differ between the NRT and placebo groups, indicating that quitting smoking may lead to a stabilization of individuals’ affect states regardless of whether or not individuals receive NRT.

  15. An Extended Decomposed Theory of Planned Behaviour to Predict the Usage Intention of the Electric Car: A Multi-Group Comparison

    Directory of Open Access Journals (Sweden)

    Ingrid Moons

    2015-05-01

    Full Text Available An Extended Decomposed Theory of Planned Behaviour (DTPB is developed that integrates emotions towards car driving and electric cars as well as car driving habits of the DTPB, and is empirically validated in a Belgian sample (n = 1023. Multi-group comparisons explore how the determinants of usage intention are different between groups of consumers differing in environmentally-friendly behaviour, environmental concern, innovativeness and personal values. Besides attitudes, media, perceived complexity, compatibility and relative advantage, emotions towards the electric car and reflective emotions towards car driving have a strong effect on usage intention. Car driving habits and perceived behavioural control (facilitators and constraints do not substantially affect usage intention. Only people differing in personal values show a different motivational structure for a number of important drivers of usage intention.

  16. Comparison of a 3-D multi-group SN particle transport code with Monte Carlo for intracavitary brachytherapy of the cervix uteri.

    Science.gov (United States)

    Gifford, Kent A; Wareing, Todd A; Failla, Gregory; Horton, John L; Eifel, Patricia J; Mourtada, Firas

    2009-12-03

    A patient dose distribution was calculated by a 3D multi-group S N particle transport code for intracavitary brachytherapy of the cervix uteri and compared to previously published Monte Carlo results. A Cs-137 LDR intracavitary brachytherapy CT data set was chosen from our clinical database. MCNPX version 2.5.c, was used to calculate the dose distribution. A 3D multi-group S N particle transport code, Attila version 6.1.1 was used to simulate the same patient. Each patient applicator was built in SolidWorks, a mechanical design package, and then assembled with a coordinate transformation and rotation for the patient. The SolidWorks exported applicator geometry was imported into Attila for calculation. Dose matrices were overlaid on the patient CT data set. Dose volume histograms and point doses were compared. The MCNPX calculation required 14.8 hours, whereas the Attila calculation required 22.2 minutes on a 1.8 GHz AMD Opteron CPU. Agreement between Attila and MCNPX dose calculations at the ICRU 38 points was within +/- 3%. Calculated doses to the 2 cc and 5 cc volumes of highest dose differed by not more than +/- 1.1% between the two codes. Dose and DVH overlays agreed well qualitatively. Attila can calculate dose accurately and efficiently for this Cs-137 CT-based patient geometry. Our data showed that a three-group cross-section set is adequate for Cs-137 computations. Future work is aimed at implementing an optimized version of Attila for radiotherapy calculations.

  17. Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm

    Science.gov (United States)

    Susmikanti, Mike; Dewayatna, Winter; Sulistyo, Yos

    2014-09-01

    One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo99 used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 106 cm-1) in a tube, their delta reactivities are the still

  18. Neutron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  19. Development of Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Lee, J. S.; Seong, B. S. (and others)

    2007-06-15

    Neutron spectrometers which are used in the basic researches such as physics, chemistry and materials science and applied in the industry were developed at the horizontal beam port of HANARO reactor. In addition, the development of core components for neutron scattering and the upgrade of existing facilities are also performed. The vertical neutron reflectometer was fabricated and installed at ST3 beam port. The performance test of the reflectometer was completed and the reflectometer was opened to users. The several core parts and options were added in the polarized neutron spectrometer. The horizontal neutron reflectometer from Brookhaven National Laboratory was moved to HANARO and installed, and the performance of the reflectometer was examined. The HIPD was developed and the performance test was completed. The base shielding for TAS was fabricated. The soller collimator, Cu mosaic monochromator, Si BPC monochromator and position sensitive detector were developed and applied in the neutron spectrometer as part of core component development activities. In addition, the sputtering machine for mirror device are fabricated and the neutron mirror is made using the sputtering machine. The FCD was upgraded and the performance of the FCD are improved over the factor of 10. The integration and upgrade of the neutron detection system were also performed.

  20. Neutron capture therapies

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  1. Neutron capture therapies

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.

    1999-11-02

    In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  2. Pocked surface neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  3. THERMAL NEUTRON BACKSCATTER IMAGING.

    Energy Technology Data Exchange (ETDEWEB)

    VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

    2004-10-16

    Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

  4. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  5. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    Energy Technology Data Exchange (ETDEWEB)

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  6. Optical polarizing neutron devices designed for pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, M.; Kurahashi, K.; Endoh, Y. [Tohoku Univ, Sendai (Japan); Itoh, S. [National Lab. for High Energy Physics, Tsukuba (Japan)

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

  7. GPU-accelerated 3D neutron diffusion code based on finite difference method

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q.; Yu, G.; Wang, K. [Dept. of Engineering Physics, Tsinghua Univ. (China)

    2012-07-01

    Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)

  8. Application of generalized perturbation theory to sensitivity analysis in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Vanessa S. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Programa de Pos-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Silva, Fernando C.; Silva, Ademir X., E-mail: fernando@con.ufrj.b, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Alvarez, Gustavo B. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Dept. de Ciencias Exatas

    2011-07-01

    Boron neutron capture therapy - BNCT - is a binary cancer treatment used in brain tumors. The tumor is loaded with a boron compound and subsequently irradiated by thermal neutrons. The therapy is based on the {sup 10}B (n, {alpha}) {sup 7}Li nuclear reaction, which emits two types of high-energy particles, {alpha} particle and the {sup 7}Li nuclei. The total kinetic energy released in this nuclear reaction, when deposited in the tumor region, destroys the cancer cells. Since the success of the BNCT is linked to the different selectivity between the tumor and healthy tissue, it is necessary to carry out a sensitivity analysis to determinate the boron concentration. Computational simulations are very important in this context because they help in the treatment planning by calculating the lowest effective absorbed dose rate to reduce the damage to healthy tissue. The objective of this paper is to present a deterministic method based on generalized perturbation theory (GPT) to perform sensitivity analysis with respect to the {sup 10}B concentration and to estimate the absorbed dose rate by patients undergoing this therapy. The advantage of the method is a significant reduction in computational time required to perform these calculations. To simulate the neutron flux in all brain regions, the method relies on a two-dimensional neutron transport equation whose spatial, angular and energy variables are discretized by the diamond difference method, the discrete ordinate method and multigroup formulation, respectively. The results obtained through GPT are consistent with those obtained using other methods, demonstrating the efficacy of the proposed method. (author)

  9. The English Tower of Babel

    Institute of Scientific and Technical Information of China (English)

    VALERIE; SARTOR

    2009-01-01

    English is clearly the lingua franca of today’s modern world. This lan- guage began international service in science and research, civil aviation and postal services after the end of World War II. Today, via the information superhighway powered by the Internet and other communication technologies, English impacts everyone on the planet China is no exception.

  10. Lie group invariant finite difference schemes for the neutron diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Jaegers, P.J.

    1994-06-01

    Finite difference techniques are used to solve a variety of differential equations. For the neutron diffusion equation, the typical local truncation error for standard finite difference approximation is on the order of the mesh spacing squared. To improve the accuracy of the finite difference approximation of the diffusion equation, the invariance properties of the original differential equation have been incorporated into the finite difference equations. Using the concept of an invariant difference operator, the invariant difference approximations of the multi-group neutron diffusion equation were determined in one-dimensional slab and two-dimensional Cartesian coordinates, for multiple region problems. These invariant difference equations were defined to lie upon a cell edged mesh as opposed to the standard difference equations, which lie upon a cell centered mesh. Results for a variety of source approximations showed that the invariant difference equations were able to determine the eigenvalue with greater accuracy, for a given mesh spacing, than the standard difference approximation. The local truncation errors for these invariant difference schemes were found to be highly dependent upon the source approximation used, and the type of source distribution played a greater role in determining the accuracy of the invariant difference scheme than the local truncation error.

  11. A broad-group cross-section library based on ENDF/B-VII.0 for fast neutron dosimetry Applications

    Energy Technology Data Exchange (ETDEWEB)

    Alpan, F.A. [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2011-07-01

    A new ENDF/B-VII.0-based coupled 44-neutron, 20-gamma-ray-group cross-section library was developed to investigate the latest evaluated nuclear data file (ENDF) ,in comparison to ENDF/B-VI.3 used in BUGLE-96, as well as to generate an objective-specific library. The objectives selected for this work consisted of dosimetry calculations for in-vessel and ex-vessel reactor locations, iron atom displacement calculations for reactor internals and pressure vessel, and {sup 58}Ni(n,{gamma}) calculation that is important for gas generation in the baffle plate. The new library was generated based on the contribution and point-wise cross-section-driven (CPXSD) methodology and was applied to one of the most widely used benchmarks, the Oak Ridge National Laboratory Pool Critical Assembly benchmark problem. In addition to the new library, BUGLE-96 and an ENDF/B-VII.0-based coupled 47-neutron, 20-gamma-ray-group cross-section library was generated and used with both SNLRML and IRDF dosimetry cross sections to compute reaction rates. All reaction rates computed by the multigroup libraries are within {+-} 20 % of measurement data and meet the U. S. Nuclear Regulatory Commission acceptance criterion for reactor vessel neutron exposure evaluations specified in Regulatory Guide 1.190. (authors)

  12. Neutron scattering in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Barocchi, F. [Florence Univ. (Italy). Ist. di Fisica

    1996-12-31

    Together with X-rays, thermal neutrons are the ideal probe to study the microscopic structure of condensed matter, however the precision attainable usually with neutrons for the measurement of atomic position correlation functions in liquids is, at least, one order of magnitude better than for X-rays. In order to measure properly the microscopic dynamics a wide range of momentum transfer with corresponding energy transfer must be available in the range of liquid state excitations. This again is only attainable, with good resolution, with neutrons. (author) 7 figs., 3 refs.

  13. Neutrons in soft matter

    CERN Document Server

    Imae, Toyoko; Furusaka, Michihiro; Torikai, Naoya

    2011-01-01

    Neutron and synchrotron facilities, which are beyond the scale of the laboratory, and supported on a national level in countries throughout the world.  These tools for probing micro- and nano-structure research and on fast dynamics research of atomic location in materials have been key in the development of new polymer-based materials. Different from several existing professional books on neutron science, this book focuses on theory, instrumentation, an applications. The book is divided into five parts: Part 1 describes the underlying theory of neutron scattering. Part 2 desc

  14. Babel et le Nouveau Monde Babel and the New World Babel y el Nuevo Mundo

    Directory of Open Access Journals (Sweden)

    Néstor Salamanca Leon

    1996-05-01

    Full Text Available L'analyse de la mythologie des Muiscas fait l'objet d'une réflexion stimulante qui montre à quel point le rêve d'une langue originale en Amérique latine est important.The analysis of the mythology of the Muiscas is at the core of a stimulating reflection which shows the extent of the development of the dream of an original tongue in South-America.El análisis de la mitología de los Muiscas como centro de una estimulante reflexión que permite mostrar hasta qué punto ha podido desarrollarse en América Latina el sueño de una lengua original.

  15. Temperature of neutron stars

    Science.gov (United States)

    Tsuruta, Sachiko

    2016-07-01

    We start with a brief introduction to the historical background in the early pioneering days when the first neutron star thermal evolution calculations predicted the presence of neutron stars hot enough to be observable. We then report on the first detection of neutron star temperatures by ROSAT X-ray satellite, which vindicated the earlier prediction of hot neutron stars. We proceed to present subsequent developments, both in theory and observation, up to today. We then discuss the current status and the future prospect, which will offer useful insight to the understanding of basic properties of ultra-high density matter beyond the nuclear density, such as the possible presence of such exotic particles as pion condensates.

  16. Decoherence Free Neutron Interferometry

    CERN Document Server

    Pushin, Dmitry A; Cory, David G

    2016-01-01

    Perfect single-crystal neutron interferometers are adversely sensitive to environmental disturbances, particularly mechanical vibrations. The sensitivity to vibrations results from the slow velocity of thermal neutrons and the long measurement time that are encountered in a typical experiment. Consequently, to achieve a good interference solutions for reducing vibration other than those normally used in optical experiments must be explored. Here we introduce a geometry for a neutron interferometer that is less sensitive to low-frequency vibrations. This design may be compared with both dynamical decoupling methods and decoherence-free subspaces that are described in quantum information processing. By removing the need for bulky vibration isolation setups, this design will make it easier to adopt neutron interferometry to a wide range of applications and increase its sensitivity.

  17. Neutron signal transfer analysis

    CERN Document Server

    Pleinert, H; Lehmann, E

    1999-01-01

    A new method called neutron signal transfer analysis has been developed for quantitative determination of hydrogenous distributions from neutron radiographic measurements. The technique is based on a model which describes the detector signal obtained in the measurement as a result of the action of three different mechanisms expressed by signal transfer functions. The explicit forms of the signal transfer functions are determined by Monte Carlo computer simulations and contain only the distribution as a variable. Therefore an unknown distribution can be determined from the detector signal by recursive iteration. This technique provides a simple and efficient tool for analysis of this type while also taking into account complex effects due to the energy dependency of neutron interaction and single and multiple scattering. Therefore this method provides an efficient tool for precise quantitative analysis using neutron radiography, as for example quantitative determination of moisture distributions in porous buil...

  18. The intense neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W.B

    1966-07-01

    The presentation discusses both the economic and research contexts that would be served by producing neutrons in gram quantities at high intensities by electrical means without uranium-235. The revenue from producing radioisotopes is attractive. The array of techniques introduced by the multipurpose 65 megawatt Intense Neutron Generator project includes liquid metal cooling, superconducting magnets for beam bending and focussing, super-conductors for low-loss high-power radiofrequency systems, efficient devices for producing radiofrequency power, plasma physics developments for producing and accelerating hydrogen, ions at high intensity that are still far out from established practice, a multimegawatt high voltage D.C. generating machine that could have several applications. The research fields served relate principally to materials science through neutron-phonon and other quantum interactions as well as through neutron diffraction. Nuclear physics is served through {mu}-, {pi}- and K-meson production. Isotope production enters many fields of applied research. (author)

  19. Neutron Stars Recent Developments

    CERN Document Server

    Heiselberg, H

    1999-01-01

    Recent developments in neutron star theory and observation are discussed. Based on modern nucleon-nucleon potentials more reliable equations of state for dense nuclear matter have been constructed. Furthermore, phase transitions such as pion, kaon and hyperon condensation, superfluidity and quark matter can occur in cores of neutron stars. Specifically, the nuclear to quark matter phase transition and its mixed phases with intriguing structures is treated. Rotating neutron stars with and without phase transitions are discussed and compared to observed masses, radii and glitches. The observations of possible heavy $\\sim 2M_\\odot$ neutron stars in X-ray binaries and QPO's require relatively stiff equation of states and restrict strong phase transitions to occur at very high nuclear densities only.

  20. Introduction to neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.

  1. Pulsed spallation Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.M. [Argonne National Lab., IL (United States)

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  2. Neutron Nucleic Acid Crystallography.

    Science.gov (United States)

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.

  3. Coded source neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Philip R [ORNL; Santos-Villalobos, Hector J [ORNL

    2011-01-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100 m) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100um and 10um aperture hole diameters show resolutions matching the hole diameters.

  4. Coded source neutron imaging

    Science.gov (United States)

    Bingham, Philip; Santos-Villalobos, Hector; Tobin, Ken

    2011-03-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100μm) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100μm and 10μm aperture hole diameters show resolutions matching the hole diameters.

  5. Neutron scattering in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Knott, R.B. [Australian Nuclear Science and Technology Organisation, Menai (Australia)

    1994-12-31

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains.

  6. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  7. Fundamental neutron physics at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.

    1995-10-01

    Modern neutron sources and science share a common origin in mid-20th-century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for studying condensed matter with modern neutron sources being primarily used (and justified) as tools for neutron scattering and materials science research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities performed at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high-flux neutron facilities. Future sources, particularly high-power spallation sources, offer exciting possibilities for continuing this research.

  8. Radiography with polarised neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael L.

    2010-08-20

    In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron radiography to a method we call Neutron Depolarisation Imaging (NDI). The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a position sensitive CCD detector. A comprehensive discussion of the requirements for these components is given and the limitations of the method are shown. The maximum spatial resolution which can be achieved with a neutron radiography setup is determined by the collimation of the neutron beam and the distance between sample and detector. Different types of polarisers have been tested and their advantages and disadvantages are discussed. A double crystal monochromator and a new type of polariser employing polarising neutron supermirrors based on the principle of an optical periscope were developed and tested during this work. Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al are presented. Neutron depolarisation radiography and tomography measurements were conducted with a spatial resolution as high as 0.3 mm on Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al samples. The feasibility of NDI experiments under hydrostatic pressures up to 10 kbar was shown on a sample of Ni{sub 3}Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2 K under hydrostatic pressure was determined from the NDI measurements and shows the potential of the method for further high pressure experiments. Additionally a method was developed which in principle allows to obtain the intrinsic dependence of the ordering temperature T{sub C} on the ordered moment Ms from NDI measurements on inhomogeneous samples containing regions with

  9. Gender and Acceptance of E-Learning: A Multi-Group Analysis Based on a Structural Equation Model among College Students in Chile and Spain.

    Science.gov (United States)

    Ramírez-Correa, Patricio E; Arenas-Gaitán, Jorge; Rondán-Cataluña, F Javier

    2015-01-01

    The scope of this study was to evaluate whether the adoption of e-learning in two universities, and in particular, the relationship between the perception of external control and perceived ease of use, is different because of gender differences. The study was carried out with participating students in two different universities, one in Chile and one in Spain. The Technology Acceptance Model was used as a theoretical framework for the study. A multi-group analysis method in partial least squares was employed to relate differences between groups. The four main conclusions of the study are: (1) a version of the Technology Acceptance Model has been successfully used to explain the process of adoption of e-learning at an undergraduate level of study; (2) the finding of a strong and significant relationship between perception of external control and perception of ease of use of the e-learning platform; (3) a significant relationship between perceived enjoyment and perceived ease of use and between results demonstrability and perceived usefulness is found; (4) the study indicates a few statistically significant differences between males and females when adopting an e-learning platform, according to the tested model.

  10. MCNP - transport calculations in ducts using multigroup albedo coefficients; Calculos de transporte em dutos utilizando coeficientes de albedo multigrupo no codigo MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Shizuca; Vieira, Wilson J.; Garcia, Roberto D.M. [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados

    2000-07-01

    In this work, the use of multigroup albedo coefficients in Monte Carlo calculations of particle reflection and transmission by ducts is investigated. The procedure consists in modifying the MCNP code so that an albedo matrix computed previously by deterministic methods or Monte Carlo is introduced into the program to describe particle reflection by a surface. This way it becomes possible to avoid the need of considering particle transport in the duct wall explicitly, changing the problem to a problem of transport in the duct interior only and reducing significantly the difficulty of the real problem. The probability of particle reflection at the duct wall is given, for each group, as the sum of the albedo coefficients over the final groups. The calculation is started by sampling a source particle and simulating its reflection on the duct wall by sampling a group for the emerging particle. The particle weight is then reduced by the reflection probability. Next, a new direction and trajectory for the particle is selected. Numerical results obtained for the model are compared with results from a discrete ordinates code and results from Monte Carlo simulations that take particle transport in the wall into account. (author)

  11. School belongingness and mental health functioning across the primary-secondary transition in a mainstream sample: multi-group cross-lagged analyses.

    Directory of Open Access Journals (Sweden)

    Sharmila Vaz

    Full Text Available The relationship between school belongingness and mental health functioning before and after the primary-secondary school transition has not been previously investigated in students with and without disabilities. This study used a prospective longitudinal design to test the bi-directional relationships between these constructs, by surveying 266 students with and without disabilities and their parents, 6-months before and after the transition to secondary school. Cross-lagged multi-group analyses found student perception of belongingness in the final year of primary school to contribute to change in their mental health functioning a year later. The beneficial longitudinal effects of school belongingness on subsequent mental health functioning were evident in all student subgroups; even after accounting for prior mental health scores and the cross-time stability in mental health functioning and school belongingness scores. Findings of the current study substantiate the role of school contextual influences on early adolescent mental health functioning. They highlight the importance for primary and secondary schools to assess students' school belongingness and mental health functioning and transfer these records as part of the transition process, so that appropriate scaffolds are in place to support those in need. Longer term longitudinal studies are needed to increase the understanding of the temporal sequencing between school belongingness and mental health functioning of all mainstream students.

  12. Programs Lucky and Lucky{sub C} - 3D parallel transport codes for the multi-group transport equation solution for XYZ geometry by Pm Sn method

    Energy Technology Data Exchange (ETDEWEB)

    Moriakov, A. [Russian Research Centre, Kurchatov Institute, Moscow (Russian Federation); Vasyukhno, V.; Netecha, M.; Khacheresov, G. [Research and Development Institute of Power Engineering, Moscow (Russian Federation)

    2003-07-01

    Powerful supercomputers are available today. MBC-1000M is one of Russian supercomputers that may be used by distant way access. Programs LUCKY and LUCKY{sub C} were created to work for multi-processors systems. These programs have algorithms created especially for these computers and used MPI (message passing interface) service for exchanges between processors. LUCKY may resolved shielding tasks by multigroup discreet ordinate method. LUCKY{sub C} may resolve critical tasks by same method. Only XYZ orthogonal geometry is available. Under little space steps to approximate discreet operator this geometry may be used as universal one to describe complex geometrical structures. Cross section libraries are used up to P8 approximation by Legendre polynomials for nuclear data in GIT format. Programming language is Fortran-90. 'Vector' processors may be used that lets get a time profit up to 30 times. But unfortunately MBC-1000M has not these processors. Nevertheless sufficient value for efficiency of parallel calculations was obtained under 'space' (LUCKY) and 'space and energy' (LUCKY{sub C}) paralleling. AUTOCAD program is used to control geometry after a treatment of input data. Programs have powerful geometry module, it is a beautiful tool to achieve any geometry. Output results may be processed by graphic programs on personal computer. (authors)

  13. Neutron-Induced Failures in Semiconductor Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This slide presentation explores single event effect, environmental neutron flux, system response, the Los Alamos Neutron Science Center (LANSCE) neutron testing facility, examples of SEE measurements, and recent interest in thermal neutrons.

  14. Neutron drip transition in accreting and nonaccreting neutron star crusts

    CERN Document Server

    Chamel, N; Zdunik, J L; Haensel, P

    2015-01-01

    The neutron-drip transition in the dense matter constituting the interior of neutron stars generally refers to the appearance of unbound neutrons as the matter density reaches some threshold density $\\rho_\\textrm{drip}$. This transition has been mainly studied under the cold catalyzed matter hypothesis. However, this assumption is unrealistic for accreting neutron stars. After examining the physical processes that are thought to be allowed in both accreting and nonaccreting neutron stars, suitable conditions for the onset of neutron drip are derived and general analytical expressions for the neutron drip density and pressure are obtained. Moreover, we show that the neutron-drip transition occurs at lower density and pressure than those predicted within the mean-nucleus approximation. This transition is studied numerically for various initial composition of the ashes from X-ray bursts and superbursts using microscopic nuclear mass models.

  15. Hybrid superconducting neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  16. Neutron counting with cameras

    Energy Technology Data Exchange (ETDEWEB)

    Van Esch, Patrick; Crisanti, Marta; Mutti, Paolo [Institut Laue Langevin, Grenoble (France)

    2015-07-01

    A research project is presented in which we aim at counting individual neutrons with CCD-like cameras. We explore theoretically a technique that allows us to use imaging detectors as counting detectors at lower counting rates, and transits smoothly to continuous imaging at higher counting rates. As such, the hope is to combine the good background rejection properties of standard neutron counting detectors with the absence of dead time of integrating neutron imaging cameras as well as their very good spatial resolution. Compared to Xray detection, the essence of thermal neutron detection is the nuclear conversion reaction. The released energies involved are of the order of a few MeV, while X-ray detection releases energies of the order of the photon energy, which is in the 10 KeV range. Thanks to advances in camera technology which have resulted in increased quantum efficiency, lower noise, as well as increased frame rate up to 100 fps for CMOS-type cameras, this more than 100-fold higher available detection energy implies that the individual neutron detection light signal can be significantly above the noise level, as such allowing for discrimination and individual counting, which is hard to achieve with X-rays. The time scale of CMOS-type cameras doesn't allow one to consider time-of-flight measurements, but kinetic experiments in the 10 ms range are possible. The theory is next confronted to the first experimental results. (authors)

  17. Neutron whispering gallery

    Science.gov (United States)

    Nesvizhevsky, Valery V.; Voronin, Alexei Yu.; Cubitt, Robert; Protasov, Konstantin V.

    2010-02-01

    The `whispering gallery' effect has been known since ancient times for sound waves in air, later in water and more recently for a broad range of electromagnetic waves: radio, optics, Roentgen and so on. It consists of wave localization near a curved reflecting surface and is expected for waves of various natures, for instance, for atoms and neutrons. For matter waves, it would include a new feature: a massive particle would be settled in quantum states, with parameters depending on its mass. Here, we present for the first time the quantum whispering-gallery effect for cold neutrons. This phenomenon provides an example of an exactly solvable problem analogous to the `quantum bouncer'; it is complementary to the recently discovered gravitationally bound quantum states of neutrons . These two phenomena provide a direct demonstration of the weak equivalence principle for a massive particle in a pure quantum state. Deeply bound whispering-gallery states are long-living and weakly sensitive to surface potential; highly excited states are short-living and very sensitive to the wall potential shape. Therefore, they are a promising tool for studying fundamental neutron-matter interactions, quantum neutron optics and surface physics effects.

  18. Hybrid Superconducting Neutron Detectors

    CERN Document Server

    Merlo, V; Cirillo, M; Lucci, M; Ottaviani, I; Scherillo, A; Celentano, G; Pietropaolo, A

    2014-01-01

    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the supercond...

  19. Final evaluation of characterizing pipe-over-pack containers using high efficiency neutron counters

    Energy Technology Data Exchange (ETDEWEB)

    Carson, Pete [Los Alamos National Laboratory; Stanfield, Sean B [AFS; Wachter, Joe [CANBERRA; Cramer, Doug [CANBERRA; Harvill, Joe [WTS

    2009-01-01

    Nondestructive assay (NDA) measurements of Transuranic (TRU) waste at Los Alamos National Laboratory (LANL) packed in Pipe-over-Pack Containers (POC) contain a number of complexities. The POC is highly attenuating to both gamma rays and neutrons which presents a difficult waste matrix for correct quantification of material in the container. Currently there are a number ofPOC containers at LANL that require evaluation for shipment to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM. Updated data has been evaluated that finalizes the evaluation of characterizing Pipe-Over-Pack Containers. Currently at LANL, a single instrument has been used to explore the appropriateness of both passive neutron and quantitative gamma ray methods for measuring POC's. The passive neutron approach uses the Reals coincidence count rate to establish plutonium mass and other parameters of interest for TRU waste. The quantitative gamma ray method assumes a homogeneous distribution of radioactive source material with the surrounding material throughout the drum volume. Drums are assayed with a calibration based on the known density of the matrix. Both methods are supplemented by a simultaneous isotopic measurement using Multi-Group Analysis (MGA) to determine the plutonium isotopic composition. If MGA fails to provide a viable isotopic result Fixed Energy Response function Analysis with Multiple efficiencies (FRAM) has been used to replace the MGA results. Acceptable Knowledge (AK) may also be used in certain instances. This report will discuss the two methods in detail. Included in the discussion will be descriptions of the setup parameters and calibration techniques for the instrument. A number of test measurements have been performed to compare HENC data with certified historical data. Empty POCs loaded with known sources have also been measured to determine the viability of the technique. A comparison between calorimetry data, historical measurements and HENC data will also be

  20. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2017-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...

  1. Neutron absorbing alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masayuki

    1998-12-04

    The neutron absorbing alloy of the present invention comprises Ti or an alloy thereof as a mother material, to which from 2 to 40% by weight of Hf and Gd within a range of from 4 to 50% by weight in total are added respectively. Ti is excellent in specific strength, corrosion resistance and workability, and produces no noxious intermetallic compound with Hf and Gd. In addition, since the alloy can incorporate a great quantity of Hf and Gd, a neutron absorbing material having excellent neutron absorbing performance than usual and excellent in specific strength, corrosion resistance and workability can be manufactured conveniently and economically not by a special manufacturing method. (T.M.)

  2. Direction sensitive neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Ahlen, Steven; Fisher, Peter; Dujmic, Denis; Wellenstein, Hermann F.; Inglis, Andrew

    2017-01-31

    A neutron detector includes a pressure vessel, an electrically conductive field cage assembly within the pressure vessel and an imaging subsystem. A pressurized gas mixture of CF.sub.4, .sup.3He and .sup.4He at respective partial pressures is used. The field cage establishes a relatively large drift region of low field strength, in which ionization electrons generated by neutron-He interactions are directed toward a substantially smaller amplification region of substantially higher field strength in which the ionization electrons undergo avalanche multiplication resulting in scintillation of the CF.sub.4 along scintillation tracks. The imaging system generates two-dimensional images of the scintillation patterns and employs track-finding to identify tracks and deduce the rate and direction of incident neutrons. One or more photo-multiplier tubes record the time-profile of the scintillation tracks permitting the determination of the third coordinate.

  3. Carbon neutron star atmospheres

    CERN Document Server

    Suleimanov, V F; Pavlov, G G; Werner, K

    2013-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in chemical composition of their atmospheres. For example, atmospheres of thermally - emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in CasA, a pure carbon atmosphere has recently been suggested by Ho & Heinke (2009). To test such a composition for other similar sources, a publicly available detailed grid of carbon model atmosphere spectra is needed. We have computed such a grid using the standard LTE approximation and assuming that the magnetic field does not exceed 10^8 G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra.

  4. Uniformly rotating neutron stars

    CERN Document Server

    Boshkayev, Kuantay

    2016-01-01

    In this chapter we review the recent results on the equilibrium configurations of static and uniformly rotating neutron stars within the Hartle formalism. We start from the Einstein-Maxwell-Thomas-Fermi equations formulated and extended by Belvedere et al. (2012, 2014). We demonstrate how to conduct numerical integration of these equations for different central densities ${\\it \\rho}_c$ and angular velocities $\\Omega$ and compute the static $M^{stat}$ and rotating $M^{rot}$ masses, polar $R_p$ and equatorial $R_{\\rm eq}$ radii, eccentricity $\\epsilon$, moment of inertia $I$, angular momentum $J$, as well as the quadrupole moment $Q$ of the rotating configurations. In order to fulfill the stability criteria of rotating neutron stars we take into considerations the Keplerian mass-shedding limit and the axisymmetric secular instability. Furthermore, we construct the novel mass-radius relations, calculate the maximum mass and minimum rotation periods (maximum frequencies) of neutron stars. Eventually, we compare a...

  5. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  6. Pixelated neutron image plates

    Science.gov (United States)

    Schlapp, M.; Conrad, H.; von Seggern, H.

