WorldWideScience

Sample records for babel multigroup neutron

  1. Multigroup calculation of antisymmetric neutron distributions in a cylindrical cell

    International Nuclear Information System (INIS)

    Boyarinov, V.F.

    1987-01-01

    The authors construct a model for the neutron distribution in a multizone cylindrical reactor lattice with coaxial zones using the neutron diffusion equation and multigroup theory. The operator-splitting method is used to separate the spatial and energy variables and the surface-pseudosource method is used to solve the spatial aspects of the problem

  2. Multigroup or multipoint thermal neutron data preparation. Programme SIGMA

    International Nuclear Information System (INIS)

    Matausek, M.V.; Kunc, M.

    1974-01-01

    When calculating the space energy distribution of thermal neutrons in reactor lattices, in either the multigroup or the multipoint approximation, it is convenient to divide the problem into two independent parts. Firstly, for all material regions of the given reactor lattice cell, the group or the point values of cross sections, scattering kernel and the outer source of thermal neutrons are calculated by a data preparation programme. These quantities are then used as input, by the programme which solves multigroup or multipoint transport equations, to generate the space energy neutron spectra in the cell considered and to determine the related integral quantities, namely the different reaction rates. The present report deals with the first part of the problem. An algorithm for constructing a set of thermal neutron input data, to be used with the multigroup or multipoint version of the code MULTI /1,2,3/, is presented and the new version of the programme SIGMA /4/, written in FORTRAN IV for the CDC-3600 computer, is described. For a given reactor cell material, composed of a number of different isotopes, this programme calculates the group or the point values of the scattering macroscopic absorption cross section, macroscopic scattering cross section, kernel and the outer source of thermal neutrons. Numerous options are foreseen in the programme, concerning the energy variation of cross sections and a scattering kernel, concerning the weighting spectrum in multigroup scheme or the procedure for constructing the scattering matrix in the multipoint scheme and, finally, concerning the organization of output. The details of the calculational algorithm are presented in Section 2 of the paper. Section 3 contains the description of the programme and the instructions for its use (author)

  3. The isotope density inverse problem in multigroup neutron transport

    International Nuclear Information System (INIS)

    Zazula, J.M.

    1981-01-01

    The inverse problem for stationary multigroup anisotropic neutron transport is discussed in order to search for isotope densities in multielement medium. The spatial- and angular-integrated form of neutron transport equation, in terms of the flux in a group - density of an element spatial correlation, leads to a set of integral functionals for the densities weighted by the group fluxes. Some methods of approximation to make the problem uniquently solvable are proposed. Particularly P 0 angular flux information and the spherically-symetrical geometry of an infinite medium are considered. The numerical calculation using this method related to sooner evaluated direct problem data gives promising agreement with primary densities. This approach would be the basis for further application in an elemental analysis of a medium, using an isotopic neutron source and a moving, energy-dependent neutron detector. (author)

  4. Complex of two-dimensional multigroup programs for neutron-physical computations of nuclear reactor

    International Nuclear Information System (INIS)

    Karpov, V.A.; Protsenko, A.N.

    1975-01-01

    Briefly stated mathematical aspects of the two-dimensional multigroup method of neutron-physical computation of nuclear reactor. Problems of algorithmization and BESM-6 computer realisation of multigroup diffuse approximations in hexagonal and rectangular calculated lattices are analysed. The results of computation of fast critical assembly having complicated composition of the core are given. The estimation of computation accuracy of criticality, neutron fields distribution and efficiency of absorbing rods by means of computer programs developed is done. (author)

  5. An accurate solution of point reactor neutron kinetics equations of multi-group of delayed neutrons

    International Nuclear Information System (INIS)

    Yamoah, S.; Akaho, E.H.K.; Nyarko, B.J.B.

    2013-01-01

    Highlights: ► Analytical solution is proposed to solve the point reactor kinetics equations (PRKE). ► The method is based on formulating a coefficient matrix of the PRKE. ► The method was applied to solve the PRKE for six groups of delayed neutrons. ► Results shows good agreement with other traditional methods in literature. ► The method is accurate and efficient for solving the point reactor kinetics equations. - Abstract: The understanding of the time-dependent behaviour of the neutron population in a nuclear reactor in response to either a planned or unplanned change in the reactor conditions is of great importance to the safe and reliable operation of the reactor. In this study, an accurate analytical solution of point reactor kinetics equations with multi-group of delayed neutrons for specified reactivity changes is proposed to calculate the change in neutron density. The method is based on formulating a coefficient matrix of the homogenous differential equations of the point reactor kinetics equations and calculating the eigenvalues and the corresponding eigenvectors of the coefficient matrix. A small time interval is chosen within which reactivity relatively stays constant. The analytical method was applied to solve the point reactor kinetics equations with six-groups delayed neutrons for a representative thermal reactor. The problems of step, ramp and temperature feedback reactivities are computed and the results compared with other traditional methods. The comparison shows that the method presented in this study is accurate and efficient for solving the point reactor kinetics equations of multi-group of delayed neutrons

  6. DIAMANT2 - A multigroup neutron transport program for triangular and hexagonal geometry

    International Nuclear Information System (INIS)

    Kuefner, K.; Heger, R.

    1980-09-01

    DIAMANT2 evolved out of the DIAMANT-code. DIAMANT2 solves the multigroup neutron transport equation in planar geometry using the Ssub(N) method. Spatial discretization is accomplished by taking finite differences on a meshgrid composed of equilateral triangles. This report contains a detailed documentation of the program and the input description. (orig./HJ) [de

  7. The Multigroup Neutron Diffusion Equations/1 Space Dimension

    Energy Technology Data Exchange (ETDEWEB)

    Linde, Sven

    1960-06-15

    A description is given of a program for the Ferranti Mercury computer which solves the one-dimensional multigroup diffusion equations in plane, cylindrical or spherical geometry, and also approximates automatically a two-dimensional solution by separating the space variables. In section A the method of calculation is outlined and the preparation of data for two group problems is described. The spatial separation of two-dimensional equations is considered in section B. Section C covers the multigroup equations. These parts are self contained and include all information required for the use of the program. Details of the numerical methods are given in section D. Three sample problems are solved in section E. Punching and operating instructions are given in an appendix.

  8. The Multigroup Neutron Diffusion Equations/1 Space Dimension

    International Nuclear Information System (INIS)

    Linde, Sven

    1960-06-01

    A description is given of a program for the Ferranti Mercury computer which solves the one-dimensional multigroup diffusion equations in plane, cylindrical or spherical geometry, and also approximates automatically a two-dimensional solution by separating the space variables. In section A the method of calculation is outlined and the preparation of data for two group problems is described. The spatial separation of two-dimensional equations is considered in section B. Section C covers the multigroup equations. These parts are self contained and include all information required for the use of the program. Details of the numerical methods are given in section D. Three sample problems are solved in section E. Punching and operating instructions are given in an appendix

  9. PHISICS multi-group transport neutronic capabilities for RELAP5

    International Nuclear Information System (INIS)

    Epiney, A.; Rabiti, C.; Alfonsi, A.; Wang, Y.; Cogliati, J.; Strydom, G.

    2012-01-01

    PHISICS is a neutronic code system currently under development at INL. Its goal is to provide state of the art simulation capability to reactor designers. This paper reports on the effort of coupling this package to the thermal hydraulic system code RELAP5. This will enable full prismatic core and system modeling and the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5 (NESTLE). The paper describes the capabilities of the coupling and illustrates them with a set of sample problems. (authors)

  10. Discrete formulation for two-dimensional multigroup neutron diffusion equations

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Salehi, Ali A.; Shahriari, Majid

    2003-01-01

    The objective of this paper is to introduce a new numerical method for neutronic calculation in a reactor core. This method can produce the final finite form of the neutron diffusion equation by classifying the neutronic variables and using two kinds of cell complexes without starting from the conventional differential form of the neutron diffusion equation. The method with linear interpolation produces the same convergence as the linear continuous finite element method. The quadratic interpolation is proven; the convergence order depends on the shape of the dual cell. The maximum convergence order is achieved by choosing the dual cell based on two Gauss' points. The accuracy of the method was examined with a well-known IAEA two-dimensional benchmark problem. The numerical results demonstrate the effectiveness of the new method

  11. Unstructured Grids and the Multigroup Neutron Diffusion Equation

    Directory of Open Access Journals (Sweden)

    German Theler

    2013-01-01

    Full Text Available The neutron diffusion equation is often used to perform core-level neutronic calculations. It consists of a set of second-order partial differential equations over the spatial coordinates that are, both in the academia and in the industry, usually solved by discretizing the neutron leakage term using a structured grid. This work introduces the alternatives that unstructured grids can provide to aid the engineers to solve the neutron diffusion problem and gives a brief overview of the variety of possibilities they offer. It is by understanding the basic mathematics that lie beneath the equations that model real physical systems; better technical decisions can be made. It is in this spirit that this paper is written, giving a first introduction to the basic concepts which can be incorporated into core-level neutron flux computations. A simple two-dimensional homogeneous circular reactor is solved using a coarse unstructured grid in order to illustrate some basic differences between the finite volumes and the finite elements method. Also, the classic 2D IAEA PWR benchmark problem is solved for eighty combinations of symmetries, meshing algorithms, basic geometric entities, discretization schemes, and characteristic grid lengths, giving even more insight into the peculiarities that arise when solving the neutron diffusion equation using unstructured grids.

  12. On the analytical solution of the multigroup neutron kinetics diffusion equation in homogeneous parallelepiped

    International Nuclear Information System (INIS)

    Petersen, Claudio Z.; Vilhena, Marco Tullio; Bodmann, Bardo; Dulla, Sandra; Ravetto, Piero

    2011-01-01

    The three-dimensions multigroup neutron kinetics diffusion equations is considered to predict the behavior of neutrons in a nuclear reactor. In this work we develop a method that allows to construct an analytical solution to the equations of kinetic space. The spatial kinetic model has a crucial problem for a quasi real-time prediction of reactor power, especially at start-up, shut-down or change in power, by virtue of the stiff character of the equations. In order to circumvent problems that typically occur in numerical approaches, we solve the neutron kinetics diffusion equation in a homogeneous parallelepiped analytically, considering two energy groups and six group of delayed neutrons. Applying the GITT (generalized integral transform technique) in the vertical direction, we cast the original problem into a two-dimensional one with known solution. We report on numerical results, and comparisons against the ones of the literature. (author)

  13. Assessment and comparison of different multigroup neutron cross section libraries for dosimetry purposes

    International Nuclear Information System (INIS)

    Erradi, L.; Karouani, K.

    1994-01-01

    Many multigroup neutron cross section libraries have been processed from basic evaluated nuclear data for use in neutron dosimetry, reactor shielding calculation and in the development of fusion reactors. Most of these libraries have been tested only for fission spectra and were not validated for fusion spectra. Fifteen of these libraries such as DOSCROS84, IRDF85 and ENDFB5 have been used along with the neutron spectra unfolding code SAND II to evaluate about fifteen threshold detector saturated activities. The comparison between these computed activities and the measured ones of a set of foils placed in different places along the axis of a paraffin cylinder and irradiated by 14 MeV neutrons generated by a D-T source, hence giving rise to complex spectra, leads to different types of discrepancies. The analysis of these discrepancies allows to select from these libraries the ones that can be recommended. 1 fig., 4 refs. (author)

  14. Analytical synthetic methods of solution of neutron transport equation with diffusion theory approaches energy multigroup

    International Nuclear Information System (INIS)

    Moraes, Pedro Gabriel B.; Leite, Michel C.A.; Barros, Ricardo C.

    2013-01-01

    In this work we developed a software to model and generate results in tables and graphs of one-dimensional neutron transport problems in multi-group formulation of energy. The numerical method we use to solve the problem of neutron diffusion is analytic, thus eliminating the truncation errors that appear in classical numerical methods, e.g., the method of finite differences. This numerical analytical method increases the computational efficiency, since they are not refined spatial discretization necessary because for any spatial discretization grids used, the numerical result generated for the same point of the domain remains unchanged unless the rounding errors of computational finite arithmetic. We chose to develop a computational application in MatLab platform for numerical computation and program interface is simple and easy with knobs. We consider important to model this neutron transport problem with a fixed source in the context of shielding calculations of radiation that protects the biosphere, and could be sensitive to ionizing radiation

  15. Solution of the multilayer multigroup neutron diffusion equation in cartesian geometry by fictitious borders power method

    Energy Technology Data Exchange (ETDEWEB)

    Zanette, Rodrigo; Petersen, Caudio Zen [Univ. Federal de Pelotas, Capao do Leao (Brazil). Programa de Pos Graduacao em Modelagem Matematica; Schramm, Marcello [Univ. Federal de Pelotas (Brazil). Centro de Engenharias; Zabadal, Jorge Rodolfo [Univ. Federal do Rio Grande do Sul, Tramandai (Brazil)

    2017-05-15

    In this paper a solution for the one-dimensional steady state Multilayer Multigroup Neutron Diffusion Equation in cartesian geometry by Fictitious Borders Power Method and a perturbative analysis of this solution is presented. For each new iteration of the power method, the neutron flux is reconstructed by polynomial interpolation, so that it always remains in a standard form. However when the domain is long, an almost singular matrix arises in the interpolation process. To eliminate this singularity the domain segmented in R regions, called fictitious regions. The last step is to solve the neutron diffusion equation for each fictitious region in analytical form locally. The results are compared with results present in the literature. In order to analyze the sensitivity of the solution, a perturbation in the nuclear parameters is inserted to determine how a perturbation interferes in numerical results of the solution.

  16. Modification of the resonance treatment in multigroup neutron slowing-down codes

    International Nuclear Information System (INIS)

    Gado, J.

    1978-05-01

    The previously reported computer codes GRACE and BETTY for resonance treatment in the multigroup neutron slowing-down processes have been improved, employing the new results of resonance absorption calculations. The total resonance integral formulae were changed, 239 Pu resonance integral data were included in the library of group constants and the selection of partial resonance integral distribution functions was automatized. The users of the GRACE and BETTY codes are provided with a more credible and more comfortable resonance treatment. Explicit description of modification of user's manuals is given. (D.P.)

  17. Analysis of coupled neutron-gamma radiations, applied to shieldings in multigroup albedo method

    International Nuclear Information System (INIS)

    Dunley, Leonardo Souza

    2002-01-01

    The principal mathematical tools frequently available for calculations in Nuclear Engineering, including coupled neutron-gamma radiations shielding problems, involve the full Transport Theory or the Monte Carlo techniques. The Multigroup Albedo Method applied to shieldings is characterized by following the radiations through distinct layers of materials, allowing the determination of the neutron and gamma fractions reflected from, transmitted through and absorbed in the irradiated media when a neutronic stream hits the first layer of material, independently of flux calculations. Then, the method is a complementary tool of great didactic value due to its clarity and simplicity in solving neutron and/or gamma shielding problems. The outstanding results achieved in previous works motivated the elaboration and the development of this study that is presented in this dissertation. The radiation balance resulting from the incidence of a neutronic stream into a shielding composed by 'm' non-multiplying slab layers for neutrons was determined by the Albedo method, considering 'n' energy groups for neutrons and 'g' energy groups for gammas. It was taken into account there is no upscattering of neutrons and gammas. However, it was considered that neutrons from any energy groups are able to produce gammas of all energy groups. The ANISN code, for an angular quadrature order S 2 , was used as a standard for comparison of the results obtained by the Albedo method. So, it was necessary to choose an identical system configuration, both for ANISN and Albedo methods. This configuration was six neutron energy groups and eight gamma energy groups, using three slab layers (iron aluminum - manganese). The excellent results expressed in comparative tables show great agreement between the values determined by the deterministic code adopted as standard and, the values determined by the computational program created using the Albedo method and the algorithm developed for coupled neutron

  18. Multi-group helium and hydrogen production cross section libraries for fusion neutronics design

    International Nuclear Information System (INIS)

    Mori, Seiji; Zimin, S.; Takatsu, Hideyuki

    1993-09-01

    The helium and hydrogen production cross section libraries based on the JENDL-3 data file were compiled for use in neutronics and shielding design calculation of a fusion reactor. These libraries have the same group structures as the transport cross section sets, FUSION-J3 and FUSION-40 which are often used in fusion neutronics design and can be used as the response function libraries for the reaction rate calculation code, APPLE-3. These libraries were processed from the JENDL gas production cross section file which is one of the JENDL special purpose files. Some sample calculations using the discrete ordinate code, ANISN with these libraries were performed and the results were compared with the existing results. Consequently it was found that the appropriate results can be obtained with these libraries. The generated multi-group cross sections for helium and hydrogen production are presented in graphs and tables in appendices. (author)

  19. Algorithm development and verification of UASCM for multi-dimension and multi-group neutron kinetics model

    International Nuclear Information System (INIS)

    Si, S.

    2012-01-01

    The Universal Algorithm of Stiffness Confinement Method (UASCM) for neutron kinetics model of multi-dimensional and multi-group transport equations or diffusion equations has been developed. The numerical experiments based on transport theory code MGSNM and diffusion theory code MGNEM have demonstrated that the algorithm has sufficient accuracy and stability. (authors)

  20. Sample problems for the novice user of the AMPX-II system. [For generating coupled multigroup neutron--gamma libraries, in FORTRAN IV for IBM 360/91

    Energy Technology Data Exchange (ETDEWEB)

    Ford, W.E. III; Roussin, R.W.; Petrie, L.M.; Diggs, B.R.; Comolander, H.E.

    1979-01-01

    Contents of the IBM version of the APMX system distributed by the Radiation Shielding Information Center (APMX-II) are described. Sample problems which demonstrate the procedure for implementing AMPX-II modules to generate point cross sections; generate multigroup neutron, photon production, and photon interaction cross sections for various transport codes; collapse multigroup cross sections; check, edit, and punch multigroup cross sections; and execute a one-dimensional discrete ordinates transport calculation are detailed. 25 figures, 9 tables.

  1. The finite-element method for multigroup neutron transport: anisotropic scattering in 1-D slab geometry

    International Nuclear Information System (INIS)

    Riyait, N.S.; Ackroyd, R.T.

    1987-01-01

    Proof-tests on 1-D multigroup neutron transport problems are reported for strong anisotropic scattering. These tests have been undertaken as part of the validation of the 3-D multigroup finite-element transport code FELTRAN for anisotropic scattering media. To illustrate the treatment of within-group and intergroup anisotropic scattering in the finite-element method the relevant theory is outlined. Ingroup scattering is checked using the backward-forward-isotropic (BFI) scattering law for source and eigenvalue problems. With this law anisotropic scattering problems can be transformed into equivalent isotropic scattering problems. In this way the well-validated isotropic scattering version of FELTRAN is used to validate the anisotropic version. Intergroup scattering effects are checked by solving few-group source problems for P 1 and P 3 scattering and the BFI scattering law. For P 1 and P 3 scattering checks are made with the discrete-ordinate finite-difference code ANISN and the spherical harmonics finite-difference code MARC/PN. For the BFI scattering law comparison is made with two-group exact solutions of Williams (1985) for 1-D systems. (author)

  2. Multigroup multi-layer models of neutron reflection and transmission for reactor transport calculations with anisotropic scattering

    International Nuclear Information System (INIS)

    Abreu, Marcos Pimenta de

    2006-01-01

    In this article, we extend the one-speed multi-layer models to neutron reflection and transmission developed in our earlier work (de Abreu, M.P., 2005. Multi-layer models to neutron reflection and transmission for whole-core transport calculations, Annals of Nuclear Energy 32, 215) to multigroup transport theory. We begin by considering a two-layer boundary region, and we develop for such a region discrete ordinates models to the diffuse reflection and transmission of neutrons for multigroup nuclear reactor core problems with anisotropic scattering. We perform numerical experiments to show that our models to neutron reflection and transmission can be used to replace efficiently and accurately two nonactive boundary layers in whole-core transport calculations. We conclude this article with an inductive extension of our two-layer results to a boundary region with an arbitrary number of layers

  3. Spectrum of the multigroup neutron transport operator for bounded spatial domains

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1979-01-01

    The spectrum of the multigroup neutron transport operator A is studied for bounded spatial regions D which consist of a finite number of material subregions. Our main results provide simple conditions on the material cross sections which guarantee that (1) A possesses eigenvalues in the finite plane; (2) A possesses a ''leading'' eigenvalue lambda 0 which is real, not less than the real part of any other eigenvalue, and to which there corresponds at least one nonnegative eigenfunction psi/sub lambda/0; and (3) A possesses a ''dominant'' eigenvalue lambda 0 which is real, simple, greater than the real part of any other eigenvalue, and whose eigenfunction psi/sub lambda/0 satisfies psi/sub lambda/0> or =0 and ∫psi/sub lambda/0d 2 Ω>0. We give examples to illustrate the results and to show that a leading eigenvalue need not be simple, nor its eigenfunction(s) positive

  4. The solution of the multigroup neutron transport equation using spherical harmonics

    International Nuclear Information System (INIS)

    Fletcher, K.

    1981-01-01

    A solution of the multi-group neutron transport equation in up to three space dimensions is presented. The flux is expanded in a series of unnormalised spherical harmonics. Using the various recurrence formulae a linked set of first order differential equations is obtained for the moments psisup(g)sub(lm)(r), γsup(g)sub(lm)(r). Terms with odd l are eliminated resulting in a second order system which is solved by two methods. The first is a finite difference formulation using an iterative procedure, secondly, in XYZ and XY geometry a finite element solution is given. Results for a test problem using both methods are exhibited and compared. (orig./RW) [de

  5. Solution of the multigroup neutron diffusion Eigenvalue problem in slab geometry by modified power method

    Energy Technology Data Exchange (ETDEWEB)

    Zanette, Rodrigo [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pós-Graduação em Matemática Aplicada; Petersen, Claudio Z.; Tavares, Matheus G., E-mail: rodrigozanette@hotmail.com, E-mail: claudiopetersen@yahoo.com.br, E-mail: matheus.gulartetavares@gmail.com [Universidade Federal de Pelotas (UFPEL), RS (Brazil). Programa de Pós-Graduação em Modelagem Matemática

    2017-07-01

    We describe in this work the application of the modified power method for solve the multigroup neutron diffusion eigenvalue problem in slab geometry considering two-dimensions for nuclear reactor global calculations. It is well known that criticality calculations can often be best approached by solving eigenvalue problems. The criticality in nuclear reactors physics plays a relevant role since establishes the ratio between the numbers of neutrons generated in successive fission reactions. In order to solve the eigenvalue problem, a modified power method is used to obtain the dominant eigenvalue (effective multiplication factor (K{sub eff})) and its corresponding eigenfunction (scalar neutron flux), which is non-negative in every domain, that is, physically relevant. The innovation of this work is solving the neutron diffusion equation in analytical form for each new iteration of the power method. For solve this problem we propose to apply the Finite Fourier Sine Transform on one of the spatial variables obtaining a transformed problem which is resolved by well-established methods for ordinary differential equations. The inverse Fourier transform is used to reconstruct the solution for the original problem. It is known that the power method is an iterative source method in which is updated by the neutron flux expression of previous iteration. Thus, for each new iteration, the neutron flux expression becomes larger and more complex due to analytical solution what makes propose that it be reconstructed through an polynomial interpolation. The methodology is implemented to solve a homogeneous problem and the results are compared with works presents in the literature. (author)

  6. MC2-2, Calculation of Fast Neutron Spectra and Multigroup Cross-Sections from ENDF/B Data

    International Nuclear Information System (INIS)

    2001-01-01

    1 - Description of program or function: MC 2 -2 solves the neutron slowing-down equations using basic neutron data derived from ENDF/B data files to determine fundamental mode spectra for use in generating multigroup neutron cross sections. The current edition includes the ability to treat all ENDF/B-V and -VI data representations. It accommodates high-order P scattering representations and provides numerous capabilities such as isotope mixing, delayed neutron processing, free-format input, and flexibility in output data selection. This edition supersedes previous releases of the MC22 program and the earlier MC2 program. Improved physics algorithms and increased computational efficiency are incorporated. Input data files required by MC2-2 may be generated from ENDF/B data by the code ETOE-2. The hyper-fine-group integral transport theory module of MC2-2, RABANL, is an improved version of the RABBLE/RABID codes. Many of the MC2-2 modules are used in the SDX code. 2 - Methods: The extended transport P1, B1, consistent P1, and consistent B1 fundamental mode ultra-fine-group equations are solved using continuous slowing-down theory and multigroup methods. Fast and accurate resonance integral methods are used in the narrow resonance resolved and unresolved resonance treatments. A fundamental mode homogeneous unit cell calculation is performed using either a multigroup or a continuous slowing-down treatment. Multigroup neutron homogeneous cross sections are generated in an ISOTXS format for an arbitrary group structure. A hyper-fine-group integral transport slowing down calculation (RABANL) is available as an option. RABANL performs a homogeneous or heterogeneous (pin or slab) unit cell calculation over the resonance region (resolved and unresolved) and generates multigroup neutron cross sections in an ISOTXS format. Neutron cross sections are generated by RABANL for the homogeneous unit cell and for each heterogeneous region in the pin or slab unit cell calculation

  7. ANSL-V: ENDF/B-V based multigroup cross-section libraries for Advanced Neutron Source (ANS) reactor studies

    International Nuclear Information System (INIS)

    Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Petrie, L.M.; Primm, R.T. III; Waddell, M.W.; Webster, C.C.; Westfall, R.M.; Wright, R.Q.

    1987-01-01

    Multigroup P3 neutron, P0-P3 secondary gamma ray production (SGRP), and P6 gamma ray interaction (GRI) cross section libraries have been generated to support design work on the Advanced Neutron Source (ANS) reactor. The libraries, designated ANSL-V (Advanced Neutron Source Cross-Section Libraries), are data bases in a format suitable for subsequent generation of problem dependent cross sections. The ANSL-V libraries are available on magnetic tape from the Radiation Shielding Information Center at Oak Ridge National Laboratory

  8. TRIDENT: a two-dimensional, multigroup, triangular mesh discrete ordinates, explicit neutron transport code

    International Nuclear Information System (INIS)

    Seed, T.J.; Miller, W.F. Jr.; Brinkley, F.W. Jr.

    1977-03-01

    TRIDENT solves the two-dimensional-multigroup-transport equations in rectangular (x-y) and cylindrical (r-z) geometries using a regular triangular mesh. Regular and adjoint, inhomogeneous and homogeneous (k/sub eff/ and eigenvalue searches) problems subject to vacuum, reflective, white, or source boundary conditions are solved. General anisotropic scattering is allowed and anisotropic-distributed sources are permitted. The discrete-ordinates approximation is used for the neutron directional variables. An option is included to append a fictitious source to the discrete-ordinates equations that is defined such that spherical-harmonics solutions (in x-y geometry) or spherical-harmonics-like solutions (in r-z geometry) are obtained. A spatial-finite-element method is used in which the angular flux is expressed as a linear polynomial in each triangle that is discontinous at triangle boundaries. Unusual Features of the program: Provision is made for creation of standard interface output files for S/sub N/ constants, angle-integrated (scalar) fluxes, and angular fluxes. Standard interface input files for S/sub N/ constants, inhomogeneous sources, cross sections, and the scalar flux may be read. Flexible edit options as well as a dump and restart capability are provided

  9. MENDF71x. Multigroup Neutron Cross Section Data Tables Based upon ENDF/B-VII.1

    International Nuclear Information System (INIS)

    Conlin, Jeremy Lloyd; Parsons, Donald Kent; Gardiner, Steven J.; Gray, Mark Girard; Lee, Mary Beth; White, Morgan Curtis

    2015-01-01

    A new multi-group neutron cross section library has been released along with the release of NDI version 2.0.20. The library is named MENDF71x and is based upon the evaluations released in ENDF/B-VII.1 which was made publicly available in December 2011. ENDF/B-VII.1 consists of 423 evaluations of which ten are excited states evaluations and 413 are ground state evaluations. MENDF71x was created by processing the 423 evaluations into 618-group, downscatter only NDI data tables. The ENDF/B evaluation files were processed using NJOY version 99.393 with the exception of 35 Cl and 233 U. Those two isotopes had unique properties that required that we process the evaluation using NJOY version 2012. The MENDF71x library was only processed to room temperature, i.e., 293.6 K. In the future, we plan on producing a multi-temperature library based on ENDF/B-VII.1 and compatible with MENDF71x.

  10. Three higher order analytical nodal methods for multigroup neutron diffusion equations

    International Nuclear Information System (INIS)

    Guessous, Najib

    2016-01-01

    Highlights: • The highlight is to demonstrate efficiency of the three nodal methods developed in this work: PCANM-2, FANM-2 and RFANM-2. • It is proved that the third method is more competitive than the two others methods. • It is demonstrated that RFANM-2 can give very accurate results compared to others nodal methods from published works. - Abstract: This work presents three efficient higher order analytical nodal methods for the numerical solution of a two-dimensional multigroup neutron diffusion equation in Cartesian geometry based on the use of the successive polynomial-weighted transverse integrations technique to convert a one-group diffusion equation to a system of coupled one-dimensional ordinary differential equations. These equations are then solved analytically over each homogenized cell after adequate approximations of the resulting effective sources after transversal integrations. Coupling between the approximate transverse flux-moments is achieved by imposing uniqueness constraint on their moments values. Adjacent elements are coupled by enforcing continuity conditions on the flux and current moments at interfaces cells. The weighted cell-balance equations and current-continuity conditions are then used to derive the discrete equations. These methods are applied for solving numerically various 2D benchmark problems and theirs performances discussed. Numerical results demonstrates more efficiency for the third higher order analytical nodal method for which the alone unknowns considered are the transverse flux moments on the interfaces of the homogenized elements.

  11. VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system. Version 3

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A.; Huria, H.C.; Cho, K.W. [Cincinnati Univ., OH (United States)

    1991-12-01

    VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing to disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.

  12. VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A.; Huria, H.C.; Cho, K.W. (Cincinnati Univ., OH (United States))

    1991-12-01

    VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing to disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.

  13. Three-dimensional h-adaptivity for the multigroup neutron diffusion equations

    KAUST Repository

    Wang, Yaqi

    2009-04-01

    Adaptive mesh refinement (AMR) has been shown to allow solving partial differential equations to significantly higher accuracy at reduced numerical cost. This paper presents a state-of-the-art AMR algorithm applied to the multigroup neutron diffusion equation for reactor applications. In order to follow the physics closely, energy group-dependent meshes are employed. We present a novel algorithm for assembling the terms coupling shape functions from different meshes and show how it can be made efficient by deriving all meshes from a common coarse mesh by hierarchic refinement. Our methods are formulated using conforming finite elements of any order, for any number of energy groups. The spatial error distribution is assessed with a generalization of an error estimator originally derived for the Poisson equation. Our implementation of this algorithm is based on the widely used Open Source adaptive finite element library deal.II and is made available as part of this library\\'s extensively documented tutorial. We illustrate our methods with results for 2-D and 3-D reactor simulations using 2 and 7 energy groups, and using conforming finite elements of polynomial degree up to 6. © 2008 Elsevier Ltd. All rights reserved.

  14. Advanced Neutron Source Cross Section Libraries (ANSL-V): ENDF/B-V based multigroup cross-section libraries for advanced neutron source (ANS) reactor studies

    International Nuclear Information System (INIS)

    Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Moses, D.L.; Petrie, L.M.; Primm, R.T. III; Slater, C.O.; Westfall, R.M.; Wright, R.Q.

    1990-09-01

    Pseudo-problem-independent, multigroup cross-section libraries were generated to support Advanced Neutron Source (ANS) Reactor design studies. The ANS is a proposed reactor which would be fueled with highly enriched uranium and cooled with heavy water. The libraries, designated ANSL-V (Advanced Neutron Source Cross Section Libraries based on ENDF/B-V), are data bases in AMPX master format for subsequent generation of problem-dependent cross-sections for use with codes such as KENO, ANISN, XSDRNPM, VENTURE, DOT, DORT, TORT, and MORSE. Included in ANSL-V are 99-group and 39-group neutron, 39-neutron-group 44-gamma-ray-group secondary gamma-ray production (SGRP), 44-group gamma-ray interaction (GRI), and coupled, 39-neutron group 44-gamma-ray group (CNG) cross-section libraries. The neutron and SGRP libraries were generated primarily from ENDF/B-V data; the GRI library was generated from DLC-99/HUGO data, which is recognized as the ENDF/B-V photon interaction data. Modules from the AMPX and NJOY systems were used to process the multigroup data. Validity of selected data from the fine- and broad-group neutron libraries was satisfactorily tested in performance parameter calculations

  15. VENTURE: a code block for solving multigroup neutronics problems applying the finite-difference diffusion-theory approximation to neutron transport, version II

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.

    1977-11-01

    The report documents the computer code block VENTURE designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P 1 ) in up to three-dimensional geometry. It uses and generates interface data files adopted in the cooperative effort sponsored by the Reactor Physics Branch of the Division of Reactor Research and Development of the Energy Research and Development Administration. Several different data handling procedures have been incorporated to provide considerable flexibility; it is possible to solve a wide variety of problems on a variety of computer configurations relatively efficiently

  16. VENTURE: a code block for solving multigroup neutronics problems applying the finite-difference diffusion-theory approximation to neutron transport, version II. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.

    1977-11-01

    The report documents the computer code block VENTURE designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P/sub 1/) in up to three-dimensional geometry. It uses and generates interface data files adopted in the cooperative effort sponsored by the Reactor Physics Branch of the Division of Reactor Research and Development of the Energy Research and Development Administration. Several different data handling procedures have been incorporated to provide considerable flexibility; it is possible to solve a wide variety of problems on a variety of computer configurations relatively efficiently.

  17. VENTURE: a code block for solving multigroup neutronics problems applying the finite-difference diffusion-theory approximation to neutron transport

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.

    1975-10-01

    The computer code block VENTURE, designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P 1 ) in up to three-dimensional geometry is described. A variety of types of problems may be solved: the usual eigenvalue problem, a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations, or an indirect criticality search on nuclide concentrations, or on dimensions. First-order perturbation analysis capability is available at the macroscopic cross section level

  18. Development of a Multi-Group Neutron Cross Section Library Generation System for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Hong, Ser Gi; Song, Jae Seung; Lee, Kyung Hoon; Cho, Jin Young; Kim, Ha Yong; Koo, Bon Seung; Shim, Hyung Jin; Park, Sang Yoon

    2008-10-15

    This report describes a generation system of multi-group cross section library which is used in the KARMA lattice calculation code. In particular, the theoretical methodologies, program structures, and input preparations for the constituent programs of the system are described in detail. The library generation system consists of the following five programs : ANJOY, GREDIT, MERIT, SUBDATA, and LIBGEN. ANJOY generates automatically the NJOY input files and two batch files for automatic NJOY run for all the nuclides considered. The automatic NJOY run gives TAPE 23 (PENDF output file of BROADR module of NJOY) and TAPE24 (GENDF output file of GROUPR module of NJOY) files for each nuclide. GREDIT prepares a formatted multi-group cross section file in which the cross sections are tabulated versus temperature and background cross section after reading the TAPE24 file. MERIT generates the hydrogen equivalence factors and the resonance integral tables by solving the slowing down equation with ultra-fine group cross sections which are prepared with the TAPE 23 file. SUBDATA generates the subgroup data including subgroup levels and weights after reading the MERIT output file. Finally, LIBGEN generates the final multi-group library file by assembling the data prepared in the previous steps and by reading the other data such as fission product yield data and decay data.The multi-group cross section library includes general multi-group cross sections, resonance data, subgroup data, fission product yield data, kappa-values (energy release per fission), and all the data which are required in the depletion calculation. The addition or elimination of the cross sections for some nuclides can be easily done by changing the LIBGEN input file if the general multi-group cross section and the subgroup data files are prepared.

  19. FENDL multigroup libraries

    International Nuclear Information System (INIS)

    Ganesan, S.; Muir, D.W.

    1992-01-01

    Selected neutron reaction nuclear data libraries and photon-atomic interaction cross section libraries for elements of interest to the IAEA's program on Fusion Evaluated Nuclear Data Library (FENDL) have been processed into MATXSR format using the NJOY system on the VAX4000 computer of the IAEA. This document lists the resulting multigroup data libraries. All the multigroup data generated are available cost-free upon request from the IAEA Nuclear Data Section. (author). 9 refs

  20. Investigation of the response of a neutron moisture meter using a multigroup, two-dimensional diffusion theory code

    International Nuclear Information System (INIS)

    Ritchie, A.I.M.; Wilson, D.J.

    1984-12-01

    A multigroup diffusion code has been used to predict the count rate from a neutron moisture meter for a range of values of soil water content ω, thermal neutron absorption cross section Ssub(a) (defined as Σsub(a)/rho) of the soil matrix and soil matrix density rho. Two dimensions adequately approximated the geometry of the source, detector and soil surrounding the detector. Seven energy groups, the data for which were condensed from 128 group data set over the neutron energy spectrum appropriate to the soil-water mixture under study, proved adequate to describe neutron slowing-down and diffusion. The soil-water mixture was an SiO 2 →water mixture, with the absorption cross section of SiO 2 increased to cover the range of Σsub(a) required. The response to changes in matrix density is, in general, linear but the response to changes in water content is not linear over the range of parameter values investigated. Tabular results are presented which allow interpolation of the response for a particular ω, Ssub(a) and rho. It is shown that R(ω, Ssub(a), rho) rho M(Ssub(a)) + C(ω) is a crude representation of the response over a very limited range of variation of ω, and Ssub(a). As the response is a slowly varying function of rho, Ssub(a) and ω, a polynomial fit will provide a better estimate of the response for values of rho, Ssub(a) and ω not tabulated

  1. A new modelling of the multigroup scattering cross section in deterministic codes for neutron transport

    International Nuclear Information System (INIS)

    Calloo, A.A.

    2012-01-01

    In reactor physics, calculation schemes with deterministic codes are validated with respect to a reference Monte Carlo code. The remaining biases are attributed to the approximations and models induced by the multigroup theory (self-shielding models and expansion of the scattering law using Legendre polynomials) to represent physical phenomena (resonant absorption and scattering anisotropy respectively). This work focuses on the relevance of a polynomial expansion to model the scattering law. Since the outset of reactor physics, the latter has been expanded on a truncated Legendre polynomial basis. However, the transfer cross sections are highly anisotropic, with non-zero values for a very small range of the cosine of the scattering angle. Besides, the finer the energy mesh and the lighter the scattering nucleus, the more exacerbated is the peaked shape of this cross section. As such, the Legendre expansion is less suited to represent the scattering law. Furthermore, this model induces negative values which are non-physical. In this work, various scattering laws are briefly described and the limitations of the existing model are pointed out. Hence, piecewise-constant functions have been used to represent the multigroup scattering cross section. This representation requires a different model for the diffusion source. The discrete ordinates method which is widely employed to solve the transport equation has been adapted. Thus, the finite volume method for angular discretization has been developed and implemented in Paris environment which hosts the S n solver, Snatch. The angular finite volume method has been compared to the collocation method with Legendre moments to ensure its proper performance. Moreover, unlike the latter, this method is adapted for both the Legendre moments and the piecewise-constant functions representations of the scattering cross section. This hybrid-source method has been validated for different cases: fuel cell in infinite lattice

  2. TEMPEST-2, Thermalization Program for Neutron Spectra and Multigroup Cross-Sections

    International Nuclear Information System (INIS)

    Gowins, G.

    1984-01-01

    Description of problem or function: TEMPEST2 is a neutron thermalization program based upon the Wigner-Wilkins approximation for light moderators and the Wilkins approximation for heavy moderators. A Maxwellian distribution may also be used. The model used may be selected as a function of energy. The second-order differential equations are integrated directly rather than transformed to the Riccati equation. The program provides microscopic and macroscopic cross-section averages over the thermal neutron spectrum

  3. Status report on multigroup cross section generation code development for high-fidelity deterministic neutronics simulation system.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W. S.; Lee, C. H. (Nuclear Engineering Division)

    2008-05-16

    Under the fast reactor simulation program launched in April 2007, development of an advanced multigroup cross section generation code was initiated in July 2007, in conjunction with the development of the high-fidelity deterministic neutron transport code UNIC. The general objectives are to simplify the existing multi-step schemes and to improve the resolved and unresolved resonance treatments. Based on the review results of current methods and the fact that they have been applied successfully to fast critical experiment analyses and fast reactor designs for last three decades, the methodologies of the ETOE-2/MC{sup 2}-2/SDX code system were selected as the starting set of methodologies for multigroup cross section generation for fast reactor analysis. As the first step for coupling with the UNIC code and use in a parallel computing environment, the MC{sup 2}-2 code was updated by modernizing the memory structure and replacing old data management package subroutines and functions with FORTRAN 90 based routines. Various modifications were also made in the ETOE-2 and MC{sup 2}-2 codes to process the ENDF/B-VII.0 data properly. Using the updated ETOE-2/MC{sup 2}-2 code system, the ENDF/B-VII.0 data was successfully processed for major heavy and intermediate nuclides employed in sodium-cooled fast reactors. Initial verification tests of the MC{sup 2}-2 libraries generated from ENDF/B-VII.0 data were performed by inter-comparison of twenty-one group infinite dilute total cross sections obtained from MC{sup 2}-2, VIM, and NJOY. For almost all nuclides considered, MC{sup 2}-2 cross sections agreed very well with those from VIM and NJOY. Preliminary validation tests of the ENDF/B-VII.0 libraries of MC{sup 2}-2 were also performed using a set of sixteen fast critical benchmark problems. The deterministic results based on MC{sup 2}-2/TWODANT calculations were in good agreement with MCNP solutions within {approx}0.25% {Delta}{rho}, except a few small LANL fast assemblies

  4. Procedure to Generate the MPACT Multigroup Library

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-17

    The CASL neutronics simulator MPACT is under development for the neutronics and T-H coupled simulation for the light water reactor. The objective of this document is focused on reviewing the current procedure to generate the MPACT multigroup library. Detailed methodologies and procedures are included in this document for further discussion to improve the MPACT multigroup library.

  5. Spectral nodal methodology for multigroup slab-geometry discrete ordinates neutron transport problems with linearly anisotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Amaury M.; Filho, Hermes A.; Silva, Davi M.; Garcia, Carlos R., E-mail: aoliva@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: davijmsilva@yahoo.com.br, E-mail: cgh@instec.cu [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Departamento de Modelagem Computacional; Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    In this paper, we propose a numerical methodology for the development of a method of the spectral nodal class that will generate numerical solutions free from spatial truncation errors. This method, denominated Spectral Deterministic Method (SDM), is tested as an initial study of the solutions (spectral analysis) of neutron transport equations in the discrete ordinates (S{sub N}) formulation, in one-dimensional slab geometry, multigroup approximation, with linearly anisotropic scattering, considering homogeneous and heterogeneous domains with fixed source. The unknowns in the methodology are the cell-edge, and cell average angular fluxes, the numerical values calculated for these quantities coincide with the analytic solution of the equations. These numerical results are shown and compared with the traditional ne- mesh method Diamond Difference (DD) and the coarse-mesh method spectral Green's function (SGF) to illustrate the method's accuracy and stability. The solution algorithms problems are implemented in a computer simulator made in C++ language, the same that was used to generate the results of the reference work. (author)

  6. On the exact solution for the multi-group kinetic neutron diffusion equation in a rectangle

    International Nuclear Information System (INIS)

    Petersen, C.Z.; Vilhena, M.T.M.B. de; Bodmann, B.E.J.

    2011-01-01

    In this work we consider the two-group bi-dimensional kinetic neutron diffusion equation. The solution procedure formalism is general with respect to the number of energy groups, neutron precursor families and regions with different chemical compositions. The fast and thermal flux and the delayed neutron precursor yields are expanded in a truncated double series in terms of eigenfunctions that, upon insertion into the kinetic equation and upon taking moments, results in a first order linear differential matrix equation with source terms. We split the matrix appearing in the transformed problem into a sum of a diagonal matrix plus the matrix containing the remaining terms and recast the transformed problem into a form that can be solved in the spirit of Adomian's recursive decomposition formalism. Convergence of the solution is guaranteed by the Cardinal Interpolation Theorem. We give numerical simulations and comparisons with available results in the literature. (author)

  7. On the analytical solution of the multigroup neutron diffusion kinetic equation in a multilayered slab

    International Nuclear Information System (INIS)

    Ceolin, Celina; Vilhena, Marco T.; Bodmann, Bardo E.J.; Alvim, Antonio Carlos Marques

    2011-01-01

    The authors solved analytically the neutron kinetic equations in a homogeneous slab, assuming the multi group energy model and six delayed neutron precursor groups by the Generalized Integral Laplace Transform Technique (GILTT) for a multi-layered slab. To this end, averaged values for the nuclear parameters in the multi-layered slab are used and the solution is constructed following the idea of Adomian's decomposition method upon reducing the heterogeneous problem to a set of recursive problems with constant parameters in the multi-layered slab. More specifically, the corrections that render the initially homogeneous problem into a heterogeneous one are plugged into the equation as successive source terms. To the best of our knowledge this sort of solution is novel and not found in literature. We further present some numerical simulations. (author)

  8. The numerical analysis of eigenvalue problem solutions in the multigroup neutron diffusion theory

    International Nuclear Information System (INIS)

    Woznicki, Z.I.

    1994-01-01

    The main goal of this paper is to present a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations equivalent mathematically to an eigenvalue problem. Usually a solution method is based on different levels of iterations. The presented matrix formalism allows us to visualize explicitly how the used matrix splitting influences the matrix structure in an eigenvalue problem to be solved as well as the interdependence between inner and outer iteration within global iterations. Particular interactive strategies are illustrated by numerical results obtained for several reactor problems. (author). 21 refs, 32 figs, 15 tabs

  9. Nodal deterministic simulation for problems of neutron shielding in multigroup formulation

    International Nuclear Information System (INIS)

    Baptista, Josue Costa; Heringer, Juan Diego dos Santos; Santos, Luiz Fernando Trindade; Alves Filho, Hermes

    2013-01-01

    In this paper, we propose the use of some computational tools, with the implementation of numerical methods SGF (Spectral Green's Function), making use of a deterministic model of transport of neutral particles in the study and analysis of a known and simplified problem of nuclear engineering, known in the literature as a problem of neutron shielding, considering the model with two energy groups. These simulations are performed in MatLab platform, version 7.0, and are presented and developed with the help of a Computer Simulator providing a friendly computer application for their utilities

  10. The numerical analysis of eigenvalue problem solutions in multigroup neutron diffusion theory

    International Nuclear Information System (INIS)

    Woznicki, Z.I.

    1995-01-01

    The main goal of this paper is to present a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations equivalent mathematically to an eigenvalue problem. Usually a solution method is based on different levels of iterations. The presented matrix formalism allows us to visualize explicitly how the used matrix splitting influences the matrix structure in an eigenvalue problem to be solved as well as the interdependence between inner and outer iterations within global iterations. Particular iterative strategies are illustrated by numerical results obtained for several reactor problems. (author). 21 refs, 35 figs, 16 tabs

  11. On an analytical evaluation of the flux and dominant eigenvalue problem for the steady state multi-group multi-layer neutron diffusion equation

    International Nuclear Information System (INIS)

    Ceolin, Celina; Schramm, Marcelo; Bodmann, Bardo Ernst Josef; Vilhena, Marco Tullio Mena Barreto de

    2014-01-01

    In this work the authors solved the steady state neutron diffusion equation for a multi-layer slab assuming the multi-group energy model. The method to solve the equation system is based on an expansion in Taylor Series resulting in an analytical expression. The results obtained can be used as initial condition for neutron space kinetics problems. The neutron scalar flux was expanded in a power series, and the coefficients were found by using the ordinary differential equation and the boundary and interface conditions. The effective multiplication factor k was evaluated using the power method. We divided the domain into several slabs to guarantee the convergence with a low truncation order. We present the formalism together with some numerical simulations.

  12. On an analytical evaluation of the flux and dominant eigenvalue problem for the steady state multi-group multi-layer neutron diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Ceolin, Celina; Schramm, Marcelo; Bodmann, Bardo Ernst Josef; Vilhena, Marco Tullio Mena Barreto de [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Bogado Leite, Sergio de Queiroz [Comissao Nacional de Energia Nuclear, Rio de Janeiro (Brazil)

    2014-11-15

    In this work the authors solved the steady state neutron diffusion equation for a multi-layer slab assuming the multi-group energy model. The method to solve the equation system is based on an expansion in Taylor Series resulting in an analytical expression. The results obtained can be used as initial condition for neutron space kinetics problems. The neutron scalar flux was expanded in a power series, and the coefficients were found by using the ordinary differential equation and the boundary and interface conditions. The effective multiplication factor k was evaluated using the power method. We divided the domain into several slabs to guarantee the convergence with a low truncation order. We present the formalism together with some numerical simulations.

  13. HEXAGA-II-120, -60, -30 two-dimensional multi-group neutron diffusion programmes for a uniform triangular mesh with arbitrary group scattering

    International Nuclear Information System (INIS)

    Woznicki, Z.

