WorldWideScience

Sample records for babcock and wilcox standard reactor

  1. Standard Technical Specifications, Babcock and Wilcox Plants

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for Babcock and Wilcox (B ampersand W) plants and documents the positions of the Nuclear Regulatory Commission (NRC) based on the B ampersand W Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council. The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for developing improved plant-specific technical specifications by individual nuclear power plant licensees. This volume contains sections 3.4--3.9 which cover: Reactor coolant systems, emergency core cooling systems, containment systems, plant systems, electrical power systems, refueling operations

  2. Standard Technical Specifications, Babcock and Wilcox plants

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for Babcock and Wilcox (B ampersand W) Plants and documents the positions of the Nuclear Regulatory Commission based on the B ampersand W Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The unproved STS were developed based on the, criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop proved plant-specific technical specifications. This report contains three volumes. This document, Volume 1 contains the Specifications for all chapters and sections of the improved STS

  3. Standard technical specifications for Babcock and Wilcox pressurized water reactors

    International Nuclear Information System (INIS)

    1978-06-01

    The Standard Technical Specification (STS) has been structured for the broadest possible use on B and W NSSS plants currently being reviewed for an Operating License. Two separate and discrete containment specification sections are provided for each of the following containment types: Atmospheric, and Dual. Optional specifications are provided for those features and systems which may be included in individual plant designs but are not generic in their scope of application. Alternate specifications are provided in a limited number of cases to cover situations where alternate specification requirements are necessary on a generic basis because of design differences. The format of the STS addresses the categories required by 10 CFR 50 and consists of six sections covering the areas of: Definitions, Safety Limits and Limiting Safety System Settings, Limiting Conditions for Operation, Surveillance Requirements, Design Features, and Administrative Controls

  4. Standard technical specifications for Babcock and Wilcox pressurized water reactors

    International Nuclear Information System (INIS)

    Virgilio, M.

    1979-07-01

    This Standard Technical Specification (STS) has been structured for the broadest possible use on B and W NSSS plants currently being reviewed for an Operating License. Two separate and discrete containment specification sections are provided for each of the following containment types: Atmospheric and Dual. Optional specifications are provided for those features and systems which may be included in individual plant designs but are not generic in their scope of application. Alternate specifications are provided in a limited number of cases to cover situations where alternate specification requirements are necessary on a generic basis because of design differences. This revision of STS does not typically include requirements which may be added or revised as a result of the NRC staff's further review of the Three Mile Island incident

  5. Standard technical specifications: Babcock and Wilcox Plants. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for Babcock & Wilcox Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.9 of the improved STS.

  6. Standard technical specifications: Babcock and Wilcox Plants. Revision 1

    International Nuclear Information System (INIS)

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for Babcock ampersand Wilcox Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.9 of the improved STS

  7. Babcock and Wilcox advanced PWR development

    International Nuclear Information System (INIS)

    Kulynych, G.E.; Lemon, J.E.

    1986-01-01

    The Babcock and Wilcox 600 MWe PWR design is discussed. Main features of the new B-600 design are improvements in reactor system configuration, glandless coolant pumps, safety features, core design and steam generators

  8. History of research reactor fuel fabrication at Babcock and Wilcox

    International Nuclear Information System (INIS)

    Freim, James B.

    1983-01-01

    B and W Research Reactor Fuel Element facility at Lynchburg, Virginia now produces national laboratory and university fuel assemblies. The Company's 201000 square foot facility is devoted entirely to supplying research fuel and related products. B and W re-entered the research reactor fuel market in 1981

  9. Uranium silicide activities at Babcock and Wilcox

    International Nuclear Information System (INIS)

    Noel, W.W.; Freim, J.B.

    1983-01-01

    Babcock and Wilcox, Naval Nuclear Fuel Division (NNFD) in conjunction with Argonne National Laboratory (ANL) is actively involved in the Reduced Enrichment Research Test Reactor (RERTR) Program to produce low enriched fuel elements for research reactors. B and W and ANL have undertaken a joint effort in which NNFD will fabricate two low enriched uranium (LEU), Oak Ridge Reactor (ORR) elements with uranium silicide fuel furnished by ANL. These elements are being fabricated for irradiation testing at Oak Ridge National Laboratory (ORNL). Concurrently with this program, NNFD is developing and implementing the uranium silicide and uranium aluminide fuel fabrication technology. NNFD is fabricating the uranium silicide ORR elements in a two-phase program, Development and Production. To summarize: 1. Full size fuel plates can be made with U 3 SiAl but the fabricator must prevent oxidation of the compact prior to hot roll bonding; 2. Providing the ANL U 3 Si x irradiation results are successful, NNFD plans to provide two ORR elements during February 1983; 3. NNFD is developing and implementing U 3 Si x and UAI x fuel fabrication technology to be operational in 1983; 4. NNFD can supply U 3 O 8 high enriched uranium (HEU) or low enriched uranium (LEU) research reactor elements; 5. NNFD is capable of providing high quality, cost competitive LEU or HEU research reactor elements to meet the needs of the customer

  10. Production of leu high density fuels at Babcock and Wilcox

    International Nuclear Information System (INIS)

    Freim, J.B.

    1983-01-01

    A large number of fuel elements of all types are produced for both international and domestic customers by Nuclear Fuel Division of Babcock and Wilcox. A brief history of the division, included previous and present research reactor fuel element fabrication experience is discussed. The manufacturing facilities are briefly described. The fabrication of LEU fuels and economic analysis of the production are included. (A.J.)

  11. Status of LEU programs at Babcock and Wilcox

    International Nuclear Information System (INIS)

    McCormick, G.L.

    1995-01-01

    The primary focus of Babcock and Wilcox's (B and W) Research and Test Reactor Fuel Element Facility's (RTRFE) most recent activities is to continue to improve its successful LEU fuel element production process. This is being done by expanding its R and D efforts (expenditures for CFY 92 are twice that of CFY 91) and applying statistical process control to its production processes. B and W's total commitment to quality and integrity has led to the successful fabrication of silicide production elements for five (5) reactors and development/qualification elements for four (4) other reactors. The results of B and W's recent production and development efforts are highlighted in this report. (author)

  12. Standard technical specifications - Babcock and Wilcox Plants: Bases (Sections 2.0-3.3). Volume 2, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This NUREG contains the improved Standard Technical Specifications (STS) for Babcock and Wilcox (B&W) plants. Revision 1 incorporates the cumulative changes to Revision 0, which was published in September 1992. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, specifically the B&W Owners Group (BWOG), NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993 (58 FR 39132). Licensees are encouraged to upgrade their technical specifications consistent with those criteria and conforming, to the extent practical and consistent with the licensing basis for the facility, to Revision 1 to the improved STS. The Commission continues to place the highest priority on requests for complete conversions to the improved STS. Licensees adopting portions of the improved STS to existing technical specifications should adopt all related requirements, as applicable, to achieve a high degree of standardization and consistency.

  13. Standard technical specifications: Babcock and Wilcox plants. Volume 3, Revision 1: Bases (Sections 3.4--3.9)

    International Nuclear Information System (INIS)

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for Babcock and Wilcox Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.9 of the improved STS

  14. RELAP5/MOD2 assessment at Babcock and Wilcox

    International Nuclear Information System (INIS)

    Nithianandan, C.K.; Shah, N.H.; Schomaker, R.J.; Turk, C.

    1986-01-01

    Babcock and Wilcox (B and W) has been working with the code developers at EG and G Idaho, Inc. and the NRC assessing the RELAP5/MOD2 computer code by simulating selected separate effects tests. The purpose of this B and W Owners Group-sponsored assessment was to evaluate RELAP5/MOD2 for use in design calculations for the MIST and OTIS integral system tests and in predicting pressurized water reactor (PWR) transients. B and W evaluated various versions of the code and made recommendations to improve code performance. As a result, the currently released version (Cycle 36.1) has been improved considerably over earlier versions. However, further refinements to some of the constitutive models may still be needed to further improve specific predictive capabilities of RELAP5/MOD2

  15. Babcock and Wilcox Canada steam generators past, present and future

    International Nuclear Information System (INIS)

    Smith, J.C.

    1998-01-01

    The steam generators in all of the domestic CANDU Plants, and most of the foreign CANDU plants, were supplied by Babcock and Wilcox Canada, either on their own or in co-operation with local manufacturers. More than 200 steam generators have been supplied. In addition, Babcock and Wilcox Canada has taken the technology which evolved out of the CANDU steam generators and has adapted the technology to supply of replacement steam generators for PWR's. There is enough history and operating experience, plus laboratory experience, to point to the future directions which will be taken in steam generator design. This paper documents the steam generators which have been supplied, the experience in operation and maintenance, what has worked and not worked, and how the design, materials, and operating and maintenance philosophy have evolved. The paper also looks at future requirements in the market, and the continuing research and product development going on at Babcock and Wilcox to address the future steam generator requirements. (author)

  16. 75 FR 50009 - Babcock & Wilcox Nuclear Operations Group, Inc.; Establishment of Atomic Safety and Licensing Board

    Science.gov (United States)

    2010-08-16

    ... COMMISSION Babcock & Wilcox Nuclear Operations Group, Inc.; Establishment of Atomic Safety and Licensing... Safety and Licensing Board (Board) is being established to preside over the following proceeding: Babcock & Wilcox Nuclear Operations Group, Inc. (Lynchburg, VA Facility). This proceeding concerns an Order...

  17. Results of a neutron flux perturbation experiment with Babcock and Wilcox Owners Group surveillance capsules

    International Nuclear Information System (INIS)

    Snidow, N.L.; Hassler, L.A.

    1989-01-01

    The Babcock and Wilcox Owners Group (B and WOG) Flux Perturbation Experiment in the Oak Ridge National Laboratory Poolside Facility simulated the thermal shield, downcomer, pressure vessel, and cavity region of a B and W-designed 177-fuel assembly reactor by an arrangement of steel slabs and a void box. Two simulated surveillance capsules located in the downcomer were irradiated as part of the NRC-sponsored Light Water Reactor Pressure Vessel Surveillance Dosimetry Improvement Pregram. The capsules contained extensive dosimetry provided B and W and the Hanford Engineering Development Laboratory (HEDL). Dosimeters were also located outside of the capsules in the downcomer region. Flux distributions were calculated throughout the test configuration using the two-dimensional DOT 4.3 transport theory code. The calculated and measured data are compared in this paper

  18. Seismic risk analysis for the Babcock and Wilcox facility, Leechburg, Pennsylvania

    International Nuclear Information System (INIS)

    1977-01-01

    The results of a detailed seismic risk analysis of the Babcock and Wilcox Plutonium Fuel Fabrication facility at Leechburg, Pennsylvania are presented. This report focuses on earthquakes; the other natural hazards, being addressed in separate reports, are severe weather (strong winds and tornados) and floods. The calculational method used is based on Cornell's work (1968); it has been previously applied to safety evaluations of major projects. The historical seismic record was established after a review of available literature, consultation with operators of local seismic arrays and examination of appropriate seismic data bases. Because of the aseismicity of the region around the site, an analysis different from the conventional closest approach in a tectonic province was adapted. Earthquakes as far from the site as 1,000 km were included, as were the possibility of earthquakes at the site. In addition, various uncertainties in the input were explicitly considered in the analysis. The results of the risk analysis, which include a Bayesian estimate of the uncertainties, are presented, expressed as return period accelerations. The best estimate curve indicates that the Babcock and Wilcox facility will experience 0.05 g every 220 years and 0.10 g every 1400 years. The bounding curves roughly represent the one standard deviation confidence limits about the best estimate, reflecting the uncertainty in certain of the input. Detailed examination of the results show that the accelerations are very insensitive to the details of the source region geometries or the historical earthquake statistics in each region and that each of the source regions contributes almost equally to the cumulative risk at the site. If required for structural analysis, acceleration response spectra for the site can be constructed by scaling the mean response spectrum for alluvium in WASH 1255 by these peak accelerations

  19. Safety evaluation report related to Babcock and Wilcox Owners Group Plant Reassessment Program: [Final report

    International Nuclear Information System (INIS)

    1987-11-01

    After the accident of Three Mile Island, Unit 2, nuclear power plant owners made a number of improvements to their nuclear facilities. Despite these improvements, the US Nuclear Regulatory Commission (NRC) staff is concerned that the number and complexity of events at Babcock and Wilcox (B and W) nuclear plants have not decreased as expected. This concern was reinforced by the June 9, 1985 total-loss-of-feedwater event at Davis-Besse Nuclear Power Station and the December 26, 1985 overcooling transient at Rancho Seco Nuclear Generating Station. By letter dated January 24, 1986, the Executive Director for Operations (EDO) informed the Chairman of the B and W Owners Group (BWOG) that a number of recent events at B and W-designed reactors have led the NRC staff to conclude that the basic requirements for B and W reactors need to be reexamined. In its February 13, 1986 response to the EDO's letter, the BWOG committed to lead an effort to define concerns relative to reducing the frequency of reactor trips and the complexity of post-trip response in B and W plants. The BWOG submitted a description of the B and W program entitled ''Safety and Performance Improvement Program'' (BAW-1919) on May 15, 1986. Five revisions to BAW-1919 have also been submitted. The NRC staff has reviewed BAW-1919 and its revisions and presents its evaluation in this report. 2 figs., 34 tabs

  20. Assessment of ISLOCA risk: Methodology and application to a Babcock and Wilcox nuclear power plant

    International Nuclear Information System (INIS)

    Galyean, W.J.; Gertman, D.I.

    1992-04-01

    This report presents information essential to understanding the risk associated with inter-system loss-of-coolant accidents (ISLOCAs). The methodology developed and presented in the report provides a state-of-the-art method for identifying and evaluating plant-specific hardware design, human performance issues, and accident consequence factors to relevant to the prediction of the ISLOCA risk. This ISLOCA methodology was developed and then applied to a Babcock and Wilcox (B ampersand W) nuclear power plants. The results from this application are described in detail. For this particular B ampersand W reference plant, the assessment indicated that the probability of a severe ISLOCA is approximately 2.2E-06/reactor-year. This document Volume 3 provides appendices A--H of the report. Topics are: Historical experience related to ISLOCA events; component failure rates; reference B ampersand W plant system descriptions; reference B ampersand W plant ISLOCA event trees; Human reliability analysis for the B ampersand W ISLOCA probabilistic risk assessment; thermal hydraulic calculations; bounding core uncovery time calculations; and system rupture probability

  1. Comparison of licensing activities for operating plants designed by Babcock and Wilcox

    International Nuclear Information System (INIS)

    Thoma, J.O.

    1985-01-01

    This report provides a comparison of a number of licensing activities for the operating Babcock and Wilcox (B and W) plants with emphasis on Rancho Seco. The factors selected were a comparison of staff resources expended in FY84, active licensing action reviews, implementation of NUREG-0737 modifications, exemptions to regulations, SALP reports, enforcement actions, and Licensee Event Reports (LERs). The eight licensed operating plants examined are as follows: Arkansas Nuclear One Unit 1 (ANO-1), Crystal River Unit 3, Davis Besse, Oconee Units 1, 2, and 3, Rancho Seco, and Three Mile Island Unit 1 (TMI-1)

  2. Superconducting performance of CEBAF/Cornell prototype cavities fabricated by Babcock and Wilcox

    International Nuclear Information System (INIS)

    Bensiek, W.; Dateo, J.; Hager, J.; Pruitt, W.; Williams, P.; Padamsee, H.

    1987-01-01

    Babcock and Wilcox (B and W) is participating in the development of an industrial production capability for CEBAF superconducting rf accelerator cavities. Five-cell elliptical cavities of the Cornell design (operating frequency 1500 MHz) have been fabricated at B and W and tested at the Cornell Laboratory of Nuclear Studies (LNS). Performance specifications (accelerating field of 5 MeV/m at a residual quality factor of 3 x 10 9 ) have been exceeded by comfortable margins in the first two prototypes. A comparison between the performance of cavities fabricated from niobium of different purities is presented

  3. Summary description of the Babcock and Wilcox integrated nuclear design system

    International Nuclear Information System (INIS)

    Wittkopf, W.A.

    1976-03-01

    The Babcock and Wilcox integrated nuclear design system is divided into three broad areas: basic nuclear data processing, applications data processing, and nuclear design calculations. In basic nuclear data processing, basic nuclear data are collected, evaluated, and processed into a specified fine-energy mesh multigroup data file called a Master Library. In applications data processing, data for selected materials are retrieved from the Master Library and processed into an optimally structured, multigroup Production Library. Using these data and input descriptions of cells or regions, neutron spectra are generated and few-group constants are computed and fitted as a function of fuel burnup, initial enrichment, temperature, etc. In nuclear design calculations, few-group cross-section fits and descriptions of each core region and core geometry are input to a diffusion-depletion program or a nodal program that computes core reactivity, core power distribution, control rod worth, fuel cycle studies, core operating limitations, etc

  4. Health hazard evaluation report No. HETA-81-003-980, Babcock and Wilcox Co. , Milwaukee, Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Zey, J.N.; Ahrenholz, S.; Klemme, J.C.

    1981-10-01

    On October 1, 1980, the National Institute for Occupational Safety and Health (NIOSH) received a request from the International Brotherhood of Boilermakers Union, Local 1849, for a Health Hazard Evaluation of the Babcock and Wilcox Co., Tubular Products Division, Milwaukee, Wisconsin. The request involved the potential for employee exposure to biocides, dispersant and anti-scaling agents as they are added to four separate circulating water systems which cool four annealing furnaces, two reheat furnaces and one air compressor. NIOSH conducted a combined environmental and medical survey at the Milwaukee facility on November 19-20, 1980. While conducting a walk-through survey on November 19, 1980, NIOSH observed that furnace operators working near cooling systems were potentially exposed to cooling system chemicals. The furnace operators were included in employee monitoring on November 20, 1980. All concentrations obtained were below current environmental criteria. Medical interview data suggested that workers may have been exposed to potentially hazardous levels of DMF in the past.

  5. Babcock and Wilcox Owners' Group program: Trip reduction and transient response improvement

    International Nuclear Information System (INIS)

    O'Connor, W.T.; Mercado, A.L.; Ganthner, R.W.

    1989-01-01

    In 1985, the average trip frequency for the industry was 4.3 trips per plant per year while Babcock ampersand Wilcox (B ampersand W)-designed plants had 4.5 trips. In early 1986, the B ampersand W Owners' Group (B ampersand WOG) established goals to reduce trip frequency and improve posttrip transient response. Through the recommendations of the B ampersand WOG Trip Reduction and Transient Response Improvement Program (TR/TRIP) and other utility initiatives, the trip frequency for the B ampersand WOG plants has been on a progressive downward trend and has been consistently below the industry average since 1986. The successful results in trip reduction for the B ampersand WOG plants are shown. The B ampersand WOG has implemented several programs that have resulted in fewer trips per plant. This success can be attributed to the following: (1) a comprehensive program to evaluate each trip and transient for root-cause determination, define corrective actions, share information, and peer reviews; (2) a broad program to review systems and components that contribute to trips and transients, identify specific recommendations to correct deficiencies, utility commitment to implementation, conduct internal monitoring and indirectly exert peer pressure; (3) an awareness of the goals at all levels in the organization coupled with strong executive-level involvement; and (4) timely implementation of recommendations

  6. BABCOCK & WILCOX CYCLONE VITRIFICATION TECHNOLOGY FOR CONTAMINATED SOIL

    Science.gov (United States)

    The Babcock & Wilcox 6 million Btu/hr pilot cyclone furnace was successfully used in a 2-yr Superfund Innovative Technology Evaluation (SITE) Emerging Technology project to melt and vitrify an EPA Synthetic Soil Matrix (SSM) spiked with 7,000 ppm lead, 1,000 ppm cadmium, and 1,5...

  7. Generic evaluation of small break loss-of-coolant accident behavior in Babcock and Wilcox designed 177-FA operating plants

    International Nuclear Information System (INIS)

    1980-01-01

    Slow system depressurization resulting from small break loss-of-coolant accidents (LOCAs) in the reactor coolant system have not, until recently, received detailed analytical study comparable to that devoted to large breaks. Following the TMI-2 accident, the staff had a series of meetings with Babcock and Wilcox (B and W) and the B and W licensees. The staff requested that B and W and the licensees: (1) systematically evaluate plant response for small break loss-of-coolant accidents; (2) address each of the concerns documented in the Michelson report; (3) validate the computer codes used against the TMI-2 accident; (4) extend the break spectrum analysis to very small breaks, giving special consideration to failure of pressurizer valves to close; (5) analyze degraded conditions where AFW is not available; (6) prepare design changes aimed at reducing the probability of loss-of-coolant accidents produced by the failure of a PORV to close; and (7) develop revised emergency procedures for small breaks. This report describes the review of the generic analyses performed by B and W based on the requests stated above

  8. The water treatment in the dual-purpose nuclear plants of Babcock and Wilcox with straight pipes

    International Nuclear Information System (INIS)

    Martynova, O.I.