    2004-09-01

    Neutron image plates (NIPs) have found widespread application as neutron detectors for single-crystal and powder diffraction, small-angle scattering and tomography. After neutron exposure, the image plate can be read out by scanning with a laser. Commercially available NIPs consist of a powder mixture of BaFBr : Eu2+ and Gd2O3 dispersed in a polymer matrix and supported by a flexible polymer sheet. Since BaFBr : Eu2+ is an excellent x-ray storage phosphor, these NIPs are particularly sensitive to ggr-radiation, which is always present as a background radiation in neutron experiments. In this work we present results on NIPs consisting of KCl : Eu2+ and LiF that were fabricated into ceramic image plates in which the alkali halides act as a self-supporting matrix without the necessity for using a polymeric binder. An advantage of this type of NIP is the significantly reduced ggr-sensitivity. However, the much lower neutron absorption cross section of LiF compared with Gd2O3 demands a thicker image plate for obtaining comparable neutron absorption. The greater thickness of the NIP inevitably leads to a loss in spatial resolution of the image plate. However, this reduction in resolution can be restricted by a novel image plate concept in which a ceramic structure with square cells (referred to as a 'honeycomb') is embedded in the NIP, resulting in a pixelated image plate. In such a NIP the read-out light is confined to the particular illuminated pixel, decoupling the spatial resolution from the optical properties of the image plate material and morphology. In this work, a comparison of experimentally determined and simulated spatial resolutions of pixelated and unstructured image plates for a fixed read-out laser intensity is presented, as well as simulations of the properties of these NIPs at higher laser powers.

  7. Atmospheres around Neutron Stars

    Science.gov (United States)

    Fryer, Chris L.; Benz, Willy

    1994-12-01

    Interest in the behavior of atmospheres around neutron stars has grown astronomically in the past few years. Some of this interest arrived in the wake of the explosion of Supernova 1987A and its elusive remnant; spawning renewed interest in a method to insure material ``fall-back'' onto the adolescent neutron star in an effort to transform it into a silent black hole. However, the bulk of the activity with atmospheres around neutron stars is concentrated in stellar models with neutron star, rather than white dwarf, cores; otherwise known as Thorne-Zytkow objects. First a mere seed in the imagination of theorists, Thorne-Zytkow objects have grown into an observational reality with an ever-increasing list of formation scenarios and observational prospects. Unfortunately, the analytic work of Chevalier on supernova fall-back implies that, except for a few cases, the stellar simulations of Thorne-Zytkow objects are missing an important aspect of physics: neutrinos. Neutrino cooling removes the pressure support of these atmospheres, allowing accretion beyond the canonical Eddington rate for these objects. We present here the results of detailed hydrodynamical simulations in one and two dimensions with the additional physical effects of neutrinos, advanced equations of state, and relativity over a range of parameters for our atmosphere including entropy and chemical composition as well as a range in the neutron star size. In agreement with Chevalier, we find, under the current list of formation scenarios, that the creature envisioned by Thorne and Zytkow will not survive the enormous appetite of a neutron star. However, neutrino heating (a physical effect not considered in Chevalier's analysis) can play an important role in creating instabilities in some formation schemes, leading to an expulsion of matter rather than rapid accretion. By placing scrutiny upon the formation methods, we can determine the observational prospects for each.

  8. FAST NEUTRONIC REACTOR

    Science.gov (United States)

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  9. New compact neutron polarizer

    Science.gov (United States)

    Krist, Th; Kennedy, S. J.; Hicks, T. J.; Mezei, F.

    A new type of a neutron polarizing bender was developed in co-operation with BENSC and ANSTO. It is based upon bent thin silicon wafers coated on one side with SiFeCo polarizing supermirrors and on the other side with Gd. Initial tests at BENSC in a 300 Oe magnetic field yielded a transmission of spin-up neutrons of about 55% over an angle range of 0.75° and flipping ratios > 30. Subsequent tests at ANSTO at 1200 Oe yielded a transmission of 48% with a flipping ratio > 45.

  10. Helium 3 neutron precision polarimetry

    Science.gov (United States)

    Menard, Christopher

    2009-10-01

    Measuring neutron polarization to a high degree of precision is critical for the next generation of neutron decay correlation experiments. Polarized neutrons are also used in experiments to probe the hadronic weak interaction which contributes a small portion (˜10-7) of the force between nucleons. Using a beam of cold neutrons at Los Alamos Neutron Science Center (LANSCE), we polarized neutrons and measured their absolute polarization to ˜0.1%. Neutrons were polarized by passing them through a ^3He spin filter, relying on the maximally spin dependent 3He neutron absorption cross section. The neutron polarization can be determined by measuring the wavelength-dependent neutron transmission through the ^3He cell. An independent measurement of the neutron polarization was also obtained by passing the polarized beam through an RF spin flipper and a second polarized ^3He cell, used as an analyzer. To measure the efficiency of the spin flipper, the same measurements were made after reversing the ^3He polarization in the polarizer by using NMR techniques (adiabatic fast passage). We will show the consistency of these two measurements and the resulting precision of neutron polarimetry using these techniques.

  11. Neutron storage time measurement for the neutron EDM experiment

    Science.gov (United States)

    Griffith, W. Clark; Ito, Takeyasu; Ramsey, John; Makela, Mark; Clayton, Steven; Hennings-Yeomans, Raul; Saidur Rahaman, M.; Currie, Scott; Womack, Todd; Sondheim, Walter; Cooper, Martin

    2010-11-01

    A new experiment to search for the neutron electric dipole moment (nEDM) is under development for installation at the Spallation Neutron Source (SNS) at Oakridge National Laboratory. The experiment will use ultra-cold neutrons (UCN) stored in superfluid helium, along with ^3He atoms acting as a neutron spin analyzer and comagnetometer. One crucial factor affecting the ultimate sensitivity of the experiment is the neutron storage time that can be obtained in the acrylic measurement cell. The acrylic cell walls will be coated with deuterated polystyrene (dPS), which is expected to give a wall loss factor of ˜room temperature and below 20 K.

  12. Neutron beam imaging at neutron spectrometers at Dhruva

    Science.gov (United States)

    Desai, Shraddha S.; Rao, Mala N.

    2012-06-01

    A low efficiency, 2-Dimensional Position Sensitive Neutron Detector based on delay line position encoding is developed. It is designed to handle beam flux of 106-107 n/cm2/s and for monitoring intensity profiles of neutron beams. The present detector can be mounted in transmission mode, as the hardware allows maximum neutron transmission in sensitive region. Position resolution of 1.2 mm in X and Y directions, is obtained. Online monitoring of beam images and intensity profile of various neutron scattering spectrometers at Dhruva are presented. It shows better dynamic range of intensity over commercial neutron camera and is also time effective over the traditionally used photographic method.

  13. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    Energy Technology Data Exchange (ETDEWEB)

    Hep, J.; Konecna, A.; Krysl, V.; Smutny, V. [Calculation Dept., Skoda JS plc, Orlik 266, 31606 Plzen (Czech Republic)

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV

  14. Some Implications of Neutron Mirror Neutron Oscillation

    CERN Document Server

    Mohapatra, Rabindra N; Nussinov, S

    2005-01-01

    We comment on a recently discussed possibility of oscillations between neutrons and degenerate mirror neutrons in the context of mirror models for particles and forces. It has been noted by Bento and Berezhiani that if these oscillations occurred at a rate of $\\tau^{-1}_{NN'}\\sim sec^{-1}$, it would help explain putative super GKZ cosmic ray events provided the temperature of the mirror radiation is $\\sim 0.3-0.4$ times that of familiar cosmic microwave background radiation. We discuss how such oscillation time scales can be realized in mirror models and find that the simplest nonsupersymmetric model for this idea requires the existence of a low mass (30-3000 GeV) color triplet scalar or vector boson. A supersymmetric model, where this constraint can be avoided is severely constrained by the requirement of maintaining a cooler mirror sector. We also find that the reheat temperature after inflation in generic models that give fast $n-n'$ oscillation be less than about 100 GeV in order to maintain the required ...

  15. Neutronic studies of the coupled moderators for spallation neutron sources

    Institute of Scientific and Technical Information of China (English)

    Yin Wen; Liang Jiu-Qing

    2005-01-01

    We investigate the neutronic performance of coupled moderators to be implemented in spallation neutron sources by Monte-Carlo simulation and give the slow neutron spectra for the cold and thermal moderators. CH4 moderator can provide slow neutrons with highly desirable characteristics and will be used in low-power spallation neutron soureces. The slow neutron intensity extracted from different angles has been calculated. The capability of moderation of liquid H2 is lower than H2O and liquid CH4 due to lower atomic number density of hydrogen but we can compensate for this disadvantage by using a premoderator. The H2O premoderator of 2cm thickness can reduce the heat deposition in the cold moderator by about 33% without spoiling the neutron pulse.

  16. Neutron Scattering Investigations of Correlated Electron Systems and Neutron Instrumentation

    DEFF Research Database (Denmark)

    Holm, Sonja Lindahl

    are a unique probe for studying the atomic and molecular structure and dynamics of materials. Even though neutrons are very expensive to produce, the advantages neutrons provide overshadow the price. As neutrons interact weakly with materials compared to many other probes, e.g. electrons or photons......, it is possible to make a neutron scattering experiment through sample environment equipment like cryostats or pressure cells. Another advantage of neutron experiments is that the wavelength and energy of the neutron match the inter-atomic distances and basic excitations of solid materials. The scattering cross...... is not taken into account in previous reports on the field effect of magnetic scattering, since usually only L 0 is probed. A paper draft submitted for publication describing the results of elastic and inelastic neutron scattering experiments performed on the oxygen-doped La2CuO4+y HTSC is appended (Tc 40 K...

  17. Calculations of reactivity based in the solution of the Neutron transport equation in X Y geometry and Lineal perturbation theory; Calculos de reactividad basados en la solucion de la Ecuacion de transporte de neutrones en geometria XY y Teoria de perturbacion lineal

    Energy Technology Data Exchange (ETDEWEB)

    Valle G, E. del; Mugica R, C.A. [IPN, ESFM, Departamento de Ingenieria Nuclear, 07738 Mexico D.F. (Mexico)]. e-mail: cmugica@ipn.mx

    2005-07-01

    In our country, in last congresses, Gomez et al carried out reactivity calculations based on the solution of the diffusion equation for an energy group using nodal methods in one dimension and the TPL approach (Lineal Perturbation Theory). Later on, Mugica extended the application to the case of multigroup so much so much in one as in two dimensions (X Y geometry) with excellent results. Presently work is carried out similar calculations but this time based on the solution of the neutron transport equation in X Y geometry using nodal methods and again the TPL approximation. The idea is to provide a calculation method that allows to obtain in quick form the reactivity solving the direct problem as well as the enclosed problem of the not perturbed problem. A test problem for the one that results are provided for the effective multiplication factor is described and its are offered some conclusions. (Author)

  18. Neutron detection efficiency determinations for the TUNL neutron-neutron and neutron-proton scattering-length measurements

    Energy Technology Data Exchange (ETDEWEB)

    Trotter, D.E. Gonzalez [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: crowell@tunl.duke.edu; Meneses, F. Salinas [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: tornow@tunl.duke.edu; Crowell, A.S.; Howell, C.R. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Schmidt, D. [Physikalisch-Technische Bundesanstalt, D-38116, Braunschweig (Germany); Walter, R.L. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2009-02-11

    The methods employed and the results obtained from measurements and calculations of the detection efficiency for the neutron detectors used at Triangle Universities Nuclear Laboratory (TUNL) in the simultaneous determination of the {sup 1}S{sub 0} neutron-neutron and neutron-proton scattering lengths a{sub nn} and a{sub np}, respectively, are described. Typical values for the detector efficiency were 0.3. Very good agreement between the different experimental methods and between data and calculation has been obtained in the neutron energy range below E{sub n}=13MeV.

  19. Neutron proton crystallography station (PCS)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Zoe [Los Alamos National Laboratory; Kovalevsky, Andrey [Los Alamos National Laboratory; Johnson, Hannah [Los Alamos National Laboratory; Mustyakimov, Marat [Los Alamos National Laboratory

    2009-01-01

    The PCS (Protein Crystallography Station) at Los Alamos Neutron Science Center (LANSCE) is a unique facility in the USA that is designed and optimized for detecting and collecting neutron diffraction data from macromolecular crystals. PCS utilizes the 20 Hz spallation neutron source at LANSCE to enable time-of-flight measurements using 0.6-7.0 {angstrom} neutrons. This increases the neutron flux on the sample by using a wavelength range that is optimal for studying macromolecular crystal structures. The diagram below show a schematic of PCS and photos of the detector and instrument cave.

  20. A review on neutron reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Soo; Lee, Chang Hee; Shim, Hae Seop; Seong, Baek Seok

    1999-03-01

    This report contains principle and characteristic of neutron reflectometry. Therefore, in case of operating neutron reflectometer at HANARO in future, it will be a reference to the user who wishes to use the instrument effectively. Also, the current situation of neutron reflectometer operating in the world was examined. The detail of neutron reflectometer such as GANS(MURR), ADAM(ILL), POSY II(ANL), ROG(IRI) was described. The recent research situation on neutron reflectometry was also examined and it helps us to determine research field. (author)

  1. Cooling of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Grigorian H.

    2010-10-01

    Full Text Available We introduce the theoretical basis for modeling the cooling evolution of compact stars starting from Boltzmann equations in curved space-time. We open a discussion on observational verification of different neutron star models by consistent statistics. Particular interest has the question of existence of quark matter deep inside of compact object, which has to have a specific influence on the cooling history of the star. Besides of consideration of several constraints and features of cooling evolution, which are susceptible of being critical for internal structure of hot compact stars we have introduced a method of extraction of the mass distribution of the neutron stars from temperature and age data. The resulting mass distribution has been compared with the one suggested by supernove simulations. This method can be considered as an additional checking tool for the consistency of theoretical modeling of neutron stars. We conclude that the cooling data allowed existence of neutron stars with quark cores even with one-flavor quark matter.

  2. New Neutron Dosimeter

    CERN Multimedia

    2001-01-01

    CERN has been operating an Individual Dosimetry Service for neutrons for about 35 years. The service was based on nuclear emulsions in the form of film packages which were developed and scanned in the Service. In 1999, the supplier of theses packages informed CERN that they will discontinue production of this material. TIS-RP decided to look for an external service provider for individual neutron dosimetry. After an extensive market survey and an invitation for tender, a supplier that met the stringent technical requirements set up by CERN's host states for personal dosimeters was identified. The new dosimeter is based on a track-etching technique. Neutrons have the capability of damaging plastic material. The microscopic damage centres are revealed by etching them in a strong acid. The resulting etch pits can be automatically counted and their density is proportional to dose equivalent from neutrons. On the technical side, the new dosimeter provides an improved independence of its response from energy and th...

  3. Neutron protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    X-ray diffraction of single crystal has enriched the knowledge of various biological molecules such as proteins, DNA, t-RNA, viruses, etc. It is difficult to make structural analysis of hydrogen atoms in a protein using X-ray crystallography, whereas neutron diffraction seems usable to directly determine the location of those hydrogen atoms. Here, neutron diffraction method was applied to structural analysis of hen egg-white lysozyme. Since the crystal size of a protein to analyze is generally small (5 mm{sup 3} at most), the neutron beam at the sample position in monochromator system was set to less than 5 x 5 mm{sup 2} and beam divergence to 0.4 degree or less. Neutron imaging plate with {sup 6}Li or Gd mixed with photostimulated luminescence material was used and about 2500 Bragg reflections were recorded in one crystal setting. A total of 38278 reflections for 2.0 A resolution were collected in less than 10 days. Thus, stereo views of Trp-111 omit map around the indol ring of Trp-111 was presented and the three-dimensional arrangement of 696H and 264D atoms in the lysozyme molecules was determined using the omit map. (M.N.)

  4. Improvement of Modeling HTGR Neutron Physics by Uncertainty Analysis with the Use of Cross-Section Covariance Information

    Science.gov (United States)

    Boyarinov, V. F.; Grol, A. V.; Fomichenko, P. A.; Ternovykh, M. Yu

    2017-01-01

    This work is aimed at improvement of HTGR neutron physics design calculations by application of uncertainty analysis with the use of cross-section covariance information. Methodology and codes for preparation of multigroup libraries of covariance information for individual isotopes from the basic 44-group library of SCALE-6 code system were developed. A 69-group library of covariance information in a special format for main isotopes and elements typical for high temperature gas cooled reactors (HTGR) was generated. This library can be used for estimation of uncertainties, associated with nuclear data, in analysis of HTGR neutron physics with design codes. As an example, calculations of one-group cross-section uncertainties for fission and capture reactions for main isotopes of the MHTGR-350 benchmark, as well as uncertainties of the multiplication factor (k∞) for the MHTGR-350 fuel compact cell model and fuel block model were performed. These uncertainties were estimated by the developed technology with the use of WIMS-D code and modules of SCALE-6 code system, namely, by TSUNAMI, KENO-VI and SAMS. Eight most important reactions on isotopes for MHTGR-350 benchmark were identified, namely: 10B(capt), 238U(n,γ), ν5, 235U(n,γ), 238U(el), natC(el), 235U(fiss)-235U(n,γ), 235U(fiss).

  5. The coupling of the neutron transport application RATTLESNAKE to the nuclear fuels performance application BISON under the MOOSE framework

    Energy Technology Data Exchange (ETDEWEB)

    Gleicher, Frederick N.; Williamson, Richard L.; Ortensi, Javier; Wang, Yaqi; Spencer, Benjamin W.; Novascone, Stephen R.; Hales, Jason D.; Martineau, Richard C.

    2014-10-01

    The MOOSE neutron transport application RATTLESNAKE was coupled to the fuels performance application BISON to provide a higher fidelity tool for fuel performance simulation. This project is motivated by the desire to couple a high fidelity core analysis program (based on the self-adjoint angular flux equations) to a high fidelity fuel performance program, both of which can simulate on unstructured meshes. RATTLESNAKE solves self-adjoint angular flux transport equation and provides a sub-pin level resolution of the multigroup neutron flux with resonance treatment during burnup or a fast transient. BISON solves the coupled thermomechanical equations for the fuel on a sub-millimeter scale. Both applications are able to solve their respective systems on aligned and unaligned unstructured finite element meshes. The power density and local burnup was transferred from RATTLESNAKE to BISON with the MOOSE Multiapp transfer system. Multiple depletion cases were run with one-way data transfer from RATTLESNAKE to BISON. The eigenvalues are shown to agree well with values obtained from the lattice physics code DRAGON. The one-way data transfer of power density is shown to agree with the power density obtained from an internal Lassman-style model in BISON.

  6. Neutron capture reactions at DANCE

    Science.gov (United States)

    Bredeweg, T. A.

    2008-05-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 4π BaF2 array consisting of 160 active detector elements. The primary purpose of the array is to perform neutron capture cross section measurements on small (>~100 μg) and/or radioactive (DANCE we have performed neutron capture cross section measurements on a wide array of medium to heavy mass nuclides. Measurements to date include neutron capture cross sections on 241,243Am, neutron capture and neutron-induced fission cross sections and capture-to-fission ratio (α = σγ/σf) for 235U using a new fission-tagging detector as well as neutron capture cross sections for several astrophysics branch-point nuclei. Results from several of these measurements will be presented along with a discussion of additional physics information that can be extracted from the DANCE data.

  7. Nanostructure Neutron Converter Layer Development

    Science.gov (United States)

    Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Kang, Jin Ho (Inventor); Lowther, Sharon E. (Inventor); Thibeault, Sheila A. (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  8. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    1990-07-01

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.

  9. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Franklyn, C. B. [Radiation Science Department, Necsa, PO Box 582, Pretoria 0001 (South Africa)

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  10. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  11. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    Energy Technology Data Exchange (ETDEWEB)

    Woo Y. Yoon; David W. Nigg

    2011-09-01

    COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B3 or B1 zero-dimensional approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constants may be output in any of several standard formats including INL format, ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional (1-D) discrete-ordinate transport code, is incorporated into COMBINE7.1. As an option, the 167 fine-group constants generated by zero-dimensional COMBINE portion in the program can be

  12. A neutronic feasibility study for LEU conversion of the IR-8 research reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Deen, J. R.

    1998-10-22

    Equilibrium fuel cycle comparisons for the IR-8 research reactor were made for HEU(90%), HEU(36%), and LEU (19.75%) fuel assembly (FA) designs using three dimensional multi-group diffusion theory models benchmarked to detailed Monte Carlo models of the reactor. Comparisons were made of changes in reactivity, cycle length, average {sup 235}U discharge burnup, thermal neutron flux, and control rod worths for the 90% and 36% enriched IRT-3M fuel assembly and the 19.75% enriched IRT-4M fuel assembly with the same fuel management strategy. The results of these comparisons showed that a uranium density of 3.5 g/cm{sup 3} in the fuel meat would be required in the LEU IRT-4M fuel assembly to match the cycle length of the HEU(90%) IRT-3M FA and an LEU density of 3.7 g/cm{sup 3} is needed to match the cycle length of the HEU(36%) IRT-3M FA.

  13. Measurement of the Time Dependence of Neutron Slowing-Down and Therma in Heavy Water

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, E.

    1966-03-15

    The behaviour of neutrons during their slowing-down and thermalization in heavy water has been followed on the time scale by measurements of the time-dependent rate of reaction between the flux and the three spectrum indicators indium, cadmium and gadolinium. The space dependence of the reaction rate curves has also been studied. The time-dependent density at 1.46 eV is well reproduced by a function, given by von Dardel, and a time for the maximum density of 7.1 {+-} 0.3 {mu}s has been obtained for this energy in deuterium gas in agreement with the theoretical value of 7.2 {mu}s. The spatial variation of this time is in accord with the calculations by Claesson. The slowing- down time to 0.2 eV has been found to be 16.3 {+-}2.4 {mu}s. The approach to the equilibrium spectrum takes place with a time constant of 33 {+-}4 {mu}s, and the equilibrium has been established after about 200 {mu}s. Comparison of the measured curves for cadmium and gadolinium with multigroup calculations of the time-dependent flux and reaction rate show the superiority of the scattering models for heavy water of Butler and of Brown and St. John over the mass 2 gas model. The experiment has been supplemented with Monte Carlo calculations of the slowing down time.

  14. Neutron-gamma competition for $\\beta$-delayed neutron emission

    CERN Document Server

    Mumpower, Matthew; Moller, Peter

    2016-01-01

    We present a coupled Quasi-particle Random Phase Approximation and Hauser-Feshbach (QRPA+HF) model for calculating delayed particle emission. This approach uses microscopic nuclear structure information which starts with Gamow-Teller strength distributions in the daughter nucleus, and then follows the statistical decay until the initial available excitation energy is exhausted. Explicitly included at each particle emission stage is $\\gamma$-ray competition. We explore this model in the context of neutron emission of neutron-rich nuclei and find that neutron-gamma competition can lead to both increases and decreases in neutron emission probabilities, depending on the system considered. A second consequence of this formalism is a prediction of more neutrons on average being emitted after $\\beta$-decay for nuclei near the neutron dripline compared to models that do not consider the statistical decay.

  15. Measurement of neutron scattering lengths using neutron interferometry

    Science.gov (United States)

    Shahi, Chandra B.

    This thesis describes the details on building a new Neutron Interferometry and Optics Facility (NIOFa), the measurement of the incoherent neutron scattering length bi of 3He, and the measurement of the coherent neutron scattering length bc of 4He at National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). A new monochromatic beamline and facility has been installed at the NCNR devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. This new facility, NIOFa, is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The measurement of the incoherent neutron scattering length bi of 3He was done using a (220) single silicon crystal skew symmetric interferometer. This experiment requires both a polarized beam and a polarized target. We report bi = -2.35 +/- 0.014 (stat.) +/- 0.014 (syst.). This experiment is a revision of the previous experiment which was done in 2008, and partially explains the non-zero phase shift seen in 2008 experiment even if target cell was completely unpolarized. The measurement of the coherent neutron scattering length b c of the 4He was done using a (111) single silicon crystal interferometer. The neutron interferometry and optics facility at NIST had been used previously to determine the coherent scattering lengths for n- 1H, n-2H, and n-3He to less than 1% relative uncertainty. We report bc of the 4He

  16. Fast neutron imaging device and method

    Science.gov (United States)

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  17. Progress of Neutron Bubble Detectors in CIAE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Neutron bubble detector is the only personal neutron dosimeter which has adequate neutronsensitivity to meet the implications of the ICRP 60 recommendations for neutron dosimetry. It canmonitor the wide range of neutron energy, for example 100 eV to 10 MeV And it becomes a significanttool for neutron dose monitoring at the environment of nuclear energy.

  18. Neutron beam measurement dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  19. Neutrons from Antiproton Irradiation

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael; Petersen, Jørgen B.B.

    Background: Radiotherapy with Antiprotons is currently investigated by the AD-4/ACE collaboration. The hypothesis is that the additional energy released from the antiprotons annihilating at the target nuclei can enable a reduced dose in the entry channel of the primary beam. Furthermore an enhanced...... relative biological effect (RBE) has already been beam measured in spread out Bragg peaks of antiprotons, relative to that found in the plateau region. However, the antiproton annihilation process is associated with a substantial release of secondary particles which contribute to the dose outside...... the neutron spectrum. Additionally, we used a cylindrical polystyrene loaded with several pairs of thermoluminescent detectors containing Lithium-6 and Lithium-7, which effectively detects thermalized neutrons. The obtained results are compared with FLUKA imulations. Results: The results obtained...

  20. Neutron electric polarizability

    CERN Document Server

    Alexandru, Andrei

    2009-01-01

    We use the background field method to extract the "connected" piece of the neutron electric polarizability. We present results for quenched simulations using both clover and Wilson fermions and discuss our experience in extracting the mass shifts and the challenges we encountered when we lowered the quark mass. For the neutron we find that as the pion mass is lowered below $500\\MeV$, the polarizability starts rising in agreement with predictions from chiral perturbation theory. For our lowest pion mass, $m_\\pi=320\\MeV$, we find that $\\alpha_n = 3.8(1.3)\\times 10^{-4}\\fm^3$, which is still only one third of the experimental value. We also present results for the neutral pion; we find that its polarizability turns negative for pion masses smaller than $500\\MeV$ which is puzzling.

  1. Neutrons in the moon. [neutron flux and production rate calculations

    Science.gov (United States)

    Kornblum, J. J.; Fireman, E. L.; Levine, M.; Aronson, A.

    1973-01-01

    Neutron fluxes for energies between 15 MeV and thermal at depths of 0 to 300 g/sq cm in the moon are calculated by the discrete ordinate mathod with the ANISN code. With the energy spectrum of Lingenfelter et al. (1972). A total neutron-production rate for the moon of 26 plus or minus neutrons/sq cm sec is determined from the Ar-37 activity measurements in the Apollo 16 drill string, which are found to have a depth dependence in accordance with a neutron source function that decreases exponentially with an attenuation length of 155 g/sq cm.

  2. Neutron Transport Simulations for NIST Neutron Lifetime Experiment

    Science.gov (United States)

    Li, Fangchen; BL2 Collaboration Collaboration

    2016-09-01

    Neutrons in stable nuclei can exist forever; a free neutron lasts for about 15 minutes on average before it beta decays to a proton, an electron, and an antineutrino. Precision measurements of the neutron lifetime test the validity of weak interaction theory and provide input into the theory of the evolution of light elements in the early universe. There are two predominant ways of measuring the neutron lifetime: the bottle method and the beam method. The bottle method measures decays of ultracold neutrons that are stored in a bottle. The beam method measures decay protons in a beam of cold neutrons of known flux. An improved beam experiment is being prepared at the National Institute of Science and Technology (Gaithersburg, MD) with the goal of reducing statistical and systematic uncertainties to the level of 1 s. The purpose of my studies was to develop computer simulations of neutron transport to determine the beam collimation and study the neutron distribution's effect on systematic effects for the experiment, such as the solid angle of the neutron flux monitor. The motivation for the experiment and the results of this work will be presented. This work was supported, in part, by a Grant to Gettysburg College from the Howard Hughes Medical Institute through the Precollege and Undergraduate Science Education Program.

  3. Are there good probes for the di-neutron correlation in light neutron-rich nuclei?

    CERN Document Server

    Hagino, K

    2015-01-01

    The di-neutron correlation is a spatial correlation with which two valence neutrons are located at a similar position inside a nucleus. We discuss possible experimental probes for the di-neutron correlation. This includes the Coulomb breakup and the pair transfer reactions of neutron-rich nuclei, and the direct two-neutron decays of nuclei beyond the neutron drip-line.

  4. Neutrons are flying

    CERN Multimedia

    2000-01-01

    View of the n_TOF tube with members of the design and construction team of the facility(from left to right: R. Magnin/LHC, E. Radermacher/EP, P. Cennini/EP and R. Cappi/PS). A new experimental facility was inaugurated at CERN on Wednesday 8 November. The neutron Time Of Flight (n_TOF) facility received its first protons from the PS at 10:55. With an intensity of 1 x 1011 protons per cycle on the n_TOF target, an intense neutron beam has been produced at CERN for the first time, opening the door to many new avenues of research including, for example, neutron induced cross-section measurements. The facility is an offspring of the work by Carlo Rubbia and his group on the novel idea of an Energy Amplifier. The basic idea was successfully tested at the PS with the FEAT experiment and later with the TARC experiment, where the feasibility of transmutation of long-lived products by Adiabatic Resonance Crossing (ARC) was confirmed. This led to the possibility of radio-isotope production for medical applications, fo...

  5. Neutron instrumentation for biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, S.A. [Institut Laue-Langevin, Grenoble (France)

    1994-12-31

    In the October 1994 round of proposals at the ILL, the external biology review sub- committee was asked to allocate neutron beam time to a wide range of experiments, on almost half the total number of scheduled neutron instruments: on 3 diffractometers, on 3 small angle scattering instruments, and on some 6 inelastic scattering spectrometers. In the 3.5 years since the temporary reactor shutdown, the ILL`s management structure has been optimized, budgets and staff have been trimmed, the ILL reactor has been re-built, and many of the instruments up-graded, many powerful (mainly Unix) workstations have been introduced, and the neighboring European Synchrotron Radiation Facility has established itself as the leading synchrotron radiation source and has started its official user program. The ILL reactor remains the world`s most intense dedicated neutron source. In this challenging context, it is of interest to review briefly the park of ILL instruments used to study the structure and energetics of small and large biological systems. A brief summary will be made of each class of experiments actually proposed in the latest ILL proposal round.

  6. Neutron background estimates in GESA

    Directory of Open Access Journals (Sweden)

    Fernandes A.C.

    2014-01-01

    Full Text Available The SIMPLE project looks for nuclear recoil events generated by rare dark matter scattering interactions. Nuclear recoils are also produced by more prevalent cosmogenic neutron interactions. While the rock overburden shields against (μ,n neutrons to below 10−8 cm−2 s−1, it itself contributes via radio-impurities. Additional shielding of these is similar, both suppressing and contributing neutrons. We report on the Monte Carlo (MCNP estimation of the on-detector neutron backgrounds for the SIMPLE experiment located in the GESA facility of the Laboratoire Souterrain à Bas Bruit, and its use in defining additional shielding for measurements which have led to a reduction in the extrinsic neutron background to ∼ 5 × 10−3 evts/kgd. The calculated event rate induced by the neutron background is ∼ 0,3 evts/kgd, with a dominant contribution from the detector container.