    1979-06-01

    This report presents the AGA two-sweep iterative methods belonging to the family of factorization techniques in their practical application in the HEXAGA-II two-dimensional programme to obtain the numerical solution to the multi-group, time-independent, (real and/or adjoint) neutron diffusion equations for a fine uniform triangular mesh. An arbitrary group scattering model is permitted. The report written for the users provides the description of input and output. The use of HEXAGA-II is illustrated by two sample reactor problems. (orig.) [de

  14. Analytical synthetic methods of solution of neutron transport equation with diffusion theory approaches energy multigroup; Metodos sinteticos analiticos de solucao da equacao de transporte de neutrons com aproximacoes da teoria da difusao multigrupo de energia

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Pedro Gabriel B.; Leite, Michel C.A.; Barros, Ricardo C., E-mail: pgbmoraes@gmail.com, E-mail: chell_leite@hotmail.com, E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Departamento de Modelagem Computacional

    2013-07-01

    In this work we developed a software to model and generate results in tables and graphs of one-dimensional neutron transport problems in multi-group formulation of energy. The numerical method we use to solve the problem of neutron diffusion is analytic, thus eliminating the truncation errors that appear in classical numerical methods, e.g., the method of finite differences. This numerical analytical method increases the computational efficiency, since they are not refined spatial discretization necessary because for any spatial discretization grids used, the numerical result generated for the same point of the domain remains unchanged unless the rounding errors of computational finite arithmetic. We chose to develop a computational application in MatLab platform for numerical computation and program interface is simple and easy with knobs. We consider important to model this neutron transport problem with a fixed source in the context of shielding calculations of radiation that protects the biosphere, and could be sensitive to ionizing radiation.

  15. Borger i det moderne Babel

    DEFF Research Database (Denmark)

    Delman, Thomas Fabian

    2011-01-01

    Hvordan agerer borgerne i den grænseløse by? Er vi blevet borgere i et moderne Babel, hvor vi ikke længere taler samme sprog? Hvorfor vil vi ikke have de fælles projekter i vores baghave? Og kan nyaktivisme måske være en mulig vej frem? Artiklen forsøger at give svar på nogle af disse spørgsmål....

  16. Development of Galerkin Finite Element Method Three-dimensional Computational Code for the Multigroup Neutron Diffusion Equation with Unstructured Tetrahedron Elements

    Directory of Open Access Journals (Sweden)

    Seyed Abolfazl Hosseini

    2016-02-01

    Full Text Available In the present paper, development of the three-dimensional (3D computational code based on Galerkin finite element method (GFEM for solving the multigroup forward/adjoint diffusion equation in both rectangular and hexagonal geometries is reported. Linear approximation of shape functions in the GFEM with unstructured tetrahedron elements is used in the calculation. Both criticality and fixed source calculations may be performed using the developed GFEM-3D computational code. An acceptable level of accuracy at a low computational cost is the main advantage of applying the unstructured tetrahedron elements. The unstructured tetrahedron elements generated with Gambit software are used in the GFEM-3D computational code through a developed interface. The forward/adjoint multiplication factor, forward/adjoint flux distribution, and power distribution in the reactor core are calculated using the power iteration method. Criticality calculations are benchmarked against the valid solution of the neutron diffusion equation for International Atomic Energy Agency (IAEA-3D and Water-Water Energetic Reactor (VVER-1000 reactor cores. In addition, validation of the calculations against the P1 approximation of the transport theory is investigated in relation to the liquid metal fast breeder reactor benchmark problem. The neutron fixed source calculations are benchmarked through a comparison with the results obtained from similar computational codes. Finally, an analysis of the sensitivity of calculations to the number of elements is performed.

  17. MVP/GMVP version 3. General purpose Monte Carlo codes for neutron and photon transport calculations based on continuous energy and multigroup methods

    International Nuclear Information System (INIS)

    Nagaya, Yasunobu; Okumura, Keisuke; Sakurai, Takeshi; Mori, Takamasa

    2017-03-01

    In order to realize fast and accurate Monte Carlo simulation of neutron and photon transport problems, two Monte Carlo codes MVP (continuous-energy method) and GMVP (multigroup method) have been developed at Japan Atomic Energy Agency. The codes have adopted a vectorized algorithm and have been developed for vector-type supercomputers. They also support parallel processing with a standard parallelization library MPI and thus a speed-up of Monte Carlo calculations can be achieved on general computing platforms. The first and second versions of the codes were released in 1994 and 2005, respectively. They have been extensively improved and new capabilities have been implemented. The major improvements and new capabilities are as follows: (1) perturbation calculation for effective multiplication factor, (2) exact resonant elastic scattering model, (3) calculation of reactor kinetics parameters, (4) photo-nuclear model, (5) simulation of delayed neutrons, (6) generation of group constants. This report describes the physical model, geometry description method used in the codes, new capabilities and input instructions. (author)

  18. Coupled multi-group neutron photon transport for the simulation of high-resolution gamma-ray spectroscopy applications

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Kimberly A. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2009-08-01

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples.

  19. KAFAX-F22 : development and benchmark of multi-group library for fast reactor using JEF-2.2. Neutron 80 group and Photon 24 group

    International Nuclear Information System (INIS)

    Kim, Jung Do; Gil, Choong Sup.

    1997-03-01

    The KAFAX-F22 was developed from JEF-2.2, which is a MATXS format, multigroup library of fast reactor. The KAFAX-F22 has 80 and 24 energy group structures for neutron and photon, respectively. It includes 89 nuclide data processed by NJOY94.38. The TRANSX/TWODANT system was used for benchmark calculations of fast reactor and one- and two-dimensional calculations of ONEDANT and TWODANT were carried out with 80 group, P 3 S 16 and with 25 group, P 3 S 8 , respectively. The average values of multiplication factors are 0.99652 for MOX cores, 1.00538 for uranium cores and 1.00032 for total cores. Various central reaction rate ratios also give good agreements with the experimental values considering experimental uncertainties except for VERA-11A, VERA-1B, ZPR-6-7 and ZPR-6-6A cores of which experimental values seem to involve some problems. (author). 13 refs., 18 tabs., 2 figs

  20. MVP/GMVP 2: general purpose Monte Carlo codes for neutron and photon transport calculations based on continuous energy and multigroup methods

    International Nuclear Information System (INIS)

    Nagaya, Yasunobu; Okumura, Keisuke; Mori, Takamasa; Nakagawa, Masayuki

    2005-06-01

    In order to realize fast and accurate Monte Carlo simulation of neutron and photon transport problems, two vectorized Monte Carlo codes MVP and GMVP have been developed at JAERI. MVP is based on the continuous energy model and GMVP is on the multigroup model. Compared with conventional scalar codes, these codes achieve higher computation speed by a factor of 10 or more on vector super-computers. Both codes have sufficient functions for production use by adopting accurate physics model, geometry description capability and variance reduction techniques. The first version of the codes was released in 1994. They have been extensively improved and new functions have been implemented. The major improvements and new functions are (1) capability to treat the scattering model expressed with File 6 of the ENDF-6 format, (2) time-dependent tallies, (3) reaction rate calculation with the pointwise response function, (4) flexible source specification, (5) continuous-energy calculation at arbitrary temperatures, (6) estimation of real variances in eigenvalue problems, (7) point detector and surface crossing estimators, (8) statistical geometry model, (9) function of reactor noise analysis (simulation of the Feynman-α experiment), (10) arbitrary shaped lattice boundary, (11) periodic boundary condition, (12) parallelization with standard libraries (MPI, PVM), (13) supporting many platforms, etc. This report describes the physical model, geometry description method used in the codes, new functions and how to use them. (author)

  1. Final report [on solving the multigroup diffusion equations

    International Nuclear Information System (INIS)

    Birkhoff, G.

    1975-01-01

    Progress achieved in the development of variational methods for solving the multigroup neutron diffusion equations is described. An appraisal is made of the extent to which improved variational methods could advantageously replace difference methods currently used

  2. HEXAGA-II. A two-dimensional multi-group neutron diffusion programme for a uniform triangular mesh with arbitrary group scattering for the IBM/370-168 computer

    International Nuclear Information System (INIS)

    Woznicki, Z.

    1976-05-01

    This report presents the AGA two-sweep iterative methods belonging to the family of factorization techniques in their practical application in the HEXAGA-II two-dimensional programme to obtain the numerical solution to the multi-group, time-independent, (real and/or adjoint) neutron diffusion equations for a fine uniform triangular mesh. An arbitrary group scattering model is permitted. The report written for the users provides the description of input and output. The use of HEXAGA-II is illustrated by two sample reactor problems. (orig.) [de

  3. CHARTB multigroup transport package

    International Nuclear Information System (INIS)

    Baker, L.

    1979-03-01

    The physics and numerical implementation of the radiation transport routine used in the CHARTB MHD code are discussed. It is a one-dimensional (Cartesian, cylindrical, and spherical symmetry), multigroup,, diffusion approximation. Tests and applications will be discussed as well

  4. Analytical solution of the multigroup neutron diffusion kinetic equation in one-dimensional cartesian geometry by the integral transform technique; Solucao analitica da equacao cinetica de difusao multigrupo de neutrons em geometria cartesiana unidimensional pela tecnica da transformada integral

    Energy Technology Data Exchange (ETDEWEB)

    Ceolin, Celina

    2010-07-01

    The objective of this work is to obtain an analytical solution of the neutron diffusion kinetic equation in one-dimensional cartesian geometry, to monoenergetic and multigroup problems. These equations are of the type stiff, due to large differences in the orders of magnitude of the time scales of the physical phenomena involved, which make them difficult to solve. The basic idea of the proposed method is applying the spectral expansion in the scalar flux and in the precursor concentration, taking moments and solving the resulting matrix problem by the Laplace transform technique. Bearing in mind that the equation for the precursor concentration is a first order linear differential equation in the time variable, to enable the application of the spectral method we introduce a fictitious diffusion term multiplied by a positive value which tends to zero. This procedure opened the possibility to find an analytical solution to the problem studied. We report numerical simulations and analysis of the results obtained with the precision controlled by the truncation order of the series. (author)

  5. AMPX-77: A modular code system for generating coupled multigroup neutron-gamma cross-section libraries from ENDF/B-IV and/or ENDF/B-V

    Energy Technology Data Exchange (ETDEWEB)

    Greene, N.M.; Ford, W.E. III; Petrie, L.M.; Arwood, J.W.

    1992-10-01

    AMPX-77 is a modular system of computer programs that pertain to nuclear analyses, with a primary emphasis on tasks associated with the production and use of multigroup cross sections. AH basic cross-section data are to be input in the formats used by the Evaluated Nuclear Data Files (ENDF/B), and output can be obtained in a variety of formats, including its own internal and very general formats, along with a variety of other useful formats used by major transport, diffusion theory, and Monte Carlo codes. Processing is provided for both neutron and gamma-my data. The present release contains codes all written in the FORTRAN-77 dialect of FORTRAN and wig process ENDF/B-V and earlier evaluations, though major modules are being upgraded in order to process ENDF/B-VI and will be released when a complete collection of usable routines is available.

  6. Daniel Quinn and the Library of Babel

    Directory of Open Access Journals (Sweden)

    Leonardo Vieira de Almeida

    2011-06-01

    Full Text Available In “City of Glass”, Paul Auster's novel, the task of the detective and the reader mingle into the attempt to decipher an ever-drifting cartography. The city map on which Daniel Quinn must follow the clues of the Peter Stillman’s mystery becomes the space which represents the impossibility of any answer. To read New York is walking through a Babel of texts, a list of citations that disarticulate the city and Quinn in their quest for the incommunicable Name.

  7. Calculation of multigroup reaction rates for the Ghana Research ...

    African Journals Online (AJOL)

    The discrete ordinate spatial model, which pro-vides solution to the differential form of the transport equation by the Carlson-SN (N=4) approach was adopted to solve the Ludwig-Boltzmann multigroup neutron transport equation for this analysis. The results show that for any fissile resonance absorber, the reaction rates ...

  8. Multi-group diffusion perturbation calculation code. PERKY (2002)

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, Susumu; Okajima, Shigeaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    Perturbation calculation code based on the diffusion theory ''PERKY'' is designed for nuclear characteristic analyses of fast reactor. The code calculates reactivity worth on the multi-group diffusion perturbation theory in two or three dimensional core model and kinetics parameters such as effective delayed neutron fraction, prompt neutron lifetime and absolute reactivity scale factor ({rho}{sub 0} {delta}k/k) for FCA experiments. (author)

  9. A geometry preserving, conservative, mesh-to-mesh isogeometric interpolation algorithm for spatial adaptivity of the multigroup, second-order even-parity form of the neutron transport equation

    Science.gov (United States)

    Welch, J. A.; Kópházi, J.; Owens, A. R.; Eaton, M. D.

    2017-10-01

    In this paper a method is presented for the application of energy-dependent spatial meshes applied to the multigroup, second-order, even-parity form of the neutron transport equation using Isogeometric Analysis (IGA). The computation of the inter-group regenerative source terms is based on conservative interpolation by Galerkin projection. The use of Non-Uniform Rational B-splines (NURBS) from the original computer-aided design (CAD) model allows for efficient implementation and calculation of the spatial projection operations while avoiding the complications of matching different geometric approximations faced by traditional finite element methods (FEM). The rate-of-convergence was verified using the method of manufactured solutions (MMS) and found to preserve the theoretical rates when interpolating between spatial meshes of different refinements. The scheme's numerical efficiency was then studied using a series of two-energy group pincell test cases where a significant saving in the number of degrees-of-freedom can be found if the energy group with a complex variation in the solution is refined more than an energy group with a simpler solution function. Finally, the method was applied to a heterogeneous, seven-group reactor pincell where the spatial meshes for each energy group were adaptively selected for refinement. It was observed that by refining selected energy groups a reduction in the total number of degrees-of-freedom for the same total L2 error can be obtained.

  10. Review of multigroup nuclear cross-section processing

    Energy Technology Data Exchange (ETDEWEB)

    Trubey, D.K.; Hendrickson, H.R. (comps.)

    1978-10-01

    These proceedings consist of 18 papers given at a seminar--workshop on ''Multigroup Nuclear Cross-Section Processing'' held at Oak Ridge, Tennessee, March 14--16, 1978. The papers describe various computer code systems and computing algorithms for producing multigroup neutron and gamma-ray cross sections from evaluated data, and experience with several reference data libraries. Separate abstracts were prepared for 13 of the papers. The remaining five have already been cited in ERA, and may be located by referring to the entry CONF-780334-- in the Report Number Index. (RWR)

  11. El universo o ¿la Biblioteca de Babel?

    Directory of Open Access Journals (Sweden)

    Hortensia Cuéllar

    2013-11-01

    Full Text Available This article is a philosophical reflection about one of the most important Borges' narration: "La Biblioteca de Babel" (Babel's Library, where he set up some problems about the Universe-Library, the time and the eternity, the possible and the impossible, the phantasy and the reality, etc. That story lets us catch a glimpse on the analogical work underlying in its intimate structure.

  12. The Suppression of Energy Discretization Errors in Multigroup Transport Calculations

    International Nuclear Information System (INIS)

    Larsen, Edward

    2013-01-01

    The Objective of this project is to develop, implement, and test new deterministric methods to solve, as efficiently as possible, multigroup neutron transport problems having an extremely large number of groups. Our approach was to (i) use the standard CMFD method to 'coarsen' the space-angle grid, yielding a multigroup diffusion equation, and (ii) use a new multigrid-in-space-and-energy technique to efficiently solve the multigroup diffusion problem. The overall strategy of (i) how to coarsen the spatial an energy grids, and (ii) how to navigate through the various grids, has the goal of minimizing the overall computational effort. This approach yields not only the fine-grid solution, but also coarse-group flux-weighted cross sections that can be used for other related problems.

  13. Recursive solutions for multi-group neutron kinetics diffusion equations in homogeneous three-dimensional rectangular domains with time dependent perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Claudio Z. [Universidade Federal de Pelotas, Capao do Leao (Brazil). Programa de Pos Graduacao em Modelagem Matematica; Bodmann, Bardo E.J.; Vilhena, Marco T. [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Mecanica; Barros, Ricardo C. [Universidade do Estado do Rio de Janeiro, Nova Friburgo, RJ (Brazil). Inst. Politecnico

    2014-12-15

    In the present work we solve in analytical representation the three dimensional neutron kinetic diffusion problem in rectangular Cartesian geometry for homogeneous and bounded domains for any number of energy groups and precursor concentrations. The solution in analytical representation is constructed using a hierarchical procedure, i.e. the original problem is reduced to a problem previously solved by the authors making use of a combination of the spectral method and a recursive decomposition approach. Time dependent absorption cross sections of the thermal energy group are considered with step, ramp and Chebyshev polynomial variations. For these three cases, we present numerical results and discuss convergence properties and compare our results to those available in the literature.

  14. Multigroup computation of the temperature-dependent Resonance Scattering Model (RSM) and its implementation

    Energy Technology Data Exchange (ETDEWEB)

    Ghrayeb, S. Z. [Dept. of Mechanical and Nuclear Engineering, Pennsylvania State Univ., 230 Reber Building, Univ. Park, PA 16802 (United States); Ouisloumen, M. [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States); Ougouag, A. M. [Idaho National Laboratory, MS-3860, PO Box 1625, Idaho Falls, ID 83415 (United States); Ivanov, K. N.

    2012-07-01

    A multi-group formulation for the exact neutron elastic scattering kernel is developed. This formulation is intended for implementation into a lattice physics code. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. A computer program has been written to test the formulation for various nuclides. Results of the multi-group code have been verified against the correct analytic scattering kernel. In both cases neutrons were started at various energies and temperatures and the corresponding scattering kernels were tallied. (authors)

  15. Multigroup computation of the temperature-dependent Resonance Scattering Model (RSM) and its implementation

    International Nuclear Information System (INIS)

    Ghrayeb, S. Z.; Ouisloumen, M.; Ougouag, A. M.; Ivanov, K. N.

    2012-01-01

    A multi-group formulation for the exact neutron elastic scattering kernel is developed. This formulation is intended for implementation into a lattice physics code. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. A computer program has been written to test the formulation for various nuclides. Results of the multi-group code have been verified against the correct analytic scattering kernel. In both cases neutrons were started at various energies and temperatures and the corresponding scattering kernels were tallied. (authors)

  16. One dimensional code to solve multigroup kinetic equations

    International Nuclear Information System (INIS)

    Alcantara, H.G. de; Prati, A.; Rosa, M.A.P.; Nair, R.P.K.

    1985-01-01

    It is described a computer program for the numerical solution of neutron kinetic equations in the multigroup theory for one dimensional medium. The spatial dependence is discretized by finite differences. The time integration is obtained by the method of ponderated residuals and iterative solution. It is examined one method of convergence acceleration. The program studies the reactivity feedback by the variation of temperature or density. It is simulated the simplified model of heat extraction. (M.C.K.) [pt

  17. Optimal calculational schemes for solving multigroup photon transport problem

    International Nuclear Information System (INIS)

    Dubinin, A.A.; Kurachenko, Yu.A.

    1987-01-01

    A scheme of complex algorithm for solving multigroup equation of radiation transport is suggested. The algorithm is based on using the method of successive collisions, the method of forward scattering and the spherical harmonics method, and is realized in the FORAP program (FORTRAN, BESM-6 computer). As an example the results of calculating reactor photon transport in water are presented. The considered algorithm being modified may be used for solving neutron transport problems

  18. An analytical multigroup benchmark for (n, γ) and (n, n', γ) verification of diffusion theory algorithms

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    2011-01-01

    Highlights: → Coupled neutron and gamma transport is considered in the multigroup diffusion approximation. → The model accommodates fission, up- and down-scattering and common neutron-gamma interactions. → The exact solution to the diffusion equation in a heterogeneous media of any number of regions is found. → The solution is shown to parallel the one-group case in a homogeneous medium. → The discussion concludes with a heterogeneous, 2 fuel-plate 93.2% enriched reactor fuel benchmark demonstration. - Abstract: The angular flux for the 'rod model' describing coupled neutron/gamma (n, γ) diffusion has a particularly straightforward analytical representation when viewed from the perspective of a one-group homogeneous medium. Cast in the form of matrix functions of a diagonalizable matrix, the solution to the multigroup equations in heterogeneous media is greatly simplified. We shall show exactly how the one-group homogeneous medium solution leads to the multigroup solution.

  19. Kalpakkam multigroup cross section set for fast reactor applications - status and performance

    International Nuclear Information System (INIS)

    Ramanadhan, M.M.; Gopalakrishnan, M.M.

    1986-01-01

    This report documents the status of the presently created set of multigroup constants at Kalpakkam. The list of nuclides processed and the details of multigroup structure are given. Also included are the particulars of dilutions and temperatures for each nuclide in the multigroup cross section set for which self shielding factors have been calculated. Using this new multigroup cross section set, measured integral quantities such as K-eff, central reaction rate ratios, central reactivity worths etc. were calculated for a few fast critical benchmark assemblies and the calculated values of neutronic parameters obtained were compared with those obtained using the available Cadarache cross section library and those published in literature for ENDF/B-IV based set and Japanese evaluated nuclear data library (JENDL). The details of analyses are documented along with the conclusions. (author). 17 refs., 12 tabs

  20. Multigroup neutron data base for nuclear geophysics

    International Nuclear Information System (INIS)

    Dworak, D.; Loskiewicz, J.

    1989-01-01

    The average group constants for the total, elastic, inelastic and capture cross sections as well as the average cosine of the scattering angle for elastic scattering and the average logarithmic energy decrement for elastic scattering have been obtained at two temperatures (300 and 400 deg K), using the ENDF/B-4 data and the IAEA-NDS pre-processing codes. The extended Abagyan group structure and the weighting spectrum of type 1/E were applied in course of the calculations. Self-shielding effect was not taken into account. All cross sections were Doppler broadened for both, 300 and 400 deg K temperatures. Under above assumptions, the average group constants were obtained for exactly 22 ENDF materials, which are of special importance for nuclear geophysics applications. 10 refs., 15 figs., 44 tabs. (author)

  1. La Tour de Babel ou la Part du Diable

    Directory of Open Access Journals (Sweden)

    James Dauphiné

    2000-06-01

    Full Text Available Denis de Rougemont dans son essai La Part du Diable s’est efforcé de prouver que la Tour de Babel est exemplaire de l’action du « diable dans nos dieux et dans nos maladies ». Plus proche des analyses contenues dans les Mythologies de Barthes que de celles rencontrées au fil des traités de démonologie, Denis de Rougemont dénonce le modernisme qui a, de fait, consacré Babel « grand mythe de notre temps » (p. 146. La thèse avancée a pour fondement « la babélisation des cadres matériels de notr...

  2. Research of the application of multi-group libraries based on ENDF/B-VII library in the reactor design

    International Nuclear Information System (INIS)

    Mi Aijun; Li Junjie

    2010-01-01

    In this paper the multi-group libraries were constructed by processing ENDF/B-VII neutron incident files into multi-group structure, and the application of the multi-group libraries in the pressurized-water reactor(PWR) design was studied. The construction of the multi-group library is realized by using the NJOY nuclear data processing system. The code can process the neutron cross section files form ENDF format to MATXS format which was required in SN code. Two dimension transport theory code of discrete ordinates DORT was used to verify the multi-group libraries and the method of the construction by comparing calculations for some representative benchmarks. We made the PWR shielding calculation by using the multi-group libraries and studied the influence of the parameters involved during the construction of the libraries such as group structure, temperatures and weight functions on the shielding design of the PWR. This work is the preparation for the construction of the multi-group library which will be used in PWR shielding design in engineering. (authors)

  3. Development and testing of multigroup library with correction of self-shielding effects in fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Zou Jun; He Zhaozhong; Zeng Qin; Qiu Yuefeng; Wang Minghuang

    2010-01-01

    A multigroup library HENDL2.1/SS (Hybrid Evaluated Nuclear Data Library/Self-Shielding) based on ENDF/B-VII.0 evaluate data has been generated using Bondarenko and flux calculator method for the correction of self-shielding effect of neutronics analyses. To validate the reliability of the multigroup library HENDL2.1/SS, transport calculations for fusion-fission hybrid system FDS-I were performed in this paper. It was verified that the calculations with the HENDL2.1/SS gave almost the same results with MCNP calculations and were better than calculations with the HENDL2.0/MG which is another multigroup library without self-shielding correction. The test results also showed that neglecting resonance self-shielding caused underestimation of the K eff , neutron fluxes and waste transmutation ratios in the multigroup calculations of FDS-I.

  4. Crowd-sourced BMS point matching and metadata maintenance with Babel

    DEFF Research Database (Denmark)

    Fürst, Jonathan; Chen, Kaifei; Katz, Randy H.

    2016-01-01

    , occupants provide physical and digital input in form of actuations (e.g., the turning on/off a light) and readings (e.g., reading room temperature of a thermostat) to Babel. Babel then matches this input to digital points in the BMS based on value equality. We have implemented a prototype of our system...

  5. Demo Abstract: Human-in-the-loop BMS Point Matching and Metadata Labeling with Babel

    DEFF Research Database (Denmark)

    Fürst, Jonathan; Chen, Kaifei; Katz, Randy H.

    2015-01-01

    . Occupants provide physical and digital input in form of actuations (e.g., the switching of a light) and readings (e.g., the reading of the room temperature of a thermostat) to Babel. Babel then matches this input to digital points in the BMS based on value equality. We have implemented a prototype of our...

  6. Multi-level nonlinear diffusion acceleration method for multigroup transport k-Eigenvalue problems

    International Nuclear Information System (INIS)

    Anistratov, Dmitriy Y.

    2011-01-01

    The nonlinear diffusion acceleration (NDA) method is an efficient and flexible transport iterative scheme for solving reactor-physics problems. This paper presents a fast iterative algorithm for solving multigroup neutron transport eigenvalue problems in 1D slab geometry. The proposed method is defined by a multi-level system of equations that includes multigroup and effective one-group low-order NDA equations. The Eigenvalue is evaluated in the exact projected solution space of smallest dimensionality, namely, by solving the effective one- group eigenvalue transport problem. Numerical results that illustrate performance of the new algorithm are demonstrated. (author)

  7. Approximate albedo boundary conditions for energy multigroup X,Y-geometry discrete ordinates nuclear global calculations

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Davi J.M.; Nunes, Carlos E.A.; Alves Filho, Hermes; Barros, Ricardo C., E-mail: davijmsilva@yahoo.com.br, E-mail: ceanunes@yahoo.com.br, E-mail: rcbarros@pq.cnpq.br [Secretaria Municipal de Educacao de Itaborai, RJ (Brazil); Universidade Estacio de Sa (UNESA), Rio de Janeiro, RJ (Brazil); Universidade do Estado do Rio de Janeiro (UERJ), Novra Friburgo, RJ (Brazil). Instituto Politecnico. Departamento de Modelagem Computacional

    2017-11-01

    Discussed here is the accuracy of approximate albedo boundary conditions for energy multigroup discrete ordinates (S{sub N}) eigenvalue problems in two-dimensional rectangular geometry for criticality calculations in neutron fission reacting systems, such as nuclear reactors. The multigroup (S{sub N}) albedo matrix substitutes approximately the non-multiplying media around the core, e.g., baffle and reflector, as we neglect the transverse leakage terms within these non-multiplying regions. Numerical results to a typical model problem are given to illustrate the accuracy versus the computer running time. (author)

  8. Multigroup cross section collapsing optimization of a He-3 detector assembly model using deterministic transport techniques

    International Nuclear Information System (INIS)

    Huang, Mi; Yi, Ce; Manalo, Kevin L.; Sjoden, Glenn E.

    2011-01-01

    Multigroup optimization is performed on a neutron detector assembly to examine the validity of transport response in forward and adjoint modes. For SN transport simulations, we discuss the multigroup collapse of an 80 group library to 40, 30, and 16 groups, constructed from using the 3-D parallel PENTRAN and macroscopic cross section collapsing with YGROUP contribution weighting. The difference in using P 1 and P 3 Legendre order in scattering cross sections is investigated; also, associated forward and adjoint transport responses are calculated. We conclude that for the block analyzed, a 30 group cross section optimizes both computation time and accuracy relative to the 80 group transport calculations. (author)

  9. IRAM combined with multi-group GMRES for solving Matrix MOC

    International Nuclear Information System (INIS)

    Wu Wenbin; Li Qing; Wang Kan

    2014-01-01

    In the Matrix MOC, a linear algebraic equation system can be constructed by sweeping only once, and then solving the linear system takes the place of repeatedly characteristics sweeping. In neutron transport critical problems, k eff is traditionally computed by power iteration (PI), whose convergence rate is deeply dependent on the dominance ratio. Large problems of practical interest often have dominance ratios close to 1, leading to slow convergence of PI. In this study, k eff is computed by the Implicitly Restarted Arnoldi Method (IRAM) combined with multi-group GMRES, in which multi-group problems coupled by upscatter are solved directly, avoiding upscatter iteration. Numerical results of several benchmarks such as 2D C5G7 demonstrate that IRAM combined with multi-group GMRES can obtain good accuracy and higher efficiency compared with PI. (authors)

  10. The LAW Library -- A multigroup cross-section library for use in radioactive waste analysis calculations

    Energy Technology Data Exchange (ETDEWEB)

    Greene, N.M.; Arwood, J.W.; Wright, R.Q.; Parks, C.V.

    1994-08-01

    The 238-group LAW Library is a new multigroup neutron cross-section library based on ENDF/B-V data, with five sets of data taken from ENDF/B-VI ({sup 14}N{sub 7}, {sup 15}N{sub 7}, {sup 16}O{sub 8}, {sup 154Eu}{sub 63}, and {sup 155}Eu{sub 63}). These five nuclides are included because the new evaluations are thought to be superior to those in Version 5. The LAW Library contains data for over 300 materials and will be distributed by the Radiation Shielding Information Center, located at Oak Ridge National Laboratory. It was generated for use in neutronics calculations required in radioactive waste analyses, although it has equal utility in any study requiring multigroup neutron cross sections.

  11. MC2-3: Multigroup Cross Section Generation Code for Fast Reactor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Yang, W. S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-08

    The MC2-3 code is a Multigroup Cross section generation Code for fast reactor analysis, developed by improving the resonance self-shielding and spectrum calculation methods of MC2-2 and integrating the one-dimensional cell calculation capabilities of SDX. The code solves the consistent P1 multigroup transport equation using basic neutron data from ENDF/B data files to determine the fundamental mode spectra for use in generating multigroup neutron cross sections. A homogeneous medium or a heterogeneous slab or cylindrical unit cell problem is solved in ultrafine (~2000) or hyperfine (~400,000) group levels. In the resolved resonance range, pointwise cross sections are reconstructed with Doppler broadening at specified isotopic temperatures. The pointwise cross sections are directly used in the hyperfine group calculation whereas for the ultrafine group calculation, self-shielded cross sections are prepared by numerical integration of the pointwise cross sections based upon the narrow resonance approximation. For both the hyperfine and ultrafine group calculations, unresolved resonances are self-shielded using the analytic resonance integral method. The ultrafine group calculation can also be performed for two-dimensional whole-core problems to generate region-dependent broad-group cross sections. Multigroup cross sections are written in the ISOTXS format for a user-specified group structure. The code is executable on UNIX, Linux, and PC Windows systems, and its library includes all isotopes of the ENDF/BVII. 0 data.

  12. NUMERICAL MULTIGROUP TRANSIENT ANALYSIS OF SLAB NUCLEAR REACTOR WITH THERMAL FEEDBACK

    Directory of Open Access Journals (Sweden)

    Filip Osuský

    2016-12-01

    Full Text Available The paper describes a new numerical code for multigroup transient analyses with thermal feedback. The code is developed at Institute of Nuclear and Physical Engineering. It is necessary to carefully investigate transient states of fast neutron reactors, due to recriticality issues after accident scenarios. The code solves numerical diffusion equation for 1D problem with possible neutron source incorporation. Crank-Nicholson numerical method is used for the transient states. The investigated cases are describing behavior of PWR fuel assembly inside of spent fuel pool and with the incorporated neutron source for better illustration of thermal feedback.

  13. Cassandre : a two-dimensional multigroup diffusion code for reactor transient analysis

    International Nuclear Information System (INIS)

    Arien, B.; Daniels, J.

    1986-12-01

    CASSANDRE is a two-dimensional (x-y or r-z) finite element neutronics code with thermohydraulics feedback for reactor dynamics prior to the disassembly phase. It uses the multigroup neutron diffusion theory. Its main characteristics are the use of a generalized quasistatic model, the use of a flexible multigroup point-kinetics algorithm allowing for spectral matching and the use of a finite element description. The code was conceived in order to be coupled with any thermohydraulics module, although thermohydraulics feedback is only considered in r-z geometry. In steady state criticality search is possible either by control rod insertion or by homogeneous poisoning of the coolant. This report describes the main characterstics of the code structure and provides all the information needed to use the code. (Author)

  14. P1 adaptation of TRIPOLI-4 code for the use of 3D realistic core multigroup cross section generation

    International Nuclear Information System (INIS)

    Cai, L.; Peneliau, Y.; Diop, C.M.; Malvagi, F.

    2013-01-01

    In this paper, we discuss some improvements we recently implemented in the Monte-Carlo code TRIPOLI-4 associated with the homogenization and collapsing of subassemblies cross sections. The improvement offered us another approach to get critical multigroup cross sections with Monte-Carlo method. The new calculation method in TRIPOLI-4 tries to ensure the neutronic balances, the multiplicative factors and the critical flux spectra for some realistic geometries. We make it by at first improving the treatment of the energy transfer probability, the neutron excess weight and the neutron fission spectrum. This step is necessary for infinite geometries. The second step which will be enlarged in this paper is aimed at better dealing with the multigroup anisotropy distribution law for finite geometries. Usually, Monte-Carlo homogenized multi-group cross sections are validated within a core calculation by a deterministic code. Here, the validation of multigroup constants will also be carried out by Monte-Carlo core calculation code. Different subassemblies are tested with the new collapsing method, especially for the fast neutron reactors subassemblies. (authors)

  15. New Multi-group Transport Neutronics (PHISICS) Capabilities for RELAP5-3D and its Application to Phase I of the OECD/NEA MHTGR-350 MW Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard Strydom; Cristian Rabiti; Andrea Alfonsi

    2012-10-01

    PHISICS is a neutronics code system currently under development at the Idaho National Laboratory (INL). Its goal is to provide state of the art simulation capability to reactor designers. The different modules for PHISICS currently under development are a nodal and semi-structured transport core solver (INSTANT), a depletion module (MRTAU) and a cross section interpolation (MIXER) module. The INSTANT module is the most developed of the mentioned above. Basic functionalities are ready to use, but the code is still in continuous development to extend its capabilities. This paper reports on the effort of coupling the nodal kinetics code package PHISICS (INSTANT/MRTAU/MIXER) to the thermal hydraulics system code RELAP5-3D, to enable full core and system modeling. This will enable the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5-3D (NESTLE). In the second part of the paper, an overview of the OECD/NEA MHTGR-350 MW benchmark is given. This benchmark has been approved by the OECD, and is based on the General Atomics 350 MW Modular High Temperature Gas Reactor (MHTGR) design. The benchmark includes coupled neutronics thermal hydraulics exercises that require more capabilities than RELAP5-3D with NESTLE offers. Therefore, the MHTGR benchmark makes extensive use of the new PHISICS/RELAP5-3D coupling capabilities. The paper presents the preliminary results of the three steady state exercises specified in Phase I of the benchmark using PHISICS/RELAP5-3D.

  16. Evaluation of the HTTR criticality and burnup calculations with continuous-energy and multigroup cross sections

    International Nuclear Information System (INIS)

    Chiang, Min-Han; Wang, Jui-Yu; Sheu, Rong-Jiun; Liu, Yen-Wan Hsueh

    2014-01-01

    The High Temperature Engineering Test Reactor (HTTR) in Japan is a helium-cooled graphite-moderated reactor designed and operated for the future development of high-temperature gas-cooled reactors. Two detailed full-core models of HTTR have been established by using SCALE6 and MCNP5/X, respectively, to study its neutronic properties. Several benchmark problems were repeated first to validate the calculation models. Careful code-to-code comparisons were made to ensure that two calculation models are both correct and equivalent. Compared with experimental data, the two models show a consistent bias of approximately 20–30 mk overestimation in effective multiplication factor for a wide range of core states. Most of the bias could be related to the ENDF/B-VII.0 cross-section library or incomplete modeling of impurities in graphite. After that, a series of systematic analyses was performed to investigate the effects of cross sections on the HTTR criticality and burnup calculations, with special interest in the comparison between continuous-energy and multigroup results. Multigroup calculations in this study were carried out in 238-group structure and adopted the SCALE double-heterogeneity treatment for resonance self-shielding. The results show that multigroup calculations tend to underestimate the system eigenvalue by a constant amount of ∼5 mk compared to their continuous-energy counterparts. Further sensitivity studies suggest the differences between multigroup and continuous-energy results appear to be temperature independent and also insensitive to burnup effects

  17. Evaluation of the HTTR criticality and burnup calculations with continuous-energy and multigroup cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Min-Han; Wang, Jui-Yu [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Sheu, Rong-Jiun, E-mail: rjsheu@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Department of Engineering System and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Liu, Yen-Wan Hsueh [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Department of Engineering System and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China)

    2014-05-01

    The High Temperature Engineering Test Reactor (HTTR) in Japan is a helium-cooled graphite-moderated reactor designed and operated for the future development of high-temperature gas-cooled reactors. Two detailed full-core models of HTTR have been established by using SCALE6 and MCNP5/X, respectively, to study its neutronic properties. Several benchmark problems were repeated first to validate the calculation models. Careful code-to-code comparisons were made to ensure that two calculation models are both correct and equivalent. Compared with experimental data, the two models show a consistent bias of approximately 20–30 mk overestimation in effective multiplication factor for a wide range of core states. Most of the bias could be related to the ENDF/B-VII.0 cross-section library or incomplete modeling of impurities in graphite. After that, a series of systematic analyses was performed to investigate the effects of cross sections on the HTTR criticality and burnup calculations, with special interest in the comparison between continuous-energy and multigroup results. Multigroup calculations in this study were carried out in 238-group structure and adopted the SCALE double-heterogeneity treatment for resonance self-shielding. The results show that multigroup calculations tend to underestimate the system eigenvalue by a constant amount of ∼5 mk compared to their continuous-energy counterparts. Further sensitivity studies suggest the differences between multigroup and continuous-energy results appear to be temperature independent and also insensitive to burnup effects.

  18. Achievement and qualification of multigroup cross-section library for light water reactor calculation

    International Nuclear Information System (INIS)

    Gastaldi, B.

    1986-07-01

    This study intends to improve then to check on integral experiments, the calculation of the main neutronic parameters in light water moderated lattices: Uranium 238 capture and consequently Plutonium 239 build-up, multiplication factor, temperature coefficient. The first part of this work concerns the resonant reaction rate calculation method implemented in the APOLLO code, the so-called LIVOLANT and JEANPIERRE formalism. The errors introduced by the corresponding assumptions are quantified and we propose substitution methods which avoid large biases and supply satisfactory results. The second part is dedicated to the cross-section evaluation of uranium major isotopes and to the achievement of APOLLO multigroup cross-sections. This cross-section set takes into considerations on the one hand the recent differential information and the other hand the various integral information obtained in the French Atomic Energy Commission facilities. The nuclear data file (JEF abd ENDF/B5) processing, for multigroup and self-shielded cross-sections achieving enable us to check the new THEMIS computer code. In the last part, the experimental validation of the proposed procedure (accurate formalism mutuel shielding and new multigroup library) is presented. This qualification is based on the reinterpretation of critical experiments performed in the EOLE reactor at Cadarache and spent fuel analysis. The corresponding results demonstrate that our propositions provide improvements on the computation of the PWR neutronic parameters; calculation-experiment discrepancies are now consistent with experimental uncertainty margins. 46 refs; 31 figs; 23 tabl [fr

  19. Multigroup processing ENDF/B dosimetry covariances

    International Nuclear Information System (INIS)

    Muir, D.W.; MacFarlane, R.E.; Boicourt, R.M.

    1982-01-01

    The methodology of multigroup processing of ENDF/B dosimetry covariance (uncertainty) information is discussed, with specific references to the ERRORR covariance module of the NJOY nuclear data processing system. Also discussed is the recent application of ERRORR to the generation of a 137-group, 35-material covariance library for dosimetry applications, and a compact format for storing and transmitting fine-group covariance libraries is introduced

  20. Multigroup perturbation model for kinetic analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Souza, G.M.

    1989-01-01

    The scope of this work is the development of a multigroup perturbation theory for the purpose of Kinetic and dynamic analysis of nuclear reactors. The equations that describe the reactor behavior were presented in all generality and written in the shorthand notation of matrices and vectors. In the derivation of those equations indetermined operators and discretizing factors were introduced and then determined by comparision with conventional equations. Fick's Law was developed in higher orders for neutron and importance current density. The solution of the direct and adjoint fields were represented by combination of the eigenfunctions of the B and B* operators and the eigenvalue modulus equality was established mathematically. In the derivation of the reactivity expression the B operator perturbation was split in two non coupled to the flux form and level. The prompt neutrons effective mean life was derived from reactor equations and importance conservation. The establishment of the Nordheim's equation, although modified, was based on Gandini. Finally, a mathematical interpretation of the flux-trap region was avented. (author)

  1. Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit

    Directory of Open Access Journals (Sweden)

    Morley Chris

    2008-03-01

    Full Text Available Abstract Background Scripting languages such as Python are ideally suited to common programming tasks in cheminformatics such as data analysis and parsing information from files. However, for reasons of efficiency, cheminformatics toolkits such as the OpenBabel toolkit are often implemented in compiled languages such as C++. We describe Pybel, a Python module that provides access to the OpenBabel toolkit. Results Pybel wraps the direct toolkit bindings to simplify common tasks such as reading and writing molecular files and calculating fingerprints. Extensive use is made of Python iterators to simplify loops such as that over all the molecules in a file. A Pybel Molecule can be easily interconverted to an OpenBabel OBMol to access those methods or attributes not wrapped by Pybel. Conclusion Pybel allows cheminformaticians to rapidly develop Python scripts that manipulate chemical information. It is open source, available cross-platform, and offers the power of the OpenBabel toolkit to Python programmers.

  2. Interpretations of the Tower of Babel Narrative in the African Context ...

    African Journals Online (AJOL)

    Biblical scholarship from the African context provides possible new and creative perspectives for the interpretation of the Tower of Babel narrative because of uniquely African questions that structure the interpretative process. These unique questions relate to the cultures of African people, the injustice of colonialism, ...

  3. New Reflections on Mirror Neuron Research, the Tower of Babel, and Intercultural Education

    Science.gov (United States)

    Westbrook, Timothy Paul

    2015-01-01

    Studies of the human mirror neuron system demonstrate how mental mimicking of one's social environment affects learning. The mirror neuron system also has implications for intercultural encounters. This article explores the common ground between the mirror neuron system and theological principles from the Tower of Babel narrative and applies them…

  4. CINESP - computational program of spatial kinetics for nuclear reactors in the one-two dimension multigroup diffusion theory

    International Nuclear Information System (INIS)

    Santos, R.S. dos

    1993-01-01

    This paper presents a computational program to solve numerically the reactor kinetics equations in the multigroup diffusion theory. One or two-dimensional problems in cylindrical or Cartesian geometries, with any number of energy and delayed-neutron precursors groups are dealt with. The main input and output of the program are briefly discussed. Various results demonstrate the accuracy and versatility of the program, when compared with other kinetics programs. (author)

  5. Macroscopic multigroup constants for accelerator driven system core calculation

    International Nuclear Information System (INIS)

    Heimlich, Adino; Santos, Rubens Souza dos

    2011-01-01

    The high-level wastes stored in facilities above ground or shallow repositories, in close connection with its nuclear power plant, can take almost 106 years before the radiotoxicity became of the order of the background. While the disposal issue is not urgent from a technical viewpoint, it is recognized that extended storage in the facilities is not acceptable since these ones cannot provide sufficient isolation in the long term and neither is it ethical to leave the waste problem to future generations. A technique to diminish this time is to transmute these long-lived elements into short-lived elements. The approach is to use an Accelerator Driven System (ADS), a sub-critical arrangement which uses a Spallation Neutron Source (SNS), after separation the minor actinides and the long-lived fission products (LLFP), to convert them to short-lived isotopes. As an advanced reactor fuel, still today, there is a few data around these type of core systems. In this paper we generate macroscopic multigroup constants for use in calculations of a typical ADS fuel, take into consideration, the ENDF/BVI data file. Four energy groups are chosen to collapse the data from ENDF/B-VI data file by PREPRO code. A typical MOX fuel cell is used to validate the methodology. The results are used to calculate one typical subcritical ADS core. (author)

  6. Un país para él solo : notas sobre Isaac Babel

    Directory of Open Access Journals (Sweden)

    Hernando Valencia Goelkel

    1966-07-01

    Full Text Available Como es de sobra sabido, Isaac Babel -uno de los grandes nombres en la literatura soviética inmediatamente posterior a la muerte de Lenin- se perdió de vista en 1939. Vino luego la guerra, un tiempo inapropiado para la inquisición o la solicitud; cuando esta concluyó y fue sustituída por el amable clima de la guerra fría, los familiares de Babel -establecidos hacía mucho tiempo fuera de Rusia- volvieron a tener noticias. Cuentos, rumores, fabulaciones: lo vi el año pasado en tal campo de concentración; está no sé dónde y pronto quedará libre; lo siento, ha muerto: lo sé por alguien que lo supo de X, etcétera.

  7. Reframing the Tower of Babel narrative for economic justice within the South African context

    Directory of Open Access Journals (Sweden)

    Mark Rathbone

    2016-09-01

    Full Text Available The Tower of Babel narrative is profoundly connected to the history of South Africa and its interpretation in the Dutch Reformed Church document entitled Human Relations and the South African Scene in the Light of Scripture (1976, which was used to justify apartheid. In this article, it is argued that this understanding of the narrative is due to racist framing that morally justified the larger apartheid narrative. The Tower of Babel narrative was later reframed for liberation and reconciliation by Desmond Tutu. However, apartheid had an impact not only on the sociopolitical dynamics of South Africa. Submissions to the Truth and Reconciliation Commission by business and labour highlight the impact of apartheid on the economy and specifically black labour. These revelations are responsible for new questions regarding the economics of the narrative that arise and may enrich the understanding of the Tower of Babel narrative. This focus on the economic aspect of the narrative is also supported by historical research on the Tower of Babel narrative that reveals that the dispersion of the people on the plain of Shinar may refer to the demise of the Sumerian empire, which was among other influences brought about by a labour revolt. In this regard, the narrative is a theological reflection on the demise of an unjust economic system that exploited workers. The purpose of this article is to critically explore this economic justice aspect embedded in the narrative in order to determine whether this reframing of the narrative is plausible. This is particularly important within the post-apartheid context and the increase of economic problems such as unemployment, poverty and economic inequality.

  8. Cross-language Babel structs—making scientific interfaces more efficient

    International Nuclear Information System (INIS)

    Prantl, Adrian; Epperly, Thomas G W; Ebner, Dietmar

    2013-01-01

    Babel is an open-source language interoperability framework tailored to the needs of high-performance scientific computing. As an integral element of the Common Component Architecture, it is employed in a wide range of scientific applications where it is used to connect components written in different programming languages. In this paper we describe how we extended Babel to support interoperable tuple data types (structs). Structs are a common idiom in (mono-lingual) scientific application programming interfaces (APIs); they are an efficient way to pass tuples of nonuniform data between functions, and are supported natively by most programming languages. Using our extended version of Babel, developers of scientific codes can now pass structs as arguments between functions implemented in any of the supported languages. In C, C++, Fortran 2003/2008 and Chapel, structs can be passed without the overhead of data marshaling or copying, providing language interoperability at minimal cost. Other supported languages are Fortran 77, Fortran 90/95, Java and Python. We will show how we designed a struct implementation that is interoperable with all of the supported languages and present benchmark data to compare the performance of all language bindings, highlighting the differences between languages that offer native struct support and an object-oriented interface with getter/setter methods. A case study shows how structs can help simplify the interfaces of scientific codes significantly. (paper)

  9. Cross-language Babel structs—making scientific interfaces more efficient

    Science.gov (United States)

    Prantl, Adrian; Ebner, Dietmar; Epperly, Thomas G. W.

    2013-01-01

    Babel is an open-source language interoperability framework tailored to the needs of high-performance scientific computing. As an integral element of the Common Component Architecture, it is employed in a wide range of scientific applications where it is used to connect components written in different programming languages. In this paper we describe how we extended Babel to support interoperable tuple data types (structs). Structs are a common idiom in (mono-lingual) scientific application programming interfaces (APIs); they are an efficient way to pass tuples of nonuniform data between functions, and are supported natively by most programming languages. Using our extended version of Babel, developers of scientific codes can now pass structs as arguments between functions implemented in any of the supported languages. In C, C++, Fortran 2003/2008 and Chapel, structs can be passed without the overhead of data marshaling or copying, providing language interoperability at minimal cost. Other supported languages are Fortran 77, Fortran 90/95, Java and Python. We will show how we designed a struct implementation that is interoperable with all of the supported languages and present benchmark data to compare the performance of all language bindings, highlighting the differences between languages that offer native struct support and an object-oriented interface with getter/setter methods. A case study shows how structs can help simplify the interfaces of scientific codes significantly.

  10. Informe sobre el Proyecto Alfa Biblioteca de Babel: ¿Un atajo para la administración de bibliotecas universitarias? Biblioteca de Babel Alfa Project Report: A shortcut for the academic libraries management?

    OpenAIRE

    Liliana Laura Rega

    2006-01-01

    El Proyecto Alfa Biblioteca de Babel que reúne bibliotecas universitarias de América Latina y Europa comenzó en marzo de 2005 y prevé su conclusión en marzo de 2007. El presente trabajo intenta describir los objetivos y los resultados esperados, e informa las actividades realizadas por la Red Biblioteca de Babel. Finalmente se analizan las propuestas del proyecto en cuanto al rol de las bibliotecas universitarias, y su relación con la innovación en las prácticas pedagógicas.Biblioteca de Babe...