    1978-01-01

    A report is given on water processing and water chemistry in the dual-purpose nuclear power plants (as compared to the single-purpose nuclear power plants) of Babcock and Wilcox, with flow steam generators with straight pipes. The most important materials, especially regarding their corrosion resistance, and the water composition during 'hot' start-up of the Okonie-I power plant, the quality factors of the feedwater, the water quality factors of the steam generator with fast start-up and the experience with numerous corrosion-caused defects in steam generator pipes are dealt with from the aspect of optimum water processing and successful continuous operation. (HK) [de

  9. Comparison of implementation of selected TMI action plan requirements on operating plants designed by Babcock and Wilcox

    International Nuclear Information System (INIS)

    Thoma, J.O.

    1984-05-01

    This report provides the results of a study conducted by the US Nuclear Regulatory Commission staff to compare the degree to which eight Babcock and Wilcox (B and W) designed licensed nuclear power plants have complied with the requirements in NUREG-0737, Clarification of TMI Action Plan Requirements. The eight licensed operating plants examined are as follows: Arkansas Nuclear One Unit 1 (ANO-1), Crystal River Unit 3, Davis Besse, Oconee Units 1, 2, and 3, Rancho Seco, and Three Mile Island Unit 1 (TMI-1). The purpose of this audit was to establish the progress of the TMI-1 licensee, General Public Utilities (GPU) Nuclear Corporation, in completing the long-term requirements in NUREG-0737 relative to the other B and W licensees examined

  10. Calculation of particulate dispersion in a design-basis tornadic storm from the Babcock and Wilcox Plant, Leechburg, Pennsylvania

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1978-03-01

    A three-dimensional numerical model is used to calculate ground-level air concentration and deposition (due to precipitation scavenging) after a hypothetical tornado strike at the Babcock and Wilcox Plutonium Fabrication Facility at Leechburg, Pennsylvania. Plutonium particles lss than 20 μm in diameter are assumed to be lifted into the tornadic storm cell by the vortex. The rotational characteristics of the tornadic storm are embedded within the larger mesoscale flow of the storm system. The design-basis translational wind values are based on probabilities associated with existing records of tornado strikes in the vicinity of the plant site. Turbulence exchange coefficients are based on empirical values deduced from experimental data in severe storms and from theoretical assumptions obtained from the literature. The quasi-Lagrangian method of moments is used to model the transport of concentration within a grid cell volume

  11. McMunn, et al. v. Babcock and Wilcox Power Generation Group, Inc., et al.: The long road to dismissal

    International Nuclear Information System (INIS)

    Berger, Marjorie

    2016-01-01

    McMunn, et al. v Babcock and Wilcox Power Generation Group, Inc., et al. was one of 17 related public liability actions filed between 2010 and 2015 by individuals living and/or working in the vicinity of two former fuel fabrication facilities who alleged that releases of radioactive materials from those facilities contaminated the air, soil, surface water and groundwater in the surrounding communities, causing them personal injury and property damage. The plaintiffs in all 17 cases claimed they had contracted various cancers and their property was contaminated with uranium. Plaintiffs brought their claims pursuant to the Price-Anderson Amendments Act (PAA) and the Atomic Energy Act of 1954, as amended (AEA), and also asserted related state law claims of negligence, negligence per se, strict liability, civil conspiracy, and wrongful death and survival. The defendants, Babcock and Wilcox Power Generation Group, Inc., B and W Technical Services, Inc. and Atlantic Richfield Company (ARCO), were unrelated companies who, at different times, owned and operated those facilities. The PAA, which became law on 2 September 1957, is a federal statute that governs claims for personal injury and property damage 'arising from the activities of NRC licensees and DOE contractors'. These claims are defined in the PAA as public liability actions. In order to prevail in a public liability action, plaintiffs must establish through expert evidence that the defendants released radiation into the environment in excess of the limits then permitted by federal regulations and that the plaintiffs were exposed to those releases. They must also establish that their respective exposures to radionuclides were capable of causing their illnesses and that the doses of radiation they received did in fact cause their illnesses

  12. Babcock and Wilcox Safety Anaysis Report (B-SAR-205). Volume 1

    International Nuclear Information System (INIS)

    1976-01-01

    The design of the BW-205 standard reactor with a plant output of 1295 and 1200 MW(e) is described. The reactor is arranged in two closed coolant loops connected in parallel to the reactor vessel, and is controlled by a coordinated combination of chemical shim and mechanical control rods. The coolant serves as a neutron moderator, reflector, and solvent for the soluble boron used in chemical shim reactivity control. The fuel elements consist of slightly enriched UO 2 pellets enclosed in zircaloy tubes

  13. Compact Process Development at Babcock & Wilcox

    Energy Technology Data Exchange (ETDEWEB)

    Eric Shaber; Jeffrey Phillips

    2012-03-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of compaction trials have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel at packing fractions exceeding 46% by volume. Results from these trials are included. The scale-up effort is nearing completion with the process installed and operable using nuclear fuel materials. Final process testing is in progress to certify the process for manufacture of qualification test fuel compacts in 2012.

  14. Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-02-01

    This Preliminary Design Report (PDR) provides a detailed description of the design, analyses, and testing programs for the BR-100 cask. The BR-100 is a Type B(U) cask designed for transport by rail or barge. This report presents the preliminary analyses and tests which have been performed for the BR-100 and outlines the confirmatory analyses and tests which will be performed.

  15. Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    International Nuclear Information System (INIS)

    1990-02-01

    This Preliminary Design Report (PDR) provides a detailed description of the design, analyses, and testing programs for the BR-100 cask. The BR-100 is a Type B(U) cask designed for transport by rail or barge. This report presents the preliminary analyses and tests which have been performed for the BR-100 and outlines the confirmatory analyses and tests which will be performed

  16. Environmental consequences of postulated plutonium releases from the Babcock and Wilcox Plant, Leechburg, Pennsylvania, as a result of severe natural phenomena

    International Nuclear Information System (INIS)

    McPherson, R.B.; Watson, E.C.

    1979-03-01

    Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases accidently caused by severe natural phenomena at the Babcock and Wilcox plant, Leechburg, Pennsylvania. The severe natural phenomena considered are earthquakes, tornadoes, high straight-line winds, and floods. Maximum plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values most likely to occur at the site boundary are also given. The most likely calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited at the site boundary following Earthquake No. 3, the 110-mph and 130-mph winds, and the 130 mph tornado are above the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 μCi/m 2

  17. Preliminary design report: Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    International Nuclear Information System (INIS)

    1990-02-01

    The purpose of this document is to provide information on burnup credit as applied to the preliminary design of the BR-100 shipping cask. There is a brief description of the preliminary basket design and the features used to maintain a critically safe system. Following the basket description is a discussion of various criticality analyses used to evaluate burnup credit. The results from these analyses are then reviewed in the perspective of fuel burnups expected to be shipped to either the final repository or a Monitored Retrievable Storage (MRS) facility. The hurdles to employing burnup credit in the certification of any cask are then outlines and reviewed. the last section gives conclusions reached as to burnup credit for the BR-100 cask, based on our analyses and experience. All information in this study refers to the cask configured to transport PWR fuel. Boiling Water Reactor (BWR) fuel satisfies the criticality requirements so that burnup credit is not needed. All calculations generated in the preparation of this report were based upon the preliminary design which will be optimized during the final design. 8 refs., 19 figs., 16 tabs

  18. An Analysis of the Corporate Merger between the Babcock & Wilcox Co. and J. Ray Mcdermott & Co., Inc.

    Science.gov (United States)

    1980-09-01

    United States’ attempt to lessen their dependence on imported oil. The world’s tallest and heaviest steel platform, the Cognac platform, was recently...field of the Gulf in 1981. This jacket’s height will be second only to Cognac . 2. Middle East The Middle East’s operations have been active, but not

  19. Babcock and Wilcox revisions to CONTEMPT, computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Hsii, Y.H.

    1975-01-01

    The CONTEMPT computer program predicts the pressure-temperature response of a single-volume reactor building to a loss-of-coolant accident. The analytical model used for the program is described. CONTEMPT assumes that the loss-of-coolant accident can be separated into two phases; the primary system blowdown and reactor building pressurization. The results of the blowdown analysis serve as the boundary conditions and are input to the CONTEMPT program. Thus, the containment model is only concerned with the pressure and temperature in the reactor building and the temperature distribution through the reactor building structures. The program also calculates building leakage and the effects of engineered safety features such as reactor building sprays, decay heat coolers, sump coolers, etc. 11 references. (U.S.)

  20. In core measurement and monitoring of reactor (neutron) radiation field

    International Nuclear Information System (INIS)

    Erben, O.

    1985-01-01

    A survey is presented of in core radiation detectors. The principles are described of activation detectors, fission chambers, self-powered neutron detectors and thermal sensors. Systems of in core measurement for WWER nuclear power plants, nuclear reactors of power plants operated by KWU, Babcock and Wilcox, Combustion Engineering and FRAMATOME are described. (E.S.)

  1. Report of the Bulletins and Orders Task Force. Volume II. Appendices

    International Nuclear Information System (INIS)

    1980-01-01

    Appendices include: Office of Inspection and Enforcement bulletins; NRR status report on feedwater transients in BWR plants; orders on Babcock and Wilcox Company plants; letters lifting orders; letters issuing auxiliary feedwater system requirements; letter to licensees of all operating reactors, dated October 30, 1979 concerning short-term lessons learned requirements; and letters approving guidelines for preparation of small-break LOCA operating procedures

  2. Potentiometric surfaces and water-level trends in the Cockfield (upper Claiborne) aquifer in southern Arkansas and the Wilcox (lower Wilcox) aquifer of northeastern and southern Arkansas, 2012

    Science.gov (United States)

    Rodgers, Kirk D.

    2015-01-01

    The Cockfield aquifer, located in southern Arkansas, is composed of Eocene-age sand beds found near the base of the Cockfield Formation of Claiborne Group. The Wilcox aquifer, located in northeastern and southern Arkansas, is composed of Paleocene-age sand beds found in the middle to lower part of the Wilcox Group. The Cockfield and Wilcox aquifers are primary sources of groundwater. In 2010, withdrawals from the Cockfield aquifer in Arkansas totaled 19.2 million gallons per day (Mgal/d), and withdrawals from the Wilcox aquifer totaled 36.5 Mgal/d.

  3. Reactor protection system design using micro-computers

    International Nuclear Information System (INIS)

    Fairbrother, D.B.

    1976-01-01

    Reactor protection systems for nuclear power plants have traditionally been built using analog hardware. This hardware works quite well for single parameter trip functions; however, optimum protection against DNBR and KW/ft limits requires more complex trip functions than can easily be handled with analog hardware. For this reason, Babcock and Wilcox has introduced a Reactor Protection System, called the RPS-II, that utilizes a micro-computer to handle the more complex trip functions. The paper describes the design of the RPS-II and the operation of the micro-computer within the Reactor Protection System

  4. Reactor protection system design using micro-computers

    International Nuclear Information System (INIS)

    Fairbrother, D.B.

    1977-01-01

    Reactor Protection Systems for Nuclear Power Plants have traditionally been built using analog hardware. This hardware works quite well for single parameter trip functions; however, optimum protection against DNBR and KW/ft limits requires more complex trip functions than can easily be handled with analog hardware. For this reason, Babcock and Wilcox has introduced a Reactor Protection System, called the RPS-II, that utilizes a micro-computer to handle the more complex trip functions. This paper describes the design of the RPS-II and the operation of the micro-computer within the Reactor Protection System

  5. Research reactor standards and their impact on the TRIGA reactor community

    International Nuclear Information System (INIS)

    Richards, W.J.

    1980-01-01

    The American Nuclear Society has established a standards committee devoted to writing standards for research reactors. This committee was formed in 1971 and has since that time written over 15 standards that cover all aspects of research reactor operation. The committee has representation from virtually every group concerned with research reactors and their operation. This organization includes University reactors, National laboratory reactors, Nuclear Regulatory commission, Department of Energy and private nuclear companies and insurers. Since its beginning the committee has developed standards in the following areas: Standard for the development of technical specifications for research reactors; Quality control for plate-type uranium-aluminium fuel elements; Records and reports for research reactors; Selection and training of personnel for research reactors; Review of experiments for research reactors; Research reactor site evaluation; Quality assurance program requirements for research reactors; Decommissioning of research reactors; Radiological control at research reactor facilities; Design objectives for and monitoring of systems controlling research reactor effluents; Physical security for research reactor facilities; Criteria for the reactor safety systems of research reactors; Emergency planning for research reactors; Fire protection program requirements for research reactors; Standard for administrative controls for research reactors. Besides writing the above standards, the committee is very active in using communications with the nuclear regulatory commission on proposed rules or positions which will affect the research reactor community

  6. Accident at the Three Mile Island Nuclear Powerplant. Part 1. Oversight hearings before a task force of the Subcommittee on Energy and the Environment of the Committee on Interior and Insular Affairs, House of Representatives, Ninety-Sixth Congress

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The Committee on Interior and Insular Affairs conducted an informal review of the accident beginning on March 28, 1979 at the Three Mile Island Nuclear Power Plant. Officials of the Nuclear Regulatory Commission, plant operating personnel employed by General Public Utilities, and representatives of the reactor manufacturer, Babcock and Wilcox Company, related their activities during the accident and their analyses of the sequence of events

  7. Howard Wilcox Haggard and the Institutionalization of Modern Alcohol Studies.

    Science.gov (United States)

    Allred, Nicholas; Bejarano, William; Ward, Judit

    2017-03-01

    This biographical sketch and accompanying bibliography provide a new look at Howard Wilcox Haggard, M.D., Ph.D., whose career highlights the consolidation of alcohol studies as a field in twentieth-century America. The article relies in large part on the works of Haggard assembled for the bibliography project, supplemented by published and unpublished documents and records from collections at Rutgers University. Haggard began his career in respiratory physiology, influenced by his work on chemical weapons for the Army during the First World War. As his reputation grew, he moved into anesthesiology and supplemented his research with textbooks and popular science bestsellers. Haggard moved into the burgeoning field of alcohol studies after the repeal of National Prohibition and, in 1940, became the inaugural editor and president of the corporation of the Quarterly Journal of Studies on Alcohol, now the Journal of Studies on Alcohol and Drugs. Under the aegis of the Yale Laboratory for Applied Physiology, he also assembled and oversaw what would become the Center of Alcohol Studies. Haggard died in 1959, his legacy established as a central figure in the 20th-century transformation of alcohol studies in the United States. A prolific researcher with a talent for tapping into the public zeitgeist, Haggard helped provide the institutional infrastructure, academic credibility, and broad audience that made the renaissance of alcohol studies in post-Prohibition America possible.

  8. Selection, training, qualification and licensing of Three Mile Island reactor operating personnel

    International Nuclear Information System (INIS)

    Eytchison, R.M.

    1980-01-01

    The various programs which were intended to staff Three Mile Island with competent, trained operators and supervisors are reviewed. The analysis includes a review of the regulations concerning operator training and licensing, and describes how the requirements were implemented by the NRC, Metropolitan Edison Company, and Babcock and Wilcox Company. Finally the programs conducted by these three organisations are evaluated. (U.K.)

  9. Hydrogeologic characteristics and water levels of Wilcox aquifer in southwestern and northeastern Arkansas

    Science.gov (United States)

    Pugh, Aaron L.; Schrader, Tony P.

    2009-01-01

    The Wilcox Group of Eocene and Paleocene age is located throughout most of southern and eastern Arkansas. The Wilcox Group in southern Arkansas is undifferentiated, while in northeastern Arkansas, the Wilcox Group is subdivided into three units: Flour Island, Fort Pillow Sand, and Old Breastworks Formation. The Wilcox Group crops out in southwestern Arkansas in discontinuous, 1 to 3 mi wide bands. In northeastern Arkansas, the Wilcox Group crops out along a narrow, discontinuous, band along the western edge of Crowleys Ridge. The Wilcox aquifer provides sources of groundwater in southwestern and northeastern Arkansas. In 2005, reported withdrawals from the Wilcox aquifer in Arkansas totaled 27.0 million gallons per day, most of which came from the northeastern area. Major withdrawals from the aquifer were for public supplies with lesser but locally important withdrawals for commercial, domestic, and industrial uses. A study was conducted by the U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey to determine the water levels associated with the Wilcox aquifer in southwestern and northeastern Arkansas. During February 2009, 58 water-level measurements were made in wells completed in the Wilcox aquifer. The results from this study and previous studies are presented as potentiometric-surface maps, water-level difference maps, and long-term hydrographs. The direction of groundwater flow in the southwestern area is affected by two potentiometric-surface mounds, one in the north and the other in the southwest, and a cone of depression in the center. The direction of water flowing off of the northern mound of water is generally to the south and east with some to the north. The direction of water flowing off of the southwestern mound is generally to the south and east. The direction of water flowing into the cone of depression is generally from the north, west, and south. The direction of groundwater flow

  10. Spent fuel working group report on inventory and storage of the Department's spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities

    International Nuclear Information System (INIS)

    1993-11-01

    In a memo dated 19 August 1993, Secretary O'Leary assigned the Office of Environment, Safety and Health the primary responsibility to identify, characterize, and assess the safety, health, and environmental vulnerabilities of the DOE's existing storage conditions and facilities for the storage of irradiated reactor fuel and other reactor irradiated nuclear materials. This volume is divided into three major sections. Section 1 contains the Working Group Assessment Team reports on the following facilities: Hanford Site, INEL, SRS, Oak Ridge Site, West Valley Site, LANL, BNL, Sandia, General Atomics (San Diego), Babcock ampersand Wilcox (Lynchburg Technology Center), and ANL. Section 2 contains the Vulnerability Development Forms from most of these sites. Section 3 contains the documents used by the Working Group in implementing this initiative

  11. Evaluation of B&W UO2/ThO2 VIII experimental core: criticality and thermal disadvantage factor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Carlo Parisi; Emanuele Negrenti

    2017-02-01

    In the framework of the OECD/NEA International Reactor Physics Experiment (IRPHE) Project, an evaluation of core VIII of the Babcock & Wilcox (B&W) Spectral Shift Control Reactor (SSCR) critical experiment program was performed. The SSCR concept, moderated and cooled by a variable mixture of heavy and light water, envisaged changing of the thermal neutron spectrum during the operation to encourage breeding and to sustain the core criticality. Core VIII contained 2188 fuel rods with 93% enriched UO2-ThO2 fuel in a moderator mixture of heavy and light water. The criticality experiment and measurements of the thermal disadvantage factor were evaluated.

  12. ASTM Standards for Reactor Dosimetry and Pressure Vessel Surveillance

    International Nuclear Information System (INIS)

    GRIFFIN, PATRICK J.

    1999-01-01

    The ASTM standards provide guidance and instruction on how to field and interpret reactor dosimetry. They provide a roadmap towards understanding the current ''state-of-the-art'' in reactor dosimetry, as reflected by the technical community. The consensus basis to the ASTM standards assures the user of an unbiased presentation of technical procedures and interpretations of the measurements. Some insight into the types of standards and the way in which they are organized can assist one in using them in an expeditious manner. Two example are presented to help orient new users to the breadth and interrelationship between the ASTM nuclear metrology standards. One example involves the testing of a new ''widget'' to verify the radiation hardness. The second example involves quantifying the radiation damage at a pressure vessel critical weld location through surveillance dosimetry and calculation

  13. ASTM Standards for Reactor Dosimetry and Pressure Vessel Surveillance

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN, PATRICK J.

    1999-09-14

    The ASTM standards provide guidance and instruction on how to field and interpret reactor dosimetry. They provide a roadmap towards understanding the current ''state-of-the-art'' in reactor dosimetry, as reflected by the technical community. The consensus basis to the ASTM standards assures the user of an unbiased presentation of technical procedures and interpretations of the measurements. Some insight into the types of standards and the way in which they are organized can assist one in using them in an expeditious manner. Two example are presented to help orient new users to the breadth and interrelationship between the ASTM nuclear metrology standards. One example involves the testing of a new ''widget'' to verify the radiation hardness. The second example involves quantifying the radiation damage at a pressure vessel critical weld location through surveillance dosimetry and calculation.

  14. Using FARIS [Fuel Assembly Repair and Inspection Station] for assembly clean-up and debris removal

    International Nuclear Information System (INIS)

    Tucker, J.S.; Sapyta, J.J.