  7. Euratom Neutron Radiography Working Group

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    In 1979 a Neutron Radiography Working Group (NRWG) was constituted within Buratom with the participation of all centers within the European Community at which neutron facilities were available. The main purpose of NRWG was to standardize methods and procedures used in neutron radiography of nuclear...... reactor fuel as well as establish standards for radiographic image quality of neutron radiographs. The NRWG meets once a year in each of the neutron radiography centers to review the progress made and draw plans for the future. Besides, ad-hoc sub-groups or. different topics within the field of neutron...... radiography are constituted. This paper reviews the activities and achievements of the NRWG and its sub-groups....

  8. Centrifugal quantum states of neutrons

    Science.gov (United States)

    Nesvizhevsky, V. V.; Petukhov, A. K.; Protasov, K. V.; Voronin, A. Yu.

    2008-09-01

    We propose a method for observation of the quasistationary states of neutrons localized near a curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror Fermi potential. This phenomenon is an example of an exactly solvable “quantum bouncer” problem that can be studied experimentally. It could provide a promising tool for studying fundamental neutron-matter interactions, as well as quantum neutron optics and surface physics effects. We develop a formalism that describes quantitatively the neutron motion near the mirror surface. The effects of mirror roughness are taken into account.

  9. Ukraine experimental neutron source facility.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Bolshinsky, I.; Nekludov, I.; Karnaukhov, I. (Nuclear Engineering Division); (INL); (Kharkov Institute of Physics and Technology)

    2008-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an experimental neutron source facility. The facility has been developed for producing medical isotopes, training young nuclear professionals, supporting the Ukraine nuclear industry, providing capability for performing reactor physics, material research, and basic science experiments. Argonne National Laboratory (ANL) of USA is collaborating with KIPT on developing this facility. A driven subcritical assembly utilizing the KIPT electron accelerator with a target assembly is used to generate the neutron source. The target assembly utilizes tungsten or uranium for neutron production through photonuclear reactions with 100-KW of electron beam power. The neutron source intensity, spectrum, and spatial distribution have been studied to maximize the neutron yield and satisfy different engineering requirements. The subcritical assembly is designed to obtain the highest possible neutron flux intensity with a subcriticality of 0.98. Low enrichment uranium is used for the fuel material because it enhances the neutron source performance. Safety, reliability, and environmental considerations are included in the facility conceptual design. Horizontal neutron channels are incorporated for performing basic research including cold neutron source. This paper describes the conceptual design and summarizes some of the related analyses.

  10. Ultra-Cold Neutrons (UCN)

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers working at the Los Alamos Neutron Science Center and eight other member institutions of an international collaboration are constructing the most intense...

  11. NEUTRON IMAGING, RADIOGRAPHY AND TOMOGRAPHY.

    Energy Technology Data Exchange (ETDEWEB)

    SMITH,G.C.

    2002-03-01

    Neutrons are an invaluable probe in a wide range of scientific, medical and commercial endeavors. Many of these applications require the recording of an image of the neutron signal, either in one-dimension or in two-dimensions. We summarize the reactions of neutrons with the most important elements that are used for their detection. A description is then given of the major techniques used in neutron imaging, with emphasis on the detection media and position readout principle. Important characteristics such as position resolution, linearity, counting rate capability and sensitivity to gamma-background are discussed. Finally, the application of a subset of these instruments in radiology and tomography is described.

  12. Measurement of neutron diffraction with compact neutron source RANS

    Science.gov (United States)

    Ikeda, Y.; Takamura, M.; Taketani, A.; Sunaga, H.; Otake, Y.; Suzuki, H.; Kumagai, M.; Oba, Y.; Hama, T.

    2016-11-01

    Diffraction is used as a measurement technique for crystal structure. X-rays or electron beam with wavelength that is close to the lattice constant of the crystal is often used for the measurement. They have sensitivity in surface (0.01mm) of heavy metals due to the mean free path for heavy ions. Neutron diffraction has the probe of the internal structure of the heavy metals because it has a longer mean free path than that of the X-rays or the electrons. However, the neutron diffraction measurement is not widely used because large facilities are required in the many neutron sources. RANS (Riken Accelerator-driven Compact Neutron Source) is developed as a neutron source which is usable easily in laboratories and factories. In RANS, fast neutrons are generated by 7MeV protons colliding on a Be target. Some fast neutrons are moderated with polyethylene to thermal neutrons. The thermal neutrons of 10meV which have wavelength of 10nm can be used for the diffraction measurement. In this study, the texture evolution in steels was measured with RANS and the validity of the compact neutron source was proved. The texture of IF steel sheets with the thickness of 1.0mm was measured with 10minutes run. The resolution is 2% and is enough to analyze a evolution in texture due to compression/tensile deformation or a volume fraction of two phases in the steel sample. These results have proven the possibility to use compact neutron source for the analysis of mesoscopic structure of metallic materials.

  13. Fundamental physics research and neutron interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Ioffe, A. [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1996-08-01

    The possibility of the use of an extremely sensitive neutron interferometry technique for the study of electromagnetic structure of the neutron and the parity non-conservative effects in neutron spin rotation is discussed. (author)

  14. T-violation in neutron optics

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Y. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    Experimental method to detect a T-odd correlation term in neutron propagation through a nuclear target is discussed. The correlation term is between the neutron spin, neutron momentum and nuclear spin. (author)

  15. Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Susmikanti, Mike, E-mail: mike@batan.go.id [Center for Development of Nuclear Informatics, National Nuclear Energy Agency, PUSPIPTEK, Tangerang (Indonesia); Dewayatna, Winter, E-mail: winter@batan.go.id [Center for Nuclear Fuel Technology, National Nuclear Energy Agency, PUSPIPTEK, Tangerang (Indonesia); Sulistyo, Yos, E-mail: soj@batan.go.id [Center for Nuclear Equipment and Engineering, National Nuclear Energy Agency, PUSPIPTEK, Tangerang (Indonesia)

    2014-09-30

    One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo{sup 99} used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 10{sup 6} cm{sup −1}) in a tube, their delta

  16. Probing neutron star physics using accreting neutron stars

    Directory of Open Access Journals (Sweden)

    Patruno A.

    2010-10-01

    Full Text Available We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars during quiescence. In the first part of this overview we show that the X-ray pulses are contaminated by a large amount of noise of uncertain origin, and that all these neutron stars do not show evidence of spin variations during the outburst. We present also some recent developments on the presence of intermittency in three accreting millisecond X-ray pulsars and investigate the reason why only a small number of accreting neutron stars show X-ray pulsations and why none of these pulsars shows sub-millisecond spin periods. In the second part of the overview we introduce the observational technique that allows the study of neutron star cooling in accreting systems as probes of neutron star internal composition and equation of state. We explain the phenomenon of the deep crustal heating and present some recent developments on several quasi persistent X-ray sources where a cooling neutron star has been observed.

  17. Calculating and measuring thermal neutrons exiting from neutron diffractometers collimators

    CERN Document Server

    Tafazolee, K

    2000-01-01

    process, effectiveness of them are studied for the enhancement of the available system. Final conclusion from the simulation process, indicates that the heavy water with the thickness of 50 to 60 cm. is the best moderator for gaining the better thermal neutrons flux for enhancement of P.N.D. in the T.R.R. Powder Neutron Diffractometer y (P.N.D.) is relatively good and practical way for identification of the 3 dimensional construction of materials. In order to exploit the capabilities of this method, in one of the neutron beam of the Tehran Research Reactor (T.R.R.), a collimator embedded inside the concrete wall, direct the neutrons produced in the core reactor towards a monochromator e. Neutrons having been monochromated by 2 nd collimator are then directed towards the sample. Then the pattern of diffracted neutrons from the sample are studied. In order to make the best out of it, neutrons coming to sit on the sample must be of the thermal type. That means the number/amount of thermal neutrons flux in compar...

  18. Sequential measurements of environmental neutron energy spectrum and neutron dose

    Energy Technology Data Exchange (ETDEWEB)

    Nunomiya, Tomoya; Nakamura, Takashi; Suzuki, Hiroyuki; Terunuma, Kazutaka; Hirabayashi, Naoya; Sato, Youichi; Abe, Sigeru; Rasolonjatovo A.H, Danielle [Tohoku Univ., Dept. of Quantum Science and Energy Engineering, Sendai, Miyagi (Japan)

    2003-03-01

    From April 2001, neutron energy spectra and neutron dose were sequentially measured using 5'' -rem counter and {sup 3}He multi-moderator spectrometer (Boner boll) at Kawauchi-campus of Tohoku University. These data were collected about the relation between the dose level and the solar activities. (author)

  19. Synovectomy by Neutron capture; Sinovectomia por captura de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Torres M, C. [Centro Regional de Estudios Nucleares, Universidad Autonoma de Zacatecas, C. Cipres 10, Fracc. La Penuela, 98000 Zacatecas (Mexico)

    1998-12-31

    The Synovectomy by Neutron capture has as purpose the treatment of the rheumatoid arthritis, illness which at present does not have a definitive curing. This therapy requires a neutron source for irradiating the articulation affected. The energy spectra and the intensity of these neutrons are fundamental since these neutrons induce nuclear reactions of capture with Boron-10 inside the articulation and the freely energy of these reactions is transferred at the productive tissue of synovial liquid, annihilating it. In this work it is presented the neutron spectra results obtained with moderator packings of spherical geometry which contains in its center a Pu{sup 239} Be source. The calculations were realized through Monte Carlo method. The moderators assayed were light water, heavy water base and the both combination of them. The spectra obtained, the average energy, the neutron total number by neutron emitted by source, the thermal neutron percentage and the dose equivalent allow us to suggest that the moderator packing more adequate is what has a light water thickness 0.5 cm (radius 2 cm) and 24.5 cm heavy water (radius 26.5 cm). (Author)

  20. Magnetic correlations in oxides: Neutron diffraction and neutron depolarization study

    Indian Academy of Sciences (India)

    S M Yusuf

    2008-10-01

    We have studied magnetic correlations in several oxide materials that belong to colossal magnetoresistive, naturally occurring layered oxide showing low-dimensional magnetic ordering, solid oxide fuel cell interconnect materials, and magnetic nanoparticles using neutron diffraction and neutron depolarization techniques. In this paper, an overview of some of these results is given.

  1. Time-resolved neutron imaging at ANTARES cold neutron beamline

    CERN Document Server

    Tremsin, A S; Tittelmeier, K; Schillinger, B; Schulz, M; Lerche, M; Feller, W B

    2015-01-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and...

  2. Application of imaging plate neutron detector to neutron radiography

    CERN Document Server

    Fujine, S; Kamata, M; Etoh, M

    1999-01-01

    As an imaging plate neutron detector (IP-ND) has been available for thermal neutron radiography (TNR) which has high resolution, high sensitivity and wide range, some basic characteristics of the IP-ND system were measured at the E-2 facility of the KUR. After basic performances of the IP were studied, images with high quality were obtained at a neutron fluence of 2 to 7x10 sup 8 n cm sup - sup 2. It was found that the IP-ND system with Gd sub 2 O sub 3 as a neutron converter material has a higher sensitivity to gamma-ray than that of a conventional film method. As a successful example, clear radiographs of the flat view for the fuel side plates with boron burnable poison were obtained. An application of the IP-ND system to neutron radiography (NR) is presented in this paper.

  3. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  4. Handbook of neutron optics

    CERN Document Server

    Utsuro, Masahiko

    2010-01-01

    Written by authors with an international reputation, acknowledged expertise and teaching experience, this is the most up-to-date resource on the field. The text is clearly structured throughout so as to be readily accessible, and begins by looking at scattering of a scalar particle by one-dimensional systems. The second section deals with the scattering of neutrons with spin in one-dimensional potentials, while the third treats dynamical diffraction in three-dimensional periodic media. The final two sections conclude with incoherent and small angle scattering, and some problems of quantum mech

  5. On Magnetized Neutron Stars

    CERN Document Server

    Lopes, Luiz L

    2014-01-01

    In this work we review the formalism normally used in the literature about the effects of density-dependent magnetic fields on the properties of neutron stars, expose some ambiguities that arise and propose a way to solve the related problem. Our approach uses a different prescription for the calculation of the pressure based on the chaotic field formalism for the stress tensor and also a different way of introducing a variable magnetic field, which depends on the energy density rather than on the baryonic density.

  6. Neutrons for technology and science

    Energy Technology Data Exchange (ETDEWEB)

    Aeppli, G.

    1995-10-01

    We reviewed recent work using neutrons generated at nuclear reactors an accelerator-based spallation sources. Provided that large new sources become available, neutron beams will continue to have as great an impact on technology and science as in the past.

  7. Neutron and P, T symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Y. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-05-01

    New ideas for experiments to improve the T-violation limit by a factor of 10 to 100 is discussed for a intensive spallation neutron source. The methods to improve the limit of the right-handed current and the neutron lifetime are also discussed. (author)

  8. Neutron Transmission through Sapphire Crystals

    DEFF Research Database (Denmark)

    of simulations, in order to reproduce the transmission of cold neutrons through sapphire crystals. Those simulations were part of the effort of validating and improving the newly developed interface between the Monte-Carlo neutron transport code MCNP and the Monte Carlo ray-tracing code McStas....

  9. Measurement of natural background neutron

    CERN Document Server

    Li Jain, Ping; Tang Jin Hua; Tang, E S; Xie Yan Fong

    1982-01-01

    A high sensitive neutron monitor is described. It has an approximate counting rate of 20 cpm for natural background neutrons. The pulse amplitude resolution, sensitivity and direction dependence of the monitor were determined. This monitor has been used for natural background measurement in Beijing area. The yearly average dose is given and compared with the results of KEK and CERN.

  10. Physics of Neutron Star Crusts

    Directory of Open Access Journals (Sweden)

    Chamel Nicolas

    2008-12-01

    Full Text Available The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  11. High power neutron production targets

    Energy Technology Data Exchange (ETDEWEB)

    Wender, S. [Los Alamos National Lab., NM (United States)

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  12. Neutron imaging of radioactive sources

    Science.gov (United States)

    Hameed, F.; Karimzadeh, S.; Zawisky, M.

    2008-08-01

    Isotopic neutron sources have been available for more than six decades. At the Atomic Institute in Vienna, operating a 250 kW TRIGA reactor, different neutron sources are in use for instrument calibration and fast neutron applications but we have only little information about their construction and densities. The knowledge of source design is essential for a complete MCNP5 modeling of the experiments. Neutron radiography (NR) and neutron tomography (NT) are the best choices for the non-destructive inspection of the source geometry and homogeneity. From the transmission analysis we gain information about the shielding components and the densities of the radio-isotopes in the cores. Three neutron sources, based on (alpha, n) reaction, have been investigated, two 239PuBe sources and one 241AmBe source. In the NR images the internal structure was clearly revealed using high-resolving scintillation and imaging plate detectors. In one source tablet a crack was detected which causes asymmetric neutron emission. The tomography inspection of strong absorbing materials is more challenging due to the low beam intensity of 1.3x105 n/cm2s at our NT instrument, and due to the beam hardening effect which requires an extension of reconstruction software. The tomographic inspection of a PuBe neutron source and appropriate measures for background and beam hardening correction are presented.

  13. Neutron Absorption in Geological Material

    Science.gov (United States)

    Løvhøiden, G.; Andersen, E.

    1990-01-01

    Thermal neutron absorption cross section of geological samples is determined with the steady state neutron source method. Cross section measurements of North Sea sediments demonstrate that also materials with high contents of clay minerals may be investigated with the steady state method.

  14. Axion emission from neutron stars

    Science.gov (United States)

    Iwamoto, N.

    1984-01-01

    It is shown that axion emission from neutron stars is the dominant energy-loss mechanism for a range of values of the Peccei-Quinn symmetry-breaking scale (F) not excluded by previous constraints. This gives the possibility of obtaining a better bound on F from measurements of surface temperature of neutron stars.

  15. First results of micro-neutron tomography by use of a focussing neutron lens

    CERN Document Server

    Masschaele, B; Cauwels, P; Dierick, M; Jolie, J; Mondelaers, W

    2001-01-01

    Since the appearance of high flux neutron beams, scientists experimented with neutron radiography. This high beam flux combined with modern neutron to visible light converters leads to the possibility of performing fast neutron micro-tomography. The first results of cold neutron tomography with a neutron lens are presented in this article. Samples are rotated in the beam and the projections are recorded with a neutron camera. The 3D reconstruction is performed with cone beam reconstruction software.

  16. Investigation of Isfahan miniature neutron source reactor (MNSR) for boron neutron capture therapy by MCNP simulation

    OpenAIRE

    S. Z. Kalantari; H Tavakoli; Nami, M.

    2015-01-01

    One of the important neutron sources for Boron Neutron Capture Therapy (BNCT) is a nuclear reactor. It needs a high flux of epithermal neutrons. The optimum conditions of the neutron spectra for BNCT are provided by the International Atomic Energy Agency (IAEA). In this paper, Miniature Neutron Source Reactor (MNSR) as a neutron source for BNCT was investigated. For this purpose, we designed a Beam Shaping Assembly (BSA) for the reactor and the neutron transport from the core of the reactor t...

  17. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Maglieri, Robert, E-mail: robert.maglieri@mail.mcgill.ca; Evans, Michael; Seuntjens, Jan; Kildea, John [Medical Physics Unit, McGill University, Montreal, Quebec H4A 3J1 (Canada); Licea, Angel [Canadian Nuclear Safety Commission, Ottawa, Ontario K1P 5S9 (Canada)

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  18. Grand unification of neutron stars.

    Science.gov (United States)

    Kaspi, Victoria M

    2010-04-20

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical "grand unification" of this wealth of observational phenomena, and comment on possibilities for Chandra's next decade in this field.

  19. Grand unification of neutron stars

    Science.gov (United States)

    Kaspi, Victoria M.

    2010-01-01

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical “grand unification” of this wealth of observational phenomena, and comment on possibilities for Chandra’s next decade in this field. PMID:20404205

  20. Grand Unification in Neutron Stars

    CERN Document Server

    Kaspi, Victoria M

    2010-01-01

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to `isolated neutron stars,' from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-ray Observatory, in celebration of its tenth anniversary. Finally, I describe the current status of efforts at physical `grand unification' of this wealth of observational phenomena, and comment on possibilities for Chandra's next decade in this field.

  1. Neutron protein crystallography in JAERI

    Indian Academy of Sciences (India)

    I Tanaka

    2004-07-01

    Neutron diffraction provides an experimental method of directly locating hydrogen atoms in proteins. After developing an original neutron detector (neutron imaging plate) and a novel practical neutron monochromator (elastically bent perfect Si monochromator), BIX-type diffractometers which were equipped with these tools were e±ciently constructed at JRR-3 in Japan Atomic Energy Research Institute (JAERI), Japan and they have finished many protein crystallographic measurements and interesting results have come one after another. At the same time a method of growing large protein single crystals and a database of hydrogen and hydration have also been developed. In the near future, a pulsed neutron diffractometer for biological macromolecules has been proposed at J-PARC in JAERI.

  2. Fast neutron environments.

    Energy Technology Data Exchange (ETDEWEB)

    Buchheit, Thomas Edward; Kotula, Paul Gabriel; Lu, Ping; Brewer, Luke N. (Naval Postgraduate School, Monterey, CA); Goods, Steven Howard (Sandia National Laboratories, Livermore, CA); Foiles, Stephen Martin; Puskar, Joseph David; Hattar, Khalid Mikhiel; Doyle, Barney Lee; Boyce, Brad Lee; Clark, Blythe G.

    2011-10-01

    The goal of this LDRD project is to develop a rapid first-order experimental procedure for the testing of advanced cladding materials that may be considered for generation IV nuclear reactors. In order to investigate this, a technique was developed to expose the coupons of potential materials to high displacement damage at elevated temperatures to simulate the neutron environment expected in Generation IV reactors. This was completed through a high temperature high-energy heavy-ion implantation. The mechanical properties of the ion irradiated region were tested by either micropillar compression or nanoindentation to determine the local properties, as a function of the implantation dose and exposure temperature. In order to directly compare the microstructural evolution and property degradation from the accelerated testing and classical neutron testing, 316L, 409, and 420 stainless steels were tested. In addition, two sets of diffusion couples from 316L and HT9 stainless steels with various refractory metals. This study has shown that if the ion irradiation size scale is taken into consideration when developing and analyzing the mechanical property data, significant insight into the structural properties of the potential cladding materials can be gained in about a week.

  3. Methods for Neutron Spectrometry

    Science.gov (United States)

    Brockhouse, Bertram N.

    1961-01-09

    The appropriate theories and the general philosophy of methods of measurement and treatment of data neutron spectrometry are discussed. Methods of analysis of results for liquids using the Van Hove formulation, and for crystals using the Born-von Karman theory, are reviewed. The most useful of the available methods of measurement are considered to be the crystal spectrometer methods and the pulsed monoenergetic beam/time-of-flight method. Pulsed-beam spectrometers have the advantage of higher counting rates than crystal spectrometers, especially in view of the fact that simultaneous measurements in several counters at different angles of scattering are possible in pulsed-beam spectrometers. The crystal spectrometer permits several valuable new types of specialized experiments to be performed, especially energy distribution measurements at constant momentum transfer. The Chalk River triple-axis crystal-spectrometer is discussed, with reference to its use in making the specialized experiments. The Chalk River rotating crystal (pulsed-beam) spectrometer is described, and a comparison of this type instrument with other pulsed-beam spectrometers is made. A partial outline of the theory of operation of rotating-crystal spectrometers is presented. The use of quartz-crystal filters for fast neutron elimination and for order elimination is discussed. (auth)

  4. The accelerator neutron source for boron neutron capture therapy

    Science.gov (United States)

    Kasatov, D.; Koshkarev, A.; Kuznetsov, A.; Makarov, A.; Ostreinov, Yu; Shchudlo, I.; Sorokin, I.; Sycheva, T.; Taskaev, S.; Zaidi, L.

    2016-11-01

    The accelerator based epithermal neutron source for Boron Neutron Capture Therapy (BNCT) is proposed, created and used in the Budker Institute of Nuclear Physics. In 2014, with the support of the Russian Science Foundation created the BNCT laboratory for the purpose to the end of 2016 get the neutron flux, suitable for BNCT. For getting 3 mA 2.3 MeV proton beam, was created a new type accelerator - tandem accelerator with vacuum isolation. On this moment, we have a stationary proton beam with 2.3 MeV and current 1.75 mA. Generation of neutrons is carried out by dropping proton beam on to lithium target as a result of threshold reaction 7Li(p,n)7Be. Established facility is a unique scientific installation. It provides a generating of neutron flux, including a monochromatic energy neutrons, gamma radiation, alpha-particles and positrons, and may be used by other research groups for carrying out scientific researches. The article describes an accelerator neutron source, presents and discusses the result of experiments and declares future plans.

  5. Neutron-Mirror Neutron Oscillations in a Residual Gas Environment

    Science.gov (United States)

    Varriano, Louis; Kamyshkov, Yuri

    2017-01-01

    A precise measurement of the neutron lifetime is important for calculating the rate at which nucleosynthesis occurred after the Big Bang. The history of neutron lifetime measurements has demonstrated impressive continuous improvement in experimental technique and in accuracy. However, two most precise recent measurements performed by different techniques differ by about 3 standard deviations. This difference of 9.2 seconds can possibly be resolved by future experiments, but it may also be evidence of a mirror matter effect present in these experiments. Both mirror matter, a candidate for dark matter, and ordinary matter can have similar properties and self-interactions but will interact only gravitationally with each other, in accordance with observational evidence of dark matter. Three separate experiments have been performed in the last decade to detect the possibility of neutron-mirror neutron oscillations. This work provides a formalism for understanding the interaction of the residual gas in an experiment with ultra-cold neutrons. This residual gas effect was previously considered negligible but can have a significant impact on the probability of neutron-mirror neutron transition.

  6. AFCI-2.0 Neutron Cross Section Covariance Library

    Energy Technology Data Exchange (ETDEWEB)

    Herman, M.; Herman, M; Oblozinsky, P.; Mattoon, C.M.; Pigni, M.; Hoblit, S.; Mughabghab, S.F.; Sonzogni, A.; Talou, P.; Chadwick, M.B.; Hale, G.M.; Kahler, A.C.; Kawano, T.; Little, R.C.; Yount, P.G.

    2011-03-01

    The cross section covariance library has been under development by BNL-LANL collaborative effort over the last three years. The project builds on two covariance libraries developed earlier, with considerable input from BNL and LANL. In 2006, international effort under WPEC Subgroup 26 produced BOLNA covariance library by putting together data, often preliminary, from various sources for most important materials for nuclear reactor technology. This was followed in 2007 by collaborative effort of four US national laboratories to produce covariances, often of modest quality - hence the name low-fidelity, for virtually complete set of materials included in ENDF/B-VII.0. The present project is focusing on covariances of 4-5 major reaction channels for 110 materials of importance for power reactors. The work started under Global Nuclear Energy Partnership (GNEP) in 2008, which changed to Advanced Fuel Cycle Initiative (AFCI) in 2009. With the 2011 release the name has changed to the Covariance Multigroup Matrix for Advanced Reactor Applications (COMMARA) version 2.0. The primary purpose of the library is to provide covariances for AFCI data adjustment project, which is focusing on the needs of fast advanced burner reactors. Responsibility of BNL was defined as developing covariances for structural materials and fission products, management of the library and coordination of the work; LANL responsibility was defined as covariances for light nuclei and actinides. The COMMARA-2.0 covariance library has been developed by BNL-LANL collaboration for Advanced Fuel Cycle Initiative applications over the period of three years, 2008-2010. It contains covariances for 110 materials relevant to fast reactor R&D. The library is to be used together with the ENDF/B-VII.0 central values of the latest official release of US files of evaluated neutron cross sections. COMMARA-2.0 library contains neutron cross section covariances for 12 light nuclei (coolants and moderators), 78 structural

  7. 基于WIMS格式多群核数据制作过程的优化分析%Optimization analysis of the production process based on WIMS format multigroup nuclear data

    Institute of Scientific and Technical Information of China (English)

    谢明亮; 陈玉清; 于雷; 时浩

    2015-01-01

    Background:NJOY is used widely nuclear data processing program that can convert the data format of ENDF/B nuclear database into WIMS format of the multi-group cross section database.Purpose: This study aims to produce a multi-group database of WIMS-D format on the basis of the latest release of nuclear evaluation library ENDF/B-VII.1 by using nuclear data processing program NJOY-99.Methods: In allusion to basic fuel cell homogenization calculation benchmark problem of the light water reactor (LWR), taking the 235U and 238U nuclide as the main objects of analysis, the effect on processing time of making cross section library, as well as integral parametersΔKef and data sensitivity of selecting input parameters of the NJOY program were compared and analyzed, which optimized the option of input parameter. Results and Conclusion:The results of validating on benchmark problems showed that the production of the multi-group database was correct, which embodied the high accuracy of calculation and provided the basis data of fuel assembly homogenization calculation for pressurized water reactor.%基于最新释放的ENDF/B-VII.1核评价库,采用核数据加工处理程序NJOY-99制作基于WIMS格式的多群数据库,针对轻水堆(Light Water Reactor, LWR)基本燃料栅元均匀化计算基准题,以235U、238U核素为主要分析对象,对比研究了NJOY程序输入模块参数的选择对截面库制作加工时间、积分量ΔKef 及灵敏度的影响,得到优化的输入参数选择方案。基准例题验证结果表明:所制作的多群数据库是正确的,Kef 计算精度较高,可为压水堆燃料组件均匀化计算提供数据基础。

  8. Neutron/muon correlation functions to improve neutron detection capabilities outside nuclear facilities

    Science.gov (United States)

    Ordinario, Donald Thomas

    The natural neutron background rate is largely due to cosmic ray interactions in the atmosphere and the subsequent neutron emission from the interaction products. The neutron background is part of a larger cosmic radiation shower that also includes electrons, gamma rays, and muons. Since neutrons interact much differently than muons in building materials, the muon and neutron fluence rates in the natural background can be compared to the measured muon and neutron fluence rate when shielded by common building materials. The simultaneous measurement of muon and neutron fluence rates might allow for an earlier identification of man-made neutron sources, such as hidden nuclear materials. This study compares natural background neutron rates to computer simulated neutron rates shielded by common structural and building materials. The characteristic differences between neutrons and muons resulted in different attenuation properties under the same shielded conditions. Correlation functions between cosmic ray generated neutrons and muons are then used to predict neutron fluence rates in different urban environments.

  9. Design of multidirectional neutron beams for boron neutron capture synovectomy

    Energy Technology Data Exchange (ETDEWEB)

    Gierga, D.P.; Yanch, J.C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Shefer, R.E. [Newton Scientific, Inc., Cambridge, MA (United States)

    1997-12-01

    Boron neutron capture synovectomy (BNCS) is a potential application of the {sup 10}B(n, a) {sup 7}Li reaction for the treatment of rheumatoid arthritis. The target of therapy is the synovial membrane. Rheumatoid synovium is greatly inflamed and is the source of the discomfort and disability associated with the disease. The BNCS proposes to destroy the synovium by first injecting a boron-labeled compound into the joint space and then irradiating the joint with a neutron beam. This study discusses the design of a multidirectional neutron beam for BNCS.

  10. Neutron scattering instruments for the Spallation Neutron Source (SNS)

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, R.K.; Fornek, T. [Argonne National Lab., IL (United States); Herwig, K.W. [Oak Ridge National Lab., TN (United States)

    1998-07-01

    The Spallation Neutron Source (SNS) is a 1 MW pulsed spallation source for neutron scattering planned for construction at Oak Ridge National Laboratory. This facility is being designed as a 5-laboratory collaboration project. This paper addresses the proposed facility layout, the process for selection and construction of neutron scattering instruments at the SNS, the initial planning done on the basis of a reference set of ten instruments, and the plans for research and development (R and D) to support construction of the first ten instruments and to establish the infrastructure to support later development and construction of additional instruments.

  11. NERO-The Neutron Emission Ratio Observer

    Science.gov (United States)

    Lorusso, Giuseppe; Pereira, Jorque; Hosmer, Paul; Kratz, Karl Ludvig; Montes, Fernando; Reeder, Paul; Santi, Peter; Schatz, Hendrik

    2007-10-01

    The Neutron Emission Ratio Observer (NERO), has been constructed for the use at the National Superconducting Cyclotron Laboratory to work in conjunction with the NSCL Beta Counting System in order to detect β-delayed neutrons. The design of the detector provides high and flat efficiency for a wide range of neutron energies, as well as a low neutron background.

  12. Neutron generator for the array borehole logging

    Institute of Scientific and Technical Information of China (English)

    LuHong-Bo; ZhongZhen-Qian; 等

    1998-01-01

    The performance mechanism of the array neutron generator to be used to porosity logging is presented.The neutron generator utilizes a drive-in target ceramic neutron tube,which cursts nerutron with fast-slow period selectively pressure.Regulation of the neutron tube is accomplished by pulse width modulation.The high voltage power supply is poerated at optimum frequency.

  13. Neutron detector and fabrication method thereof

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Harish B.; Nagarkar, Vivek V.; Ovechkina, Olena E.

    2016-08-16

    A neutron detector and a method for fabricating a neutron detector. The neutron detector includes a photodetector, and a solid-state scintillator operatively coupled to the photodetector. In one aspect, the method for fabricating a neutron detector includes providing a photodetector, and depositing a solid-state scintillator on the photodetector to form a detector structure.