  11. SIMMER extension for multigroup energy structure search using genetic algorithm with different fitness functions

    Directory of Open Access Journals (Sweden)

    Mattia Massone

    2017-09-01

    Full Text Available The multigroup transport theory is the basis for many neutronics modules. A significant point of the cross-section (XS generation procedure is the choice of the energy groups' boundaries in the XS libraries, which must be carefully selected as an unsuitable energy meshing can easily lead to inaccurate results. This decision can require considerable effort and is particularly difficult for the common user, especially if not well-versed in reactor physics. This work investigates a genetic algorithm-based tool which selects an appropriate XS energy structure (ES specific for the considered problem, to be used for the condensation of a fine multigroup library. The procedure is accelerated by results storage and fitness calculation speed-up and can be easily parallelized. The extension is applied to the coupled code SIMMER and tested on the European Sustainable Nuclear Industrial Initiative (ESNII+ Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID-like reactor system with different fitness functions. The results show that, when the libraries are condensed based on the ESs suggested by the algorithm, the code actually returns the correct multiplication factor, in both reference and voided conditions. The computational effort reduction obtained by using the condensed library rather than the fine one is assessed and is much higher than the time required for the ES search.

  12. Application of Trotter approximation for solving time dependent neutron transport equation

    International Nuclear Information System (INIS)

    Stancic, V.

    1987-01-01

    A method is proposed to solve multigroup time dependent neutron transport equation with arbitrary scattering anisotropy. The recurrence relation thus obtained is simple, numerically stable and especially suitable for treatment of complicated geometries. (author)

  13. The energy-dependent backward-forward-isotropic scattering model with some applications to the neutron transport equation

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1985-01-01

    A multigroup formalism is developed for the backward-forward-isotropic scattering model of neutron transport. Some exact solutions are obtained in two-group theory for slab and spherical geometry. The results are useful for benchmark problems involving multigroup anisotropic scattering. (author)

  14. Informe sobre el Proyecto Alfa Biblioteca de Babel: ¿Un atajo para la administración de bibliotecas universitarias? Biblioteca de Babel Alfa Project Report: A shortcut for the academic libraries management?

    Directory of Open Access Journals (Sweden)

    Liliana Laura Rega

    2006-12-01

    Full Text Available El Proyecto Alfa Biblioteca de Babel que reúne bibliotecas universitarias de América Latina y Europa comenzó en marzo de 2005 y prevé su conclusión en marzo de 2007. El presente trabajo intenta describir los objetivos y los resultados esperados, e informa las actividades realizadas por la Red Biblioteca de Babel. Finalmente se analizan las propuestas del proyecto en cuanto al rol de las bibliotecas universitarias, y su relación con la innovación en las prácticas pedagógicas.Biblioteca de Babel Alfa Project that assembles academic libraries from Latin America and Europe was approved on March, 2005 and its conclusion is foreseen on March, 2007. This article attempts to describe the aims and the expected results, and reports the activities of the Biblioteca de Babel Network. Finally it analizes the proposals of the project about the role of academic libraries and their relationship with innovations in pedagogical practices.

  15. Contribution to the solution of the multigroup Boltzmann equation by the determinist methods and the Monte Carlo method; Contribution a la resolution de l`equation de Bolztmann en multigroupe par les methodes deterministes et Monte-Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Li, M

    1998-08-01

    In this thesis, two methods for solving the multigroup Boltzmann equation have been studied: the interface-current method and the Monte Carlo method. A new version of interface-current (IC) method has been develop in the TDT code at SERMA, where the currents of interface are represented by piecewise constant functions in the solid angle space. The convergence of this method to the collision probability (CP) method has been tested. Since the tracking technique is used for both the IC and CP methods, it is necessary to normalize he collision probabilities obtained by this technique. Several methods for this object have been studied and implemented in our code, we have compared their performances and chosen the best one as the standard choice. The transfer matrix treatment has been a long-standing difficulty for the multigroup Monte Carlo method: when the cross-sections are converted into multigroup form, important negative parts will appear in the angular transfer laws represented by low-order Legendre polynomials. Several methods based on the preservation of the first moments, such as the discrete angles methods and the equally-probable step function method, have been studied and implemented in the TRIMARAN-II code. Since none of these codes has been satisfactory, a new method, the non equally-probably step function method, has been proposed and realized in our code. The comparisons for these methods have been done in several aspects: the preservation of the moments required, the calculation of a criticality problem and the calculation of a neutron-transfer in water problem. The results have showed that the new method is the best one in all these comparisons, and we have proposed that it should be a standard choice for the multigroup transfer matrix. (author) 76 refs.

  16. English as an International Language (EIL), World Englishes within an International Context, and the Tower of Babel

    Science.gov (United States)

    Smith, Jerry

    2015-01-01

    This paper discusses the similarities between the Bible record of the Tower of Babel and the resulting confusion of languages and how it relates to modern times and the trend we see of English as an International Language (EIL). This paper then briefly examines the trend of being culturally sensitive in EIL by accepting cultural or "world…

  17. XNWLUP, Graphical user interface to plot WIMS-D library multigroup cross sections

    International Nuclear Information System (INIS)

    Ganesan, S.; Jagannathan, V.; Thiyagarajan, T.K.

    2005-01-01

    1 - Description of program or function: XnWlup is a computer program with user-friendly graphical interface to help the users of WIMS-D library to enable quick visualisation of the plots of the energy dependence of the multigroup cross sections of any nuclide of interest. This software enables the user to generate and view the histogram of 69 multi-group cross sections as a function of neutron energy under Microsoft Windows environment. This software is designed using Microsoft Visual C++ and Microsoft Foundation Classes Library. IAEA1395/05: New features of version 3.0: - Plotting absorption and fission cross sections of resonant nuclide after applying the self-shielding cross section. - Plotting the data of Resonant Integral table, as a function of dilution cross section for a selected temperature and for a given energy group. - Plotting the data of Resonant Integral table, as a function of temperature for a selected background dilution cross section and for a given energy group. - Clearing all the graphs except one graph from the display screen is easily done by using a tool bar button. - Displaying the coordinate of the cursor point with appropriate units. 2 - Methods: XnWlup helps to obtain histogram plots of the values of cross section data of an element/isotope available as 69-group WIMS-D library as a function of energy bins. The software XnWlup is developed with this graphical user interface in order to help those users who frequently refer to the WIMS-D library cross section data of neutron-nuclear reactions. The software also helps to produce handbook of WIMS-D cross sections

  18. System of adjoint P1 equations for neutron moderation

    International Nuclear Information System (INIS)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos

    2000-01-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, this procedure is questioned and the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. (author)

  19. System of adjoint P1 equations for neutron moderation; Sistema de equacoes P1 adjuntas para a moderacao de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2000-07-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, this procedure is questioned and the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. (author)

  20. Application de la methode des sous-groupes au calcul Monte-Carlo multigroupe

    Science.gov (United States)

    Martin, Nicolas

    This thesis is dedicated to the development of a Monte Carlo neutron transport solver based on the subgroup (or multiband) method. In this formalism, cross sections for resonant isotopes are represented in the form of probability tables on the whole energy spectrum. This study is intended in order to test and validate this approach in lattice physics and criticality-safety applications. The probability table method seems promising since it introduces an alternative computational way between the legacy continuous-energy representation and the multigroup method. In the first case, the amount of data invoked in continuous-energy Monte Carlo calculations can be very important and tend to slow down the overall computational time. In addition, this model preserves the quality of the physical laws present in the ENDF format. Due to its cheap computational cost, the multigroup Monte Carlo way is usually at the basis of production codes in criticality-safety studies. However, the use of a multigroup representation of the cross sections implies a preliminary calculation to take into account self-shielding effects for resonant isotopes. This is generally performed by deterministic lattice codes relying on the collision probability method. Using cross-section probability tables on the whole energy range permits to directly take into account self-shielding effects and can be employed in both lattice physics and criticality-safety calculations. Several aspects have been thoroughly studied: (1) The consistent computation of probability tables with a energy grid comprising only 295 or 361 groups. The CALENDF moment approach conducted to probability tables suitable for a Monte Carlo code. (2) The combination of the probability table sampling for the energy variable with the delta-tracking rejection technique for the space variable, and its impact on the overall efficiency of the proposed Monte Carlo algorithm. (3) The derivation of a model for taking into account anisotropic

  1. A lumped parameter method of characteristics approach and multigroup kernels applied to the subgroup self-shielding calculation in MPACT

    Directory of Open Access Journals (Sweden)

    Shane Stimpson

    2017-09-01

    Full Text Available An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly 2×. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilities have been demonstrated on two test cases: (1 a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications Progression Problem 2a and (2 a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly 3–4×, with a corresponding 15–20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of 2×. In total, the improvements yield roughly a 7–8× speedup. Given these performance benefits, these approaches have been adopted as the default in MPACT.

  2. A lumped parameter method of characteristics approach and multigroup kernels applied to the subgroup self-shielding calculation in MPACT

    International Nuclear Information System (INIS)

    Stimpson, Shane G.; Liu, Yuxuan; Collins, Benjamin S.; Clarno, Kevin T.

    2017-01-01

    An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC) is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly 2×. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilities have been demonstrated on two test cases: (1) a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications) Progression Problem 2a and (2) a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly 3–4×, with a corresponding 15–20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of 2×. In total, the improvements yield roughly a 7–8× speedup. Furthermore given these performance benefits, these approaches have been adopted as the default in MPACT.

  3. Silvana Borutti – Ute Heidmann, La Babele in cui viviamo. Traduzioni, Riscritture, Culture

    Directory of Open Access Journals (Sweden)

    Manfredi Bernardini

    2013-12-01

    Full Text Available Cosa implica l’atto di tradurre da una lingua all’altra? Come si pone la traduzione in rapporto al concetto di cultura? È possibile rintracciare un’etica della traduzione che valorizzi le differenze linguistiche, e quindi culturali, piuttosto che annullarle? Che mutazioni subisce l’identità nelle sue varie sfaccettature nel corso del processo della traduzione? Sono questi alcuni degli interrogativi cui cercano di dare risposta Silvana Borutti e Ute Heidmann in La Babele in cui viviamo. Traduzioni, Riscritture, Culture. La prima insegna Filosofia teoretica all’Università di Pavia, mentre Ute Heidmann è docente di Letterature comparate all’Università di Losanna. Prendendo le mosse da una doppia prospettiva fornita dalla filosofia del linguaggio e dalla comparatistica, le autrici offrono una lettura interdisciplinare del tema della traduzione. 

  4. Influence of density and chemical composition of soils in the neutrons probes answer

    International Nuclear Information System (INIS)

    Crispino, Marcos Luiz; Antonino, Antonio Celso Dantas; Dall'Olio, Attilio; Oliveira Lira, Carlos Alberto Brayner de; Carneiro, Clemente J. Gusmao

    1996-08-01

    The determination of soil humidity with neutron probes is based in the measure of the thermal neutron flux intensity and its behavior with the soil depend: soil's chemical composition; soils physical parameters; neutrons' energetic spectrum and neutron-source detector geometry.The objective of this paper is to apply the multigroup function theory to calculate a neutron probe calibration curve utilizing representatives parameters and coefficients of soils horizons in a experimental station in Zona da Mata, Pernambuco, Brazil

  5. El marco conceptual relacionado con la calidad: una torre de Babel

    Directory of Open Access Journals (Sweden)

    Miryam Escobar Valencia

    2013-12-01

    Full Text Available Según el Génesis de la Biblia (s.f., ed. 2009, la Torre de Babel fue construida por la humanidad para alcanzar el cielo, por lo que Yahvé confundió la lengua de los hombres. Este acontecimiento les llevó a dejar la torre inacabada y a que se marcharan en todas direcciones*; al parecer, esta es una realidad cuando se habla de calidad. En este texto se exponen las definiciones sobre calidad y otros conceptos relacionados, elaborados por autores emblemáticos del tema, incluyendo el impacto que esta noción tiene en el montaje de sistemas de gestión y formalización a través de procesos de certificación. En primera instancia, se aborda el concepto de calidad, incluyendo elementos históricos claves para su comprensión como la calidad en Japón, la calidad total, la calidad y la administración y los antecedentes del sistema de gestión. Luego se realiza una presentación de argumentos, base de la reflexión, que aportan a la necesidad imperiosa de la comprensión de la calidad, como asunto clave debido a su abordaje por presión o por voluntad, hacia un camino de certificación organizacional. Esto con el fin de abogar por la creación de un marco -campo- conceptual fortalecido que hoy se ha convertido en un paradigma, eliminando así la Torre de Babel que se pretende exponer

  6. Investigations of space-dependent safety-related parameters of a PBMR-like HTR in transient operating conditions applying a multi-group diffusion code

    Energy Technology Data Exchange (ETDEWEB)

    Druska, C. [Institute for Energy Research, Safety Research and Reactor Technology (IEF-6), Forschungszentrum Juelich (Germany); Kasselmann, St. [Institute for Energy Research, Safety Research and Reactor Technology (IEF-6), Forschungszentrum Juelich (Germany)], E-mail: s.kasselmann@fz-juelich.de; Lauer, A. [Institute for Energy Research, Safety Research and Reactor Technology (IEF-6), Forschungszentrum Juelich (Germany)

    2009-03-15

    So far, the two-dimensional reactor dynamics code TINTE (time-dependent nucleonics and temperatures) was applied for simulations of high-temperature gas cooled reactors. One limitation of TINTE is that the neutron energy spectrum is modeled by only two energy groups, namely a thermal and a fast group. Present demands for increased numerical accuracy leads to the question of how precise the two-group approximation is compared to a multi-group approach. The recently developed multi-group derivative of TINTE called MGT (multi-group TINTE) is able to handle up to 43 neutron energy groups. In this study, different scenarios (normal operation and design-basis accidents) have been simulated for a PBMR-like HTR reactor design with MGT. The effect of an increasing number of energy groups on time- and space-dependent safety-related parameters like the fuel and coolant temperature, the nuclear heat source or the xenon concentration is studied. Different ways of calculating the material cross-sections are compared as well.

  7. JSD1000: multi-group cross section sets for shielding materials

    International Nuclear Information System (INIS)

    Yamano, Naoki

    1984-03-01

    A multi-group cross section library for shielding safety analysis has been produced by using ENDF/B-IV. The library consists of ultra-fine group cross sections, fine-group cross sections, secondary gamma-ray production cross sections and effective macroscopic cross sections for typical shielding materials. Temperature dependent data at 300, 560 and 900 K have been also provided. Angular distributions of the group to group transfer cross section are defined by a new method of ''Direct Angular Representation'' (DAR) instead of the method of finite Legendre expansion. The library designated JSD1000 are stored in a direct access data base named DATA-POOL and data manipulations are available by using the DATA-POOL access package. The 3824 neutron group data of the ultra-fine group cross sections and the 100 neutron, 20 photon group cross sections are applicable to shielding safety analyses of nuclear facilities. This report provides detailed specifications and the access method for the JSD1000 library. (author)

  8. CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. III. MULTIGROUP RADIATION HYDRODYNAMICS

    International Nuclear Information System (INIS)

    Zhang, W.; Almgren, A.; Bell, J.; Howell, L.; Burrows, A.; Dolence, J.

    2013-01-01

    We present a formulation for multigroup radiation hydrodynamics that is correct to order O(v/c) using the comoving-frame approach and the flux-limited diffusion approximation. We describe a numerical algorithm for solving the system, implemented in the compressible astrophysics code, CASTRO. CASTRO uses a Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. In our multigroup radiation solver, the system is split into three parts: one part that couples the radiation and fluid in a hyperbolic subsystem, another part that advects the radiation in frequency space, and a parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem and the frequency space advection are solved explicitly with high-order Godunov schemes, whereas the parabolic part is solved implicitly with a first-order backward Euler method. Our multigroup radiation solver works for both neutrino and photon radiation.

  9. El doble subjetivo y el enigma de la locura criminal en / Babel-ville / de Joseph Bialot

    Directory of Open Access Journals (Sweden)

    Ramón García Pradas

    2011-12-01

    Full Text Available Through this article we would like to explore not only the image of the double but also its functions in Bialot’s novel Babel-ville. To do so, we would like to take into account those theoretical studies that Jung, Rank or Jourde and Tortonese (among others have carried out on this subject from a literary and s psychological point of view. We will analyse the main character’s criminal madness as a procedure to generate a double which does not match up with the figure of a human being, as if our main character’s pulsions (his unconscious part were not human at all. So our main purpose in this article will focus on the study of Bernard, the main male character of Bialot’s novel, Babel-ville, which should be considered as a good sample of what literary criticism is inclined to call black novel. That’s why we will try to see how Babel-ville sticks to the main characteristics of these literary manifestations, which, by the way, seem to appear really suitable when an author tries to look into the enigmatic mystery of the double-being in literature.

  10. Gravitational effects on planetary neutron flux spectra

    Science.gov (United States)

    Feldman, W. C.; Drake, D. M.; O'Dell, R. D.; Brinkley, F. W., Jr.; Anderson, R. C.

    1989-01-01

    The effects of gravity on the planetary neutron flux spectra for planet Mars, and the lifetime of the neutron, were investigated using a modified one-dimensional diffusion accelerated neutral-particle transport code, coupled with a multigroup cross-section library tailored specifically for Mars. The results showed the presence of a qualitatively new feature in planetary neutron leakage spectra in the form of a component of returning neutrons with kinetic energies less than the gravitational binding energy (0.132 eV for Mars). The net effect is an enhancement in flux at the lowest energies that is largest at and above the outermost layer of planetary matter.

  11. A numerical method for multigroup slab-geometry discrete ordinates problems with no spatial truncation error

    International Nuclear Information System (INIS)

    Barros, R.C. de; Larsen, E.W.

    1991-01-01

    A generalization of the one-group Spectral Green's Function (SGF) method is developed for multigroup, slab-geometry discrete ordinates (S N ) problems. The multigroup SGF method is free from spatial truncation errors; it generated numerical values for the cell-edge and cell-average angular fluxes that agree with the analytic solution of the multigroup S N equations. Numerical results are given to illustrate the method's accuracy

  12. A computer program with graphical user interface to plot the multigroup cross sections of WIMS-D library

    International Nuclear Information System (INIS)

    Thiyagarajan, T.K.; Ganesan, S.; Jagannathan, V.; Karthikeyan, R.

    2002-01-01

    As a result of the IAEA Co-ordinated Research Programme entitled 'Final Stage of the WIMS Library Update Project', new and updated WIMS-D libraries based upon ENDF/B-VI.5, JENDL-3.2 and JEF-2.2 have become available. A project to prepare an exhaustive handbook of WIMS-D cross sections from old and new libraries has been taken up by the authors. As part of this project, we have developed a computer program XnWlup with user-friendly graphical interface to help the users of WIMS-D library to enable quick visualization of the plots of the energy dependence of the multigroup cross sections of any nuclide of interest. This software enables the user to generate and view the histogram of 69 multi-group cross sections as a function of neutron energy under Microsoft Windows environment. This software is designed using Microsoft Visual C++ and Microsoft Foundation Classes Library. The current features of the software, on-line help manual and future plans for further development are described in this paper

  13. Multi-Group Formulation of the Temperature-Dependent Resonance Scattering Model and its Impact on Reactor Core Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ghrayeb, Shadi Z. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Ougouag, Abderrafi M. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Ouisloumen, Mohamed [Westinghouse Electric Company, Cranberry Township, PA (United States); Ivanov, Kostadin N. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering

    2014-01-01

    A multi-group formulation for the exact neutron elastic scattering kernel is developed. It incorporates the neutron up-scattering effects, stemming from lattice atoms thermal motion and accounts for it within the resulting effective nuclear cross-section data. The effects pertain essentially to resonant scattering off of heavy nuclei. The formulation, implemented into a standalone code, produces effective nuclear scattering data that are then supplied directly into the DRAGON lattice physics code where the effects on Doppler Reactivity and neutron flux are demonstrated. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. The results show an increase in values of Doppler temperature feedback coefficients up to -10% for UOX and MOX LWR fuels compared to the corresponding values derived using the traditional asymptotic elastic scattering kernel. This paper also summarizes the results done on this topic to date.

  14. Multi-Group Formulation of the Temperature-Dependent Resonance Scattering Model and its Impact on Reactor Core Parameters

    International Nuclear Information System (INIS)

    Ghrayeb, Shadi Z.; Ouisloumen, Mohamed; Ivanov, Kostadin N.

    2014-01-01

    A multi-group formulation for the exact neutron elastic scattering kernel is developed. It incorporates the neutron up-scattering effects, stemming from lattice atoms thermal motion and accounts for it within the resulting effective nuclear cross-section data. The effects pertain essentially to resonant scattering off of heavy nuclei. The formulation, implemented into a standalone code, produces effective nuclear scattering data that are then supplied directly into the DRAGON lattice physics code where the effects on Doppler Reactivity and neutron flux are demonstrated. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. The results show an increase in values of Doppler temperature feedback coefficients up to -10% for UOX and MOX LWR fuels compared to the corresponding values derived using the traditional asymptotic elastic scattering kernel. This paper also summarizes the results done on this topic to date

  15. Status of multigroup cross-section data for shielding applications

    International Nuclear Information System (INIS)

    Roussin, R.W.; Maskewitz, B.F.; Trubey, D.K.

    1983-01-01

    Multigroup cross-section libraries for shielding applications in formats for direct use in discrete ordinates or Monte Carlo codes have long been a part of the Data Library Collection (DLC) of the Radiation Shielding Information Center (RSIC). In recent years libraries in more flexible and comprehensive formats, which allow the user to derive his own problem-dependent sets, have been added to the collection. The current status of both types is described, as well as projections for adding data libraries based on ENDF/B-V

  16. MUXS: a code to generate multigroup cross sections for sputtering calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, T.J.; Robinson, M.T.; Dodds, H.L. Jr.

    1982-10-01

    This report documents MUXS, a computer code to generate multigroup cross sections for charged particle transport problems. Cross sections generated by MUXS can be used in many multigroup transport codes, with minor modifications to these codes, to calculate sputtering yields, reflection coefficients, penetration distances, etc.

  17. SERKON program for compiling a multigroup library to be used in BETTY calculation

    International Nuclear Information System (INIS)

    Nguyen Phuoc Lan.

    1982-11-01

    A SERKON-type program was written to compile data sets generated by FEDGROUP-3 into a multigroup library for BETTY calculation. A multigroup library was generated from the ENDF/B-IV data file and tested against the TRX-1 and TRX-2 lattices with good results. (author)

  18. Adjoint P1 equations solution for neutron slowing down

    International Nuclear Information System (INIS)

    Cardoso, Carlos Eduardo Santos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2002-01-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. The direct and adjoint neutron fluxes resulting from the solution of P 1 equations were used to three different weighting processes, to obtain the macrogroup macroscopic cross sections. It was found out noticeable differences among them. (author)

  19. BUGLE-96: A revised multigroup cross section library for LWR applications based on ENDF/B-VI Release 3

    International Nuclear Information System (INIS)

    White, J.E.; Ingersoll, D.T.; Slater, C.O.; Roussin, R.W.

    1996-01-01

    A revised multigroup cross-section library based ON ENDF/B-VI Release 3 has been produced for light water reactor shielding and reactor pressure vessel dosimetry applications. This new broad-group library, which is designated BUGLE-96, represents an improvement over the BUGLE-93 library released in February 1994 and is expected to replace te BUGLE-93 data. The cross-section processing methodology is the same as that used for producing BUGLE-93 and is consistent with ANSI/ANS 6.1.2. As an added feature, cross-section sets having upscatter data for four thermal neutron groups are included in the BUGLE-96 package available from the Radiation Shielding Information Center. The upscattering data should improve the application of this library to the calculation of more accurate thermal fluences, although more computer time will be required. The incorporation of feedback from users has resulted in a data library that addresses a wider spectrum of user needs

  20. Combined analytical-numerical procedure to solve multigroup spherical harmonics equations in two-dimensional r-z geometry

    International Nuclear Information System (INIS)

    Matausek, M.V.; Milosevic, M.

    1986-01-01

    In the present paper a generalization is performed of a procedure to solve multigroup spherical harmonics equations, which has originally been proposed and developed for one-dimensional systems in cylindrical or spherical geometry, and later extended for a special case of a two-dimensional system in r-z geometry. The expressions are derived for the axial and the radial dependence of the group values of the neutron flux moments, in the P-3 approximation of the spherical harmonics method, in a cylindrically symmetrical system with an arbitrary number of material regions in both r- and z-directions. In the special case of an axially homogeneous system, these expressions reduce to the relations derived previously. (author)

  1. Adjoint P1 equations solution for neutron slowing down; Solucao das equacoes P1 adjuntas para moderacao de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Carlos Eduardo Santos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2002-07-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. The direct and adjoint neutron fluxes resulting from the solution of P{sub 1} equations were used to three different weighting processes, to obtain the macrogroup macroscopic cross sections. It was found out noticeable differences among them. (author)

  2. Rem Koolhaas y la nueva Babel. De la torre metropolitana al monumento al vacío

    Directory of Open Access Journals (Sweden)

    José Antonio Tallón

    2015-05-01

    Full Text Available Un primer acercamiento a las reflexiones de Rem Koolhaas en torno a la tipología de torre introduce al rascacielos neoyorquino como la alegoría del “automonumen­to”: una construcción en esencia destinada a reafirmar su sola presencia y que se distingue del resto por medio de su estatura, que la monumentaliza. La torre de Babel, símbolo inquebrantable de la leyenda de la construcción en altura, escenifi­ca una historia de construcción y destrucción que está vinculada ineludiblemente al pensamiento crítico de Rem Koolhaas en torno a la torre como tipología desa­creditada. Un recorrido por las distintas “Babel” que Rem Koolhaas cataloga en el glosario de términos incluido en el texto SMLXL construye un discurso en torno a la destrucción de la torre bíblica y la construcción de la nueva Babel koolhaasiana que inicia su recorrido con el rascacielos para acabar reclamando un nuevo estado de monumentalidad: la ausencia en su estado más puro representado por el muro, el máximo ejemplo de ausencia como la forma más elevada de presencia monu­mental. Una mirada crítica que comienza con la torre metropolitana como la nueva Babel para finalizar con el muro como el monumento al vacío

  3. Neutron transport model for standard calculation experiment

    International Nuclear Information System (INIS)

    Lukhminskij, B.E.; Lyutostanskij, Yu.S.; Lyashchuk, V.I.; Panov, I.V.

    1989-01-01

    The neutron transport calculation algorithms in complex composition media with a predetermined geometry are realized by the multigroups representations within Monte Carlo methods in the MAMONT code. The code grade was evaluated with benchmark experiments comparison. The neutron leakage spectra calculations in the spherical-symmetric geometry were carried out for iron and polyethylene. The MAMONT code utilization for metrological furnishes of the geophysics tasks is proposed. The code is orientated towards neutron transport and secondary nuclides accumulation calculations in blankets and geophysics media. 7 refs.; 2 figs

  4. PRORA - program for calculating neutron flux in reactor shielding

    International Nuclear Information System (INIS)

    Sindilaru, G.; Cuculeanu, V.

    1978-06-01

    In order to perform the reactor shielding calculations for the reactor design, it is necessary a fast, accurate method which should take into account the proper shielding geometry. Thus, the PRORA program calculates space-energy neutron distribution in the reactor shielding using age-diffusion approximation and the multigroup formalism. (author)

  5. RADHEAT-V4: a code system to generate multigroup constants and analyze radiation transport for shielding safety evaluation

    International Nuclear Information System (INIS)

    Yamano, Naoki; Minami, Kazuyoshi; Koyama, Kinji; Naito, Yoshitaka.

    1989-03-01

    A modular code system RADHEAT-V4 has been developed for performing precisely neutron and photon transport analyses, and shielding safety evaluations. The system consists of the functional modules for producing coupled multi-group neutron and photon cross section sets, for analyzing the neutron and photon transport, and for calculating the atom displacement and the energy deposition due to radiations in nuclear reactor or shielding material. A precise method named Direct Angular Representation (DAR) has been developed for eliminating an error associated with the method of the finite Legendre expansion in evaluating angular distributions of cross sections and radiation fluxes. The DAR method implemented in the code system has been described in detail. To evaluate the accuracy and applicability of the code system, some test calculations on strong anisotropy problems have been performed. From the results, it has been concluded that RADHEAT-V4 is successfully applicable to evaluating shielding problems accurately for fission and fusion reactors and radiation sources. The method employed in the code system is very effective in eliminating negative values and oscillations of angular fluxes in a medium having an anisotropic source or strong streaming. Definitions of the input data required in various options of the code system and the sample problems are also presented. (author)

  6. RADHEAT-V3, a code system for generating coupled neutron and gamma-ray group constants and analyzing radiation transport

    International Nuclear Information System (INIS)

    Koyama, Kinji; Taji, Yukichi; Miyasaka, Shun-ichi; Minami, Kazuyoshi.

    1977-07-01

    The modular code system RADHEAT is for producing coupled multigroup neutron and gamma-ray cross section sets, analyzing the neutron and gamma-ray transport, and calculating the energy deposition and atomic displacements due to these radiations in a nuclear reactor or shield. The basic neutron cross sections and secondary gamma-ray production data are taken from ENDF/B and POPOP4 libraries respectively. The system (1) generates multigroup neutron cross sections, energy deposition coefficients and atomic displacement factors due to neutron reactions, (2) generates multigroup gamma-ray cross sections and energy transfer coefficients, (3) generates secondary gamma-ray production cross sections, (4) combines these cross sections into the coupled set, (5) outputs and updates the multigroup cross section libraries in convenient formats for other transport codes, (6) analyzes the neutron and gamma-ray transport and calculates the energy deposition and the number density of atomic displacements in a medium, (7) collapses the cross sections to a broad-group structure, by option, using the weighting functions obtained by one-dimensional transport calculation, and (8) plots, by option, multigroup cross sections, and neutron and gamma-ray distributions. Definitions of the input data required in various options of the code system are also given. (auth.)

  7. Multigroup-multiwaves Lisrel modeling in tourist satisfaction analysis

    Directory of Open Access Journals (Sweden)

    Cristina Bernini

    2013-05-01

    Full Text Available The paper analyzes the influence of tourist heterogeneity on the Tourist Local System Overall Satisfaction and its changes over time. We investigate two aspects: if different tourists segmented according to their trip motivation (seaside, conference and sport show the same pattern of evaluation toward some relevant features of the TLS and if the evaluation scheme is dynamic. At this aim, a Multigroup-Multiwaves Lisrel model is estimated on a data set from the Tourist Satisfaction Survey, conducted in Rimini from 2004 to 2006 by the Faculty of Statistics – University of Bologna. The analysis shows that tourist evaluation scheme toward Rimini is quite similar among groups and over time, suggesting that differences among tourists do not affect TLS satisfaction.

  8. Intragroup Socialization for Adult Korean Adoptees: A Multigroup Analysis

    Directory of Open Access Journals (Sweden)

    Kimberly J. Langrehr

    2014-06-01

    Full Text Available The purpose of the current study was to test a model of socialization among a sample of adult Korean adoptees. Based on the tenants of homophily and social identity theory, it was hypothesized that participants’ early racial and ethnic socialization experiences would account for their current intragroup friendships as adults, and that this relationship would be mediated by early intragroup contact and moderated by early ethnic identity status. The two ethnic and racial socialization variables (i.e., ethnic heritage activities and racial in-exposure significantly accounted for participants’ relationships with other Korean adoptees and nonadopted Koreans, and the effects were partially explained by early intragroup contact. Results of multigroup testing indicated the proposed socialization model was non-invariant across groups, such that the effects of ethnic heritage activities on intragroup contact and the effect of racial in-exposure on friendships with Korean adoptees were significantly different based on early ethnic identity status.

  9. Multi-group dynamic quantum secret sharing with single photons

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongwei [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Ma, Haiqiang, E-mail: hqma@bupt.edu.cn [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Wei, Kejin [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Yang, Xiuqing [School of Science, Beijing Jiaotong University, Beijing 100044 (China); Qu, Wenxiu; Dou, Tianqi; Chen, Yitian; Li, Ruixue; Zhu, Wu [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2016-07-15

    In this letter, we propose a novel scheme for the realization of single-photon dynamic quantum secret sharing between a boss and three dynamic agent groups. In our system, the boss can not only choose one of these three groups to share the secret with, but also can share two sets of independent keys with two groups without redistribution. Furthermore, the security of communication is enhanced by using a control mode. Compared with previous schemes, our scheme is more flexible and will contribute to a practical application. - Highlights: • A multi-group dynamic quantum secret sharing with single photons scheme is proposed. • Any one of the groups can be chosen to share secret through controlling the polarization of photons. • Two sets of keys can be shared simultaneously without redistribution.

  10. MORET: Version 4.B. A multigroup Monte Carlo criticality code

    International Nuclear Information System (INIS)

    Jacquet, Olivier; Miss, Joachim; Courtois, Gerard

    2003-01-01

    MORET 4 is a three dimensional multigroup Monte Carlo code which calculates the effective multiplication factor (keff) of any configurations more or less complex as well as reaction rates in the different volumes of the geometry and the leakage out of the system. MORET 4 is the Monte Carlo code of the APOLLO2-MORET 4 standard route of CRISTAL, the French criticality package. It is the most commonly used Monte Carlo code for French criticality calculations. During the last four years, the MORET 4 team has developed or improved the following major points: modernization of the geometry, implementation of perturbation algorithms, source distribution convergence, statistical detection of stationarity, unbiased variance estimation and creation of pre-processing and post-processing tools. The purpose of this paper is not only to present the new features of MORET but also to detail clearly the physical models and the mathematical methods used in the code. (author)

  11. A multi-group firefly algorithm for numerical optimization

    Science.gov (United States)

    Tong, Nan; Fu, Qiang; Zhong, Caiming; Wang, Pengjun

    2017-08-01

    To solve the problem of premature convergence of firefly algorithm (FA), this paper analyzes the evolution mechanism of the algorithm, and proposes an improved Firefly algorithm based on modified evolution model and multi-group learning mechanism (IMGFA). A Firefly colony is divided into several subgroups with different model parameters. Within each subgroup, the optimal firefly is responsible for leading the others fireflies to implement the early global evolution, and establish the information mutual system among the fireflies. And then, each firefly achieves local search by following the brighter firefly in its neighbors. At the same time, learning mechanism among the best fireflies in various subgroups to exchange information can help the population to obtain global optimization goals more effectively. Experimental results verify the effectiveness of the proposed algorithm.

  12. Multigroup covariance matrices for fast-reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.D. III; Broadhead, B.L.

    1981-04-01

    This report presents the multigroup covariance matrices based on the ENDF/B-V nuclear data evaluations. The materials and reactions have been chosen according to the specifications of ORNL-5517. Several cross section covariances, other than those specified by that report, are included due to the derived nature of the uncertainty files in ENDF/B-V. The materials represented are Ni, Cr, /sup 16/O, /sup 12/C, Fe, Na, /sup 235/U, /sup 238/U, /sup 239/Pu, /sup 240/Pu, /sup 241/Pu, and /sup 10/B (present due to its correlation to /sup 238/U). The data have been originally processed into a 52-group energy structure by PUFF-II and subsequently collapsed to smaller subgroup strutures. The results are illustrated in 52-group correlation matrix plots and tabulated into thirteen groups for convenience.

  13. SNAP - a three dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1993-02-01

    This report describes a one- two- three-dimensional multi-group diffusion code, SNAP, which is primarily intended for neutron diffusion calculations but can also carry out gamma calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP can solve the multi-group neutron diffusion equations using finite difference methods. The one-dimensional slab, cylindrical and spherical geometries and the two-dimensional case are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. (Author)

  14. Neutronics design of fusion reactors and application of blanket neutronics experiment to the design

    International Nuclear Information System (INIS)

    Seki, Yasushi

    1976-10-01

    A conceptual design of a commercial fusion power reactor and a preliminary design of an experimental fusion reactor are under way. Based on the experience of the neutronics of the two reactors, the status of neutronics design and problems in the neutronics calculation are described. A series of blanket neutronics experiments has been carried out to examine validity of the nuclear data and calculation methods used in neutronics design of the fusion reactors. The measured fission-rate distributions in the four types of spherical blanket assemblies consisting of lithium and/or graphite and/or natural uranium are analyzed. The effects of uncertainty of the nuclear data, processing procedure of the multi-group cross sections, and approximations in neutron transport calculations upon the calculated fission-rates are investigated. The discrepancy between the calculated and measured values of fission-rates is caused mainly by neglecting the anisotropy of secondary neutrons from inelastic and (n,2n) reactions in the multi-group cross section calculation. The results of the analysis are applied to the neutronics design of the fusion reactors to evaluate the effect of the results upon the blanket nuclear characteristics. In consequence, the substitution of the reflector material, graphite by stainless steel is recommended. It is also pointed out that the present shielding design for the superconducting magnets may be insufficient and increased attenuation may be necessary. (auth.)

  15. Studies for improvement of WWER-440 neutron fluence determination

    International Nuclear Information System (INIS)

    Ilieva, Kr.; Belousov, S.; Apostolov, T.

    2001-01-01

    For assessment of radiation embrittlement and prediction of reactor vessel lifetime with reasonable conservatism a 'best estimated' neutron fluence is necessary. New studies purposed to improve the fluence determination are presented: 1) study on the reliability of multigroup presentation of the neutron cross sections, and 2) impact of negative gradient of reactor power in the periphery assemblies on the neutron fluence evaluation. The results of these studies are base for improvement of neutron fluence determination methodology applied by the INRNE, BAS at Kozloduy NPP. (author)

  16. Neutronics equations: Positiveness; compactness; spectral theory; time asymptotic behavior

    International Nuclear Information System (INIS)

    Mokhtar-Kharroubi, M.

    1987-12-01

    Neutronics equations are studied: the continuous model (with and without delayed neutrons) and the multigroup model. Asymptotic descriptions of these equations (t→+∞) are obtained, either by the Dunford method or by using semigroup perturbation techniques, after deriving the spectral theory for the equations. Compactness problems are reviewed, and a general theory of compact injection in neutronic functional space is derived. The effects of positiveness in neutronics are analyzed: the irreducibility of the transport semigroup, and the properties of the main eigenvalue (existence, nonexistence, frame, strict dominance, strict monotony in relation to all the parameters). A class of transport operators whose real spectrum can be completely described is shown [fr

  17. ANISN-L, a CDC-7600 code which solves the one-dimensional, multigroup, time dependent transport equation by the method of discrete ordinates

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, T. P.

    1973-09-20

    The code ANISN-L solves the one-dimensional, multigroup, time-independent Boltzmann transport equation by the method of discrete ordinates. In problems involving a fissionable system, it can calculate the system multiplication or alpha. In such cases, it is also capable of determining isotopic concentrations, radii, zone widths, or buckling in order to achieve a given multiplication or alpha. The code may also calculate fluxes caused by a specified fixed source. Neutron, gamma, and coupled neutron--gamma problems may be solved in either the forward or adjoint (backward) modes. Cross sections describing upscatter, as well as the usual downscatter, may be employed. This report describes the use of ANISN-L; this is a revised version of ANISN which handles both large and small problems efficiently on CDC-7600 computers. (RWR)

  18. Use of the Apollo-II multigroup transport code for criticality calculations

    International Nuclear Information System (INIS)

    Coste, M.; Mathonniere, G.; Sanchez, R.; Stankovski, Z.; Van der Gucht, C.; Zmijarevic, I.

    1992-01-01

    APPOLO-II is a new-generation multigroup transport code for assembly calculation. The code has been designed to be used as a tool for reactor design as well as for the analysis and interpretation of small nuclear facilities. As the first step in a criticality calculation, the collision probability module of the APPOLO-II code can be used to generate cell or assembly homogenized reaction-rate preserving cross sections that account for self-shielding effects as well as for the fine-energy within cell flux spectral variations. These cross section data can then be used either directly within the APPOLO-II code in a direct discrete ordinate multigroup transport calculation of a small nuclear facility or, more generally, be formatted by a post-processing module to be used by the multigroup diffusion code CRONOS-II or by the multigroup Monte Carlo code TRIMARAN

  19. Self-shielding phenomenon modelling in multigroup transport code Apollo-2; Modelisation du phenomene d'autoprotection dans le code de transport multigroupe Apollo 2

    Energy Technology Data Exchange (ETDEWEB)

    Coste-Delclaux, M

    2006-03-15

    This document describes the improvements carried out for modelling the self-shielding phenomenon in the multigroup transport code APOLLO2. They concern the space and energy treatment of the slowing-down equation, the setting up of quadrature formulas to calculate reaction rates, the setting-up of a method that treats directly a resonant mixture and the development of a sub-group method. We validate these improvements either in an elementary or in a global way. Now, we obtain, more accurate multigroup reaction rates and we are able to carry out a reference self-shielding calculation on a very fine multigroup mesh. To end, we draw a conclusion and give some prospects on the remaining work. (author)

  20. ZZ ANSLV, Multigroup Cross Sections Library for ANS Reactor Design Studies

    International Nuclear Information System (INIS)

    2000-01-01

    A - Description of program or function: - Format: AMPX Master Interface Library format. Number of groups: Fine Group (99 energy groups) General Purpose Neutron Library. Materials: H, He, Be, B, Graphite, N, O, Na, Mg, Al, Si, K, Ti, V, Cr, Mn, Fe, Co, Ni, Kr, Zr, Mo, Tc, Ru, Ag, Cd, Cs, Ce, Pr, Pm, Sm, Eu, Hf, Ta, U, C, F, Cu, Sn, Pb, Rh, I, Xe, Nd, Th, Np, Pu, Am, Cm, Bk, Cf, Es, MAFP, WAFP. Origin: ENDF/B-V. - Format: AMPX Master Interface Library format. Number of groups: Broad Group (39 energy groups) General Purpose Neutron Library. Materials: H, He, Be, B, Graphite, N, O, Na, Mg, Al, Si, K, Ti, V, Cr, Mn, Fe, Co, Ni, Kr, Zr, Mo, Tc, Ru, Ag, Cd, Cs, Ce, Pr, Pm, Sm, Eu, Hf, Ta, U, C, F, Cu, Sn, Pb, Rh, I, Xe, Nd, Th, Np, Pu, Am, Cm, Bk, Cf, Es, MAFP, WAFP. Origin: ENDF/B-V. - Format: AMPX Master Interface Library format. Number of groups: Gamma-Ray Interaction (GRI) Library in 44-groups. Materials: H, He, Be, B, C, N, O, Na, Mg, Al, Si, K, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Mo, Ag, Cd, Xe, Sm, Eu, Hf, Ta, Ir, Pb, Th, U, Pu. Origin: ENDF/B-V; LENDL-V evaluations for 12 materials. - Format: AMPX Master Interface Library format. Number of groups: Coupled Library containing (CNG) 99-group neutron and 44-group gamma-ray data. Materials: H, Be, B, C, N, O, Na, Mg, Al, Si, K, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Mo, Ag, Cd, Eu, Hf, Ta, Pb, Th, U, Pu. Origin: ENDF/B-V. - Format: AMPX Master Interface Library format. Number of groups: Coupled neutron-gamma (CNG) Library containing 39-group, and 44-group gamma-ray data. Materials: H, Be, B, C, N, O, Na, Mg, Al, Si, K, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Mo, Ag, Cd, Eu, Hf, Ta, Pb, Th, U, Pu. Origin: ENDF/B-V. Weighting spectrum: Maxwellian 300 K + 1/(E*sigma-total) + fission spectrum4 types of boundaries have been used depending isotope and library type (see report). Pseudo-problem-independent, multigroup cross section libraries were generated to support the Advanced Neutron source (ANS) reactor design studies. The ANS was

  1. Influence of density and chemical composition of soils in the neutrons probes answer; Influencia da densidade e da composicao quimica dos solos na resposta de sondas de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Crispino, Marcos Luiz; Antonino, Antonio Celso Dantas; Dall`Olio, Attilio; Oliveira Lira, Carlos Alberto Brayner de [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear; Carneiro, Clemente J. Gusmao [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    1996-08-01

    The determination of soil humidity with neutron probes is based in the measure of the thermal neutron flux intensity and its behavior with the soil depend: soil`s chemical composition; soils physical parameters; neutrons` energetic spectrum and neutron-source detector geometry.The objective of this paper is to apply the multigroup function theory to calculate a neutron probe calibration curve utilizing representatives parameters and coefficients of soils horizons in a experimental station in Zona da Mata, Pernambuco, Brazil 2 tabs., 3 figs.

  2. FINELM: a multigroup finite element diffusion code. Part I

    International Nuclear Information System (INIS)

    Davierwalla, D.M.

    1980-12-01

    The author presents a two dimensional code for multigroup diffusion using the finite element method. It was realized that the extensive connectivity which contributes significantly to the accuracy, results in a matrix which, although symmetric and positive definite, is wide band and possesses an irregular profile. Hence, it was decided to introduce sparsity techniques into the code. The introduction of the R-Z geometry lead to a great deal of changes in the code since the rotational invariance of the removal matrices in X-Y geometry did not carry over in R-Z geometry. Rectangular elements were introduced to remedy the inability of the triangles to model essentially one dimensional problems such as slab geometry. The matter is discussed briefly in the text in the section on benchmark problems. This report is restricted to the general theory of the triangular elements and to the sparsity techniques viz. incomplete disections. The latter makes the size of the problem that can be handled independent of core memory and dependent only on disc storage capacity which is virtually unlimited. (Auth.)

  3. Travelling Wave Solutions in Multigroup Age-Structured Epidemic Models

    Science.gov (United States)

    Ducrot, Arnaut; Magal, Pierre; Ruan, Shigui

    2010-01-01

    Age-structured epidemic models have been used to describe either the age of individuals or the age of infection of certain diseases and to determine how these characteristics affect the outcomes and consequences of epidemiological processes. Most results on age-structured epidemic models focus on the existence, uniqueness, and convergence to disease equilibria of solutions. In this paper we investigate the existence of travelling wave solutions in a deterministic age-structured model describing the circulation of a disease within a population of multigroups. Individuals of each group are able to move with a random walk which is modelled by the classical Fickian diffusion and are classified into two subclasses, susceptible and infective. A susceptible individual in a given group can be crisscross infected by direct contact with infective individuals of possibly any group. This process of transmission can depend upon the age of the disease of infected individuals. The goal of this paper is to provide sufficient conditions that ensure the existence of travelling wave solutions for the age-structured epidemic model. The case of two population groups is numerically investigated which applies to the crisscross transmission of feline immunodeficiency virus (FIV) and some sexual transmission diseases.

  4. Multigroup Synchronization in 1D-Bernoulli Chaotic Collaborative CDMA

    Directory of Open Access Journals (Sweden)

    Sumith Babu Suresh Babu

    2017-01-01

    Full Text Available Code-division multiple access (CDMA has played a remarkable role in the field of wireless communication systems, and its capacity and security requirements are still being addressed. Collaborative multiuser transmission and detection are a contemporary technique used in CDMA systems. The performance of these systems is governed by the proper accommodation of the users and by proper synchronization schemes. The major research concerns in the existing multiuser overloaded CDMA schemes are (i statistically uncorrelated PN sequences that cause multiple-access interference (MAI and (ii the security of the user’s data. In this paper, a novel grouped CDMA scheme, the 1D-Bernoulli chaotic collaborative CDMA (BCC-CDMA, is introduced, in which mutually orthogonal chaotic sequences spread the users’ data within a group. The synchronization of multiple groups in this scheme has been analyzed under MAI limited environments and the results are presented. This increases the user capacity and also provides sufficient security as a result of the correlation properties possessed by the chaotic codes. Multigroup synchronization is achieved using a 1D chaotic pilot sequence generated by the Bernoulli Map. The mathematical model of the proposed system is described and compared with the theoretical model of the synchronization in CDMA, the simulation results of which are presented.

  5. Effects of scattering anisotropy approximation in multigroup radiation shielding calculations

    International Nuclear Information System (INIS)

    Altiparmakov, D.

    1983-01-01

    Expansion of the scattering cross sections into Legendre series is the usual way of solving neutron transport problems. Because of the large space gradients of the neutron flux, the effects of that approximation become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account the scattering anisotropy is presented. From the point od view of the accuracy and computing rate, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations. (author)

  6. Consistency of differential and integral thermonuclear neutronics data

    Energy Technology Data Exchange (ETDEWEB)

    Reupke, W.A.

    1978-01-01

    To increase the accuracy of the neutronics analysis of nuclear reactors, physicists and engineers have employed a variety of techniques, including the adjustment of multigroup differential data to improve consistency with integral data. Of the various adjustment strategies, a generalized least-squares procedure which adjusts the combined differential and integral data can significantly improve the accuracy of neutronics calculations compared to calculations employing only differential data. This investigation analyzes 14 MeV neutron-driven integral experiments, using a more extensively developed methodology and a newly developed computer code, to extend the domain of adjustment from the energy range of fission reactors to the energy range of fusion reactors.

  7. The background cross section method for calculating the epithermal neutron spectra

    International Nuclear Information System (INIS)

    Martinez, A.S.

    1983-01-01

    We have developed a new methodology to the multigroup constants calculations, for thermal and fast reactors. The method to obtain the constants is extremely fast and simple, and it avoid repeated computations of the detailed neutron spectrum for different cell configurations (composition, geometry and temperature). (author) [pt

  8. Neutron physics

    International Nuclear Information System (INIS)

    Beckurts, K.H.; Wirtz, K.

    1974-01-01

    This textbook consists of four sections which deal with the following subjects: 1. Production of neutrons and their interactions with the nuclei; neutron sources; neutron detectors; cross-section measurements. 2. Theory of neutron interactions with macroscopic media; neutron slowing down; space distribution of moderated neutrons; neutron thermalization; neutron scattering. 3. Radioactive probe measurements of thermal neutron fluxes; activation by means of epithermal neutrons; threshold detectors of fast neutrons; neutron calibration. 4. Neutron energy; slowing down kernels; neutron age; diffusion length and absorption of neutrons

  9. VELM61 and VELM22: Multigroup cross-section libraries for sodium-cooled reactor shield analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fu, C.Y.; Ingersoll, D.T.