    1990-01-01

    Because fuel inspection and repair tasks are commonly done on the critical path during plant refuelling outages, they must be completed quickly and efficiently with minimal costs. To fulfil these demands, the Babcock and Wilcox Fuel Company has designed a Fuel Assembly Repair and Inspection Station (FARIS) for fuel assembly clean-up and debris removal in Pressurized Water Reactors. The system is portable and can also be used for carrying out visual inspections on fuel assemblies, spacer grid repair, fuel rod oxide thickness measurements and for fuel rod water channel inspections. (author)

  15. Pressurized-water-reactor station blackout

    International Nuclear Information System (INIS)

    Dobbe, C.A.

    1983-01-01

    The purpose of the Severe Accident Sequence Analysis (SASA) Program was to investigate accident scenarios beyond the design basis. The primary objective of SASA was to analyze nuclear plant transients that could lead to partial or total core melt and evaluate potential mitigating actions. The following summarizes the pressurized water reactor (PWR) SASA effort at the Idaho National Engineering Laboratory (INEL). The INEL is presently evaluating Unresolved Safety Issue A-44 - Station Blackout from initiation of the transient to core uncovery. The balance of the analysis from core uncovery until fission product release is being performed at Sandia National Laboratory (SNL). The current analyses involve the Bellefonte Nuclear Steam Supply System (NSSS), a Babcock and Wilcox (B and W) 205 Fuel Assembly (205-FA) raised loop design to be operated by the Tennessee Valley Authority

  16. Neutron standard cross sections in reactor physics - Need and status

    International Nuclear Information System (INIS)

    Carlson, A.D.

    1990-01-01

    The design and improvement of nuclear reactors require detailed neutronics calculations. These calculations depend on comprehensive libraries of evaluated nuclear cross sections. Most of the cross sections that form the data base for these evaluations have been measured relative to neutron cross-section standards. The use of these standards can often simplify the measurement process by eliminating the need for a direct measurement of the neutron fluence. The standards are not known perfectly, however; thus the accuracy of a cross-section measurement is limited by the uncertainty in the standard cross section relative to which it is measured. Improvements in a standard cause all cross sections measured relative to that standard to be improved. This is the reason for the emphasis on improving the neutron cross-section standards. The continual process of measurement and evaluation has led to improvements in the accuracy and range of applicability of the standards. Though these improvements have been substantial, this process must continue in order to obtain the high-quality standards needed by the user community

  17. IAEA safety standards and approach to safety of advanced reactors

    International Nuclear Information System (INIS)

    Gasparini, M.

    2004-01-01

    The paper presents an overview of the IAEA safety standards including their overall structure and purpose. A detailed presentation is devoted to the general approach to safety that is embodied in the current safety requirements for the design of nuclear power plants. A safety approach is proposed for the future. This approach can be used as reference for a safe design, for safety assessment and for the preparation of the safety requirements. The method proposes an integration of deterministic and risk informed concepts in the general frame of a generalized concept of safety goals and defence in depth. This methodology may provide a useful tool for the preparation of safety requirements for the design and operation of any kind of reactor including small and medium sized reactors with innovative safety features.(author)

  18. SRAC: JAERI thermal reactor standard code system for reactor design and analysis

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro; Takano, Hideki; Horikami, Kunihiko; Ishiguro, Yukio; Kaneko, Kunio; Hara, Toshiharu.

    1983-01-01

    The SRAC (Standard Reactor Analysis Code) is a code system for nuclear reactor analysis and design. It is composed of neutron cross section libraries and auxiliary processing codes, neutron spectrum routines, a variety of transport, 1-, 2- and 3-D diffusion routines, dynamic parameters and cell burn-up routines. By making the best use of the individual code function in the SRAC system, the user can select either the exact method for an accurate estimate of reactor characteristics or the economical method aiming at a shorter computer time, depending on the purpose of study. The user can select cell or core calculation; fixed source or eigenvalue problem; transport (collision probability or Sn) theory or diffusion theory. Moreover, smearing and collapsing of macroscopic cross sections are separately done by the user's selection. And a special attention is paid for double heterogeneity. Various techniques are employed to access the data storage and to optimize the internal data transfer. Benchmark calculations using the SRAC system have been made extensively for the Keff values of various types of critical assemblies (light water, heavy water and graphite moderated systems, and fast reactor systems). The calculated results show good prediction for the experimental Keff values. (author)

  19. Nuclear plant-aging research on reactor protection systems

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed

  20. Fusion reactor design studies: standard unit costs and cost scaling rules

    International Nuclear Information System (INIS)

    Schulte, S.C.; Bickford, W.E.; Willingham, C.E.; Ghose, S.K.; Walker, M.G.

    1979-09-01

    This report establishes standard unit costs and scaling rules for estimating costs of material, equipment, land, and labor components used in magnetic confinement fusion reactor plant construction and operation. Use of the standard unit costs and scaling rules will add uniformity to cost estimates, and thus allow valid comparison of the economic characteristics of various reactor concepts

  1. Qualification of the B and W Mark B fuel assembly for high burnup. First semi-annual progress report, July-December 1978

    International Nuclear Information System (INIS)

    Coleman, T.A.; Coppola, E.J.; Doss, P.L.; Uotinen, V.O.; Davis, H.H.

    1979-08-01

    Five Babcock and Wilcox standard Mark B (15 x 15) fuel assemblies are being irradiated in Duke Power Company's Oconee Unit 1 reactor under a research and development program sponsored by the U.S. Department of Energy. Valuable experimental data on fuel performance characteristics at burnups of > 40,000 MWd/mtU will be obtained from these assemblies. This information, at a duty approximately 20% greater than that achieved by typical discharged assemblies, will be used to qualify standard Mark B fuel assemblies for extended burnups. Efforts during this period included fuel cycle design and reload licensing of Oconee 1 for cycle 5, in which the assemblies are being irradiated, and nondestructive examination of the assemblies during the refueling outage between cycles 4 and 5. The Oconee 1 cycle 5 startup tests proceeded in a routine manner, and the reactor has operated with a 92% capacity factor since completion of power escalation testing on November 10, 1978. Irradiation of the fuel assemblies is currently in progress

  2. In-vessel inspection before head removal: TMI II, Phase III (tooling and systems design and verification)

    International Nuclear Information System (INIS)

    Carter, G.S.; Ryan, R.F.; Pieleck, A.W.; Bibb, H.Q.

    1982-09-01

    Under EG and G contract K-9003 to General Public Utilities Corporation, a Task Order was assigned to Babcock and Wilcox to develop and provide equipment to facilitate early assessment of core damage in the Three Mile Island Unit 2 reactor vessel head. Described is the work performed, the equipment developed, and the tests conducted with this equipment on various mockups used to simulate the constraints inside and outside the reactor vessel that affect the performance of the inspection. The tooling developed provides several methods of removing a few control rod drive leadscrews from the reactor, thereby providing paths into which cameras and lights may be inserted to permit video viewing of many potentially damaged areas in the reactor vessel. The tools, equipment, and cameras demonstrated that these tasks could be accomplished

  3. Obituary: Horace Welcome Babcock, 1912-2003

    Science.gov (United States)

    Vaughan, Arthur Harris

    2003-12-01

    sunspot cycles. Until about 1957 this work had been done at the Hale Solar Laboratory on Holladay Road in Pasadena. Improved models of the magnetograph developed by Robert F. Howard, in collaboration with Horace, went into operation in the 150-foot solar tower telescope at Mount Wilson in 1959 and later, and similar instruments are now employed at many other solar observatories. In 1961 Horace proposed an explanation of the Sun's 22-year magnetic cycle that contained many of the features still embodied in contemporary theoretical models of the phenomenon. The advance in our understanding of solar and stellar magnetism brought forth by Horace Babcock is a worthy sequel to the pioneering efforts initiated by George E. Hale early in the twentieth century. Faced with the growing obsolescence of the Carnegie Institution of Washington's facilities at Mount Wilson along with the competition from Caltech's 200-inch telescope, the Carnegie Trustees in 1963 adopted the idea of founding a major observatory in the Southern Hemisphere as its master plan for modernizing the astronomical facilities of the Institution. Upon becoming Director of the Mount Wilson and Palomar Observatories in 1964, Horace Babcock embraced the job of carrying out this plan, although it meant giving up his own science. Beginning in 1963, and with his usual ingenuity, Horace developed apparatus for measuring astronomical ``seeing." In collaboration with John Irwin and others, he carried out site surveys in Chile, Australia and New Zealand with the aim of selecting the best available location for the anticipated array of large telescopes. Some five years of exploration led, in 1968, to the selection and purchase of a 276 square-kilometer tract on Cerro Las Campanas in north central Chile as the site for the new observatory. Babcock and Irwin had first climbed to its summit, on foot, in October 1966. The team Horace assembled to build the observatory and its infrastructure proved equal to the high standards he

  4. Spent fuel working group report on inventory and storage of the Department's spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities

    International Nuclear Information System (INIS)

    1993-11-01

    Each Site Team, consisting of M ampersand O contractor and Operations Office personnel, performed data collection and identified ES ampersand H concerns relative to RINM storage by preparing responses to the detailed question set for each storage facility at the site. These responses formed the basis for the Site Team reports. These reports are contained in this volume and are from the following facilities: Hanford Site, Idaho National Engineering Laboratory Site, Savannah River Site, Oak Ridge Site, West Valley Demonstration Project Site, Los Alamos National Laboratory, Brookhaven National Laboratory, Sandia National Laboratories, General Atomics, San Diego, Babcock ampersand Wilcox, Lynchburg Technical Center, Argonne National Laboratory - East, Naval Reactors Facilities, Rocky Flats Critical Mass Laboratory, EG ampersand G Mound Applied Technologies, Ohio, Lawrence Berkeley Laboratory, and Battelle Columbus Laboratory. This volume also contains information received from the sites that were not visited. These sites include the Naval Reactor Facility at the INEL, EG ampersand G Mound Applied Technologies, The Catholic University of America, Rocky Flats Site, Lawrence Livermore National Laboratory, Stanford Linear Accelerator Laboratory, Energy Technology Engineering Center, and Lawrence Berkeley Laboratory. Information received through the Chicago Operations Office for University Reactors, Massachusetts Institute of Technology, and Battelle Columbus Laboratory is also included. Materials contained in this volume consist of information, data and site documents. They are unedited

  5. IAEA safety standards for research reactors

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    The general structure of the IAEA Safety Standards and the process for their development and revision are briefly presented and discussed together with the progress achieved in the development of Safety Standards for research reactor. These documents provide the safety requirements and the key technical recommendations to achieve enhanced safety. They are intended for use by all organizations involved in safety of research reactors and developed in a way that allows them to be incorporated into national laws and regulations. The author reviews the safety standards for research reactors and details their specificities. There are 4 published safety standards: 1) Safety assessment of research reactors and preparation of the safety analysis report (35-G1), 2) Safety in the utilization and modification of research reactors (35-G2), 3) Commissioning of research reactors (NS-G-4.1), and 4) Maintenance, periodic testing and inspection of research reactors (NS-G-4.2). There 5 draft safety standards: 1) Operational limits and conditions and operating procedures for research reactors (DS261), 2) The operating organization and the recruitment, training and qualification of personnel for research reactors (DS325), 3) Radiation protection and radioactive waste management in the design and operation of research reactors (DS340), 4) Core management and fuel handling at research reactors (DS350), and 5) Grading the application of safety requirements for research reactors (DS351). There are 2 planned safety standards, one concerning the ageing management for research reactor and the second deals with the control and instrumentation of research reactors

  6. Inspection technology of Korean standard Reactor vessel

    International Nuclear Information System (INIS)

    Doh, Euisoon

    2002-01-01

    This paper is for the inspection technology of Korean standard Reactor vessel. KPS performed Korean standard Reactor vessel inspection for a part of Yonggwang unit 5 and full inspection of Yonggwang unit 6 on November in 2001. Korean standard Reactor vessel is different from Westinghouse and Framatome plants in design and material. Understanding design, structure and material is very important to prepare and to perform Reactor vessel inspection. Korean standard Reactor vessel has 6 Stabilizer lugs, 6 Core stop lugs and one Flow Baffle around Lower head to Bottom head weld(G4). They make very difficult to perform scanning of G4 by transducers and to install Lower Platform of robot system. Korean standard Reactor vessel has 2 Outlet Nozzles, 4 Inlet Nozzles and small curvature of Inner Radius regions. That small curvature's Inner Radius region needs a special technology to perform the area more than 90% of whole examination volume. The most significant difference of Korean standard Reactor vessel is that it does not have Safe End region because both of Reactor vessel and main reactor coolant system piping are carbon steel. Therefore, the technology for this nozzle to piping weld is very unique to be compared with other Westinghouse or Framatome plants. Described above, the inspection technology of Korean standard Reactor Vessel is very different from other Reactor Vessel due to different internal structure and material. The company which performs this 10 years ISI in future will need much investigation of structure and material to succeed in Reactor vessel inspection of Korean standard plant

  7. IAEA Workshop (Training Course) on Codes and Standards for Sodium Cooled Fast Reactors. Working Material

    International Nuclear Information System (INIS)

    2010-01-01

    The training course consisted of lectures and Q&A sessions. The lectures dealt with the history of the development of Design Codes and Standards for Sodium Cooled Fast Reactors (SFRs) in the respective country, the detailed description of the current design Codes and Standards for SFRs and their application to ongoing Fast Reactor design projects, as well as the ongoing development work and plans for the future in this area. Annex 1 contains the detailed Workshop program

  8. Standard interface files and procedures for reactor physics codes. Version IV

    International Nuclear Information System (INIS)

    O'Dell, R.D.

    1977-09-01

    Standards, procedures, and recommendations of the Committee on Computer Code Coordination for promoting the exchange of reactor physics codes are updated to Version IV status. Standards and procedures covering general programming, program structure, standard interface files, and file management and handling subroutines are included

  9. Conversion and standardization of US university reactor fuels using LEU, status 1989

    International Nuclear Information System (INIS)

    Brown, K.R.; Matos, J.E.

    1989-01-01

    In 1986, the US Department of Energy initiated a program to change the fuel used in most of the US university research reactors using HEU (93%) to LEU(<20%) in order to minimize the risk of theft or diversion of this weapons-useable material. An important consideration in the LEU conversion planning process has been the desire to standardize the fuels that are used and to enhance the performance and utilization of the reactors. This paper describes the current status of this conversion process and the plans and schedules to complete an orderly transition from HEU to LEU fuel in most of these reactors. To date, three university reactors have been converted to LEU fuel, completed safety documentation for three reactors is being evaluated by the USNRC, and work on the safety documentation for six reactors is in progress. 13 refs., 9 tabs

  10. U.S. regulatory requirements for nuclear plant license renewal: The B and W Owners Group License Renewal Program

    International Nuclear Information System (INIS)

    Staudinger, Deborah K.

    2004-01-01

    This paper discusses the current U.S. Regulatory Requirements for License Renewal and describes the Babcock and Wilcox Owners Group (B and WOG) Generic License Renewal Program (GLRP). The B and W owners, recognizing the need to obtain the maximum life for their nuclear generating units, embarked on a program to renew the licenses of the seven reactors in accordance with the requirements of the Atomic Energy Act of 1954 and further defined by Title 10 of the Code of Federal Regulation Part 54 (10 CFR 54). These reactors, owned by five separate utilities, are Pressurized Water Reactors (PWR) ranging in net rated capacity from approximately 800 to 900 MW. The plants, predominately constructed in the 70s, have USNRC Operating Licenses that expire between 2013 to 2017. (author)

  11. A reexamination of the North American Crepis agamic complex and comparison with the findings of Babcock and Stebbins' classic biosystematic monograph.

    Science.gov (United States)

    Sears, Christopher J; Whitton, Jeannette

    2016-07-01

    Babcock and Stebbins coined the term agamic complex in their 1938 monograph of the North American Crepis agamic complex. Despite the historical role that this complex holds in the evolutionary literature, it has not been reexamined in over 75 years. We present a thorough reevaluation of the complex to test hypotheses proposed by Babcock and Stebbins about its origins and spread, the relationships of diploids, and the nature and origins of polyploids. We used flow cytometry to infer ploidy of roughly 600 samples spanning the morphological and taxonomic diversity of the complex and a phylogenetic analysis of plastid DNA variation to infer maternal relationships among diploids and to infer maternal origins of polyploids. We identified populations of all seven recognized diploids plus one new lineage. Phylogenetic analysis of plastid DNA variation in diploids revealed a well-resolved, but moderately supported phylogeny, with evidence for monophyly of the North America Crepis agamic complex and no evidence of widespread homoploid hybridization. Polyploids showed evidence of multiple origins and a pattern of frequent local co-occurrence consistent with repeated colonization of suitable sites. Our findings agree broadly with the distribution and variation of ploidy within and among species described by Babcock and Stebbins. One key difference is finding support for monophyly of North American species, and refuting their hypothesis of polyphyly. Our results provide an explicit phylogenetic framework for further study of this classic agamic complex. © 2016 Botanical Society of America.

  12. Program to determine in-reactor performance of B and W fuels. Cladding creep collapse

    International Nuclear Information System (INIS)

    Eckert, A.F.J.; Wilson, H.W.; Yoon, K.E.

    1975-01-01

    An analytical procedure is described along with the experimental data developed by Babcock and Wilcox (B and W) to determine the minimum time to collapse for B and W fuel cladding under operating conditions. The resultant computer code is referred to as CROV. The analytical procedure was developed from the engineering principles of shell theory. The experimental data consisted of two types. One type of data was employed to develop empirical creep constants applicable to B and W fuel cladding. The other type of data provided an experimental comparison for the ovalities and collapse times predicted by CROV. 9 references. (U.S.)

  13. Conversion and standardization of university reactor fuels using low-enrichment uranium: Plans and schedules

    International Nuclear Information System (INIS)

    Young, H.H.; Brown, K.R.; Matos, J.E.

    1986-01-01

    The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. To minimize this risk, the US Nuclear Regulatory Commission issued its final rule on ''Limiting the Use of Highly Enriched Uranium in Domestically Licensed Research and Test Reactors,'' in February 1986. This paper describes the plans and schedules developed by the US Department of Energy to coordinate an orderly transition from HEU to LEU fuel in most of these reactors. An important element in the planning process has been the desire to standardize the LEU fuels used in US university reactors and to enhance the performance and utilization of a number of these reactors. The program is estimated to cost about $10 million and to last about five years

  14. Geologic assessment of undiscovered conventional oil and gas resources in the Lower Paleogene Midway and Wilcox Groups, and the Carrizo Sand of the Claiborne Group, of the Northern Gulf coast region

    Science.gov (United States)

    Warwick, Peter D.

    2017-09-27

    The U.S. Geological Survey (USGS) recently conducted an assessment of the undiscovered, technically recoverable oil and gas potential of Tertiary strata underlying the onshore areas and State waters of the northern Gulf of Mexico coastal region. The assessment was based on a number of geologic elements including an evaluation of hydrocarbon source rocks, suitable reservoir rocks, and hydrocarbon traps in an Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System defined for the region by the USGS. Five conventional assessment units (AUs) were defined for the Midway (Paleocene) and Wilcox (Paleocene-Eocene) Groups, and the Carrizo Sand of the Claiborne Group (Eocene) interval including: (1) the Wilcox Stable Shelf Oil and Gas AU; (2) the Wilcox Expanded Fault Zone Gas and Oil AU; (3) the Wilcox-Lobo Slide Block Gas AU; (4) the Wilcox Slope and Basin Floor Gas AU; and (5) the Wilcox Mississippi Embayment AU (not quantitatively assessed).The USGS assessment of undiscovered oil and gas resources for the Midway-Wilcox-Carrizo interval resulted in estimated mean values of 110 million barrels of oil (MMBO), 36.9 trillion cubic feet of gas (TCFG), and 639 million barrels of natural gas liquids (MMBNGL) in the four assessed units. The undiscovered oil resources are almost evenly divided between fluvial-deltaic sandstone reservoirs within the Wilcox Stable Shelf (54 MMBO) AU and deltaic sandstone reservoirs of the Wilcox Expanded Fault Zone (52 MMBO) AU. Greater than 70 percent of the undiscovered gas and 66 percent of the natural gas liquids (NGL) are estimated to be in deep (13,000 to 30,000 feet), untested distal deltaic and slope sandstone reservoirs within the Wilcox Slope and Basin Floor Gas AU.

  15. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holbrook, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Moe, Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sofu, Tanju [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-based description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.