  14. Development and application of neutron transport methods and uncertainty analyses for reactor core calculations. Technical report; Entwicklung und Einsatz von Neutronentransportmethoden und Unsicherheitsanalysen fuer Reaktorkernberechnungen. Technischer Bericht

    Energy Technology Data Exchange (ETDEWEB)

    Zwermann, W.; Aures, A.; Bernnat, W.; and others

    2013-06-15

    This report documents the status of the research and development goals reached within the reactor safety research project RS1503 ''Development and Application of Neutron Transport Methods and Uncertainty Analyses for Reactor Core Calculations'' as of the 1{sup st} quarter of 2013. The superordinate goal of the project is the development, validation, and application of neutron transport methods and uncertainty analyses for reactor core calculations. These calculation methods will mainly be applied to problems related to the core behaviour of light water reactors and innovative reactor concepts. The contributions of this project towards achieving this goal are the further development, validation, and application of deterministic and stochastic calculation programmes and of methods for uncertainty and sensitivity analyses, as well as the assessment of artificial neutral networks, for providing a complete nuclear calculation chain. This comprises processing nuclear basis data, creating multi-group data for diffusion and transport codes, obtaining reference solutions for stationary states with Monte Carlo codes, performing coupled 3D full core analyses in diffusion approximation and with other deterministic and also Monte Carlo transport codes, and implementing uncertainty and sensitivity analyses with the aim of propagating uncertainties through the whole calculation chain from fuel assembly, spectral and depletion calculations to coupled transient analyses. This calculation chain shall be applicable to light water reactors and also to innovative reactor concepts, and therefore has to be extensively validated with the help of benchmarks and critical experiments.

  15. Iodine neutron capture therapy

    Science.gov (United States)

    Ahmed, Kazi Fariduddin

    A new technique, Iodine Neutron Capture Therapy (INCT) is proposed to treat hyperthyroidism in people. Present thyroid therapies, surgical removal and 131I treatment, result in hypothyroidism and, for 131I, involve protracted treatment times and excessive whole-body radiation doses. The new technique involves using a low energy neutron beam to convert a fraction of the natural iodine stored in the thyroid to radioactive 128I, which has a 24-minute half-life and decays by emitting 2.12-MeV beta particles. The beta particles are absorbed in and damage some thyroid tissue cells and consequently reduce the production and release of thyroid hormones to the blood stream. Treatment times and whole-body radiation doses are thus reduced substantially. This dissertation addresses the first of the several steps needed to obtain medical profession acceptance and regulatory approval to implement this therapy. As with other such programs, initial feasibility is established by performing experiments on suitable small mammals. Laboratory rats were used and their thyroids were exposed to the beta particles coming from small encapsulated amounts of 128I. Masses of 89.0 mg reagent-grade elemental iodine crystals have been activated in the ISU AGN-201 reactor to provide 0.033 mBq of 128I. This activity delivers 0.2 Gy to the thyroid gland of 300-g male rats having fresh thyroid tissue masses of ˜20 mg. Larger iodine masses are used to provide greater doses. The activated iodine is encapsulated to form a thin (0.16 cm 2/mg) patch that is then applied directly to the surgically exposed thyroid of an anesthetized rat. Direct neutron irradiation of a rat's thyroid was not possible due to its small size. Direct in-vivo exposure of the thyroid of the rat to the emitted radiation from 128I is allowed to continue for 2.5 hours (6 half-lives). Pre- and post-exposure blood samples are taken to quantify thyroid hormone levels. The serum T4 concentration is measured by radioimmunoassay at

  16. Nuclear Masses and Neutron Stars

    CERN Document Server

    Kreim, Susanne; Lunney, David; Schaffner-Bielich, Jürgen

    2013-01-01

    Precision mass spectrometry of neutron-rich nuclei is of great relevance for astrophysics. Masses of exotic nuclides impose constraints on models for the nuclear interaction and thus affect the description of the equation of state of nuclear matter, which can be extended to describe neutron-star matter. With knowledge of the masses of nuclides near shell closures, one can also derive the neutron-star crustal composition. The Penning-trap mass spectrometer ISOLTRAP at CERN-ISOLDE has recently achieved a breakthrough measuring the mass of 82Zn, which allowed constraining neutron-star crust composition to deeper layers (Wolf et al., PRL 110, 2013). We perform a more detailed study on the sequence of nuclei in the outer crust of neutron stars with input from different nuclear models to illustrate the sensitivity to masses and the robustness of neutron-star models. The dominant role of the N=50 and N=82 closed neutron shells for the crustal composition is confirmed.

  17. Superconductivity, antiferromagnetism, and neutron scattering

    Science.gov (United States)

    Tranquada, John M.; Xu, Guangyong; Zaliznyak, Igor A.

    2014-01-01

    High-temperature superconductivity in both the copper-oxide and the iron-pnictide/chalcogenide systems occurs in close proximity to antiferromagnetically ordered states. Neutron scattering has been an essential technique for characterizing the spin correlations in the antiferromagnetic phases and for demonstrating how the spin fluctuations persist in the superconductors. While the nature of the spin correlations in the superconductors remains controversial, the neutron scattering measurements of magnetic excitations over broad ranges of energy and momentum transfers provide important constraints on the theoretical options. We present an overview of the neutron scattering work on high-temperature superconductors and discuss some of the outstanding issues.

  18. Neutron star structure from QCD

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil); Kurkela, Aleksi [PH-TH, Case C01600, CERN, Theory Division, Geneva (Switzerland); University of Stavanger, Faculty of Science Technology, Stavanger (Norway); Vuorinen, Aleksi [University of Helsinki, Helsinki Institute of Physics and Department of Physics (Finland)

    2016-03-15

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities. (orig.)

  19. Neutron Star Physics and EOS

    Directory of Open Access Journals (Sweden)

    Lattimer James M.

    2016-01-01

    Full Text Available Neutron stars are important because measurement of their masses and radii will determine the dense matter equation of state. They will constrain the nuclear matter symmetry energy, which controls the neutron star matter pressure and the interior composition, and will influence the interpretation of nuclear experiments. Astrophysical observations include pulsar timing, X-ray bursts, quiescent low-mass X-ray binaries, pulse profiles from millisecond pulsars, neutrino observations from gravitational collapse supernovae,and gravitational radiation from compact object mergers. These observations will also constrain the neutron star interior, including the properties of superfluidity there, and determine the existence of a possible QCD phase transition.

  20. Neutron star structure from QCD

    Science.gov (United States)

    Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi

    2016-03-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  1. Neutron star structure from QCD

    CERN Document Server

    Fraga, Eduardo S; Vuorinen, Aleksi

    2016-01-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  2. Neutron Imaging Developments at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Hunter, James F. [Los Alamos National Laboratory; Schirato, Richard C. [Los Alamos National Laboratory; Vogel, Sven C. [Los Alamos National Laboratory; Swift, Alicia L. [Los Alamos National Laboratory; Ickes, Timothy Lee [Los Alamos National Laboratory; Ward, William Carl [Los Alamos National Laboratory; Losko, Adrian Simon [University of California at Berkeley; Tremsin, Anton [University of California at Berkeley; Sevanto, Sanna Annika [Los Alamos National Laboratory; Espy, Michelle A. [Los Alamos National Laboratory; Dickman, Lee Thoresen [Los Alamos National Laboratory; Malone, Michael [Los Alamos National Laboratory

    2015-10-29

    Thermal, epithermal, and high-energy neutrons are available from two spallation sources at the 800 MeV proton accelerator. Improvements in detectors and computing have enabled new capabilities that use the pulsed beam properties at LANSCE; these include amorphous Si (aSi) detectors, intensified charge-coupled device cameras, and micro-channel plates. Applications include water flow in living specimens, inclusions and fission products in uranium oxide, and high-energy neutron imaging using an aSi flat panel with ZnS(Ag) scintillator screen. images of a metal/plastic cylinder from photons, low-energy and high-energy neutrons are compared.

  3. Neutron scattering and hydrogen storage

    Directory of Open Access Journals (Sweden)

    A.J. Ramirez-Cuesta

    2009-11-01

    Full Text Available Hydrogen has been identified as a fuel of choice for providing clean energy for transport and other applications across the world and the development of materials to store hydrogen efficiently and safely is crucial to this endeavour. Hydrogen has the largest scattering interaction with neutrons of all the elements in the periodic table making neutron scattering ideal for studying hydrogen storage materials. Simultaneous characterisation of the structure and dynamics of these materials during hydrogen uptake is straightforward using neutron scattering techniques. These studies will help us to understand the fundamental properties of hydrogen storage in realistic conditions and hence design new hydrogen storage materials.

  4. New Techniques in Neutron Scattering

    DEFF Research Database (Denmark)

    Birk, Jonas Okkels

    Neutron scattering is an important experimental technique in amongst others solid state physics, biophysics, and engineering. This year construction of European Spallation Source (ESS) was commenced in Lund, Sweeden. The facility will use a new long pulsed source principle to obtain higher...... potential performance than any existing facility, however in order to use this pulse structure optimally many existing neutron scattering instruments will need to be redesigned. This defense will concentrate on the design and optimization of the inverse time-of-flight cold neutron spectrometer CAMEA...

  5. Modulating the Neutron Flux from a Mirror Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D D

    2011-09-01

    A 14-MeV neutron source based on a Gas-Dynamic Trap will provide a high flux of 14 MeV neutrons for fusion materials and sub-component testing. In addition to its main goal, the source has potential applications in condensed matter physics and biophysics. In this report, the author considers adding one more capability to the GDT-based neutron source, the modulation of the neutron flux with a desired frequency. The modulation may be an enabling tool for the assessment of the role of non-steady-state effects in fusion devices as well as for high-precision, low-signal basic science experiments favoring the use of the synchronous detection technique. A conclusion is drawn that modulation frequency of up to 1 kHz and modulation amplitude of a few percent is achievable. Limitations on the amplitude of modulations at higher frequencies are discussed.

  6. Research on Prompt Neutron Multiplicity Distribution at Thermal Neutrons

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The prompt neutron multiplicity distribution as a function of mass of fission fragments ν(A) was studied using the semi-empirical method of excitation energy distributions between the two fission

  7. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  8. Neutronic design of the ITER radial neutron camera

    Energy Technology Data Exchange (ETDEWEB)

    Petrizzi, L. [Associazione EURATOM-ENEA sulla Fusione, ENEA Centro Ricerche, C.P. 65, 00044 Frascati, Rome (Italy)], E-mail: petrizzi@frascati.enea.it; Barnsley, R. [EFDA CSU-Garching (Germany); Bertalot, L.; Esposito, B. [Associazione EURATOM-ENEA sulla Fusione, ENEA Centro Ricerche, C.P. 65, 00044 Frascati, Rome (Italy); Haskell, H. [ITER International Team, Garching (Germany); Mainardi, E.; Marocco, D.; Podda, S. [Associazione EURATOM-ENEA sulla Fusione, ENEA Centro Ricerche, C.P. 65, 00044 Frascati, Rome (Italy); Walker, C. [ITER International Team, Garching (Germany); Villari, S. [Associazione EURATOM-ENEA sulla Fusione, ENEA Centro Ricerche, C.P. 65, 00044 Frascati, Rome (Italy)

    2007-10-15

    This paper summarizes the work, performed in the frame of various EFDA contracts during 2004-2005, on the design review and upgrade of the ITER radial neutron camera (RNC). The RNC, which should provide information on the spatial distribution and energy spectrum of the neutron emission, consists of an ex-vessel system (fan-like collimator with 12 x 3 lines of sights) and an in-vessel system with further 9 lines for a full coverage of the plasma. A Monte Carlo code (MCNP) has been used for the neutronic calculations. The basic ITER model has been developed from the CATIA drawings to include the RNC with all details relevant for the neutronic analysis. In the model the collimator diameters have been set to 2 and 4 cm, respectively, for the ex-vessel and in-vessel systems. A detailed space dependent fusion neutron source (DD and DT phases in various plasma scenarios) has been used with a consistent ion temperature radial profile. A special variance reduction treatment has been developed so that neutrons reach the far regions in the high collimated neutron beam and score with a satisfying statistical error. Neutron and photon fluxes and spectra have been calculated. Approximately, one neutron out of 10{sup 11} emitted in all the plasma reaches a single ex-vessel detector. Therefore, for an emission rate of 1.8 x 10{sup 20} n/s (corresponding to 500 MW fusion power) the flux on the detectors is in the range (1-5) x 10{sup 8} n/(cm{sup 2} s) depending on the poloidal orientation. The fraction of scattered neutrons (>1 MeV) is lower than few % of the total. A measurement simulation software tool (MSST) performing asymmetric Abel inversion of simulated measured neutron signals has also been developed for line of sight and design optimization. Combining information from MCNP calculations and MSST, it has been possible to evaluate the performance of the RNC, check whether the present design of the RNC meets the measurement requirements and optimize the RNC design.

  9. Empirical evidence for a four factor framework of personality disorder organization: multigroup confirmatory factor analysis of the Millon Clinical Multiaxial Inventory-III personality disorder scales across Belgian and Danish data samples.

    Science.gov (United States)

    Rossi, Gina; Elklit, Ask; Simonsen, Erik

    2010-02-01

    The factor structure of the Millon Clinical Multiaxial Inventory-III (Millon, Millon, Davis, & Grossman, 2006) personality disorder scales was analyzed using multigroup confirmatory factor analysis on data obtained from a Danish (N = 2030) and a Belgian (N = 1210) sample. Two-, three-, and four factor models, a priori specified using structures found by Dyce, O'Connor, Parkins, and Janzen (1997), were fitted to the data. The best fitting model was a four factor structure (RMSEA = .066, GFI = .98, CFI = .93) with partially invariant factor loadings. The robustness of this four-factor model clearly supports the efforts to organize future personality disorder description in a four-factor framework by corroborating four domains that were predominant in dimensional models (Widiger & Simonsen, 2005): Factor 1, 2, 3, and 4 respectively corresponded to emotional dysregulation versus stability, antagonism versus compliance, extraversion versus introversion, and constraint versus impulsivity.

  10. Damping and Decoherence in Neutron Oscillations

    CERN Document Server

    Kerbikov, B O; Kamyshkov, Y A; Varriano, L J

    2015-01-01

    An analysis is made of the role played by the gas environment in neutron-mirror-neutron and neutron-antineutron oscillations. In the first process the interaction with the ambient medium induces a refraction energy shift which plays the role of an extra magnetic field. In the second process antineutron annihilation in practice might lead to strong decoherence, which should be taken into account in experiments with free neutrons looking for the neutron to antineutron transformation.

  11. The Nuclear Physics of Neutron Stars

    CERN Document Server

    Piekarewicz, J

    2013-01-01

    We explore the unique and fascinating structure of neutron stars. Although neutron stars are of interest in many areas of Physics, our aim is to provide an intellectual bridge between Nuclear Physics and Astrophysics. We argue against the naive perception of a neutron star as a uniform assembly of neutrons packed to enormous densities. Rather, by focusing on the many exotic phases that are speculated to exist in a neutron star, we show how the reality is different and far more interesting.

  12. Neutron Lifetime Measurement Using Magnetically Trapped Ultracold Neutrons

    Science.gov (United States)

    Huffer, Craig; Huffman, P. R.; Schelhammer, K. W.; Dewey, M. S.; Huber, M. G.; Hughes, P. P.; Mumm, H. P.; Thompson, A. K.; Coakley, K.; Yue, A. T.; O'Shaughnessy, C. M.

    2017-01-01

    The neutron beta-decay lifetime is important in both nuclear astrophysics and in understanding weak interactions in the framework of the Standard Model. An experiment based at the NIST Center for Neutron Research was designed to address statistical and systematic limitations of former measurements. In our approach, a beam of 0.89 nm neutrons is incident on a superfluid 4He target within the minimum field region of an Ioffe-type magnetic trap. Some of the neutrons are subsequently downscattered by single phonons in the helium to low energies (< 100 neV) and those in the appropriate spin state become trapped. The inverse process, upscattering of UCN, is suppressed by the low phonon density in the < 300 mK helium, allowing the neutron to travel undisturbed through the helium. When the neutron decays the energetic electron produces a scintillation signal in the helium that is detected in real time using photomultiplier tubes. The current measurement is limited by larger than expected systematic corrections. We will discuss the result of the latest dataset and comment on the potential of future measurements.

  13. Neutron resonance parameters of dysprosium isotopes using neutron capture yields

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. G.; Kye, Y. U.; Cho, M. H. [POSTECH, Pohang (Korea, Republic of); Namkung, W. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Kim, G. N. [Kyungpook National University, Daegu (Korea, Republic of); Lee, M. W.; Kang, Y. R. [Dongnam Inst. Of Radiological and Medical Science, Busan (Korea, Republic of)

    2015-10-15

    Dysprosium is used in the field of nuclear reactor system because it has a very large thermal neutron absorption cross-section. The dysprosium alloyed with special stainless steels is attractive for control in nuclear reactor because of the ability to absorb neutrons readily without swelling or contracting over time and its high melting point. Dysprosium is also one of fission products from the thermal fission of {sup 234}U, {sup 233}U, and {sup 239}Pu. The fission products are accumulated in the reactor core by the burn-up of the nuclear fuel and the poison effect is increased. Therefore, it is required to understand how Dysprosium as both a poison and an absorbing material in the control rod has an effect on the neutron population in a nuclear reactor system over all energy regions. Neutron Capture experiments on Dy isotopes were performed at the electron linear accelerator (LINAC) facility of the Rensselear Polytechnic Institute (RPI) in the neutron energy region from 10 eV to 1 keV. Resonance parameters were extracted by fitting the neutron capture data using the SAMMY multilevel R-matrix Bayesian code.

  14. ^3He neutron spin filters for polarized neutron scattering.

    Science.gov (United States)

    Chen, Wangchun; Borchers, Julie; Chen, Ying; O'Donovan, Kevin; Erwin, Ross; Lynn, Jeffrey; Majkrzak, Charles; McKenney, Sarah; Gentile, Thomas

    2006-03-01

    Polarized neutron scattering (PNS) is a powerful tool that probes the magnetic structures in a wide variety of magnetic materials. Polarized ^3He gas, produced by optical pumping, can be used to polarize or analyze neutron beams because of the strong spin dependence of the neutron absorption cross section for ^3He. Polarized ^3He neutron spin filters (NSF) have been of great interest in PNS community due to recent significant improvement of their performance. Here I will discuss successful applications using ^3He NSFs in polarized neutron reflectometry (PNR) and triple-axis spectrometry (TAS). In PNR, a ^3He NSF in conjunction with a position-sensitive detector allows for efficient polarization analysis of off-specular scattering over a broad range of reciprocal space. In TAS, a ^3He NSF in combination with a double focusing pyrolytic graphite monochromator provides greater versatility and higher intensity compared to a Heusler polarizer. Finally I will present the results from patterned magnetically-coupled thin films in PNR and our first ``proof-of-principle'' experiment in TAS, both of which were performed using ^3He NSF(s) at the NIST Center for Neutron Research.

  15. Applications of Neutron Bubble Dosimeters for Neutron Dose Monitoring in Mixed n-γ Fields

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Bubble dosimeter is a promising technology in the field of neutron dosimetry. It provides real-time monitoring of neutron dose, stable energy response over wide range of neutron energy, and a very low

  16. Gamma/neutron competition above the neutron separation energy in delayed neutron emitters

    Directory of Open Access Journals (Sweden)

    Valencia E.

    2014-03-01

    Full Text Available To study the β-decay properties of some well known delayed neutron emitters an experiment was performed in 2009 at the IGISOL facility (University of Jyväskylä in Finland using Total Absorption γ-ray Spectroscopy (TAGS technique. The aim of these measurements is to obtain the full β-strength distribution below the neutron separation energy (Sn and the γ/neutron competition above. This information is a key parameter in nuclear technology applications as well as in nuclear astrophysics and nuclear structure. Preliminary results of the analysis show a significant γ-branching ratio above Sn.

  17. Superconductivity, antiferromagnetism, and neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, John M., E-mail: jtran@bnl.gov; Xu, Guangyong; Zaliznyak, Igor A.

    2014-01-15

    High-temperature superconductivity in both the copper-oxide and the iron–pnictide/chalcogenide systems occurs in close proximity to antiferromagnetically ordered states. Neutron scattering has been an essential technique for characterizing the spin correlations in the antiferromagnetic phases and for demonstrating how the spin fluctuations persist in the superconductors. While the nature of the spin correlations in the superconductors remains controversial, the neutron scattering measurements of magnetic excitations over broad ranges of energy and momentum transfers provide important constraints on the theoretical options. We present an overview of the neutron scattering work on high-temperature superconductors and discuss some of the outstanding issues. - Highlights: • High-temperature superconductivity is closely associated with antiferromagnetism. • Antiferromagnetic spin fluctuations coexist with the superconductivity. • Neutron scattering is essential for characterising the full spectrum of spin excitations.

  18. Ion chamber based neutron detectors

    Science.gov (United States)

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  19. Proton Fraction in Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    张丰收; 陈列文

    2001-01-01

    The proton fraction in β-stable neutron stars is investigated within the framework of the Skyrme-Hartree-Fock theory using the extended Skyrme effective interaction for the first time. The calculated results show that the proton fraction disappears at high density, which implies that the pure neutron matter may exist in the interior of neutron stars. The incompressibility of the nuclear equation-of-state is shown to be more important to determine the proton fraction. Meanwhile, it is indicated that the addition of muons in neutron stars will change the proton fraction. It is also found that the higher-order terms of the nuclear symmetry energy have obvious effects on the proton fraction and the parabolic law of the nuclear symmetry energy is not enough to determine the proton fraction.

  20. Theory of neutron star magnetospheres

    CERN Document Server

    Curtis Michel, F

    1990-01-01

    An incomparable reference for astrophysicists studying pulsars and other kinds of neutron stars, "Theory of Neutron Star Magnetospheres" sums up two decades of astrophysical research. It provides in one volume the most important findings to date on this topic, essential to astrophysicists faced with a huge and widely scattered literature. F. Curtis Michel, who was among the first theorists to propose a neutron star model for radio pulsars, analyzes competing models of pulsars, radio emission models, winds and jets from pulsars, pulsating X-ray sources, gamma-ray burst sources, and other neutron-star driven phenomena. Although the book places primary emphasis on theoretical essentials, it also provides a considerable introduction to the observational data and its organization. Michel emphasizes the problems and uncertainties that have arisen in the research as well as the considerable progress that has been made to date.

  1. Materials for spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, W.F.; Daemen, L.L. [comps.

    1996-03-01

    The Workshop on Materials for Spallation Neutron Sources at the Los Alamos Neutron Science Center, February 6 to 10, 1995, gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss areas in which work is needed, successful designs and use of materials, and opportunities for further studies. During the first day of the workshop, speakers presented overviews of current spallation neutron sources. During the next 3 days, seven panels allowed speakers to present information on a variety of topics ranging from experimental and theoretical considerations on radiation damage to materials safety issues. An attempt was made to identify specific problems that require attention within the context of spallation neutron sources. This proceedings is a collection of summaries from the overview sessions and the panel presentations.

  2. BPS Skyrmions as neutron stars

    CERN Document Server

    Adam, C; Sanchez-Guillen, J; Vazquez, R; Wereszczynski, A

    2014-01-01

    The BPS Skyrme model has been demonstrated already to provide a physically intriguing and quantitatively reliable description of nuclear matter. Indeed, the model has both the symmetries and the energy-momentum tensor of a perfect fluid, and thus represents a field theoretic realization of the "liquid droplet" model of nuclear matter. In addition, the classical soliton solutions together with some obvious corrections (spin-isospin quantization, Coulomb energy, proton-neutron mass difference) led to an accurate modeling of nuclear binding energies for heavier nuclei. These results lead to the rather obvious proposal to try to describe also neutron stars by the BPS Skyrme model coupled to gravity. We find that the resulting self-gravitating BPS Skyrmions provide an excellent description of neutron stars when the parameter values of the model are extracted from nuclear physics. Specifically, the maximum possible mass of a neutron star before black-hole formation sets in is several solar masses, the precise value...

  3. Radiation shielding for neutron guides

    Science.gov (United States)

    Ersez, T.; Braoudakis, G.; Osborn, J. C.

    2006-11-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions.

  4. Analysis of a HP-refinement method for solving the neutron transport equation using two error estimators

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, D.; Le Tellier, R.; Suteau, C., E-mail: damien.fournier@cea.fr, E-mail: romain.le-tellier@cea.fr, E-mail: christophe.suteau@cea.fr [CEA, DEN, DER/SPRC/LEPh, Cadarache, Saint Paul-lez-Durance (France); Herbin, R., E-mail: raphaele.herbin@cmi.univ-mrs.fr [Laboratoire d' Analyse et de Topologie de Marseille, Centre de Math´ematiques et Informatique (CMI), Universit´e de Provence, Marseille Cedex (France)

    2011-07-01

    The solution of the time-independent neutron transport equation in a deterministic way invariably consists in the successive discretization of the three variables: energy, angle and space. In the SNATCH solver used in this study, the energy and the angle are respectively discretized with a multigroup approach and the discrete ordinate method. A set of spatial coupled transport equations is obtained and solved using the Discontinuous Galerkin Finite Element Method (DGFEM). Within this method, the spatial domain is decomposed into elements and the solution is approximated by a hierarchical polynomial basis in each one. This approach is time and memory consuming when the mesh becomes fine or the basis order high. To improve the computational time and the memory footprint, adaptive algorithms are proposed. These algorithms are based on an error estimation in each cell. If the error is important in a given region, the mesh has to be refined (h−refinement) or the polynomial basis order increased (p−refinement). This paper is related to the choice between the two types of refinement. Two ways to estimate the error are compared on different benchmarks. Analyzing the differences, a hp−refinement method is proposed and tested. (author)

  5. Effects of the neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Alcober, V. (Junta de Energia Nuclear, Madrid (Spain)); Martinez Ruis, F.; Manuzi, M.A. (Dpto. de Traumatologia Centro Ramon y Cajal, Madrid (Spain))

    1984-01-01

    An introduction to the cortical bone neutron irradiation subject and to the effect of the irradiation on the mechanical properties of bone considered as a composite material is presented. Only the special case of the simple flexion has been treated. The evolution of the load-deflection curve as a function of the epithermal neutron dose has been studied. Some hypotheses on the role performed by the organic and mineral phases are introduced.

  6. Neutron metrology in the HFR

    Energy Technology Data Exchange (ETDEWEB)

    Voorbraak, W.P.; Freudenreich, W.E.; Stecher-Rasmussen, F.; Verhagen, H.W.

    1991-10-01

    Neutron fluence rate and gamma dose data are presented for the first series of experiments at the filtered HFR beam HB11 at full reactor power. Measurements were performed on two beagle dogs and one cylindrical phantom. The main results for thermal and epithermal fluence rates, physical neutron dose and gamma dose are presented in the tables 1 and 2. (author). 10 refs.; 9 figs.; 8 tabs.

  7. Neutron metrology in the HFR

    Energy Technology Data Exchange (ETDEWEB)

    Voorbraak, W.P.; Freudenreich, W.E.; Paardekooper, A.; Stecher-Rasmussen, F.; Verhagen, H.W.

    1991-11-01

    Results are presented of the ECN measurements at the filtered HFR beam HB11. The neutron measurements took place in the free beam at full power. Several gamma measurements were performed at full power under different conditions. The neutron spectrum was obtained by adjusting a calculated spectrum with experimental results from activation foils. The gamma data were obtained with thermoluminescent dosimeters. (author). 5 refs.; 4 figs.; 4 tabs.

  8. Neutron transport simulation (selected topics)

    Science.gov (United States)

    Vaz, P.

    2009-10-01

    Neutron transport simulation is usually performed for criticality, power distribution, activation, scattering, dosimetry and shielding problems, among others. During the last fifteen years, innovative technological applications have been proposed (Accelerator Driven Systems, Energy Amplifiers, Spallation Neutron Sources, etc.), involving the utilization of intermediate energies (hundreds of MeV) and high-intensity (tens of mA) proton accelerators impinging in targets of high Z elements. Additionally, the use of protons, neutrons and light ions for medical applications (hadrontherapy) impose requirements on neutron dosimetry-related quantities (such as kerma factors) for biologically relevant materials, in the energy range starting at several tens of MeV. Shielding and activation related problems associated to the operation of high-energy proton accelerators, emerging space-related applications and aircrew dosimetry-related topics are also fields of intense activity requiring as accurate as possible medium- and high-energy neutron (and other hadrons) transport simulation. These applications impose specific requirements on cross-section data for structural materials, targets, actinides and biologically relevant materials. Emerging nuclear energy systems and next generation nuclear reactors also impose requirements on accurate neutron transport calculations and on cross-section data needs for structural materials, coolants and nuclear fuel materials, aiming at improved safety and detailed thermal-hydraulics and radiation damage studies. In this review paper, the state-of-the-art in the computational tools and methodologies available to perform neutron transport simulation is presented. Proton- and neutron-induced cross-section data needs and requirements are discussed. Hot topics are pinpointed, prospective views are provided and future trends identified.

  9. Neutron transport simulation (selected topics)

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, P. [Instituto Tecnologico e Nuclear, Estrada Nacional 10, P-2686-953 Sacavem (Portugal)], E-mail: pedrovaz@itn.pt

    2009-10-15

    Neutron transport simulation is usually performed for criticality, power distribution, activation, scattering, dosimetry and shielding problems, among others. During the last fifteen years, innovative technological applications have been proposed (Accelerator Driven Systems, Energy Amplifiers, Spallation Neutron Sources, etc.), involving the utilization of intermediate energies (hundreds of MeV) and high-intensity (tens of mA) proton accelerators impinging in targets of high Z elements. Additionally, the use of protons, neutrons and light ions for medical applications (hadrontherapy) impose requirements on neutron dosimetry-related quantities (such as kerma factors) for biologically relevant materials, in the energy range starting at several tens of MeV. Shielding and activation related problems associated to the operation of high-energy proton accelerators, emerging space-related applications and aircrew dosimetry-related topics are also fields of intense activity requiring as accurate as possible medium- and high-energy neutron (and other hadrons) transport simulation. These applications impose specific requirements on cross-section data for structural materials, targets, actinides and biologically relevant materials. Emerging nuclear energy systems and next generation nuclear reactors also impose requirements on accurate neutron transport calculations and on cross-section data needs for structural materials, coolants and nuclear fuel materials, aiming at improved safety and detailed thermal-hydraulics and radiation damage studies. In this review paper, the state-of-the-art in the computational tools and methodologies available to perform neutron transport simulation is presented. Proton- and neutron-induced cross-section data needs and requirements are discussed. Hot topics are pinpointed, prospective views are provided and future trends identified.

  10. Systematics in delayed neutron yields

    Energy Technology Data Exchange (ETDEWEB)

    Ohsawa, Takaaki [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.