    1987-04-01

    Two coupled neutron and photon multigroup cross-section libraries, derived from ENDF/B-V nuclear data, are described. The energy group structures, 61n/23..gamma.. and 22n/10..gamma.., are subsets of the Vitamin-E 174n/38..gamma.. group structure, and are tailored to the iron and sodium resonances, windows, and capture gamma-ray spectra. Each of the two libraries are available in two formats, the AMPX master format and the ANISN format. Cross sections for all materials in the Vitamin-E library were collapsed using a standard energy weighting function, and in addition, several cross-section sets for each of the major constituents of commercial grade sodium, stainless steel (types 304 and 316), and carbon steel were derived using several problem-dependent weighting functions for averaging the fine groups. Effects of various group structures and weighting functions on the accuracy of the broad group libraries are studied by ANISN analysis of a typical sodium-iron shield configuration.

  10. Neutronic calculations in heavy water moderated multiplying media using GGC-3 library nuclear data

    International Nuclear Information System (INIS)

    Boado, H.J.; Gho, C.J.; Abbate, M.J.

    1981-01-01

    Differences in obtaining transference matrices between GGC-3 code and the system to produce multigroup cross sections using GGC-3 library, recently implemented at the Neutrons and Reactors Division, have been analized. Neutronic calculations in multiplicative systems containing heavy water have been made using both methods. From the obtained results, it is concluded that the new method is more appropriate to deal with systems including moderators other than light water. (author) [es

  11. Development of multi-group spectral code TVS-M

    International Nuclear Information System (INIS)

    Lazarenko, A.P.; Pryanichnikov, A.V.; Kalugin, M.A.; Gurevich, M.I.

    2012-01-01

    This paper is dedicated to the latest version of TVS-M code - TVS-M 2007, which allows the neutron flux distribution inside fuel assemblies to be calculated without using the diffusion approximation. The new spatial calculation module PERST introduced in TVS-M code is based on the first collisions probability method and allows the scattering anisotropy to be accounted for. This paper presents some preliminary results calculated with the use of the new version of TVS-M code. (orig.)

  12. Development of multi-group spectral code TVS-M

    International Nuclear Information System (INIS)

    Lazarenko, A. P.; Pryanichnikov, A. V.; Kalugin, M. A.; Gurevich, M. I.

    2011-01-01

    This paper is dedicated to the latest version of TVS-M code - TVS-M 2007, which allows the neutron flux distribution inside fuel assemblies to be calculated without using the diffusion approximation. The new spatial calculation module PERST introduced in TBS-M code is based on the first collisions probability method and allows the scattering anisotropy to be accounted for. This paper presents some preliminary results calculated with the use of the new version of TVS-M code. (Authors)

  13. The analytic nodal diffusion solver ANDES in multigroups for 3D rectangular geometry: Development and performance analysis

    International Nuclear Information System (INIS)

    Lozano, Juan-Andres; Garcia-Herranz, Nuria; Ahnert, Carol; Aragones, Jose-Maria

    2008-01-01

    In this work we address the development and implementation of the analytic coarse-mesh finite-difference (ACMFD) method in a nodal neutron diffusion solver called ANDES. The first version of the solver is implemented in any number of neutron energy groups, and in 3D Cartesian geometries; thus it mainly addresses PWR and BWR core simulations. The details about the generalization to multigroups and 3D, as well as the implementation of the method are given. The transverse integration procedure is the scheme chosen to extend the ACMFD formulation to multidimensional problems. The role of the transverse leakage treatment in the accuracy of the nodal solutions is analyzed in detail: the involved assumptions, the limitations of the method in terms of nodal width, the alternative approaches to implement the transverse leakage terms in nodal methods - implicit or explicit -, and the error assessment due to transverse integration. A new approach for solving the control rod 'cusping' problem, based on the direct application of the ACMFD method, is also developed and implemented in ANDES. The solver architecture turns ANDES into an user-friendly, modular and easily linkable tool, as required to be integrated into common software platforms for multi-scale and multi-physics simulations. ANDES can be used either as a stand-alone nodal code or as a solver to accelerate the convergence of whole core pin-by-pin code systems. The verification and performance of the solver are demonstrated using both proof-of-principle test cases and well-referenced international benchmarks

  14. BabelFish-Tools for IEEE C37.118.2-compliant real-time synchrophasor data mediation

    Science.gov (United States)

    Almas, M. S.; Vanfretti, L.; Baudette, M.

    BabelFish (BF) is a real-time data mediator for development and fast prototyping of synchrophasor applications. BF is compliant with the synchrophasor data transmission IEEE Std C37.118.2-2011. BF establishes a TCP/IP connection with any Phasor Measurement Unit (PMU) or Phasor Data Concentrator (PDC) stream and parses the IEEE Std C37.118.2-2011 frames in real-time to provide access to raw numerical data in the LabVIEW environment. Furthermore, BF allows the user to select "data-of-interest" and transmit it to either a local or remote application using the User Datagram Protocol (UDP) in order to support both unicast and multicast communication. In the power systems Wide Area Monitoring Protection and Control (WAMPAC) domain, BF provides the first Free/Libre and Open Source Software (FLOSS) for the purpose of giving the users tools for fast prototyping of new applications processing PMU measurements in their chosen environment, thus liberating them of time consuming synchrophasor data handling and allowing them to develop applications in a modular fashion, without a need of a large and monolithic synchrophasor software environment.

  15. Measurement invariance of the Multigroup Ethnic Identity Measure (MEIM) across Bulgarian, Dutch and Greek samples

    NARCIS (Netherlands)

    Mastrotheodoros, S.; Dimitrova, R.; Motti-Stefanidi, F.; Abubakar, A.; van de Schoot, R.

    2013-01-01

    The Multigroup Ethnic Identity Measure (MEIM; Phinney, 1992) is a widely used instrument to quantify the way people think, feel, and behave regarding their ethnic origin. This instrument is commonly used to compare groups of people from different ethnic and/or cultural backgrounds. However, in order

  16. Measurement invariance of the Multigroup Ethnic Identity Measure (MEIM) across Bulgarian, Dutch and Greek samples

    NARCIS (Netherlands)

    Mastrotheodoros, S.; Dimitrova, R.; Motti-Stefanidi, F.; Abubakar Ali, A.; Van de Schoot, R.

    2012-01-01

    The Multigroup Ethnic Identity Measure (MEIM; Phinney, 1992) is a widely used instrument to quantify the way people think, feel, and behave regarding their ethnic origin. This instrument is commonly used to compare groups of people from different ethnic and/or cultural backgrounds. However, in order

  17. Neutron flux calculations for the Rossendorf research reactor in (hex)- and (hex,z)-geometry using SNAP-3D

    International Nuclear Information System (INIS)

    Koch, R.; Findeisen, A.

    1986-04-01

    The multigroup neutron diffusion theory code SNAP-3D has been used to perform time independent neutron flux and power calculations of the 10 MW Rossendorf research reactor of the type WWR-SM. The report describes these calculations, as well as the actual reactor configuration, some details of the code SNAP-3D, and two- and three-dimensional reactor models. For evaluating the calculations some flux values and control rod worths have been compared with those of measurements. (author)

  18. Development and verification of a high performance multi-group SP3 transport capability in the ARTEMIS core simulator

    International Nuclear Information System (INIS)

    Van Geemert, Rene

    2008-01-01

    For satisfaction of future global customer needs, dedicated efforts are being coordinated internationally and pursued continuously at AREVA NP. The currently ongoing CONVERGENCE project is committed to the development of the ARCADIA R next generation core simulation software package. ARCADIA R will be put to global use by all AREVA NP business regions, for the entire spectrum of core design processes, licensing computations and safety studies. As part of the currently ongoing trend towards more sophisticated neutronics methodologies, an SP 3 nodal transport concept has been developed for ARTEMIS which is the steady-state and transient core simulation part of ARCADIA R . For enabling a high computational performance, the SP N calculations are accelerated by applying multi-level coarse mesh re-balancing. In the current implementation, SP 3 is about 1.4 times as expensive computationally as SP 1 (diffusion). The developed SP 3 solution concept is foreseen as the future computational workhorse for many-group 3D pin-by-pin full core computations by ARCADIA R . With the entire numerical workload being highly parallelizable through domain decomposition techniques, associated CPU-time requirements that adhere to the efficiency needs in the nuclear industry can be expected to become feasible in the near future. The accuracy enhancement obtainable by using SP 3 instead of SP 1 has been verified by a detailed comparison of ARTEMIS 16-group pin-by-pin SP N results with KAERI's DeCart reference results for the 2D pin-by-pin Purdue UO 2 /MOX benchmark. This article presents the accuracy enhancement verification and quantifies the achieved ARTEMIS-SP 3 computational performance for a number of 2D and 3D multi-group and multi-box (up to pin-by-pin) core computations. (authors)

  19. ERRFILS: a preliminary library of 30-group multigroup covariance data for use in CTR sensitivity studies

    International Nuclear Information System (INIS)

    LaBauve, R.J.; Muir, D.W.

    1978-01-01

    A library of 30-group multigroup covariance data was prepared from preliminary ENDF/B-V data with the NJOY code. Data for Fe, Cr, Ni, 10 B, C, Cu, H, and Pb are included in this library. Reactions include total cross sections, elastic and inelastic scattering cross sections, and the most important absorption cross sections. Typical data from the file are shown. 3 tables

  20. Multigroup transport calculations of critical and fuel assemblies with taking into account the scattering anisotropy

    International Nuclear Information System (INIS)

    Rubin, I.E.; Dneprovskaya, N.M.

    2005-01-01

    A technique for calculation of reactor lattices by means of the transmission probabilities with taking into account the scattering anisotropy is generalized for the multigroup case. The errors of the calculated multiplication coefficients and energy release distributions do noe exceed practically the errors, of these values, obtained by the Monte Carlo method. The proposed method is most effective when determining the small difference effects [ru

  1. Young Adults’ Attitude Towards Advertising: a multi-group analysis by ethnicity

    OpenAIRE

    Hiram Ting; Ernest Cyril de Run; Ramayah Thurasamy

    2015-01-01

    Objective – This study aims to investigate the attitude of Malaysian young adults towards advertising. How this segment responds to advertising, and how ethnic/cultural differences moderate are assessed.Design/methodology/approach – A quantitative questionnaire is used to collect data at two universities. Purposive sampling technique is adopted to ensure the sample represents the actual population. Structural equation modelling (SEM) and multi-group analysis (MGA) are utilized in analysis.Fin...

  2. FENDL2/A-MCNP, FENDL2/A-VITJE and FENDL2/A-VITJFLAT. The processed FENDL-2 neutron activation cross-section data files. Summary documentation

    International Nuclear Information System (INIS)

    Pashchenko, A.B.; Wienke, H.

    1997-01-01

    This document summarizes the libraries of neutron activation cross-section data processed into the following three formats: continuous energy format as used by the Monte Carlo neutron/photon transport code MCNP4A; VITAMIN-J 175 multigroup format weighted with the VITAMIN-E weighting spectrum as used by the transmutation codes REAC*2/3 and FOUR ACES; VITAMIN-J 175 multigroup ENDF-6 format, with a flat weighting spectrum. The data are available from the IAEA Nuclear Data Section online via INTERNET by FTP command, or on magnetic tape. (author)

  3. A multilevel in space and energy solver for multigroup diffusion eigenvalue problems

    Directory of Open Access Journals (Sweden)

    Ben C. Yee

    2017-09-01

    Full Text Available In this paper, we present a new multilevel in space and energy diffusion (MSED method for solving multigroup diffusion eigenvalue problems. The MSED method can be described as a PI scheme with three additional features: (1 a grey (one-group diffusion equation used to efficiently converge the fission source and eigenvalue, (2 a space-dependent Wielandt shift technique used to reduce the number of PIs required, and (3 a multigrid-in-space linear solver for the linear solves required by each PI step. In MSED, the convergence of the solution of the multigroup diffusion eigenvalue problem is accelerated by performing work on lower-order equations with only one group and/or coarser spatial grids. Results from several Fourier analyses and a one-dimensional test code are provided to verify the efficiency of the MSED method and to justify the incorporation of the grey diffusion equation and the multigrid linear solver. These results highlight the potential efficiency of the MSED method as a solver for multidimensional multigroup diffusion eigenvalue problems, and they serve as a proof of principle for future work. Our ultimate goal is to implement the MSED method as an efficient solver for the two-dimensional/three-dimensional coarse mesh finite difference diffusion system in the Michigan parallel characteristics transport code. The work in this paper represents a necessary step towards that goal.

  4. Conception and development of an adaptive energy mesher for multigroup library generation of the transport codes

    International Nuclear Information System (INIS)

    Mosca, P.

    2009-12-01

    The deterministic transport codes solve the stationary Boltzmann equation in a discretized energy formalism called multigroup. The transformation of continuous data in a multigroup form is obtained by averaging the highly variable cross sections of the resonant isotopes with the solution of the self-shielding models and the remaining ones with the coarse energy spectrum of the reactor type. So far the error of such an approach could only be evaluated retrospectively. To remedy this, we studied in this thesis a set of methods to control a priori the accuracy and the cost of the multigroup transport computation. The energy mesh optimisation is achieved using a two step process: the creation of a reference mesh and its optimized condensation. In the first stage, by refining locally and globally the energy mesh, we seek, on a fine energy mesh with subgroup self-shielding, a solution equivalent to a reference solver (Monte Carlo or pointwise deterministic solver). In the second step, once fixed the number of groups, depending on the acceptable computational cost, and chosen the most appropriate self-shielding models to the reactor type, we look for the best bounds of the reference mesh minimizing reaction rate errors by the particle swarm optimization algorithm. This new approach allows us to define new meshes for fast reactors as accurate as the currently used ones, but with fewer groups. (author)

  5. Principle of the determination of neutron multiplication coefficients by the Monte Carlo method. Application. Description of a code for ibm 360-75

    International Nuclear Information System (INIS)

    Moreau, J.; Parisot, B.

    1969-01-01

    The determination of neutron multiplication coefficients by the Monte Carlo method can be carried out in different ways; the are first examined particularly complex geometries; it makes use of multi-group isotropic cross sections. The performances of this code are illustrated by some examples. (author) [fr

  6. FY17 Status Report on NEAMS Neutronics Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Jung, Y. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Smith, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-30

    Under the U.S. DOE NEAMS program, the high-fidelity neutronics code system has been developed to support the multiphysics modeling and simulation capability named SHARP. The neutronics code system includes the high-fidelity neutronics code PROTEUS, the cross section library and preprocessing tools, the multigroup cross section generation code MC2-3, the in-house meshing generation tool, the perturbation and sensitivity analysis code PERSENT, and post-processing tools. The main objectives of the NEAMS neutronics activities in FY17 are to continue development of an advanced nodal solver in PROTEUS for use in nuclear reactor design and analysis projects, implement a simplified sub-channel based thermal-hydraulic (T/H) capability into PROTEUS to efficiently compute the thermal feedback, improve the performance of PROTEUS-MOCEX using numerical acceleration and code optimization, improve the cross section generation tools including MC2-3, and continue to perform verification and validation tests for PROTEUS.

  7. Direct discrete method and its application to neutron transport problems

    Directory of Open Access Journals (Sweden)

    Vosoughi Naser

    2003-01-01

    Full Text Available The objective of this paper is to introduce a new direct method for neutronic calculations. This method, called direct discrete method, is simpler than the application of the neutron transport equation and more compatible with the physical meanings of the problem. The method, based on the physics of the problem, initially runs through meshing of the desired geometry. Next, the balance equation for each mesh interval is written. Considering the connection between the mesh intervals, the final discrete equation series are directly obtained without the need to pass through the set up of the neutron transport differential equation first. In this paper, one and multigroup neutron transport discrete equation has been produced for a cylindrical shape fuel element with and without the associated clad and the coolant regions each with two different external boundary conditions. The validity of the results from this new method is tested against the results obtained by the MCNP-4B and the ANISN codes.

  8. Construction of the Green's function for the diffusion of neutrons in layered media

    International Nuclear Information System (INIS)

    Heindler, M.

    1976-01-01

    The analysis of exponential pile experiments is generally based on diffusion theory. There is a principal drawback of the currently used analytical methods: their formalisms do not allow or are too complicated for their application to a multigroup treatment of moredimensional, heterogeneous, multiplying reactor assemblies. In this paper a method is described for the calculation of neutron diffusion in moredimensional, multiplying, heterogeneous media in the framework of monoenergetic diffusion theory. The rigorous method, which can easily be generalized to a multigroup treatment of the problem, leads to an analytical representation of the neutron flux. This representation is induced by a diffusion kernel for which an absolutely and uniformly convergent series representation is derived. The method is applied to a slab configuration ('reflected exponential experiment'). (Auth.)

  9. The Wing Beat of the Butterfly. The Causality of Asymmetric Cultural Encounters and Escalation in Babel (2006 and Valley of Wolves – Iraq/ Kurtlar Vadisi – Irak (2006

    Directory of Open Access Journals (Sweden)

    Veronika Bernard

    2011-10-01

    Full Text Available The term ‘asymmetric conflict’ describes a war-like situation in which the opponents involved do not have equal access to decisive logistic resources. The author of this article states that cultural en­coun­ters can also be of asymmetric quality: in situations of provoked or accidental (intercultural mis­understandings, in hierarchical situations and in cases of emergency. She further states that the mo­vies Babel (2006 and Valley of Wolves – Iraq (2006 can be seen as cinematic adaptations of such cases putting the focus on the causality of asymmetric cultural encounters and escalation. The ar­tic­le deals with the major cinematic tools applied in visualizing this causality in the two films.

  10. Sin-wai, Chan. The Future of Translation Technology: Towards a World without Babel. London and New York: Routledge, 2017. 302 p.

    Directory of Open Access Journals (Sweden)

    Thomas Kelahan

    2018-01-01

    Full Text Available Chan Sin-wai is a professor and chairman of the Department of Translation at the Chinese University of Hong Kong, Shenzhen. Additionally, he is the director of the Center for Translation Technology as well as the university’s MA Program in Computer-aided translation.  In 2016, he published A New Comprehensive Chinese-English Dictionary, Routledge Encyclopedia of Translation Technology and Routledge Encyclopedia of the Chinese Language. His newest book, The Future of Translation Technology: Towards a World without Babel, is described as “an essential read for scholars and researchers of translation studies and computational linguistics, and a guide to system users and professionals.”

  11. LA TOUR DE BABEL ET LA PIERRE DE BETHEL: LES MÉFAITS DU MULTILINGUISME ET LES BIENFAITS DE L`INTÉRIORITÉ

    Directory of Open Access Journals (Sweden)

    Acad. Baudouin DECHARNEUX

    2015-11-01

    Full Text Available In our recent publications we have discussed and argued our point on the problem of the sacred places in the Hebrew religion. In the following lines we are going to reflect on two texts in the Genesis, which we propose to read in a synoptic manner: t he Tower of Babel (Genesis 11, 2 - 9 and the dream of Jacob (Genesis 28, 10 - 22. The two narratives seem in fact constructed so as to contrast two ways of relating to the Word: using it so as to build for material purposes and receiving it for understanding its spiritual purposes. The tension dramatized by the two texts seems to reveal a complex theology of the Word, which, being undoubtedly grafted on archaic stories, attests to a will for a conceptual unification typical of a cosmological monotheism.

  12. Group-decoupled multi-group pin power reconstruction utilizing nodal solution 1D flux profiles

    International Nuclear Information System (INIS)

    Yu, Lulin; Lu, Dong; Zhang, Shaohong; Wang, Dezhong

    2014-01-01

    Highlights: • A direct fitting multi-group pin power reconstruction method is developed. • The 1D nodal solution flux profiles are used as the condition. • The least square fit problem is analytically solved. • A slowing down source improvement method is applied. • The method shows good accuracy for even challenging problems. - Abstract: A group-decoupled direct fitting method is developed for multi-group pin power reconstruction, which avoids both the complication of obtaining 2D analytic multi-group flux solution and any group-coupled iteration. A unique feature of the method is that in addition to nodal volume and surface average fluxes and corner fluxes, transversely-integrated 1D nodal solution flux profiles are also used as the condition to determine the 2D intra-nodal flux distribution. For each energy group, a two-dimensional expansion with a nine-term polynomial and eight hyperbolic functions is used to perform a constrained least square fit to the 1D intra-nodal flux solution profiles. The constraints are on the conservation of nodal volume and surface average fluxes and corner fluxes. Instead of solving the constrained least square fit problem numerically, we solve it analytically by fully utilizing the symmetry property of the expansion functions. Each of the 17 unknown expansion coefficients is expressed in terms of nodal volume and surface average fluxes, corner fluxes and transversely-integrated flux values. To determine the unknown corner fluxes, a set of linear algebraic equations involving corner fluxes is established via using the current conservation condition on all corners. Moreover, an optional slowing down source improvement method is also developed to further enhance the accuracy of the reconstructed flux distribution if needed. Two test examples are shown with very good results. One is a four-group BWR mini-core problem with all control blades inserted and the other is the seven-group OECD NEA MOX benchmark, C5G7

  13. Multiregion, multigroup collision probability method with white boundary condition for light water reactor thermalization calculations

    International Nuclear Information System (INIS)

    Ozgener, B.; Ozgener, H.A.

    2005-01-01

    A multiregion, multigroup collision probability method with white boundary condition is developed for thermalization calculations of light water moderated reactors. Hydrogen scatterings are treated by Nelkin's kernel while scatterings from other nuclei are assumed to obey the free-gas scattering kernel. The isotropic return (white) boundary condition is applied directly by using the appropriate collision probabilities. Comparisons with alternate numerical methods show the validity of the present formulation. Comparisons with some experimental results indicate that the present formulation is capable of calculating disadvantage factors which are closer to the experimental results than alternative methods

  14. Geospatial Data Fusion and Multigroup Decision Support for Surface Water Quality Management

    Science.gov (United States)

    Sun, A. Y.; Osidele, O.; Green, R. T.; Xie, H.

    2010-12-01

    Social networking and social media have gained significant popularity and brought fundamental changes to many facets of our everyday life. With the ever-increasing adoption of GPS-enabled gadgets and technology, location-based content is likely to play a central role in social networking sites. While location-based content is not new to the geoscience community, where geographic information systems (GIS) are extensively used, the delivery of useful geospatial data to targeted user groups for decision support is new. Decision makers and modelers ought to make more effective use of the new web-based tools to expand the scope of environmental awareness education, public outreach, and stakeholder interaction. Environmental decision processes are often rife with uncertainty and controversy, requiring integration of multiple sources of information and compromises between diverse interests. Fusing of multisource, multiscale environmental data for multigroup decision support is a challenging task. Toward this goal, a multigroup decision support platform should strive to achieve transparency, impartiality, and timely synthesis of information. The latter criterion often constitutes a major technical bottleneck to traditional GIS-based media, featuring large file or image sizes and requiring special processing before web deployment. Many tools and design patterns have appeared in recent years to ease the situation somewhat. In this project, we explore the use of Web 2.0 technologies for “pushing” location-based content to multigroups involved in surface water quality management and decision making. In particular, our granular bottom-up approach facilitates effective delivery of information to most relevant user groups. Our location-based content includes in-situ and remotely sensed data disseminated by NASA and other national and local agencies. Our project is demonstrated for managing the total maximum daily load (TMDL) program in the Arroyo Colorado coastal river basin

  15. Hydrogen transport in a toroidal plasma using multigroup discrete-ordinates methodology

    International Nuclear Information System (INIS)

    Wienke, B.R.; Miller, W.F. Jr.; Seed, T.J.

    1979-01-01

    Neutral hydrogen transport in a fully ionized two-dimensional tokamak plasma was examined using discrete ordinates and contrasted with earlier analyses. In particular, curvature effects induced by toroidal geometries and ray effects caused by possible source localization were investigated. From an overview of the multigroup discrete-ordinates approximation, methodology in two-dimensional cylindrical geometry is detailed, mesh and plasma zoning procedures are sketched, and the piecewise polynomial solution algorithm on a triangular domain is obtained. Toroidal effects and comparisons as related to reaction rates and perticle spectra are examined for various model and source configurations

  16. Global Stability of Multigroup SIRS Epidemic Model with Varying Population Sizes and Stochastic Perturbation around Equilibrium

    Directory of Open Access Journals (Sweden)

    Xiaoming Fan

    2014-01-01

    Full Text Available We discuss multigroup SIRS (susceptible, infectious, and recovered epidemic models with random perturbations. We carry out a detailed analysis on the asymptotic behavior of the stochastic model; when reproduction number ℛ0>1, we deduce the globally asymptotic stability of the endemic equilibrium by measuring the difference between the solution and the endemic equilibrium of the deterministic model in time average. Numerical methods are employed to illustrate the dynamic behavior of the model and simulate the system of equations developed. The effect of the rate of immunity loss on susceptible and recovered individuals is also analyzed in the deterministic model.

  17. Continuous energy Neutron Transport Monte Carlo Simulator Project: Decomposition of the neutron energy spectrum by target nuclei tagging

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos, Luiz Felipe F.C.; Bodmann, Bardo E.J.; Vilhena, Marco T.M.B., E-mail: luizfelipe.fcb@gmail.com, E-mail: bardo.bodmann@ufrgs.br, E-mail: mtmbvilhena@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Grupo de Estudos Nucleares; Leite, Sergio Q. Bogado, E-mail: sbogado@ibest.com.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In this work a Monte Carlo simulator with continuous energy is used. This simulator distinguishes itself by using the sum of three probability distributions to represent the neutron spectrum. Two distributions have known shape, but have varying population of neutrons in time, and these are the fission neutron spectrum (for high energy neutrons) and the Maxwell-Boltzmann distribution (for thermal neutrons). The third distribution has an a priori unknown and possibly variable shape with time and is determined from parametrizations of Monte Carlo simulation. It is common practice in neutron transport calculations, e.g. multi-group transport, to consider that the neutrons only lose energy with each scattering reaction and then to use a thermal group with a Maxwellian distribution. Such an approximation is valid due to the fact that for fast neutrons up-scattering occurrence is irrelevant, being only appreciable at low energies, i.e. in the thermal energy region, in which it can be regarded as a Maxwell-Boltzmann distribution for thermal equilibrium. In this work the possible neutron-matter interactions are simulated with exception of the up-scattering of neutrons. In order to preserve the thermal spectrum, neutrons are selected stochastically as being part of the thermal population and have an energy attributed to them taken from a Maxwellian distribution. It is then shown how this procedure can emulate the up-scattering effect by the increase in the neutron population kinetic energy. Since the simulator uses tags to identify the reactions it is possible not only to plot the distributions by neutron energy, but also by the type of interaction with matter and with the identification of the target nuclei involved in the process. This work contains some preliminary results obtained from a Monte Carlo simulator for neutron transport that is being developed at Federal University of Rio Grande do Sul. (author)

  18. Consistent Multigroup Theory Enabling Accurate Course-Group Simulation of Gen IV Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rahnema, Farzad; Haghighat, Alireza; Ougouag, Abderrafi

    2013-11-29

    The objective of this proposal is the development of a consistent multi-group theory that accurately accounts for the energy-angle coupling associated with collapsed-group cross sections. This will allow for coarse-group transport and diffusion theory calculations that exhibit continuous energy accuracy and implicitly treat cross- section resonances. This is of particular importance when considering the highly heterogeneous and optically thin reactor designs within the Next Generation Nuclear Plant (NGNP) framework. In such reactors, ignoring the influence of anisotropy in the angular flux on the collapsed cross section, especially at the interface between core and reflector near which control rods are located, results in inaccurate estimates of the rod worth, a serious safety concern. The scope of this project will include the development and verification of a new multi-group theory enabling high-fidelity transport and diffusion calculations in coarse groups, as well as a methodology for the implementation of this method in existing codes. This will allow for a higher accuracy solution of reactor problems while using fewer groups and will reduce the computational expense. The proposed research represents a fundamental advancement in the understanding and improvement of multi- group theory for reactor analysis.

  19. Longitudinal multigroup invariance analysis of the satisfaction with food-related life scale in university students.

    Science.gov (United States)

    Schnettler, Berta; Miranda, Horacio; Miranda-Zapata, Edgardo; Salinas-Oñate, Natalia; Grunert, Klaus G; Lobos, Germán; Sepúlveda, José; Orellana, Ligia; Hueche, Clementina; Bonilla, Héctor

    2017-06-01

    This study examined longitudinal measurement invariance in the Satisfaction with Food-related Life (SWFL) scale using follow-up data from university students. We examined this measure of the SWFL in different groups of students, separated by various characteristics. Through non-probabilistic longitudinal sampling, 114 university students (65.8% female, mean age: 22.5) completed the SWFL questionnaire three times, over intervals of approximately one year. Confirmatory factor analysis was used to examine longitudinal measurement invariance. Two types of analysis were conducted: first, a longitudinal invariance by time, and second, a multigroup longitudinal invariance by sex, age, socio-economic status and place of residence during the study period. Results showed that the 3-item version of the SWFL exhibited strong longitudinal invariance (equal factor loadings and equal indicator intercepts). Longitudinal multigroup invariance analysis also showed that the 3-item version of the SWFL displays strong invariance by socio-economic status and place of residence during the study period over time. Nevertheless, it was only possible to demonstrate equivalence of the longitudinal factor structure among students of both sexes, and among those older and younger than 22 years. Generally, these findings suggest that the SWFL scale has satisfactory psychometric properties for longitudinal measurement invariance in university students with similar characteristics as the students that participated in this research. It is also possible to suggest that satisfaction with food-related life is associated with sex and age. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Variational P1 approximations of general-geometry multigroup transport problems

    International Nuclear Information System (INIS)

    Rulko, R.P.; Tomasevic, D.; Larsen, E.W.

    1995-01-01

    A variational approximation is developed for general-geometry multigroup transport problems with arbitrary anisotropic scattering. The variational principle is based on a functional that approximates a reaction rate in a subdomain of the system. In principle, approximations that result from this functional ''optimally'' determine such reaction rates. The functional contains an arbitrary parameter α and requires the approximate solutions of a forward and an adjoint transport problem. If the basis functions for the forward and adjoint solutions are chosen to be linear functions of the angular variable Ω, the functional yields the familiar multigroup P 1 equations for all values of α. However, the boundary conditions that result from the functional depend on α. In particular, for problems with vacuum boundaries, one obtains the conventional mixed boundary condition, but with an extrapolation distance that depends continuously on α. The choice α = 0 yields a generalization of boundary conditions derived earlier by Federighi and Pomraning for a more limited class of problems. The choice α = 1 yields a generalization of boundary conditions derived previously by Davis for monoenergetic problems. Other boundary conditions are obtained by choosing different values of α. The authors discuss this indeterminancy of α in conjunction with numerical experiments

  1. The group-level consequences of sexual conflict in multigroup populations.

    Directory of Open Access Journals (Sweden)

    Omar Tonsi Eldakar

    Full Text Available In typical sexual conflict scenarios, males best equipped to exploit females are favored locally over more prudent males, despite reducing female fitness. However, local advantage is not the only relevant form of selection. In multigroup populations, groups with less sexual conflict will contribute more offspring to the next generation than higher conflict groups, countering the local advantage of harmful males. Here, we varied male aggression within- and between-groups in a laboratory population of water striders and measured resulting differences in local population growth over a period of three weeks. The overall pool fitness (i.e., adults produced of less aggressive pools exceeded that of high aggression pools by a factor of three, with the high aggression pools essentially experiencing no population growth over the course of the study. When comparing the fitness of individuals across groups, aggression appeared to be under stabilizing selection in the multigroup population. The use of contextual analysis revealed that overall stabilizing selection was a product of selection favoring aggression within groups, but selected against it at the group-level. Therefore, this report provides further evidence to show that what evolves in the total population is not merely an extension of within-group dynamics.

  2. Reactor Statics Module, RS-9: Multigroup Diffusion Program Using an Exponential Acceleration Technique.

    Science.gov (United States)

    Macek, Victor C.

    The nine Reactor Statics Modules are designed to introduce students to the use of numerical methods and digital computers for calculation of neutron flux distributions in space and energy which are needed to calculate criticality, power distribution, and fuel burnup for both slow neutron and fast neutron fission reactors. The last module, RS-9,…

  3. Consolidation of the neutron spectrum in the RA-6 reactor

    International Nuclear Information System (INIS)

    Bazzana, S.; Chiaraviglio, N.

    2013-01-01

    Unfolding procedures can be used to determine the neutron or gamma spectrum in a multigroup structure from experimental and calculation results. In this way, it is possible to adjust with high reliability magnitudes that cannot be directly measured. For neutron unfolding it is necessary the use of a set of detectors with different energetic response. In this work we describe two unfolding experiences in different positions of the RA-6 reactor of the Bariloche Atomic Centre. One of them consisted in the unfolding in an incore position and the other one in the BNCT facility beam.Experimental techniques and neutron detectors for each experience are described along with the correction factors that must be taken into account for each experience. In both cases there is good agreement between measured and adjusted quantities. (author) [es

  4. Development of an Analytic Nodal Diffusion Solver in Multi-groups for 3D Reactor Cores with Rectangular or Hexagonal Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, Juan Andres; Aragones, Jose Maria; Garcia-Herranz, Nuria [Universidad Politecnica de Madrid, 28006 Jose Gutierrez Abascal 2, Madrid (Spain)

    2008-07-01

    More accurate modelling of physical phenomena involved in present and future nuclear reactors requires a multi-scale and multi-physics approach. This challenge can be accomplished by the coupling of best-estimate core-physics, thermal-hydraulics and multi-physics solvers. In order to make viable that coupling, the current trends in reactor simulations are along the development of a new generation of tools based on user-friendly, modular, easily linkable, faster and more accurate codes to be integrated in common platforms. These premises are in the origin of the NURESIM Integrated Project within the 6. European Framework Program, which is envisaged to provide the initial step towards a Common European Standard Software Platform for nuclear reactors simulations. In the frame of this project and to reach the above-mentioned goals, a 3-D multigroup nodal solver for neutron diffusion calculations called ANDES (Analytic Nodal Diffusion Equation Solver) has been developed and tested in-depth in this Thesis. ANDES solves the steady-state and time-dependent neutron diffusion equation in three-dimensions and any number of energy groups, utilizing the Analytic Coarse-Mesh Finite-Difference (ACMFD) scheme to yield the nodal coupling equations. It can be applied to both Cartesian and triangular-Z geometries, so that simulations of LWR as well as VVER, HTR and fast reactors can be performed. The solver has been implemented in a fully encapsulated way, enabling it as a module to be readily integrated in other codes and platforms. In fact, it can be used either as a stand-alone nodal code or as a solver to accelerate the convergence of whole core pin-by-pin code systems. Verification of performance has shown that ANDES is a code with high order definition for whole core realistic nodal simulations. In this paper, the methodology developed and involved in ANDES is presented. (authors)

  5. Os afazeres de Babel

    OpenAIRE

    José Quintão de Oliveira

    2012-01-01

    We live in a time that might be called a time of translation.Everywhere, we need to read or to listen to utterances that wereoriginally written or spoken in languages that are strange to us. So,we do not need a theoretical approach to conclude that it is possibleto translate a text from one language to a different one. But, is thisreal? Especially, is this real when we talk about Literature? Is possibleto translate a poem? Beginning with Cicero in Ancient Rome, wetrace a rout through Saint Je...

  6. Os afazeres de Babel

    Directory of Open Access Journals (Sweden)

    José Quintão de Oliveira

    2012-11-01

    Full Text Available We live in a time that might be called a time of translation.Everywhere, we need to read or to listen to utterances that wereoriginally written or spoken in languages that are strange to us. So,we do not need a theoretical approach to conclude that it is possibleto translate a text from one language to a different one. But, is thisreal? Especially, is this real when we talk about Literature? Is possibleto translate a poem? Beginning with Cicero in Ancient Rome, wetrace a rout through Saint Jerome, Ortega y Gasset and other thinkersto discuss the answers to these questions. This short essay is just afirst approach which more than supplying answers, seeks for adebate on the important questions related to this subject. It hasonly one conclusion: two thousand years of reflections on theproblem of translation has not been sufficient to solve it.“Non solum fateor, sed libera uoce profiteor me ininterpretatione Graecorum absque scripturis sanctis,ubi et uerborum ordo mysteriam est, non uerbum euerbo sed sensum exprimere de sensu.”(Eusebius Hieronymus

  7. Heat generation and temperature-rise in ordinary concrete due to capture of thermal neutrons

    International Nuclear Information System (INIS)

    Abdo, E.A.; Amin, E.

    1997-01-01

    The aim of this work is the evaluation of the heat generation and temperature-rise in local ordinary concrete as a biological shield due to capture of total thermal and reactor thermal neutrons. The total thermal neutron fluxes were measured and calculated. The channel number 2 of the ETRR-1 reactor was used in the measurements as a neutron source. Computer code ANISN (VAX version) and neutron multigroup cross-section library EURLiB-4 was used in the calculations. The heat generation and temperature-rise in local ordinary concrete were evaluated and calculated. The results were displayed in curves to show the distribution of thermal neutron fluxes and heat generation as well as temperature-rise with the shield thickness. The results showed that, the heat generation as well as the temperature-rise have their maximum values in the first layers of the shield thickness. 4 figs., 12 refs

  8. Production and testing of the ENEA-Bologna VITJEFF32.BOLIB (JEFF-3.2) multi-group (199 n + 42 γ) cross section library in AMPX format for nuclear fission applications

    Science.gov (United States)

    Pescarini, Massimo; Orsi, Roberto; Frisoni, Manuela

    2017-09-01

    The ENEA-Bologna Nuclear Data Group produced the VITJEFF32.BOLIB multi-group coupled neutron/photon (199 n + 42 γ) cross section library in AMPX format, based on the OECD-NEA Data Bank JEFF-3.2 evaluated nuclear data library. VITJEFF32.BOLIB was conceived for nuclear fission applications as European counterpart of the ORNL VITAMIN-B7 similar library (ENDF/B-VII.0 data). VITJEFF32.BOLIB has the same neutron and photon energy group structure as the former ORNL VITAMIN-B6 reference library (ENDF/B-VI.3 data) and was produced using similar data processing methodologies, based on the LANL NJOY-2012.53 nuclear data processing system for the generation of the nuclide cross section data files in GENDF format. Then the ENEA-Bologna 2007 Revision of the ORNL SCAMPI nuclear data processing system was used for the conversion into the AMPX format. VITJEFF32.BOLIB contains processed cross section data files for 190 nuclides, obtained through the Bondarenko (f-factor) method for the treatment of neutron resonance self-shielding and temperature effects. Collapsed working libraries of self-shielded cross sections in FIDO-ANISN format, used by the deterministic transport codes of the ORNL DOORS system, can be generated from VITJEFF32.BOLIB through the cited SCAMPI version. This paper describes the methodology and specifications of the data processing performed and presents some results of the VITJEFF32.BOLIB validation.

  9. Production and testing of the ENEA-Bologna VITJEFF32.BOLIB (JEFF-3.2 multi-group (199 n + 42 γ cross section library in AMPX format for nuclear fission applications

    Directory of Open Access Journals (Sweden)

    Pescarini Massimo

    2017-01-01

    Full Text Available The ENEA-Bologna Nuclear Data Group produced the VITJEFF32.BOLIB multi-group coupled neutron/photon (199 n + 42 γ cross section library in AMPX format, based on the OECD-NEA Data Bank JEFF-3.2 evaluated nuclear data library. VITJEFF32.BOLIB was conceived for nuclear fission applications as European counterpart of the ORNL VITAMIN-B7 similar library (ENDF/B-VII.0 data. VITJEFF32.BOLIB has the same neutron and photon energy group structure as the former ORNL VITAMIN-B6 reference library (ENDF/B-VI.3 data and was produced using similar data processing methodologies, based on the LANL NJOY-2012.53 nuclear data processing system for the generation of the nuclide cross section data files in GENDF format. Then the ENEA-Bologna 2007 Revision of the ORNL SCAMPI nuclear data processing system was used for the conversion into the AMPX format. VITJEFF32.BOLIB contains processed cross section data files for 190 nuclides, obtained through the Bondarenko (f-factor method for the treatment of neutron resonance self-shielding and temperature effects. Collapsed working libraries of self-shielded cross sections in FIDO-ANISN format, used by the deterministic transport codes of the ORNL DOORS system, can be generated from VITJEFF32.BOLIB through the cited SCAMPI version. This paper describes the methodology and specifications of the data processing performed and presents some results of the VITJEFF32.BOLIB validation.

  10. Multigroup Ethnic Identity Measure with Art Therapy Students: Assessing Preservice Students after One Multicultural Self-Reflection Course.

    Science.gov (United States)

    Cherry, Laura A.

    2002-01-01

    Graduate art therapy students enrolled in a multicultural art therapy course were given the Multigroup Ethnic Identity Measure as a pretest and posttest to assess their own cultural identity. Results indicate that stronger cultural identification is possible following the completion of one multicultural art therapy course. (Contains 25 references…

  11. Analysis of sensitive questions across cultures : An application of multigroup item randomized response theory to sexual attitudes and behavior

    NARCIS (Netherlands)

    de Jong, M.G.; Pieters, R.; Stremersch, S.

    2012-01-01

    Answers to sensitive questions are prone to social desirability bias. If not properly addressed, the validity of the research can be suspect. This article presents multigroup item randomized response theory (MIRRT) to measure self-reported sensitive topics across cultures. The method was

  12. Using Multi-Group Confirmatory Factor Analysis to Evaluate Cross-Cultural Research: Identifying and Understanding Non-Invariance

    Science.gov (United States)

    Brown, Gavin T. L.; Harris, Lois R.; O'Quin, Chrissie; Lane, Kenneth E.

    2017-01-01

    Multi-group confirmatory factor analysis (MGCFA) allows researchers to determine whether a research inventory elicits similar response patterns across samples. If statistical equivalence in responding is found, then scale score comparisons become possible and samples can be said to be from the same population. This paper illustrates the use of…

  13. Program to solve the multigroup discrete ordinates transport equation in (x,y,z) geometry

    International Nuclear Information System (INIS)

    Lathrop, K.D.

    1976-04-01

    Numerical formulations and programming algorithms are given for the THREETRAN computer program which solves the discrete ordinates, multigroup transport equation in (x,y,z) geometry. An efficient, flexible, and general data-handling strategy is derived to make use of three hierarchies of storage: small core memory, large core memory, and disk file. Data management, input instructions, and sample problem output are described. A six-group, S 4 , 18 502 mesh point, 2 800 zone, k/sub eff/ calculation of the ZPPR-4 critical assembly required 144 min of CDC-7600 time to execute to a convergence tolerance of 5 x 10 -4 and gave results in good qualitative agreement with experiment and other calculations. 6 references

  14. Solution of the Multigroup-Diffusion equation by the response matrix method

    International Nuclear Information System (INIS)

    Oliveira, C.R.E.

    1980-10-01

    A preliminary analysis of the response matrix method is made, considering its application to the solution of the multigroup diffusion equations. The one-dimensional formulation is presented and used to test some flux expansions, seeking the application of the method to the two-dimensional problem. This formulation also solves the equations that arise from the integro-differential synthesis algorithm. The slow convergence of the power method, used to solve the eigenvalue problem, and its acceleration by means of the Chebyshev polynomial method, are also studied. An algorithm for the estimation of the dominance ratio is presented, based on the residues of two successive iteration vectors. This ratio, which is not known a priori, is fundamental for the efficiency of the method. Some numerical problems are solved, testing the 1D formulation of the response matrix method, its application to the synthesis algorithm and also, at the same time, the algorithm to accelerate the source problem. (Author) [pt

  15. Global dynamics of a novel multi-group model for computer worms

    Science.gov (United States)

    Gong, Yong-Wang; Song, Yu-Rong; Jiang, Guo-Ping

    2013-04-01

    In this paper, we study worm dynamics in computer networks composed of many autonomous systems. A novel multi-group SIQR (susceptible-infected-quarantined-removed) model is proposed for computer worms by explicitly considering anti-virus measures and the network infrastructure. Then, the basic reproduction number of worm R0 is derived and the global dynamics of the model are established. It is shown that if R0 is less than or equal to 1, the disease-free equilibrium is globally asymptotically stable and the worm dies out eventually, whereas, if R0 is greater than 1, one unique endemic equilibrium exists and it is globally asymptotically stable, thus the worm persists in the network. Finally, numerical simulations are given to illustrate the theoretical results.

  16. SIRIUS - A one-dimensional multigroup analytic nodal diffusion theory code

    Energy Technology Data Exchange (ETDEWEB)

    Forslund, P. [Westinghouse Atom AB, Vaesteraas (Sweden)

    2000-09-01

    In order to evaluate relative merits of some proposed intranodal cross sections models, a computer code called Sirius has been developed. Sirius is a one-dimensional, multigroup analytic nodal diffusion theory code with microscopic depletion capability. Sirius provides the possibility of performing a spatial homogenization and energy collapsing of cross sections. In addition a so called pin power reconstruction method is available for the purpose of reconstructing 'heterogeneous' pin qualities. consequently, Sirius has the capability of performing all the calculations (incl. depletion calculations) which are an integral part of the nodal calculation procedure. In this way, an unambiguous numerical analysis of intranodal cross section models is made possible. In this report, the theory of the nodal models implemented in sirius as well as the verification of the most important features of these models are addressed.

  17. Testing a new multigroup inference approach to reconstructing past environmental conditions

    Directory of Open Access Journals (Sweden)

    Maria RIERADEVALL

    2008-08-01

    Full Text Available A new, quantitative, inference model for environmental reconstruction (transfer function, based for the first time on the simultaneous analysis of multigroup species, has been developed. Quantitative reconstructions based on palaeoecological transfer functions provide a powerful tool for addressing questions of environmental change in a wide range of environments, from oceans to mountain lakes, and over a range of timescales, from decades to millions of years. Much progress has been made in the development of inferences based on multiple proxies but usually these have been considered separately, and the different numeric reconstructions compared and reconciled post-hoc. This paper presents a new method to combine information from multiple biological groups at the reconstruction stage. The aim of the multigroup work was to test the potential of the new approach to making improved inferences of past environmental change by improving upon current reconstruction methodologies. The taxonomic groups analysed include diatoms, chironomids and chrysophyte cysts. We test the new methodology using two cold-environment training-sets, namely mountain lakes from the Pyrenees and the Alps. The use of multiple groups, as opposed to single groupings, was only found to increase the reconstruction skill slightly, as measured by the root mean square error of prediction (leave-one-out cross-validation, in the case of alkalinity, dissolved inorganic carbon and altitude (a surrogate for air-temperature, but not for pH or dissolved CO2. Reasons why the improvement was less than might have been anticipated are discussed. These can include the different life-forms, environmental responses and reaction times of the groups under study.

  18. Projeto BaBel: uma proposta de desenvolvimento comunitário sustentável em Baselstrasse (Lucerna –Suíça (The BaBeL Project, Sustainable Neighbourhood Development in Lucerne’s Baselstrasse/Bernstrasse Neighbourhood

    Directory of Open Access Journals (Sweden)

    Alex Willener

    2008-01-01

    Full Text Available Resumo: A comunidade de Baselstrasse/Bernstrasse em Lucerna, Suíça, é caracterizada por conter uma população multinacional formada por mais de 70 nações, todas mantendo seus específicos estilos de vida. O aumento da população economicamente pobre refletiu na reputação da comunidade de forma negativa. A dinâmica social dessa comunidade repercutiu, também, nos aspectos educacionais e sócio-culturais da região, levando professores e outros profissionais a enfrentarem grandes desafios. Uma equipe interdisciplinar formada por professores da Universidade de Ciências Sociais Aplicadas de Lucerna aceitou o desafio de trabalhar com a comunidade e desenvolveu um projeto denominado BaBel. O principal objetivo do Projeto BaBel era desenvolver um trabalho que trouxesse benefícios para os diferentes grupos que vivem na comunidade, para as instituições presentes no local, bem como criar espaços para os futuros stakeholders. Todos esses atores foram envolvidos no desenvolvimento do projeto. Diferentes metodologias foram utilizadas para fomentar a participação progressiva da população, tais como: ‘desenvolvimento de cenários’, grupos de intervenção, análise da comunidade realizada pelas crianças e pelos jovens. A implementação do projeto envolveu 16 diferentes campos de ação, os quais abarcaram temas como economia de energia e poluição sonora (projetos pilotos, projetos na área da infância (curricular e extracurricular, melhoria das áreas de proteção ambiental das margens do rio que corta a comunidade, melhoria dos espaços de lazer, saúde e prevenção, estabelecimento de pontos de encontro na área, melhoria nas estruturas comerciais e otimização do tráfego local.Abstract: The Baselstrasse/Bernstrasse neighbourhood is characterized by its multinational population hailing from 70 nations, all maintaining their specific lifestyles. The increase in the number of economically weak people to a level above average

  19. Neutron guide

    Science.gov (United States)

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  20. Re-evaluation of the neutron scattering dynamics in heavy water, generation of multigroup cross sections for THERM-126

    International Nuclear Information System (INIS)

    Keinert, J.