  16. Coal gasification systems engineering and analysis. Appendix G: Commercial design and technology evaluation

    Science.gov (United States)

    1980-01-01

    A technology evaluation of five coal gasifier systems (Koppers-Totzek, Texaco, Babcock and Wilcox, Lurgi and BGC/Lurgi) and procedures and criteria for evaluating competitive commercial coal gasification designs is presented. The technology evaluation is based upon the plant designs and cost estimates developed by the BDM-Mittelhauser team.

  17. Compiled reports on the applicability of selected codes and standards to advanced reactors

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, E.L.; Hoopingarner, K.R.; Markowski, F.J.; Mitts, T.M.; Nickolaus, J.R.; Vo, T.V.

    1994-08-01

    The following papers were prepared for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission under contract DE-AC06-76RLO-1830 NRC FIN L2207. This project, Applicability of Codes and Standards to Advance Reactors, reviewed selected mechanical and electrical codes and standards to determine their applicability to the construction, qualification, and testing of advanced reactors and to develop recommendations as to where it might be useful and practical to revise them to suit the (design certification) needs of the NRC.

  18. Standards for reference reactor physics measurements

    International Nuclear Information System (INIS)

    Harris, D.R.; Cokinos, D.M.; Uotinen, V.

    1990-01-01

    Reactor physics analysis methods require experimental testing and confirmation over the range of practical reactor configurations and states. This range is somewhat limited by practical fuel types such as actinide oxides or carbides enclosed in metal cladding. On the other hand, this range continues to broaden because of the trend of using higher enrichment, if only slightly enriched, electric utility fuel. The need for experimental testing of the reactor physics analysis methods arises in part because of the continual broadening of the range of core designs, and in part because of the nature of the analysis methods. Reactor physics analyses are directed primarily at the determination of core reactivities and reaction rates, the former largely for reasons of reactor control, and the latter largely to ensure that material limitations are not violated. Errors in these analyses can be regarded as being from numerics, from the data base, and from human factors. For numerical, data base, and human factor reasons, then, it is prudent and customary to qualify reactor physical analysis methods against experiments. These experiments can be treated as being at low power or at high power, and each of these types is subject to an American National Standards Institute standard. The purpose of these standards is to aid in improving and maintaining adequate quality in reactor physics methods, and it is from this point of view that the standards are examined here

  19. An extended conventional fuel cycle for the B and W mPowerTM small modular nuclear reactor

    International Nuclear Information System (INIS)

    Scarangella, M. J.

    2012-01-01

    The B and W mPower TM reactor is a small pressurized water reactor (PWR) with an integral once-through steam generator and a thermal output of about 500 MW; it is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height PWR assemblies with the familiar 17 x 17 fuel rod array. The Babcock and Wilcox Company (B and W) is offering a core loading and cycle management plan for a four-year cycle based on its presumed attractiveness to potential customers. This option is a once-through fuel cycle in which the entire core is discharged and replaced after four years. In addition, a conventional fuel utilization strategy, employing a periodic partial reload and shuffle, was developed as an alternative to the four-year once-through fuel cycle. This study, which was performed using the Studsvik core design code suite, is a typical multi-cycle projection analysis of the type performed by most fuel management organizations such as fuel vendors and utilities. In the industry, the results of such projections are used by the financial arms of these organizations to assist in making long-term decisions. In the case of the B and W mPower reactor, this analysis demonstrates flexibility for customers who consider the once-through fuel cycle unacceptable from a fuel utilization standpoint. As expected, when compared to the once-through concept, reloads of the B and W mPower reactor will achieve higher batch average discharge exposure, will have adequate shut-down margin, and will have a relatively flat hot excess reactivity trend at the expense of slightly increased peaking. (authors)

  20. Nuclear reactors' construction costs: The role of lead-time, standardization and technological progress

    International Nuclear Information System (INIS)

    Berthelemy, Michel; Escobar Rangel, Lina

    2013-01-01

    This paper provides the first comparative analysis of nuclear reactor construction costs in France and the United States. Studying the cost of nuclear power has often been a challenge, owing to the lack of reliable data sources and heterogeneity between countries, as well as the long time horizon which requires controlling for input prices and structural changes. We build a simultaneous system of equations for overnight costs and construction time (lead-time) to control for endogeneity, using expected demand variation as an instrument. We argue that benefits from nuclear reactor program standardization can arise through short term coordination gains, when the diversity of nuclear reactors' technologies under construction is low, or through long term benefits from learning spillovers from past reactor construction experience, if those spillovers are limited to similar reactors. We find that overnight construction costs benefit directly from learning spillovers but that these spillovers are only significant for nuclear models built by the same Architect-Engineer (A- E). In addition, we show that the standardization of nuclear reactors under construction has an indirect and positive effect on construction costs through a reduction in lead-time, the latter being one of the main drivers of construction costs. Conversely, we also explore the possibility of learning by searching and find that, contrary to other energy technologies, innovation leads to construction costs increases. (authors)

  1. Prototype vibration measurement program for reactor internals (177-fuel assembly plant). Supplement 1

    International Nuclear Information System (INIS)

    Simonis, J.C.; Post, R.C.; Thoren, D.E.

    1976-08-01

    The surveillance specimen holder tubes installed in the Babcock and Wilcox 177-fuel assembly plants have been redesigned. The structural adequacy of this design has been verified through extensive analysis. The design adequacy will be further confirmed by measuring the vibrational response of the surveillance specimen holder tube during normal and transient flow operation. This report describes the vibration measurement program that will be conducted at Toledo Edison's Davis Besse 1 site

  2. Application of industrial robots in tubesheet cladding and tube to tubesheet welding

    International Nuclear Information System (INIS)

    Berbakov, P.J.

    1984-01-01

    This paper deals with the implementation of industrial robots in two areas of fabrication of nuclear power generation components at The Babcock and Wilcox Company facility in Barberton, Ohio. The applications described are robotic cladding of tubesheets, and tube-to-tubesheet Welding in nuclear steam generators

  3. Standard review plan for the review and evaluation of emergency plans for research and test reactors

    International Nuclear Information System (INIS)

    1983-10-01

    This document provides a Standard Review Plan to assure that complete and uniform reviews are made of research and test reactor radiological emergency plans. The report is organized under ten planning standards which correspond to the guidance criteria in American National Standard ANSI/ANS 15.16 - 1982 as endorsed by Revision 1 to Regulatory Guide 2.6. The applicability of the items under each planning standard is indicated by subdivisions of the steady-state thermal power levels at which the reactors are licensed to operate. Standard emergency classes and example action levels for research and test reactors which should initiate these classes are given in an Appendix. The content of the emergency plan is as follows: the emergency plan addresses the necessary provisions for coping with radiological emergencies. Activation of the emergency plan is in response to the emergency action levels. In addition to addressing those severe emergencies that will fall within one of the standard emergency classes, the plan also discusses the necessary provisions to deal with radiological emergencies of lesser severity that can occur within the operations boundary. The emergency plan allows for emergency personnel to deviate from actions described in the plan for unusual or unanticipated conditions

  4. Standardization of specifications and inspection procedures for LEU plate-type research reactor fuels

    International Nuclear Information System (INIS)

    1988-06-01

    With the transition to high density uranium LEU fuel, fabrication costs of research reactor fuel elements have a tendency to increase because of two reasons. First, the amount of the powder of the uranium compound required increases by more than a factor of five. Second, fabrication requirements are in many cases nearer the fabrication limits. Therefore, it is important that measures be undertaken to eliminate or reduce unnecessary requirements in the specification or inspection procedures of research reactor fuel elements utilizing LEU. An additional stimulus for standardizing specifications and inspection procedures at this time is provided by the fact that most LEU conversions will occur within a short time span, and that nearly all of them will require preparation of new specifications and inspection procedures. In this sense, the LEU conversions offer an opportunity for improving the rationality and efficiency of the fuel fabrication and inspection processes. This report focuses on the standardization of specifications and inspection processes of high uranium density LEU fuels for research reactors. However, in many cases the results can also be extended directly to other research reactor fuels. 15 refs, 1 fig., 3 tabs

  5. Selective methods for the maintainability and standardization of the engineering of a research reactor

    International Nuclear Information System (INIS)

    Rico, N.

    1999-01-01

    the same function in each specialty. These diversities bring about conflicts and confusion between the maintenance and operation crew, besides modifying dangerously the fail rate and thus the overall reliability of the reactor. The maintainability is the capacity of being maintained an equipment/system has, serving as a design parameter. A system must be designed in a way in which it is maintained without a great investment of time and with low costs, minimum environmental impact and the least resources possible. Standardization is the action of normalizing the engineering of all systems/equipments of the reactor from its design, in all the disciplines, (mechanical, electrical, electronic, chemical, etc.) taking into consideration the facility of its maintenance and conserving or increasing the reliability of the system. The intention of this Program of Maintainability and Standardization in Research Reactors is based on procedures and calculations to improve the reliability of the equipments/systems according to pre-established criterion. (author)

  6. Paleocene Wilcox cross-shelf channel-belt history and shelf-margin growth: Key to Gulf of Mexico sediment delivery

    Science.gov (United States)

    Zhang, Jinyu; Steel, Ronald; Ambrose, William

    2017-12-01

    Shelf margins prograde and aggrade by the incremental addition of deltaic sediments supplied from river channel belts and by stored shoreline sediment. This paper documents the shelf-edge trajectory and coeval channel belts for a segment of Paleocene Lower Wilcox Group in the northern Gulf of Mexico based on 400 wireline logs and 300 m of whole cores. By quantitatively analyzing these data and comparing them with global databases, we demonstrate how varying sediment supply impacted the Wilcox shelf-margin growth and deep-water sediment dispersal under greenhouse eustatic conditions. The coastal plain to marine topset and uppermost continental slope succession of the Lower Wilcox shelf-margin sediment prism is divided into eighteen high-frequency ( 300 ky duration) stratigraphic sequences, and further grouped into 5 sequence sets (labeled as A-E from bottom to top). Sequence Set A is dominantly muddy slope deposits. The shelf edge of Sequence Sets B and C prograded rapidly (> 10 km/Ma) and aggraded modestly ( 80 m/Ma) characterizes Sequence Sets D and E, which is associated with smaller (9-10 m thick on average) and isolated channel belts. This stratigraphic trend is likely due to an upward decreasing sediment supply indicated by the shelf-edge progradation rate and channel size, as well as an upward increasing shelf accommodation indicated by the shelf-edge aggradation rate. The rapid shelf-edge progradation and large rivers in Sequence Sets B and C confirm earlier suggestions that it was the early phase of Lower Wilcox dispersal that brought the largest deep-water sediment volumes into the Gulf of Mexico. Key factors in this Lower Wilcox stratigraphic trend are likely to have been a very high initial sediment flux to the Gulf because of the high initial release of sediment from Laramide catchments to the north and northwest, possibly aided by modest eustatic sea-level fall on the Texas shelf, which is suggested by the early, flat shelf-edge trajectory, high

  7. Lessons from American-German nuclear power plant construction. Quality, safety and costs of an attempt to integrate American and German nuclear power plant technology

    International Nuclear Information System (INIS)

    Buchwald, K.

    1979-05-01

    The 1300 MW nuclear power plant at Muelheim-Kaerlich has been under construction since the beginning of 1975. It is being equipped with a pressurised water reactor which has been adapted to the German client's requirements and German licensing practice, based on a license held by Babcock and Wilcox USA (B and W). The problems which have arisen in making this adaptation are the result of different requirements in the USA and the Federal Republic of Germany which make it very difficult to integrate the two technologies. Full integration will almost certainly be impossible, but integration to the widest possible extent is important because it might mean both greater safety and reduced costs. In this article it is intended to show where the problems of integration lie and how they might perhaps be overcome. (author)

  8. Development and testing of a diagnostic system for intelligen distributed control at EBR-2

    International Nuclear Information System (INIS)

    Edwards, R.M.; Ruhl, D.W.; Klevans, E.H.; Robinson, G.E.

    1990-01-01

    A diagnostic system is under development for demonstration of Intelligent Distributed Control at the Experimental Breeder Reactor (EBR--II). In the first phase of the project a diagnostic system is being developed for the EBR-II steam plant based on the DISYS expert systems approach. Current testing uses recorded plant data and data from simulated plant faults. The dynamical simulation of the EBR-II steam plant uses the Babcock and Wilcox (B ampersand W) Modular Modeling System (MMS). At EBR-II the diagnostic system operates in the UNIX workstation and receives live plant data from the plant Data Acquisition System (DAS). Future work will seek implementation of the steam plant diagnostic in a distributed manner using UNIX based computers and Bailey microprocessor-based control system. 10 refs., 6 figs

  9. Advances in U.S. reactor physics standards

    International Nuclear Information System (INIS)

    Cokinos, Dimitrios

    2008-01-01

    The standards for Reactor Design, widely used in the nuclear industry, provide guidance and criteria for performing and validating a wide range of nuclear reactor calculations and measurements. Advances, over the past decades in reactor technology, nuclear data and infrastructure in the data handling field, led to major improvements in the development and application of reactor physics standards. A wide variety of reactor physics methods and techniques are being used by reactor physicists for the design and analysis of modern reactors. ANSI (American National Standards Institute) reactor physics standards, covering such areas as nuclear data, reactor design, startup testing, decay heat and fast neutron fluence in the pressure vessel, are summarized and discussed. These standards are regularly undergoing review to respond to an evolving nuclear technology and are being successfully used in the U.S and abroad contributing to improvements in reactor design, safe operation and quality assurance. An overview of the overall program of reactor physics standards is presented. New standards currently under development are also discussed. (authors)

  10. Brief overview of American Nuclear Society's research reactor standards

    International Nuclear Information System (INIS)

    Richards, Wade J.

    1984-01-01

    The American Nuclear Society (ANS) established the research reactor standards group in 1968. The standards group, known as ANS-15, was established for the purpose of developing, preparing, and maintaining standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training

  11. Nuclear reactor pressure vessel surveillance capsule examinations. Application of American Society for Testing and Materials Standards

    International Nuclear Information System (INIS)

    Perrin, J.S.

    1978-01-01

    A series of pressure vessel surveillance capsules is installed in each commercial nuclear power plant in the United States. A capsule typically contains neutron dose meters, thermal monitors, tensile specimens, and Charpy V-notch impact specimens. In order to determine property changes of the pressure vessel resulting from irradiation, surveillance capsules are periodically removed during the life of a reactor and examined. There are numerous standards, regulations, and codes governing US pressure vessel surveillance capsule programmes. These are put out by the US Nuclear Regulatory Commission, the Boiler and Pressure Vessel Committee of the American Society of Mechanical Engineers, and the American Society for Testing and Materials (ASTM). A majority of the pertinent ASTM standards are under the jurisdiction of ASTM Committee E-10 on Nuclear Applications and Measurements of Radiation Effects. The standards, regulations, and codes pertaining to pressure vessel surveillance play an important role in ensuring reliability of the nuclear pressure vessels. ASTM E 185-73 is the Standard Recommended Practice for Surveillance Tests for Nuclear Reactors. This standard recommends procedures for both the irradiation and subsequent testing of surveillance capsules. ASTM E 185-73 references many additional specialized ASTM standards to be followed in specific areas of a surveillance capsule examination. A key element of surveillance capsule programmes is the Charpy V-notch impact test, used to define curves of fracture behaviour over a range of temperatures. The data from these tests are used to define the adjusted reference temperature used in determining pressure-temperature operating curves for a nuclear power plant. (author)

  12. R and D issues in structural design standard for commercialized fast reactor components

    International Nuclear Information System (INIS)

    Shibamoto, Hiroshi; Tanaka, Yoshihiko; Inoue, Kazuhiko; Kasahara, Naoto; Morishita, Masaki

    2003-01-01

    Conceptual design studies of Japanese commercialized fast reactors (FRs) are carried out. With careful considerations on safety, economical improvement for practical use of these plants are aimed for, and the design of them is rationalized with adopting simple and innovative components, etc.. To certify the design concepts and validate structural integrity, research and development of Fast Reactor Structural Design Standard (FDS) for commercialized fast reactor components is now under way. Based on general characteristics of FRs and design needs of commercialized FRs, main subjects of R and D were identified. As for failure criteria, development for rational treatment of creep design region is dealt with. Ratcheting fatigue tests are conducted for the purpose of confirming the limit that ratcheting strain has negligible effects on structure strength. Besides, objecting to contribute to design rationalization through prediction of elasto-plastic and creep behaviors with high-precision, efforts to establish inelastic analysis methodologies for design are carried out. A guideline on inelastic analysis for design related to FDS, is prepared. This guideline is applied to evaluate the structural integrity of critical parts of components in conceptual design of commercialized FRs. Furthermore, aimed for mitigating thermal loads, a guideline on thermal loads modeling for design related to FDS is under developing. (author)

  13. Efficient Implementation of Volterra Filters for De-interlacing TV Images - Snell and Wilcox

    DEFF Research Database (Denmark)

    Budd, Chris; Gravesen, Jens; Willson, Eddie

    1998-01-01

    A standard TV image is transmitted as a series of horizontal lines. To reduce band-width effects in transmission, half of a picture is transmitted in each frame, i.e., information is only given about pictures on alternate lines, a process called interlacing. A difficulty with this process...... is that other images (for example computer images) do not have alternate lines omitted. Thus it is desirable to be able to interpolate an existing TV images to obtain information on the images between alternate lines; this is the de-interlacing process....

  14. Standard mirror fusion reactor design study

    International Nuclear Information System (INIS)

    Moir, R.W.

    1978-01-01

    This report covers the work of the Magnetic Fusion Energy Division's reactor study group during FY 1976 on the standard mirror reactor. The ''standard'' mirror reactor is characterized as a steady state, neutral beam sustained, D-T fusioning plasma confined by a Yin-Yang magnetic mirror field. The physics parameters are obtained from the same physics model that explains the 2XIIB experiment. The model assumes that the drift cyclotron loss cone mode occurs on the boundary of the plasma, and that it is stabilized by warm plasma with negligible energy investment. The result of the study was a workable mirror fusion power plant, steady-state blanket removal made relatively simple by open-ended geometry, and no impurity problem due to the positive plasma potential. The Q (fusion power/injected beam power) turns out to be only 1.1 because of loss out the ends from Coulomb collisions, i.e., classical losses. This low Q resulted in 77% of the gross electrical power being used to power the injectors, thereby causing the net power cost to be high. The low Q stimulated an intensive search for Q-enhancement concepts, resulting in the LLL reactor design effort turning to the field reversal mirror and the tandem mirror, each having Q of order 5

  15. Standard review plan for the review and evaluation of emergency plans for research and test reactors. Technical report

    International Nuclear Information System (INIS)

    Bates, E.F.; Grimes, B.K.; Ramos, S.L.

    1982-05-01

    This document provides a Standard Review Plan for the guidance of the NRC staff to assure that complete and uniform reviews are made of research and test reactor emergency plans. The report is organized under ten planning standards which correspond to the guidance criteria in Draft II of ANSI/ANS 15.16 as endorsed by Revision 1 to Regulatory Guide 2.6. The applicability of the items under each planning standard is indicated by subdivisions of the steady state thermal power levels at which the reactors are licensed to operate. Standard emergency classes and example action levels for research and test reactors which should initiate these classes are given in an Appendix

  16. Reactor Section standard analytical methods. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Sowden, D.

    1954-07-01

    the Standard Analytical Methods manual was prepared for the purpose of consolidating and standardizing all current analytical methods and procedures used in the Reactor Section for routine chemical analyses. All procedures are established in accordance with accepted practice and the general analytical methods specified by the Engineering Department. These procedures are specifically adapted to the requirements of the water treatment process and related operations. The methods included in this manual are organized alphabetically within the following five sections which correspond to the various phases of the analytical control program in which these analyses are to be used: water analyses, essential material analyses, cotton plug analyses boiler water analyses, and miscellaneous control analyses.

  17. Standard Test Method for Application and Analysis of Helium Accumulation Fluence Monitors for Reactor Vessel Surveillance, E706 (IIIC)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method describes the concept and use of helium accumulation for neutron fluence dosimetry for reactor vessel surveillance. Although this test method is directed toward applications in vessel surveillance, the concepts and techniques are equally applicable to the general field of neutron dosimetry. The various applications of this test method for reactor vessel surveillance are as follows: 1.1.1 Helium accumulation fluence monitor (HAFM) capsules, 1.1.2 Unencapsulated, or cadmium or gadolinium covered, radiometric monitors (RM) and HAFM wires for helium analysis, 1.1.3 Charpy test block samples for helium accumulation, and 1.1.4 Reactor vessel (RV) wall samples for helium accumulation. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  18. Reference and standard benchmark field consensus fission yields for U.S. reactor dosimetry programs

    International Nuclear Information System (INIS)

    Gilliam, D.M.; Helmer, R.G.; Greenwood, R.C.; Rogers, J.W.; Heinrich, R.R.; Popek, R.J.; Kellogg, L.S.; Lippincott, E.P.; Hansen, G.E.; Zimmer, W.H.