    1998-03-01

    An attempt was made to reproduce the systematic trend observed in the delayed neutron yields for actinides on the basis of the five-Gaussian representation of the fission yield together with available data sets for delayed neutron emission probability. It was found that systematic decrease in DNY for heavier actinides is mainly due to decrease of fission yields of precursors in the lighter side of the light fragment region. (author)

  11. Interfering with the neutron spin

    Indian Academy of Sciences (India)

    Apoorva G Wagh; Veer Chand Rakhecha

    2004-07-01

    Charge neutrality, a spin $\\dfrac{1}{2}$ and an associated magnetic moment of the neutron make it an ideal probe of quantal spinor evolutions. Polarized neutron interferometry in magnetic field Hamiltonians has thus scored several firsts such as direct verification of Pauli anticommutation, experimental separation of geometric and dynamical phases and observation of non-cyclic amplitudes and phases. This paper provides a flavour of the physics learnt from such experiments.

  12. Neutron Star News and Puzzles

    CERN Document Server

    Prakash, Madappa

    2014-01-01

    Gerry Brown has had the most influence on my career in Physics, and my life after graduate studies. In this article, I give a brief account of some of the many ways in which Gerry shaped my research. Recent and on-going research on neutron stars in which the group built from scratch by Gerry at Stony Brook has made significant strides are reviewed. Selected puzzles about neutron stars that remain to be solved are noted.

  13. Neutron star news and puzzles

    Science.gov (United States)

    Prakash, Madappa

    2014-08-01

    Gerry Brown has had the most influence on my career in Physics, and my life after graduate studies. This article gives a brief account of some of the many ways in which Gerry shaped my research. Focus is placed on the significant strides on neutron star research made by the group at Stony Brook, which Gerry built from scratch. Selected puzzles about neutron stars that remain to be solved are noted.

  14. Advanced Neutron Source (ANS) Project

    Science.gov (United States)

    Campbell, J. H.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  15. Properties of Rotating Neutron Star

    Directory of Open Access Journals (Sweden)

    Shailesh K. Singh

    2015-08-01

    Full Text Available Using the nuclear equation of states for a large variety of relativistic and non-relativistic force parameters, we calculate the static and rotating masses and radii of neutron stars. From these equation of states, we evaluate the properties of rotating neutron stars, such as rotational frequencies, moment of inertia, quadrupole deformation parameter, rotational ellipticity and gravitational wave strain amplitude. The estimated gravitational wave strain amplitude of the star is found to be~sim 10-23.

  16. Outline of spallation neutron source engineering

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Noboru [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2001-01-01

    Slow neutrons such as cold and thermal neutrons are unique probes which can determine structures and dynamics of condensed matter in atomic scale. The neutron scattering technique is indispensable not only for basic sciences such as condensed matter research and life science, but also for basic industrial technology in 21 century. It is believed that to survive in the science-technology competition in 21 century would be almost impossible without neutron scattering. However, the intensity of neutrons presently available is much lower than synchrotron radiation sources, etc. Thus, R and D of intense neutron sources become most important. The High-Intensity Proton Accelerator Project is now being promoted jointly by Japan Atomic Energy Research Institute and High Energy Accelerator Research Organization, but there has so far been no good text which covers all the aspects of pulsed spallation neutron sources. The present review was prepare aiming at giving a better understanding on pulsed spallation neutron sources not only to neutron source researchers but also more widely to neutron scattering researchers and accelerator scientists in this field. The contents involve, starting from what is neutron scattering and what neutrons are necessary for neutron scattering, what is the spallation reaction, how to produce neutrons required for neutron scattering more efficiently, target-moderator-reflector neutronics and its engineering, shielding, target station, material issues, etc. The author have engaged in R and D of pulsed apallation neutron sources and neutron scattering research using them over 30 years. The present review is prepared based on the author's experiences with useful information obtained through ICANS collaboration and recent data from the JSNS (Japanese Spallation Neutron Source) design team. (author)

  17. a Portable Pulsed Neutron Generator

    Science.gov (United States)

    Skoulakis, A.; Androulakis, G. C.; Clark, E. L.; Hassan, S. M.; Lee, P.; Chatzakis, J.; Bakarezos, M.; Dimitriou, V.; Petridis, C.; Papadogiannis, N. A.; Tatarakis, M.

    2014-02-01

    The design and construction of a pulsed plasma focus device to be used as a portable neutron source for material analysis such as explosive detection using gamma spectroscopy is presented. The device is capable of operating at a repetitive rate of a few Hz. When deuterium gas is used, up to 105 neutrons per shot are expected to be produced with a temporal pulse width of a few tens of nanoseconds. The pulsed operation of the device and its portable size are its main advantage in comparison with the existing continuous neutron sources. Parts of the device include the electrical charging unit, the capacitor bank, the spark switch (spark gap), the trigger unit and the vacuum-fuel chamber / anode-cathode. Numerical simulations are used for the simulation of the electrical characteristics of the device including the scaling of the capacitor bank energies with total current, the pinch current, and the scaling of neutron yields with energies and currents. The MCNPX code is used to simulate the moderation of the produced neutrons in a simplified geometry and subsequently, the interaction of thermal neutrons with a test target and the corresponding prompt γ-ray generation.

  18. Neutron spectrum for neutron capture therapy in boron; Espectro de neutrones para terapia por captura de neutrones en boro

    Energy Technology Data Exchange (ETDEWEB)

    Medina C, D.; Soto B, T. G. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Programa de Doctorado en Ciencias Basicas, 98068 Zacatecas, Zac. (Mexico); Baltazar R, A. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Programa de Doctorado en Ingenieria y Tecnologia Aplicada, 98068 Zacatecas, Zac. (Mexico); Vega C, H. R., E-mail: dmedina_c@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2016-10-15

    Glioblastoma multiforme is the most common and aggressive of brain tumors and is difficult to treat by surgery, chemotherapy or conventional radiation therapy. One treatment alternative is the Neutron Capture Therapy in Boron, which requires a beam modulated in neutron energy and a drug with {sup 10}B able to be fixed in the tumor. When the patients head is exposed to the neutron beam, they are captured by the {sup 10}B and produce a nucleus of {sup 7}Li and an alpha particle whose energy is deposited in the cancer cells causing it to be destroyed without damaging the normal tissue. One of the problems associated with this therapy is to have an epithermal neutrons flux of the order of 10{sup 9} n/cm{sup 2}-sec, whereby irradiation channels of a nuclear research reactor are used. In this work using Monte Carlo methods, the neutron spectra obtained in the radial irradiation channel of the TRIGA Mark III reactor are calculated when inserting filters whose position and thickness have been modified. From the arrangements studied, we found that the Fe-Cd-Al-Cd polyethylene filter yielded a ratio between thermal and epithermal neutron fluxes of 0.006 that exceeded the recommended value (<0.05), and the dose due to the capture gamma rays is lower than the dose obtained with the other arrangements studied. (Author)

  19. Forming images with thermal neutrons

    Science.gov (United States)

    Vanier, Peter E.; Forman, Leon

    2003-01-01

    Thermal neutrons passing through air have scattering lengths of about 20 meters. At further distances, the majority of neutrons emanating from a moderated source will scatter multiple times in the air before being detected, and will not retain information about the location of the source, except that their density will fall off somewhat faster than 1/r2. However, there remains a significant fraction of the neutrons that will travel 20 meters or more without scattering and can be used to create an image of the source. A few years ago, a proof-of-principle "camera" was demonstrated that could produce images of a scene containing sources of thermalized neutrons and could locate a source comparable in strength with an improvised nuclear device at ranges over 60 meters. The instrument makes use of a coded aperture with a uniformly redundant array of openings, analogous to those used in x-ray and gamma cameras. The detector is a position-sensitive He-3 proportional chamber, originally used for neutron diffraction. A neutron camera has many features in common with those designed for non-focusable photons, as well as some important differences. Potential applications include detecting nuclear smuggling, locating non-metallic land mines, assaying nuclear waste, and surveying for health physics purposes.

  20. Neutron Imaging Developments at LANSCE

    Science.gov (United States)

    Nelson, Ron; Hunter, James; Schirato, Richard; Vogel, Sven; Swift, Alicia; Ickes, Tim; Ward, Bill; Losko, Adrian; Tremsin, Anton

    2015-10-01

    Neutron imaging is complementary to x-ray imaging because of its sensitivity to light elements and greater penetration of high-Z materials. Energy-resolved neutron imaging can provide contrast enhancements for elements and isotopes due to the variations with energy in scattering cross sections due to nuclear resonances. These cross section differences exist due to compound nuclear resonances that are characteristic of each element and isotope, as well as broader resonances at higher energies. In addition, multi-probe imaging, such as combined photon and neutron imaging, is a powerful tool for discerning properties and features in materials that cannot be observed with a single probe. Recently, we have demonstrated neutron imaging, both radiography and computed tomography, using the moderated (Lujan Center) and high-energy (WNR facility) neutron sources at LANSCE. Flat panel x-ray detectors with suitable scintillator-converter screens provide good sensitivity for both low and high neutron energies. Micro-Channel-Plate detectors and iCCD scintillator camera systems that provide the fast time gating needed for energy-resolved imaging have been demonstrated as well. Examples of recent work will be shown including fluid flow in plants and imaging through dense thick objects. This work is funded by the US Department of Energy, National Nuclear Security Administration, and performed by Los Alamos National Security LLC under Contract DE-AC52-06NA25396.

  1. The Neutron Star Zoo

    Science.gov (United States)

    Harding, Alice K.

    2014-01-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission. XXX Neutron stars are found in a wide variety of sources, displaying an amazing array of behavior. They can be isolated or in binary systems, accreting, heating, cooling, spinning down, spinning up, pulsing, flaring and bursting. The one property that seems to determine their behavior most strongly is their magnetic field strength, structure and evolution. The hot polar caps, bursts and flares of magnetars are likely due to the rapid decay and twisting of their superstrong magnetic fields, whose very existence requires some kind of early dynamo activity. The intermediate-strength magnetic fields of RPPs determines their spin-down behavior and radiation properties. However, the overlap of the magnetar and RPP populations is not understood at present. Why don't high-field RPPs burst or flare? Why don't lower-field magnetars sometimes behave more like RPPs? INS may be old magnetars whose high fields have decayed, but they do not account for the existence of younger RPPs with magnetar-strength fields. Not only the strength of the magnetic field but also its configuration may be important in making a NS a magnetar or a RPP. Magnetic field decay is a critical link between other NS populations as well. "Decay" of the magnetic field is necessary for normal RPPs to evolve into MSPs through accretion and spin up in LMXBs. Some kind of accretion-driven field reduction is the most likely mechanism, but it is controversial since it is not

  2. Neutron measurements in ITER using the Radial Neutron Camera

    Science.gov (United States)

    Marocco, D.; Esposito, B.; Moro, F.

    2012-03-01

    The Radial Neutron Camera (RNC) is one of the key diagnostic systems of the ITER international fusion experiment. It is designed to measure the uncollided 14 MeV and 2.5 MeV neutrons from deuterium-tritium (DT) and deuterium-deuterium (DD) fusion reactions taking place in the ITER plasma through an array of 45 detectors positioned along collimated lines of sight. Scintillators and diamonds coupled to fast digital acquisition electronics are among the detectors presently considered for the RNC. The RNC will provide spatially resolved measurements of several plasma parameters needed for fusion power estimation, plasma control and plasma physics studies. The line-integrated RNC neutron fluxes are used to evaluate the local profile of the neutron emission (neutron emissivity, s-1m-3) and therefore the total neutron yield and the birth profile of the alpha particles. The temperature profile of the bulk ions can be derived from the Doppler broadened widths of the RNC line-integrated spectra, that also provide insight on the supra-thermal ions produced by the injection in the plasma of electromagnetic waves and neutral particles. The RNC emissivity and temperature measurements can be employed to estimate the composition of the ITER fuel, namely the ratio between the tritium and deuterium densities. Data processing techniques involving spatial inversion and spectra unfolding are necessary to deduce the profile quantities from the line-integrated RNC measurements. The expected performances of the RNC as a diagnostic for the neutron emissivity/ion temperature/fuel ratio profile (measurement range, time resolution, accuracy, precision) have been estimated by means of synthetic data simulating actual RNC measurements. The results of the simulations, together with an overall description of the diagnostic and of the measurement techniques, are presented.

  3. PGNAA neutron source moderation setup optimization

    CERN Document Server

    Zhang, Jinzhao

    2013-01-01

    Monte Carlo simulations were carried out to design a prompt {\\gamma}-ray neutron activation analysis (PGNAA) thermal neutron output setup using MCNP5 computer code. In these simulations the moderator materials, reflective materials and structure of the PGNAA 252Cf neutrons of thermal neutron output setup were optimized. Results of the calcuations revealed that the thin layer paraffin and the thick layer of heavy water moderated effect is best for 252Cf neutrons spectrum. The new design compared with the conventional neutron source design, the thermal neutron flux and rate were increased by 3.02 times and 3.27 times. Results indicate that the use of this design should increase the neutron flux of prompt gamma-ray neutron activation analysis significantly.

  4. Compilation of Existing Neutron Screen Technology

    Directory of Open Access Journals (Sweden)

    N. Chrysanthopoulou

    2014-01-01

    Full Text Available The presence of fast neutron spectra in new reactors is expected to induce a strong impact on the contained materials, including structural materials, nuclear fuels, neutron reflecting materials, and tritium breeding materials. Therefore, introduction of these reactors into operation will require extensive testing of their components, which must be performed under neutronic conditions representative of those expected to prevail inside the reactor cores when in operation. Due to limited availability of fast reactors, testing of future reactor materials will mostly take place in water cooled material test reactors (MTRs by tailoring the neutron spectrum via neutron screens. The latter rely on the utilization of materials capable of absorbing neutrons at specific energy. A large but fragmented experience is available on that topic. In this work a comprehensive compilation of the existing neutron screen technology is attempted, focusing on neutron screens developed in order to locally enhance the fast over thermal neutron flux ratio in a reactor core.

  5. A new probe of neutron skin thickness

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-Yan; ZHOU Pei; FANG De-Qing; MA Yu-Gang; CAI Xiang-Zhou; CHEN Jin-Gen; GUO Wei; TIAN Wen-Dong; WANG Hong-Wei; ZHANG Guo-Qiang

    2011-01-01

    The correlation between neutron-to-proton yield ratio (R) and neutron skin thickness (δ) in neutron-rich projectile induced reactions is investigated within the framework of the Isospin-Dependent Quantum Molecular Dynamics (IQMD) model. The density distribution of the Droplet model is embedded in the initialization of the neutron and proton densities in the present IQMD model. By adjusting the diffuseness parameter of neutron density in the Droplet model for the projectile, the relationship between the neutron skin thickness and the corresponding R is obtained. The results show strong linear correlation between R and δ for neutron-rich Ca and Ni isotopes. It is suggested that R may be used as an experimental observable to extract δ for neutron-rich nuclei, which is very interesting in the study of the nuclear structure of exotic nuclei, the equation of state (EOS) of asymmetric nuclear matter and neutron-rich matter in astrophysics, etc.

  6. Neutron Reactions in Astrophysics

    CERN Document Server

    Reifarth, R; Käppeler, F

    2014-01-01

    The quest for the origin of matter in the Universe had been the subject of philosophical and theological debates over the history of mankind, but quantitative answers could be found only by the scientific achievements of the last century. A first important step on this way was the development of spectral analysis by Kirchhoff and Bunsen in the middle of the 19$^{\\rm th}$ century, which provided first insight in the chemical composition of the sun and the stars. The energy source of the stars and the related processes of nucleosynthesis, however, could be revealed only with the discoveries of nuclear physics. A final breakthrough came eventually with the compilation of elemental and isotopic abundances in the solar system, which are reflecting the various nucleosynthetic processes in detail. This review is focusing on the mass region above iron, where the formation of the elements is dominated by neutron capture, mainly in the slow ($s$) and rapid ($r$) processes. Following a brief historic account and a sketc...

  7. Binary Neutron Star Mergers

    Directory of Open Access Journals (Sweden)

    Joshua A. Faber

    2012-07-01

    Full Text Available We review the current status of studies of the coalescence of binary neutron star systems. We begin with a discussion of the formation channels of merging binaries and we discuss the most recent theoretical predictions for merger rates. Next, we turn to the quasi-equilibrium formalisms that are used to study binaries prior to the merger phase and to generate initial data for fully dynamical simulations. The quasi-equilibrium approximation has played a key role in developing our understanding of the physics of binary coalescence and, in particular, of the orbital instability processes that can drive binaries to merger at the end of their lifetimes. We then turn to the numerical techniques used in dynamical simulations, including relativistic formalisms, (magneto-hydrodynamics, gravitational-wave extraction techniques, and nuclear microphysics treatments. This is followed by a summary of the simulations performed across the field to date, including the most recent results from both fully relativistic and microphysically detailed simulations. Finally, we discuss the likely directions for the field as we transition from the first to the second generation of gravitational-wave interferometers and while supercomputers reach the petascale frontier.

  8. Neutrons and Fundamental Symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Plaster, Bradley [Univ. of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy

    2016-01-11

    The research supported by this project addressed fundamental open physics questions via experiments with subatomic particles. In particular, neutrons constitute an especially ideal “laboratory” for fundamental physics tests, as their sensitivities to the four known forces of nature permit a broad range of tests of the so-called “Standard Model”, our current best physics model for the interactions of subatomic particles. Although the Standard Model has been a triumphant success for physics, it does not provide satisfactory answers to some of the most fundamental open questions in physics, such as: are there additional forces of nature beyond the gravitational, electromagnetic, weak nuclear, and strong nuclear forces?, or why does our universe consist of more matter than anti-matter? This project also contributed significantly to the training of the next generation of scientists, of considerable value to the public. Young scientists, ranging from undergraduate students to graduate students to post-doctoral researchers, made significant contributions to the work carried out under this project.

  9. Neutronic effects on tungsten-186 double neutron capture

    Science.gov (United States)

    Garland, Marc Alan

    Rhenium-188, a daughter product of tungsten-188, is an isotope of great interest in therapeutic nuclear medicine, being used in dozens of laboratory and clinical investigations worldwide. Applications include various cancer therapy strategies, treatment of rheumatoid arthritis, prevention of restenosis following coronary artery angioplasty, and palliation of bone pain associated with cancer metastases. With its half-life of 17 hours, 2.12 MeV (maximum) beta-particle emission, chemical similarity to technetium-99m (the most widely used diagnostic radioisotope), and its availability in a convenient tungsten-188/rhenium-188 generator system, rhenium-188 is a superb candidate for a broad range of applications. Production of 188W is typically via double neutron capture by 186W in a high flux nuclear reactor, predominantly the High Flux Isotope Reactor at the Oak Ridge National Laboratory in Tennessee. Experience at HFIR has shown that production yields (measured in Ci of 188W produced per g of 186W target) decrease considerably as target size increases. While the phenomenon of neutron resonance self-shielding would be expected to produce such an effect, temperature effects on neutron flux distribution and neutron capture rates may also be involved. Experimental investigations of these phenomena have not been previously performed. The work presented in this thesis evaluates the factors that contribute to the decrease in 188W yield from both theoretical and experimental standpoints. Neutron self-shielding and temperature effects were characterized to develop a strategy for target design that would optimize production yield, an important factor in minimizing health care costs. It was determined that decrease in yield due to neutron self-shielding can be attributed to depletion of epithermal neutrons at resonant energies, most significantly within the initial 0.4 mm depth of the target. The results from these studies further show that 188W yield in the interior of the

  10. Low-background detection of fission neutrons produced by pulsed neutron interrogation

    Science.gov (United States)

    Ruddy, Frank H.; Flammang, Robert W.; Seidel, John G.

    2009-01-01

    Measurements designed to detect shielded Special Nuclear Materials (SNM) have been carried out using a pulsed 8.5-MeV neutron source. Fission-neutron counts were detected as a function of time in the intervals between 100-μs neutron bursts at burst frequencies of 500, 1000, and 2000 Hz. The pulse timing sequences were chosen to optimize detection of fission neutrons produced by thermal-neutron-induced fission in the SNM. Fission neutrons were detected directly as proton, carbon, and silicon recoils in silicon carbide (SiC) semiconductor fast neutron detectors. SiC detectors recorded neutron counts during and immediately following the source neutron bursts, allowing detection of fission neutrons with short (120 μs) die-away times. The SiC detectors demonstrated excellent background discrimination with more than 2000 neutron counts observed in time intervals where zero background counts were detected.

  11. Precision Neutron Scattering Length Measurements with Neutron Interferometry

    Science.gov (United States)

    Huber, M. G.; Arif, M.; Jacobson, D. L.; Pushin, D. A.; Abutaleb, M. O.; Shahi, C. B.; Wietfeldt, F. E.; Black, T. C.

    2011-10-01

    Since its inception, single-crystal neutron interferometry has often been utilized for precise neutron scattering length, b, measurements. Scattering length data of light nuclei is particularly important in the study of few nucleon interactions as b can be predicted by two + three nucleon interaction (NI) models. As such they provide a critical test of the accuracy 2+3 NI models. Nuclear effective field theories also make use of light nuclei b in parameterizing mean-field behavior. The NIST neutron interferometer and optics facility has measured b to less than 0.8% relative uncertainty in polarized 3He and to less than 0.1% relative uncertainty in H, D, and unpolarized 3He. A neutron interferometer consists of a perfect silicon crystal machined such that there are three separate blades on a common base. Neutrons are Bragg diffracted in the blades to produce two spatially separate (yet coherent) beam paths much like an optical Mach-Zehnder interferometer. A gas sample placed in one of the beam paths of the interferometer causes a phase difference between the two paths which is proportional to b. This talk will focus on the latest scattering length measurement for n-4He which ran at NIST in Fall/Winter 2010 and is currently being analyzed.

  12. Performances of Neutron Scattering Spectrometers on a Compact Neutron Source

    CERN Document Server

    Fabrèges, Xavier; Ott, Frédéric; Chauvin, Nicolas; Schwindling, Jérôme; Letourneau, Alain; Marchix, Anthony

    2016-01-01

    There is currently a big effort put into the operation and construction of world class neutron scattering facilities (SNS and SNS-TS2 in the US, J-PARC in Japan, ESS in Europe, CSS in China, PIK in Russia). On the other hand, there exists a network of smaller neutron scattering facilities which play a key role in creating a large neutron scattering community who is able to efficiently use the existing facilities. With the foreseen closure of the ageing nuclear research reactors, especially in Europe there is a risk of seeing a shrinking of the community who would then be able to use efficiently the world class facilities. There is thus a reflection being conducted in several countries for the replacement of smaller research reactors with low energy accelerator based sources. We consider here a reference design for a compact neutron source based on existing accelerator components. We estimate the performances of various types of neutron scattering instruments built around such a source. The results suggest tha...

  13. Measuring Neutron-Induced Reaction Cross Sections without Neutrons

    Science.gov (United States)

    Bernstein, L. A.; Schiller, A.; Cooper, J. R.; Hoffman, R. D.; McMahan, M. A.; Fallon, P.; Macchiavelli, A. O.; Mitchell, G.; Tavukcu, E.; Guttormsen, M.

    2003-04-01

    Neutron-induced reactions on radioactive nuclei play a significant role in nuclear astrophysics and many other applied nuclear physics topics. However, the majority of these cross sections are impossible to measure due to the high-background of the targets and the low-intensity of neutron beams. We have explored the possibility of using charged-particle transfer reactions to form the same "pre-compound" nucleus as one formed in a neutron-induced reaction in order to measure the relative decay probabilities of the nucleus as a function of energy. Multiplying these decay probabilities by the neutron absorption cross section will then produce the equivalent neutron-induced reaction cross section. In this presentation I will explore the validity of this "surrogate reaction" technique by comparing results from the recent 157Gd(3He,axng)156-xGd experiment using STARS (Silicon Telescope Array for Reaction Studies) at GAMMASPHERE with reaction model calculations for the 155Gd(n,xng)156-xGd. This work was funded by the US Department of Energy under contracts number W-7405-ENG-48 (LLNL), AC03-76SF00098 (LBNL) and the Norwegian Research Council (Oslo).

  14. "m=1" coatings for neutron guides

    DEFF Research Database (Denmark)

    Cooper-Jensen, C.P.; Vorobiev, A.; Klinkby, Esben Bryndt;

    2014-01-01

    A substantial part of the price for a neutron guide is the shielding needed because of the gamma ray produced when neutrons are absorbed. This absorption occurs in the coating and the substrate of the neutron guides. Traditional m=1 coatings have been made of Ni and if reflectivity over the criti......A substantial part of the price for a neutron guide is the shielding needed because of the gamma ray produced when neutrons are absorbed. This absorption occurs in the coating and the substrate of the neutron guides. Traditional m=1 coatings have been made of Ni and if reflectivity over...

  15. Solar Neutrons and the Earth's Radiation Belts.

    Science.gov (United States)

    Lingenfelter, R E; Flamm, E J

    1964-04-17

    The intensity and spectrum of solar neutrons in the vicinity of the earth are calculated on the assumption that the low-energy protons recently detected in balloon and satellite flights are products of solar neutron decay. The solar-neutron flux thus obtained exceeds the global average cosmic-ray neutron leakage above 10 Mev, indicating that it may be an important source of both the inner and outer radiation belts. Neutron measurements in the atmosphere are reviewed and several features of the data are found to be consistent with the estimated solar neutron spectrum.

  16. On an analytical representation of the solution of the one-dimensional transport equation for a multi-group model in planar geometry

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Julio C.L.; Vilhena, Marco T.; Bodmann, Bardo E.J., E-mail: julio.lombaldo@ufrgs.br, E-mail: mtmbvilhena@gmail.com, E-mail: bardo.bodmann@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Matematica Pura e Aplicada; Dulla, Sandra; Ravetto, Piero, E-mail: sandra.dulla@polito.it, E-mail: piero.ravetto@polito.it [Dipartimento di Energia, Politecnico di Torino, Piemonte (Italy)

    2015-07-01

    In this work we generalize the solution of the one-dimensional neutron transport equation to a multi- group approach in planar geometry. The basic idea of this work consists in consider the hierarchical construction of a solution for a generic number G of energy groups, starting from a mono-energetic solution. The hierarchical method follows the reasoning of the decomposition method. More specifically, the additional terms from adding energy groups is incorporated into the recursive scheme as source terms. This procedure leads to an analytical representation for the solution with G energy groups. The recursion depth is related to the accuracy of the solution, that may be evaluated after each recursion step. The authors present a heuristic analysis of stability for the results. Numerical simulations for a specific example with four energy groups and a localized pulsed source. (author)

  17. Neutron spectrometry--historical review and present status

    CERN Document Server

    Brooks, F D

    2002-01-01

    Methods of neutron field spectrometry, other than those depending on the use of pulsed neutron sources, are surveyed. Neutron spectrometers are compared with particular reference to characteristics such as energy resolution, useful energy range, neutron detection efficiency and response functions.

  18. 2013 Review of Neutron and Non-Neutron Nuclear Data

    Energy Technology Data Exchange (ETDEWEB)

    Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-05-23

    The results of a review and evaluation of neutron and non-neutron nuclear data published in the scientific literature over the past three years since the ISRD-14 Symposium has been performed and the highlights are presented. Included in the data review are the status of new chemical elements, new measurements of the isotopic composition for many chemical elements and the resulting change in the atomic weight values. New half-life measurements for both short-lived and longlived nuclides, some alpha decay and double beta decay measurements for quasistable nuclides are discussed. The latest evaluation of atomic masses has been published. Data from new measurements on the very heavy (trans-meitnerium) elements are discussed and tabulated. Data on various recent neutron cross section and resonance integral measurements are discussed and tabulated.

  19. Fission-neutrons source with fast neutron-emission timing

    Energy Technology Data Exchange (ETDEWEB)

    Rusev, G., E-mail: rusev@lanl.gov; Baramsai, B.; Bond, E.M.; Jandel, M.

    2016-05-01

    A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of {sup 252}Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  20. Neutron scattering instrumentation for biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.

  1. Neutron Skins and Halo Orbits

    CERN Document Server

    Bonnard, J; Zuker, A P

    2016-01-01

    The strong dependence of Coulomb energies on nuclear radii makes it possible to extract the latter from calculations of the former. The resulting estimates of neutron skins indicate that two mechanisms are involved. The first one---isovector monopole polarizability---amounts to noting that when a particle is added to a system it drives the radii of neutrons and protons in different directions, tending to equalize the radii of both fluids independently of the neutron excess. This mechanism is well understood and the Duflo-Zuker (small) neutron skin values derived 14 years ago are consistent with recent measures and estimates. The alternative mechanism involves halo orbits whose huge sizes tend to make the neutron skins larger and have a subtle influence on the radial behavior of $sd$ and $pf$ shell nuclei. In particular, they account for the sudden rise in the isotope shifts of nuclei beyond $N=28$ and the near constancy of radii in the $A=40-56$ region. This mechanism, detected here for the first time, is not...

  2. Rapidly rotating neutron star progenitors

    Science.gov (United States)

    Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.

    2016-12-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In this paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE (Binary Star Evolution) population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 yr. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1-1 per cent of the total core collapses, depending on the common envelope efficiency.

  3. Neutron Science Project at JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Japan Atomic Energy Research Institute, JAERI, is proposing the Neutron Science Project which aims at bringing about scientific and technological innovation in the fields of basic science and nuclear technology for the 21st century, using high intense spallation neutron source. The research areas to be promoted by the project are neutron structural biology, material science, nuclear physics and various technology developments for accelerator-driven transmutation of long-lived radionuclides which are associated with nuclear power generation. JAERI has been carrying out a R and D program for the partitioning and transmutation with the intention to solve the problem of nuclear fuel cycle backend. The accelerator-driven transmutation study is also covered with this program. In the present stage of the project, a conceptual design is being prepared for a research complex utilizing spallation neutrons, including a high intensity pulsed and steady spallation neutron source with 1.5 GeV and 8 MW superconducting proton linac. The idea and facility plan of the project is described, including the status of technological development of the accelerator, target and facilities. (author)

  4. Rapidly rotating neutron star progenitors

    Science.gov (United States)

    Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.

    2016-08-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In the present paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 years. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1 - 1% of the total core collapses, depending on the common envelope efficiency.

  5. Intense pulsed neutron source

    Science.gov (United States)

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne's ZING-P and ZING-P' prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and 'in press' articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  6. Neutron scattering from -Ce at epithermal neutron energies

    Indian Academy of Sciences (India)

    A P Murani

    2008-10-01

    Neutron scattering data, using neutrons of incident energies as high as 2 eV, on -Ce and -Ce-like systems such as CeRh2, CeNi2, CeFe24, CeRu2, and many others that point clearly to the substantially localized 4f electronic state in these systems are reviewed. The present interpretation is contrary to the widely held view that the 4f electrons in these systems form a narrow itinerant electron 4f band.

  7. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    Science.gov (United States)

    Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  8. Some results on the neutron transport and the coupling of equations; Quelques resultats sur le transport neutronique et le couplage d`equations

    Energy Technology Data Exchange (ETDEWEB)

    Bal, G. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)

    1997-12-31

    Neutron transport in nuclear reactors is well modeled by the linear Boltzmann transport equation. Its resolution is relatively easy but very expensive. To achieve whole core calculations, one has to consider simpler models, such as diffusion or homogeneous transport equations. However, the solutions may become inaccurate in particular situations (as accidents for instance). That is the reason why we wish to solve the equations on small area accurately and more coarsely on the remaining part of the core. It is than necessary to introduce some links between different discretizations or modelizations. In this note, we give some results on the coupling of different discretizations of all degrees of freedom of the integral-differential neutron transport equation (two degrees for the angular variable, on for the energy component, and two or three degrees for spatial position respectively in 2D (cylindrical symmetry) and 3D). Two chapters are devoted to the coupling of discrete ordinates methods (for angular discretization). The first one is theoretical and shows the well posing of the coupled problem, whereas the second one deals with numerical applications of practical interest (the results have been obtained from the neutron transport code developed at the R and D, which has been modified for introducing the coupling). Next, we present the nodal scheme RTN0, used for the spatial discretization. We show well posing results for the non-coupled and the coupled problems. At the end, we deal with the coupling of energy discretizations for the multigroup equations obtained by homogenization. Some theoretical results of the discretization of the velocity variable (well-posing of problems), which do not deal directly with the purposes of coupling, are presented in the annexes. (author). 34 refs.