    1982-06-01

    In providing THERM-126 with cross section matrices for deuterium bound in heavy water the IKE phonon spectrum was reevaluated. The changes are modifications in the acoustic part and in the frequency of the second oscillator. Contrary to the phonon spectrum model for D in D 2 O in ENDF/B-IV the broad band of hindered rotations is assumed to be temperature dependent taking into account the diffusive motion of the molecule. With the new model scattering law data S (α, β) are generated in the temperature range 293.6 K-673.6 K. The THERM-126 scattering cross section matrices are calculated up to P 3 . As a validity check a lot of differential and integral cross sections are compared to experiments and benchmarks are recalculated. (orig.) [de

  1. Neutron physics

    CERN Document Server

    Reuss, Paul

    2008-01-01

    Originally just an offshoot of nuclear physics, neutron physics soon became a branch of physics in its own right. It deals with the movement of neutrons in nuclear reactors and ail the nuclear reactions they trigger there, particularly the fission of heavy nuclei which starts a chain reaction to produce energy. Neutron Physics covers the whole range of knowledge of this complex science, discussing the basics of neutron physics and some principles of neutron physics calculations. Because neutron physics is the essential part of reactor physics, it is the main subject taught to students of Nuclear Engineering. This book takes an instructional approach for that purpose. Neutron Physics is also intended for ail physicists and engineers involved in development or operational aspects of nuclear power.

  2. A multigroup analysis from a continuos energy spectrum approach by a MC method

    International Nuclear Information System (INIS)

    Camargo, Dayana Q. de; Bodmann, Bardo E.J.; Vilhena, Marco T. de

    2009-01-01

    In this work, the Monte Carlo method is applied to the energy dependent three- dimensional neutron transport equation, in order to analyze the change in the spectrum energy depending on the Monte Carlo step. The present work is a first step into a new direction where spectral influence on criticality may be analyzed. The method is based on the monitoring of a large number of individual realizations of neutron histories (i.e. microscopic interaction sequence) where the average behavior of neutrons yields an approximate solution for the neutron transport equation. The Monte Carlo is implemented using continuous functions, with respect to energy, for the cross sections of materials, functions which are obtained by parametrizations of the cross sections. The type of interaction that the neutron will suffer and the characteristics of their displacement in the element are estimated randomly following the relevant probability distributions. (author)

  3. Neutron diffusion in graphite poisoned with 1/v and non-1/v absorbers

    International Nuclear Information System (INIS)

    Malik, U.; Kothari, L.S.; Kumar, A.

    1982-01-01

    Neutron diffusion in graphite containing 1/v and non-1/v absorbers has been studied in the diffusion theory approximation using a multigroup (30-group) approach and the neutron scattering kernel proposed earlier by the authors. It is observed that, in this case as in the case of water investigated earlier, the behavior of neutrons in graphite poisoned with gadolinium is different from that in graphite poisoned with samarium or cadmium. To explain the reason for this difference, a hypothetical model for the energy variation of the absorption cross section has been constructed that closely resembles samarium in one limit and goes over to gadolinium in the other. The effect of varying the concentration of non-1/v absorbers on the flux of sub-Bragg and epicold neutrons has been studied for this model, and some interesting results are obtained

  4. Comparing Indirect Effects in Different Groups in Single-Group and Multi-Group Structural Equation Models

    Directory of Open Access Journals (Sweden)

    Ehri Ryu

    2017-05-01

    Full Text Available In this article, we evaluated the performance of statistical methods in single-group and multi-group analysis approaches for testing group difference in indirect effects and for testing simple indirect effects in each group. We also investigated whether the performance of the methods in the single-group approach was affected when the assumption of equal variance was not satisfied. The assumption was critical for the performance of the two methods in the single-group analysis: the method using a product term for testing the group difference in a single path coefficient, and the Wald test for testing the group difference in the indirect effect. Bootstrap confidence intervals in the single-group approach and all methods in the multi-group approach were not affected by the violation of the assumption. We compared the performance of the methods and provided recommendations.

  5. Neutron radiography

    International Nuclear Information System (INIS)

    Hiraoka, Eiichi

    1988-01-01

    The thermal neutron absorption coefficient is essentially different from the X-ray absorption coefficient. Each substance has a characteristic absorption coefficient regardless of its density. Neutron deams have the following features: (1) neutrons are not transmitted efficiently by low molecular weight substances, (2) they are transmitted efficiently by heavy metals, and (3) the transmittance differs among isotopes. Thus, neutron beams are suitable for cheking for foreign matters in heavy metals and testing of composites consisting of both heavy and light materials. A neutron source generates fast neutrons, which should be converted into thermal neutrons by reducing their energy. Major neutron souces include nuclear reactors, radioisotopes and particle accelerators. Photographic films and television systems are mainly used to observe neutron transmission images. Computers are employed for image processing, computerized tomography and three-dimensional analysis. The major applications of neutron radiography include inspection of neclear fuel; evaluation of material for airplane; observation of fuel in the engine and oil in the hydraulic systems in airplanes; testing of composite materials; etc. (Nogami, K.)

  6. Development and verification of a high performance multi-group SP{sub 3} transport capability in the ARTEMIS core simulator

    Energy Technology Data Exchange (ETDEWEB)

    Van Geemert, Rene [AREVA, AREVA NP, Erlangen (Germany)

    2008-07-01

    For satisfaction of future global customer needs, dedicated efforts are being coordinated internationally and pursued continuously at AREVA NP. The currently ongoing CONVERGENCE project is committed to the development of the ARCADIA{sup R} next generation core simulation software package. ARCADIA{sup R} will be put to global use by all AREVA NP business regions, for the entire spectrum of core design processes, licensing computations and safety studies. As part of the currently ongoing trend towards more sophisticated neutronics methodologies, an SP{sub 3} nodal transport concept has been developed for ARTEMIS which is the steady-state and transient core simulation part of ARCADIA{sup R}. For enabling a high computational performance, the SP{sub N} calculations are accelerated by applying multi-level coarse mesh re-balancing. In the current implementation, SP{sub 3} is about 1.4 times as expensive computationally as SP{sub 1} (diffusion). The developed SP{sub 3} solution concept is foreseen as the future computational workhorse for many-group 3D pin-by-pin full core computations by ARCADIA{sup R}. With the entire numerical workload being highly parallelizable through domain decomposition techniques, associated CPU-time requirements that adhere to the efficiency needs in the nuclear industry can be expected to become feasible in the near future. The accuracy enhancement obtainable by using SP{sub 3} instead of SP{sub 1} has been verified by a detailed comparison of ARTEMIS 16-group pin-by-pin SP{sub N} results with KAERI's DeCart reference results for the 2D pin-by-pin Purdue UO{sub 2}/MOX benchmark. This article presents the accuracy enhancement verification and quantifies the achieved ARTEMIS-SP{sub 3} computational performance for a number of 2D and 3D multi-group and multi-box (up to pin-by-pin) core computations. (authors)

  7. A multi-group and preemptable scheduling of cloud resource based on HTCondor

    Science.gov (United States)

    Jiang, Xiaowei; Zou, Jiaheng; Cheng, Yaodong; Shi, Jingyan

    2017-10-01

    and LHAASO. The result indicates that multi-group and preemptable resource scheduling is efficient to support multi-group and soft preemption. Additionally, the permission controlling component has been used in the local computing cluster, supporting for experiment JUNO, CMS and LHAASO, and the scale will be expanded to more experiments at the first half year, including DYW, BES and so on. Its evidence that the permission controlling is efficient.

  8. Verification of fast neutron spectrum calculation in coupled system HERBE

    International Nuclear Information System (INIS)

    Avdic, S.; Pesic, M.; Marinkovic, P.

    1995-01-01

    A high-resolution semiconductor spectrometer filled with 3 He gas, in diode coincidence arrangement, is applied to measure neutron spectrum in the centre of the fast core of the coupled fast-thermal system HERBE in the 'Vinca' Institute. The neutron spectrum is evaluated from measured pulse height distribution by using the HE3 computer code developed in the Nuclear Engineering Laboratory of the Institute of Nuclear Sciences VINCA. Experimental results are compared with the relevant multigroup calculations in the energy range from 2.5 MeV to 10.5 MeV. The measured spectrum provides a sufficient overlapping with the calculated one and no serious divergence is found in the measured energy range. (author)

  9. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  10. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  11. Definition and validation of a calculation method (neutronic formulaire) used to investigate the properties of fast neutron reactor blankets

    International Nuclear Information System (INIS)

    Soule, Roland.

    1982-10-01

    This thesis presents basic cross section data set processing and flux distribution methods (''formulaire''), which may be used to calculate the properties of fast neutron reactor blankets. This formulaire is a part of the global calculation method used to study the whole reactor core. The approach adopted consists in studying successively: - the approximations of the multigroup cross sections processing methods and of the spatial and energy neutron flux calculation methods, together with their validation, based on calculation/experiment comparison; - the consequences of the basic data uncertainties on blanket integral parameters calculations. Finally, we apply the formulaire to the analysis of an experiment performed in the PHENIX power reactor (Pu production measurement in the first fertile subassembly ring) [fr

  12. The neutron

    International Nuclear Information System (INIS)

    Cheetham, A.K.

    1990-01-01

    In 1932, when Chadwick obtained the first unambiguous evidence for the existence of the neutron, his discovery confirmed the widely held belief that there existed a particle with zero charge and a mass similar to that of the proton. Indeed, as early as 1920, Lord Rutherford had suggested such a possibility in a lecture to the Royal Society. The discovery of the neutron had an immediate and dramatic impact in several areas. The nucleus, which had hitherto been regarded, somewhat unsatisfactorily, as a combination of protons and electrons, was now seen as comprising of protons and neutrons. This in turn lead to a proper understanding of the nature of isotopes and provided a fresh basis for nuclear theories. This paper examines the nature and properties of the neutron, and describes some facets of its remarkable role in contemporary science and technology. The aspects covered are its properties, the production and detection of neutrons, the reactions between neutrons and nuclei, fission reactions, neutron scattering, pulsed neutron scattering and neutron spectroscopy. (author)

  13. Atmospheric neutrons

    International Nuclear Information System (INIS)

    Preszler, A.M.; Moon, S.; White, R.S.

    1976-01-01

    Additional calibrations of the University of California double-scatter neutron and additional analysis corrections lead to the slightly changed neutron fluxes reported here. The theoretical angular distributions of Merker (1975) are in general agreement with our experimental fluxes but do not give the peaks for vertical upward and downward moving neutrons. The theoretical neutron escape current J 2 /sub pi/ (Merker, 1972; Armstrong et al., 1973) is in agreement with the experimental values from 10 to 100 MeV. Our experimental fluxes agree with those of the Kanbach et al. (1974) in the overlap region from 70 to 100 MeV

  14. The affect and arousal scales: psychometric properties of the Dutch version and multigroup confirmatory factor analyses.

    Science.gov (United States)

    De Bolle, Marleen; De Fruyt, Filip; Decuyper, Mieke

    2010-06-01

    Psychometric properties of the Dutch version of the Affect and Arousal Scales (AFARS) were inspected in a combined clinical and population sample (N = 1,215). The validity of the tripartite structure and the relations between Negative Affect, Positive Affect, and Physiological Hyperarousal (PH) were investigated for boys and girls, younger (8-11 years) and older (12-14 years) children, and for children with high versus low levels of emotional/behavioral problems separately. Results demonstrated an adequate fit of the tripartite structure in each of the subgroups. Multigroup confirmatory factor analysis demonstrated parameter equivalence across sex, age, and psychopathology status. Furthermore, the assumption of invariant error variances of the indicator variables was tenable across sex, age, and psychopathology status. Invariant variances and covariances of the latent constructs (i.e., the tripartite factors) were supported across sex and psychopathology status but not across age. Finally, adequate item and scale properties and good convergent and moderate divergent validity of the Dutch AFARS subscales were demonstrated, except for the divergent validity of the PH subscale.

  15. Review of uncertainty files and improved multigroup cross section files for FENDL

    International Nuclear Information System (INIS)

    Ganesan, S.

    1994-03-01

    The IAEA Nuclear Data Section, in co-operation with several national nuclear data centers and research groups, is creating an internationally available Fusion Evaluated Nuclear Data Library (FENDL), which will serve as a comprehensive source of processed and tested nuclear data tailored to the requirements of the Engineering and Development Activities (EDA) of the International Thermonuclear Experimental Reactor (ITER) Project and other fusion-related development projects. The FENDL project of the International Atomic Energy Agency has the task of coordination with the goal of assembling, processing and testing a comprehensive, fusion-relevant Fusion Evaluated Nuclear Data Library with unrestricted international distribution. The present report contains the summary of the IAEA Advisory Group Meeting on ''Review of Uncertainty Files and Improved Multigroup Cross Section Files for FENDL'', held during 8-12 November 1993 at the Tokai Research Establishment, JAERI, Japan, organized in cooperation with the Japan Atomic Energy Research Institute. The report presents the current status of the FENDL activity and the future work plans in the form of conclusions and recommendations of the four Working Groups of the Advisory Group Meeting on (1) experimental and calculational benchmarks, (2) preparation processed libraries for FENDL/ITER, (3) specifying procedures for improving FENDL and (4) selection of activation libraries for FENDL. (author). 1 tab

  16. Multi-Group Reductions of LTE Air Plasma Radiative Transfer in Cylindrical Geometries

    Science.gov (United States)

    Scoggins, James; Magin, Thierry Edouard Bertran; Wray, Alan; Mansour, Nagi N.

    2013-01-01

    Air plasma radiation in Local Thermodynamic Equilibrium (LTE) within cylindrical geometries is studied with an application towards modeling the radiative transfer inside arc-constrictors, a central component of constricted-arc arc jets. A detailed database of spectral absorption coefficients for LTE air is formulated using the NEQAIR code developed at NASA Ames Research Center. The database stores calculated absorption coefficients for 1,051,755 wavelengths between 0.04 µm and 200 µm over a wide temperature (500K to 15 000K) and pressure (0.1 atm to 10.0 atm) range. The multi-group method for spectral reduction is studied by generating a range of reductions including pure binning and banding reductions from the detailed absorption coefficient database. The accuracy of each reduction is compared to line-by-line calculations for cylindrical temperature profiles resembling typical profiles found in arc-constrictors. It is found that a reduction of only 1000 groups is sufficient to accurately model the LTE air radiation over a large temperature and pressure range. In addition to the reduction comparison, the cylindrical-slab formulation is compared with the finite-volume method for the numerical integration of the radiative flux inside cylinders with varying length. It is determined that cylindrical-slabs can be used to accurately model most arc-constrictors due to their high length to radius ratios.

  17. Offensive Strategy in the 2D Soccer Simulation League Using Multi-Group Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Shengbing Chen

    2016-02-01

    Full Text Available The 2D soccer simulation league is one of the best test beds for the research of artificial intelligence (AI. It has achieved great successes in the domain of multi-agent cooperation and machine learning. However, the problem of integral offensive strategy has not been solved because of the dynamic and unpredictable nature of the environment. In this paper, we present a novel offensive strategy based on multi-group ant colony optimization (MACO-OS. The strategy uses the pheromone evaporation mechanism to count the preference value of each attack action in different environments, and saves the values of success rate and preference in an attack information tree in the background. The decision module of the attacker then selects the best attack action according to the preference value. The MACO-OS approach has been successfully implemented in our 2D soccer simulation team in RoboCup competitions. The experimental results have indicated that the agents developed with this strategy, along with related techniques, delivered outstanding performances.

  18. Young Adults’ Attitude Towards Advertising: a multi-group analysis by ethnicity

    Directory of Open Access Journals (Sweden)

    Hiram Ting

    2015-08-01

    Full Text Available Objective – This study aims to investigate the attitude of Malaysian young adults towards advertising. How this segment responds to advertising, and how ethnic/cultural differences moderate are assessed. Design/methodology/approach – A quantitative questionnaire is used to collect data at two universities. Purposive sampling technique is adopted to ensure the sample represents the actual population. Structural equation modelling (SEM and multi-group analysis (MGA are utilized in analysis. Findings - The findings show that product information, hedonism, and good for economy are significant predictors of attitude towards advertising among young adults. Additionally, falsity is found to be significant among the Chinese, while social role and materialism among the Dayaks. No difference is observed in the effect of attitude on intention towards advertising by ethnicity. While homogeneity in advertising beliefs is assumed across ethnic groups, the Chinese and Dayak young adults are different in some of their advertising beliefs. Practical implications – Despite cultural effect being well-documented, young adults today seem to have similar beliefs and attitude towards advertising. Knowing what is shared and what is not for this segment is essential. Hence, it is imperative to keep track of their values in diversified communities to ensure effective communication process in advertising. Originality/value – In addition to the theory of reasoned action, MGA is utilized to assess the moderating effect of ethnic/culture on the whole model. This affords a more comprehensive understanding on the subject matter in multi-ethnic and cultural countries.

  19. Sample-size calculations for multi-group comparison in population pharmacokinetic experiments.

    Science.gov (United States)

    Ogungbenro, Kayode; Aarons, Leon

    2010-01-01

    This paper describes an approach for calculating sample size for population pharmacokinetic experiments that involve hypothesis testing based on multi-group comparison detecting the difference in parameters between groups under mixed-effects modelling. This approach extends what has been described for generalized linear models and nonlinear population pharmacokinetic models that involve only binary covariates to more complex nonlinear population pharmacokinetic models. The structural nonlinear model is linearized around the random effects to obtain the marginal model and the hypothesis testing involving model parameters is based on Wald's test. This approach provides an efficient and fast method for calculating sample size for hypothesis testing in population pharmacokinetic models. The approach can also handle different design problems such as unequal allocation of subjects to groups and unbalanced sampling times between and within groups. The results obtained following application to a one compartment intravenous bolus dose model that involved three different hypotheses under different scenarios showed good agreement between the power obtained from NONMEM simulations and nominal power. Copyright © 2009 John Wiley & Sons, Ltd.

  20. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  1. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield

  2. Neutron diffraction

    International Nuclear Information System (INIS)

    Bacon, G.E.

    1983-01-01

    The paper reviews neutron diffraction work from the early studies to the present-day development of the subject. Direct structural investigations were described, including chemical applications associated with single crystal techniques, and magnetic applications identified with powder techniques. The properties of the neutron beams are discussed, as well as the use of polarised beams. (UK)

  3. Neutron holography

    International Nuclear Information System (INIS)

    Beynon, T.D.

    1986-01-01

    the paper concerns neutron holography, which allows an image to be constructed of the surfaces, as well as the interiors, of objects. The technique of neutron holography and its applications are described. Present and future use of the method is briefly outlined. (U.K.)

  4. Developing a theoretical basis for interpreting multisonde neutron logging

    Energy Technology Data Exchange (ETDEWEB)

    Polyachenko, A.L.; Shaposhnikova, T.A.

    1979-01-01

    The authors examine the current status of the theoretical development of multisonde neutron logging (MNK) and address the following problems in the area of MNK interpretation: 1) the formation of a multigroup, final-differential set program to calculate direct problems in the empirical curve relationships of MNK; 2) the physical nature of transfer and distribution of neutrons in a well-strata system (utilizing a simplified analytical theory); 3) the selection of the type of thermal and non-thermal neutron particles to be recorded by gamma radiation capture (which is based on a comparative analysis of total and partial error in determining the water content of strata utilizing each of these MNK modifications); 4) developing a system of calculative departure curves for both reinforced and non-reinforced oil and gas wells; 5) the construction of MNK diagrams for final strata thickness; 6) an approximation of analytical-numerical solutions to inverse MNK problems based on an analogaous inverse INNK (impulsed neutron-neutron logging) solutions; 7) an appraisal of the MNK method and associated theories for optimizing instruments and determining the limits to the information provided by this method. The need to continue research in the above areas 1, 4, 6, and 7 is underscored. Such research should be conducted on a three-dimensional rapid-acting calculation algorithm based on physical modeling.

  5. Neutron tubes

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA; Lou, Tak Pui [Berkeley, CA; Reijonen, Jani [Oakland, CA

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  6. Neutron source

    Science.gov (United States)

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  7. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    Neutron (and X-ray) reflectometry constitute complementary interfacially sensitive techniques that open access to studying the structure within thin films of both soft and hard condensed matter. Film thickness starts oxide surfaces on bulk substrates, proceeding to (pauci-)molecular layers and up...... to hundreds of nanometers. Thickness resolution for flat surfaces is in the range of few Ǻngstrøm, and as a peculiar benefit, the presence and properties of buried interfaces are accessible. Focus here will be on neutron reflectometry, a technique that is unique in applications involving composite organic...... films or films with magnetic properties. The reason is the peculiar property of neutron light since the mass of a neutron is close to the one of a proton, and since it bears a magnetic moment. The optical properties of matter, when interacting with neutrons, are described by a refractive index...

  8. Neutron source

    International Nuclear Information System (INIS)

    Cason, J.L. Jr.; Shaw, C.B.

    1975-01-01

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap

  9. An evaluation of multigroup flux predictions in the EBR-II core

    International Nuclear Information System (INIS)

    Hill, R.N.; Fanning, T.H.; Finck, P.J.

    1991-01-01

    The unique physics characteristics of EBR-II which are difficult to model with conventional neutronic methodologies are identified; the high neutron leakage fraction and importance of neutron reflection cause errors when conventional calculational approximations are utilized. In this paper, various conventional and higher-order group constant evaluations and flux computation methods are compared for a simplified R-Z model of the EBR-II system. Although conventional methods do provide adequate predictions of the flux in the core region, significant mispredictions are observed in the reflector and radial blanket regions. Calculational comparisons indicate that a fine energy group structure is required for accurate predictions of the eigenvalue and flux distribution; greater detail is needed in the iron resonance scattering treatment. Calculational comparisons also indicate that transport theory with detailed anisotropic scattering treatment is required

  10. An evaluation of multigroup flux predictions in the EBR-II core

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.N.; Fanning, T.H.; Finck, P.J.

    1991-12-31

    The unique physics characteristics of EBR-II which are difficult to model with conventional neutronic methodologies are identified; the high neutron leakage fraction and importance of neutron reflection cause errors when conventional calculational approximations are utilized. In this paper, various conventional and higher-order group constant evaluations and flux computation methods are compared for a simplified R-Z model of the EBR-II system. Although conventional methods do provide adequate predictions of the flux in the core region, significant mispredictions are observed in the reflector and radial blanket regions. Calculational comparisons indicate that a fine energy group structure is required for accurate predictions of the eigenvalue and flux distribution; greater detail is needed in the iron resonance scattering treatment. Calculational comparisons also indicate that transport theory with detailed anisotropic scattering treatment is required.

  11. An evaluation of multigroup flux predictions in the EBR-II core

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.N.; Fanning, T.H.; Finck, P.J.

    1991-01-01

    The unique physics characteristics of EBR-II which are difficult to model with conventional neutronic methodologies are identified; the high neutron leakage fraction and importance of neutron reflection cause errors when conventional calculational approximations are utilized. In this paper, various conventional and higher-order group constant evaluations and flux computation methods are compared for a simplified R-Z model of the EBR-II system. Although conventional methods do provide adequate predictions of the flux in the core region, significant mispredictions are observed in the reflector and radial blanket regions. Calculational comparisons indicate that a fine energy group structure is required for accurate predictions of the eigenvalue and flux distribution; greater detail is needed in the iron resonance scattering treatment. Calculational comparisons also indicate that transport theory with detailed anisotropic scattering treatment is required.

  12. Effects of the scattering anisotropy approximation in multigroup radiation shielding calculations

    International Nuclear Information System (INIS)

    Altiparmarkov, D.

    1983-01-01

    Expansion of the scattering cross-sections into Legendre series is the usual way of solving the neutron transport problem. Because of the large space gradients of the neutron flux, the effects of that approximations become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account scattering anisotropy is presented. From the point of view of the accuracy and computing speed, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations (author) [sr

  13. Neutron diffraction

    International Nuclear Information System (INIS)

    James, M.; Howard, C.J.; Kennedy, S.

    1999-01-01

    Diffraction methods, especially X-ray diffraction, are widely used in materials science. Neutron diffraction is in many ways similar to X-ray diffraction, but is also complementary to the X-ray technique so that in some cases it yields information not accessible using X-rays. Successes of neutron diffraction include the elucidation of the crystal structures of high temperature superconductors and materials that display colossal magnetoresistance, the phase analysis of zirconia engineering ceramics, in depth stress determination in composites, successful determination of the structures of metal hydrides, transition metal polymer complexes and the determination of magnetic structure. A brief description of current studies, using neutron diffraction is given

  14. Radiation Shielding Information Center: a source of computer codes and data for fusion neutronics studies

    International Nuclear Information System (INIS)

    McGill, B.L.; Roussin, R.W.; Trubey, D.K.; Maskewitz, B.F.

    1980-01-01

    The Radiation Shielding Information Center (RSIC), established in 1962 to collect, package, analyze, and disseminate information, computer codes, and data in the area of radiation transport related to fission, is now being utilized to support fusion neutronics technology. The major activities include: (1) answering technical inquiries on radiation transport problems, (2) collecting, packaging, testing, and disseminating computing technology and data libraries, and (3) reviewing literature and operating a computer-based information retrieval system containing material pertinent to radiation transport analysis. The computer codes emphasize methods for solving the Boltzmann equation such as the discrete ordinates and Monte Carlo techniques, both of which are widely used in fusion neutronics. The data packages include multigroup coupled neutron-gamma-ray cross sections and kerma coefficients, other nuclear data, and radiation transport benchmark problem results

  15. Adaptive solution of the multigroup diffusion equation on irregular structured grids using a conforming finite element method formulation

    International Nuclear Information System (INIS)

    Ragusa, J. C.

    2004-01-01

    In this paper, a method for performing spatially adaptive computations in the framework of multigroup diffusion on 2-D and 3-D Cartesian grids is investigated. The numerical error, intrinsic to any computer simulation of physical phenomena, is monitored through an a posteriori error estimator. In a posteriori analysis, the computed solution itself is used to assess the accuracy. By efficiently estimating the spatial error, the entire computational process is controlled through successively adapted grids. Our analysis is based on a finite element solution of the diffusion equation. Bilinear test functions are used. The derived a posteriori error estimator is therefore based on the Hessian of the numerical solution. (authors)

  16. A New Method for Predicting the Penetration and Slowing-Down of Neutrons in Reactor Shields

    International Nuclear Information System (INIS)

    Hjaerne, L.; Leimdoerfer, M.

    1965-05-01

    A new approach is presented in the formulation of removal-diffusion theory. The 'removal cross-section' is redefined and the slowing-down between the multigroup diffusion equations is treated with a complete energy transfer matrix rather than in an age theory approximation. The method, based on the new approach contains an adjustable parameter. Examples of neutron spectra and thermal flux penetrations are given in a number of differing shield configurations and the results compare favorably with experiments and Moments Method calculations

  17. A method for comparison of experimental and theoretical differential neutron spectra in the Zenith reactor

    International Nuclear Information System (INIS)

    Reed, D.L.; Symons, C.R.

    1965-01-01

    A method of calculation is given which assists the analyses of chopper measurements of spectra from ZENITH and enables complex multigroup theoretical calculations of the spectra to be put into a form which may be compared with experiment. In addition the theory of the cut-off function has been extended to give analytical expressions which take into account the effects of sub-collimators, off centre slits and of a rotor made of a material partially transparent to neutrons. The theoretical cut-off function suggested shows good agreement with experiment. (author)

  18. Neutron scattering

    International Nuclear Information System (INIS)

    Furrer, A.

    1993-01-01

    This report contains the text of 16 lectures given at the Summer School and the report on a panel discussion entitled ''the relative merits and complementarities of x-rays, synchrotron radiation, steady- and pulsed neutron sources''. figs., tabs., refs

  19. Neutron Scattering

    International Nuclear Information System (INIS)

    Fayer, Michael J.; Gee, Glendon W.

    2005-01-01

    The neutron probe is a standard tool for measuring soil water content. This article provides an overview of the underlying theory, describes the methodology for its calibration and use, discusses example applications, and identifies the safety issues. Soil water makes land-based life possible by satisfying plant water requirements, serving as a medium for nutrient movement to plant roots and nutrient cycling, and controlling the fate and transport of contaminants in the soil environment. Therefore, a successful understanding of the dynamics of plant growth, nutrient cycling, and contaminant behavior in the soil requires knowledge of the soil water content as well as its spatial and temporal variability. After more than 50 years, neutron probes remain the most reliable tool available for field monitoring of soil water content. Neutron probes provide integrated measurements over relatively large volumes of soil and, with proper access, allow for repeated sampling of the subsurface at the same locations. The limitations of neutron probes include costly and time-consuming manual operation, lack of data automation, and costly regulatory requirements. As more non-radioactive systems for soil water monitoring are developed to provide automated profiling capabilities, neutron-probe usage will likely decrease. Until then, neutron probes will continue to be a standard for reliable measurements of field water contents in soils around the globe

  20. FOREWORD: Neutron metrology Neutron metrology

    Science.gov (United States)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  1. Theoretical methods for neutronics calculations of core-blanket and core-reflector systems in fast reactors

    International Nuclear Information System (INIS)

    Corcuera, Roberto.

    1975-12-01

    The present work is a contribution to the neutronics calculational methods of fast neutron reactors. The first step is devoted to the analysis of the validity of the few-groups (of the order of 25) multigroup scheme, and of the transport-correction approximation for the treatment of the scattering anisotropy. This analysis includes both the reactor core, where the usual approximations are found to be satisfactory, and the reflector, where it turns out that the rapid variations of the neutron flux and of it's spectrum necessitate the improvement of the multigroup cross-sections' generation. Therefore, a zero-dimensional simple and accurate model for the average spectrum in the reflector is developed by the space-energy synthesis method. Finally using the Rayleigh-Ritz method, a model is developed in which the flux is spatially represented by an analytical function. This model is applied to the analysis of the sensitivity of reflector neutronics parameters to the variations of the cross sections [fr

  2. Improved Fiber Bragg Grating Array OFFH-CDMA System Using a Novel Frequency-Overlapping Multigroup Method

    Science.gov (United States)

    Peng, Wei-Ren; Lin, Wen-Piao; Chi, Sien

    2006-03-01

    The authors propose a novel frequency-overlapping multigroup scheme for a passive all-optical fast-frequency hopped code-division multiple-access (OFFH-CDMA) system based on fiber Bragg grating array (FBGA). In the conventional scheme, the users are assigned those codes constructed on the nonoverlapping frequency slots, and therefore the bandgaps between the adjacent gratings are wasted. To make a more efficient use of the optical spectrum, the proposed scheme divided the users into several groups, and assigned the codes, which interleaved to each other to the different groups. In addition to the higher utilization of the spectrum, the interleaved nature of the frequency allocations of different groups will make the groups less correlated and, hence, lower the multiple-access interference (MAI). The corresponding codeset and its constraints for this new scheme are also developed and analyzed. The performance of the system in terms of the correlation functions and bit error rate (BER) are given in both the conventional and the proposed schemes. The numerical results show that, with the multigroup scheme, performance is much improved compared to the conventional scheme.

  3. An Automatic Detection System of Lung Nodule Based on Multi-Group Patch-Based Deep Learning Network.

    Science.gov (United States)

    Jiang, Hongyang; Ma, He; Qian, Wei; Gao, Mengdi; Li, Yan

    2017-07-14

    High-efficiency lung nodule detection dramatically contributes to the risk assessment of lung cancer. It is a significant and challenging task to quickly locate the exact positions of lung nodules. Extensive work has been done by researchers around this domain for approximately two decades. However, previous computer aided detection (CADe) schemes are mostly intricate and time-consuming since they may require more image processing modules, such as the computed tomography (CT) image transformation, the lung nodule segmentation and the feature extraction, to construct a whole CADe system. It is difficult for those schemes to process and analyze enormous data when the medical images continue to increase. Besides, some state of the art deep learning schemes may be strict in the standard of database. This study proposes an effective lung nodule detection scheme based on multi-group patches cut out from the lung images, which are enhanced by the Frangi filter. Through combining two groups of images, a four-channel convolution neural networks (CNN) model is designed to learn the knowledge of radiologists for detecting nodules of four levels. This CADe scheme can acquire the sensitivity of 80.06% with 4.7 false positives per scan and the sensitivity of 94% with 15.1 false positives per scan. The results demonstrate that the multi-group patch-based learning system is efficient to improve the performance of lung nodule detection and greatly reduce the false positives under a huge amount of image data.

  4. One-, two- and three-dimensional transport codes using multi-group double-differential form cross sections

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki; Sasaki, Makoto.

    1988-11-01

    We have developed a group of computer codes to realize the accurate transport calculation by using the multi-group double-differential form cross section. This type of cross section can correctly take account of the energy-angle correlated reaction kinematics. Accordingly, the transport phenomena in materials with highly anisotropic scattering are accurately calculated by using this cross section. They include the following four codes or code systems: PROF-DD : a code system to generate the multi-group double-differential form cross section library by processing basic nuclear data file compiled in the ENDF / B-IV or -V format, ANISN-DD : a one-dimensional transport code based on the discrete ordinate method, DOT-DD : a two-dimensional transport code based on the discrete ordinate method, MORSE-DD : a three-dimensional transport code based on the Monte Carlo method. In addition to these codes, several auxiliary codes have been developed to process calculated results. This report describes the calculation algorithm employed in these codes and how to use them. (author)

  5. Neutronic study of UCN production and storage in a liquid sup 4 He source

    CERN Document Server

    Abe, Y

    2002-01-01

    The production and storage of ultracold neutrons(UCNs) in liquid sup 4 He are evaluated by means of a multigroup neutron transport analysis. Several sets of group constants for eight different temperatures between 0.1 and 2.5 K in a neutron energy region of 0.1 mu eV to 10 eV are generated. A model UCN source of pure liquid sup 4 He is analyzed, in which UCNs are produced by down-scattering of cold neutrons, stored optically by total reflection at the surface, and destroyed by the neutron beta-decay only. The following results are obtained: (a) As lowering temperature below about 0.5 K, UCN density exhibits saturation behavior because of no significant up-scattering of UCNs. (b) In addition to single down-scattering of a 1 meV neutron, multiple scattering of a higher-energy neutron contributes largely to UCN production, nearly doubling UCN density. (c) A high reflection coefficient of, say, greater than 0.9999, is necessary to yield a high UCN density of 1.21x10 sup 5 cm sup - sup 3 at 0.1 K.

  6. Neutronic study of UCN production and storage in a liquid 4He source

    International Nuclear Information System (INIS)

    Abe, Y.; Morishima, N.

    2002-01-01

    The production and storage of ultracold neutrons(UCNs) in liquid 4 He are evaluated by means of a multigroup neutron transport analysis. Several sets of group constants for eight different temperatures between 0.1 and 2.5 K in a neutron energy region of 0.1 μeV to 10 eV are generated. A model UCN source of pure liquid 4 He is analyzed, in which UCNs are produced by down-scattering of cold neutrons, stored optically by total reflection at the surface, and destroyed by the neutron β-decay only. The following results are obtained: (a) As lowering temperature below about 0.5 K, UCN density exhibits saturation behavior because of no significant up-scattering of UCNs. (b) In addition to single down-scattering of a 1 meV neutron, multiple scattering of a higher-energy neutron contributes largely to UCN production, nearly doubling UCN density. (c) A high reflection coefficient of, say, greater than 0.9999, is necessary to yield a high UCN density of 1.21x10 5 cm -3 at 0.1 K

  7. Neutron diffraction

    International Nuclear Information System (INIS)

    Elcomb, M.M.

    2002-01-01

    Full text: Thermal neutrons have a particular combination of properties, which make them the probe of choice for a wide range of scattering applications. They penetrate most materials easily, the wavelength matches interatomic spacings, the energy matches the atomic vibrational energies and the magnetic moment allows them to uniquely interact with magnetic structures. Their widely varying scattering length is also used to advantage. It enables the determination of light atoms in the presence of heavy ones: hydrogen in organic molecules, and oxygen in the high Tc superconductors for example, or solving problems in alloy systems where distinction of atoms, which are neighbours in the periodic table, is required. In the 50 years since thermal neutron beams have been used for research there has been a steady increase in applications as technology has advanced. This also applies to the environments in which the materials are studied. In-situ studies at other than ambient temperatures, pressures and magnetic fields are now routine. By using multiple detector channels in powder instruments the data collection rate has increased by an order of magnitude to some extent compensating for the diffuse nature of the neutron source. The applications of neutron scattering are becoming more industrially oriented. The talk will highlight the complementarity of neutrons to other more readily available techniques, and give examples of recent research and applications. Copyright (2002) Australian X-ray Analytical Association Inc

  8. Neutron diffraction

    International Nuclear Information System (INIS)

    Howard, C.J.; Kennedy, S.J.

    1994-01-01

    A brief account is given of neutron diffraction techniques. Similarities and differences compared with the more familiar X-ray counterparts are discussed. In certain applications, neutron diffraction can be used to obtain information about materials which would be difficult or even impossible to obtain using other techniques. One spectacular success has been the elucidation, from neutron powder diffraction, of the crystal structures of high critical temperature oxide superconductors. There have been substantial contributions in other fields, and these are illustrated by Australian work. The ability of the neutron to penetrate deeply into most materials has been invoked for in-depth determination of stresses in composites and of phase composition in zirconia ceramics. The unique properties of the neutron have been successfully exploited in studies of metal hydrides, to determine where hydrogen is located, and in magnetic structure determination. There is much interest in studying materials under different conditions of temperature and pressure, and kinetic studies under such conditions are now becoming possible. The article includes information on the principles, the instrumentation with particular reference to the instruments installed around the HIFAR reactor at Lucas Heights, and methods for the interpretation of data. 59 refs., 3 tabs., 16 figs

  9. Neutron radiography

    International Nuclear Information System (INIS)

    Pugliesi, R.; Freitas, A.G. de; Gammal, A.; Rizzatti, M.R.; Vercelli, P.

    1990-01-01

    The objective was to demonstrate the main characteristics of the neutron radiography technique, which has been developed in the Nuclear Physics Department of the IPEN-CNEN-SP. Its employment, in technology varies enormously and includes among others, the inspection of the hydrogen-rich substances, highly radioactive materials, etc. The indirect conversion method with Dysprosium screen was employed. The experimental arrangement used was a neutron collimator installed in the bottom of the IEA-R1 Nuclear Research Reactor pool. Several samples were analysed which were exposed in a neutron flux ∼ 10 7 n/s.cm 2 during 10 minutes. The obtained results confirm the main characteristics of this technique as well as its viability to be developed in this reactor. (author)

  10. neutron radiography

    International Nuclear Information System (INIS)

    Barton, J.P.

    1993-01-01

    Neutron radiography (or radiology) is a diverse filed that uses neutrons of various energies, subthermal, thermal, epithermal or fast in either steady state or pulsed mode to examine objects for industrial, medical, or other purposes, both microscopic and macroscopic. The applications include engineering design, biological studies, nondestructive inspection and materials evaluation. In the past decade, over 100 different centers in some 30 countries have published reports of pioneering activities using reactors, accelerators and isotopic neutron sources. While film transparency and electronic video are most common imaging methods for static or in motion objects respectively, there are other important data gathering techniques, including track etch, digital gauging and computed tomography. A survey of the world-wide progress shows the field to be gaining steadily in its diversity, its sophistication and its importance. (author)

  11. Neutron diffraction

    International Nuclear Information System (INIS)

    Heger, G.

    1996-01-01

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs

  12. Neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Heger, G. [Rheinisch-Westfaelische Technische Hochschule Aachen, Inst. fuer Kristallographie, Aachen (Germany)

    1996-12-31

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs.

  13. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  14. Quantitative neutron radiography using neutron absorbing honeycomb

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi; Oda, Masahiro; Takahashi, Kenji; Ohkubo, Kohei; Tasaka, Kanji; Tsuruno, Akira; Matsubayashi, Masahito.

    1993-01-01

    This investigation concerns quantitative neutron radiography and computed tomography by using a neutron absorbing honeycomb collimator. By setting the neutron absorbing honeycomb collimator between object and imaging system, neutrons scattered in the object were absorbed by the honeycomb material and eliminated before coming to the imaging system, but the neutrons which were transmitted the object without interaction could reach the imaging system. The image by purely transmitted neutrons gives the quantitative information. Two honeycombs were prepared with coating of boron nitride and gadolinium oxide and evaluated for the quantitative application. The relation between the neutron total cross section and the attenuation coefficient confirmed that they were in a fairly good agreement. Application to quantitative computed tomography was also successfully conducted. The new neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improved remarkably the quantitativeness of the neutron radiography and computed tomography. (author)

  15. El orden de Babel: algunas notas sobre la conciencia lingüística de la clerecía letrada castellana en la primera mitad del siglo xiii

    Directory of Open Access Journals (Sweden)

    Amaia Arizaleta

    2012-06-01

    Full Text Available Se comentan aquí una serie” de discursos redactados entre 1200 y 1250, todos ellos relacionados con el relato de la torre de Babel. Dichos textos dan fe de la existencia de un pensamiento común relativo a las lenguas y los pueblos en clérigos contemporáneos y de semejante alta cultura libresca, castellanos de origen o bien afectos a la causa de Castilla: Diego García, Rodrigo Jiménez de Rada y el anónimo de cuyo cálamo surgió el (Libro de Alexandre. Estos letrados, que participaron en permanencia de la lengua romance y la lengua latina, dieron prueba de su interés por la diversidad lingüística, e incluso propusieron algunas ideas innovadoras sobre la cuestión. Testigos y artífices de una cultura que ya no podía ser monolingüe, supieron escribir acerca del mito de la separación de las naciones.Il est ici question de quelques discours en rapport avec le récit de la tour de Babel qui furent composés entre 1200 et 1250. Leurs auteurs, Diego García, Rodrigo Jiménez de Rada et le poète anonyme auteur du (Libro de Alexandre, qui entretenaient des liens avec la cour et la chancellerie, semblent avoir partagé une pensée commune relative aux langues et aux peuples. Ces lettrés, d’origine castillane ou qui avaient épousé la cause castillane, s’intéressèrent à la diversité linguistique, et allèrent jusqu’à défendre certaines idées novatrices sur le fonctionnement d’une culture qui ne pouvait plus être monolingue.

  16. SNAP-3D: a three-dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1975-10-01

    A preliminary report is presented describing the data requirements of a one- two- or three-dimensional multi-group diffusion code, SNAP-3D. This code is primarily intended for neutron diffusion calculations but it can also carry out gamma calculations if the diffuse approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. It is assumed the reader is familiar with the older, two-dimensional code SNAP and can refer to the report [TRG-Report-1990], describing it. The present report concentrates on the enhancements to SNAP that have been made to produce the three-dimensional version, SNAP-3D, and is intended to act a a guide on data preparation until a single, comprehensive report can be published. (author)

  17. Mechanized evaluation of neutron cross-sections

    International Nuclear Information System (INIS)

    Horsley, A.; Parker, J.B.

    1967-01-01

    The evaluation work to provide accurate and consistent neutron cross-section data for multigroup neutronics calculations is not fully exploiting the available theoretical and experimental results; this has been so particularly since the introduction of on-line data handling techniques enabled experimenters to turn out vast quantities of numbers. This situation can be radically improved only by mechanizing the evaluation processes. Systems such as the SC1SRS tape will not only largely overcome the task of collecting data but will provide speedy access to it; by using computers and graph-plotting machines to tabulate and display this data, the labour of evaluation can be very greatly reduced. With some types of cross-section there is hope that by using modern curve-fitting techniques the actual evaluation and statistical accounting of the data can be performed automatically. Some areas where automatic evaluation would seem likely to succeed are specified and a discussion of the mathematical difficulties incurred, such as the elimination of anomalous data, is given. Particularly promising is the use of splines in the mechanized evaluation of data. Splines are the mathematical analogues of the draughtsman's spline used in drawing smooth curves. Their principal properties are the excellent approximations they give to the derivatives of a function; in contrast to conventional polynomial fitting, this feature ensures good interpolation and, when required, stable extrapolation. Various methods of using splines in data graduation and the problem of marrying these methods to standard statistical procedures are examined. The results of work done at AWRE with cubic splines on the mechanized evaluation of neutron scattering total cross-section and angular distribution data are presented. (author)

  18. Spectral Green’s function nodal method for multigroup SN problems with anisotropic scattering in slab-geometry non-multiplying media

    International Nuclear Information System (INIS)

    Menezes, Welton A.; Filho, Hermes Alves; Barros, Ricardo C.

    2014-01-01

    Highlights: • Fixed-source S N transport problems. • Energy multigroup model. • Anisotropic scattering. • Slab-geometry spectral nodal method. - Abstract: A generalization of the spectral Green’s function (SGF) method is developed for multigroup, fixed-source, slab-geometry discrete ordinates (S N ) problems with anisotropic scattering. The offered SGF method with the one-node block inversion (NBI) iterative scheme converges numerical solutions that are completely free from spatial truncation errors for multigroup, slab-geometry S N problems with scattering anisotropy of order L, provided L < N. As a coarse-mesh numerical method, the SGF method generates numerical solutions that generally do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. Therefore, we describe in this paper a technique for the spatial reconstruction of the coarse-mesh solution generated by the multigroup SGF method. Numerical results are given to illustrate the method’s accuracy

  19. A multigroup diffusion solver using pseudo transient continuation for a radiation-hydrodynamic code with patch-based AMR

    International Nuclear Information System (INIS)

    Shestakov, Aleksei I.; Offner, Stella S.R.

    2008-01-01

    We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with Adaptive Mesh Refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation (Ψtc). We analyze the magnitude of the Ψtc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichlet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of Ψtc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory and demonstrates the

  20. A Multigroup diffusion solver using pseudo transient continuation for a radiation-hydrodynamic code with patch-based AMR

    Energy Technology Data Exchange (ETDEWEB)

    Shestakov, A I; Offner, S R

    2006-09-21

    We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {Psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory

  1. A Multigroup diffusion Solver Using Pseudo Transient Continuation for a Radiaiton-Hydrodynamic Code with Patch-Based AMR

    Energy Technology Data Exchange (ETDEWEB)

    Shestakov, A I; Offner, S R

    2007-03-02

    We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {Psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory

  2. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    The method of operating a water-cooled neutronic reactor having a graphite moderator is described which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40--60 volume percent of the mixture, in contact with the graphite moderator. 2 claims, 4 figures

  3. Neutronic reactor

    International Nuclear Information System (INIS)

    Carleton, J.T.

    1977-01-01

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment. 3 claims, 6 figures

  4. Neutron stars as cosmic neutron matter laboratories

    International Nuclear Information System (INIS)

    Pines, D.

    1986-01-01

    Recent developments which have radically changed our understanding of the dynamics of neutron star superfluids and the free precession of neutron stars are summarized, and the extent to which neutron stars are cosmic neutron matter laboratories is discussed. 17 refs., 1 tab

  5. Basic of Neutron NDA

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    The objectives of this presentation are to introduce the basic physics of neutron production, interactions and detection; identify the processes that generate neutrons; explain the most common neutron mechanism, spontaneous and induced fission and (a,n) reactions; describe the properties of neutron from different sources; recognize advantages of neutron measurements techniques; recognize common neutrons interactions; explain neutron cross section measurements; describe the fundamental of 3He detector function and designs; and differentiate between passive and active assay techniques.

  6. APPLE-2: an improved version of APPLE code for plotting neutron and gamma ray spectra and reaction rates

    International Nuclear Information System (INIS)

    Kawasaki, Hiromitsu; Seki, Yasushi.

    1982-07-01

    A computer code APPLE-2 which plots the spatial distribution of energy spectra of multi-group neutron and/or gamma ray fluxes, and reaction rates has been developed. This code is an improved version of the previously developed APPLE code and has the following features: (1) It plots energy spectra of neutron and/or gamma ray fluxes calculated by ANISN, DOT and MORSE. (2) It calculates and plots the spatial distribution of neutron and gamma ray fluxes and various types of reaction rates such as nuclear heating rates, operational dose rates, displacement damage rates. (3) Input data specification is greatly simplified by the use of standard, response libraries and by close coupling with radiation transport calculation codes. (4) Plotting outputs are given in camera ready form. (author)

  7. A method for solving the spherical harmonics equations applied for space-energy transport of fast and resonance neutrons

    International Nuclear Information System (INIS)

    Matausek, M.

    1972-01-01

    A new proposed method for solving the space-energy dependent spherical harmonics equations represents a methodological contribution to neutron transport theory. The proposed method was applied for solving the problem of spec-energy transport of fast and resonance neutrons in multi-zone, cylindrical y symmetric infinite reactor cell and is related to previously developed procedure for treating the thermal energy region. The advantages of this method are as follows: a unique algorithm was obtained for detailed determination of spatial and energy distribution of neutrons (from thermal to fast) in the reactor cell; these detailed distributions enable more precise calculations of criticality conditions, obtaining adequate multigroup data and better interpretation of experimental data; computing time is rather short

  8. Direct integration multiple collision integral transport analysis method for high energy fusion neutronics

    International Nuclear Information System (INIS)

    Koch, K.R.

    1985-01-01

    A new analysis method specially suited for the inherent difficulties of fusion neutronics was developed to provide detailed studies of the fusion neutron transport physics. These studies should provide a better understanding of the limitations and accuracies of typical fusion neutronics calculations. The new analysis method is based on the direct integration of the integral form of the neutron transport equation and employs a continuous energy formulation with the exact treatment of the energy angle kinematics of the scattering process. In addition, the overall solution is analyzed in terms of uncollided, once-collided, and multi-collided solution components based on a multiple collision treatment. Furthermore, the numerical evaluations of integrals use quadrature schemes that are based on the actual dependencies exhibited in the integrands. The new DITRAN computer code was developed on the Cyber 205 vector supercomputer to implement this direct integration multiple-collision fusion neutronics analysis. Three representative fusion reactor models were devised and the solutions to these problems were studied to provide suitable choices for the numerical quadrature orders as well as the discretized solution grid and to understand the limitations of the new analysis method. As further verification and as a first step in assessing the accuracy of existing fusion-neutronics calculations, solutions obtained using the new analysis method were compared to typical multigroup discrete ordinates calculations

  9. Monte Carlo simulated dose to the human body due to neutrons emitted in laser-fusion

    International Nuclear Information System (INIS)

    Gileadi, A.E.; Cohen, M.O.