    1977-01-01

    Measured fission product yields are reported for three benchmark neutron fields--the BIG-10 fast critical assembly at Los Alamos, the CFRMF fast neutron cavity at INEL, and the thermal column of the NBS Research Reactor. These measurements were carried out by participants in the Interlaboratory LMFBR Reaction Rates (ILRR) program. Fission product generation rates were determined by post-irradiation analysis of gamma-ray emission from fission activation foils. The gamma counting was performed by Ge(Li) spectrometry at INEL, ANL, and HEDL; the sample sent to INEL was also analyzed by NaI(Tl) spectrometry for Ba-140 content. The fission rates were determined by means of the NBS Double Fission Ionization Chamber using thin deposits of each of the fissionable isotopes. Four fissionable isotopes were included in the fast neutron field measurements; these were U-235, U-238, Pu-239, and Np-237. Only U-235 was included in the thermal neutron yield measurements. For the fast neutron fields, consensus yields were determined for three fission product isotopes--Zr-95, Ru-103, and Ba-140. For these fission product isotopes, a separately activated foil was analyzed by each of the three gamma counting laboratories. The experimental standard deviation of the three independent results was typically +- 1.5%. For the thermal neutron field, a consensus value for the Cs-137 yield was also obtained. Subsidiary fission yields are also reported for other isotopes which were studied less intensively (usually by only one of the participating laboratories). Comparisons with EBR-II fast reactor yields from destructive analysis and with ENDF/B recommended values are given

  19. Babcock Redux: An Amendment of Babcock's Schematic of the Sun's Magnetic Cycle

    Science.gov (United States)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.

    2017-08-01

    We amend Babcock's original scenario for the global dynamo process that sustains the Sun's 22-year magnetic cycle. The amended scenario fits post-Babcock observed features of the magnetic activity cycle and convection zone, and is based on ideas of Spruit & Roberts (1983, Nature, 304, 401) about magnetic flux tubes in the convection zone. A sequence of four schematic cartoons lays out the proposed evolution of the global configuration of the magnetic field above, in, and at the bottom of the convection zone through sunspot Cycle 23 and into Cycle 24. Three key elements of the amended scenario are: (1) as the net following-polarity magnetic field from the sunspot-region Ω-loop fields of an ongoing sunspot cycle is swept poleward to cancel and replace the opposite-polarity polar-cap field from the previous sunspot cycle, it remains connected to the ongoing sunspot cycle's toroidal source-field band at the bottom of the convection zone; (2) topological pumping by the convection zone's free convection keeps the horizontal extent of the poleward-migrating following-polarity field pushed to the bottom, forcing it to gradually cancel and replace old horizontal field below it that connects the ongoing-cycle source-field band to the previous-cycle polar-cap field; (3) in each polar hemisphere, by continually shearing the poloidal component of the settling new horizontal field, the latitudinal differential rotation low in the convection zone generates the next-cycle source-field band poleward of the ongoing-cycle band. The amended scenario is a more-plausible version of Babcock's scenario, and its viability can be explored by appropriate kinematic flux-transport solar-dynamo simulations. A paper giving a full description of our dynamo scenario is posted on arXiv (http://arxiv.org/abs/1606.05371).This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through the Living With a Star Targeted Research and Technology Program and the Hinode

  20. Reactor analysis support package (RASP). Volume 7. PWR set-point methodology. Final report

    International Nuclear Information System (INIS)

    Temple, S.M.; Robbins, T.R.

    1986-09-01

    This report provides an overview of the basis and methodology requirements for determining Pressurized Water Reactor (PWR) technical specifications related setpoints and focuses on development of the methodology for a reload core. Additionally, the report documents the implementation and typical methods of analysis used by PWR vendors during the 1970's to develop Protection System Trip Limits (or Limiting Safety System Settings) and Limiting Conditions for Operation. The descriptions of the typical setpoint methodologies are provided for Nuclear Steam Supply Systems as designed and supplied by Babcock and Wilcox, Combustion Engineering, and Westinghouse. The description of the methods of analysis includes the discussion of the computer codes used in the setpoint methodology. Next, the report addresses the treatment of calculational and measurement uncertainties based on the extent to which such information was available for each of the three types of PWR. Finally, the major features of the setpoint methodologies are compared, and the principal effects of each particular methodology on plant operation are summarized for each of the three types of PWR

  1. Taxonomic revision of Plyomydas Wilcox & Papavero, 1971 with the description of two new species and its transfer to Mydinae (Insecta: Diptera: Mydidae

    Directory of Open Access Journals (Sweden)

    Stephanie Castillo

    Full Text Available ABSTRACT The monotypic Neotropical Mydidae genus Plyomydas Wilcox & Papavero, 1971, to date confined to coastal Peru, is reviewed. Two new species, Plyomydas adelphe sp. nov. and Plyomydas phalaros sp. nov., are described from mid-elevational western Argentina, which extends the distribution of the genus considerably. Distribution, occurrence in biodiversity hotspots sensu Conservation International, and seasonal incidence are discussed. Descriptions/re-descriptions, photographs, illustrations, and identification keys are provided and made openly accessible in data depositories to support future studies of the included taxa. Plyomydas is transferred from the Leptomydinae to the Mydinae: Messiasiini based on the absence of acanthophorite spines on abdominal tergite 10 in females and the presence of vein M3 + M4 terminating in the costal vein C. Leptomydinae is therefore restricted to the Northern Hemisphere with the exception of Hessemydas Kondratieff, Carr & Irwin, 2005 known from Madagascar. Messiasia notospila (Wiedemann, 1828 is compared to Plyomydas species.

  2. Four critical facilities: their capabilities and programs

    International Nuclear Information System (INIS)

    Whitesides, G.E.

    1980-01-01

    Information is presented on the critical experiments facilities at Babcock and Wilcox, Lynchburg, Virginia; at Battelle Pacific Northwest Laboratory in Hanford, Washington; at Rockwell-International in Rocky Flats, Colorado; and at Los Alamos Scientific Laboratory in New Mexico. It is noted that the critical mass facilities which still exist in this country represent a bare minimum for maintaining a measurement program sufficient for meeting data requirements

  3. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Ronen, Y.; Elias, E.

    1994-01-01

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  4. Hot Isostatic Press Can Optimization for Aluminum Cladding of U-10Mo Reactor Fuel Plates: FY12 Final Report and FY13 Update

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Kester D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Crapps, Justin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scott, Jeffrey E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aikin, Beverly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vargas, Victor D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dvornak, Matthew J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Duffield, Andrew N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weinberg, Richard Y. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alexander, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Montalvo, Joel D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hudson, Richard W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mihaila, Bogdan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Liu, Cheng [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lovato, Manuel L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dombrowski, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2013-08-26

    Currently, the proposed processing path for low enriched uranium – 10 wt. pct. molybdenum alloy (LEU-10Mo) monolithic fuel plates for high power research and test reactors includes hot isostatic pressing (HIP) to bond the aluminum cladding that encapsulates the fuel foil. Initial HIP experiments were performed at Idaho National Laboratory (INL) on approximately ¼ scale “mini” fuel plate samples using a HIP can design intended for these smaller experimental trials. These experiments showed that, with the addition of a co-rolled zirconium diffusion barrier on the LEU-10Mo alloy fuel foil, the HIP bonding process is a viable method for producing monolithic fuel plates. Further experimental trials at Los Alamos National Laboratory (LANL) effectively scaled-up the “mini” can design to produce full-size fuel prototypic plates. This report summarizes current efforts at LANL to produce a HIP can design that is further optimized for higher volume production runs. The production-optimized HIP can design goals were determined by LANL and Babcock & Wilcox (B&W) to include maintaining or improving the quality of the fuel plates produced with the baseline scaled-up mini can design, while minimizing material usage, improving dimensional stability, easing assembly and disassembly, eliminating machining, and significantly reducing welding. The initial small-scale experiments described in this report show that a formed-can approach can achieve the goals described above. Future work includes scaling the formed-can approach to full-size fuel plates, and current progress toward this goal is also summarized here.

  5. Paleocene coal deposits of the Wilcox group, central Texas

    Science.gov (United States)

    Hook, Robert W.; Warwick, Peter D.; SanFilipo, John R.; Schultz, Adam C.; Nichols, Douglas J.; Swanson, Sharon M.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    Coal deposits in the Wilcox Group of central Texas have been regarded as the richest coal resources in the Gulf Coastal Plain. Although minable coal beds appear to be less numerous and generally higher in sulfur content (1 percent average, as-received basis; table 1) than Wilcox coal deposits in the Northeast Texas and Louisiana Sabine assessment areas (0.5 and 0.6 percent sulfur, respectively; table 1), net coal thickness in coal zones in central Texas is up to 32 ft thick and more persistent along strike (up to 15 mi) at or near the surface than coals of any other Gulf Coast assessment area. The rank of the coal beds in central Texas is generally lignite (table 1), but some coal ranks as great as subbituminous C have been reported (Mukhopadhyay, 1989). The outcrop of the Wilcox Group in central Texas strikes northeast, extends for approximately 140 mi between the Trinity and Colorado Rivers, and covers parts of Bastrop, Falls, Freestone, Lee, Leon, Limestone, Milam, Navarro, Robertson, and Williamson Counties (Figure 1). Three formations, in ascending order, the Hooper, Simsboro, and Calvert Bluff, are recognized in central Texas (Figure 2). The Wilcox Group is underlain conformably by the Midway Group, a mudstone-dominated marine sequence, and is overlain and scoured locally by the Carrizo Sand, a fluvial unit at the base of the Claiborne Group.

  6. CNSS plant concept, capital cost, and multi-unit station economics

    International Nuclear Information System (INIS)

    1984-07-01

    United Engineers and Constructors (UE and C) and the Babcock and Wilcox Company (B and W) have performed several studies over the last eight years related to small integral pressurized water reactors. These reactors include the 365 MWt (100 MWe) Consolidated Nuclear Steam Generator (CNSG) and the 1200 MWt Consolidated Nuclear Steam System (CNSS). The studies, mostly performed under contract to the Oak Ridge National Laboratory, have led to a 1250 MWt (400 MWe) Consolidated Nuclear Steam System (CNSS) plant concept, with unique design and cost features. This report contains an update of earlier studies of the CNSS reactor and balance-of-plant concept design, capital costs, and multi-unit plant economics incorporating recent design developments, improvements, and post-TMI-2 upgrades. The economic evaluation compares the total system economic impact of a phased, three stage 400 MWe CNSS implementation program, i.e., a three-unit station, to the installation of a single 1200 MWe Pressurized Water Reactor (PWR) into a typical USA utility system

  7. American National Standard: nuclear data sets for reactor design calculations

    International Nuclear Information System (INIS)

    1983-01-01

    This standard identifies and describes the specifications for developing, preparing, and documenting nuclear data sets to be used in reactor design calculations. The specifications include criteria for acceptance of evaluated nuclear data sets, criteria for processing evaluated data and preparation of processed continuous data and averaged data sets, and identification of specific evaluated, processed continuous, and averaged data sets which meet these criteria for specific reactor types

  8. American National Standard nuclear data sets for reactor design calculations

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    A standard is presented which identifies and describes the specifications for developing, preparing, and documenting nuclear data sets to be used in reactor design calculations. The specifications include (a) criteria for acceptance of evaluated nuclear data sets, (b) criteria for processing evaluated data and preparation of processed continuous data and averaged data sets, and (c) identification of specific evaluated, processed continuous, and averaged data sets which meet these criteria for specific reactor types

  9. Reference design for the standard mirror hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bender, D.J.; Fink, J.H.; Galloway, T.R.; Kastenberg, W.E.; Lee, J.D.; Devoto, R.S.; Neef, W.S. Jr.; Schultz, K.R.; Culver, D.W.; Rao, S.B.; Rao, S.R.

    1978-05-22

    This report describes the results of a two-year study by Lawrence Livermore Laboratory and General Atomic Co. to develop a conceptual design for the standard (minimum-B) mirror hybrid reactor. The reactor parameters have been chosen to minimize the cost of producing nuclear fuel (/sup 239/Pu) for consumption in fission power reactors (light water reactors). The deuterium-tritium plasma produces approximately 400 MW of fusion power with a plasma Q of 0.64. The fast-fission blanket, which is fueled with depleted uranium and lithium, generates sufficient tritium to run the reactor, has a blanket energy multiplication of M = 10.4, and has a net fissile breeding ratio of Pu/n = 1.51. The reactor has a net electrical output of 600 MWe, a fissile production of 2000 kg of plutonium per year (at a capacity factor of 0.74), and a net plant efficiency of 0.18. The plasma-containment field is generated by a Yin-Yang magnet using NbTi superconductor, and the neutral beam system uses positive-ion acceleration with beam direct conversion. The spherical blanket is based on gas-cooled fast reactor technology. The fusion components, blanket, and primary heat-transfer loop components are all contained within a prestressed-concrete reactor vessel, which provides magnet restraint and supports the primary heat-transfer loop and the blanket.

  10. Reference design for the standard mirror hybrid reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Fink, J.H.; Galloway, T.R.; Kastenberg, W.E.; Lee, J.D.; Devoto, R.S.; Neef, W.S. Jr.; Schultz, K.R.; Culver, D.W.; Rao, S.B.; Rao, S.R.

    1978-01-01

    This report describes the results of a two-year study by Lawrence Livermore Laboratory and General Atomic Co. to develop a conceptual design for the standard (minimum-B) mirror hybrid reactor. The reactor parameters have been chosen to minimize the cost of producing nuclear fuel ( 239 Pu) for consumption in fission power reactors (light water reactors). The deuterium-tritium plasma produces approximately 400 MW of fusion power with a plasma Q of 0.64. The fast-fission blanket, which is fueled with depleted uranium and lithium, generates sufficient tritium to run the reactor, has a blanket energy multiplication of M = 10.4, and has a net fissile breeding ratio of Pu/n = 1.51. The reactor has a net electrical output of 600 MWe, a fissile production of 2000 kg of plutonium per year (at a capacity factor of 0.74), and a net plant efficiency of 0.18. The plasma-containment field is generated by a Yin-Yang magnet using NbTi superconductor, and the neutral beam system uses positive-ion acceleration with beam direct conversion. The spherical blanket is based on gas-cooled fast reactor technology. The fusion components, blanket, and primary heat-transfer loop components are all contained within a prestressed-concrete reactor vessel, which provides magnet restraint and supports the primary heat-transfer loop and the blanket

  11. Standard Technical Specifications for Westinghouse pressurized water reactors

    International Nuclear Information System (INIS)

    Virgilio, M.J.

    1980-09-01

    The Standard Technical Specifications for Westinghouse Pressurized Water Reactors (W-STS) is a generic document prepared by the U.S. NRC for use in the licensing process of current Westinghouse Pressurized Water Reactors. The W-STS sets forth the Limits, Operating Conditions and other requirements applicable to nuclear reactor facility operation as set forth in by Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public. This document is revised periodically to reflect current licensing requirements

  12. Standard Technical Specifications for Combustion Engineering Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Vito, D.J.

    1980-12-01

    The Standard Technical Specifications for Combustion Engineering Pressurized Water Reactors (CE-STS) is a generic document prepared by the US NRC for use in the licensing process of current Combustion Engineering Pressurized Water Reactors. The CE-STS sets forth the limits, operating conditions, and other requirements applicable to nuclear reactor facility operation as set forth by Section 50.36 of 10 CFR 50 for the protection of the health and safety of the public. The document is revised periodically to reflect current licensing requirements

  13. International standardization of nuclear reactor designs - the way forward

    International Nuclear Information System (INIS)

    Raetzke, Christian

    2010-01-01

    The concept of 'International Standardization of Nuclear Reactor Designs' means that vendors could build their designs in every country without having to adapt it specifically to national safety requirements. Such standardization would have two main effects. It would greatly facilitate nuclear new build worldwide by giving greater efficiency and certainty to the national licensing procedures; by taking into account the fact that vendors, and nowadays also utilities, are active across borders; by helping developing countries to establish their nuclear new build programmes; and by reducing the strain on human resources on both the regulators' and the industry's side. The second valuable effect of standardization would be to further enhance safety by improving the exchange of construction and operating experience among a number of reactors belonging to fleets of the same design. The World Nuclear Association's CORDEL (Cooperation in Reactor Design Evaluation and Licensing) Group has developed a concept for implementation of international standardization of reactor designs. It has defined a number of steps to be taken by industry. At the same time, possibilities offered by national and international regulatory mechanisms would have to be fully made use of, and some changes in regulatory frameworks might be necessary. Some steps especially towards greater cooperation of regulators have already been taken; however, much still remains to be done. The concept of deploying standardized reactor designs across a number of countries supposes an alignment and, if possible, harmonization of national safety standards; a streamlining of national licensing procedures, making them more efficient and predictable; and the willingness of national regulators to take into account licensing done in other countries. In the end, this should lead to a mutual acceptance of design approvals or, in a more distant future, even to a multinational design approval process. All in all, the concept

  14. Overview of standards subcommittee 8, fissionable materials outside reactors

    International Nuclear Information System (INIS)

    McLaughlin, T.P.

    1996-01-01

    The American Nuclear Society's Standards Subcommittee 8, titled open-quotes Fissionable Materials Outside Reactors,close quotes has worked for the past 35 yr to prepare and promote standards on nuclear criticality safety for the handling, processing, storing, and transportation of fissionable materials outside reactors. The reader is referred to the Transactions of the American Nuclear Society, Vols. 39 (1981) and 64 (1991), for previous papers associated with ANS-8 poster sessions. In addition to discussions on the then-current standards, the reader will find articles on working group efforts that never materialized into standards, such as proposed 8.13, open-quotes Use of the Solid-Angle Method in Nuclear Criticality Safety,close quotes and on applications and critiques of current standards. The paper by McLendon in Vol. 39 is particularly interesting as an overview of the early history of ANS-8 and its standards

  15. Fusion reactor design studies: standard accounts for cost estimates

    International Nuclear Information System (INIS)

    Schulte, S.C.; Willke, T.L.; Young, J.R.

    1978-05-01

    The fusion reactor design studies--standard accounts for cost estimates provides a common format from which to assess the economic character of magnetically confined fusion reactor design concepts. The format will aid designers in the preparation of design concept costs estimates and also provide policymakers with a tool to assist in appraising which design concept may be economically promising. The format sets forth a categorization and accounting procedure to be used when estimating fusion reactor busbar energy cost that can be easily and consistently applied. Reasons for developing the procedure, explanations of the procedure, justifications for assumptions made in the procedure, and the applicability of the procedure are described in this document. Adherence to the format when evaluating prospective fusion reactor design concepts will result in the identification of the more promising design concepts thus enabling the fusion power alternatives with better economic potential to be quickly and efficiently developed

  16. Additions to the flora of the Wilcox group

    Science.gov (United States)

    Berry, Edward Wilber

    1923-01-01

    A rather full account of the extensive flora contained in the lower Eocene strata of the Mississippi embayment which are referred to the Wilcox group was published in 1916. At that time it was not possible to obtain sections of the numerous specimens of petrified wood that had been collected from these beds. These woods have since been sectioned and studied, and it seems eminently desirable to place the results of this study on record, for although much of the material had suffered greatly from decay before silicification, some of it is fairly well preserved and shows, among other results, that conifers were individually much more plentiful during Wilcox time than would be inferred from the almost total absence of their foliage in the very large collections of remains of this class that have been studied.

  17. Safety-evaluation report related to the license renewal and power increase for the National Bureau of Standards Reactor (Docket No. 50-184)

    International Nuclear Information System (INIS)

    1983-09-01

    This Safety Evaluation Report for the application filed by the National Bureau of Standards (NBS) for an increase in power from 10 MWt to 20 MWt and for a renewal of the Operating License TR-5 to continue to operate the test reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Gaithersburg, Maryland, on the site of the National Bureau of Standards, which is a bureau of the Department of Commerce. The staff concludes that the NBS reactor can operate at the 20 MWt power level without endangering the health and safety of the public

  18. Survey of legal aspects, regulations, standards and guidelines applicable to radioactive waste management of the Brazilian Multipurpose Reactor - RMB

    International Nuclear Information System (INIS)

    Salvetti, T.C.; Marumo, J.T.