  9. Performance of an elliptically tapered neutron guide

    Science.gov (United States)

    Mühlbauer, Sebastian; Stadlbauer, Martin; Böni, Peter; Schanzer, Christan; Stahn, Jochen; Filges, Uwe

    2006-11-01

    Supermirror coated neutron guides are used at all modern neutron sources for transporting neutrons over large distances. In order to reduce the transmission losses due to multiple internal reflection of neutrons, ballistic neutron guides with linear tapering have been proposed and realized. However, these systems suffer from an inhomogeneous illumination of the sample. Moreover, the flux decreases significantly with increasing distance from the exit of the neutron guide. We propose using elliptically tapered guides that provide a more homogeneous phase space at the sample position as well as a focusing at the sample. Moreover, the design of the guide system is simplified because ellipses are simply defined by their long and short axes. In order to prove the concept we have manufactured a doubly focusing guide and investigated its properties with neutrons. The experiments show that the predicted gains using the program package McStas are realized. We discuss several applications of elliptic guides in various fields of neutron physics.

  10. Performance of an elliptically tapered neutron guide

    Energy Technology Data Exchange (ETDEWEB)

    Muehlbauer, Sebastian [Physik-Department E21, Technische Universitaet Muenchen, D-85747 Garching (Germany)]. E-mail: sebastian.muehlbauer@frm2.tum.de; Stadlbauer, Martin [Physik-Department E21, Technische Universitaet Muenchen, D-85747 Garching (Germany); Boeni, Peter [Physik-Department E21, Technische Universitaet Muenchen, D-85747 Garching (Germany); Schanzer, Christan [Labor fuer Neutronenstreuung, Paul Scherrer Institut, CH-5232 Villingen PSI (Switzerland); Stahn, Jochen [Labor fuer Neutronenstreuung, Paul Scherrer Institut, CH-5232 Villingen PSI (Switzerland); Filges, Uwe [Labor fuer Neutronenstreuung, Paul Scherrer Institut, CH-5232 Villingen PSI (Switzerland)

    2006-11-15

    Supermirror coated neutron guides are used at all modern neutron sources for transporting neutrons over large distances. In order to reduce the transmission losses due to multiple internal reflection of neutrons, ballistic neutron guides with linear tapering have been proposed and realized. However, these systems suffer from an inhomogeneous illumination of the sample. Moreover, the flux decreases significantly with increasing distance from the exit of the neutron guide. We propose using elliptically tapered guides that provide a more homogeneous phase space at the sample position as well as a focusing at the sample. Moreover, the design of the guide system is simplified because ellipses are simply defined by their long and short axes. In order to prove the concept we have manufactured a doubly focusing guide and investigated its properties with neutrons. The experiments show that the predicted gains using the program package McStas are realized. We discuss several applications of elliptic guides in various fields of neutron physics.

  11. Neutron spectroscopy with the Spherical Proportional Counter

    CERN Document Server

    Bougamont, E; Derre, J; Galan, J; Gerbier, G; Giomataris, I; Gros, M; Katsioulas, I; Jourde, D; Magnier, P; Navick, X F; Papaevangelou, T; Savvidis, I; Tsiledakis, G

    2015-01-01

    A novel large volume spherical proportional counter, recently developed, is used for neutron measurements. Gas mixtures of $N_{2}$ with $C_{2}H_{6}$ and pure $N_{2}$ are studied for thermal and fast neutron detection, providing a new way for the neutron spectroscopy. The neutrons are detected via the ${}^{14}N(n, p)C^{14}$ and ${}^{14}N(n, \\alpha)B^{11}$ reactions. Here we provide studies of the optimum gas mixture, the gas pressure and the most appropriate high voltage supply on the sensor of the detector in order to achieve the maximum amplification and better resolution. The detector is tested for thermal and fast neutrons detection with a ${}^{252}Cf$ and a ${}^{241}Am-{}^{9}Be$ neutron source. The atmospheric neutrons are successfully measured from thermal up to several MeV, well separated from the cosmic ray background. A comparison of the spherical proportional counter with the current available neutron counters is also given.

  12. Neutron stars are gold mines

    Science.gov (United States)

    Lattimer, James M.

    Neutron stars are not only mines for clues to dense matter physics but may also be the auspicious sources of half of all nuclei heavier than A = 60 in the universe, including the auric isotopes. Although the cold dense matter above the nuclear saturation density cannot be directly explored in the laboratory, gilded constraints on the properties of matter from 1 to 10 times higher density can now be panned from neutron star observations. We show how upcoming observations, such as gravitational wave from mergers, precision timing of pulsars, neutrinos from neutron star birth and X-rays from bursts and thermal emissions, will provide the bullion from which further advances can be smelted.

  13. The detection of neutron clusters

    Energy Technology Data Exchange (ETDEWEB)

    Marques, F.M.; Labiche, M.; Orr, N.A.; Angelique, J.C. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire] [and others

    2001-11-01

    A new approach to the production and detection of bound neutron clusters is presented. The technique is based on the breakup of beams of very neutron-rich nuclei and the subsequent detection of the recoiling proton in a liquid scintillator. The method has been tested in the breakup of {sup 11}Li, {sup 14}Be and {sup 15}B beams by a C target. Some 6 events were observed that exhibit the characteristics of a multi-neutron cluster liberated in the breakup of {sup 14}Be, most probably in the channel {sup 10}Be+{sup 4}n. The various backgrounds that may mimic such a signal are discussed in detail. (author)

  14. Enhanced NIF neutron activation diagnostics.

    Science.gov (United States)

    Yeamans, C B; Bleuel, D L; Bernstein, L A

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  15. Passive neutron-multiplication measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zolnay, A.S.; Barnett, C.S.; Spracklen, H.P.

    1982-10-14

    We have developed an instrument to measure neutron multiplication by statistical analysis of the timing of neutrons emitted from fissionable material. This instrument is capable of repeated analysis of the same recorded data with selected algorithms, graphical displays showing statistical properties of the data, and preservation of raw data on disk for future comparisons. In our measurements we have made a comparison of the covariance to mean and Feynman variance to mean analysis algorithms to show that the covariance avoids a bias term and measures directly the effect due to the presence of neutron chains. A spherical assembly of enriched uranium shells and acrylic resin reflector/moderator components used for the measurements is described. Preliminary experimental results of the Feynman variance to mean measurements show the expected correlation with assembly multiplication.

  16. Neutron Stars in the Laboratory

    CERN Document Server

    Graber, Vanessa; Hogg, Michael

    2016-01-01

    Neutron stars are astrophysical laboratories of many extremes of physics. Their rich phenomenology provides insights into the state and composition of matter at densities which cannot be reached in terrestrial experiments. Since the core of a mature neutron star is expected to be dominated by superfluid and superconducting components, observations also probe the dynamics of large-scale quantum condensates. The testing and understanding of the relevant theory tends to focus on the interface between the astrophysics phenomenology and nuclear physics. The connections with low-temperature experiments tend to be ignored. However, there has been dramatic progress in understanding laboratory condensates (from the different phases of superfluid helium to the entire range of superconductors and cold atom condensates). In this review, we provide an overview of these developments, compare and contrast the mathematical descriptions of laboratory condensates and neutron stars and summarise the current experimental state-o...

  17. Neutron scattering studies in the actinide region

    Energy Technology Data Exchange (ETDEWEB)

    Beghian, L.E.; Kegel, G.H.R.

    1991-08-01

    During the report period we have investigated the following areas: Neutron elastic and inelastic scattering measurements on {sup 14}N, {sup 181}Ta, {sup 232}Th, {sup 238}U and {sup 239}Pu; Prompt fission spectra for {sup 232}Th, {sup 235}U, {sup 238}U and {sup 239}Pu; Theoretical studies of neutron scattering; Neutron filters; New detector systems; and Upgrading of neutron target assembly, data acquisition system, and accelerator/beam-line apparatus.

  18. Improvement of the cold neutron beam line (CN-3) in KUR for neutron optical device development

    Science.gov (United States)

    Kawabata, Yuji; Hino, Masahiro; Tasaki, Seiji; Ebisawa, Toru; Maruyama, Ryuji; Horie, Takashi

    2002-01-01

    The cold neutron beam line CN-3 in Kyoto University Reactor (KUR) is being renewed for dedicating to the development of neutron optical devices. CN-3 has a supermirror guide tube with the cross-section of 20 mm (width)× 90 mm (height), and the wide-band neutron spectrum is available. New beam lines are prepared for both time-of-flight (TOF) and monochromatic experiments including a neutron reflectivity measurement. It has a polarized neutron option with a very low magnetic field to cope with polarized neutron devices. In particular, the TOF mode will be used for developing devices, which are suitable for pulsed neutron sources. Cold neutron radiography is also available within a space of 1 m×0.8 m. A neutron imaging plate system is prepared as the neutron imaging detection.

  19. Experimental search for neutron - mirror neutron oscillations using storage of ultracold neutrons

    CERN Document Server

    Serebrov, A P; Dovator, N A; Dmitriev, S P; Fomin, A K; Geltenbort, P; Kharitonov, A G; Krasnoschekova, I A; Lasakov, M S; Murashkin, A N; Shmelev, G E; Varlamov, V E; Vassiljev, A V; Zherebtsov, O M; Zimmer, O

    2008-01-01

    The idea of a hidden sector of mirror partners of elementary particles has attracted considerable interest as a possible candidate for dark matter. Recently it was pointed out by Berezhiani and Bento that the present experimental data cannot exclude the possibility of a rapid oscillation of the neutron n to a mirror neutron n' with oscillation time much smaller than the neutron lifetime. A search for vacuum transitions n->n' has to be performed at weak magnetic field, where both states are degenerate. We report the result of our experiment, which compares rates of ultracold neutrons after storage at a weak magnetic field well below 20 nT and at a magnetic field strong enough to suppress the seeked transitions. We obtain a new limit for the oscillation time of n-n' transitions, tau_osc (90% C.L.) > 414 s. The corresponding limit for the mixing energy of the normal and mirror neutron states is delta_m (90% C.L.) < 1.5x10-18 eV.

  20. Experimental search for neutron mirror neutron oscillations using storage of ultracold neutrons

    Science.gov (United States)

    Serebrov, A. P.; Aleksandrov, E. B.; Dovator, N. A.; Dmitriev, S. P.; Fomin, A. K.; Geltenbort, P.; Kharitonov, A. G.; Krasnoschekova, I. A.; Lasakov, M. S.; Murashkin, A. N.; Shmelev, G. E.; Varlamov, V. E.; Vassiljev, A. V.; Zherebtsov, O. M.; Zimmer, O.

    2008-05-01

    The idea of a hidden sector of mirror partners of elementary particles has attracted considerable interest as a possible candidate for dark matter. Recently it was pointed out by Berezhiani and Bento that the present experimental data cannot exclude the possibility of a rapid oscillation of the neutron n to a mirror neutron n‧ with oscillation time much smaller than the neutron lifetime. A dedicated search for vacuum transitions n →n‧ has to be performed at weak magnetic field, where both states are degenerate. We report the result of our experiment, which compares rates of ultracold neutrons after storage at a weak magnetic field well below 20 nT and at a magnetic field strong enough to suppress the seeked transitions. We obtain a new limit for the oscillation time of n-n‧ transitions, τosc (90 % C.L.) > 414 s. The corresponding limit for the mixing energy of the normal and mirror neutron states is δm (90 % C.L.) < 1.5 ×10-18 eV.

  1. High-pressure neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongwu [Los Alamos National Laboratory

    2011-01-10

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  2. Neutron star moments of inertia

    Science.gov (United States)

    Ravenhall, D. G.; Pethick, C. J.

    1994-01-01

    An approximation for the moment of inertia of a neutron star in terms of only its mass and radius is presented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The approximation is accurate to approximately 10% for a variety of nuclear equations of state, for all except very low mass stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in terms only of mass and radius) for the fractional moment of inertia of the crust.

  3. Status of ITER neutron diagnostic development

    Science.gov (United States)

    Krasilnikov, A. V.; Sasao, M.; Kaschuck, Yu. A.; Nishitani, T.; Batistoni, P.; Zaveryaev, V. S.; Popovichev, S.; Iguchi, T.; Jarvis, O. N.; Källne, J.; Fiore, C. L.; Roquemore, A. L.; Heidbrink, W. W.; Fisher, R.; Gorini, G.; Prosvirin, D. V.; Tsutskikh, A. Yu.; Donné, A. J. H.; Costley, A. E.; Walker, C. I.

    2005-12-01

    Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be measured well by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors (NFMs), neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The NFMs need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented.

  4. Development of neutron optical components at ILL

    CERN Document Server

    Courtois, P; Humblot, H; Alianelli, L; Pfeiffer, F O

    2002-01-01

    The neutron optics laboratory at ILL carries out an innovative research program in various fields of neutron optics with the aim of developing new and improved tools for neutron instrumentation. An overview of some recent highlights is presented, indicating the breadth of the potential applications. (orig.)

  5. General Design for CARR Neutron Guide System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A neutron guide system has been designed and partly installed at the China Advanced Research Reactor (CARR) to transport cold neutrons from the cold neutron source (CNS) to several instruments,which are situated in a separate guide hall of 30 m×60 m.

  6. The Magnetospheres of (Accreting Neutron Stars

    Directory of Open Access Journals (Sweden)

    Wilms J.

    2014-01-01

    Full Text Available I give an overview of the most important observational tools to study the magnetospheres of accreting neutron stars, with a focus on accreting neutron stars in high mass X-ray binary systems. Topics covered are the different types of accretion onto neutron stars and the structure of the accretion column, and how models for these can be tested with observations.

  7. Neutron Shielding Effectiveness of Multifunctional Composite Materials

    Science.gov (United States)

    2013-03-01

    shielded fast neutrons more effectively than the other materials overall, but the sample with boron shielded ...the materials will shield against fast neutrons . 3.2 Assumptions With the information and specifications originally provided by the manufacturer on...to conduct fast foil activation experiments to determine the relative difference in the amount of neutrons shielded by the materials . This

  8. Optimization of Shielded Scintillator for Neutron Detection

    Science.gov (United States)

    Belancourt, Patrick; Morrison, John; Akli, Kramer; Freeman, Richard; High Energy Density Physics Team

    2011-10-01

    The High Energy Density Physics group is interested in the basic science of creating a neutron and gamma ray source. The neutrons and gamma rays are produced by accelerating ions via a laser into a target and creating fusion neutrons and gamma rays. A scintillator and photomultiplier tube will be used to detect these neutrons. Neutrons and photons produce ionizing radiation in the scintillator which then activates metastable states. These metastable states have both short and long decay rates. The initial photon count is orders of magnitude higher than the neutron count and poses problems for accurately detecting the neutrons due to the long decay state that is activated by the photons. The effects of adding lead shielding on the temporal response and signal level of the neutron detector will be studied in an effort to minimize the photon count without significant reduction to the temporal resolution of the detector. MCNP5 will be used to find the temporal response and energy deposition into the scintillator by adding lead shielding. Results from the simulations will be shown. Optimization of our scintillator neutron detection system is needed to resolve the neutron energies and neutron count of a novel neutron and gamma ray source.

  9. NEUTRON RADIOGRAPHY: A SECOND PROGRESS REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Berger, H

    1962-08-31

    The progress made on investigations of neutron radiography since October 1960 is discussed. The problems of the production of the neutron image will be discussed. The emphasis will be on the characteristics of many of the photographic imaging methods which can be used for neutron radiography. (auth)

  10. Neutron Activation Analysis of Water - A Review

    Science.gov (United States)

    Buchanan, John D.

    1971-01-01

    Recent developments in this field are emphasized. After a brief review of basic principles, topics discussed include sources of neutrons, pre-irradiation physical and chemical treatment of samples, neutron capture and gamma-ray analysis, and selected applications. Applications of neutron activation analysis of water have increased rapidly within the last few years and may be expected to increase in the future.

  11. Beam neutron energy optimization for boron neutron capture therapy using Monte Carlo method

    OpenAIRE

    Ali Pazirandeh; Elham Shekarian

    2006-01-01

     In last two decades the optimal neutron energy for the treatment of deep seated tumors in boron neutron capture therapy in view of neutron physics and chemical compounds of boron carrier has been under thorough study. Although neutron absorption cross section of boron is high (3836b), the treatment of deep seated tumors such as gliobelastoma multiform (GBM) requires beam of neutrons of higher energy that can penetrate deeply into the brain and thermalize in the proximity of the tumor. Dosage...

  12. Plastic neutron detectors.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Tiffany M.S; King, Michael J.; Doty, F. Patrick

    2008-12-01

    This work demonstrated the feasibility and limitations of semiconducting {pi}-conjugated organic polymers for fast neutron detection via n-p elastic scattering. Charge collection in conjugated polymers in the family of substituted poly(p-phenylene vinylene)s (PPV) was evaluated using band-edge laser and proton beam ionization. These semiconducting materials can have high H/C ratio, wide bandgap, high resistivity and high dielectric strength, allowing high field operation with low leakage current and capacitance noise. The materials can also be solution cast, allowing possible low-cost radiation detector fabrication and scale-up. However, improvements in charge collection efficiency are necessary in order to achieve single particle detection with a reasonable sensitivity. The work examined processing variables, additives and environmental effects. Proton beam exposure was used to verify particle sensitivity and radiation hardness to a total exposure of approximately 1 MRAD. Conductivity exhibited sensitivity to temperature and humidity. The effects of molecular ordering were investigated in stretched films, and FTIR was used to quantify the order in films using the Hermans orientation function. The photoconductive response approximately doubled for stretch-aligned films with the stretch direction parallel to the electric field direction, when compared to as-cast films. The response was decreased when the stretch direction was orthogonal to the electric field. Stretch-aligned films also exhibited a significant sensitivity to the polarization of the laser excitation, whereas drop-cast films showed none, indicating improved mobility along the backbone, but poor {pi}-overlap in the orthogonal direction. Drop-cast composites of PPV with substituted fullerenes showed approximately a two order of magnitude increase in photoresponse, nearly independent of nanoparticle concentration. Interestingly, stretch-aligned composite films showed a substantial decrease in

  13. GINA - A Polarized Neutron Reflectometer at the Budapest Neutron Centre

    CERN Document Server

    Bottán, L; Nagy, B; Füzi, J; Sajti, Sz; Deák, L; Petrenko, A V; Endrőczi, G; Major, J

    2011-01-01

    The setup, capabilities and operation parameters of the neutron reflectometer GINA, the recently installed "Grazing Incidence Neutron Apparatus" at the Budapest Neutron Centre, are introduced. GINA, a dance-floor-type, constant-energy, angle-dispersive reflectometer is equipped with a 2D position-sensitive detector to study specular and off-specular scattering. Wavelength options between 3.2 and 5.7 {\\AA} are available for unpolarized and polarized neutrons. Spin polarization and analysis are achieved by magnetized transmission supermirrors and radio-frequency adiabatic spin flippers. As a result of vertical focusing by the five-element (pyrolytic graphite) monochromator the reflected intensity from a 20x20 mm sample has doubled. GINA is dedicated to studies of magnetic films and heterostructures, but unpolarized options for non-magnetic films, membranes and other surfaces are also provided. Shortly after its startup, reflectivity values as low as 3x10-5 have been measured on the instrument. The facility is n...

  14. Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem

    Energy Technology Data Exchange (ETDEWEB)

    William Charlton

    2007-07-01

    Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions.

  15. Neutron transfer reactions with neutron-rich radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Cizewski, J.A. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States)]. E-mail: cizewski@physics.rutgers.edu; Jones, K.L. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Pain, S.D. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Thomas, J.S. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Baktash, C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Bardayan, D.W. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Blackmon, J.C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Gross, C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Liang, J.F. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Shapira, D. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Smith, M.S. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kozub, R.L.; Moazen, B.H.; Nesaraja, C.D. [Department of Physics, Tennessee Technological University, Cookeville, TN 38505 (United States); Carter, H.K. [Oak Ridge Associated Universities, Oak Ridge, TN 37831 (United States); Johnson, M.S. [Oak Ridge Associated Universities, Oak Ridge, TN 37831 (United States); Fitzgerald, R.P.; Visser, D.W. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Greife, U.; Livesay, R.J. [Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States); Catford, W. [Department of Physics, University of Surrey, Guildford, Surrey GU27XH, UK (United Kingdom); Ma, Z. [Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States)

    2005-12-15

    Initial measurements are presented of the (d,p) reactions on neutron-rich N = 50 isotones along the r-process path of nucleosynthesis with radioactive ion beams of {sup 82}Ge and {sup 84}Se. Prospects for measurements with unstable {sup 130,132}Sn beams are discussed.

  16. Does network complexity help organize Babel's library?

    CERN Document Server

    Cárdenas, Juan Pablo; Benito, Rosa María; Losada, Juan Carlos

    2014-01-01

    In this work, we study properties of texts from the perspective of complex network theory. Words in given texts are linked by co-occurrence and transformed into networks, and we observe that these display topological properties common to other complex systems. However, there are some properties that seem to be exclusive to texts; many of these properties depend on the frequency of words in the text, while others seem to be strictly determined by the grammar. Precisely, these properties allow for a categorization of texts as either with a sense and others encoded or senseless.

  17. Neutron capture cross section of Am241

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Kawano, T.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Parker, W. E.; Wu, C. Y.; Becker, J. A.

    2008-09-01

    The neutron capture cross section of Am241 for incident neutrons from 0.02 eV to 320 keV has been measured with the detector for advanced neutron capture experiments (DANCE) at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be 665±33 b. Our result is in good agreement with other recent measurements. Resonance parameters for Enwell with the measured data, and the extracted averaged resonance parameters in the unresolved resonance region are consistent with those for the resolved resonances.

  18. Peculiarities of the modern neutron spectrometry

    Indian Academy of Sciences (India)

    Yu P Popov

    2001-08-01

    Neutron spectrometry provides many branches of science and technology with the necessary data. Usually the main part of the data is supplied by powerful neutron time-of-flight spectrometers. Nevertheless there are many other very effective but simpler and cheaper neutron spectroscopy methods on accelerators, suitable for solution of plenty of scientific and applied problems (for example, in astrophysics and radioactive waste transmutation). The methods of slowing-down spectrometry in lead and graphite, generating of neutron spectra, characteristic for nucleosynthesis in the stars, and neutron spectrometry by means of primary -transition shift are discussed in the report.

  19. Statistical Uncertainty in Quantitative Neutron Radiography

    CERN Document Server

    Piegsa, Florian M

    2016-01-01

    We demonstrate a novel procedure to calibrate neutron detection systems commonly used in standard neutron radiography. This calibration allows determining the uncertainties due to Poisson-like neutron counting statistics for each individual pixel of a radiographic image. The obtained statistical errors are necessary in order to perform correct quantitative analysis. This fast and convenient method is applied to real data measured at the cold neutron radiography facility ICON at the Paul Scherrer Institute. Moreover, from the results the effective neutron flux at the beam line is determined.

  20. Modulation spectrometry of neutrons with diffractometry applications

    CERN Document Server

    Hiismäki, Pekka

    1997-01-01

    Modulation spectrometry of neutrons refers to a measuring principle, characterized by classification of neutron histories in a probabilistic way, not the usual deterministic way. In order to accomplish this, neutron beams entering the sample are modulated by high-transmission, white-beam selectors of the multislit type, such as Fourier or statistical choppers or high-frequency-modulated spin-flippers. In this scheme it is impossible to decide in a unique way through which particular slit any single neutron passed, but the distribution of histories for a large population of neutrons can neverth

  1. KOMPUTASI DISTRIBUSI NEUTRON DALAM STATISTIK MAXWELL BOLTZMANN

    Directory of Open Access Journals (Sweden)

    Tuti Purwoningsih

    2013-03-01

    Full Text Available The migration of neutron is arranged by some probability distributions such as probability of spread distribution, probability of distance distribution, probability of energy distribution and probability of flux distribution. One application of these pattern distributions is modelling the reaction between neutron and elements which compose the tissue related to the absorption of neutron in brain cancer tissues. This article explores computation analysis of pattern of distribution of neutron flux in a reactor system. Variables were the amount of neutron simulated and the depth of cylindrical reactor system. Simulations showed that 20-120 minutes was needed in executing 100,000 neutrons to build the distribution pattern of neutrons flux. This pattern was also depended on the depth of the system. In all depths, the peak of neutron flux distribution pattern was in the 3rd bin. Comparison between this simulations and experiment results in literatures showed that by analyzing the simulation of the distribution of neutron flux, a Poisson distribution which follows the Maxwell-Boltzmann was resulted. Perpindahan neutron diatur dengan beberapa peluang distribusi, seperti peluang distribusi sudut hamburan, peluang distribusi jarak perpindahan, peluang distribusi energi transfer, serta peluang distribusi fluks neutron. Salah satu aplikasi dari pola distribusi ini adalah pemodelan reaksi antara neutron dengan elemen-elemen penyusun jaringan yang terkait dengan serapan neutron dan dosis yang terserap oleh jaringan tumor otak pada terapi BNCT (Boron Neutron Capture Therapy. Dalam penelitian ini dibahas analisis komputasi tentang pola distribusi fluks neutron dalam suatu sistem reaktor. Variabel dalam penelitian ini adalah banyaknya neutron yang disimulasikan, serta kedalaman sistem reaktor yang dalam penelitian ini menggunakan sistem reaktor berbentuk silinder. Hasil simulasi menunjukkan bahwa dengan neutron sebanyak 100.000 diperlukan waktu eksekusi sekitar

  2. Experiment Design and Analysis Guide - Neutronics & Physics

    Energy Technology Data Exchange (ETDEWEB)

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  3. Life and Death of a Free Neutron

    Science.gov (United States)

    Fomin, Nadia

    2016-09-01

    Modern neutron sources provide extraordinary opportunities to study a wide variety of physics topics, including the physical system of the neutron itself. One of the processes under the microscope, neutron beta decay, is an archetype for all semi-leptonic charged-current weak processes. Precise measurements of the correlation parameters in neutron beta decay as well as the neutron lifetime itself are required for tests of the Standard Model and for searches of new physics. The state of the field will be presented and a program of current and future experiments and potential impacts explored.

  4. A Compact High-Energy Neutron Spectrometer

    CERN Document Server

    Brooks, F D; Buffler, A; Dangendorf, V; Herbert, M S; Jones, D T L; Nchodu, M R; Nolte, R; Smit, F D

    2007-01-01

    A compact liquid organic neutron spectrometer (CLONS) based on a single NE213 liquid scintillator (5 cm diam. x 5 cm) is described. The spectrometer is designed to measure neutron fluence spectra over the energy range 2-200 MeV and is suitable for use in neutron fields having any type of time structure. Neutron fluence spectra are obtained from measurements of two-parameter distributions (counts versus pulse height and pulse shape) using the Bayesian unfolding code MAXED. Calibration and test measurements made using a pulsed neutron beam with a continuous energy spectrum are described and the application of the spectrometer to radiation dose measurements is discussed.

  5. Development of pulsed neutron uranium logging instrument

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin-guang, E-mail: wangxg@upc.edu.cn [School of Geosciences, China University of Petroleum, Qingdao 266580 (China); Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education, Nanchang 330013 (China); Liu, Dan [China Institute of Atomic Energy, Beijing 102413 (China); Zhang, Feng [School of Geosciences, China University of Petroleum, Qingdao 266580 (China)

    2015-03-15

    This article introduces a development of pulsed neutron uranium logging instrument. By analyzing the temporal distribution of epithermal neutrons generated from the thermal fission of {sup 235}U, we propose a new method with a uranium-bearing index to calculate the uranium content in the formation. An instrument employing a D-T neutron generator and two epithermal neutron detectors has been developed. The logging response is studied using Monte Carlo simulation and experiments in calibration wells. The simulation and experimental results show that the uranium-bearing index is linearly correlated with the uranium content, and the porosity and thermal neutron lifetime of the formation can be acquired simultaneously.

  6. Neutrons produced by muons at 25 mwe

    Science.gov (United States)

    Dragić, A.; Aničin, I.; Banjanac, R.; Udovičić, V.; Joković, D.; Maletić, D.; Savić, M.; Veselinović, N.; Puzović, J.

    2013-02-01

    The flux of fast neutrons produced by CR muons in lead at the depth of 25 mwe is measured. Lead is a common shielding material and neutrons produced in it in muon interactions are unavoidable background component, even in sensitive deep underground experiments. A low background gamma spectrometer, equipped with high purity Ge detector in coincidence with muon detector is used for this purpose. Neutrons are identified by the structure at 692 KeV in the spectrum of delayed coincidences, caused by the neutron inelastic scattering on Ge-72 isotope. Preliminary result for the fast neutron rate is 3.1(5) × 10--4n/cm2 · s.

  7. Shaping micron-sized cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Frédéric, E-mail: Frederic.Ott@cea.fr [CEA, IRAMIS, Laboratoire Léon Brillouin, Gif-sur-Yvette F-91191 (France); CNRS, IRAMIS, Laboratoire Léon Brillouin, Gif-sur-Yvette F-91191 (France); Kozhevnikov, Sergey [Joint Institute for Nuclear Research, ul. Joliot-Curie 6, Dubna, Moscow oblast 141980 (Russian Federation); Thiaville, André [Laboratoire de Physique des Solides, Univ. Paris—Sud, CNRS UMR 8502, 91405 Orsay (France); Torrejón, Jacob [Unité Mixte de Physique, CNRS/Thales, Campus de l’Ecole Polytechnique, 91767 Palaiseau (France); Vázquez, Manuel [Instituto de Ciencia de Materiales, CSIC, 28049 Madrid (Spain)

    2015-07-11

    In the field of neutron scattering, the need for micro-sized (1–50 µm) thermal or cold neutron beams has recently appeared, typically in the field of neutron imaging to probe samples with a high spatial resolution. We discuss various possibilities of producing such micro-sized neutron beams. The advantages and drawbacks of the different techniques are discussed. We show that reflective optics offers the most flexible way of producing tiny neutron beams together with an enhanced signal to background ratio. The use of such micro beams is illustrated by the study of micrometric diameter magnetic wires.