    1977-01-01

    Considering a point neutron source located at a given distance from the human body, modeled by a 'standard reference man' phantom, neutron doses to the whole body, as well as to selected organs thereof, are determined, using the SAM-CE system, a Monte Carlo computer code, written in Fortran and designed to solve time, space and energy dependent neutron and gamma ray transport equations in complex three-dimensional geometrice. Collision density, energy deposition and dose are treated in the SAM-CE system as flux functionals. A special feature of SAM-CE is its use of the 'Combinatorial Geometry' technique which affords the user geometric capabilities exceeding those available with other commonly used geometric packages. All neutron and gamma ray cross section data, as well as gamma ray production data, are derived from the ENDF libraries. Both resolved and unresolved resonance parameters from ENDF neutron data files are treated automatically and extremely precise and detailed descriptions of cross section behavior is permitted. Such treatment avoids the ambiguities usually associated with multi-group codes, which use flux-averaged cross sections based on assumed flux distributions which may or may not be appropriate. The 'standard reference man', a heterogeneous phantom, uses simple geometric forms to approximate the shape and dimensions of the human body. Materials composition of each subregion representing a certain 'organ' is given. Typical values of neutron doses to the whole body and to selected 'organs' of interest are presented

  10. CITATION-LDI2, 2-D Multigroup Diffusion, Perturbation, Criticality Search, for PC

    International Nuclear Information System (INIS)

    2001-01-01

    1 - Description of program or function: CITATION is designed to solve problems using the finite difference representation of neutron diffusion theory, treating up to three space dimensions with arbitrary group to group scattering. X-y-z, theta-r-z, hexagonal z, and trigonal z geometries may be treated. Depletion problems may be solved and fuel managed for multi-cycle analysis. Extensive first order perturbation results may be obtained given microscopic data and nuclide concentrations. Statics problems may be solved and perturbation results obtained with microscopic data. This version of CITATION was released by ORNL as CITATION - Rev. 2, Supplement 3 in July 1972 and ran on mainframes. It was first ported to PC by AECL in October 1988. CITATION-PC included in the March 1996 package involved minor changes including the removal of overlay statements introduced in 1988. CITALDI-PC is a new modified version with list-directed input. The codes in this package accept cross sections in CITATION format. Macroscopic data may be entered according to format specifications in Section 008 of the published report. Microscopic data format is specified in Section 105. There are no codes in RSIC's code collection to generate data in CITATION format. 2 - Method of solution: Explicit, finite difference approximations in space and time have been implemented. The neutron-flux-eigenvalue problems are solved by direct iteration to determine the multiplication factor or the nuclide densities required for a critical system

  11. DIFFUSION - WRS system module number 7539 for solving a set of multigroup diffusion equations in one dimension

    International Nuclear Information System (INIS)

    Grimstone, M.J.

    1978-06-01

    The WRS Modular Programming System has been developed as a means by which programmes may be more efficiently constructed, maintained and modified. In this system a module is a self-contained unit typically composed of one or more Fortran routines, and a programme is constructed from a number of such modules. This report describes one WRS module, the function of which is to solve a set of multigroup diffusion equations for a system represented in one-dimensional plane, cylindrical or spherical geometry. The information given in this manual is of use both to the programmer wishing to incorporate the module in a programme, and to the user of such a programme. (author)

  12. PROBLEM PROFILES OF AT-RISK YOUTH IN TWO SERVICE PROGRAMS: A MULTI-GROUP, EXPLORATORY LATENT CLASS ANALYSIS.

    Science.gov (United States)

    Dembo, Richard; Briones-Robinson, Rhissa; Ungaro, Rocio; Karas, Lora; Gulledge, Laura; Greenbaum, Paul E; Schmeidler, James; Winters, Ken C; Belenko, Steven

    2011-10-01

    Baseline data collected in two brief intervention projects (BI-Court and Truancy Project) were used to assess similarities and differences in subgroups of at-risk youth. Classifications of these subgroups were based on their psychosocial characteristics (e.g., substance use). Multi-group latent class analysis (LCA) identified two BI-Court subgroups of youth, and three Truant subgroups. These classes can be viewed as differing along two dimensions, substance use involvement and emotional/behavioral issues. Equality tests of means across the latent classes for BI-Court and Truancy Project youths found significant differences that were consistent with their problem group classification. These findings highlight the importance of quality assessments and allocating appropriate services based on problem profiles of at-risk youth.

  13. Perfectionism and Marital Satisfaction among Graduate Students: A Multigroup Invariance Analysis by Counseling Help-seeking Attitudes

    Directory of Open Access Journals (Sweden)

    Foo Fatt Mee

    2017-06-01

    Full Text Available This study aims to measure the latent mean difference in perfectionism and marital satisfaction by counseling help-seeking attitudes. The respondents were 327 married graduate students from a research university in Malaysia. An online self-administered questionnaire was used to collect the data. The respondents completed the Almost Perfect Scale- Revised, Dyadic Almost Perfect Scale, Marital Satisfaction Scale, and Attitudes toward Seeking Professional Psychology Help Scale. Confirmatory factor analysis was used to examined the instruments and the results indicated that construct validity were achieved. The latent mean difference in perfectionism and marital satisfaction by counseling help-seeking attitudes were tested using multigroup invariance analysis. The respondents with negative attitudes toward counseling help-seeking (n = 159 reported a higher latent mean in perfectionism but a lower latent mean in marital satisfaction compared to those with positive attitudes toward counseling help-seeking (n = 168. The implications of these findings for counseling services are discussed.

  14. Integral data test of HENDL1.0/MG and visualBUS with neutronics shielding experiments. Pt.1

    International Nuclear Information System (INIS)

    Gao Chunjing; Deng Tieru; Xu Dezheng; Li Jingjing; Wu Yican

    2004-01-01

    HENDL1.0/MG, a multi-group working library of the Hybrid Evaluated Nuclear Data Library, was home-developed by the FDS Team of ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences) on the basis of several national data libraries. To validate and qualify the process of producing HENDL1.0/MG, simulating calculations of a series of existent spherical shell benchmark experiments (Al, Mo, Co, Ti, Mn, W, Be and V) have been performed with HENDL1.0/MG and the multifunctional neutronics code system named VisualBUS home-developed also by FDS Team. (authors)

  15. RADSAT Benchmarks for Prompt Gamma Neutron Activation Analysis Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Kimberly A.; Gesh, Christopher J.

    2011-07-01

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. High-resolution gamma-ray spectrometers are used in these applications to measure the spectrum of the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used simulation tool for this type of problem, but computational times can be prohibitively long. This work explores the use of multi-group deterministic methods for the simulation of coupled neutron-photon problems. The main purpose of this work is to benchmark several problems modeled with RADSAT and MCNP to experimental data. Additionally, the cross section libraries for RADSAT are updated to include ENDF/B-VII cross sections. Preliminary findings show promising results when compared to MCNP and experimental data, but also areas where additional inquiry and testing are needed. The potential benefits and shortcomings of the multi-group-based approach are discussed in terms of accuracy and computational efficiency.

  16. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2012-07-01

    The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  17. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2013-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)

  18. Pulsed neutron generator

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Bykovskii, Yu.A.; Vergun, I.I.; Kozlovskii, K.I.; Kozyrev, Yu.P.; Leonov, R.K.; Simagin, B.I.; Tsybin, A.S.; Shikanov, A.Ie.

    1986-03-01

    The paper describes a new device for generating pulsed neutron fields, utilized in nuclear geophysics for carrying out pulsed neutron logging and activation analysis under field conditions. The invention employs a sealed-off neutron tube with a laser ion source which increases neutron yield to the level of 10 neutrons per second or higher. 2 refs., 1 fig

  19. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2012-01-01

    The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  20. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2013-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)

  1. Neutronic modeling for a Gas-cooled Fast Reactor assuming coated fuel particles

    International Nuclear Information System (INIS)

    Golfier, H.; Buiron, C.; Poinot, B.; Pothet, J. F.; Salavy, E.; Studer

    2004-01-01

    The modeling of gas cooled fast reactor (GCFR) with the SAPHYR system and in particular APOLLO2 code assuming coated fuel particles, was investigated. It aims to estimate the APOLLO2 code accuracy, solving the neutron transport equation in range of fast neutron reactors. A two level PIJ/SN APOLLO2 scheme is proposed in which the first level is devoted to the self-shielding and the leakage calculation on a cell configuration. The efficiency of a new treatment of adsorption and scattering rates in the self-shielding module of the multigroup transport code APOLLO2 has been evaluated. The results show that two-level scheme provides promising results with 172-group cross section libraries, which confirm the APOLLO2 scheme as a tool for reactor designs. (authors)

  2. Program complex for calculating albedo characteristics of neutron and gamma radiations

    International Nuclear Information System (INIS)

    Zhezlov, A.M.; Zhurov, Yu.V.; Makhon'kov, A.S.; Chernyaev, A.

    1987-01-01

    The RADIUS (FORTRAN-DUBNA, BESM-6 computers) - RADIUS-M (FORTRAN-4 ES computers) program complex, designed to obtain albedo characteristics of neutron and gamma radiation for plane, cylindrical and spherical multilayer reflectors within wide range of energy and angles with regard to scattered particle spatial distribution, is described briefly. The RADIUS program is the KUPOL program modification and designed to calculate differential and integral albedo of neutrons and gamma photons in plane one- and two-layer reflectors. The RADIUS-M program realizes calculational algorithm of twice differential, differential and integral albedo from multilayer plane, cylindrical and spherical reflectors. Local estimation of flux into a point detector using multigroup constant systems is the base of the technique. Particle path in a reflector is simulated according to the maximal cross-section method

  3. Fast neutron reactor core research at the C.E.A

    International Nuclear Information System (INIS)

    Chaudat, J.-P.

    1978-05-01

    This report covers all physical studies of fast neutron reactors carried out by the C.E.A., to povide basic data (multi-group cross sections) and computer methods which may be used to calculate nuclear power plant neutron properties with the precision required by the project. The approach adopted to establish the basic data used in all core calculations is described in greated detail: choice of a reference procedure for basic mode calculations (CARNAVAL set), choice of particular experimental programs to reduce uncertainties in connection with the formula set, adjustement of cross sections on integral parameters measured on critical experiments. The development of the formula set is closely connected with the project requirements; hence the set is modified with respect to the core characteristics of the power plant studied. Following an explanation of how the CARNAVAL III and IV formula sets -used for PHENIX and SUPER-PHENIX respectively- were derived, current studies for heterogeneous cores are described [fr

  4. Assessment of NJOY generated neutron heating factors based on JEF/EFF-1

    International Nuclear Information System (INIS)

    Vontobel, P.

    1990-01-01

    Using the NJOY nuclear data processing system, a coupled neutron-photon multigroup MATXS-formatted nuclear data library was generated based on the files JEF/EFF-1. The neutron heating factors contained in this VITAMIN-J structured library are compared with those of MACLIB-IV. The main differences are due to the included decay heat of shortlived reaction products in MACKLIB-IV and/or due to too high/low photon production data of some JEF/EFF-1 isotopes. It is recommended to check carefully the energy balance of new evaluations containing photon production data. How this can be done with the help of the NJOY HEATR module is shown in an example. (author) 35 figs., 9 refs

  5. Neutron scattering

    International Nuclear Information System (INIS)

    1991-02-01

    The annual report on hand gives an overview of the research work carried out in the Laboratory for Neutron Scattering (LNS) of the ETH Zuerich in 1990. Using the method of neutron scattering, it is possible to examine in detail the static and dynamic properties of the condensed material. In accordance with the multidisciplined character of the method, the LNS has for years maintained a system of intensive co-operation with numerous institutes in the areas of biology, chemistry, solid-state physics, crystallography and materials research. In 1990 over 100 scientists from more than 40 research groups both at home and abroad took part in the experiments. It was again a pleasure to see the number of graduate students present, who were studying for a doctorate and who could be introduced into the neutron scattering during their stay at the LNS and thus were in the position to touch on central ways of looking at a problem in their dissertation using this modern experimental method of solid-state research. In addition to the numerous and interesting ways of formulating the questions to explain the structure, nowadays the scientific programme increasingly includes particularly topical studies in connection with high temperature-supraconductors and materials research

  6. Multigroup, spatial kinetics for MOX-fueled LWRs based on harmonic analytical nodal method

    Science.gov (United States)

    Jiang, Guobing

    2000-10-01

    There has been substantial evidence during the last several years that the core neutronics methods that have been developed for uranium fueled LWRs do not perform satisfactorily when applied to the same cores fueled with mixed oxide, or more generally to heterogeneous cores with very different neutron spectra. A two-dimensional, 97 group MOX benchmark problem was developed and applied to analyze deficiencies of the current generation of LWR analysis methods. The errors in the current two group, coarse mesh nodal diffusion methods were described in terms of four primary effects: (1) a homogenization effect, (2) a spatial discretization effect, (3) a group collapsing effect, and (4) a transport effect. The specific objective of the research here was to address the first three of these effects with the development of a four energy group advanced nodal method. Several methods have been proposed over the last several years for extending the current class of nodal methods to four energy groups. A Taylor series analysis was performed of the order of error in the various analytic nodal methods proposed. The analysis showed that the harmonic part of the error dominated in the Taylor expansion and it was therefore prudent to retain the harmonic solution in all four energy groups. A new nodal kernel referred to as the Harmonic Analytic Nodal Method (HANM) was developed and implemented within the framework of the nonlinear nodal method. HANM was applied to a MOX benchmark problem and results were compared to a 97 group reference solution. The errors in the two group solution were reduced by about 50% through the application of a four group HANM with minimal increase in the computational burden.

  7. CITATION, 3-D Multigroup Diffusion with 1. Order Perturbation and Criticality Search

    International Nuclear Information System (INIS)

    Fowler, T.B.; Vondy, D.R.; Cunningham, G.W.

    1995-01-01

    1 - Description of problem or function: CITATION is designed to solve problems using the finite-difference representation of neutron diffusion theory, treating up to three space dimensions with arbitrary group-to-group scattering. X-y-z, theta-r-z, hexagonal-z, and trigonal-z geometries may be treated. Depletion problems may be solved and fuel managed for multi-cycle analysis. Extensive first-order perturbation results may be obtained given microscopic data and nuclide concentrations. Statics problems may be solved and perturbation results obtained with microscopic data. CITATION-2-3-VP2 is a vectorized version for FACOM VP-100 and VP-200 vector computers. 2 - Method of solution: Explicit, finite-difference approximations in space and time have been implemented. The neutron-flux-eigenvalue problems are solved by direct iteration to determine the multiplication factor or the nuclide densities required for a critical system. CITATION-2-3-VP2: Algorithms for the inner-outer iterative calculations are adapted to vector computers. The SLOR method, which is used in the original CITATION code, and the SOR method, which is adopted in the revised code, are vectorized by odd-even mesh ordering. 3 - Restrictions on the complexity of the problem: CITATION has been designed to attack problems which can be run in a reasonable amount of time. Storage of data is allocated dynamically to give the user flexibility in dimensioning. Typically, a finite-difference diffusion problem could have 200 depleting zones, 10,000 nuclide densities, and 30,000 space-energy point flux values

  8. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  9. Neutron structure analysis using neutron imaging plate

    International Nuclear Information System (INIS)

    Karasawa, Yuko; Minezaki, Yoshiaki; Niimura, Nobuo

    1997-01-01

    Neutron is complementary against X-ray and is dispensable for structure analysis. However, because of the lack of the neutron intensity, it was not so common as X-ray. In order to overcome the intensity problem, a neutron imaging plate (NIP) has been successfully developed. The NIP has opened the door of neutron structure biology, where all the hydrogen atoms and bound water molecules of protein are determined, and contributed to development of other fields such as neutron powder diffraction and neutron radiography, too. (author)

  10. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  11. REFRACTIVE NEUTRON LENS

    OpenAIRE

    Petrov, P. V.; Kolchevsky, N. N.

    2013-01-01

    Compound concave refractive lenses are used for focusing neutron beam. Investigations of spectral and focusing properties of a refractive neutron lens are presented. Resolution of the imaging system on the base of refractive neutron lenses depends on material properties and parameters of neutron source. Model of refractive neutron lens are proposed. Results of calculation diffraction resolution and focal depth of refractive neutron lens are discussed.

  12. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  13. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  14. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  15. Babel et le Nouveau Monde Babel and the New World Babel y el Nuevo Mundo

    Directory of Open Access Journals (Sweden)

    Néstor Salamanca Leon

    1996-05-01

    Full Text Available L'analyse de la mythologie des Muiscas fait l'objet d'une réflexion stimulante qui montre à quel point le rêve d'une langue originale en Amérique latine est important.The analysis of the mythology of the Muiscas is at the core of a stimulating reflection which shows the extent of the development of the dream of an original tongue in South-America.El análisis de la mitología de los Muiscas como centro de una estimulante reflexión que permite mostrar hasta qué punto ha podido desarrollarse en América Latina el sueño de una lengua original.

  16. Neutron microdosimetry

    International Nuclear Information System (INIS)

    Kliauga, P.

    1987-01-01

    A major effort was made during the past year to do precision microdosimetry of neutrons at the RARAF facility. By precision microdosimetry the authors mean a special effort to understand, better than previously, some of the factors which go into the limitation of the accuracy and precision of microdosimetric measurements of neutrons. That such factors are still not clearly understood, or at least accounted for, is immediately evident upon examination of published microdosimetric measurements. What becomes immediately apparent upon examination of, say, the dose mean lineal energies reported, is that the spread of reported values for exceeds the reported experimental uncertainty, commonly taken as about 5%. Differences of 50% are not uncommon. It is easy to make the mistake that since classical microdosimetry uses a well-established experimental tool, the proportional counter, that sources of error should also be well understood. However, microdosimetry makes use of the proportional counter in a way which is quite different from its origins as a low-energy photon spectroscopy device. Microdosimetric spectra, particularly of neutrons, span 5 to 6 decades of event sizes. It is by no means certain that proportionality extends over such a range, and in fact it has been pointed out that it probably does not. Data analysis techniques vary from one experimenter to another, and can substantially affect mean values as well as spectral shape. The authors are examining these parameters, as well as others, such as calibration errors, but they are especially concentrating on the effect of counter design and performance on the resultant spectra which the counter measures

  17. Rhodium self-powered detector for monitoring neutron fluence, energy production, and isotopic composition of fuel

    International Nuclear Information System (INIS)

    Sokolov, A.P.; Pochivalin, G.P.; Shipovskikh, Yu.M.; Garusov, Yu.V.; Chernikov, O.G.; Shevchenko, V.G.

    1993-01-01

    The use of self-powered detectors (SPDs) with a rhodium emitter customarily involves monitoring of neutron fields in the core of a nuclear reactor. Since current in an SPD is generated primarily because of the neutron flux, which is responsible for the dynamics of particular nuclear transformations, including fission reactions of heavy isotopes, the detector signal can be attributed unambiguously to energy release at the location of the detector. Computation modeling performed with the KOMDPS package of programs of the current formation in a rhodium SPD along with the neutron-physical processes that occur in the reactor core makes it possible to take account of the effect of the principal factors characterizing the operating conditions and the design features of the fuel channel and the detector, reveal quantitative relations between the generated signal and individual physical parameters, and determine the metrological parameters of the detector. The formation and transport of changed particles in the sensitive part of the SPC is calculated by the Monte Carlo method. The emitter activation, neutron transport, and dynamics of the isotopic composition in the fuel channel containing the SPD are determined by solving the kinetic equation in the multigroup representation of the neutron spectrum, using the discrete ordinate method. In this work the authors consider the operation of a rhodium SPD in a bundle of 49 fuel channels of the RBMK-1000 reactor with a fuel enrichment of 2.4% from the time it is inserted into a fresh channel

  18. Importance estimation in Monte Carlo modelling of neutron and photon transport

    International Nuclear Information System (INIS)

    Mickael, M.W.

    1992-01-01

    The estimation of neutron and photon importance in a three-dimensional geometry is achieved using a coupled Monte Carlo and diffusion theory calculation. The parameters required for the solution of the multigroup adjoint diffusion equation are estimated from an analog Monte Carlo simulation of the system under investigation. The solution of the adjoint diffusion equation is then used as an estimate of the particle importance in the actual simulation. This approach provides an automated and efficient variance reduction method for Monte Carlo simulations. The technique has been successfully applied to Monte Carlo simulation of neutron and coupled neutron-photon transport in the nuclear well-logging field. The results show that the importance maps obtained in a few minutes of computer time using this technique are in good agreement with Monte Carlo generated importance maps that require prohibitive computing times. The application of this method to Monte Carlo modelling of the response of neutron porosity and pulsed neutron instruments has resulted in major reductions in computation time. (Author)

  19. Neutron matter, symmetry energy and neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, Gandolfi [Los Alamos National Laboratory (LANL); Steiner, Andrew W [ORNL

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  20. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  1. Neutron generator control system

    International Nuclear Information System (INIS)

    Peelman, H.E.; Bridges, J.R.

    1981-01-01

    A method is described of controlling the neutron output of a neutron generator tube used in neutron well logging. The system operates by monitoring the target beam current and comparing a function of this current with a reference voltage level to develop a control signal used in a series regulator to control the replenisher current of the neutron generator tube. (U.K.)

  2. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  3. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  4. Miscellaneous neutron techniques

    International Nuclear Information System (INIS)

    Iddings, F.A.

    1976-01-01

    Attention is brought to the less often uses of neutrons in the areas of neutron radiography, well logging, and neutron gaging. Emphasis on neutron radiography points toward the isotopic sensitivity of the method versus the classical bulk applications. Also recognized is the ability of neutron radiography to produce image changes that correspond to thickness and density changes obtained in photon radiography. Similarly, neutron gaging applications center on the measurement of radiography. Similarly, neutron gaging applications center on the measurement of water, oil, or plastics in industrial samples. Well logging extends the neutron gaging to encompass many neutron properties and reactions besides thermalization and capture. Neutron gaging also gives information on organic structure and concentrations of a variety of elements or specific compounds in selected matrices

  5. Development of LMR basic design technology - Development of 3-D multi-group nodal kinetics code for liquid metal reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hyun [Kyunghee University, Seoul (Korea, Republic of)

    1996-07-01

    A development project of 3-dimensional kinetics code for ALMR has three level of works. In the first level, a multi-group, nodal kinetics code for the HEX-Z geometry has been developed. A code showed very good results for the static analysis as well as for the kinetics problems. At the second level, a core thermal-hydraulic analysis code was developed for the temperature feedback calculation in ALMR transients analysis. This code is coupled with kinetics code. A sodium property table was programmed and tested to the KAERI data and thermal feedback model was developed and coupled in code. Benchmarking of T/H calculation has been performed and showed fairly good results. At the third level of research work, reactivity feedback model for structure thermal expansion is developed and added to the code. At present, basic model was studied. However, code development in now on going. Benchmarking of this model developed can not be done because of lack of data. 31 refs., 17 tabs., 38 figs. (author)

  6. TWOTRAN-2, 2-D Multigroup Transport in X-Y, R-Z, R-Theta Geometry with Anisotropic Scattering

    International Nuclear Information System (INIS)

    Lathrop, K.D.; Brinkley, F.W.

    1995-01-01

    1 - Description of problem or function: TWOTRAN2 solves the two-dimensional multigroup transport equation in (x,y), (r,theta), and (r,z) geometries. Both regular and adjoint, inhomogeneous and homogeneous (k eff and eigenvalue searches) problems subject to vacuum, reflective, periodic, white or input-specified boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. 2 - Method of solution: The discrete ordinates approximation for the angular variable is used in finite difference form which is solved with the central (diamond) difference approximation. Negative fluxes are eliminated by a local set-to zero and correct algorithm. Standard inner (within-group) and outer iterative cycles are accelerated by a coarse-mesh re-balancing on a coarse mesh which may be independent of the material mesh. 3 - Restrictions on the complexity of the problem: Variable dimensioning is used so that any combination of problem parameters leading to a container array less than MAXLEN can be accommodated. On IBM machines, TWOTRAN2 will execute in the 4-byte mode so that any combination of problem parameters leading to a container array less than MAXLEN can be accommodated. MAXLEN can be several hundred thousand and most problems can be core-contained. On the CDC machines MAXLEN can be slightly greater than 40,000 words and peripheral storage is used for most group-dependent data

  7. Knowledge extraction algorithm for variances handling of CP using integrated hybrid genetic double multi-group cooperative PSO and DPSO.

    Science.gov (United States)

    Du, Gang; Jiang, Zhibin; Diao, Xiaodi; Yao, Yang

    2012-04-01

    Although the clinical pathway (CP) predefines predictable standardized care process for a particular diagnosis or procedure, many variances may still unavoidably occur. Some key index parameters have strong relationship with variances handling measures of CP. In real world, these problems are highly nonlinear in nature so that it's hard to develop a comprehensive mathematic model. In this paper, a rule extraction approach based on combing hybrid genetic double multi-group cooperative particle swarm optimization algorithm (PSO) and discrete PSO algorithm (named HGDMCPSO/DPSO) is developed to discovery the previously unknown and potentially complicated nonlinear relationship between key parameters and variances handling measures of CP. Then these extracted rules can provide abnormal variances handling warning for medical professionals. Three numerical experiments on Iris of UCI data sets, Wisconsin breast cancer data sets and CP variances data sets of osteosarcoma preoperative chemotherapy are used to validate the proposed method. When compared with the previous researches, the proposed rule extraction algorithm can obtain the high prediction accuracy, less computing time, more stability and easily comprehended by users, thus it is an effective knowledge extraction tool for CP variances handling.

  8. Development of LMR basic design technology - Development of 3-D. multi-group nodal kinetics code for liquid metal reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hyun [Kyunghee University, Seoul (Korea, Republic of)

    1995-07-01

    A development project of 3-dimensional kinetics code for ALMR has four level of works. In the first level, a multi-group, nodal kinetics code for the HEX-Z geometry has been developed. At this point code showed very good results for the static analysis. However, kinetics routine has not been benchmarked because exact benchmark problem was not found. For the artificial benchmark problem, code showed satisfying results. At the second level, a core thermal-hydraulic analysis code was developed for the temperature feedback calculation ALMR transients analysis. A sodium property table was programmed and tested to the KAERI data. Benchmarking of T/H calculation has been performed and showed fairly good results. At the third level of research work, combining of two code should be done. A reactivity feedback model for structure thermal expansion is also developed at this stage. The third and fourth level is planned to be done next year. At this point, work progress is kept right on time. 24 refs., 12 tabs., 15 figs. (author)

  9. A Multigroup Confirmatory Factor Analysis of the Patient Health Questionnaire-9 among English- and Spanish-speaking Latinas

    Science.gov (United States)

    Merz, Erin L.; Malcarne, Vanessa L.; Roesch, Scott C.; Riley, Natasha; Sadler, Georgia Robins

    2014-01-01

    Depression is a significant problem for ethnic minorities that remains understudied partly due to a lack of strong measures with established psychometric properties. One screening tool, the Patient Health Questionnaire-9 (PHQ-9), which was developed for use in primary care has also gained popularity in research settings. The reliability and validity of the PHQ-9 has been well established among predominantly Caucasian samples, in addition to many minority groups. However, there is little evidence regarding its utility among Hispanic Americans, a large and growing cultural group in the United States. In this study, we investigated the reliability and structural validity of the PHQ-9 in Hispanic American women. A community sample of 479 Latina women from southern California completed the PHQ-9 in their preferred language of English or Spanish. Cronbach’s alphas suggested that there was good internal consistency for both the English- and Spanish-language versions. Structural validity was investigated using multigroup confirmatory factor analysis (CFA). Results support a similar one-factor structure with equivalent response patterns and variances among English- and Spanish-speaking Latinas. These results suggest that the PHQ-9 can be used with confidence in both English and Spanish versions to screen Latinas for depression. PMID:21787063

  10. Analysis of sensitive questions across cultures: an application of multigroup item randomized response theory to sexual attitudes and behavior.

    Science.gov (United States)

    de Jong, Martijn G; Pieters, Rik; Stremersch, Stefan

    2012-09-01

    Answers to sensitive questions are prone to social desirability bias. If not properly addressed, the validity of the research can be suspect. This article presents multigroup item randomized response theory (MIRRT) to measure self-reported sensitive topics across cultures. The method was specifically developed to reduce social desirability bias by making an a priori change in the design of the survey. The change involves the use of a randomization device (e.g., a die) that preserves participants' privacy at the item level. In cases where multiple items measure a higher level theoretical construct, the researcher could still make inferences at the individual level. The method can correct for under- and overreporting, even if both occur in a sample of individuals or across nations. We present and illustrate MIRRT in a nontechnical manner, provide WinBugs software code so that researchers can directly implement it, and present 2 cross-national studies in which it was applied. The first study compared nonstudent samples from 2 countries (total n = 927) on permissive sexual attitudes and risky sexual behavior and related these to individual-level characteristics such as the Big Five personality traits. The second study compared nonstudent samples from 17 countries (total n = 6,195) on risky sexual behavior and related these to individual-level characteristics, such as gender and age, and to country-level characteristics, such as sex ratio.

  11. RCPL1: a program to prepare neutron and photon cross-section libraries for RCP01 (LWBR Development Program). [In FORTRAN for CDC 6600 or 7600

    Energy Technology Data Exchange (ETDEWEB)

    Dralle, A V; Candelore, N R; Gast, R C

    1978-08-01

    RCPL1 is a FORTRAN digital computer program designed and developed to prepare neutron and photon cross section libraries for the RCP01 Monte Carlo computer program for solving neutron and photon transport problems in three-dimensional geometry with detailed energy description. The neutron libraries prepared by RCPL1 contain detailed Doppler-broadened resonance cross sections from unresolved and either single-level or multilevel resonance parameters, for any number of nuclides, within an arbitrary energy structure, and the photon libraries contain tabulations of the interaction cross sections and gamma emission spectra. This report describes the various RCPL1 program options, calculational details, and input requirements. All data used for library construction are extracted from a multigroup cross section library system XAP, described in an appendix to the report, which contains Evaluated Nuclear Data File (ENDF) data. 5 figures, 6 tables.

  12. Neutrons in science and technology

    International Nuclear Information System (INIS)

    Bromley, D.A.

    1984-01-01

    Occasionally to the fiftieth anniversy of the discovery of the neutron the author presents a historical review about the impact of this discovery on different fields at physics. Especially considered are nuclear physics, the neutron as an elementary particles, ultracold neutrons, condensed matter physics, radiation damage induced by neutrons, neutron activation analysis, imaging and radiography by neutrons, neutrons in mining operations, track etching, the use of intense gamma sources, gauging systems, neutron holography and neutron stars. (HSI)

  13. Attenuation analysis of neutrons and photons generated by 52-MeV protons transmitted through shielding materials

    International Nuclear Information System (INIS)

    Uwamino, Y.; Nakamura, T.

    1983-01-01

    Attenuation of neutrons and photons transmitted through grahite, iron, water and ordinary concrete assemblies were studied using gold foils for thermal neutron and an NE-213 organic scintillation detector with an (n-γ) discrimination technique for spectral measurements. Source neutrons and photons were produced by 52-MeV proton bombardment of a 21.4-mm-thick graphite target placed in front of the assembly. The distributions of the light output from the scintillator were unfolded by the revised FERDO code. These experimental results were used as benchmark data on neutron and photon penetration by neutrons energy above 15MeV. Multigroup Monte Carlo, one-dimensional ANISN and two-dimensional DOT-3.5 transport calculations were performed with the DLC-58/HELLO group cross sections to compare with the measurement and to evaluate the cross sections. The DOT code was also used for the estimation of room-scattered neutron and photon contribution to the measured spectra. The results of the ANISN calculation of neutrons and the three-dimensional Monte Carlo calculation agreed with the experimental values except for high energy neutrons transmitted through water and graphite. The agreement of both calculations was well within the accuracy of 7% in the measured attenuation coefficients. For photons, the ANISN calculation gave >20% overestimation of the attenuation coefficients in the case of deep penetration through the medium for which the photon mean-free-path is shorter than that of neutrons, such as in iron and concrete. The result of the DOT calculation of neutrons down to thermal energy agreed well with the gold foil measurement in the absolute value. (author)

  14. Comparison of measured and calculated neutron and gamma-ray energy spectra behind an in-line shielded duct

    International Nuclear Information System (INIS)

    Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Chapman, G.T.; Tang, J.S.

    1982-05-01

    Integral experiments that measure the transport of approx. 14 MeV neutrons through a 0.30-m-diameter duct having a length-to-diameter ratio of 2.83 that is partially plugged with a 0.15 m diameter, 0.51 m long shield comprised of alternating layers of stainless steel type 304 and borated polyethylene have been carried out at the Oak Ridge National Laboratory. Measured and calculated neutron and gamma ray energy spectra are compared at several locations relative to the mouth of the duct. The measured spectra were obtained using an NE-213 liquid scintillator detector with pulse shape discrimination methods used to simultaneously resolve neutron and gamma ray events. The calculated spectra were obtained using a computer code network that incorporates two radiation transport methods: discrete ordinates (with P 3 multigroup cross sections) and Monte Carlo (with continuous point cross sections). The two radiation transport methods are required to account for neutrons that singly scatter from the duct to the detectors. The calculated and measured neutron energy spectra above 850 keV agree with 5 to 50% depending on detector location and neutron energy. The calculated and measured gamma ray energy spectra above 750 keV are also in favorable agreement, approx. 5 to 50%, depending on detector location and gamma ray energy

  15. Neutron range spectrometer

    Science.gov (United States)

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  16. Neutrons and materials

    International Nuclear Information System (INIS)

    Paulus, W.; Meinnel, J.

    2003-01-01

    The neutron is the only probe that gives information simultaneously on structure issues through interference phenomena and on dynamics issues through spectroscopy. The neutron carries a s=1/2 spin value which allows it to be polarizable and to interact with any magnetic field through the magnetic momentum associated to its spin. The great interest of neutron in research relies on 3 facts: -) the neutron fluxes used to study matter are supplied by nuclear reactors and spallation sources with wave lengths and energy range that directly correspond to interatomic distances and thermal-motion energies of matter, -) the possibility of setting or changing the contrast of an element by using its different isotopes, and -) the neutron does not carry an electrical charge so it can enter the bulk of matter easily and gives an image of stress and patterns of large pieces of metal through a non-destructive examination. This course reviews all the aspects of the use of neutron in physics and is made up of 16 chapters: 1) properties of neutrons, 2) neutron production, 3) complementarity between X-ray and neutrons, 4) neutron diffraction, 5) neutron diffusion, 6) neutron spectroscopy, 7) crystallography, 8) imaging techniques with neutrons, 9) neutron activation analysis, 10) low-angle diffusion, 11) neutron reflectivity, 12) non-destructive testing, 13) microstructure and diffraction rays of X-radiation, 14) access to neutron source facilities, 15) composites materials and neutron diffusion, and 16) studies of liquids and glasses through neutron and X-ray diffraction. (A.C.)

  17. A neutron activation detector

    International Nuclear Information System (INIS)

    Ambardanishvili, T.S.; Kolomiitsev, M.A.; Zakharina, T.Y.; Dundua, V.J.; Chikhladze, N.V.

    1973-01-01

    The present invention concerns a neutron activation detector made from a moulded and hardened composition. According to the invention, that composition contains an activable substance constituted by at least two chemical elements and/or compounds of at least two chemical elements. Each of these chemical elements is capable of reacting with the neutrons forming radio-active isotopes with vatious levels of energy during desintegration. This neutron detector is mainly suitable for measuring integral thermal neutron and fast neutron fluxes during irradiation of the sample, and also for measuring the intensities of neutron fields [fr

  18. Neutron in biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1997-01-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10 2 to 10 3 times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  19. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  20. Neutronics code VALE for two-dimensional triagonal (hexagonal) and three-dimensional geometries

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1981-08-01

    This report documents the computer code VALE designed to solve multigroup neutronics problems with the diffusion theory approximation to neutron transport for a triagonal arrangement of mesh points on planes in two- and three-dimensional geometry. This code parallels the VENTURE neutronics code in the local computation system, making exposure and fuel management capabilities available. It uses and generates interface data files adopted in the cooperative effort sponsored by Reactor Physics RRT Division of the US DOE. The programming in FORTRAN is straightforward, although data is transferred in blocks between auxiliary storage devices and main core, and direct access schemes are used. The size of problems which can be handled is essentially limited only by cost of calculation since the arrays are variably dimensioned. The memory requirement is held down while data transfer during iteration is increased only as necessary with problem size. There is provision for the more common boundary conditions including the repeating boundary, 180 0 rotational symmetry, and the rotational symmetry conditions for the 30 0 , 60 0 , and 120 0 triangular grids on planes. A variety of types of problems may be solved: the usual neutron flux eignevalue problem, or a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations. The adjoint problem and fixed source problem may be solved, as well as the dominating higher harmonic, or the importance problem for an arbitrary fixed source

  1. Effect of absorption discontinuity on neutron spectra of water assemblies poisoned with non-1/V absorbers

    International Nuclear Information System (INIS)

    Gupta, I.J.; Trikha, S.K.

    1977-01-01

    Calculations are presented of the diffusion of thermal neutrons (2.5 x 10 -4 to 7 x 10 -1 eV) across an absorption discontinuity in a water assembly, consisting of pure water on one side and aqueous solutions of three different non-1/V absorbers on the other, which were obtained by solving the Boltzmann transport equation in the diffusion approximation using the multigroup formalism. The gradual appearance and disappearance of the depletion region in the neutron spectra (caused by the resonance absorption peaks at energies 0.096 and 0.179 eV for samarium and cadmium respectively), as one moves from the pure water assembly to the poisoned water assembly and vice versa, have also been studied. The minimum concentrations of Sm and Cd atoms in water for which the depletion region in the spectra just starts building up are found to be 60 x 10 18 Sm atom cm -3 and 125 x 10 18 Cd atom cm -3 respectively. However no such depletion region is observed in gadolinium-poisoned water assembly. At the boundary, the equilibrium neutron distribution gets disturbed and is re-established to the equilibrium distribution of the second medium at some distance from the interface. The diffusion lengths so calculated from the total neutron density curves are in good agreement with the experimental results of Goddard and Johnson (Nucl. Sci. Eng.; 37:127 (1969)) at various concentrations of Gd and Cd atoms in water. (author)

  2. Basics of Neutrons for First Responders

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Brian G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-05

    These are slides from a presentation on the basics of neutrons. A few topics covered are: common origins of terrestrial neutron radiation, neutron sources, neutron energy, interactions, detecting neutrons, gammas from neutron interactions, neutron signatures in gamma-ray spectra, neutrons and NaI, neutron fluence to dose (msV), instruments' response to neutrons.

  3. Neutron stochastic transport theory with delayed neutrons

    International Nuclear Information System (INIS)

    Munoz-Cobo, J.L.; Verdu, G.

    1987-01-01

    From the stochastic transport theory with delayed neutrons, the Boltzmann transport equation with delayed neutrons for the average flux emerges in a natural way without recourse to any approximation. From this theory a general expression is obtained for the Feynman Y-function when delayed neutrons are included. The single mode approximation for the particular case of a subcritical assembly is developed, and it is shown that Y-function reduces to the familiar expression quoted in many books, when delayed neutrons are not considered, and spatial and source effects are not included. (author)

  4. Multigroup Confirmatory Factor Analysis of the Cognitive Dysfunction Questionnaire: instrument refinement and measurement invariance across age and sex.

    Science.gov (United States)

    Vestergren, Peter; Rönnlund, Michael; Nyberg, Lars; Nilsson, Lars-Göran

    2012-10-01

    The study adopted Confirmatory Factor Analysis (CFA) to investigate the factorial structure and reduce the number of items of the Cognitive Dysfunction Questionnaire (CDQ). The analyses were based on data for a total of 1,115 participants from population based samples (mean age: 63.0 ± 14.5 years, range: 25-95) randomly split into a refinement (N = 569) and a cross-validation (N = 546) sample. Equivalence of the measurement and structural portions of the refined model was demonstrated across the refinement and cross-validation samples. Among competing models the best fitting and parsimonious model had a hierarchical factor structure with five first-order and one second-order general factor. For the final version of the CDQ, 20 items within five domains were selected (Procedural actions, Semantic word knowledge, Face recognition, Temporal orientation, and Spatial navigation). Internal consistency reliabilities were adequate for the total scale and for the subscales. Multigroup CFAs indicated measurement invariance across age and sex up to the scalar level. Finally, higher levels of cognitive dysfunction as reflected by CDQ scores were predicted by advancing age, fewer years of education, and with deficits in general cognitive functioning as reflected by scores on the Mini-Mental State Examination. In conclusion, the CDQ appears to be psychometrically sound and shows the expected relationships with variables known to be associated with cognitive dysfunction and dementia. Future studies should apply it among clinical groups to further test its usefulness. © 2012 The Authors. Scandinavian Journal of Psychology © 2012 The Scandinavian Psychological Associations.

  5. Neutron anatomy

    International Nuclear Information System (INIS)

    Bacon, G.E.

    1994-01-01

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone

  6. Neutron anatomy.

    Science.gov (United States)

    Bacon, G E

    1996-01-01

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content-the crystals of the hexagonal hydroxyapatite- and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilising distances ranging from 1 mm to 10 mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals-including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighbouring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction, for a sample of bone.

  7. Fundamentals and applications of neutron imaging. Fundamentals part 5. Neutron sources for neutron imaging

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito

    2007-01-01

    Neutrons for experiments by neutron beams are classified regarding neutron sources as follows: (1) Neutrons from radioisotopes, (2) Neutrons from nuclear reactions induced by deuteron beams from accelerators, (3) Neutrons from nuclear spallation induced by high energy proton beams from accelerators, and (4) Neutrons from reactors. As for the neutron imaging, weak intensity neutron sources can be useful if the detector system is sensitive enough. A newly developed spallation neutron source has eminent characteristics that the neutron emission is pulsive with strong peak intensity. Imaging experiments availing this property will be developed henceforth. (K. Yoshida)

  8. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  9. Neutron beams for therapy

    International Nuclear Information System (INIS)

    Kuplenikov, Eh.L.; Dovbnya, A.N.; Telegin, Yu.N.; Tsymbal, V.A.; Kandybej, S.S.

    2011-01-01

    It was given the analysis and generalization of the study results carried out during some decades in many world countries on application of thermal, epithermal and fast neutrons for neutron, gamma-neutron and neutron-capture therapy. The main attention is focused on the practical application possibility of the accumulated experience for the base creation for medical research and the cancer patients effective treatment.

  10. Reactor Neutron Sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.

    1994-01-01

    The present status and the prospects for development of reactor neutron sources for neutron scattering research in the world are considered. The fields of application of neutron scattering relative to synchrotron radiation, the creation stages of reactors (steady state and pulsed) and their position in comparison with spallation neutron sources at present and in the foreseen future are discussed. (author). 15 refs.; 8 figs.; 3 tabs

  11. Properties of neutron sources

    International Nuclear Information System (INIS)

    1987-03-01

    The Conference presentations were divided into sessions devoted to the following topics: white neutron sources, primarily pulsed (6 papers); fast neutron fields (5 papers); Californium-252 prompt fission neutron spectra (14 papers); monoenergetic sources and filtered beams (11 papers); 14 MeV neutron sources (10 papers); selected special application (one paper); and a general interest session (4 papers). Individual abstracts were prepared separately for the papers

  12. Polarimetric neutron scattering

    International Nuclear Information System (INIS)

    Tasset, F.

    2001-01-01

    Polarimetric Neutron Scattering in introduced, both by, explaining methodological issues and the corresponding instrumental developments. After a short overview of neutron spin polarization and the neutron polarization 3d-vector a pictorial approach of the microscopic theory is used to show how a polarized beam interacts with lattice and magnetic Fourier components in a crystal. Examples are given of using Spherical Neutron Polarimetry (SNP) and the corresponding Cryopad polarimeter for the investigation of non-collinear magnetic structures. (R.P.)

  13. Isotopic neutron sources for neutron activation analysis

    International Nuclear Information System (INIS)

    Hoste, J.

    1988-06-01

    This User's Manual is an attempt to provide for teaching and training purposes, a series of well thought out demonstrative experiments in neutron activation analysis based on the utilization of an isotopic neutron source. In some cases, these ideas can be applied to solve practical analytical problems. 19 refs, figs and tabs

  14. Calculation of neutron interior source distribution within subcritical fission-chain reacting systems for a prescribed power density generation

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Leonardo R.C.; Alves Filho, Hermes; Barros, Ricardo C., E-mail: lrcmoraes@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: ricardob@iprj.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Programa de Pós-Graduação em Modelagem Computacional

    2017-07-01

    Accelerator Driven Systems (ADS) are sub-critical systems stabilized by stationary external sources of neutrons. A system is subcritical when the removal by absorption and leakage exceeds the production by fission and tends to shut down. On the other hand, any subcritical system can be stabilized by including time-independent external sources of neutrons. The goal of this work is to determine the intensity of uniform and isotropic sources of neutrons that must be added inside all fuel regions of a subcritical system so that it becomes stabilized, generating a prescribed distribution of electric power. A computer program has been developed in Java language to estimate the intensity of stationary sources of neutrons that must be included in the fuel regions to drive the subcritical system with a fixed power distribution prescribed by the user. The mathematical model used to achieve this goal was the energy multigroup, slab-geometry neutron transport equation in the discrete ordinates (S{sub N}) formulation and the response matrix method was applied to solve the forward and the adjoint S{sub N} problems. Numerical results are given to verify the present. (author)

  15. International Neutron Radiography Newsletter

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    At the First World Conference on Neutron Radiography i t was decided to continue the "Neutron Radiography Newsletter", published previously by J.P. Barton, as the "International Neutron Radiography Newsletter" (INRNL), with J.C. Doraanus as editor. The British Journal of Non-Destructive Testing...

  16. Spallation neutron sources

    International Nuclear Information System (INIS)

    Fraser, J.S.; Bartholomew, G.A.

    1983-01-01

    The principles and theory of spallation neutron sources are outlined and a comparison is given with other types of neutron source. A summary of the available accelerator types for spallation neutron sources and their advantages and disadvantages is presented. Suitable target materials are discussed for specific applications, and typical target assemblies shown. (U.K.)

  17. Advances in neutron tomography

    Indian Academy of Sciences (India)

    Up to now the interaction of the neutron spin with magnetic fields in samples has not been applied to imaging techniques despite the fact that it was proposed many years ago. About ten years ago neutron depolarization as imaging signal for neutron radiography or tomography was demonstrated and in principle it works.

  18. Fundamental neutron physics

    International Nuclear Information System (INIS)

    Deslattes, R.; Dombeck, T.; Greene, G.; Ramsey, N.; Rauch, H.; Werner, S.

    1984-01-01

    Fundamental physics experiments of merit can be conducted at the proposed intense neutron sources. Areas of interest include: neutron particle properties, neutron wave properties, and fundamental physics utilizing reactor produced γ-rays. Such experiments require intense, full-time utilization of a beam station for periods ranging from several months to a year or more

  19. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  20. Neutron detection and radiography

    International Nuclear Information System (INIS)

    Bollen, R.H.; Van Esch, R.F.

    1975-01-01

    An improved method of recording neutron images is described which comprises imagewise irradiating with neutrons an intensifying screen containing a gadolinium compound that fluoresces when struck by x-rays and subjecting the fluorescent light pattern resulting from the impact of the neutrons on the screen onto a photographic material. (auth)

  1. A portable, parallel, object-oriented Monte Carlo neutron transport code in C++

    International Nuclear Information System (INIS)

    Lee, S.R.; Cummings, J.C.; Nolen, S.D.

    1997-01-01

    We have developed a multi-group Monte Carlo neutron transport code using C++ and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and α-eigenvalues and is portable to and runs parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities of MC++ are discussed, along with physics and performance results on a variety of hardware, including all Accelerated Strategic Computing Initiative (ASCI) hardware. Current parallel performance indicates the ability to compute α-eigenvalues in seconds to minutes rather than hours to days. Future plans and the implementation of a general transport physics framework are also discussed

  2. MC++: A parallel, portable, Monte Carlo neutron transport code in C++

    International Nuclear Information System (INIS)

    Lee, S.R.; Cummings, J.C.; Nolen, S.D.

    1997-01-01

    MC++ is an implicit multi-group Monte Carlo neutron transport code written in C++ and based on the Parallel Object-Oriented Methods and Applications (POOMA) class library. MC++ runs in parallel on and is portable to a wide variety of platforms, including MPPs, SMPs, and clusters of UNIX workstations. MC++ is being developed to provide transport capabilities to the Accelerated Strategic Computing Initiative (ASCI). It is also intended to form the basis of the first transport physics framework (TPF), which is a C++ class library containing appropriate abstractions, objects, and methods for the particle transport problem. The transport problem is briefly described, as well as the current status and algorithms in MC++ for solving the transport equation. The alpha version of the POOMA class library is also discussed, along with the implementation of the transport solution algorithms using POOMA. Finally, a simple test problem is defined and performance and physics results from this problem are discussed on a variety of platforms

  3. Neutron scatter camera

    Science.gov (United States)

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  4. Grazing Incidence Neutron Optics

    Science.gov (United States)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  5. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  6. Neutron scattering. Experiment manuals

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  7. Neutron scattering. Experiment manuals

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2012-01-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, the neutron polarization analyzer DNS, the neutron spin-echo spectrometer J-NSE, the small-angle neutron diffractometers KWS-1/-2, the very-small-angle neutron diffractometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  8. Semiconductor neutron detector

    Science.gov (United States)

    Ianakiev, Kiril D [Los Alamos, NM; Littlewood, Peter B [Cambridge, GB; Blagoev, Krastan B [Arlington, VA; Swinhoe, Martyn T [Los Alamos, NM; Smith, James L [Los Alamos, NM; Sullivan, Clair J [Los Alamos, NM; Alexandrov, Boian S [Los Alamos, NM; Lashley, Jason Charles [Santa Fe, NM

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  9. Nanosecond neutron generator

    International Nuclear Information System (INIS)

    Lobov, S.I.; Pavlovskaya, N.G.; Pukhov, S.P.