    2017-01-01

    In Brazil, the Brazilian Nuclear Energy Commission (CNEN) and Brazilian Institute of Environment and Renewable Natural Resources (IBAMA) are the agencies responsible for the execution, regulation and control of nuclear and environmental policies, respectively. Such regulatory activities are very comprehensive (IBAMA) or too specific (CNEN), revealing other aspects that would, also, need to be observed so that the management could be carried out efficiently (quality) and effectively (safety), including the three governmental administrative levels: Federal, State and Municipal. In addition to laws, regulations, decrees and resolutions, there are also national and international standards and guides that provide guidelines for structuring the current management and the use of best regulatory practices. The Brazilian Multipurpose Reactor Enterprise (RMB) is a CNEN project, complying with a Multi-Year Plan of the Brazilian Ministry of Planning, Development and Management (MPDG). The Enterprise is being developed under the responsibility of the Directorate of Research and Development - DPD of CNEN and will have a facility for treatment and initial temporary storage of the radioactive waste generated by the operation of the research reactor and the activities carried out in the associated laboratories. The RMB will be built in the city of IPERÓ, located in the state of São Paulo, near ARAMAR Experimental Center of the Brazilian Navy. This work aims to present the research results regarding the various aspects that regulate, legislate and standardize the practices proposed to the Radioactive Waste Management of the RMB project. (author)

  19. Survey of legal aspects, regulations, standards and guidelines applicable to radioactive waste management of the Brazilian Multipurpose Reactor - RMB

    Energy Technology Data Exchange (ETDEWEB)

    Salvetti, T.C.; Marumo, J.T., E-mail: salvetti@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    In Brazil, the Brazilian Nuclear Energy Commission (CNEN) and Brazilian Institute of Environment and Renewable Natural Resources (IBAMA) are the agencies responsible for the execution, regulation and control of nuclear and environmental policies, respectively. Such regulatory activities are very comprehensive (IBAMA) or too specific (CNEN), revealing other aspects that would, also, need to be observed so that the management could be carried out efficiently (quality) and effectively (safety), including the three governmental administrative levels: Federal, State and Municipal. In addition to laws, regulations, decrees and resolutions, there are also national and international standards and guides that provide guidelines for structuring the current management and the use of best regulatory practices. The Brazilian Multipurpose Reactor Enterprise (RMB) is a CNEN project, complying with a Multi-Year Plan of the Brazilian Ministry of Planning, Development and Management (MPDG). The Enterprise is being developed under the responsibility of the Directorate of Research and Development - DPD of CNEN and will have a facility for treatment and initial temporary storage of the radioactive waste generated by the operation of the research reactor and the activities carried out in the associated laboratories. The RMB will be built in the city of IPERÓ, located in the state of São Paulo, near ARAMAR Experimental Center of the Brazilian Navy. This work aims to present the research results regarding the various aspects that regulate, legislate and standardize the practices proposed to the Radioactive Waste Management of the RMB project. (author)

  20. Final Environmental Statement related to license renewal and power increase for the National Bureau of Standards Reactor: Docket No. 50-184

    International Nuclear Information System (INIS)

    1982-08-01

    This Final Environmental Statement contains an assessment of the environmental impact associated with renewal of Operating License No. TR-5 for the National Bureau of Standards (NBS) reactor for a period of 20 years at a power level of 20 MW. This reactor is located on the 576-acre NBS site near Gaithersburg in Montgomery County, Maryland, about 20 mi northwest of the center of Washington, DC. The reactor is a high-flux heavy-water-moderated, cooled and reflected test reactor, which first went critical on December 7, 1967. Though the reactor was originally designed for 20-MW operation, it has been operating for 14 years at a maximum authorized power level to 10 MW. Program demand is now great enough to warrant operation at a power level of 20 MW. No additional major changes to the physical plant are required to operate at 20 MW

  1. Reclamation and reuse of LEU silicide fuel from manufacturing scrap

    International Nuclear Information System (INIS)

    Gale, G.R.; Pace, B.W.; Evans, R.S.

    2004-01-01

    In order to provide an understanding of the organization which is the sole supplier of United States plate type research and test reactor fuel and LEU core conversions, a brief description of the structure and history is presented. Babcock and Wilcox (B and W) is a part of McDermott International, Inc. which is a large diversified corporation employing over 20,000 people primarily in engineering and construction for the off-shore oil and power generation industries throughout the world. B and W provides many energy related products requiring precision machining and high quality systems. This is accomplished by using state-of-the-art equipment, technology and highly skilled people. The RTRFE group within B and W has the ability to produce various complexly shaped fuel elements with a wide variety of fuels and enrichments. B and W RTRFE has fabricated over 200,000 plates since 1981 and gained the diversified experience necessary to satisfy many customer requirements. This accomplishment was possible with the support of McDermott International and all of its resources. B and W has always had a commitment to high quality and integrity. This is apparent by the success and longevity (125 years) of the company. A lower cost to convert cores to LEU provides direct support to RERTR and demonstrates Babcock and Wilcox's commitment to the program. As a supporter of RERTR reactor conversion from HEU to LEU, B and W has contributed a significant amount of R and D money to improve the silicide fuel process which ultimately lowers the LEU core costs. In the most recent R and D project, B and W is constructing a LEU silicide reclamation facility to re-use the unirradiated fuel scrap generated from the production process. Remanufacturing use of this fuel completes the fuel cycle and provides a contribution to LEU cores by reducing scrap inventory and handling costs, lowering initial purchase of fuel due to increasing the process yields, and lowering the replacement costs. This

  2. Feeder replacement tooling and processes

    International Nuclear Information System (INIS)

    Mallozzi, R.; Goslin, R.; Pink, D.; Askari, A.

    2008-01-01

    Primary heat transport system feeder integrity has become a concern at some CANDU nuclear plants as a result of thinning caused by flow accelerated corrosion (FAC). Feeder inspections are indicating that life-limiting wall thinning can occur in the region between the Grayloc hub weld and second elbow of some outlet feeders. In some cases it has become necessary to replace thinned sections of affected feeders to restore feeder integrity to planned end of life. Atomic Energy of Canada Limited (AECL) and Babcock and Wilcox Canada Ltd. (B and W) have developed a new capability for replacement of single feeders at any location on the reactor face without impacting or interrupting operation of neighbouring feeders. This new capability consists of deploying trained crews with specialized tools and procedures for feeder replacements during planned outages. As may be expected, performing single feeder replacement in the congested working environment of an operational CANDU reactor face involves overcoming many challenges with respect to access to feeders, available clearances for tooling, and tooling operation and performance. This paper describes some of the challenges encountered during single feeder replacements and actions being taken by AECL and B and W to promote continuous improvement of feeder replacement tooling and processes and ensure well-executed outages. (author)

  3. International standardization of safety requirements for fast reactors

    International Nuclear Information System (INIS)

    2011-06-01

    Japan Atomic Energy Agency (JAEA) is conducting the FaCT (Fast Reactor Cycle Technology Development) project in cooperation with Japan Atomic Power Company (JAPC) and Mitsubishi FBR systems inc. (MFBR), where an advanced loop-type fast reactor named JSFR (Japan Sodium-cooled Fast Reactor) is being developed. It is important to develop software technologies (a safety guideline, safety design criteria, safety design standards etc.) of FBRs as well as hardware ones (a reactor plant itself) in order to address prospective worldwide utilization of FBR technology. Therefore, it is expected to establish a rational safety guideline applicable to the JSFR and harmonized with national nuclear-safety regulations as well, including Japan, the United States and the European Union. This report presents domestic and international status of safety guideline development for sodium-cooled fast reactors (SFRs), results of comparative study for safety requirements provided in existing documents and a proposal for safety requirements of future SFRs with a roadmap for their refinement and worldwide utilization. (author)

  4. American National Standard: fire-protection program criteria for research reactors

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This standard provides criteria for a fire protection program for research reactor facilities and for the reactor safety-related systems included in those facilities. It stresses preservation of the capability to achieve and maintain safe shutdown of the reactor, and includes consideration of both direct fire hazards and indirect or consequential hazards

  5. Evaluation and standardization of neutron activation analysis according to the K0 method in the RP-10 reactor

    International Nuclear Information System (INIS)

    Montoya R, E.

    1995-01-01

    It has been characterized and standardized an irradiation of the RP-10 Research Nuclear Reactor for use of the K 0 method of neutron activation analysis using the Hoegdahl convention; also it has been evaluate the behaviour of such method in regard to the accuracy and precision of the results obtained in the quantitative multi elemental analysis of several certified materials of reference. In order to prove that the analytical method is totally under statistical control, it has been used the Heydorn method. It has been verified that the method is exact, precise and reliable to determine the aluminium, antimuonium, arsenic, bromine, calcium, chloride, copper, magnesium, manganese, sodium, titanium, vanadium, zinc and other elements. Also, they are discussed, in regard to the use of K 0 constants, the different formalisms employed to calculate the integral of the reaction rate by nucleus in the activation. (author). 58 refs., 18 tabs., 6 figs

  6. Fate of injected CO2 in the Wilcox Group, Louisiana, Gulf Coast Basin: Chemical and isotopic tracers of microbial–brine–rock–CO2 interactions

    Science.gov (United States)

    Shelton, Jenna L.; McIntosh, Jennifer C.; Warwick, Peter D.; Lee Zhi Yi, Amelia

    2014-01-01

    The “2800’ sandstone” of the Olla oil field is an oil and gas-producing reservoir in a coal-bearing interval of the Paleocene–Eocene Wilcox Group in north-central Louisiana, USA. In the 1980s, this producing unit was flooded with CO2 in an enhanced oil recovery (EOR) project, leaving ∼30% of the injected CO2 in the 2800’ sandstone post-injection. This study utilizes isotopic and geochemical tracers from co-produced natural gas, oil and brine to determine the fate of the injected CO2, including the possibility of enhanced microbial conversion of CO2 to CH4 via methanogenesis. Stable carbon isotopes of CO2, CH4 and DIC, together with mol% CO2 show that 4 out of 17 wells sampled in the 2800’ sandstone are still producing injected CO2. The dominant fate of the injected CO2appears to be dissolution in formation fluids and gas-phase trapping. There is some isotopic and geochemical evidence for enhanced microbial methanogenesis in 2 samples; however, the CO2 spread unevenly throughout the reservoir, and thus cannot explain the elevated indicators for methanogenesis observed across the entire field. Vertical migration out of the target 2800’ sandstone reservoir is also apparent in 3 samples located stratigraphically above the target sand. Reservoirs comparable to the 2800’ sandstone, located along a 90-km transect, were also sampled to investigate regional trends in gas composition, brine chemistry and microbial activity. Microbial methane, likely sourced from biodegradation of organic substrates within the formation, was found in all oil fields sampled, while indicators of methanogenesis (e.g. high alkalinity, δ13C-CO2 and δ13C-DIC values) and oxidation of propane were greatest in the Olla Field, likely due to its more ideal environmental conditions (i.e. suitable range of pH, temperature, salinity, sulfate and iron concentrations).

  7. TRAC-PF1/MOD1 calculations and data comparisons for MIST [Multi-Loop Integral System Test] small-break loss-of-coolant accidents with scaled 10 cm2 and 50 cm2 breaks

    International Nuclear Information System (INIS)

    Steiner, J.L.; Siebe, D.A.; Boyack, B.E.

    1987-01-01

    Los Alamos National Laboratory is a participant in the Integral System Test (IST) program initiated in June 1983 for the purpose of providing integral system test data on specific issues/phenomena relevant to post-small-break loss-of-coolant accidents (SBLOCAs), loss of feedwater and other transients in Babcock and Wilcox (B and W) plant designs. The Multi-Loop Integral System Test (MIST) facility is the largest single component in the IST program. MIST is a 2 x 4 (2 hot legs and steam generators, 4 cold legs and reactor-coolant pumps) representation of lowered-loop reactor systems of the B and W design. It is a full-height, full-pressure facility with 1/817 power and volume scaling. Two other experimental facilities are included in the IST program: test loops at the University of Maryland, College Park, and at Stanford Research Institute. The objective of the IST tests is to generate high-quality experimental data to be used for assessing thermal-hydraulic safety computer codes. Efforts are underway at Los Alamos to assess TRAC-PF1/MOD1 against data from each of the IST facilities. Calculations and data comparisons for TRAC-PF1/MOD1 assessment have been completed for two transients run in the MIST facility. These are the MIST nominal test. Test 3109AA, a scaled 10 cm 2 SBLOCA and Test 320201, a scaled 50 cm 2 SBLOCA. Only MIST assessment results are presented in this paper

  8. SPACE-R Thermionic Space Nuclear Power System: Design and Technology Demonstration Program. Semiannual technical progress report for period ending March 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This Semiannual Technical Progress Report summarizes the technical progress and accomplishments for the Thermionic Space Nuclear Power System (TI-SNPS) Design and Technology Demonstration Program of the Prime Contractor, Space Power Incorporated (SPI), its subcontractors and supporting National Laboratories during the first half of the Government Fiscal Year (GFY) 1993. SPI`s subcontractors and supporting National Laboratories include: Babcock & Wilcox for the reactor core and externals; Space Systems/Loral for the spacecraft integration; Thermocore for the radiator heat pipes and the heat exchanger; INERTEK of CIS for the TFE, core elements and nuclear tests; Argonne National Laboratories for nuclear safety, physics and control verification; and Oak Ridge National laboratories for materials testing. Parametric trade studies are near completion. However, technical input from INERTEK has yet to be provided to determine some of the baseline design configurations. The INERTEK subcontract is expected to be initiated soon. The Point Design task has been initiated. The thermionic fuel element (TFE) is undergoing several design iterations. The reactor core vessel analysis and design has also been started.

  9. A base to standardize data processing of cadmium ratio RCd and thermal neutron flux measurements on reactor

    International Nuclear Information System (INIS)

    Li Zhaohuan

    1993-08-01

    The cadmium ratio R Cd and thermal neutron flux are usually measured in a reactor. But its data process is rather complex. The results from same measured data differ by different existing process methods. The purpose of this work is to standardize data processing in R Cd and thermal neutron flux measurements. A natural choice for this purpose is to derive a R Cd formula based on standard average thermal activation cross section and resonance integral and to define related parameters or factors that provide an unique base for comparison between different measurements in laboratories. The parameters or factors include E c , F m , F m ' and G th ' in thermal energy region due to upper truncated Maxwellian distribution and E Cd , F Cd , G r and S r in intermediate energy region. They are the function of multiple variables. The Au foil is used as an example to demonstrate their behaviors by chosen figures and tables which provide for practical data process by hand. The work also discusses limitation of R Cd measurement in terms of so called available and optimum region and notes that Co and Mn foils have a much wider available region among Au, In, Mn, W and Co, the commonly used detector foils

  10. Acceptance Test Data for BWXT Coated Particle Batch 93164A Defective IPyC Fraction and Pyrocarbon Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dyer, John A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    Coated particle fuel batch J52O-16-93164 was produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), or may be used as demonstration production-scale coated particle fuel for other experiments. The tristructural-isotropic (TRISO) coatings were deposited in a 150-mm-diameter production-scale fluidizedbed chemical vapor deposition (CVD) furnace onto 425-μm-nominal-diameter spherical kernels from BWXT lot J52L-16-69316. Each kernel contained a mixture of 15.5%-enriched uranium carbide and uranium oxide (UCO) and was coated with four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. The TRISO-coated particle batch was sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batch was designated by appending the letter A to the end of the batch number (i.e., 93164A).

  11. Rolling Process Modeling Report. Finite-Element Model Validation and Parametric Study on various Rolling Process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Soulami, Ayoub [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-15

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum alloy plate-type fuel for high-performance research reactors in the United States. This work supports the U.S. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization Reactor Conversion Program. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll-separating forces for various rolling mill geometries for PNNL, Babcock & Wilcox Co., Y-12 National Security Complex, Los Alamos National Laboratory, and Idaho National Laboratory. The model developed and presented in a previous report has been subjected to further validation study using new sets of experimental data generated from a rolling mill at PNNL. Simulation results of both hot rolling and cold rolling of uranium-10% molybdenum coupons have been compared with experimental results. The model was used to predict roll-separating forces at different temperatures and reductions for five rolling mills within the National Nuclear Security Administration Fuel Fabrication Capability project. This report also presents initial results of a finite-element model microstructure-based approach to study the surface roughness at the interface between zirconium and uranium-10% molybdenum.

  12. Acceptance Test Data for Candidate AGR-5/6/7 TRISO Particle Batches BWXT Coater Batches 93165 93172 Defective IPyC Fraction and Pyrocarbon Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dyer, John A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schumacher, Austin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    Coated particle fuel batches J52O-16-93165, 93166, 93168, 93169, 93170, and 93172 were produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR). Some of these batches may alternately be used as demonstration coated particle fuel for other experiments. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture of 15.5%-enriched uranium carbide and uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μmnominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93165A).

  13. Revisiting the Integrated Pressurized Thermal Shock Studies of an Aging Pressurized Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryson, J.W.; Dickson, T.L.; Malik, S.N.M.; Simonen, F.A.

    1999-08-01

    The Integrated Pressurized Thermal Shock (IPTS) studies were a series of studies performed in the early-mid 1980s as part of an NRC-organized comprehensive research project to confirm the technical bases for the pressurized thermal shock (PTS) rule, and to aid in the development of guidance for licensee plant-specific analyses. The research project consisted of PTS pilot analyses for three PWRs: Oconee Unit 1, designed by Babcock and Wilcox; Calvert Cliffs Unit 1, designed by Combustion Engineering; and H.B. Robinson Unit 2, designed by Westinghouse. The primary objectives of the IPTS studies were (1) to provide for each of the three plants an estimate of the probability of a crack propagating through the wall of a reactor pressure vessel (RPV) due to PTS; (2) to determine the dominant overcooling sequences, plant features, and operator actions and the uncertainty in the plant risk due to PTS; and (3) to evaluate the effectiveness of potential corrective actions. The NRC is currently evaluating the possibility of revising current PTS regulatory guidance. Technical bases must be developed to support any revisions. In the years since the results of IPTS studies were published, the fracture mechanics model, the embrittlement database, embrittlement correlation, inputs for flaw distributions, and the probabilistic fracture mechanics (PFM) computer code have been refined. An ongoing effort is underway to determine the impact of these fracture-technology refinements on the conditional probabilities of vessel failure calculated in the IPTS Studies. This paper discusses the results of these analyses performed for one of these plants.

  14. D and DR Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — The world's second full-scale nuclear reactor was the D Reactor at Hanford which was built in the early 1940's and went operational in December of 1944.D Reactor ran...

  15. 78 FR 73898 - Operator Licensing Examination Standards for Power Reactors

    Science.gov (United States)

    2013-12-09

    [email protected] . Both of the Office of New Reactors; or Timothy Kolb, Office of Nuclear Reactor Regulation, U...: timothy.kolb@nrc.gov . SUPPLEMENTARY INFORMATION: I. Accessing Information and Submitting Comments A...

  16. Non-Power Reactor Operator Licensing Examiner Standards. Revision 1

    International Nuclear Information System (INIS)

    1995-06-01

    The Non-Power Reactor Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, these standards will be revised periodically to accommodate comments and reflect new information or experience

  17. Non-Power Reactor Operator Licensing Examiner Standards

    International Nuclear Information System (INIS)

    1994-06-01

    The Non-Power Reactor Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR Part 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, this standard will be revised periodically to accommodate comments and reflect new information or experience

  18. Generating material strength standards of aluminum alloys for research reactors. Pt. 1. Yield strength values Sy and tensile strength values Su

    International Nuclear Information System (INIS)

    Tsuji, H.; Miya, K.

    1995-01-01

    Aluminum alloys are frequently used as structural materials for research reactors. The material strength standards, however, such as the yield strength values (S y ), the tensile strength values (S u ) and the design fatigue curve -which are needed to use aluminum alloys as structural materials in ''design by analysis'' - for those materials have not been determined yet. Hence, a series of material tests was performed and the results were statistically analyzed with the aim of generating these material strength standards. This paper, the first in a series on material strength standards of aluminum alloys, describes the aspects of the tensile properties of the standards. The draft standards were compared with MITI no. 501 as well as with the ASME codes, and the trend of the available data also was examined. It was revealed that the draft proposal could be adopted as the material strength standards, and that the values of the draft standards at and above 150 C for A6061-T6 and A6063-T6 could be applied only to the reactor operating conditions III and IV. Also the draft standards have already been adopted in the Science and Technology Agency regulatory guide (standards for structural design of nuclear research plants). (orig.)

  19. Evaluation of system requirements and standards development for thermal annealing of reactor pressure vessels. Progress report, March-September 1982

    International Nuclear Information System (INIS)

    Server, W.L.