  8. Jets from Merging Neutron Stars

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    With the recent discovery of gravitational waves from the merger of two black holes, its especially important to understand the electromagnetic signals resulting from mergers of compact objects. New simulations successfully follow a merger of two neutron stars that produces a short burst of energy via a jet consistent with short gamma-ray burst (sGRB) detections.Still from the authors simulation showing the two neutron stars, and their magnetic fields, before merger. [Adapted from Ruiz et al. 2016]Challenging SystemWe have long suspected that sGRBs are produced by the mergers of compact objects, but this model has been difficult to prove. One major hitch is that modeling the process of merger and sGRB launch is very difficult, due to the fact that these extreme systems involve magnetic fields, fluids and full general relativity.Traditionally, simulations are only able to track such mergers over short periods of time. But in a recent study, Milton Ruiz (University of Illinois at Urbana-Champaign and Industrial University of Santander, Colombia) and coauthors Ryan Lang, Vasileios Paschalidis and Stuart Shapiro have modeled a binary neutron star system all the way through the process of inspiral, merger, and the launch of a jet.A Merger TimelineHow does this happen? Lets walk through one of the teams simulations, in which dipole magnetic field lines thread through the interior of each neutron star and extend beyond its surface(like magnetic fields found in pulsars). In this example, the two neutron stars each have a mass of 1.625 solar masses.Simulation start (0 ms)Loss of energy via gravitational waves cause the neutron stars to inspiral.Merger (3.5 ms)The neutron stars are stretched by tidal effects and make contact. Their merger produces a hypermassive neutron star that is supported against collapse by its differential (nonuniform) rotation.Delayed collapse into a black hole (21.5 ms)Once the differential rotation is redistributed by magnetic fields and partially

  9. The neutron reflectometer at `SINQ`

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, D. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    SINQ`s dedicated reflectometer will be a flexible instrument in many respect. A `white beam time of flight` as well as a `constant wavelength` setup are possible for reflectometric experiments in a vertical scattering geometry. The phase controlled double chopper at the beginning of the instrument together with properly chosen time channels at the detector allow for the variation of the temporal resolution. Collimation slits serve to determine the angular resolution. In combination, the resolution can be tailored to the experimental needs. Additionally, one can adjust the illumination of the sample by setting the sample table and the detector to an appropriate distance. A mounting for exchangeable mirrors can be used to supply polarized neutrons by a multilayer polarizer or monochromatic neutrons by a multilayer monochromator. When it is equipped with a supermirror as a deflecting unit one can maintain a horizontal sample position which makes reflectometry on liquid samples practicable. Remanent polarizers are assigned for the changing over of the neutron polarization. A 1 T electromagnet installed on the sample manipulation table and polarization analyzers complete the polarized reflectometry setup. Alternately, an x-y-detector and single detectors will be available. By 1997/1998 the neutron reflectometer will be operational as a users` instrument. (author) 9 figs., 2 tabs., 30 refs.

  10. The masses of neutron stars

    CERN Document Server

    Horvath, J E

    2016-01-01

    We present in this article an overview of the problem of neutron star masses. After a brief appraisal of the methods employed to determine the masses of neutron stars in binary systems, the existing sample of measured masses is presented, with a highlight on some very well-determined cases. We discuss the analysis made to uncover the underlying distribution and a few robust results that stand out from them. The issues related to some particular groups of neutron stars originated from different channels of stellar evolution are shown. Our conclusions are that last century's paradigm that there a single, $1.4 M_{\\odot}$ scale is too simple. A bimodal or even more complex distribution is actually present. It is confirmed that some neutron stars have masses of $\\sim 2 M_{\\odot}$, and, while there is still no firm conclusion on the maximum and minimum values produced in nature, the field has entered a mature stage in which all these and related questions can soon be given an answer.

  11. Spallation neutron experiment at SATURNE

    Energy Technology Data Exchange (ETDEWEB)

    Meigo, Shin-ichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    The double differential cross sections for (p,xn) reactions and the spectra of neutrons produced from the thick target have been measured at SATURNE in SACLAY from 1994 to 1997. The status of the experiment and the preliminary experimental results are presented. (author)

  12. Magnetic fields of neutron stars

    CERN Document Server

    Reisenegger, Andreas

    2013-01-01

    Neutron stars contain the strongest magnetic fields known in the Universe. In this paper, I discuss briefly how these magnetic fields are inferred from observations, as well as the evidence for their time-evolution. I show how these extremely strong fields are actually weak in terms of their effects on the stellar structure, as is also the case for magnetic stars on the upper main sequence and magnetic white dwarfs, which have similar total magnetic fluxes. I propose a scenario in which a stable hydromagnetic equilibrium (containing a poloidal and a toroidal field component) is established soon after the birth of the neutron star, aided by the strong compositional stratification of neutron star matter, and this state is slowly eroded by non-ideal magnetohydrodynamic processes such as beta decays and ambipolar diffusion in the core of the star and Hall drift and breaking of the solid in its crust. Over sufficiently long time scales, the fluid in the neutron star core will behave as if it were barotropic, becau...

  13. Neutron interferometry with cold stage

    Science.gov (United States)

    Mineeva, Taisiya; Arif, M.; Huber, M. G.; Shahi, C. B.; Clark, C. W.; Cory, D. G.; Nsofini, J.; Sarenac, D.; Pushin, D. A.

    Neutron interferometry (NI) is amongst the most precise methods for characterizing neutron interactions by measuring the relative difference between two neutron paths, one of which contains a sample-of-interest. Because neutrons carry magnetic moment and are deeply penetrating, they are excellent probes to investigate properties of magnetic materials. The advantage of NI is its unique sensitivity which allows to directly measure magnetic and structural transitions in materials. Up to now NI has been sparingly used in material research due to its sensitivity to environmental noise. However, recent successes in implementing Quantum Error Correction principles lead to an improved NI design making it robust against mechanical vibrations. Following these advances, a new user facility at the National Institute for Standards and Technology was built to study condensed matter applications, biology and quantum physics. Incorporating cold sample stage inside NI is the first of its kind experiment which can be carried out on large range of temperatures down to 4K. Upon successful realization, it will open new frontiers to characterize magnetic domains, phase transitions and spin properties in a variety of materials such as, for example, iron-based superconductors and spintronic materials. Supported in part by CERC, CIFAR, NSERC and CREATE.

  14. Hadron star models. [neutron stars

    Science.gov (United States)

    Cohen, J. M.; Boerner, G.

    1974-01-01

    The properties of fully relativistic rotating hadron star models are discussed using models based on recently developed equations of state. All of these stable neutron star models are bound with binding energies as high as about 25%. During hadron star formation, much of this energy will be released. The consequences, resulting from the release of this energy, are examined.

  15. Neutrino Processes in Neutron Stars

    Science.gov (United States)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2010-10-01

    The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be

  16. NIST Calibration of a Neutron Spectrometer ROSPEC.

    Science.gov (United States)

    Heimbach, Craig

    2006-01-01

    A neutron spectrometer was acquired for use in the measurement of National Institute of Standards and Technology neutron fields. The spectrometer included options for the measurement of low and high energy neutrons, for a total measurement range from 0.01 eV up to 17 MeV. The spectrometer was evaluated in calibration fields and was used to determine the neutron spectrum of an Americium-Beryllium neutron source. The calibration fields used included bare and moderated (252)Cf, monoenergetic neutron fields of 2.5 MeV and 14 MeV, and a thermal-neutron beam. Using the calibration values determined in this exercise, the spectrometer gives a good approximation of the neutron spectrum, and excellent values for neutron fluence, for all NIST calibration fields. The spectrometer also measured an Americium-Beryllium neutron field in a NIST exposure facility and determined the field quite well. The spectrometer measured scattering effects in neutron spectra which previously could be determined only by calculation or integral measurements.

  17. Spectral unfolding of fast neutron energy distributions

    Science.gov (United States)

    Mosby, Michelle; Jackman, Kevin; Engle, Jonathan

    2015-10-01

    The characterization of the energy distribution of a neutron flux is difficult in experiments with constrained geometry where techniques such as time of flight cannot be used to resolve the distribution. The measurement of neutron fluxes in reactors, which often present similar challenges, has been accomplished using radioactivation foils as an indirect probe. Spectral unfolding codes use statistical methods to adjust MCNP predictions of neutron energy distributions using quantified radioactive residuals produced in these foils. We have applied a modification of this established neutron flux characterization technique to experimentally characterize the neutron flux in the critical assemblies at the Nevada National Security Site (NNSS) and the spallation neutron flux at the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL). Results of the unfolding procedure are presented and compared with a priori MCNP predictions, and the implications for measurements using the neutron fluxes at these facilities are discussed.

  18. The Electromagnetic Spectrum of Neutron Stars

    CERN Document Server

    Baykal, Altan; Inam, Sitki C; Grebenev, Sergei

    2005-01-01

    Neutron stars hold a central place in astrophysics, not only because they are made up of the most extreme states of the condensed matter, but also because they are, along with white dwarfs and black holes, one of the stable configurations that stars reach at the end of stellar evolution. Neutron stars posses the highest rotation rates and strongest magnetic fields among all stars. They radiate prolifically, in high energy electromagnetic radiation and in the radio band. This book is devoted to the selected lectures presented in the 6th NATO-ASI series entitled "The Electromagnetic Spectrum of Neutron Stars" in Marmaris, Turkey, on 7-18 June 2004. This ASI is devoted to the spectral properties of neutron stars. Spectral observations of neutron stars help us to understand the magnetospheric emission processes of isolated radio pulsars and the emission processes of accreting neutron stars. This volume includes spectral information from the neutron stars in broadest sense, namely neutrino and gravitational radiat...

  19. Neutron spectrometer for improved SNM search.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Aigeldinger, Georg

    2007-03-01

    With the exception of large laboratory devices with very low sensitivities, a neutron spectrometer have not been built for fission neutrons such as those emitted by special nuclear materials (SNM). The goal of this work was to use a technique known as Capture Gated Neutron Spectrometry to develop a solid-state device with this functionality. This required modifications to trans-stilbene, a known solid-state scintillator. To provide a neutron capture signal we added lithium to this material. This unique triggering signal allowed identification of neutrons that lose all of their energy in the detector, eliminating uncertainties that arise due to partial energy depositions. We successfully implemented a capture gated neutron spectrometer and were able to distinguish an SNM like fission spectrum from a spectrum stemming from a benign neutron source.

  20. The production and storage of ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiki, Hajime [Kure University, Hiroshima (Japan); Shimizu, Hirohiko; Sakai, Kenji [and others

    1998-01-01

    The electric dipole measurement done on the ultracold neutron till now shows that its quantity is minute, not more than 10{sup -25}e.cm. It is purpose of this particular research program to produce such very slow neutrons, or so-cold ultracold neutrons in great quantity. Then, it was investigated what was the ultracold neutron important for, how is the ultracold neutron made, and how is very pure superfluid liquid helium made. As a result of these investigations, it was found that the validity of ultracold neutron production by superfluid liquid helium was established, that its efficiency is high enough to improve the neutron electric dipole moment detection sensitivity by at least one order of magnitude, and so forth. (G.K.)

  1. MeV Neutron Production from Thermal Neutron Capture in 6Li Simulated With Geant4

    Science.gov (United States)

    Santoro, Valentina; DiJulio, Douglas D.; Bentley, Phillip M.

    2016-09-01

    Various Li compounds are commonly used at neutron facilities as neutron absorbers. These compounds provide one of the highest ratios of neutron attenuation to y- ray production. Unfortunately, the usage of these compounds can also give rise to fast neutron emission with energies up to almost 16 MeV. Historically, some details in this fast neutron production mechanism can be absent from some modeling packages under some optimization scenarios. In this work, we tested Geant4 to assess the performance of this simulation toolkit for the fast neutron generation mechanism. We compare the results of simulations performed with Geant4 to available measurements. The outcome of our study shows that results of the Geant4 simulations are in good agreement with the available measurements for 6 Li fast neutron production, and suitable for neutron instrument background evaluation at spallation neutron sources.

  2. MeV Neutron Production from Thermal Neutron Capture in {6}^Li Simulated with Geant4

    CERN Document Server

    Santoro, Valentina; Bentley, Phillip M

    2015-01-01

    Various Li compounds are commonly used at neutron facilities as neutron absorbers. These compounds provide one of the highest ratios of neutron attenuation to $\\gamma$-ray production. Unfortunately, the usage of these compounds can also give rise to fast neutron emission with energies up to almost 16 MeV. Historically, some details in this fast neutron production mechanism can be absent from some modeling packages under some optimization scenarios. In this work, we tested Geant4 to assess the performance of this simulation toolkit for the fast neutron generation mechanism. We compare the results of simulations performed with Geant4 to available measurements. The outcome of our study shows that results of the Geant4 simulations are in good agreement with the available measurements for $^6$Li fast neutron production, and suitable for neutron instrument background evaluation at spallation neutron sources.

  3. Concentration of the velocity distribution of pulsed neutron beams

    CERN Document Server

    Kitaguchi, Masaaki; Shimizu, Hirohiko M

    2016-01-01

    The velocity of neutrons from a pulsed neutron source is well-defined as a function of their arrival time. Electromagnetic neutron accelerator/decelerator synchronized with the neutron time-of-flight is capable of selectively changing the neutron velocity and concentrating the velocity distribution. Possible enhancement of the neutron intensity at a specific neutron velocity by orders of magnitude is discussed together with an experimental design.

  4. Design aspects of a cold neutron irradiator

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, A.G.; Clark, D.D.; Hossain, T.Z.; Spern, S.A. [Cornell Univ., Ithaca, NY (United States)

    1995-12-31

    Design work on a cold-neutron irradiator (CNI) is being pursued at Cornell University. Prompt gamma neutron activation analysis (PGNAA) by means of cold neutron absorption is the objective of the CNI. Using cold neutrons instead of thermal neutrons to cause neutron capture in the sample, the CNI is a logical extension of the concept of a thermal neutron irradiator. Since the neutron capture cross section for most nuclei varies as 1/v, augmentation of the neutron capture reaction rate is achieved in the sample by a factor of {approximately}2.3. The statistical precision with which one can measure the mass of a particular element in the sample is enhanced in a CNI, in comparison with a thermal neutron irradiator, by a factor of between 2.3 and the square of 2.3. The exact factor by which the statistical precision is enhanced depends on the energy of the PGNAA photopeak at which one is looking and on the extent to which the photon background measured by the photon detector is dominated by either the {sup 252}Cf spontaneous fission photons or by the neutron capture photons from the CNI structural materials. Within the context of the optimization of the elemental sensitivity of the CNI system, the CNI must efficiently deliver cold neutrons from the {sup 252}Cf fast neutron source to the sample and must efficiently deliver the PGNAA gamma rays of the sample to the high-purity germanium (HPGe) photon detector while maintaining reasonable fast neutron and gamma-ray backgrounds at the detector.

  5. 基于Agent的多层次多群体协同工作的建模%Model of Computer-Supported Multi-Level and Multi-Group Cooperative Work Based on Agent

    Institute of Scientific and Technical Information of China (English)

    郑庆华; 李人厚

    2001-01-01

    在分析计算机支持的多层次多群体协同工作(CSMMCW)的需求和特点的基础上,提出了一种CSMMCW的5元组结构模式,以及基于多Agent的CSMMCW协作模型,并就Agent设计与实现中的主要问题,如Agent组成结构、通信机制等作了分析与探讨.所提出的模型在计算机支持的协同工作系统NetCoop以及多媒体远程教育系统MDLS中得到实际应用.%On the basis of the analysis of the features and requirements of computer-supported multilevel and multi-group cooperative work(CSMMCW),a new 5-tuple structural mode and the cooperative framework of CSMMCW based on multi-agent are proposed. Some key issues in the design and implementation of agent, such as the organization architecture and communication mechanism of the agent, are also analyzed and discussed. The model presented here has been applied and verified in the implementation of the computer-supported work system(NetCoop) and multimedia distance learning system.

  6. A Background-Free Direction-Sensitive Neutron Detector2 A Background-Free Direction-Sensitive Neutron Detector

    CERN Document Server

    Roccaro, Alvaro; Ahlen, S; Avery, D; Inglis, A; Battat, J; Dujmic, D; Fisher, P; Henderson, S; Kaboth, A; Kohse, G; Lanza, R; Monroe, J; Sciolla, G; Skvorodnev, N; Wellenstein, H; Yamamoto, R

    2009-01-01

    We show data from a new type of detector that can be used to determine neutron flux, energy distribution, and direction of neutron motion for both fast and thermal neutrons. Many neutron detectors are plagued by large backgrounds from x-rays and gamma rays, and most current neutron detectors lack single-event energy sensitivity or any information on neutron directionality. Even the best detectors are limited by cosmic ray neutron backgrounds. All applications (neutron scattering and radiography, measurements of solar and cosmic ray neutron flux, measurements of neutron interaction cross sections, monitoring of neutrons at nuclear facilities, oil exploration, and searches for fissile weapons of mass destruction) will benefit from the improved neutron detection sensitivity and improved measurements of neutron properties made possible by this detector. The detector is free of backgrounds from x-rays, gamma rays, beta particles, relativistic singely charged particles and cosmic ray neutrons. It is sensitive to th...

  7. Optimization of the geometry and composition of a neutron system for treatment by Boron Neutron Capture Therapy

    OpenAIRE

    2015-01-01

    Background: In the field of the treatment by Boron Neutron Capture Therapy (BNCT), an optimized neutron system was proposed. This study (simulation) was conducted to optimize the geometry and composition of neutron system and increase the epithermal neutron flux for the treatment of deep tumors is performed. Materials and Methods: A neutron system for BNCT was proposed. The system included 252Cf neutron source, neutron moderator/reflector arrangement, filter and concrete. To capture fast ...

  8. 2010 Neutron Review: ORNL Neutron Sciences Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Bardoel, Agatha A [ORNL; Counce, Deborah M [ORNL; Ekkebus, Allen E [ORNL; Horak, Charlie M [ORNL; Nagler, Stephen E [ORNL; Kszos, Lynn A [ORNL

    2011-06-01

    During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown over the last year, so has promising neutron scattering research. This was an exciting year in science, technology, and operations. Some topics discussed are: (1) HFIR and SNS Experiments Take Gordon Battelle Awards for Scientific Discovery - Battelle Memorial Institute presented the inaugural Gordon Battelle Prizes for scientific discovery and technology impact in 2010. Battelle awards the prizes to recognize the most significant advancements at national laboratories that it manages or co-manages. (2) Discovery of Element 117 - As part of an international team of scientists from Russia and the United States, HFIR staff played a pivotal role in the discovery by generating the berkelium used to produce the new element. A total of six atoms of ''ununseptium'' were detected in a two-year campaign employing HFIR and the Radiochemical Engineering Development Center at Oak Ridge National Laboratory (ORNL) and the heavy-ion accelerator capabilities at the Joint Institute for Nuclear Research in Dubna, Russia. The discovery of the new element expands the understanding of the properties of nuclei at extreme numbers of protons and neutrons. The production of a new element and observation of 11 new heaviest isotopes demonstrate the increased stability of super-heavy elements with increasing neutron numbers and provide the strongest evidence to date for the existence of an island of enhanced stability for super-heavy elements. (3) Studies of Iron-Based High-Temperature Superconductors - ORNL applied its distinctive capabilities in neutron scattering, chemistry, physics, and computation to detailed studies of the magnetic excitations of iron-based superconductors (iron

  9. The world’s first pelletized cold neutron moderator at a neutron scattering facility

    Energy Technology Data Exchange (ETDEWEB)

    Ananiev, V.; Belyakov, A.; Bulavin, M.; Kulagin, E.; Kulikov, S.; Mukhin, K.; Petukhova, T.; Sirotin, A.; Shabalin, D.; Shabalin, E.; Shirokov, V.; Verhoglyadov, A., E-mail: verhoglyadov_al@mail.ru

    2014-02-01

    In July 10, 2012 cold neutrons were generated for the first time with the unique pelletized cold neutron moderator CM-202 at the IBR-2M reactor. This new moderator system uses small spherical beads of a solid mixture of aromatic hydrocarbons (benzene derivatives) as the moderating material. Aromatic hydrocarbons are known as the most radiation-resistant hydrogenous substances and have properties to moderate slow neutrons effectively. Since the new moderator was put into routine operation in September 2013, the IBR-2 research reactor of the Frank Laboratory of Neutron Physics has consolidated its position among the world’s leading pulsed neutron sources for investigation of matter with neutron scattering methods.

  10. 2010 Review of neutron and non-neutron nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Holden, N.E. [National Nuclear Data Center, Brookhaven National Lab., Upton, NY 11973-5000 (United States)

    2011-07-01

    The results of a review and evaluation of neutron and non-neutron nuclear data published in the scientific literature over the past three years are presented. The status of new chemical elements is examined. Ten elements have had their atomic weight and uncertainty replaced by interval values of upper and lower bounds. Data on revised values for the isotopic composition of the elements are reviewed and new recommended values are presented for germanium. Radioactive half-lives are reviewed and latest values presented which include measurements on nuclides of interest and very long-lived nuclides such as double beta decay, double electron capture, long-lived alpha decay, and long-lived beta decay. The latest information and the status on the evaluation of atomic masses are discussed. Data from new measurements on the very heavy elements (trans-meitnerium elements) are discussed and tabulated. Data on various recent neutron cross-section and resonance integral measurements are also discussed and the latest measurements are tabulated in both cases. The JENDL-4.0 and ENDF/B-VII.1 nuclear data libraries are discussed. A new initiative on the existence and importance of isotopes is presented. (authors)

  11. Neutron and Alpha Structure in Neutron Deficient Nuclei in Astrophysics

    Institute of Scientific and Technical Information of China (English)

    S. Kubono; T. Hashimoto; Y. Wakabayashi; N. Iwasa; S. Kato; T. Komatsubara; D. N. Binh; L. H. Khiem; N. N. Duy; T. Kawabata; C. Spitaleri; 何建军; G. G. Rapisarda; M. La Cognata; L. Lamia; R. G. Pizzone; S. Romano; A. Coc; N. de Sereville; F. Hammache; G. Kiss; S. Bishop; H. Yamaguchi; D. M. Kahl; S. Hayakawa; T. Teranishi; S. Cheribini; M. Gulino; Y. K. Kwon

    2016-01-01

    The paper includes discussions on the important role of neutron and alpha configurations in proton-rich nuclei in nuclear astrophysics in terms of nucleosynthesis under extremely high-temperature hydrogenburning conditions. The νp-process, which is supposed to take place at the very early epoch of type II supernovae, has considerable neutrons and alphas together with protons. The alpha-induced reactions on proton-rich unstable nuclei in the light mass regions is expected to play a crucial role, but very few of them were investigated well yet because of the experimental difficulties. Specifically, I report our recent experimental effort for the breakout process from the pp-chain region, 7Be(α,γ)11C(α,p)14N under the νp-process. The neutron-induced reactions on proton-rich nuclei, which is even more a challenging subject, were investigated previously for very few nuclei. One possible experimental method is the Trojan Horse Method (THM). We successfully have applied THM to the 18F(n,α)14N reaction study with an unstable beam of 18F.

  12. SENSMG: First-Order Sensitivities of Neutron Reaction Rates, Reaction-Rate Ratios, Leakage, keff, and α Using PARTISN

    Energy Technology Data Exchange (ETDEWEB)

    Favorite, Jeffrey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-21

    SENSMG is a tool for computing first-order sensitivities of neutron reaction rates, reaction-rate ratios, leakage, keff, and α using the PARTISN multigroup discrete-ordinates code. SENSMG computes sensitivities to all of the transport cross sections and data (total, fission, nu, chi, and all scattering moments), two edit cross sections (absorption and capture), and the density for every isotope and energy group. It also computes sensitivities to the mass density for every material and derivatives with respect to all interface locations. The tool can be used for one-dimensional spherical (r) and two-dimensional cylindrical (r-z) geometries. The tool can be used for fixed-source and eigenvalue problems. The tool implements Generalized Perturbation Theory (GPT) as discussed by Williams and Stacey. Section II of this report describes the theory behind adjoint-based sensitivities, gives the equations that SENSMG solves, and defines the sensitivities that are output. Section III describes the user interface, including the input file and command line options. Section IV describes the output. Section V gives some notes about the coding that may be of interest. Section VI discusses verification, which is ongoing. Section VII lists needs and ideas for future work. Appendix A lists all of the input files whose results are presented in Sec. VI.

  13. German neutron scattering conference. Programme and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas (ed.)

    2012-07-01

    The German Neutron Scattering Conference 2012 - Deutsche Neutronenstreutagung DN 2012 offers a forum for the presentation and critical discussion of recent results obtained with neutron scattering and complementary techniques. The meeting is organized on behalf of the German Committee for Research with Neutrons - Komitee Forschung mit Neutronen KFN - by the Juelich Centre for Neutron Science JCNS of Forschungszentrum Juelich GmbH. In between the large European and international neutron scattering conferences ECNS (2011 in Prague) and ICNS (2013 in Edinburgh), it offers the vibrant German and international neutron community an opportunity to debate topical issues in a stimulating atmosphere. Originating from ''BMBF Verbundtreffen'' - meetings for projects funded by the German Federal Ministry of Education and Research - this conference series has a strong tradition of providing a forum for the discussion of collaborative research projects and future developments in the field of research with neutrons in general. Neutron scattering, by its very nature, is used as a powerful probe in many different disciplines and areas, from particle and condensed matter physics through to chemistry, biology, materials sciences, engineering sciences, right up to geology and cultural heritage; the German Neutron Scattering Conference thus provides a unique chance for exploring interdisciplinary research opportunities. It also serves as a showcase for recent method and instrument developments and to inform users of new advances at neutron facilities.

  14. Cyclotron-based neutron source for BNCT

    Science.gov (United States)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-01

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation & treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8×109 neutrons/cm2/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with 10B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  15. Cyclotron-based neutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  16. Dosimetry methods in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Artuso, E.; Felisi, M.; Regazzoni, V.; Giove, D. [Universita degli Studi di Milano, Department of Physics, Via Festa del Patrono 7, 20122 Milano (Italy); Agosteo, S.; Barcaglioni, L. [Istituto Nazionale di Fisica Nucleare, Milano (Italy); Campi, F.; Garlati, L. [Politecnico di Milano, Energy Department, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); De Errico, F. [Universita degli Studi di Pisa, Department of Civil and Industrial Engineering, Lungamo Pacinotti 43, 56126 Pisa (Italy); Borroni, M.; Carrara, M. [Fondazione IRCCS Istituto Nazionale Tumori, Medical Physics Unit, Via Venezian 1, 20133 Milano (Italy); Burian, J.; Klupak, V.; Viererbl, L.; Marek, M. [Research Centre Rez, Department of Neutron Physics, 250-68 Husinec-Rez (Czech Republic)

    2014-08-15

    Dosimetry studies have been carried out at thermal and epithermal columns of Lvr-15 research reactor for investigating the spatial distribution of gamma dose, fast neutron dose and thermal neutron fluence. Two different dosimetry methods, both based on solid state detectors, have been studied and applied and the accuracy and consistency of the results have been inspected. One method is based on Fricke gel dosimeters that are dilute water solutions and have good tissue equivalence for neutrons and also for all the secondary radiations produced by neutron interactions in tissue or water phantoms. Fricke gel dosimeters give the possibility of separating the various dose contributions, i.e. the gamma dose, the fast neutron dose and the dose due to charged particles generated during thermal neutron reactions by isotopes having high cross section, like 10-B. From this last dose, thermal neutron fluence can be obtained by means of the kerma factor. The second method is based on thermoluminescence dosimeters. In particular, the developed method draw advantage from the different heights of the peaks of the glow curve of such phosphors when irradiated with photons or with thermal neutrons. The results show that satisfactory results can be obtained with simple methods, in spite of the complexity of the subject. However, the more suitable dosimeters and principally their utilization and analysis modalities are different for the various neutron beams, mainly depending on the relative intensities of the three components of the neutron field, in particular are different for thermal and epithermal columns. (Author)

  17. Capture-Gated Fast Neutron Spectroscopy

    Science.gov (United States)

    Mumm, H. P.; Abdurashitov, J. N.; Beise, E. J.; Breuer, H.; Gavrin, V. N.; Heimbach, C. R.; Langford, T. J.; Mendenhall, M.; Nico, J. S.; Shikhin, A. A.

    2015-10-01

    We present recent developments in fast neutron detection using segmented spectrometers based on the principle of capture-gating. Our approach employs an organic scintillator to detect fast neutrons through their recoil interaction with protons in the scintillator. The neutrons that thermalize and are captured produce a signal indicating that the event was due to a neutron recoil and that the full energy of the neutron was deposited. The delayed neutron capture also serves to discriminate against uncorrelated background events. The segmentation permits reconstruction of the initial neutron energy despite the nonlinear response of the scintillator. We have constructed spectrometers using both He-3 proportional counters and Li-6 doping as capture agents in plastic and liquid organic scintillators. We discuss the operation of the spectrometers for the measurement of low levels of fast neutrons for several applications, including the detection of very low-activity neutron sources and the characterization of the flux and spectrum of fast neutrons at the Earth's surface and in the underground environment.

  18. Synthesize Neutron-Drip-Line-Nuclides with Free-Neutron Bose-Einstein Condensates Experimentally

    CERN Document Server

    Dong, Bao-Guo

    2014-01-01

    We first show a possible way to create a new type of matter, free-neutron Bose-Einstein condensate by the ultracold free-neutron-pair Bose-Einstein condensation and then determine the neutron drip line experimentally. The Bose-Einstein condensation of bosonic and fermionic atoms in atomic gases was performed experimentally and predicted theoretically early. Neutrons are similar to fermionic atoms. We found free neutrons could be cooled to ultracold neutrons with very low energy by other colder neutral atoms which are cooled by the laser. These neutrons form neutron pairs with spin zero, and then ultracold neutron-pairs form Bose-Einstein condensate. Our results demonstrate how these condensates can react with accelerated ion beams at different energy to synthesize very neutron-rich nuclides near, on or/and beyond the neutron drip line, to determine the neutron drip line and whether there are long-life nuclide or isomer islands beyond the neutron drip line experimentally. Otherwise, these experimental results ...

  19. A neutron activation spectrometer and neutronic experimental platform for the National Ignition Facility (invited)

    Science.gov (United States)

    Yeamans, C. B.; Gharibyan, N.

    2016-11-01

    At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 1015 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.

  20. Neutron drops radii probed by the neutron skin thickness of nuclei

    CERN Document Server

    Zhao, P W

    2016-01-01

    Multi-neutron systems are crucial to understand the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both non-relativistic and relativistic density functional theories and with ab initio calculations. We demonstrate a strong linear correlation, which is universal in the realm of mean-field models, between the root-mean-square (rms) radii of neutron drops and the neutron skin thickness of Pb-208 and Ca-48; i.e., the difference between the neutron and proton rms radii of a nucleus. Due to its high quality, this correlation can be used to deduce the radii of neutron drops from the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three neutron forces. This correlation, together with high- precision measurements of the neutron skin thicknesses of Pb-208 and Ca-48, will have an enduring impact on the understanding of multi-neutro...

  1. A fundamental study on hyper-thermal neutrons for neutron capture therapy.

    Science.gov (United States)

    Sakurai, Y; Kobayashi, T; Kanda, K

    1994-12-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum with a Maxwellian distribution at a higher temperature than room temperature (300 K), was studied in order to improve the thermal neutron flux distribution at depth in a living body for neutron capture therapy. Simulation calculations were carried out using a Monte Carlo code 'MCNP-V3' in order to investigate the characteristics of hyper-thermal neutrons, i.e. (i) depth dependence of the neutron energy spectrum, and (ii) depth distribution of the reaction rate in a water phantom for materials with 1/v neutron absorption. It is confirmed that hyper-thermal neutron irradiation can improve the thermal neutron flux distribution in the deeper areas in a living body compared with thermal neutron irradiation. When hyper-thermal neutrons with a 3000 K Maxwellian distribution are incident on a body, the reaction rates of 1/v materials such as 14N, 10B etc are about twice that observed for incident thermal neutrons at 300 K, at a depth of 5 cm. The limit of the treatable depth for tumours having 30 ppm 10B is expected to be about 1.5 cm greater by utilizing hyper-thermal neutrons at 3000 K compared with the incidence of thermal neutrons at 300 K.