    1991-01-01

    High-voltage nanosecond neutron generator for obtaining neutrons in D-T reaction is described. Yield of 6x10 6 neutron/pulse was generated in a sealed gas-filled diode with a target on the cathode by accelerating pulse voltage of approximately 0.5 MV and length at half-height of 0.5 ns and deuterium pressure of 6x10 -2 Torr. Ways of increasing neutron yield and possibilities of creating generators of nanosecond neutron pulses with great service life are considered

  10. Activation neutron detector

    International Nuclear Information System (INIS)

    Ambardanishvili, T.S.; Kolomiitsev, M.A.; Zakharina, T.Y.; Dundua, V.J.; Chikhladze, N.V.

    1976-01-01

    An activation neutron detector made as a moulded and cured composition of a material capable of being neutron-activated is described. The material is selected from a group consisting of at least two chemical elements, a compound of at least two chemical elements and their mixture, each of the chemical elements and their mixture, each of the chemical elements being capable of interacting with neutrons to form radioactive isotopes having different radiation energies when disintegrating. The material capable of being neutron-activated is distributed throughout the volume of a polycondensation resin inert with respect to neutrons and capable of curing. 17 Claims, No Drawings

  11. Thermal neutron moderating device

    International Nuclear Information System (INIS)

    Takigami, Hiroyuki.

    1995-01-01

    In a thermal neutron moderating device, superconductive coils for generating magnetic fields capable of applying magnetic fields vertical to the longitudinal direction of a thermal neutron passing tube, and superconductive coils for magnetic field gradient for causing magnetic field gradient in the longitudinal direction of the thermal neutron passing tube are disposed being stacked at the outside of the thermal neutron passing tube. When magnetic field gradient is present vertically to the direction of a magnetic moment, thermal neutrons undergo forces in the direction of the magnetic field gradient in proportion to the magnetic moment. Then, the magnetic moment of the thermal neutrons is aligned with the direction vertical to the passing direction of the thermal neutrons, to cause the magnetic field gradient in the passing direction of the thermal neutrons. The speed of the thermal neutrons can be optionally selected and the wavelength can freely be changed by applying forces to the thermal neutrons and changing the extent and direction of the magnetic field gradient. Superconductive coils are used as the coils for generating magnetic fields and the magnetic field gradient in order to change extremely high energy of the thermal neutrons. (N.H.)

  12. Neutron structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron diffraction provides an experimental method of directly locating hydrogen atoms in protein which play important roles in physiological functions. However, there are relatively few examples of neutron crystallography in biology since it takes a lot of time to collect a sufficient number of Bragg reflections due to the low flux of neutrons illuminating the sample. In order to overcome the flux problem, we have successfully developed the neutron IP, where the neutron converter, {sup 6}Li or Gd, was mixed with a photostimulated luminescence material on flexible plastic support. Neutron Laue diffraction 2A data from tetragonal lysozyme were collected for 10 days with neutron imaging plates, and 960 hydrogen atoms in the molecule and 157 bound water molecules were identified. These results explain the proposed hydrolysis mechanism of the sugar by the lysozyme molecule and that lysozyme is less active at pH7.0. (author)

  13. Atlas of neutron resonances

    CERN Document Server

    Mughabghab, Said

    2018-01-01

    Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z= 1-60, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=1-60, as well as thermal cross sections, capture resonance integrals, average resonance parameters and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections o...

  14. Neutron image intensifier tubes

    International Nuclear Information System (INIS)

    Verat, M.; Rougeot, H.; Driard, B.

    1983-01-01

    The most frequently used techniques in neutron radiography employ a neutron converter consisting of either a scintillator or a thin metal sheet. The radiation created by the neutrons exposes a photographic film that is in contact with the converter: in the direct method, the film is exposed during the time that the object is irradiated with neutrons; in the transfer method, the film is exposed after the irradiation of the object with neutrons. In industrial non-destructive testing, when many identical objects have to be checked, these techniques have several disadvantages. Non-destructive testing systems without these disadvantages can be constructed around neutron-image intensifier tubes. A description and the operating characteristics of neutron-image intensifier tubes are given. (Auth.)

  15. Neutrons as a probe

    International Nuclear Information System (INIS)

    Iizumi, Masashi

    1993-01-01

    As an introduction to the symposium a brief overview will be given about the features of neutrons as a probe. First it will be pointed out that the utilization of neutrons as a probe for investigating the structural and dynamical properties of condensed matters is a benign gift eventuated from the release of atomic energy initiated by Enrico Fermi exactly half century ago. Features of neutrons as a probe are discussed in accordance with the four basic physical properties of neutrons as an elementary particle; (1) no electric charge (the interaction with matter is nuclear), (2) the mass of neutron is 1 amu, (3) spin is 1/2 and (4) neutrons have magnetic dipole moment. Overview will be given on the uniqueness of neutrons as a probe and on the variety in the way they are used in the wide research area from the pure science to the industrial applications. (author)

  16. Methods of neutron spectrometry

    International Nuclear Information System (INIS)

    Doerschel, B.

    1981-01-01

    The different methods of neutron spectrometry are based on the direct measurement of neutron velocity or on the use of suitable energy-dependent interaction processes. In the latter case the measuring effect of a detector is connected with the searched neutron spectrum by an integral equation. The solution needs suitable unfolding procedures. The most important methods of neutron spectrometry are the time-of-flight method, the crystal spectrometry, the neutron spectrometry by use of elastic collisions with hydrogen nuclei, and neutron spectrometry with the aid of nuclear reactions, especially of the neutron-induced activation. The advantages and disadvantages of these methods are contrasted considering the resolution, the measurable energy range, the sensitivity, and the experimental and computational efforts. (author)

  17. Neutron source for generating fast neutrons

    International Nuclear Information System (INIS)

    Schraube, H.; Morhart, A.

    1980-01-01

    In radiotherapeutics, neutron sources are needed, generating a dose rate as high as possible and neutrons as energetic as possible. By bombardment of tritium targets with deuterons of some 100 keV, neutrons of about 15 MeV are produced, but because of the large slow-down effect in the target consisting of heavy metal the yield is too small. On applying beryllium targets the neutron yields are too small below a deuteron energy of 15 MeV; at the same time, the high percentage of low energy neutrons is undesirable. Based on the favorable yield of the D(d,n) He 3 reaction for deuterons of about 100 MeV, a gas-target chamber is designed. The pressure chamber is designed for a deuterium pressure of up to 11 atmospheres and provided with cooling devices. The flux density in beam direction at a distance of 1 m reaches 108 per cm 2 , the maximum energy of the neutrons amounts to 12 MeV at deuteron energies of 9 MeV, and the neutron share below 9 MeV is small. The maximum dose rate in a tissue-equivalent phantom lies at 40 rads/min. (orig./PW)

  18. Neutron microscope with refractive wedge

    International Nuclear Information System (INIS)

    Masalovich, S.V.

    1990-01-01

    A possibility of applying a refractive element in a mirror-neutron microscope using ultracold neutrons to reduce neutron aberrations is considered. Application of a refractive element in a neutron microscope with horizontal optical axis is studied. A scheme of neutron microscope with a refractive wedge is presented, evaluation of quartz wedge parameters is made. It is stressed that application of refractive elements in neutron microscopes facilitates aberration reduction in neutron-optical systems

  19. NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR

    Science.gov (United States)

    Young, G.J.

    1959-06-30

    The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.

  20. Neutronic and Thermal-Hydraulic Safety Analysis for the Optimization of the Uranium Foil Target in the RSG-GAS Reactor

    Directory of Open Access Journals (Sweden)

    S. Pinem

    2016-12-01

    Full Text Available The G. A. Siwabessy Multipurpose Reactor (Reaktor Serba Guna G.A. Siwabessy, RSG-GAS has an average thermal neutron flux of 2×1014 neutron/(cm2 sec at the nominal power of 30 MW. With such a high thermal neutron flux, the reactor is suitable for the production of Mo-99 which is widely used as a medical diagnostic radioisotope. This paper describes a safety analysis to determine the optimum LEU foil target by using a coupled neutronic and thermal-hydraulic code, MTR-DYN. The code has been developed based on the three-dimensional multigroup neutron diffusion theory. The best estimated results can be achieved by using a coupled neutronic and thermal-hydraulic code. The calculation results show that the optimum LEU foil target is 54 g corresponding to the reactivity change of less than the limit value of 500 pcm. From the safety analysis for the case when the primary flow rate decreased by 15% from its nominal value, it was found that the peak temperatures of the coolant and cladding are 69.5°C and 127.9°C, respectively. It can be concluded that the optimum LEU foil target can be irradiated safely without exceeding the limit value.

  1. Calculated neutron-activation cross sections for E/sub n/ /le/ 100 MeV for a range of accelerator materials

    International Nuclear Information System (INIS)

    Bozoian, M.; Arthur, E.D.; Perry, R.T.; Wilson, W.B.; Young, P.G.

    1988-01-01

    Activation problems associated with particle accelerators are commonly dominated by reactions of secondary neutrons produced in reactions of beam particles with accelerator or beam stop materials. Measured values of neutron-activation cross sections above a few MeV are sparse. Calculations with the GNASH code have been made for neutrons incident on all stable nuclides of a range of elements common to accelerator materials. These elements include B, C, N, O, Ne, Mg, Al, Si, P, S, Ar, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Nd, and Sm. Calculations were made for a grid of incident neutron energies extending to 100 MeV. Cross sections leading to the direct production of as many as 87 activation products for each of 84 target nuclide were tabulated on this grid of neutron energies, each beginning with the threshold for the product nuclide's formation. Multigrouped values of these cross sections have been calculated and are being integrated into the cross-section library of the REAC-2 neutron activation code. Illustrative cross sections are presented. 20 refs., 6 figs., 1 tab

  2. Artefacts of fast neutron radiography concerned with neutron scattering

    International Nuclear Information System (INIS)

    Mikerov, V.I.; Isakov, A.I.; Tukarev, V.A.; Koshelev, A.P.; Bykov, A.A.; Khodeev, A.I.; Waschkowski, W.

    1999-01-01

    The paper considers peculiarities of fast neutron radiography with a two dimensional detector. Effects produced by scattered neutrons was simulated for various neutron sources. Contribution of γ-rays generated in the sample was estimated for a fission spectrum of fast neutrons. Feasibility of fast neutrons collimating by a honeycomb collimator was considered.(author)

  3. Application of Laplace transform for determination of albedo type boundary conditions for neutronic calculations; Aplicacao da transformada de Laplace para determinacao de condicoes de contorno tipo albedo para calculos neutronicos

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Claudio Zen

    2008-07-01

    In this dissertation we use the Laplace transform to derive expressions for nonstandard albedo boundary conditions for one and two non-multiplying regions at the ends of one dimensional domains. In practice, the fuel regions of reactor cores are surrounded by reflector regions that reduce neutron leakage. In order to exclude the reflector regions from the calculations, we introduce a reflection coefficient or albedo. We use the present albedo boundary conditions to solve numerically slab-geometry monoenergetic and multigroup diffusion equations using the conventional finite difference method. Numerical results are generated for fixed source and eigenvalue diffusion problems in slab geometry(author)

  4. FENDL/MG-2.0 and FENDL/MC-2.0. The processed cross-section libraries for neutron photon transport calculations. Version 1, March 1997. Summary documentation

    International Nuclear Information System (INIS)

    Wienke, H.; Herman, M.

    1998-01-01

    Evaluated neutron reaction data and photon-atom interaction cross sections for materials contained in the general purpose Fusion Evaluated Nuclear Data Library (FENDL/E2.0) have been processed with the NJOY code system into VITAMIN-J multigroup structure, for use in discrete-ordinates transport codes, and into continuous energy ACE format, for use in the Monte Carlo transport code MCNP. This document summarizes the resulting data libraries FENDL/MG-2.0 version 1 and FENDL/MC-2.0 version 1. The data are available costfree from the IAEA Nuclear Data Section online or on magnetic tape. (author)

  5. Pulsed neutron porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1978-01-01

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations and, during the bursts, the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  6. Bayesian statistics applied to neutron activation data for reactor flux spectrum analysis

    International Nuclear Information System (INIS)

    Chiesa, Davide; Previtali, Ezio; Sisti, Monica

    2014-01-01

    Highlights: • Bayesian statistics to analyze the neutron flux spectrum from activation data. • Rigorous statistical approach for accurate evaluation of the neutron flux groups. • Cross section and activation data uncertainties included for the problem solution. • Flexible methodology applied to analyze different nuclear reactor flux spectra. • The results are in good agreement with the MCNP simulations of neutron fluxes. - Abstract: In this paper, we present a statistical method, based on Bayesian statistics, to analyze the neutron flux spectrum from the activation data of different isotopes. The experimental data were acquired during a neutron activation experiment performed at the TRIGA Mark II reactor of Pavia University (Italy) in four irradiation positions characterized by different neutron spectra. In order to evaluate the neutron flux spectrum, subdivided in energy groups, a system of linear equations, containing the group effective cross sections and the activation rate data, has to be solved. However, since the system’s coefficients are experimental data affected by uncertainties, a rigorous statistical approach is fundamental for an accurate evaluation of the neutron flux groups. For this purpose, we applied the Bayesian statistical analysis, that allows to include the uncertainties of the coefficients and the a priori information about the neutron flux. A program for the analysis of Bayesian hierarchical models, based on Markov Chain Monte Carlo (MCMC) simulations, was used to define the problem statistical model and solve it. The first analysis involved the determination of the thermal, resonance-intermediate and fast flux components and the dependence of the results on the Prior distribution choice was investigated to confirm the reliability of the Bayesian analysis. After that, the main resonances of the activation cross sections were analyzed to implement multi-group models with finer energy subdivisions that would allow to determine the

  7. A polarizing neutron periscope for neutron imaging

    International Nuclear Information System (INIS)

    Schulz, Michael; Boeni, Peter; Calzada, Elbio; Muehlbauer, Martin; Neubauer, Andreas; Schillinger, Burkhard

    2009-01-01

    Optical neutron polarizers like guides or benders destroy the collimation of a neutron beam due to multiple reflections or scattering. This makes them unsuitable for their use in polarized neutron radiography, because the beam collimation is essential to obtain high spatial resolution. We have developed a neutron polarizer based on the principle of an optical periscope with a zigzag double reflection on two parallel high-m supermirror polarizers. If the supermirrors are perfectly parallel and flat, the beam collimation is left unchanged by such a device. A first proof of concept version of this type of polarizer was built and tested. We expect to achieve a beam polarization of up to 99% with an improved version yet to be built.

  8. A polarizing neutron periscope for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael [FRM II, Lichtenbergstr. 1, 85748 Garching (Germany); Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany)], E-mail: Michael.Schulz@frm2.tum.de; Boeni, Peter [Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany); Calzada, Elbio; Muehlbauer, Martin [FRM II, Lichtenbergstr. 1, 85748 Garching (Germany); Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany); Neubauer, Andreas [Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany); Schillinger, Burkhard [FRM II, Lichtenbergstr. 1, 85748 Garching (Germany); Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany)

    2009-06-21

    Optical neutron polarizers like guides or benders destroy the collimation of a neutron beam due to multiple reflections or scattering. This makes them unsuitable for their use in polarized neutron radiography, because the beam collimation is essential to obtain high spatial resolution. We have developed a neutron polarizer based on the principle of an optical periscope with a zigzag double reflection on two parallel high-m supermirror polarizers. If the supermirrors are perfectly parallel and flat, the beam collimation is left unchanged by such a device. A first proof of concept version of this type of polarizer was built and tested. We expect to achieve a beam polarization of up to 99% with an improved version yet to be built.

  9. Neutron wave optics studied with ultracold neutrons

    International Nuclear Information System (INIS)

    Steyerl, A.

    1984-01-01

    The author discusses experiments demonstrating or utilizing the wave properties of neutrons with wavelengths of about 100 nm. In particular the 'UCN gravity diffractometer' and the gravity spectrometer NESSIE (Neutronen-Schwerkraft-Spectrometrie) are illustrated. (Auth.)

  10. COMBINE/PC - a portable neutron spectrum and cross-section generation program

    International Nuclear Information System (INIS)

    Nigg, D.W.; Grimesey, R.A.; Curtis, R.L.

    1990-01-01

    Use of personal computers and engineering workstations for complex scientific computations has expanded rapidly in the past few years. This trend is expected to continue in the future with the introduction of increasingly sophisticated microprocessors and microcomputer systems. In response to this, an integrated system of neutronics and radiation transport software suitable for operation in an IBM personal computer (PC)-class environment has been under development at the Idaho National Engineering Laboratory (INEL) for the past 3 years. A key component of this system will be module to produce application-specific multigroup cross-section libraries that can be used in various neutron transport and diffusion theory code modules. This software module, referred to as COMBINE/PC, was recently completed at INEL and is the subject of this paper. COMBINE/PC was developed to provide an ENDF/B-based neutron cross-section generation capability of sufficient sophistication to handle a wide variety of practical fission and fusion-related applications while maintaining a compact machine-independent structure

  11. Finite difference solution of the time dependent neutron group diffusion equations

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Henry, A.F.

    1975-08-01

    In this thesis two unrelated topics of reactor physics are examined: the prompt jump approximation and alternating direction checkerboard methods. In the prompt jump approximation it is assumed that the prompt and delayed neutrons in a nuclear reactor may be described mathematically as being instantaneously in equilibrium with each other. This approximation is applied to the spatially dependent neutron diffusion theory reactor kinetics model. Alternating direction checkerboard methods are a family of finite difference alternating direction methods which may be used to solve the multigroup, multidimension, time-dependent neutron diffusion equations. The reactor mesh grid is not swept line by line or point by point as in implicit or explicit alternating direction methods; instead, the reactor mesh grid may be thought of as a checkerboard in which all the ''red squares'' and '' black squares'' are treated successively. Two members of this family of methods, the ADC and NSADC methods, are at least as good as other alternating direction methods. It has been found that the accuracy of implicit and explicit alternating direction methods can be greatly improved by the application of an exponential transformation. This transformation is incompatible with checkerboard methods. Therefore, a new formulation of the exponential transformation has been developed which is compatible with checkerboard methods and at least as good as the former transformation for other alternating direction methods

  12. Tritium breeding in an asymmetrically reflected blanket using a noncentral neutron source

    International Nuclear Information System (INIS)

    Dalton, A.W.

    1987-01-01

    A cylinder of natural lithium carbonate, supported on a slab of graphite, was irradiated from above by a low-intensity source of 14-MeV neutrons and the tritium produced within it subsequently determined from measurements of beta activity. Results obtained for small lithium carbonate detectors highly enriched in 6 Li (96%) or 7 Li (99.9%) at six positions along the cylinder axis were compared with predictions based on three-dimensional Monte Carlo calculations and multigroup cross-section data. The experimental accuracy was sufficient to detect deviations from theory > 7% with a 95% level of confidence. On this basis, good agreement with theoretical predictions was obtained for the 7 Li results. For the 6 Li data, however, significant differences were observed in the lower half of the assembly. A detailed analysis indicated that these deviations could not be explained in terms of conceivable environmental perturbations of the neutron flux and may arise as a consequence of inadequate representation of anisotropic neutron scattering

  13. Status of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  14. Precision neutron polarimetry for neutron beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Penttila, S. I. (Seppo I.); Bowman, J. D. (J. David)

    2004-01-01

    The abBA collaboration is developing a new type of field-expansion spectrometer for measurement of the three correlation coefficients a, A, and B and shape parameter b. The measurement of A and B requires precision neutron polarimetry. We will polarize a pulsed cold neutron beam from SNS using a {sup 3}He neutron spin filter. The well-known polarizing cross section for n-{sup 3}He has 1/v dependence, which is used to determine the absolute beam polarization through a time-of-flight (TOF) measurement. We show that measuring the TOF dependence of A and B, the coefficients and the neutron polarization can be determined with small loss of statistical precision and negligible systematic error. We conclude that it is possible to determine the neutron polarization averaged over a run in the neutron beta decay experiment to better than 10{sup -3}. We discuss various sources of systematic uncertainties in the measurement of A and B and conclude that they are less than 10{sup -4}.

  15. Neutron radiography using neutron imaging plate.

    Science.gov (United States)

    Chankow, Nares; Punnachaiya, Suvit; Wonglee, Sarinrat

    2010-01-01

    The aims of this research are to study properties of a neutron imaging plate (NIP) and to test it for use in nondestructive testing (NDT) of materials. The experiments were carried out by using a BAS-ND 2040 Fuji NIP and a neutron beam from the Thai Research Reactor TRR-1/M1. The neutron intensity and Cd ratio at the specimen position were approximately 9x10(5) ns/cm(2) s and 100 respectively. It was found that the photostimulated luminescence (PSL) readout of the imaging plate was directly proportional to the exposure time and approximately 40 times faster than the conventional NR using Gd converter screen/X-ray film technique. The sensitivities of the imaging plate to slow neutron and to Ir-192 gamma-rays were found to be approximately 4.2x10(-3) PSL/mm(2) per neutron and 6.7x10(-5) PSL/mm(2) per gamma-ray photon respectively. Finally, some specimens containing light elements were selected to be radiographed with neutrons using the NIP and the Gd converter screen/X-ray film technique. The image quality obtained from the two recording media was found to be comparable. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  16. Precision neutron polarimetry for neutron beta decay

    International Nuclear Information System (INIS)

    Penttila, S.I.; Bowman, J.D.

    2004-01-01

    The abBA collaboration is developing a new type of field-expansion spectrometer for measurement of the three correlation coefficients a, A, and B and shape parameter b. The measurement of A and B requires precision neutron polarimetry. We will polarize a pulsed cold neutron beam from SNS using a 3 He neutron spin filter. The well-known polarizing cross section for n- 3 He has 1/v dependence, which is used to determine the absolute beam polarization through a time-of-flight (TOF) measurement. We show that measuring the TOF dependence of A and B, the coefficients and the neutron polarization can be determined with small loss of statistical precision and negligible systematic error. We conclude that it is possible to determine the neutron polarization averaged over a run in the neutron beta decay experiment to better than 10 -3 . We discuss various sources of systematic uncertainties in the measurement of A and B and conclude that they are less than 10 -4 .

  17. Validation of Numerical Simulations of Activation by Neutron Flux

    International Nuclear Information System (INIS)

    Janski, Sylvain

    2016-01-01

    The knowledge of the radionuclide content of radioactive waste is of utmost importance for safety and waste management reasons. Numerical simulations are used at EDF-CIDEN to anticipate the dismantling and the radioactive waste management. The activation scheme by neutron flux developed at EDF-CIDEN comprises four steps: Step 1: Computing of a 3 dimensional multigroup neutron flux map. The mapping of the neutron flux is obtained on the basis of a neutron propagation calculation. The codes used are MCNP reference or TRIPOLI reference. Both solve the transport equation called the Boltzmann equation. The input data covers the microscopic cross-sections, the 3 dimensional geometry, the chemical compositions with no impurities and the computed neutron sources resulting in the neutrons emitted by the fuel assemblies. The neutron flux map is calculated at the nominal power rating conditions, and each flux is homogenized in a limited number of energy groups. Step 2: Calculation of the activities. The activities are calculated for each component or sub-component of interest. The code used is DARWIN-PEPIN (developed by the French CEA). It solves a system of Bateman equations. The input data covers the 3-dimensional neutron flux map calculated in step one, the microscopic cross sections, the radioactive decay series associated with the radioactive half-lives, the chemical compositions with impurities, and the history of irradiation resulting in the daily power production. The output data is the radioactive inventory of each component or sub-component of interest limited to a list of 143 radionuclides. Step 3: Waste classification. According to the radioactive inventory of each component or sub-component, and the waste classification criteria, a waste classification can be made. Basically the criteria are based on the levels of specific activity and radiotoxicity of 143 radionuclides. The distinction between the 'Long Life' and the 'Short Life' waste is

  18. Neutron sources and applications

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  19. Neutron sources and applications

    International Nuclear Information System (INIS)

    Price, D.L.; Rush, J.J.

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications

  20. Experiments on neutron radiography

    International Nuclear Information System (INIS)

    Abdul Ghaffar Ramli; Azali Muhamad; Wan Ruslan Yusof; Ahmad Sabri Abdul Razak; Jamal Khaer Ibrahim; Rosley Jaafar

    1984-01-01

    This paper presents the neutron-radiography research activities in Nuclear Energy Unit (UTN) as a trial before a neutron-radiography service can routinely be given. This trial neutron-radiography research encompasses the design and construction of a facility (NuR 1), collimator and the exposure system, as well as measurements of neutron and gamma dose-distribution, neutron-beam properties in NuR 1 and characteristics of the image recorder. A few problems arose in the early stage of work and the action taken to overcome these are also mentioned. Finally, methods of increasing the quality of the image are proposed and attempted. This project has given some important information so as to enable the construction of a permanent facility (Nur 2) and the execution of a neutron-radiography service. (author)

  1. Prototype Stilbene Neutron Collar

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shumaker, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verbeke, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  2. Biological effects of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ogiu, Toshiaki; Ohmachi, Yasushi; Ishida, Yuka [National Inst. of Radiological Sciences, Chiba (JP)] [and others

    2003-03-01

    Although the occasion to be exposed to neutrons is rare in our life, except for nuclear accidents like in the critical accident at Tokai-mura in 1999, countermeasures against accident should be always prepared. In the Tokai-mura accident, residents received less than 21 mSv of neutrons and gamma rays. The cancer risks and fetal effects of low doses of neutrons were matters of concern among residents. The purpose of this program is to investigate the relative biological effectiveness (RBE) for leukemias, and thereby to assess risks of neutrons. Animal experiments are planed to obtain the following RBEs: (1) RBE for the induction of leukemias in mice and (2) RBE for effects on fetuses. Cyclotron fast neutrons (10 MeV) and electrostatic accelerator-derived neutrons (2 MeV) are used for exposure in this program. Furthermore, cytological and cytogenetic analyses will be performed. (author)

  3. ASIC based neutron monitor

    International Nuclear Information System (INIS)

    Shastrakar, R.S.; Madavi, Vaishali; Chandratre, V.B.; Manna, A.; Jakati, R.K.; Kataria, S.K.; Gopalakrishnan, N.

    2005-01-01

    A Neutron monitor is designed and developed using the OCTPREM, ADAM ASIC and the triplex LCD devices developed by Electronics Division BARC. The Neutron monitor uses BF3 as detector. The Neutron monitor is subdivided into three modules front end pulse processing using the OCTPREM ASIC, H.V. Unit, and the counting display unit using ADAM ASIC. The monitor features low power design and portable. The unit demonstrates the success of the devices developed in Electronics Division BARC. (author)

  4. The Advanced Neutron Source

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1989-01-01

    The Advanced Neutron Source (ANS) is a new user experimental facility planned to be operational at Oak Ridge in the late 1990's. The centerpiece of the ANS will be a steady-state research reactor of unprecedented thermal neutron flux (φ th ∼ 9·10 19 m -2 ·s -1 ) accompanied by extensive and comprehensive equipment and facilities for neutron-based research. 5 refs., 5 figs

  5. Neutrons and Nuclear Engineering

    International Nuclear Information System (INIS)

    Ekkebus, Allen E.

    2007-01-01

    Oak Ridge National Laboratory hosted two workshops in April 2007 relevant to nuclear engineering education. In the Neutron Stress, Texture, and Phase Transformation for Industry workshop (http://neutrons.ornl.gov/workshops/nst2/), several invited speakers gave examples of neutron stress mapping for nuclear engineering applications. These included John Root of National Research Council of Canada, Mike Fitzpatrick of the UK's Open University, and Yan Gao of GE Global Research on their experiences with industrial and academic uses of neutron diffraction. Xun-Li Wang and Camden Hubbard described the new instruments at ORNL that can be used for such studies. This was preceded by the Neutrons for Materials Science and Engineering educational symposium (http://neutrons.ornl.gov/workshops/edsym2007). It was directed to the broad materials science and engineering community based in universities, industry and laboratories who wish to learn what the neutron sources in the US can provide for enhancing the understanding of materials behavior, processing and joining. Of particular interest was the presentation of Donald Brown of Los Alamos about using 'Neutron diffraction measurements of strain and texture to study mechanical behavior of structural materials.' At both workshops, the ORNL neutron scattering instruments relevant to nuclear engineering studies were described. The Neutron Residual Stress Mapping Facility (NRSF2) is currently in operation at the High Flux Isotope Reactor; the VULCAN Engineering Materials Diffractometer will begin commissioning in 2008 at the Spallation Neutron Source. For characteristics of these instruments, as well as details of other workshops, meetings, capabilities, and research proposal submissions, please visit http://neutrons.ornl.gov. To submit user proposals for time on NRSF2 contact Hubbard at hubbardcratornl.gov

  6. Vectorization of three-dimensional neutron diffusion code CITATION

    International Nuclear Information System (INIS)

    Harada, Hiroo; Ishiguro, Misako

    1985-01-01

    Three-dimensional multi-group neutron diffusion code CITATION has been widely used for reactor criticality calculations. The code is expected to be run at a high speed by using recent vector supercomputers, when it is appropriately vectorized. In this paper, vectorization methods and their effects are described for the CITATION code. Especially, calculation algorithms suited for vectorization of the inner-outer iterative calculations which spend most of the computing time are discussed. The SLOR method, which is used in the original CITATION code, and the SOR method, which is adopted in the revised code, are vectorized by odd-even mesh ordering. The vectorized CITATION code is executed on the FACOM VP-100 and VP-200 computers, and is found to run over six times faster than the original code for a practical-scale problem. The initial value of the relaxation factor and the number of inner-iterations given as input data are also investigated since the computing time depends on these values. (author)

  7. Neutron-emission measurements at a white neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C [Los Alamos National Laboratory

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  8. Recoverable neutron absorbers

    International Nuclear Information System (INIS)

    Keay, R.T.; Williams, J.A.

    1982-01-01

    In the reprocessing of irradiated nuclear fuel elements the nuclear fuel material is separated from the material which forms the remainder of the elements by dissolving the nuclear fuel material in nitric acid. Neutron absorbers are added to control criticality. The neutron absorbers comprise pellets each having a core of neutron absorbing material encased in a sheath of a material which is resistant to attack by acid, the core or sheath being magnetic. The sheath protects the core of neutron absorbing material from attack by the acid and the magnetic content of the core or sheath enables the absorbers to be recovered for reuse by magnetic separation techniques. (author)

  9. Microcomputerized neutron moisture gauge

    International Nuclear Information System (INIS)

    Liu Shengkang; Mei Yu

    1987-01-01

    A microcomputerized neutron moisture gauge is introduced. This gauge consists of a neutron moisture sensor and instruments. It is developed from the neutron moisture gauge for concrete mixer. A TECH-81 single card microcomputer is used for count, computation and display. It has the function of computing compensated quantity of sand. It can acquire the data from several neutron sensors by the multichanneling sampling, therefore it can measure moisture values of sand in several hoppers simultaneously. The precision of the static state calibration curve is 0.24% wt. The error limits of the dynamic state check is < 0.50% wt

  10. Neutrons in biology

    International Nuclear Information System (INIS)

    Funahashi, Satoru; Niimura, Nobuo.

    1993-01-01

    The start of JRR-3M in 1990 was a great epoch to the neutron scattering research in Japan. Abundant neutron beam generated by the JRR-3M made it possible to widen the research field of neutron scattering in Japan. In the early days of neutron scattering, biological materials were too difficult object to be studied by neutrons not only because of their complexity but also because of the strong incoherent scattering by hydrogen. However, the remarkable development of the recent neutron scattering and its related sciences, as well as the availability of higher flux, has made the biological materials one of the most attractive subjects to be studied by neutrons. In early September 1992, an intensive workshop titled 'Neutrons in Biology' was held in Hitachi City by making use of the opportunity of the 4th International Conference on Biophysics and Synchrotron Radiation (BSR92) held in Tsukuba. The workshop was organized by volunteers who are eager to develop the researches in this field in Japan. Numbers of outstanding neutron scattering biologists from U.S., Europe and Asian countries met together and enthusiastic discussions were held all day long. The editors believe that the presentations at the workshop were so invaluable that it is absolutely adequate to put them on record as an issue of JAERI-M and to make them available for scientists to refer to in order to further promote the research in the future. (author)

  11. Neutron visual sensing technique

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Segawa, Mariko

    2014-01-01

    The neutron visual sensing technique is a technology to extract physical quantities from the information on inner structures of complex materials or machineries which have been visualized and recorded by using neutron beams. Research and utilization of this technique is now under worldwide development since it can provide the information that is not possible by X-ray radiography. We show how to use stationary neutron sources (Research reactors) in chapter 2, and how to utilize pulsed neutron source (Japan Proton Accelerator Complex, J-PARC). Also the production of micro-element analyzer by an enterprise using the knowledge on radiological equipment is described as an example. (author)

  12. Neutrons for probing matter

    International Nuclear Information System (INIS)

    Torres, F. Ed.; Mazzucchetti, D.

    2008-01-01

    The authors tell the story of the French Orphee reactor located in Saclay from the decision to build it in the seventies, to its commissioning in 1980, to its upgrading in the nineties and to its today's operating life. As early as its feasibility studies Orphee has been designed as a dual-purpose reactor: scientific research for instance in crystallography and magnetism, and industrial uses like neutron radiography, silicon doping or radionuclide production. This book is divided into 4 parts: 1) the neutron: an explorer of the matter, 2) the Orphee reactor: a neutron source, 3) the adventurers of the matter: Leon Brillouin laboratory's staff, and 4) the perspectives for neutrons

  13. Neutron scattering. Experiment manuals

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2014-01-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  14. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2014-07-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  15. Neutron powder diffraction

    International Nuclear Information System (INIS)

    David, W.I.F.

    1990-01-01

    Neutron powder diffraction is a powerful technique that provides a detailed description of moderately complex crystal structures. This is nowhere more apparent than in the area of high temperature superconductors where neutron powder diffraction has provided precise structural and magnetic information, not only under ambient conditions but also at high and low temperatures and high pressures. Outside superconductor research, the variety of materials studied by neutron powder diffraction is equally impressive including zeolites, fast ionic conductors, permanent magnets and materials undergoing phase transitions. Recent advances that include high resolution studies and real-time crystallography are presented. Future possibilities of neutron powder diffraction are discussed

  16. Neutron structural biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1999-01-01

    Neutron structural biology will be one of the most important fields in the life sciences which will interest human beings in the 21st century because neutrons can provide not only the position of hydrogen atoms in biological macromolecules but also the dynamic molecular motion of hydrogen atoms and water molecules. However, there are only a few examples experimentally determined at present because of the lack of neutron source intensity. Next generation neutron source scheduled in JAERI (Performance of which is 100 times better than that of JRR-3M) opens the life science of the 21st century. (author)

  17. Polycapillary neutron lenses

    International Nuclear Information System (INIS)

    Mildner, D.F.R.

    1997-01-01

    The principle of multiple mirror reflection from smooth surfaces at small grazing angles enables the transport and guiding of high intensity slow neutron beams to locations of low background for neutron scattering and absorption experiments and to provide facilities for multiple instruments. Curved guides have been widely used at cold neutron facilities to remove the unwanted radiation (fast neutrons and gamma rays) from the beam without the use of filters. A typical guide has transverse dimensions of 50 mm and, with a radius of curvature of 1 km, transmits wavelengths longer than 5 A. Much tighter curves requires narrower transverse dimensions, otherwise there is little transmission. Typical neutron benders have a number of slots with transverse dimensions of ∼5 mm. Based on the same principle but using a different technology, recent developments in glass polycapillary fibers have produced miniature versions of neutron guides. Fibers with many thousands of channels having sizes of ∼ 10 μm enable beams of long wavelength neutrons (λ > 4 A) to be transmitted efficiently in a radius of curvature as small as a fraction of 1 m. A large collection of these miniature versions of neutron guides can be used to bend the neutron trajectories such that the incident beam can be focused. (author)

  18. Analytical three-dimensional neutron transport benchmarks for verification of nuclear engineering codes. Final report

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Kornreich, D.E.

    1997-01-01

    Because of the requirement of accountability and quality control in the scientific world, a demand for high-quality analytical benchmark calculations has arisen in the neutron transport community. The intent of these benchmarks is to provide a numerical standard to which production neutron transport codes may be compared in order to verify proper operation. The overall investigation as modified in the second year renewal application includes the following three primary tasks. Task 1 on two dimensional neutron transport is divided into (a) single medium searchlight problem (SLP) and (b) two-adjacent half-space SLP. Task 2 on three-dimensional neutron transport covers (a) point source in arbitrary geometry, (b) single medium SLP, and (c) two-adjacent half-space SLP. Task 3 on code verification, includes deterministic and probabilistic codes. The primary aim of the proposed investigation was to provide a suite of comprehensive two- and three-dimensional analytical benchmarks for neutron transport theory applications. This objective has been achieved. The suite of benchmarks in infinite media and the three-dimensional SLP are a relatively comprehensive set of one-group benchmarks for isotropically scattering media. Because of time and resource limitations, the extensions of the benchmarks to include multi-group and anisotropic scattering are not included here. Presently, however, enormous advances in the solution for the planar Green's function in an anisotropically scattering medium have been made and will eventually be implemented in the two- and three-dimensional solutions considered under this grant. Of particular note in this work are the numerical results for the three-dimensional SLP, which have never before been presented. The results presented were made possible only because of the tremendous advances in computing power that have occurred during the past decade

  19. Analytical three-dimensional neutron transport benchmarks for verification of nuclear engineering codes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ganapol, B.D.; Kornreich, D.E. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Nuclear Engineering

    1997-07-01

    Because of the requirement of accountability and quality control in the scientific world, a demand for high-quality analytical benchmark calculations has arisen in the neutron transport community. The intent of these benchmarks is to provide a numerical standard to which production neutron transport codes may be compared in order to verify proper operation. The overall investigation as modified in the second year renewal application includes the following three primary tasks. Task 1 on two dimensional neutron transport is divided into (a) single medium searchlight problem (SLP) and (b) two-adjacent half-space SLP. Task 2 on three-dimensional neutron transport covers (a) point source in arbitrary geometry, (b) single medium SLP, and (c) two-adjacent half-space SLP. Task 3 on code verification, includes deterministic and probabilistic codes. The primary aim of the proposed investigation was to provide a suite of comprehensive two- and three-dimensional analytical benchmarks for neutron transport theory applications. This objective has been achieved. The suite of benchmarks in infinite media and the three-dimensional SLP are a relatively comprehensive set of one-group benchmarks for isotropically scattering media. Because of time and resource limitations, the extensions of the benchmarks to include multi-group and anisotropic scattering are not included here. Presently, however, enormous advances in the solution for the planar Green`s function in an anisotropically scattering medium have been made and will eventually be implemented in the two- and three-dimensional solutions considered under this grant. Of particular note in this work are the numerical results for the three-dimensional SLP, which have never before been presented. The results presented were made possible only because of the tremendous advances in computing power that have occurred during the past decade.

  20. Neutron monitoring for radiological protection

    International Nuclear Information System (INIS)

    Gibson, J.A.B.

    1985-01-01

    Neutron monitoring is a subject of increasing general interest and considerable attention is being paid to the development of improved techniques and methods for neutron monitoring. The Agency, therefore, considered it important to prepare a guide on the subject of neutron monitoring for radiation protection purposes. The present Manual is intended for those persons or authorities in Member States, particularly developing countries, who are responsible for the organization of neutron monitoring programmes and practical neutron monitoring. This Manual consequently, deals with topics such as neutron dosimetry, sources of neutrons and neutron detection as well as field instruments and operational systems used in this context

  1. Neutron Multiplicity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Frame, Katherine Chiyoko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-28

    Neutron multiplicity measurements are widely used for nondestructive assay (NDA) of special nuclear material (SNM). When combined with isotopic composition information, neutron multiplicity analysis can be used to estimate the spontaneous fission rate and leakage multiplication of SNM. When combined with isotopic information, the total mass of fissile material can also be determined. This presentation provides an overview of this technique.

  2. Neutron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  3. Neutrons from Antiproton Irradiation

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael; Petersen, Jørgen B.B.

    the volume targeted for irradiation. A major part of this peripheral dose arise from neutrons, which in particular are problematic due to their high RBE for secondary cancer incidence. We have measured the fast and thermal neutron spectrum in different geometrical configurations in order to experimentally...

  4. Neutron capture therapies

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.

    1999-11-02

    In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  5. Hyperons in neutron stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1986-04-01

    Generalized beta equilibrium involving nucleons, hyperons, and isobars is examined for neutron star matter. The hyperons produce a considerable softening of the equation of state. It is shown that the observed masses of neutron stars can be used to settle a recent controversy concerning the nuclear compressibility. Compressibilities less than 200 MeV are incompatible with observed masses. 7 refs., 9 figs

  6. Neutron capture therapies

    Science.gov (United States)

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Klinkowstein, Robert E.

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  7. Compact neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  8. Synovectomy by Neutron capture

    International Nuclear Information System (INIS)

    Vega C, H.R.; Torres M, C.

    1998-01-01

    The Synovectomy by Neutron capture has as purpose the treatment of the rheumatoid arthritis, illness which at present does not have a definitive curing. This therapy requires a neutron source for irradiating the articulation affected. The energy spectra and the intensity of these neutrons are fundamental since these neutrons induce nuclear reactions of capture with Boron-10 inside the articulation and the freely energy of these reactions is transferred at the productive tissue of synovial liquid, annihilating it. In this work it is presented the neutron spectra results obtained with moderator packings of spherical geometry which contains in its center a Pu 239 Be source. The calculations were realized through Monte Carlo method. The moderators assayed were light water, heavy water base and the both combination of them. The spectra obtained, the average energy, the neutron total number by neutron emitted by source, the thermal neutron percentage and the dose equivalent allow us to suggest that the moderator packing more adequate is what has a light water thickness 0.5 cm (radius 2 cm) and 24.5 cm heavy water (radius 26.5 cm). (Author)

  9. Intergenerational transmission of women's educational attainment in South Korea: An application of a multi-group population projection model

    Directory of Open Access Journals (Sweden)

    Bongoh Kye

    2011-01-01

    Full Text Available Using a multi-group population projection model, this study examines the implications of educational mobility and differential demographic rates on changing women's educational distribution in South Korea. This article focuses on the implications of a differential population renewal process on educational mobility, which has not been extensively examined in previous studies of social mobility. My findings suggest, first, that differential demographic rates have no substantial influence on the educational distribution, because of substantial educational mobility. Second, that intergenerational association and structural change matter in the long run, with stronger intergenerational association and more structural change leading to increases in women's level of education. Finally, that educational mobility and differential fertility are interdependent processes that jointly influence differential population replacement, but the fertility gap between education groups would have to be unreasonably large to be influential, due to the extraordinarily high educational mobility in South Korea.

  10. An Extended Decomposed Theory of Planned Behaviour to Predict the Usage Intention of the Electric Car: A Multi-Group Comparison

    Directory of Open Access Journals (Sweden)

    Ingrid Moons

    2015-05-01

    Full Text Available An Extended Decomposed Theory of Planned Behaviour (DTPB is developed that integrates emotions towards car driving and electric cars as well as car driving habits of the DTPB, and is empirically validated in a Belgian sample (n = 1023. Multi-group comparisons explore how the determinants of usage intention are different between groups of consumers differing in environmentally-friendly behaviour, environmental concern, innovativeness and personal values. Besides attitudes, media, perceived complexity, compatibility and relative advantage, emotions towards the electric car and reflective emotions towards car driving have a strong effect on usage intention. Car driving habits and perceived behavioural control (facilitators and constraints do not substantially affect usage intention. Only people differing in personal values show a different motivational structure for a number of important drivers of usage intention.

  11. Genetic and Environmental Sources of Implicit and Explicit Self-Esteem and Affect: Results from a Genetically Sensitive Multi-group Design.

    Science.gov (United States)

    Stieger, Stefan; Kandler, Christian; Tran, Ulrich S; Pietschnig, Jakob; Voracek, Martin

    2017-03-01

    In today's world, researchers frequently utilize indirect measures of implicit (i.e., automatic, spontaneous) evaluations. The results of several studies have supported the usefulness of these measures in predicting behavior, as compared to utilizing direct measures of explicit (i.e., purposeful, deliberate) evaluations. A current, under-debate issue concerns the origin of these implicit evaluations. The present genetically sensitive multi-group study analyzed data from 223 twin pairs and 222 biological core families to estimate possible genetic and environmental sources of individual differences in implicit and explicit self-esteem and affect. The results show that implicit self-esteem and affect maintain a substantial genetic basis, but demonstrate little influence from the shared environment by siblings (e.g., shared familial socialization in childhood). A bivariate analysis found that implicit and explicit evaluations of the same construct share a common genetic core which aligns with the motivation and opportunity as determinants (MODE) model.

  12. Testing measurement invariance of the learning programme management and evaluation (LPME scale across gender using multi-group confirmatory factor analysis

    Directory of Open Access Journals (Sweden)

    Maelekanyo C. Tshilongamulenzhe

    2015-05-01

    Full Text Available The purpose of this study was to test measurement invariance of the LPME scale across gender using multi-group CFA. The LPME scale was developed to measure the effectiveness of management and evaluation practices pertaining to occupational learning programmes in the South African skills development context. A non-experimental cross-sectional survey was conducted with 389 human resource practitioners and apprentices/learners. The results indicate that the LPME scale is invariant between males and females at the levels of configural, metric and strong invariance. The number of factors/constructs, pattern of item factor loading, latent constructs variances and covariances, and the reliability of the LPME scale and its dimensions are equivalent between males and females

  13. Neutron supermirrors and application to neutron guides

    International Nuclear Information System (INIS)

    Ballot, B.; Samuel, F.; Farnoux, B.

    1994-01-01

    Metallic multilayers are now commonly used in many neutron optics devices like supermirrors. Supermirrors are made of stacks of aperiodic bilayers, and present a reflection coefficient close to one for angles much larger than the critical angle of nickel. We show here the results of investigation of neutron reflectometry of such supermirrors. They have been prepared by magnetron sputtering and are made of 25 layers of NiC and Ti, thicknesses of which were determined using the Hayter's algorithm [1]. This enables us to obtain on large surfaces 5x50 cm 2 , an effective critical angle of 1.9 times the critical angle of natural nickel. These supermirrors have been used in the construction of a new neutron guide on the ORPHEE reactor in the Leon Brillouin Laboratory of Saclay. The use of supermirrors enables us to enhance the transmission of the short wavelength by the guide, and so to increase the transmitted flux. ((orig.))

  14. Fast neutrons dosimetry

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1977-01-01

    A proton recoil technique has been developed for inducing thermoluminescence with incident fast neutrons. CaF 2 was used as the TL phosphor, and cane sugar and polyethylene were used as proton radiators. The phosphor and the hydrogeneous material powders were well mixed, encapsulated in glass tubes and exposed to Am-Be sources, resulting in recoils from incident fast neutrons of energy between 0,25 and 11,25 MeV. The intrinsic response of pure CaF 2 to fast neutrons without a hydrogeneous radiator was checked by using LiF (TLD-700). Glow curves were recorded from room temperature up to 350 0 C after different doses of neutrons and gamma rays of 60 Co. First collision dose due to fast neutrons in tissue like materials such as cane sugar and polyethylene was also calculated [pt

  15. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  16. Neutrons for matter exploration: neutron spectroscopy in condensed matter physics

    International Nuclear Information System (INIS)

    Kahn, R.

    1997-01-01

    The physical properties and the various uses of neutrons for characterizing structures (through neutron diffraction) and condensed matter dynamics (through Doppler effect), are reviewed. Results and potential observations are given for the different methods: neutron diffraction, small angle scattering, reflectometry, neutron inelastic scattering. The two CEA laboratories where these studies may be carried out are presented

  17. Calculations of reactivity based in the solution of the Neutron transport equation in X Y geometry and Lineal perturbation theory

    International Nuclear Information System (INIS)

    Valle G, E. del; Mugica R, C.A.

    2005-01-01

    In our country, in last congresses, Gomez et al carried out reactivity calculations based on the solution of the diffusion equation for an energy group using nodal methods in one dimension and the TPL approach (Lineal Perturbation Theory). Later on, Mugica extended the application to the case of multigroup so much so much in one as in two dimensions (X Y geometry) with excellent results. Presently work is carried out similar calculations but this time based on the solution of the neutron transport equation in X Y geometry using nodal methods and again the TPL approximation. The idea is to provide a calculation method that allows to obtain in quick form the reactivity solving the direct problem as well as the enclosed problem of the not perturbed problem. A test problem for the one that results are provided for the effective multiplication factor is described and its are offered some conclusions. (Author)

  18. Fail-safe neutron shutter used for thermal neutron radiography

    International Nuclear Information System (INIS)

    Sachs, R.D.; Morris, R.A.