    1983-03-01

    The material property data on thermal annealing of reactor-pressure-vessel steels have been reviewed. The most-critical materials are high copper welds; the data indicate that close to full recovery of Charpy V-notch properties can be realized by annealing at 850 0 F for 1 week (168 hours). However, the variability and sparcity of annealing recovery data dictate appropriate surveillance and experimental test programs. Of particular concern are the actual fracture-toughness changes and the differences between test- and power-reactor conditions. A survey of pressurized-water-reactor vendors, architect engineers, and consultants has been performed to assess the feasibility of performing a thermal-annealing cycle to restore the beltline material properties to their original state. This survey also addressed the issue of whether or not an actual annealing demonstration should be performed. It is the consensus view of the industry that in-situ reactor-vessel annealing can be done, but several areas still need to be studied and the American Society of Mechanical Engineers' Boiler and Pressure Vessel Code guidelines need to be defined

  20. Training and Certification of Research Reactor Personnel

    International Nuclear Information System (INIS)

    Zarina Masood

    2011-01-01

    The safe operation of a research reactor requires that reactor personnel be fully trained and certified by the relevant authorities. Reactor operators at PUSPATI TRIGA Reactor underwent extensive training and are certified, ever since the reactor first started its operation in 1982. With the emphasis on enhancing reactor safety in recent years, reactor operator training and certification have also evolved. This paper discusses the changes that have to be implemented and the challenges encountered in developing a new training programme to be in line with the national standards. (author)

  1. Standard technical specifications for Westinghouse pressurized water reactors (revision issued Fall 1981). Technical report

    International Nuclear Information System (INIS)

    Virgilio, M.J.

    1981-11-01

    The Standard Technical Specifications for Westinghouse Pressurized Water Reactors (W-STS) is a generic document prepared by the U.S. NRC for use in the licensing process of current Westinghouse Pressurized Water Reactors. The W-STS sets forth the Limits, Operating Conditions and other requirements applicable to nuclear reactor facility operation as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public

  2. The reactor accident in the Three Mile Island-2 reactor plant. (Harrisburg, USA)

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The presentation of the accident development is based on the bulletin of the Atomic Industrial Forum (AIF) from the 6th of April, 1979. In addition, there are some short pieces of information, No. 14 and 15 of the association for reactor security as well as written and verbal information of the firms Brown, Boveri and Co/Babcock-Brown Boveri Reaktor GmbH (BBC/BBR). (orig.) [de

  3. A THREE-DIMENSIONAL BABCOCK-LEIGHTON SOLAR DYNAMO MODEL

    International Nuclear Information System (INIS)

    Miesch, Mark S.; Dikpati, Mausumi

    2014-01-01

    We present a three-dimensional (3D) kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally bipolar magnetic regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2.5 dimensional (2.5D, axisymmetric) Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2.5D in radius/latitude) and surface flux transport models (2.5D in latitude/longitude) into a more self-consistent framework that builds on the successes of each while capturing the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11 yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-propagating surface flux originates as trailing flux in BMRs, migrates poleward in multiple non-axisymmetric streams (made axisymmetric by differential rotation and turbulent diffusion), and eventually reverses the polar field, thus sustaining the dynamo. In this Letter we briefly describe the model, initial results, and future plans

  4. Reactor physics standards: The key to successfully dealing with technical diversity

    International Nuclear Information System (INIS)

    Knuckles, E.R.

    1990-01-01

    Effective and valuable reactor physics standards can be successfully developed to accommodate diversity in available calculations tools and promote improvement in existing methods. The issues encountered and lessons learned in the standard, 'Calculation of Doppler Reactivity for Use in Thermal Light Water Reactor Analysis' (now under development by the ANS 19.7 working group), demonstrate this point. With a diversity of reactor physics tools available, differing levels of user experience, and a variety of procedures for calculating reactor physics parameters important to safety, it is not surprising that there are differing levels of quality in the calculational result of the same parameters. An approach that effectively deals with this technical diversity is standardization of the calculational process. This approach assures that the user's expectations are consistently met. In order for a standard to be effective, it must recognize and address three essential elements of this process: the user, a set of codes, and associated procedures

  5. GPU v. B and W lawsuit review and its effect on TMI-1 (Docket 50-289)

    International Nuclear Information System (INIS)

    1983-09-01

    This report documents a review by the Nuclear Regulatory Commission (NRC) staff of the General Public Utilities Corporation, et al. v. the Babcock and Wilcox Company, et al. (GPU v. B and W) lawsuit record to assess whether any of the staff's previous conclusions or their principal bases presented at the Three Mile Island Unit 1 (TMI-1) restart hearing, supporting restart of TMI-1, should be amended in light of the information contained in the lawsuit record. Details of the lawsuit record are provided in the appendices contained in Volume II of this report

  6. GPU v. B and W lawsuit review and its effect on TMI-1 (Docket 50-289)

    Energy Technology Data Exchange (ETDEWEB)

    1983-09-01

    This report documents a review by the Nuclear Regulatory Commission (NRC) staff of the General Public Utilities Corporation, et al. v. the Babcock and Wilcox Company, et al. (GPU v. B and W) lawsuit record to assess whether any of the staff's previous conclusions or their principal bases presented at the Three Mile Island Unit 1 (TMI-1) restart hearing, supporting restart of TMI-1, should be amended in light of the information contained in the lawsuit record. Details of the lawsuit record are provided in the appendices contained in Volume II of this report.

  7. Green County Nuclear Power Plant. License application

    International Nuclear Information System (INIS)

    1975-07-01

    The Green County reactor, a PWR to be supplied by Babcock and Wilcox, will be a baseload generating facility planned to provide for mass transit and other public agency electrical needs. The plant is scheduled for completion by 1983 and will have a generating capacity of about 1200 MW(e). (FS)

  8. Standard Master Matrix for Light-Water Reactor Pressure Vessel Surveillance Standards, E706(0)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This master matrix standard describes a series of standard practices, guides, and methods for the prediction of neutron-induced changes in light-water reactor (LWR) pressure vessel (PV) and support structure steels throughout a pressure vessel's service life (Fig. 1). Some of these are existing ASTM standards, some are ASTM standards that have been modified, and some are proposed ASTM standards. General requirements of content and consistency are discussed in Section 6 . More detailed writers' and users' information, justification, and specific requirements for the nine practices, ten guides, and three methods are provided in Sections 3-5. Referenced documents are discussed in Section 2. The summary-type information that is provided in Sections 3 and 4 is essential for establishing proper understanding and communications between the writers and users of this set of matrix standards. It was extracted from the referenced documents, Section 2 and references (1-106) for use by individual writers and users. 1...

  9. Standard Test Method for Application and Analysis of Solid State Track Recorder (SSTR) Monitors for Reactor Surveillance, E706(IIIB)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This test method describes the use of solid-state track recorders (SSTRs) for neutron dosimetry in light-water reactor (LWR) applications. These applications extend from low neutron fluence to high neutron fluence, including high power pressure vessel surveillance and test reactor irradiations as well as low power benchmark field measurement. (1) This test method replaces Method E 418. This test method is more detailed and special attention is given to the use of state-of-the-art manual and automated track counting methods to attain high absolute accuracies. In-situ dosimetry in actual high fluence-high temperature LWR applications is emphasized. 1.2 This test method includes SSTR analysis by both manual and automated methods. To attain a desired accuracy, the track scanning method selected places limits on the allowable track density. Typically good results are obtained in the range of 5 to 800 000 tracks/cm2 and accurate results at higher track densities have been demonstrated for some cases. (2) Trac...

  10. GPU is in great jeopardy: PUC report details GPU's deteriorating financial position

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The General Public Utilities Corporation (GPU) faces bankruptcy or reorganization without Federal financial help and rate relief for the cleanup at Three Mile Island, but neither the Administration nor the Pennsylvania Public Utilities Commission is inclined to help. Bankruptcy will leave GPU's customers without power and will leave Unit 2 contaminated, making it unlikely that the courts will permit dissolution. The Nuclear Regulatory Commission's permission to restore Unit 1 could make financial recovery possible. Its reluctance to do so and its use of the psychological stress factor can be interpreted as applying a double standard to Babcock and Wilcox reactors

  11. Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock-Leighton Solar Dynamo Model

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark

    2017-09-01

    We present results from a three-dimensional Babcock-Leighton (BL) dynamo model that is sustained by the emergence and dispersal of bipolar magnetic regions (BMRs). On average, each BMR has a systematic tilt given by Joy’s law. Randomness and nonlinearity in the BMR emergence of our model produce variable magnetic cycles. However, when we allow for a random scatter in the tilt angle to mimic the observed departures from Joy’s law, we find more variability in the magnetic cycles. We find that the observed standard deviation in Joy’s law of {σ }δ =15^\\circ produces a variability comparable to the observed solar cycle variability of ˜32%, as quantified by the sunspot number maxima between 1755 and 2008. We also find that tilt angle scatter can promote grand minima and grand maxima. The time spent in grand minima for {σ }δ =15^\\circ is somewhat less than that inferred for the Sun from cosmogenic isotopes (about 9% compared to 17%). However, when we double the tilt scatter to {σ }δ =30^\\circ , the simulation statistics are comparable to the Sun (˜18% of the time in grand minima and ˜10% in grand maxima). Though the BL mechanism is the only source of poloidal field, we find that our simulations always maintain magnetic cycles even at large fluctuations in the tilt angle. We also demonstrate that tilt quenching is a viable and efficient mechanism for dynamo saturation; a suppression of the tilt by only 1°-2° is sufficient to limit the dynamo growth. Thus, any potential observational signatures of tilt quenching in the Sun may be subtle.

  12. Comparison between MAAP and ECART predictions of radionuclide transport throughout a French standard PWR reactor coolant system

    International Nuclear Information System (INIS)

    Hervouet, C.; Ranval, W.; Parozzi, F.; Eusebi, M.

    1996-04-01

    In the framework of a collaboration agreement between EDF and ENEL, the MAAP (Modular Accident Analysis Program) and ECART (ENEL Code for Analysis of radionuclide Transport) predictions about the fission product retention inside the reactor cooling system of a French PWR 1300 MW during a small Loss of Coolant Accident were compared. The volatile fission products CsI, CsOH, TeO 2 and the structural materials, all of them released early by the core, are more retained in MAAP than in ECART. On the other hand, the non-volatile fission products, released later, are more retained in ECART than in MAAP, because MAAP does not take into account diffusion-phoresis: in fact, this deposition phenomenon is very significant when the molten core vaporizes the water of the vessel lower plenum. Centrifugal deposition in bends, that can be modeled only with ECART, slightly increases the whole retention in the circuit if it is accounted for. (authors). 18 refs., figs., tabs

  13. Standard Guide for Benchmark Testing of Light Water Reactor Calculations

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide covers general approaches for benchmarking neutron transport calculations in light water reactor systems. A companion guide (Guide E2005) covers use of benchmark fields for testing neutron transport calculations and cross sections in well controlled environments. This guide covers experimental benchmarking of neutron fluence calculations (or calculations of other exposure parameters such as dpa) in more complex geometries relevant to reactor surveillance. Particular sections of the guide discuss: the use of well-characterized benchmark neutron fields to provide an indication of the accuracy of the calculational methods and nuclear data when applied to typical cases; and the use of plant specific measurements to indicate bias in individual plant calculations. Use of these two benchmark techniques will serve to limit plant-specific calculational uncertainty, and, when combined with analytical uncertainty estimates for the calculations, will provide uncertainty estimates for reactor fluences with ...

  14. Reactor dosimetry integral reaction rate data in LMFBR Benchmark and standard neutron fields: status, accuracy and implications

    International Nuclear Information System (INIS)

    Fabry, A.; Ceulemans, H.; Vandeplas, P.; McElroy, W.N.; Lippincott, E.P.

    1977-01-01

    This paper provides conclusions that may be drawn regarding the consistency and accuracy of dosimetry cross-section files on the basis of integral reaction rate data measured in U.S. and European benchmark and standard neutron fields. In a discussion of the major experimental facilities CFRMF (Idaho Falls), BIGTEN (Los Alamos), ΣΣ (Mol, Bucharest), NISUS (London), TAPIRO (Roma), FISSION SPECTRA (NBS, Mol, PTB), attention is paid to quantifying the sensitivity of computed integral data relative to the presently evaluated accuracy of the various neutron spectral distributions. The status of available integral data is reviewed and the assigned uncertainties are appraised, including experience gained by interlaboratory comparisons. For all reactions studied and for the various neutron fields, the measured integral data are compared to the ones computed from the ENDF/B-IV and the SAND-II dosimetry cross-section libraries as well as to some other differential data in relevant cases. This comparison, together with the proposed sensitivity and accuracy assessments, is used, whenever possible, to establish how well the best cross-sections evaluated on the basis of differential measurements (category I dosimetry reactions) are reliable in terms of integral reaction rates prediction and, for those reactions for which discrepancies are indicated, in which energy range it is presumed that additional differential measurements might help. For the other reactions (category II), the inconsistencies and trends are examined. The need for further integral measurements and interlaboratory comparisons is also considered

  15. Draft of standard for graphite core components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Sawa, Kazuhiro; Eto, Motokuni; Kunimoto, Eiji; Shiozawa, Shusaku; Oku, Tatsuo; Maruyama, Tadashi

    2010-01-01

    For the design of the graphite components in the High Temperature Engineering Test Reactor (HTTR), the graphite structural design code for the HTTR etc. were applied. However, general standard systems for the High Temperature Gas-cooled Reactor (HTGR) have not been established yet. The authors had studied on the technical issues which is necessary for the establishment of a general standard system for the graphite components in the HTGR. The results of the study were documented and discussed at a 'Special committee on research on preparation for codes for graphite components in HTGR' at Atomic Energy Society of Japan (AESJ). As a result, 'Draft of Standard for Graphite Core Components in High Temperature Gas-cooled Reactor.' was established. In the draft standard, the graphite components are classified three categories (A, B and C) in the standpoints of safety functions and possibility of replacement. For the components in the each class, design standard, material and product standards, and in-service inspection and maintenance standard are determined. As an appendix of the design standard, the graphical expressions of material property data of 1G-110 graphite as a function of fast neutron fluence are expressed. The graphical expressions were determined through the interpolation and extrapolation of the irradiated data. (author)

  16. The Role of Magnetic Buoyancy in a Babcock-Leighton Type Solar ...

    Indian Academy of Sciences (India)

    tribpo

    J. Astrophys. Astr. (2000) 21, 381-385. The Role of Magnetic Buoyancy in a Babcock-Leighton. Type Solar Dynamo. Dibyendu Nandy* & Arnab Rai Choudhuri, ... model of the solar dynamo—which draws inspiration from the Babcock- .... are still of rather exploratory nature, since none of the authors have succeeded yet.

  17. Nuclear reactors. Use of the protection system for non-safety purposes (International Electrotechnical Commission Standard Publication 639:1979)

    International Nuclear Information System (INIS)

    Stefanik, J.

    1996-01-01

    This standard applies to the protection system of a nuclear reactor and, more especially, to all interconnections between a reactor protection system (as defined and explained in International Electrotechnical Commission Publication 231 A, first supplement to Publication 231, General Principles of Nuclear Reactor Instrumentation) and all other systems and equipment not part of the protection system, except: a) the physical connection between sensors of the protection system and the physical variables that they monitor, such as for example, thermo wells, moderating medium for neutron sensors, etc.; b) the electrical connection between the protection system and the reactor control rods or other safety mechanism; c) the electrical and pneumatic connections to the power distribution system (mains) and pneumatic supplies that supply power to the protection system. Although many clauses relate to all reactor protection systems, this standard applies mainly to protection systems in nuclear power reactors

  18. Examination of fast reactor fuels, FBR analytical quality assurance standards and methods, and analytical methods development: irradiation tests. Progress report, April 1--June 30, 1976, and FY 1976

    International Nuclear Information System (INIS)

    Baker, R.D.

    1976-08-01

    Characterization of unirradiated and irradiated LMFBR fuels by analytical chemistry methods will continue, and additional methods will be modified and mechanized for hot cell application. Macro- and microexaminations will be made on fuel and cladding using the shielded electron microprobe, emission spectrograph, radiochemistry, gamma scanner, mass spectrometers, and other analytical facilities. New capabilities will be developed in gamma scanning, analyses to assess spatial distributions of fuel and fission products, mass spectrometric measurements of burnup and fission gas constituents and other chemical analyses. Microstructural analyses of unirradiated and irradiated materials will continue using optical and electron microscopy and autoradiographic and x-ray techniques. Analytical quality assurance standards tasks are designed to assure the quality of the chemical characterizations necessary to evaluate reactor components relative to specifications. Tasks include: (1) the preparation and distribution of calibration materials and quality control samples for use in quality assurance surveillance programs, (2) the development of and the guidance in the use of quality assurance programs for sampling and analysis, (3) the development of improved methods of analysis, and (4) the preparation of continuously updated analytical method manuals. Reliable analytical methods development for the measurement of burnup, oxygen-to-metal (O/M) ratio, and various gases in irradiated fuels is described

  19. B and W model boiler tests: effect of temperature on IGA rate. Initial and post-1878 operating conditions of the model boilers

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The Babcock and Wilcox (B and W) model boiler operated with 10 ppm weekly injections of NaOH for 41,900 hours (4.8 years). The model boiler operating conditions are given. Tube No. 24 failed by caustic intergranular attack/stress corrosion cracking (IGA/SCC) at the steam-water zone. IGA defect depths on tube 24 is compared at different locations, which also have different temperature conditions. The specific locations are: steam/water zone, drilled baffle plate, and lower tube sheet crevice. In all locations caustic will concentrate (although to different concentration levels). Nevertheless, an effect of temperature on IGA rate can be estimated. The degree of attack relative to the location and environment is shown. SEM fractographs illustrate the completely intergranular failure of Tube 24. A summary of the estimated results is presented. These results show the estimated IGA rate as a function of primary/secondary temperature and estimated caustic concentration. Details of the failure analysis of the model boiler can be found in the final report Destructive Examination of Babcock and Wilcox's Model Boiler for Intergranular Attack (IGA) on Tubes, EPRI S302-6, J.L.; Barna and L.W. Sarver

  20. A nuclear power unit with a Babcock type steam generating system-analysis of the break-down in the Three Mile Island power plant

    International Nuclear Information System (INIS)

    Werner, A.

    1980-01-01

    Installations of the primary and the secondary circuits and basic automatic control and protection systems for a nuclear power unit with Babcock type vertical, once-through steam generator are described. On this background the course of the break-down in the Three Mile Island power plant at Harrisburg is presented and analysed. (author)

  1. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-01

    The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

  2. American National Standard: design requirements for light-water-reactor fuel-handling systems

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This standard defines the required functions of fuel handling systems at light water reactor nuclear power plants. It provides minimum design requirements for equipment and tools for safe handling of nuclear fuel and control components at light water reactor nuclear power plants. The fuel handling system covered by this standard consists of handling equipment used for receiving and inspecting fuel containing new and recycled uranium; transporting on-site and loading fuel containing new and recycled uranium or irradiated fuel and control components in the reactor; removing from the reactor, transporting to storage, and inspecting irradiated fuel and loading casks for shipment of irradiated fuel from the site. It includes basic requirements and configuration for design, fabrication, maintenance, and operation. The basis of this standard is that the intended function of the equipment will be performed in an efficient and economical manner that assures protection to plant personnel and to the public, and that any radiation exposurers are maintained as low as reasonably achievable

  3. NTRE extended life feasibility assessment

    Science.gov (United States)

    Results of a feasibility analysis of a long life, reusable nuclear thermal rocket engine are presented in text and graph form. Two engine/reactor concepts are addressed: the Particle Bed Reactor (PBR) design and the Commonwealth of Independent States (CIS) concept. Engine design, integration, reliability, and safety are addressed by various members of the NTRE team from Aerojet Propulsion Division, Energopool (Russia), and Babcock & Wilcox.

  4. Development of a standard database for FBR core nuclear design (XI). Analysis of the Experimental Fast Reactor 'JOYO' MK-I start-up test and operation data

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Numata, Kazuyuki

    2000-03-01

    As a recent research, Japan Nuclear Cycle Development Institute (JNC) develops a database of integral data in addition to the JUPITER experiments, aiming at further improvement for accuracy and reliability. In this report, the authors describe the evaluation of the C/E values and the sensitivity analysis for the Experimental Fast Reactor 'JOYO' MK-I core. The minimal criticality, sodium void reactivity worth, fuel assembly worth and burn-up coefficient were analyzed. The results of both the minimal criticality and the fuel assembly worth, which were calculated by the standard analytical method for JUPITER experiments, agreed well with the measured values. On the other hand, the results of the sodium void reactivity worth have a tendency to overestimate. As for the burn-up coefficient, it was seen that the C/E values had a dispersion among the operation cycles. The authors judged that further investigation for the estimation of the experimental error will increase the applicability of the integral data to the adjusted library. Furthermore, sensitivity analyses for the minimal criticality, sodium void reactivity worth and fuel assembly worth showed the characteristics of 'JOYO' MK-I core in comparison with ZPPR-9 core of JUPITER experiments. (J.P.N.)