  2. Neutron Time of Flight Spectrometer for Velocity Selector Calibration

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Small angle neutron spectrometer on China Advanced Research Reactor (CARR) is located at neutron guide hall and is installed on the end of cold neutron guide. Velocity selector which can purify white light neutron beam into monochromatic neutron beam with wavelength

  3. Accelerator Based Neutron Beams for Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  4. The new neutron reflectometer NERO

    Science.gov (United States)

    Solina, D.; Lott, D.; Tietze, U.; Frank, O.; Leiner, V.; Schreyer, A.

    2006-11-01

    The year 2005 saw the opening of the new NEutron ReflectOmeter (NERO) at the GKSS research centre in Geesthacht, Germany for the investigation of magnetic and non-magnetic systems as well as soft matter nano-structures. NERO operates with a monochromatic beam of neutrons of wavelength 0.433 nm with a resolution better than 2%. An angular range of -20°NERO has both a position-sensitive detector and a pencil detector installed for flexibility when making specular and diffuse measurements. NERO has been designed to accommodate heavy-sample environments such as cryo-furnaces and various kinds of magnets. Polarization analysis is available for the investigation of magnetic nano-structures. A supermirror stack with a wide angular-acceptance range will be available in 2006 for time-efficient measurements of magnetic diffuse reflectivity. Further information and proposal forms can be obtained online at http//:genf.gkss.de.

  5. Specular neutron reflectivity and beyond

    Indian Academy of Sciences (India)

    Saibal Basu

    2008-10-01

    A polarized neutron reflectometer for vertical samples is available at Dhruva reactor guide hall, Trombay. The reflectometer has been designed for horizontal scattering vector. It uses a position-sensitive detector for obtaining the reflectivity pattern. This arrangement allows one to obtain diffuse or off-specular intensity around any specular peak at one go. We have used this instrument for studying the structure of various metal-metal and metal-semiconductor multilayers by specular reflectometry. We have also been successful in understanding interface morphology of several films through diffuse neutron reflectometry (DNR) on this reflectometer. Some of the recent results are presented in this paper to demonstrate the strength of these two techniques.

  6. Workshop on neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Bond, V.P. (eds.)

    1986-01-01

    Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior.

  7. Neutron studies of amorphous solids

    CERN Document Server

    Stone, C E

    2001-01-01

    of both three and four coordinated boron. Superstructural units were found to be present even at high Cs sub 2 O contents. The above results have shown that superstructural units are found in many borate glasses. The thesis begins with an introduction to glass and glass science, followed by a brief overview of the theory of neutron scattering. A background to neutron experiments is given and a more detailed description of the sources and instruments used. Subsequent chapters are then devoted to lead and zinc phosphate glasses, iron phosphate glasses, ultra low expansion glass, boron sulphide glass, bismuth containing glasses, pressure compacted glasses and cesium borate glasses. Lead and zinc phosphate glasses were found to have a coordination number of four for Pb or Zn and the lead and zinc were both incorporated into the network structure. In ultra low expansion glass the titania was found to be four fold coordinated. Vitreous boron sulphide gives results consistent with borsulphol superstructural units. D...

  8. 2010 Neutron Review: ORNL Neutron Sciences Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Bardoel, Agatha A [ORNL; Counce, Deborah M [ORNL; Ekkebus, Allen E [ORNL; Horak, Charlie M [ORNL; Nagler, Stephen E [ORNL; Kszos, Lynn A [ORNL

    2011-06-01

    During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown over the last year, so has promising neutron scattering research. This was an exciting year in science, technology, and operations. Some topics discussed are: (1) HFIR and SNS Experiments Take Gordon Battelle Awards for Scientific Discovery - Battelle Memorial Institute presented the inaugural Gordon Battelle Prizes for scientific discovery and technology impact in 2010. Battelle awards the prizes to recognize the most significant advancements at national laboratories that it manages or co-manages. (2) Discovery of Element 117 - As part of an international team of scientists from Russia and the United States, HFIR staff played a pivotal role in the discovery by generating the berkelium used to produce the new element. A total of six atoms of ''ununseptium'' were detected in a two-year campaign employing HFIR and the Radiochemical Engineering Development Center at Oak Ridge National Laboratory (ORNL) and the heavy-ion accelerator capabilities at the Joint Institute for Nuclear Research in Dubna, Russia. The discovery of the new element expands the understanding of the properties of nuclei at extreme numbers of protons and neutrons. The production of a new element and observation of 11 new heaviest isotopes demonstrate the increased stability of super-heavy elements with increasing neutron numbers and provide the strongest evidence to date for the existence of an island of enhanced stability for super-heavy elements. (3) Studies of Iron-Based High-Temperature Superconductors - ORNL applied its distinctive capabilities in neutron scattering, chemistry, physics, and computation to detailed studies of the magnetic excitations of iron-based superconductors (iron

  9. Tomographic Neutron Imaging using SIRT

    Energy Technology Data Exchange (ETDEWEB)

    Gregor, Jens [University of Tennessee, Knoxville (UTK); FINNEY, Charles E A [ORNL; Toops, Todd J [ORNL

    2013-01-01

    Neutron imaging is complementary to x-ray imaging in that materials such as water and plastic are highly attenuating while material such as metal is nearly transparent. We showcase tomographic imaging of a diesel particulate filter. Reconstruction is done using a modified version of SIRT called PSIRT. We expand on previous work and introduce Tikhonov regularization. We show that near-optimal relaxation can still be achieved. The algorithmic ideas apply to cone beam x-ray CT and other inverse problems.

  10. The Frankfurt neutron source FRANZ

    Science.gov (United States)

    Alzubaidi, Suha; Bartz, Ulrich; Basten, Markus; Bechtold, Alexander; Chau, Long Phi; Claessens, Christine; Dinter, Hannes; Droba, Martin; Fix, Christopher; Hähnel, Hendrik; Heilmann, Manuel; Hinrichs, Ole; Huneck, Simon; Klump, Batu; Lotz, Marcel; Mäder, Dominik; Meusel, Oliver; Noll, Daniel; Nowottnick, Tobias; Obermayer, Marcus; Payir, Onur; Petry, Nils; Podlech, Holger; Ratzinger, Ulrich; Schempp, Alwin; Schmidt, Stefan; Schneider, Philipp; Seibel, Anja; Schwarz, Malte; Schweizer, Waldemar; Volk, Klaus; Wagner, Christopher; Wiesner, Christoph

    2016-05-01

    A 2MeV proton beam will produce a quasi-Maxwellian neutron spectrum of around 30 keV by the 7Li(p, n)7Be reaction. The experiments are mainly focused on the measurement of differential neutron capture cross sections relevant for the astrophysical s-process in nuclear synthesis. Moreover, proton capture cross sections for the astrophysical p-process can be measured directly with the proton beam. For an efficient time of flight measurement of the neutron energies along the 0.7 m long drift from the Li-target to the sample, 1ns short, intense proton pulses are needed at the target. Additionally, to reach 107 n/cm2/s at the sample, a pulse repetition rate of 250 kHz is intended. After completion and successful running in, FRANZ will become a user facility with internal and external users. The 120 kV injector terminal and the 200mA proton source as well as the low-energy beam transport section and the FRANZ cave have been realized successfully. The 1.9 MV RF accelerator consists of a combined 4-Rod-RFQ/IH-DTL-resonator and is in the RF tuning and power testing phase. The 2 MeV transport and rebuncher section is ready for installation. In a first step FRANZ will offer experimental areas for neutron activation experiments and for proton beam experiments, as mentioned above. From the accelerator physics point of view, FRANZ will be an excellent facility for high current beam investigations and for beam wall interaction studies.

  11. Neutron multiplication error in TRU waste measurements

    Energy Technology Data Exchange (ETDEWEB)

    Veilleux, John [Los Alamos National Laboratory; Stanfield, Sean B [CCP; Wachter, Joe [CCP; Ceo, Bob [CCP

    2009-01-01

    Total Measurement Uncertainty (TMU) in neutron assays of transuranic waste (TRU) are comprised of several components including counting statistics, matrix and source distribution, calibration inaccuracy, background effects, and neutron multiplication error. While a minor component for low plutonium masses, neutron multiplication error is often the major contributor to the TMU for items containing more than 140 g of weapons grade plutonium. Neutron multiplication arises when neutrons from spontaneous fission and other nuclear events induce fissions in other fissile isotopes in the waste, thereby multiplying the overall coincidence neutron response in passive neutron measurements. Since passive neutron counters cannot differentiate between spontaneous and induced fission neutrons, multiplication can lead to positive bias in the measurements. Although neutron multiplication can only result in a positive bias, it has, for the purpose of mathematical simplicity, generally been treated as an error that can lead to either a positive or negative result in the TMU. While the factors that contribute to neutron multiplication include the total mass of fissile nuclides, the presence of moderating material in the matrix, the concentration and geometry of the fissile sources, and other factors; measurement uncertainty is generally determined as a function of the fissile mass in most TMU software calculations because this is the only quantity determined by the passive neutron measurement. Neutron multiplication error has a particularly pernicious consequence for TRU waste analysis because the measured Fissile Gram Equivalent (FGE) plus twice the TMU error must be less than 200 for TRU waste packaged in 55-gal drums and less than 325 for boxed waste. For this reason, large errors due to neutron multiplication can lead to increased rejections of TRU waste containers. This report will attempt to better define the error term due to neutron multiplication and arrive at values that are

  12. Neutron imaging — Detector options in progress

    Science.gov (United States)

    Lehmann, E. H.; Tremsin, A.; Grünzweig, C.; Johnson, I.; Boillat, P.; Josic, L.

    2011-01-01

    Neutron imaging is a non-invasive method for material research on the macroscopic level. It is carried out at laboratories equipped with powerful neutron sources, suitable neutron beam lines and neutron detection systems. Decades ago neutron radiography began capturing images with film techniques. These techniques yielded excellent spatial resolution even over large fields of view. In the recent years, improvements in the detection techniques and their digitization have been the main forces driving successes in neutron imaging. Several detector options have been developed, implemented and used in practical applications in order to achieve digital information from the neutron transmission process which is needed for a quantitative evaluation of image data by sophisticated methods like neutron tomography, phase contrast imaging, neutron interferometry and time dependent studies. The most common approach in digital neutron imaging is a conversion of the neutron field information into visible light by a scintillation process, where a neutron converter is needed because neutrons do not excite directly due to their neutral charge. Low level light signals can be observed either with sensitive camera systems or by using amorphous silicon based semiconductor plate devices. However, these now established detection techniques are still limited in respect to spatial and time resolution. The best possible spatial resolution which can be achieved today is available by a system built at PSI with about 10 μm pixel size. Recently, it was upgraded with a tilted option for an increased resolution by a factor of 4 in one direction. Scintillator based techniques are limited by the dissipation of the secondary particles. This limitation has motivated the search for new detector options. One approach is a pixilated system where the readout per incoming neutron can be used to calculate precisely the position of its impact. Such devices are realized as the TIMEPIX system already. The

  13. Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-08

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, and provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.

  14. Rapidly rotating neutron star progenitors

    CERN Document Server

    Postnov, K A; Kolesnikov, D A; Popov, S B; Porayko, N K

    2016-01-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In the present paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, $\\tau_c$. The validity of this approach is checked by direct MESA calculations ...

  15. High precision thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Radeka, V.; Schaknowski, N.A.; Smith, G.C.; Yu, B. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    Two-dimensional position sensitive detectors are indispensable in neutron diffraction experiments for determination of molecular and crystal structures in biology, solid-state physics and polymer chemistry. Some performance characteristics of these detectors are elementary and obvious, such as the position resolution, number of resolution elements, neutron detection efficiency, counting rate and sensitivity to gamma-ray background. High performance detectors are distinguished by more subtle characteristics such as the stability of the response (efficiency) versus position, stability of the recorded neutron positions, dynamic range, blooming or halo effects. While relatively few of them are needed around the world, these high performance devices are sophisticated and fairly complex, their development requires very specialized efforts. In this context, we describe here a program of detector development, based on {sup 3}He filled proportional chambers, which has been underway for some years at the Brookhaven National Laboratory. Fundamental approaches and practical considerations are outlined that have resulted in a series of high performance detectors with the best known position resolution, position stability, uniformity of response and reliability over time, for devices of this type.

  16. [Fast neutron cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its data production'' phase.

  17. New class of neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Czirr, J.B.

    1997-09-01

    An optimized neutron scattering instrument design must include all significant components, including the detector. For example, useful beam intensity is limited by detector dead time; detector pixel size determines the optimum beam diameter, sample size, and sample to detector distance; and detector efficiency vs. wavelength determines the available energy range. As an example of the next generation of detectors that could affect overall instrumentation design, we will describe a new scintillator material that is potentially superior to currently available scintillators. We have grown and tested several small, single crystal scintillators based upon the general class of cerium-activated lithium lanthanide borates. The outstanding characteristic of these materials is the high scintillation efficiency-as much as five times that of Li-glass scintillators. This increase in light output permits the practical use of the exothermic B (n, alpha) reaction for low energy neutron detection. This reaction provides a four-fold increase in capture cross section relative to the Li (n, alpha) reaction, and the intriguing possibility of demanding a charged-particle/gamma ray coincidence to reduce background detection rates. These new materials will be useful in the thermal and epithermal energy ran at reactors and pulsed neutron sources.

  18. Development of fast neutron radiography system based on portable neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Chia Jia, E-mail: gei-i-kani@hotmail.com; Nilsuwankosit, Sunchai, E-mail: sunchai.n@chula.ac.th [Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Rd., Patumwan, Bangkok, THAILAND 10330 (Thailand)

    2016-01-22

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.

  19. Neutron collimator design of neutron radiography based on the BNCT facility

    Science.gov (United States)

    Yang, Xiao-Peng; Yu, Bo-Xiang; Li, Yi-Guo; Peng, Dan; Lu, Jin; Zhang, Gao-Long; Zhao, Hang; Zhang, Ai-Wu; Li, Chun-Yang; Liu, Wan-Jin; Hu, Tao; Lü, Jun-Guang

    2014-02-01

    For the research of CCD neutron radiography, a neutron collimator was designed based on the exit of thermal neutron of the Boron Neutron Capture Therapy (BNCT) reactor. Based on the Geant4 simulations, the preliminary choice of the size of the collimator was determined. The materials were selected according to the literature data. Then, a collimator was constructed and tested on site. The results of experiment and simulation show that the thermal neutron flux at the end of the neutron collimator is greater than 1.0×106 n/cm2/s, the maximum collimation ratio (L/D) is 58, the Cd-ratio(Mn) is 160 and the diameter of collimator end is 10 cm. This neutron collimator is considered to be applicable for neutron radiography.

  20. Measurements of Neutron Energy Spectra and Neutron Dose Equivalent Rates of Workplaces in TQNPC-Ⅲ

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Monitoring for neutron doses is one of the important activities for radiation protection. And the information about neutron energy distributions of the measured fields is necessary for the correct

  1. The EOS of neutron matter, and the effect of Lambda hyperons to neutron star structure

    Energy Technology Data Exchange (ETDEWEB)

    Gandolfi, Stefano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-13

    The following topics are addressed: the model and the method; equation of state of neutron matter, role of three-neutron force; symmetry energy; Λ-hypernuclei; Λ-neutron matter; and neutron star structure. In summary, quantum Monte Carlo methods are useful to study nuclear systems in a coherent framework; the three-neutron force is the bridge between Esym and neutron star structure; and neutron star observations are becoming competitive with experiments. Λ-nucleon data are very limited, but ΛNN is very important. The role of Λ in neutron stars is far from understood; more ΛN data are needed. The author's conclusion: We cannot conclude anything with present models.

  2. Superfluid Neutrons in the Core of the Neutron Star in Cassiopeia A

    CERN Document Server

    Page, Dany; Lattimer, James M; Steiner, Andrew W

    2011-01-01

    The supernova remnant Cassiopeia A contains the youngest known neutron star which is also the first one for which real time cooling has ever been observed. In order to explain the rapid cooling of this neutron star, we first present the fundamental properties of neutron stars that control their thermal evolution with emphasis on the neutrino emission processes and neutron/proton superfluidity/superconductivity. Equipped with these results, we present a scenario in which the observed cooling of the neutron star in Cassiopeia A is interpreted as being due to the recent onset of neutron superfluidity in the core of the star. The manner in which the earlier occurrence of proton superconductivity determines the observed rapidity of this neutron star's cooling is highlighted. This is the first direct evidence that superfluidity and superconductivity occur at supranuclear densities within neutron stars.

  3. Development of fast neutron radiography system based on portable neutron generator

    Science.gov (United States)

    Yi, Chia Jia; Nilsuwankosit, Sunchai

    2016-01-01

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.

  4. From nuclear structure to neutron stars

    CERN Document Server

    Gandolfi, Stefano

    2013-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. As a demonstration, we show that the agreement between theoretical calculations of the charge form factor of 12C and the experimental data is excellent. Applying similar methods to isospin-asymmetric systems allows one to describe neutrons confined in an external potential and homogeneous neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  5. A New Neutron Interferometry Facility at NCNR

    Science.gov (United States)

    Shahi, Chandra; Wietfeldt, Fred; Huber, Michael; Pushin, Dmitry; Arif, Muhammad

    2013-10-01

    A neutron interferometer splits an incoming neutron beam into two coherent partial beams, which travel on different paths and then recombine to form an interference pattern. This pattern is used to precisely determine the phase shift of a sample in one of the paths, thus the neutron interaction potential in the sample can be measured with high precision. A new neutron interferometry setup (NIOFa) has been constructed at the NIST Center for Neutron Research (NCNR). This new facility is mainly focused on spin based interferometry, which will expand its applications in both quantum computation and material research. New spin-control mechanisms are being tested; including thin-film spin flippers and efficient polarizing double cavity super mirrors. Doubling the neutron's degrees of freedom inside the interferometer promises exciting new quantum mechanical experiments and research capabilities. This work is supported by the National Science Foundation.

  6. Tutorial on Neutron Physics in Dosimetry

    CERN Document Server

    Pomp, S

    2009-01-01

    Almost since the time of the discovery of the neutron more than 70 years ago, efforts have been made to understand the effects of neutron radiation on tissue and, eventually, to use neutrons for cancer treatment. In contrast to charged particle or photon radiations which directly lead to release of electrons, neutrons interact with the nucleus and induce emission of several different types of charged particles such as protons, alpha particles or heavier ions. Therefore, a fundamental understanding of the neutron-nucleus interaction is necessary for dose calculations and treatment planning with the needed accuracy. We will discuss the concepts of dose and kerma, neutron-nucleus interactions and have a brief look at nuclear data needs and experimental facilities and set-ups where such data are measured.

  7. (International Collaboration on Advanced Neutron Sources)

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, J.B.

    1990-11-08

    The International Collaboration on Advanced Neutron Sources was started about a decade ago with the purpose of sharing information throughout the global neutron community. The collaboration has been extremely successful in optimizing the use of resources, and the discussions are open and detailed, with reasons for failure shared as well as reasons for success. Although the meetings have become increasingly oriented toward pulsed neutron sources, many of the neutron instrumentation techniques, such as the development of better monochromators, fast response detectors and various data analysis methods, are highly relevant to the Advanced Neutron Source (ANS). I presented one paper on the ANS, and another on the neutron optical polarizer design work which won a 1989 R D-100 Award. I also gained some valuable design ideas, in particular for the ANS hot source, in discussions with individual researchers from Canada, Western Europe, and Japan.

  8. Evolution of Neutron Stars and Observational Constraints

    Directory of Open Access Journals (Sweden)

    Lattimer J.

    2010-10-01

    Full Text Available The structure and evolution of neutron stars is discussed with a view towards constraining the properties of high density matter through observations. The structure of neutron stars is illuminated through the use of several analytical solutions of Einstein’s equations which, together with the maximally compact equation of state, establish extreme limits for neutron stars and approximations for binding energies, moments of inertia and crustal properties as a function of compactness. The role of the nuclear symmetry energy is highlighted and constraints from laboratory experiments such as nuclear masses and heavy ion collisions are presented. Observed neutron star masses and radius limits from several techniques, such as thermal emissions, X-ray bursts, gammaray flares, pulsar spins and glitches, spin-orbit coupling in binary pulsars, and neutron star cooling, are discussed. The lectures conclude with a discusson of proto-neutron stars and their neutrino signatures.

  9. Fast Neutron Detection with a Segmented Spectrometer

    CERN Document Server

    Langford, T J; Beise, E J; Breuer, H; Erwin, D K; Heimbach, C R; Nico, J S

    2014-01-01

    A fast neutron spectrometer consisting of segmented plastic scintillator and He-3 proportional counters was constructed for the measurement of neutrons in the energy range 1 MeV to 200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination The spectrometer was characterized for energy resolution and efficiency in fast neutron fields of 2.5 MeV, 14 MeV, and fission spectrum neutrons, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130 deg. N, 77.218 deg. W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  10. Neutron Sources for Standard-Based Testing

    Energy Technology Data Exchange (ETDEWEB)

    Radev, Radoslav [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McLean, Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-10

    The DHS TC Standards and the consensus ANSI Standards use 252Cf as the neutron source for performance testing because its energy spectrum is similar to the 235U and 239Pu fission sources used in nuclear weapons. An emission rate of 20,000 ± 20% neutrons per second is used for testing of the radiological requirements both in the ANSI standards and the TCS. Determination of the accurate neutron emission rate of the test source is important for maintaining consistency and agreement between testing results obtained at different testing facilities. Several characteristics in the manufacture and the decay of the source need to be understood and accounted for in order to make an accurate measurement of the performance of the neutron detection instrument. Additionally, neutron response characteristics of the particular instrument need to be known and taken into account as well as neutron scattering in the testing environment.

  11. Other applications of neutron beams in material sciences; Autres utilisations des faisceaux de neutrons en science des materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Novion, C.H. de

    1997-12-31

    The various applications of neutron beams are reviewed. The different mechanisms involved in neutron interaction with matter are explained. We notice that generally neutron radiation effects are unfavorable but can be turned into efficient tools to add new structures or properties to materials, silicon doping is an example. The basis principles of neutron activation analysis and neutron radiography are described. (A.C.)

  12. New precision measurements of free neutron beta decay with cold neutrons

    CERN Document Server

    Baeßler, S; Penttilä, S; Počanić, D

    2014-01-01

    Precision measurements in free neutron beta decay serve to determine the coupling constants of beta decay, and offer several stringent tests of the Standard Model. This paper describes the free neutron beta decay program planned for the Fundamental Physics Beamline at the Spallation Neutron Source at Oak Ridge National Laboratory, and puts it into the context of other recent and planned measurements of neutron beta decay observables.

  13. Development of fast neutron pinhole camera using nuclear emulsion for neutron emission profile measurement in KSTAR

    Science.gov (United States)

    Izumi, Y.; Tomita, H.; Nakayama, Y.; Hayashi, S.; Morishima, K.; Isobe, M.; Cheon, M. S.; Ogawa, K.; Nishitani, T.; Naka, T.; Nakano, T.; Nakamura, M.; Iguchi, T.

    2016-11-01

    We have developed a compact fast neutron camera based on a stack of nuclear emulsion plates and a pinhole collimator. The camera was installed at J-port of Korea superconducting tokamak advanced research at National Fusion Research Institute, Republic of Korea. Fast neutron images agreed better with calculated ones based on Monte Carlo neutron simulation using the uniform distribution of Deuterium-Deuterium (DD) neutron source in a torus of 40 cm radius.

  14. Measurement of Neutron Transmission for Tungsten With 2.8 MeV Neutrons

    Institute of Scientific and Technical Information of China (English)

    REN; Jie; RUAN; Xi-chao; BAO; Jie; NIE; Yang-bo; ZHOU; Zu-ying

    2012-01-01

    <正>The neutron transmission for different thickness of tungsten plates for 2.8 MeV neutrons was measured with TOF technique using the d-D reaction neutron source at the 600 kV Cococroft-Walton accelerator at CIAE. The sensitivity for distinguishing the thickness of the tungsten plate was determined with this method. The tungsten plate was put at the beam direction and 1.7 m from the neutron source, and

  15. Aerial Neutron Detection: Neutron Signatures for Nonproliferation and Emergency Response Applications

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Richard J.; Stampahar, Thomas G.; Smith, Ethan X.; Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Rourke, Timothy J.; LeDonne, Jeffrey P.; Avaro, Emanuele; Butler, D. Andre; Borders, Kevin L.; Stampahar, Jezabel; Schuck, William H.; Selfridge, Thomas L.; McKissack, Thomas M.; Duncan, William W.; Hendricks, Thane J.

    2012-10-17

    From 2007 to the present, the Remote Sensing Laboratory has been conducting a series of studies designed to expand our fundamental understanding of aerial neutron detection with the goal of designing an enhanced sensitivity detection system for long range neutron detection. Over 35 hours of aerial measurements in a helicopter were conducted for a variety of neutron emitters such as neutron point sources, a commercial nuclear power reactor, nuclear reactor spent fuel in dry cask storage, depleted uranium hexafluoride and depleted uranium metal. The goals of the project were to increase the detection sensitivity of our instruments such that a 5.4 × 104 neutron/second source could be detected at 100 feet above ground level at a speed of 70 knots and to enhance the long-range detection sensitivity for larger neutron sources, i.e., detection ranges above 1000 feet. In order to increase the sensitivity of aerial neutron detection instruments, it is important to understand the dynamics of the neutron background as a function of altitude. For aerial neutron detection, studies have shown that the neutron background primarily originates from above the aircraft, being produced in the upper atmosphere by galactic cosmic-ray interactions with air molecules. These interactions produce energetic neutrons and charged particles that cascade to the earth’s surface, producing additional neutrons in secondary collisions. Hence, the neutron background increases as a function of altitude which is an impediment to long-range neutron detection. In order to increase the sensitivity for long range detection, it is necessary to maintain a low neutron background as a function of altitude. Initial investigations show the variation in the neutron background can be decreased with the application of a cosmic-ray shield. The results of the studies along with a representative data set are presented.

  16. American Conference on Neutron Scattering 2014

    Energy Technology Data Exchange (ETDEWEB)

    Dillen, J. Ardie [Materials Research Society, Warrendale, PA (United States)

    2014-12-31

    Scientists from the around the world converged in Knoxville, TN to have share ideas, present technical information and contribute to the advancement of neutron scattering. Featuring over 400 oral/poster presentations, ACNS 2014 offered a strong program of plenary, invited and contributed talks and poster sessions covering topics in soft condensed matter, hard condensed matter, biology, chemistry, energy and engineering applications in neutron physics – confirming the great diversity of science that is enabled by neutron scattering.

  17. Fusion neutron diagnostics on ITER tokamak

    Science.gov (United States)

    Bertalot, L.; Barnsley, R.; Direz, M. F.; Drevon, J. M.; Encheva, A.; Jakhar, S.; Kashchuk, Y.; Patel, K. M.; Arumugam, A. P.; Udintsev, V.; Walker, C.; Walsh, M.

    2012-04-01

    ITER is an experimental nuclear reactor, aiming to demonstrate the feasibility of nuclear fusion realization in order to use it as a new source of energy. ITER is a plasma device (tokamak type) which will be equipped with a set of plasma diagnostic tools to satisfy three key requirements: machine protection, plasma control and physics studies by measuring about 100 different parameters. ITER diagnostic equipment is integrated in several ports at upper, equatorial and divertor levels as well internally in many vacuum vessel locations. The Diagnostic Systems will be procured from ITER Members (Japan, Russia, India, United States, Japan, Korea and European Union) mainly with the supporting structures in the ports. The various diagnostics will be challenged by high nuclear radiation and electromagnetic fields as well by severe environmental conditions (ultra high vacuum, high thermal loads). Several neutron systems with different sensitivities are foreseen to measure ITER expected neutron emission from 1014 up to almost 1021 n/s. The measurement of total neutron emissivity is performed by means of Neutron Flux Monitors (NFM) installed in diagnostic ports and by Divertor Neutron Flux Monitors (DNFM) plus MicroFission Chambers (MFC) located inside the vacuum vessel. The neutron emission profile is measured with radial and vertical neutron cameras. Spectroscopy is accomplished with spectrometers looking particularly at 2.5 and 14 MeV neutron energy. Neutron Activation System (NAS), with irradiation ends inside the vacuum vessel, provide neutron yield data. A calibration strategy of the neutron diagnostics has been developed foreseeing in situ and cross calibration campaigns. An overview of ITER neutron diagnostic systems and of the associated challenging engineering and integration issues will be reported.

  18. Probing thermonuclear burning on accreting neutron stars

    OpenAIRE

    Keek, L.

    2008-01-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes thermonuclear burning in the neutron star envelope, creating carbon and heavier elements. The fusion process may proceed in an unstable manner, resulting in a thermonuclear runaway. Within one seco...

  19. Fast neutron activation dosimetry with TLDS

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, D.W.; Moran, P.R.

    1975-01-01

    Fast neutron activation using threshold reactions is the only neutron dosimetry method which offers complete discrimination against gamma-rays and preserves some information about the neutron energy. Conventional activation foil technique requires sensitive radiation detectors to count the decay of the neutron induced activity. For extensive measurements at low neutron fluences, vast outlays of counting equipment are required. TL dosimeters are inexpensive, extremely sensitive radiation detectors. The work of Mayhugh et al. (Proc. Third Int. Conf. on Luminescence Dosimetry, Riso Report 249, 1040, (1971)) showed that CaSO/sub 4/: DyTLDs could be used to measure the integrated dose from the decay of the radioactivity produced in the dosimeters by exposure to thermal neutrons. This neatly combines the activation detector and counter functions in one solid state device. This work has been expanded to fast neutron exposures and other TL phosphors. The reactions /sup 19/F(n, 2n)/sup 18/F, /sup 32/S(n,p)/sup 32/P, /sup 24/Mg(n,p)/sup 24/, and /sup 64/Zn(n,p)/sup 64/Cu were found useful for fast neutron activation in commercial TLDs. As each TLD is its own integrating decay particle counter, many activation measurements can be made at the same time. The subsequent readings of the TL signals can be done serially after the induced radioactivity has decayed, using only one TL reader. The neutron detection sensitivity is limited mainly by the number statistics of the neutron activations. The precision of the neutron measurement is within a factor of two of conventional foil activation for comparable mass detectors. Commercially available TLDs can measure neutron fluences of 10/sup 9/n/cm/sup 2/ with 10 percent precision.

  20. MCNPX Simulations for Neutron Cross Section Measurements

    OpenAIRE

    Tesinsky, Milan

    2010-01-01

    This thesis presents MCNPX simulations of the SCANDAL set-up used at the Theodor Svedberg Laboratory for neutron scattering cross-section measurements. The thesis describes processes and data important for the upcoming off-line data analysis. In the experiment, neutrons scattered off the target are converted to protons which are stopped in scintillator crystals. The results of presented simulations include a description of the proton spectra in dependence of the neutron-to-proton conversion a...