    1976-11-01

    A fail-safe, reliable, easy-to-use neutron shutter was designed, built, and put into operation at the Omega West Reactor, Los Alamos Scientific Laboratory. The neutron shutter will be used primarily to perform thermal neutron radiography, but is also available for a highly collimated source of thermal neutrons [neutron flux = 3.876 x 10 6 (neutrons)/(cm 2 .s)]. Neutron collimator sizes of either 10.16 by 10.16 cm or 10.16 by 30.48 cm are available

  19. Thermal neutron absorption borehole logging

    International Nuclear Information System (INIS)

    Flaum, C.

    1982-01-01

    A method is described of quantitatively determining the macroscopic thermal neutron cross-section of a geological formation traversed by a borehole by measuring the flux of both thermal and epithermal neutrons following the irradiation of the formation with neutrons from a continuous source in a neutron sonde. (U.K.)

  20. Assessment of the traditional neutron-diffusion core-analysis method for the analysis of the Super Critical Water Reactor

    International Nuclear Information System (INIS)

    Shen, W.

    2012-01-01

    Highlights: ► The 2-group diffusion theory is insufficient to capture the spectral change of the SCWR core. ► The multi-group neutron-diffusion theory is essential for the analysis of SCWR. ► The single-lattice-cell model is insufficient to capture the environment effect for SCWR. ► The multicell method is needed to capture the environment effect for the analysis of SCWR. - Abstract: The key design quantities of the pressure-tube-based (PT-based) Super Critical Water Reactor (SCWR) core design are expected to be computed with the traditional core-analysis code which solves the two-group neutron-diffusion equation by using lattice-homogenized cross sections calculated with the lattice code. Two issues may affect the accuracy of these computed quantities for the SCWR core: one is the two-energy-group neutron-diffusion theory; the other is the generation of lattice-homogenized properties with the lattice code based on the single-lattice-cell model without considering the effects of the environment. It has been illustrated that the single-lattice-cell method is not sufficiently accurate for heterogeneous core configurations when adjacent channels experience significant spectrum interaction. To ensure the qualification of these computed quantities for the SCWR core, a 2-D SCWR benchmark problem was setup (with the reference solution provided by the continuous energy Monte-Carlo code SERPENT) to assess the traditional neutron-diffusion core-analysis method. The assessment shows that the traditional two-group neutron-diffusion theory with the single-lattice-cell-based lattice properties is not sufficient to capture either the spectral change or the environment effect for the SCWR core. The solution of the eight-group neutron-diffusion equation by using lattice-homogenized cross sections calculated with the multicell model is considered appropriate for the analysis of the PT-based SCWR core.

  1. Neutron flux monitor

    International Nuclear Information System (INIS)

    Oda, Naotaka.

    1993-01-01

    The device of the present invention greatly saves an analog processing section such as an analog filter and an analog processing circuit. That is, the device of the present invention comprises (1) a neutron flux detection means for detecting neutron fluxed in the reactor, (2) a digital filter means for dividing signals corresponding to the detected neutron fluxes into predetermined frequency band regions, (3) a calculation processing means for applying a calculation processing corresponding to the frequency band regions to the neutron flux detection signals divided by the digital filter means. With such a constitution, since the neutron detection signals are processed by the digital filter means, the accuracy is improved and the change for the property of the filter is facilitated. Further, when a neutron flux level is obtained, a calculation processing corresponding to the frequency band region can be conducted without the analog processing circuit. Accordingly, maintenance and accuracy are improved by greatly decreasing the number of parts. Further, since problems inherent to the analog circuit are solved, neutron fluxes are monitored at high reliability. (I.S.)

  2. Neutron detection technique

    CERN Document Server

    Oblath, N S

    2000-01-01

    The Sudbury Neutrino Observatory (SNO) has the ability to measure the total flux of all active flavors of neutrinos using the neutral current reaction, whose signature is a neutron. By comparing the rates of the neutral current reaction to the charged current reaction, which only detects electron neutrinos, one can test the neutrino oscillation hypothesis independent of solar models. It is necessary to understand the neutron detection efficiency of the detector to make use of the neutral current reaction. This report demonstrates a coincidence technique to identify neutrons emitted from the sup 2 sup 5 sup 2 Cf neutron calibration source. The source releases on average four neutrons when a sup 2 sup 5 sup 2 Cf nucleus spontaneously fissions. Each neutron is detected as a separate event when the neutron is captured by a deuteron, releasing a gamma ray of approximately 6.25 MeV. This gamma ray is in turn detected by the photomultiplier tube (PMT) array. By investigating the time and spatial separation between n...

  3. Neutron Laue macromolecular crystallography.

    Science.gov (United States)

    Meilleur, Flora; Myles, Dean A A; Blakeley, Matthew P

    2006-09-01

    Recent progress in neutron protein crystallography such as the use of the Laue technique and improved neutron optics and detector technologies have dramatically improved the speed and precision with which neutron protein structures can now be determined. These studies are providing unique and complementary insights on hydrogen and hydration in protein crystal structures that are not available from X-ray structures alone. Parallel improvements in modern molecular biology now allow fully (per)deuterated protein samples to be produced for neutron scattering that essentially eradicate the large-and ultimately limiting-hydrogen incoherent scattering background that has hampered such studies in the past. High quality neutron data can now be collected to near atomic resolution (approximately 2.0 A) for proteins of up to approximately 50 kDa molecular weight using crystals of volume approximately 0.1 mm3 on the Laue diffractometer at ILL. The ability to flash-cool and collect high resolution neutron data from protein crystals at cryogenic temperature (15 K) has opened the way for kinetic crystallography on freeze trapped systems. Current instrument developments now promise to reduce crystal volume requirements by a further order of magnitude, making neutron protein crystallography a more accessible and routine technique.

  4. Convergent beam neutron crystallography

    Science.gov (United States)

    Gibson, Walter M.; Schultz, Arthur J.; Richardson, James W.; Carpenter, John M.; Mildner, David F. R.; Chen-Mayer, Heather H.; Miller, M. E.; Maxey, E.; Prask, Henry J.; Gnaeupel-Herold, Thomas H.; Youngman, Russell

    2004-01-01

    Applications of neutron diffraction for small samples (small fiducial areas are limited by the available neutron flux density. Recent demonstrations of convergent beam electron and x-ray diffraction and focusing of cold (λ>1 Å) neutrons suggest the possibility to use convergent beam neutron diffraction for small sample crystallography. We have carried out a systematic study of diffraction of both monoenergetic and broad bandwidth neutrons at the NIST Research Reactor and at the Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory. Combining convergent beams with time-of-flight Laue diffraction is particularly attractive for high efficiency small sample diffraction studies. We have studied single crystal and powder diffraction of neutrons with convergence angles as large as 15° and have observed diffracted peak intensity gains greater than 20. The convergent beam method (CBM) shows promise for crystallography on small samples of small to medium size molecules (potentially even for proteins), ultra-high pressure samples, and for mapping of strain and texture distributions in larger samples.

  5. Materials for neutron beam optimization for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo

    2001-01-01

    Several prospective materials (neutron filter/moderator, beam reflector, gamma ray shielding and beam collimator) were studied with a view to generating thermal and epithermal neutron beams suited for boron neutron capture therapy (BNCT). The beams are delivered from the thermal and thermalizing column exits situated on two opposite faces of a TRIGA-II type reactor. An investigation was performed with Monte Carlo calculations from a viewpoint of obtaining sufficiently intense thermal and epithermal neutron beams separately, and little adulterated both with neutrons of extraneous energy ranges and with gamma rays. High-density graphite (G) would be the most suitable material for thermal neutron beams as a neutron filter/moderator, and the combination of aluminum (Al) and aluminum fluoride (AlF 3 ) for epithermal neutron beams. The graphite would be also the most promising material for thermal neutron beams as a beam reflector while for epithermal neutron beams the choice would be lead fluoride (PbF 2 ). The PbF 2 would be also the most suitable material for epithermal neutron beams as a gamma ray shielding, and bismuth (Bi) for thermal neutron beam. The PbF 2 would be also the most useful material for epithermal neutron beam as a beam collimator while for thermal neutron beam the choice would be the graphite. The epithermal neutron beam for BNCT could be optimized with the progressive use of PbF 2 . (author)

  6. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2016-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...

  7. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2017-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...

  8. Neutron irradiation therapy machine

    International Nuclear Information System (INIS)

    1980-01-01

    Conventional neutron irradiation therapy machines, based on the use of cyclotrons for producing neutron beams, use a superconducting magnet for the cyclotron's magnetic field. This necessitates complex liquid He equipment and presents problems in general hospital use. If conventional magnets are used, the weight of the magnet poles considerably complicates the design of the rotating gantry. Such a therapy machine, gantry and target facilities are described in detail. The use of protons and deuterons to produce the neutron beams is compared and contrasted. (U.K.)

  9. Coupled moderator neutronics

    International Nuclear Information System (INIS)

    Russell, G.J.; Pitcher, E.J.; Ferguson, P.D.

    1995-01-01

    Optimizing the neutronic performance of a coupled-moderator system for a Long-Pulse Spallation Source is a new and challenging area for the spallation target-system designer. For optimal performance of a neutron source, it is essential to have good communication with instrument scientists to obtain proper design criteria and continued interaction with mechanical, thermal-hydraulic, and materials engineers to attain a practical design. A good comprehension of the basics of coupled-moderator neutronics will aid in the proper design of a target system for a Long-Pulse Spallation Source

  10. Fruits of neutron research

    International Nuclear Information System (INIS)

    Krause, C.

    1994-01-01

    Car windshields that don't break during accidents and jets that fly longer without making a refueling stop. Compact discs, credit cards, and pocket calculators. Refrigerator magnets and automatic car window openers. Beach shoes, food packaging, and bulletproof vests made of tough plastics. The quality and range of consumer products have improved steadily since the 1970s. One of the reasons: neutron research. Industries, employing neutron scattering techniques, to study materials properties, to act as diagnostics in tracing system performance, or as sources for radioactive isotopes used in medical fields for diagnostics or treatment, have all benefited from the fruits of advanced work with neutron sources

  11. Neutron scattering in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Barocchi, F. [Florence Univ. (Italy). Ist. di Fisica

    1996-12-31

    Together with X-rays, thermal neutrons are the ideal probe to study the microscopic structure of condensed matter, however the precision attainable usually with neutrons for the measurement of atomic position correlation functions in liquids is, at least, one order of magnitude better than for X-rays. In order to measure properly the microscopic dynamics a wide range of momentum transfer with corresponding energy transfer must be available in the range of liquid state excitations. This again is only attainable, with good resolution, with neutrons. (author) 7 figs., 3 refs.

  12. Neutrons in soft matter

    CERN Document Server

    Imae, Toyoko; Furusaka, Michihiro; Torikai, Naoya

    2011-01-01

    Neutron and synchrotron facilities, which are beyond the scale of the laboratory, and supported on a national level in countries throughout the world.  These tools for probing micro- and nano-structure research and on fast dynamics research of atomic location in materials have been key in the development of new polymer-based materials. Different from several existing professional books on neutron science, this book focuses on theory, instrumentation, an applications. The book is divided into five parts: Part 1 describes the underlying theory of neutron scattering. Part 2 desc

  13. Neutron spectra produced by moderating an isotopic neutron source

    International Nuclear Information System (INIS)

    Carrillo Nunnez, Aureliano; Vega Carrillo, Hector Rene

    2001-01-01

    A Monte Carlo study has been carried out to determine the neutron spectra produced by an isotopic neutron source inserted in moderating media. Most devices used for radiation protection have a response strongly dependent on neutron energy. ISO recommends several neutron sources and monoenergetic neutron radiations, but actual working situations have broad spectral neutron distributions extending from thermal to MeV energies, for instance, near nuclear power plants, medical applications accelerators and cosmic neutrons. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices in neutron spectra which are nearly like those met in practice. In order to complete the range of neutron calibrating sources, it seems useful to develop several wide spectral distributions representative of typical spectra down to thermal energies. The aim of this investigation was to use an isotopic neutron source in different moderating media to reproduce some of the neutron fields found in practice. MCNP code has been used during calculations, in these a 239PuBe neutron source was inserted in H2O, D2O and polyethylene moderators. Moderators were modeled as spheres and cylinders of different sizes. In the case of cylindrical geometry the anisotropy of resulting neutron spectra was calculated from 0 to 2 . From neutron spectra dosimetric features were calculated. MCNP calculations were validated by measuring the neutron spectra of a 239PuBe neutron source inserted in a H2O cylindrical moderator. The measurements were carried out with a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. From the measurements the neutron spectrum was unfolded using the BUNKIUT code and the UTA4 response matrix. Some of the moderators with the source produce a neutron spectrum close to spectra found in actual applications, then can be used during the calibration of radiation protection devices

  14. Application of generalized perturbation theory to sensitivity analysis in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Vanessa S. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Programa de Pos-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Silva, Fernando C.; Silva, Ademir X., E-mail: fernando@con.ufrj.b, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Alvarez, Gustavo B. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Dept. de Ciencias Exatas

    2011-07-01

    Boron neutron capture therapy - BNCT - is a binary cancer treatment used in brain tumors. The tumor is loaded with a boron compound and subsequently irradiated by thermal neutrons. The therapy is based on the {sup 10}B (n, {alpha}) {sup 7}Li nuclear reaction, which emits two types of high-energy particles, {alpha} particle and the {sup 7}Li nuclei. The total kinetic energy released in this nuclear reaction, when deposited in the tumor region, destroys the cancer cells. Since the success of the BNCT is linked to the different selectivity between the tumor and healthy tissue, it is necessary to carry out a sensitivity analysis to determinate the boron concentration. Computational simulations are very important in this context because they help in the treatment planning by calculating the lowest effective absorbed dose rate to reduce the damage to healthy tissue. The objective of this paper is to present a deterministic method based on generalized perturbation theory (GPT) to perform sensitivity analysis with respect to the {sup 10}B concentration and to estimate the absorbed dose rate by patients undergoing this therapy. The advantage of the method is a significant reduction in computational time required to perform these calculations. To simulate the neutron flux in all brain regions, the method relies on a two-dimensional neutron transport equation whose spatial, angular and energy variables are discretized by the diamond difference method, the discrete ordinate method and multigroup formulation, respectively. The results obtained through GPT are consistent with those obtained using other methods, demonstrating the efficacy of the proposed method. (author)

  15. Application of generalized perturbation theory to sensitivity analysis in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Garcia, Vanessa S.; Silva, Fernando C.; Silva, Ademir X.; Alvarez, Gustavo B.

    2011-01-01

    Boron neutron capture therapy - BNCT - is a binary cancer treatment used in brain tumors. The tumor is loaded with a boron compound and subsequently irradiated by thermal neutrons. The therapy is based on the 10 B (n, α) 7 Li nuclear reaction, which emits two types of high-energy particles, α particle and the 7 Li nuclei. The total kinetic energy released in this nuclear reaction, when deposited in the tumor region, destroys the cancer cells. Since the success of the BNCT is linked to the different selectivity between the tumor and healthy tissue, it is necessary to carry out a sensitivity analysis to determinate the boron concentration. Computational simulations are very important in this context because they help in the treatment planning by calculating the lowest effective absorbed dose rate to reduce the damage to healthy tissue. The objective of this paper is to present a deterministic method based on generalized perturbation theory (GPT) to perform sensitivity analysis with respect to the 10 B concentration and to estimate the absorbed dose rate by patients undergoing this therapy. The advantage of the method is a significant reduction in computational time required to perform these calculations. To simulate the neutron flux in all brain regions, the method relies on a two-dimensional neutron transport equation whose spatial, angular and energy variables are discretized by the diamond difference method, the discrete ordinate method and multigroup formulation, respectively. The results obtained through GPT are consistent with those obtained using other methods, demonstrating the efficacy of the proposed method. (author)

  16. Improvement of Sodium Neutronic Nuclear Data for the Computation of Generation IV Reactors

    International Nuclear Information System (INIS)

    Archier, P.

    2011-01-01

    The safety criteria to be met for Generation IV sodium fast reactors (SFR) require reduced and mastered uncertainties on neutronic quantities of interest. Part of these uncertainties come from nuclear data and, in the particular case of SFR, from sodium nuclear data, which show significant differences between available international libraries (JEFF-3.1.1, ENDF/B-VII.0, JENDL-4.0). The objective of this work is to improve the knowledge on sodium nuclear data for a better calculation of SFR neutronic parameters and reliable associated uncertainties. After an overview of existing 23 Na data, the impact of the differences is quantified, particularly on sodium void reactivity effects, with both deterministic and stochastic neutronic codes. Results show that it is necessary to completely re-evaluate sodium nuclear data. Several developments have been made in the evaluation code Conrad, to integrate new nuclear reactions models and their associated parameters and to perform adjustments with integral measurements. Following these developments, the analysis of differential data and the experimental uncertainties propagation have been performed with Conrad. The resolved resonances range has been extended up to 2 MeV and the continuum range begins directly beyond this energy. A new 23 Na evaluation and the associated multigroup covariances matrices were generated for future uncertainties calculations. The last part of this work focuses on the sodium void integral data feedback, using methods of integral data assimilation to reduce the uncertainties on sodium cross sections. This work ends with uncertainty calculations for industrial-like SFR, which show an improved prediction of their neutronic parameters with the new evaluation. (author) [fr

  17. Neutron irradiation of seeds

    International Nuclear Information System (INIS)

    1967-01-01

    Neutrons are a valuable type of ionizing radiation for seed irradiation and radiobiological studies and for inducing mutations in crop plants. In experiments where neutrons are used in research reactors for seed irradiation it is difficult to measure the dose accurately and therefore to establish significant comparisons between experimental results obtained in various reactors and between repeated experiments in the same reactor. A further obstacle lies in the nature and response of the seeds themselves and the variety of ways in which they are exposed in reactors. The International Atomic Energy Agency decided to initiate international efforts to improve and standardize methods of exposing seeds in research reactors and of measuring and reporting the neutron dose. For this purpose, an International Neutron Seed Irradiation Programme has been established. The present report aims to give a brief but comprehensive picture of the work so far done in this programme. Refs, figs and tabs

  18. Precision Polarization of Neutrons

    Science.gov (United States)

    Martin, Elise; Barron-Palos, Libertad; Couture, Aaron; Crawford, Christopher; Chupp, Tim; Danagoulian, Areg; Estes, Mary; Hona, Binita; Jones, Gordon; Klein, Andi; Penttila, Seppo; Sharma, Monisha; Wilburn, Scott

    2009-05-01

    Determining polarization of a cold neutron beam to high precision is required for the next generation neutron decay correlation experiments at the SNS, such as the proposed abBA and PANDA experiments. Precision polarimetry measurements were conducted at Los Alamos National Laboratory with the goal of determining the beam polarization to the level of 10-3 or better. The cold neutrons from FP12 were polarized using optically polarized ^3He gas as a spin filter, which has a highly spin-dependent absorption cross section. A second ^ 3He spin filter was used to analyze the neutron polarization after passing through a resonant RF spin rotator. A discussion of the experiment and results will be given.

  19. Neutron personnel dosimetry

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1981-01-01

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments

  20. Personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Hankins, D.

    1982-04-01

    This edited transcript of a presentation on personnel neutron discusses the accuracy of present dosimetry practices, requirements, calibration, dosemeter types, quality factors, operational problems, and dosimetry for a criticality accident. 32 figs

  1. The intense neutron generator

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1966-01-01

    The presentation discusses both the economic and research contexts that would be served by producing neutrons in gram quantities at high intensities by electrical means without uranium-235. The revenue from producing radioisotopes is attractive. The array of techniques introduced by the multipurpose 65 megawatt Intense Neutron Generator project includes liquid metal cooling, superconducting magnets for beam bending and focussing, super-conductors for low-loss high-power radiofrequency systems, efficient devices for producing radiofrequency power, plasma physics developments for producing and accelerating hydrogen, ions at high intensity that are still far out from established practice, a multimegawatt high voltage D.C. generating machine that could have several applications. The research fields served relate principally to materials science through neutron-phonon and other quantum interactions as well as through neutron diffraction. Nuclear physics is served through μ-, π- and K-meson production. Isotope production enters many fields of applied research. (author)

  2. High energy neutron generator

    International Nuclear Information System (INIS)

    Barjon, R.; Breynat, G.

    1987-01-01

    This patent describes a generator of fast neutrons only slightly contaminated by neutrons of energy less than 15 MeV, comprising a source of charged particles of energy equal to at least 15 MeV, a target made of lithium deuteride, and means for cooling the target. The target comprises at least two elements placed in series in the path of the charged particles and separated from each other, the thickness of each of the elements being selected as a function of the average energy of the charged particles emitted from the source and the energy of the fast neutrons to be generated such that neutrons of energy equal to at least 15 MeV are emitted in the forward direction in response to the bombardment of the target from behind by the charged particles. The target cooling means comprises means for circulating between and around the elements a gas which does not chemically react with lithium deuteride

  3. Neutron signal transfer analysis

    CERN Document Server

    Pleinert, H; Lehmann, E

    1999-01-01

    A new method called neutron signal transfer analysis has been developed for quantitative determination of hydrogenous distributions from neutron radiographic measurements. The technique is based on a model which describes the detector signal obtained in the measurement as a result of the action of three different mechanisms expressed by signal transfer functions. The explicit forms of the signal transfer functions are determined by Monte Carlo computer simulations and contain only the distribution as a variable. Therefore an unknown distribution can be determined from the detector signal by recursive iteration. This technique provides a simple and efficient tool for analysis of this type while also taking into account complex effects due to the energy dependency of neutron interaction and single and multiple scattering. Therefore this method provides an efficient tool for precise quantitative analysis using neutron radiography, as for example quantitative determination of moisture distributions in porous buil...

  4. Neutrons for industry

    International Nuclear Information System (INIS)

    Petry, W.

    2015-01-01

    Neutrons are a unique tool for materials science, from hard to soft matter. This uniqueness relies on the privileged penetration of neutrons in any kind of matter, their particular contrast for different elements/isotopes, their capability to characterize in situ, in operation and in real time. Often enough neutron research explains the functionality of materials and work pieces by their atomistic foundation and opens the way for optimization of the functionality. In this paper the author reviews some new applications of neutron irradiation in industry: homogenous doping for power electronics; the selection of the right candidates for hydrogen storage materials; the optimization of Li-ion batteries and organic solar cells; the 3-dimensional determination of residual stresses without damaging the specimen. Concerning medicine there were some advances for the production of some isotopes like Lu 177 or Mo 99 -Tc 99m

  5. Cylindrical neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  6. Studsvik thermal neutron facility

    International Nuclear Information System (INIS)

    Pettersson, O.A.; Larsson, B.; Grusell, E.; Svensson, P.

    1992-01-01

    The Studsvik thermal neutron facility at the R2-0 reactor originally designed for neutron capture radiography has been modified to permit irradiation of living cells and animals. A hole was drilled in the concrete shielding to provide a cylindrical channel with diameter of 25.3 cm. A shielding water tank serves as an entry holder for cells and animals. The advantage of this modification is that cells and animals can be irradiated at a constant thermal neutron fluence rate of approximately 10 9 n cm -2 s -1 (at 100 kW) without stopping and restarting the reactor. Topographic analysis of boron done by neutron capture autoradiography (NCR) can be irradiated under the same conditions as previously

  7. Opportunities in Neutron Science

    Science.gov (United States)

    Fernandez-Baca, Jaime

    2010-03-01

    National Laboratories often have unique facilities that cannot be normally found at universities, and that provide unique opportunities to perform research using world class instrumentation in collaboration with teams of experts. This synergy of expertise and world-class facilities also offers unique opportunities for mentoring and training of students in settings different from the university environment. In this talk I will discuss the opportunities of scientific research, mentoring and training at the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. The SNS is the world's most intense pulsed accelerator-based neutron source, the HFIR is the highest flux reactor-based neutron source for condensed matter research in the United States, the combination of these provides neutron scattering capabilities unavailable anywhere else in the world. The SNS and the HFIR at ORNL are funded by the Division of Scientific User Facilities, Office of Basic Energy Sciences, US. Department of Energy.

  8. Neutron beam instruments for neutron science at HANARO

    International Nuclear Information System (INIS)

    Kim, Y.K.

    2009-01-01

    HANARO (Highly Advanced Neutron Application Reactor) came on line as the first criticality achieved in 1995. Since then a lot of experimental facilities for various utilizations have been gradually installed over the years up until now. Neutron science actually began with the neutron radiography facility completed in 1997. Thereafter, a series of thermal neutron beam instruments have been added and opened for the users. Some of them are high resolution power diffractometer, four circle diffractometer, small angle neutron spectrometer, and vertical-type reflectometer. The cold neutron research facility project was initiated in 2003, which envisions installation of cold neutron source, related systems, 5 neutron guides, and 7 instruments to satisfy the needs of cold neutron beam as the indispensable tool in NT, BT and other emerging technologies. Cold neutron guide building had been completed in October, 2008. Cold neutrons are planned to be produced later this year. Installations of neutron guides and associated instruments are to be finalized by the middle of 2010, ready for use. A 20 m detector vacuum tank and 20 m pre-sample flight path for 40 m SANS are already in place at the guide hall. Currently, there are about 450 users working with thermal neutron instruments. Once cold neutron instruments are available, we expect the number of users will double within next 3 years. (author)

  9. Performance characteristics of specified power reactors in multidimensional neutron diffusion problems

    International Nuclear Information System (INIS)

    Kim, M.G.

    1980-01-01

    The multigroup neutron diffusion equations with the constraint of specified power distributions are investigated by the application of the straight-line method which can be considered as the limiting case of zero mesh space in the finite difference method. The standard partial differential form of the diffusion equation is reduced to sets of ordinary differential equations and then converted into sets of integral equations by using Green's functions defined on the pseudo straight lines. Coupling of each straight line to the adjacent lines arises from the application of a three-point central difference formula. The interfaces encountered between two regions are taken into account by imposing the continuity conditions for the grown fluxes and net currents with Taylor expansions of internal fluxes at the interface positions. A few sample problems are selected to test the validity of the method. It is found that the proposed method of solution is similar to the finite Fourier sine transform. Numerical results for the solutions obtained by the method of straight lines are compared with the results of the exact analytical solutions for simple geometries. These comparisons indicate that the proposed method is compatible with the analytical method, and in some problems considered the straight-line solutions are much more efficient than the exact solutions. The method is also extended to the reactor kinetics problem by expressing the kinetics parameters in terms of the basis functions which are used to obtain the solutions of the steady-state neutron diffusion equations

  10. An optimized ultra-fine energy group structure for neutron transport calculations

    International Nuclear Information System (INIS)

    Huria, Harish; Ouisloumen, Mohamed

    2008-01-01

    This paper describes an optimized energy group structure that was developed for neutron transport calculations in lattices using the Westinghouse lattice physics code PARAGON. The currently used 70-energy group structure results in significant discrepancies when the predictions are compared with those from the continuous energy Monte Carlo methods. The main source of the differences is the approximations employed in the resonance self-shielding methodology. This, in turn, leads to ambiguous adjustments in the resonance range cross-sections. The main goal of developing this group structure was to bypass the self-shielding methodology altogether thereby reducing the neutronic calculation errors. The proposed optimized energy mesh has 6064 points with 5877 points spanning the resonance range. The group boundaries in the resonance range were selected so that the micro group cross-sections matched reasonably well with those derived from reaction tallies of MCNP for a number of resonance absorbers of interest in reactor lattices. At the same time, however, the fast and thermal energy range boundaries were also adjusted to match the MCNP reaction rates in the relevant ranges. The resulting multi-group library was used to obtain eigenvalues for a wide variety of reactor lattice numerical benchmarks and also the Doppler reactivity defect benchmarks to establish its adequacy. (authors)

  11. Scope of neutron interferometry

    International Nuclear Information System (INIS)

    Rauch, H.

    1978-01-01

    This paper deals with the interferometry of well separated coherent beams, where the phase of the beams can be manipulated individually. The basic equation of the dynamical neutron diffraction theory are recalled. The various contributions to the interaction of as low neutron with its surroundings are discussed: the various terms denote the nuclear, magnetic, electromagnetic, intrinsic, gravitational, and weak interaction respectively. Applications to nuclear physics, fundamental physics and solid state physics are successively envisaged

  12. Pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1996-01-01

    This paper reviews the early history of pulsed spallation neutron source development ar Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provide a few examples of applications in fundamental condensed matter physics, materials science and technology

  13. Pulsed spallation Neutron Sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1994-01-01

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology

  14. Introduction to neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.

  15. Neutron ion temperature measurement

    International Nuclear Information System (INIS)

    Strachan, J.D.; Hendel, H.W.; Lovberg, J.; Nieschmidt, E.B.

    1986-11-01

    One important use of fusion product diagnostics is in the determination of the deuterium ion temperature from the magnitude of the 2.5 MeV d(d,n) 3 He neutron emission. The detectors, calibration methods, and limitations of this technique are reviewed here with emphasis on procedures used at PPPL. In most tokamaks, the ion temperature deduced from neutrons is in reasonable agreement with the ion temperature deduced by other techniques

  16. NEUTRON FLUX INTENSITY DETECTION

    Science.gov (United States)

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  17. Forensic neutron activation analysis

    International Nuclear Information System (INIS)

    Kishi, T.

    1987-01-01

    The progress of forensic neutron activation analysis (FNAA) in Japan is described. FNAA began in 1965 and during the past 20 years many cases have been handled; these include determination of toxic materials, comparison examination of physical evidences (e.g., paints, metal fragments, plastics and inks) and drug sample differentiation. Neutron activation analysis is applied routinely to the scientific criminal investigation as one of multielement analytical techniques. This paper also discusses these routine works. (author) 14 refs

  18. Neutrons and fusion

    International Nuclear Information System (INIS)

    Maynard, C.W.

    1976-01-01

    The production of energy from fusion reactions does not require neutrons in the fundamental sense that they are required in a fission reactor. Nevertheless, the dominant fusion reaction, that between deuterium and tritium, yields a 14 MeV neutron. To contrast a fusion reactor based on this reaction with the fission case, 3 x 10 20 such neutrons produced per gigawatt of power. This is four times as many neutrons as in an equivalent fission reactor and they carry seven times the energy of the fission neutrons. Thus, they dominate the energy recovery problem and create technological problems comparable to the original plasma confinement problem as far as a practical power producing device is concerned. Further contrasts of the fusion and fission cases are presented to establish the general role of neutrons in fusion devices. Details of the energy deposition processes are discussed and those reactions necessary for producing additional tritium are outlined. The relatively high energy flux with its large intensity will activate almost any materials of which the reactor may be composed. This activation is examined from the point of view of decay heat, radiological safety, and long-term storage. In addition, a discussion of the deleterious effects of neutron interactions on materials is given in some detail; this includes the helium and hydrogen producing reactions and displacement rate of the lattice atoms. The various materials that have been proposed for structural purposes, for breeding, reflecting, and moderating neutrons, and for radiation shielding are reviewed from the nuclear standpoint. The specific reactions of interest are taken up for various materials and finally a report is given on the status and prospects of data for fusion studies

  19. Quantum physics with neutrons

    International Nuclear Information System (INIS)

    Durstberger, K.; Hasegawa, Y.; Klepp, J.; Sulyok, G.; Rauch, H.

    2008-01-01

    Full text: Fundamental quantum properties like quantum coherence and entanglement are among the most interesting features of quantum mechanics. The physical system of interest is the (massive) neutron subjected to interferometric and polarimetric measurements. Neutrons are proper objects for a study of quantum mechanical behavior: they allow for rather easy experimental control and the neutron spin is the simplest two-level system with easy manipulation by magnetic fields. In combination with interferometric measurements the system has enough intrinsic richness to show interesting quantum features such as entanglement. The coupling of the neutron to an external magnetic field allows for selective manipulations of the spinor quantum states. This can be used, on the one hand, to create entangled states where the entanglement occurs between different degrees of freedom (e.g. spin and path) and, on the other hand, one can introduce dephasing and decoherence by varying magnetic fields. We investigate different kinds of entanglement for the neutron system and mechanisms for decoherence and dephasing. We discuss weak measurements and their realization for neutrons where information about the system can be revealed without disturbing the system too much. Beyond the theoretical work we develop experimental strategies to check the results directly in suitably designed experiments. The experimental work is done at the Institute Laue-Langvine (ILL) in Grenoble, France. (author)

  20. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro.

    1995-01-01

    In a neutron flux monitoring device, there are disposed a neutron flux measuring means for outputting signals in accordance with the intensity of neutron fluxes, a calculation means for calculating a self power density spectrum at a frequency band suitable to an object to be measured based on the output of the neutron flux measuring means, an alarm set value generation means for outputting an alarm set value as a comparative reference, and an alarm judging means for comparing the alarm set value with the outputted value of the calculation means to judge requirement of generating an alarm and generate an alarm in accordance with the result of the judgement. Namely, the time-series of neutron flux signals is put to fourier transformation for a predetermined period of time by the calculation means, and from each of square sums for real number component and imaginary number component for each of the frequencies, a self power density spectrum in the frequency band suitable to the object to be measured is calculated. Then, when the set reference value is exceeded, an alarm is generated. This can reliably prevent generation of erroneous alarm due to neutron flux noises and can accurately generate an alarm at an appropriate time. (N.H.)

  1. Neutrons for materials science

    International Nuclear Information System (INIS)

    Windsor, C.G.; Allen, A.J.; Hutchings, M.T.; Sayers, C.M.; Sinclair, R.N.; Schofield, P.; Wright, C.J.

    1984-12-01

    The discussion will be limited to applied materials research performed on a customer/contractor basis. The information obtained using neutrons must therefore compete both scientifically and financially with information obtained using other techniques, particularly electron microscopy, X-ray, NMR, infra-red and Raman spectroscopy. It will be argued that the unique nature of the information gained from neutrons often outweighs the undoubted difficulties of access to neutron beams. Examples are given. Small angle scattering has emerged as the neutron technique of widest application in applied materials research. The penetration of neutron beams through containment vessels, as well as through the sample, allows the measurement of 'in situ' time dependent experiments within a furnace, cryostat, pressure vessel or chemical reactor vessel. High resolution powder diffraction is another technique with wide applications. Structural studies are possible on increasing complex phases. The structure and volume fraction of minority phases can be measured at levels appreciably below that possible by X-ray diffraction. A rapidly growing field at present is the measurement of internal strains through the small shifts in lattice spacing. Inelastic scattering measurements exploit the unique property of neutrons to measure the orientations of vibrating molecules. (author)

  2. Neutron Nucleic Acid Crystallography.

    Science.gov (United States)

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.

  3. Neutron diffraction principles

    International Nuclear Information System (INIS)

    Granada, Jose R.

    1998-01-01

    Neutron as research element contributes at present to the understanding and development of almost all aspects related to basic and applied science, even with the relative inaccessibility of neutron sources and the fact that the most intense sources still provide relatively weak neutron beams. The initial discovery of these potentialities and the first works that allowed to convert the neutronic techniques into the actual powerful experimental tool, have been recognized by the adjudication of the Nobel Prize in Physics 1994 to Professors B. Brockhouse and C. Shull. Unfortunately, these tools have not been exploited neither in our country, nor in the Latin American area, with the exception of very limited applications in Materials Science. Although the theoretical principles of neutron scattering techniques have been treated in texts and review works, the aim of this work is to present a compact set of expressions, oriented to sustain and explain the basic forms or the most frequent use for the interpretation of experimental results. The formulation, mostly based on the initial chapters of the Ph.D. Thesis of G.J. Cuello (Instituto Balseiro, 1996), only considers nuclear scattering of neutrons for extension reasons, but it must be taken into account that the experiments designed for the study of the magnetic properties of materials currently play a rol of importance equal to those

  4. Decoherence Free Neutron Interferometry

    Science.gov (United States)

    Pushin, Dmitry A.; Cory, David G.; Huber, Michael G.; Abutaleb, Mohamed; Arif, Muhammad; Clark, Charles W.

    2011-03-01

    A neutron interferometer (NI) is a unique example of the macroscopic quantum coherence and has been used to test fundamental principles of quantum mechanics. In practice, neutron interferometers are not widely used because of their extreme sensitivity to environmental noise which is in part due to the slow velocity (relative to light) of the neutron. We show that a neutron interferometer design can benefit from concepts of quantum information processing. We have machined a Decoherence Free (DF) neutron interferometer designed using a quantum error correction code, and have shown it to be much less sensitive to mechanical vibrations than is the standard Mach-Zehnder (MZ) interferometer. Both the MZ and DF geometries are incorporated in one crystal, which allows direct comparisons to be made. We believe that our results and related quantum information approaches, such as ``the power of one qubit,''will enable a new series of compact neutron interferometers that can be tailored to specific applications in soft condensed matter and spintronics. D. A. Pushin, M. Arif, and D. G. Cory, Phys. Rev. A (http://pra.aps.org/abstract/PRA/v79/i5/e053635) 79, 053635 (2009)

  5. Biology with neutron radiation

    International Nuclear Information System (INIS)

    Zaccai, Giuseppe

    1993-01-01

    Neutron diffraction, elastic and inelastic neutron scattering experiments provide important information on the structure, interactions and dynamics of biological molecules. This arises from the unique properties of the neutron and of its interaction with matter. Coherent and incoherent neutron scattering amplitudes and cross-sections are very different for H and 2 H (deuterium). Deuterium labelling by chemical or biochemical methods and H 2 O: 2 H 2 O exchange is the basis of high resolution crystallography experiments to locate functionally important H-atoms in protein molecules. It is also very important in low resolution crystallography and small angle scattering experiments to solve large complex structures, such as protein-nucleic acid complexes or biological membrane systems, by using contrast variation techniques. The energies of neutrons with a wavelength of the order of 1 - 10 A are similar to thermal energies and inelastic neutron scattering experiments have been done with different energy resolutions (≥∼ 1 μeV) to characterise the functional dynamics of proteins in solution and in membranes. (author)

  6. Neutron scattering in Australia

    International Nuclear Information System (INIS)

    Knott, R.B.

    1994-01-01

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains

  7. Volume 15. Neutron scattering

    International Nuclear Information System (INIS)

    Kostorz, G.

    1979-01-01

    This volume of the Treatise on Materials Science and Technology shows how neutron scattering methods can be used to obtain important information on materials, by guiding the reader through the principles and describing recent applications. Materials scientists, but also solid state physicists, physical chemists, and metallurgists interested in this field, will find a completely referenced survey of the ''classical topics'' of neutron scattering and a more detailed presentation of methods and techniques that are more specifically related to materials science. After a brief review of the general principles in the first chapter, subsequent chapters concentrate on particular methods and problems. The techniques used in neutron crystallography are presented, and selected applications of nuclear and magnetic scattering are discussed. The measurement of phonons, their role in phase transformations, and their behavior in the presence of crystal defects are considered, and quasi-elastic scattering is given detailed treatment. The methods of small-angle scattering and diffuse scattering have been developed to a considerable perfection in recent years and are presented in detail. The structure and dynamics of hydrogen dissolved in metals and the conformation and dynamics of polymers are two outstanding subjects to which neutron scattering has contributed so much in recent years that separate chapters are devoted to covering these fields. Finally, the choice of the appropriate materials is also becoming increasingly crucial in the design and construction of neutron spectrometers. Therefore, the last chapter deals with special materials problems in neutron devices

  8. Neutron imaging plates

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1995-01-01

    Imaging plates have been used in the field of medical diagnosis since long ago, but their usefulness was verified as the two-dimensional detector for analyzing the X-ray crystalline structure of high bio molecules like protein, and they have contributed to the remarkable progress in this field. The great contribution is due to the excellent features, such as the detection efficiency of about 100%, the positional resolution smaller than 0.2 mm, the dynamic range of five digits, and the area of several hundreds mm square. The neutron imaging plates have not yet obtained the sufficient results. It was planned to construct the neutron diffractometer for biological matters, and to put imaging plate neutron detectors (IP-ND) to practical use as the detector. The research on the development of IP-NDs was carried out, and the IPp-NDs having the performance comparable with that for X-ray were able to be produced. Imaging plates are the integral type two-dimensional radiation detector using photostimulated luminescence matters, and their principle is explained. As to neutron imaging plates, the converter, neutron detection efficiency and the flight of secondary particles in photo-stimulated luminescence matters are described. As for the present state of development of neutron imaging plates, the IP-NDs made for trial, the dynamic range, the positional resolution, the detection efficiency and the kinds of converters, and the application of IP-NDs are reported. (K.I.)

  9. Two-neutron removal reactions for very neutron rich nuclei

    International Nuclear Information System (INIS)

    Riisager, K.; Hansen, P.G.; Anne, R.; Lewitowicz, M.; Arnell, S.E.; Neugart, R.; Richter, A.; Bimbot, R.; Guillemaud-Mueller, D.

    1992-01-01

    The two-neutron removal reactions of beams of 11 Li, 14 Be and 8 He upon Be, Ni and Au targets were studied at 30 MeV/u. The cross-sections and the neutron forward angular distributions were measured; they correlate strongly with the two-neutron separation energy of the projectile. Even though the coverage of the neutron detectors was limited, a rough neutron-neutron distribution could be extracted. A simplified interpretation of the data is presented. (author) 57 refs., 7 figs., 2 tabs

  10. Pulsed neutron generator for use with pulsed neutron activation techniques

    International Nuclear Information System (INIS)

    Rochau, G.E.

    1980-01-01

    A high-output, transportable, pulsed neutron generator has been developed by Sandia National Laboratories for use with Pulsed Neutron Activation (PNA) techniques. The PNA neutron generator generates > 10 10 14 MeV D-T neutrons in a 1.2 millisecond pulse. Each operation of the unit will produce a nominal total neutron output of 1.2 x 10 10 neutrons. The generator has been designed to be easily repaired and modified. The unit requires no additional equipment for operation or measurement of output

  11. Measuring the Neutron Lifetime with Magnetically Trapped Ultracold Neutrons

    Science.gov (United States)

    Mumm, H. P.; Huber, M. G.; Yue, A. T.; Thompson, A. K.; Dewey, M. S.; Huffer, C. R.; Huffman, P. R.; Schelhammer, K. W.; O'Shaughnessy, C.; Coakley, K. J.

    2014-03-01

    We describe an experiment to measure the neutron lifetime using a technique with a set of systematic uncertainties largely different than those of previous measurements. In this approach, ultracold neutrons (UCN) are produced by inelastic scattering of cold (0.89 nm) neutrons in a reservoir of superfluid 4He. These neutrons are then confined using a three-dimensional magnetic trap. As the trapped neutrons beta decay, the energetic electrons produced in the decay generate scintillations in the liquid He; each decay is detectable with nearly 100 % efficiency. The neutron lifetime can be directly determined by measuring the scintillation rate as a function of time.

  12. MAGNETIC NEUTRON SCATTERING

    International Nuclear Information System (INIS)

    ZALIZNYAK, I.A.; LEE, S.H.

    2004-01-01

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science

  13. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  14. Neutron dosimetry in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Fairchild, R.G.; Miola, U.J.; Ettinger, K.V.

    1981-01-01

    The recent development of various borated compounds and the utilization of one of these (Na 2 B 12 H 11 SH) to treat brain tumors in clinical studies in Japan has renewed interest in neutron capture therapy. In these procedures thermal neutrons interact with 10 B in boron containing cells through the 10 B(n,α) 7 Li reaction producing charged particles with a maximum range of approx. 10μm in tissue. Borated analogs of chlorpromazine, porphyrin, thiouracil and deoxyuridine promise improved tumor uptake and blood clearance. The therapy beam from the Medical Research Reactor in Brookhaven contains neutrons from a modified and filtered fission spectrum and dosimetric consequences of the use of the above mentioned compounds in conjunction with thermal and epithermal fluxes are discussed in the paper. One of the important problems of radiation dosimetry in capture therapy is determination of the flux profile and, hence, the dose profile in the brain. This has been achieved by constructing a brain phantom made of TE plastic. The lyoluminescence technique provides a convenient way of monitoring the neutron flux distributions; the detectors for this purpose utilize 6 Li and 10 B compounds. Such compounds have been synthesized specially for the purpose of dosimetry of thermal and epithermal beams. In addition, standard lyoluminescent phosphors, like glutamine, could be used to determine the collisional component of the dose as well as the contribution of the 14 N(n,p) 14 C reaction. Measurements of thermal flux were compared with calculations and with measurements done with activation foils

  15. Numerical solution of neutron transport equations in discrete ordinates and slab geometry

    International Nuclear Information System (INIS)

    Serrano Pedraza, F.

    1985-01-01

    An unified formalism to solve numerically, between other equation, the neutron transport in discrete ordinates, slab geometry, several energy groups and independents of time, has been developed recently. Such a formalism cover some of the conventional schemes as diamond difference, (WDD) characteristic step (SC) lineal characteristic (LC), quadratic characteristic (QC) and lineal discontinuous. Unified formation gives before hand the convergence order of the previously selected scheme. In fact it allows besides to generate a big amount of numerical schemes, with which is also possible to solve numerical equations as soon as neutron transport. The essential purpose of this work was to solve the neutron transport equations in slab geometry and discrete ordinates considering several energy groups without to take under advisement time dependence based in the above mentioned unified formalism. To reach this purpose it was necesary to design a computer code with the name TNOD1 (Neutron transport in discrete ordinates and 1 dimension) which includes each one of the schemes already pointed out. there exist two numerical schemes, also recently developed, quadratic continuous (QC) and cubic continuous (CN), although covered by unified formalism, it has been possible to include them inside this computer code without make substantial changes in its structure. In chapter I, derivative of neutron transport equation independent of time is taken, for angular flux, including boundary conditions and discontinuity. In chapter II the neutron transport equations are obtained in multigroups, independents of time, for approximation of discrete ordinates. Description of theory related with unified formalism and its relationship with mentioned discretization schemes is presented in chapter III. Chapter IV describes the computer code developed and finally, in chapter V different numerical results obtained with TNOD1 program are shown. In Appendix A theorems and mathematical arguments used

  16. Radiography with polarised neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael L.

    2010-08-20

    In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron radiography to a method we call Neutron Depolarisation Imaging (NDI). The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a position sensitive CCD detector. A comprehensive discussion of the requirements for these components is given and the limitations of the method are shown. The maximum spatial resolution which can be achieved with a neutron radiography setup is determined by the collimation of the neutron beam and the distance between sample and detector. Different types of polarisers have been tested and their advantages and disadvantages are discussed. A double crystal monochromator and a new type of polariser employing polarising neutron supermirrors based on the principle of an optical periscope were developed and tested during this work. Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al are presented. Neutron depolarisation radiography and tomography measurements were conducted with a spatial resolution as high as 0.3 mm on Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al samples. The feasibility of NDI experiments under hydrostatic pressures up to 10 kbar was shown on a sample of Ni{sub 3}Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2 K under hydrostatic pressure was determined from the NDI measurements and shows the potential of the method for further high pressure experiments. Additionally a method was developed which in principle allows to obtain the intrinsic dependence of the ordering temperature T{sub C} on the ordered moment Ms from NDI measurements on inhomogeneous samples containing regions with

  17. Radiography with polarised neutrons

    International Nuclear Information System (INIS)

    Schulz, Michael L.

    2010-01-01

    In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron radiography to a method we call Neutron Depolarisation Imaging (NDI). The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a position sensitive CCD detector. A comprehensive discussion of the requirements for these components is given and the limitations of the method are shown. The maximum spatial resolution which can be achieved with a neutron radiography setup is determined by the collimation of the neutron beam and the distance between sample and detector. Different types of polarisers have been tested and their advantages and disadvantages are discussed. A double crystal monochromator and a new type of polariser employing polarising neutron supermirrors based on the principle of an optical periscope were developed and tested during this work. Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd 1-x Ni x and Ni 3 Al are presented. Neutron depolarisation radiography and tomography measurements were conducted with a spatial resolution as high as 0.3 mm on Pd 1-x Ni x and Ni 3 Al samples. The feasibility of NDI experiments under hydrostatic pressures up to 10 kbar was shown on a sample of Ni 3 Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2 K under hydrostatic pressure was determined from the NDI measurements and shows the potential of the method for further high pressure experiments. Additionally a method was developed which in principle allows to obtain the intrinsic dependence of the ordering temperature T C on the ordered moment Ms from NDI measurements on inhomogeneous samples containing regions with different ordering temperatures. This

  18. A method for solving neutron transport equation

    International Nuclear Information System (INIS)

    Dimitrijevic, Z.

    1993-01-01

    The procedure for solving the transport equation by directly integrating for case one-dimensional uniform multigroup medium is shown. The solution is expressed in terms of linear combination of function H n (x,μ), and the coefficient is determined from given conditions. The solution is applied for homogeneous slab of critical thickness. (author)

  19. Euratom Neutron Radiography Working Group

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    In 1979 a Neutron Radiography Working Group (NRWG) was constituted within Buratom with the participation of all centers within the European Community at which neutron facilities were available. The main purpose of NRWG was to standardize methods and procedures used in neutron radiography of nuclear...... reactor fuel as well as establish standards for radiographic image quality of neutron radiographs. The NRWG meets once a year in each of the neutron radiography centers to review the progress made and draw plans for the future. Besides, ad-hoc sub-groups or. different topics within the field of neutron...

  20. Support for cold neutron utilization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kye Hong; Han, Young Soo; Choi, Sungmin; Choi, Yong; Kwon, Hoon; Lee, Kwang Hee

    2012-06-15

    - Support for experiments by users of cold neutron scattering instrument - Short-term training of current and potential users of cold neutron scattering instrument for their effective use of the instrument - International collaboration for advanced utilization of cold neutron scattering instruments - Selection and training of qualified instrument scientists for vigorous research endeavors and outstanding achievements in experiments with cold neutron - Research on nano/bio materials using cold neutron scattering instruments - Bulk nano structure measurement using small angle neutron scattering and development of analysis technique.