  5. Wilcox sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy. Report of Investigations No. 117

    Energy Technology Data Exchange (ETDEWEB)

    Debout, D.G.; Weise, B.R.; Gregory, A.R.; Edwards, M.B.

    1982-01-01

    Regional studies of the lower Eocene Wilcox Group in Texas were conducted to assess the potential for producing heat energy and solution methane from geopressured fluids in the deep-subsurface growth-faulted zone. However, in addition to assembling the necessary data for the geopressured geothermal project, this study has provided regional information of significance to exploration for other resources such as lignite, uranium, oil, and gas. Because the focus of this study was on the geopressured section, emphasis was placed on correlating and mapping those sandstones and shales occurring deeper than about 10,000 ft. The Wilcox and Midway Groups comprise the oldest thick sandstone/shale sequence of the Tertiary of the Gulf Coast. The Wilcox crops out in a band 10 to 20 mi wide located 100 to 200 mi inland from the present-day coastline. The Wilcox sandstones and shales in the outcrop and updip shallow subsurface were deposited primarily in fluvial environments; downdip in the deep subsurface, on the other hand, the Wilcox sediments were deposited in large deltaic systems, some of which were reworked into barrier-bar and strandplain systems. Growth faults developed within the deltaic systems, where they prograded basinward beyond the older, stable Lower Cretaceous shelf margin onto the less stable basinal muds. Continued displacement along these faults during burial resulted in: (1) entrapment of pore fluids within isolated sandstone and shale sequences, and (2) buildup of pore pressure greater than hydrostatic pressure and development of geopressure.

  6. Chemical evolution of groundwater in the Wilcox aquifer of the northern Gulf Coastal Plain, USA

    Science.gov (United States)

    Haile, Estifanos; Fryar, Alan E.

    2017-12-01

    The Wilcox aquifer is a major groundwater resource in the northern Gulf Coastal Plain (lower Mississippi Valley) of the USA, yet the processes controlling water chemistry in this clastic aquifer have received relatively little attention. The current study combines analyses of solutes and stable isotopes in groundwater, petrography of core samples, and geochemical modeling to identify plausible reactions along a regional flow path ˜300 km long. The hydrochemical facies evolves from Ca-HCO3 upgradient to Na-HCO3 downgradient, with a sequential zonation of terminal electron-accepting processes from Fe(III) reduction through SO4 2- reduction to methanogenesis. In particular, decreasing SO4 2- and increasing δ34S of SO4 2- along the flow path, as well as observations of authigenic pyrite in core samples, provide evidence of SO4 2- reduction. Values of δ13C in groundwater suggest that dissolved inorganic carbon is contributed both by oxidation of sedimentary organic matter and calcite dissolution. Inverse modeling identified multiple plausible sets of reactions between sampled wells, which typically involved cation exchange, pyrite precipitation, CH2O oxidation, and dissolution of amorphous Fe(OH)3, calcite, or siderite. These reactions are consistent with processes identified in previous studies of Atlantic Coastal Plain aquifers. Contrasts in groundwater chemistry between the Wilcox and the underlying McNairy and overlying Claiborne aquifers indicate that confining units are relatively effective in limiting cross-formational flow, but localized cross-formational mixing could occur via fault zones. Consequently, increased pumping in the vicinity of fault zones could facilitate upward movement of saline water into the Wilcox.

  7. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  8. Standard Guide for Use of Melt Wire Temperature Monitors for Reactor Vessel Surveillance, E 706 (IIIE)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This guide describes the application of melt wire temperature monitors and their use for reactor vessel surveillance of light-water power reactors as called for in Practice E 185. 1.2 The purpose of this guide is to recommend the selection and use of the common melt wire technique where the correspondence between melting temperature and composition of different alloys is used as a passive temperature monitor. Guidelines are provided for the selection and calibration of monitor materials; design, fabrication, and assembly of monitor and container; post-irradiation examinations; interpretation of the results; and estimation of uncertainties. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (See Note 1.)

  9. Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions

    Directory of Open Access Journals (Sweden)

    Yu-Feng Li

    2014-11-01

    Full Text Available We discuss reactor antineutrino oscillations with non-standard interactions (NSIs at the neutrino production and detection processes. The neutrino oscillation probability is calculated with a parametrization of the NSI parameters by splitting them into the averages and differences of the production and detection processes respectively. The average parts induce constant shifts of the neutrino mixing angles from their true values, and the difference parts can generate the energy (and baseline dependent corrections to the initial mass-squared differences. We stress that only the shifts of mass-squared differences are measurable in reactor antineutrino experiments. Taking Jiangmen Underground Neutrino Observatory (JUNO as an example, we analyze how NSIs influence the standard neutrino measurements and to what extent we can constrain the NSI parameters.

  10. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  11. Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  12. Reactor instrumentation and control

    International Nuclear Information System (INIS)

    Wach, D.; Beraha, D.

    1980-01-01

    The methods for measuring radiation are shortly reviewed. The instrumentation for neutron flux measurement is classified into out-of-core and in-core instrumentation. The out-of-core instrumentation monitors the operational range from the subcritical reactor to full power. This large range is covered by several measurement channels which derive their signals from counter tubes and ionization chambers. The in-core instrumentation provides more detailed information on the power distribution in the core. The self-powered neutron detectors and the aeroball system in PWR reactors are discussed. Temperature and pressure measurement devices are briefly discussed. The different methods for leak detection are described. In concluding the plant instrumentation part some new monitoring systems and analysis methods are presented: early failure detection methods by noise analysis, acoustic monitoring and vibration monitoring. The presentation of the control starts from an qualitative assessment of the reactor dynamics. The chosen control strategy leads to the definition of the part-load diagram, which provides the set-points for the different control systems. The tasks and the functions of these control systems are described. In additiion to the control, a number of limiting systems is employed to keep the reactor in a safe operating region. Finally, an outlook is given on future developments in control, concerning mainly the increased application of process computers. (orig./RW)

  13. 76 FR 23630 - Office of New Reactors; Proposed Revision 2 to Standard Review Plan, Section 1.0 on Introduction...

    Science.gov (United States)

    2011-04-27

    ... Standard Review Plan, Section 1.0 on Introduction and Interfaces AGENCY: Nuclear Regulatory Commission (NRC... Revision 2 to Standard Review Plan (SRP), Section 1.0, ``Introduction and Interfaces'' (Agencywide Documents Access and Management System (ADAMS) Accession No. ML110110573). The Office of New Reactors (NRO...

  14. Wilcox 1:100000 Quad Hydrography DLGs

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Digital line graph (DLG) data are digital representations of cartographic information. DLG's of map features are converted to digital form from maps and related...

  15. Results and Analysis of the Infrastructure Request for Information (DE-SOL-0008318)

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich, Brenden John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    The Department of Energy (DOE) Office of Nuclear Energy (NE) released a request for information (RFI) (DE-SOL-0008318) for “University, National Laboratory, Industry and International Input on Potential Office of Nuclear Energy Infrastructure Investments” on April 13, 2015. DOE-NE solicited information on five specific types of capabilities as well as any others suggested by the community. The RFI proposal period closed on June 19, 2015. From the 26 responses, 34 individual proposals were extracted. Eighteen were associated with a DOE national laboratory, including Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Idaho National Laboratory (INL), Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratory (SNL). Oak Ridge National Laboratory (ORNL) was referenced in a proposal as a proposed capability location, although the proposal did not originate with ORNL. Five US universities submitted proposals (Massachusetts Institute of Technology, Pennsylvania State University, Rensselaer Polytechnic Institute, University of Houston and the University of Michigan). Three industrial/commercial institutions submitted proposals (AREVA NP, Babcock and Wilcox (B&W) and the Electric Power Research Institute (EPRI)). Eight major themes emerged from the submissions as areas needing additional capability or support for existing capabilities. Two submissions supported multiple areas. The major themes are: Advanced Manufacturing (AM), High Performance Computing (HPC), Ion Irradiation with X-Ray Diagnostics (IIX), Ion Irradiation with TEM Visualization (IIT), Radiochemistry Laboratories (RCL), Test Reactors, Neutron Sources and Critical Facilities (RX) , Sample Preparation and Post-Irradiation Examination (PIE) and Thermal-Hydraulics Test Facilities (THF).

  16. Operator licensing examination standards for power reactors. Interim revision 8

    International Nuclear Information System (INIS)

    1997-01-01

    These examination standards are intended to assist NRC examiners and facility licensees to better understand the processes associated with initial and requalification examinations. The standards also ensure the equitable and consistent administration of examinations for all applicants. These standards are for guidance purposes and are not a substitute for the operator licensing regulations (i.e., 10 CFR Part 55), and they are subject to revision or other changes in internal operator licensing policy. This interim revision permits facility licensees to prepare their initial operator licensing examinations on a voluntary basis pending an amendment to 10 CFR Part 55 that will require facility participation. The NRC intends to solicit comments on this revision during the rulemaking process and to issue a final Revision 8 in conjunction with the final rule

  17. Nuclear reactors: physics and materials

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G

    2005-07-01

    In the form of a tutorial addressed to non-specialists, the article provides an introduction to nuclear reactor technology and more specifically to Light Water Reactors (LWR); it also shows where materials and chemistry problems are encountered in reactor technology. The basics of reactor physics are reviewed, as well as the various strategies in reactor design and the corresponding choices of materials (fuel, coolant, structural materials, etc.). A brief description of the various types of commercial power reactors follows. The design of LWRs is discussed in greater detail; the properties of light water as coolant and moderator are put in perspective. The physicochemical and metallurgical properties of the materials impose thermal limits that determine the performance and the maximum power a reactor can deliver. (author)

  18. Standard Practice for Determining NeutronExposures for Nuclear Reactor Vessel Support Structures

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice covers procedures for monitoring the neutron radiation exposures experienced by ferritic materials in nuclear reactor vessel support structures located in the vicinity of the active core. This practice includes guidelines for: 1.1.1 Selecting appropriate dosimetric sensor sets and their proper installation in reactor cavities. 1.1.2 Making appropriate neutronics calculations to predict neutron radiation exposures. 1.2 This practice is applicable to all pressurized water reactors whose vessel supports will experience a lifetime neutron fluence (E > 1 MeV) that exceeds 1 × 1017 neutrons/cm2 or 3.0 × 10−4 dpa. (See Terminology E 170.) 1.3 Exposure of vessel support structures by gamma radiation is not included in the scope of this practice, but see the brief discussion of this issue in 3.2. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and h...

  19. International Electrotechnical Commission standards and French material control standards

    International Nuclear Information System (INIS)

    Furet, J.; Weill, J.

    1978-01-01

    There are reported the international standards incorporated into the IEC Subcommitee 45 A (Nuclear Reactor Instrumentation) and the national standards elaborated by the Commissariat a l'Energie Atomique, CEA, Group of normalized control equipment, the degree of application of those being reported on the base design, call of bids and exploitation of nuclear power plants. (J.E. de C)

  20. Research in nuclear reactor theory and experimental reactors

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1978-01-01

    The paper is devoted to the possibilities of using experimental reactors for scientific research in nuclear power with a stress on problems in nuclear reactor theory. The stationary and nonstationary neutron fields, burnup prediction and analyses as well as fuel element development and the corresponding role of test-reactors were dealt with. It was shown that the investigations in nuclear reactor theory in Yugoslavia were developing continuously and in a useful interaction with experiments on research reactors. The needs for continuing the work on fundamental problems in neutron transport theory and on improving the calculation methods for thermal power reactors, together with the improvement of performances of existing research systems, were pointed out. A new quality in scientific work could be obtained dealing with the problems connected to a possible introduction of test-reactors, and fast systems later on. It was also pleaded for the corresponding orientations in fundamental sciences. (author) [sr

  1. Cooperation in reactor design evaluation and licensing

    Energy Technology Data Exchange (ETDEWEB)

    Kaufer, B.; Wasylyk, A. [World Nuclear Association, London (United Kingdom)

    2014-07-01

    In January 2007 the World Nuclear Association (WNA) established the Cooperation in Reactor Design Evaluation and Licensing (CORDEL) Working Group with the aim of stimulating a dialogue between the nuclear industry (including reactor vendors, operators and utilities) and nuclear regulators (national and international organisations) on the benefits and means of achieving a worldwide convergence of reactor safety standards for reactor designs. From the time of its inception to the present, CORDEL has evolved from a group of experts discussing how to achieve international standardisation in nuclear safety design to an established and recognised working group dedicated to analysing and forging common understandings in key areas as input to major decisions on nuclear energy policy. This paper will review the general directions and activities CORDEL plans to undertake during the next five-year period, including its general strategy, activities, priorities and interactions with its customers in order to meet its objectives. (author)

  2. Nuclear reactor kinetics and control

    International Nuclear Information System (INIS)

    Lewins, J.

    1978-01-01

    A consistent, integrated account of modern developments in the study of nuclear reactor kinetics and the problem of their efficient and safe control. It aims to prepare the student for advanced study and research or practical work in the field. Special features include treatments of noise theory, reliability theory and safety related studies. It covers all aspects of the operation and control of nuclear reactors, power and research and is complete in providing physical data methods of calculation and solution including questions of equipment reliability. The work uses illustrations of the main types of reactors in use in the UK, USA and Europe. Each chapter contains problems and worked examples suitable for course work and study. The subject is covered in chapters, entitled: introductory review; neutron and precursor equations; elementary solutions at low power; linear reactor process dynamics with feedback; power reactor control systems; fluctuations and reactor noise; safety and reliability; nonlinear systems (safety and control); analogue computing. (author)

  3. Supply strategy for SMR deployment

    International Nuclear Information System (INIS)

    Coccagna, A.F.

    2013-01-01

    This document provides a description of Babcock and Wilcox's deployment strategy for the mPower™ Small Modular Reactor from the perspective of Supply Chain and Manufacturing. A desirable future state of readiness is described as one which leverages and revitalizes an existing supply chain and manufacturing infrastructure, as well as leveraging an existing workforce of engineering, construction, and project management employees. B and W's mPower™ SMR value proposition offers many desired design and operating advantages to the SMR market. (author)

  4. Standard technical specifications for General Electric boiling water reactors

    International Nuclear Information System (INIS)

    1979-08-01

    This Standard Technical Specification (STS) has been structured for the broadest possible use on General Electric plants currently being reviewed for an Operating License. Optional specifications are provided for those features and systems which may be included in individual plant designs but are not generic in their scope of application. This revision of the GE-STS does not typically include requirements which may be added or revised as a result of the NRC staff's further review of the Three Mile Island incident

  5. Reactor technology: power conversion systems and reactor operation and maintenance

    International Nuclear Information System (INIS)

    Powell, J.R.

    1977-01-01

    The use of advanced fuels permits the use of coolants (organic, high pressure helium) that result in power conversion systems with good thermal efficiency and relatively low cost. Water coolant would significantly reduce thermal efficiency, while lithium and salt coolants, which have been proposed for DT reactors, will have comparable power conversion efficiencies, but will probably be significantly more expensive. Helium cooled blankets with direct gas turbine power conversion cycles can also be used with DT reactors, but activation problems will be more severe, and the portion of blanket power in the metallic structure will probably not be available for the direct cycle, because of temperature limitations. A very important potential advantage of advanced fuel reactors over DT fusion reactors is the possibility of easier blanket maintenance and reduced down time for replacement. If unexpected leaks occur, in most cases the leaking circuit can be shut off and a redundant cooling curcuit will take over the thermal load. With the D-He 3 reactor, it appears practical to do this while the reactor is operating, as long as the leak is small enough not to shut down the reactor. Redundancy for Cat-D reactors has not been explored in detail, but appears feasible in principle. The idea of mobile units operating in the reactor chamber for service and maintenance of radioactive elements is explored

  6. FFTF and CRBRP reactor vessels

    International Nuclear Information System (INIS)

    Morgan, R.E.

    1977-01-01

    The Fast Flux Test Facility (FFTF) reactor vessel and the Clinch River Breeder Reactor Plant (CRBRP) reactor vessel each serve to enclose a fast spectrum reactor core, contain the sodium coolant, and provide support and positioning for the closure head and internal structure. Each vessel is located in its reactor cavity and is protected by a guard vessel which would ensure continued decay heat removal capability should a major system leak develop. Although the two plants have significantly different thermal power ratings, 400 megawatts for FFTF and 975 megawatts for CRBRP, the two reactor vessels are comparable in size, the CRBRP vessel being approximately 28% longer than the FFTF vessel. The FFTF vessel diameter was controlled by the space required for the three individual In-Vessel Handling Machines and Instrument Trees. Utilization of the triple rotating plug scheme for CRBRP refueling enables packaging of the larger CRBRP core in a vessel the same diameter as the FFTF vessel

  7. Novelties in design and construction of the advanced reactors

    International Nuclear Information System (INIS)

    Acosta Ezcurra, T.; Garcia Rodriguez, B.M.

    1996-01-01

    The advanced pressurized water reactors (APWR), advanced boiling water reactors (ABWR), advanced liquid metal reactors (ALMR), and modular high temperature gas-cooled reactors (MHTGR), as well as heavy water reactors (AHWR), are analyzed taking into account those characteristics which make them less complex, but safer than their current homologous ones. This fact simplifies their construction which reduces completion periods and costs, increasing safety and protection of the plants. It is demonstrated how the accumulated operational experience allows to find more standardized designs with some enhancement in the material and component technology and thus achieve also a better use of computerized systems

  8. Coal geology of the Paleocene-Eocene Calvert Bluff Formation (Wilcox Group) and the Eocene Manning Formation (Jackson Group) in east-central Texas; field trip guidebook for the Society for Organic Petrology, Twelfth Annual Meeting, The Woodlands, Texas, August 30, 1995

    Science.gov (United States)

    Warwick, Peter D.; Crowley, Sharon S.

    1995-01-01

    The Jackson and Wilcox Groups of eastern Texas (fig. 1) are the major lignite producing intervals in the Gulf Region. Within these groups, the major lignite-producing formations are the Paleocene-Eocene Calvert Bluff Formation (Wilcox) and the Eocene Manning Formation (Jackson). According to the Keystone Coal Industry Manual (Maclean Hunter Publishing Company, 1994), the Gulf Coast basin produces about 57 million short tons of lignite annually. The state of Texas ranks number 6 in coal production in the United States. Most of the lignite is used for electric power generation in mine-mouth power plant facilities. In recent years, particular interest has been given to lignite quality and the distribution and concentration of about a dozen trace elements that have been identified as potential hazardous air pollutants (HAPs) by the 1990 Clean Air Act Amendments. As pointed out by Oman and Finkelman (1994), Gulf Coast lignite deposits have elevated concentrations of many of the HAPs elements (Be, Cd, Co, Cr, Hg, Mn, Se, U) on a as-received gm/mmBtu basis when compared to other United States coal deposits used for fuel in thermo-electric power plants. Although regulations have not yet been established for acceptable emissions of the HAPs elements during coal burning, considerable research effort has been given to the characterization of these elements in coal feed stocks. The general purpose of the present field trip and of the accompanying collection of papers is to investigate how various aspects of east Texas lignite geology might collectively influence the quality of the lignite fuel. We hope that this collection of papers will help future researchers understand the complex, multifaceted interrelations of coal geology, petrology, palynology and coal quality, and that this introduction to the geology of the lignite deposits of east Texas might serve as a stimulus for new ideas to be applied to other coal basins in the U.S. and abroad.

  9. Inorganic membranes and catalytic reactors

    OpenAIRE

    Rangel, Maria do Carmo

    1997-01-01

    Membrane reactors are reviewed with emphasis in their applications in catalysis field. The basic principles of these systems are presented as well as a historical development. The several kinds of catalytic membranes and their preparations are discussed including the problems, needs and challenges to be solved in order to use these reactors in commercial processes. Some applications of inorganic membrane reactors are also shown. It was concluded that these systems have a great potential for i...

  10. On the actual controlling of standards concerning the 'fast breeder reactor'

    International Nuclear Information System (INIS)

    Rengeling, H.W.

    1978-01-01

    If the decision of the OVG Muenster to present the case to the Federal Constitutional Court asking whether Article 7 of the atomic energy law corresponds to the constitution or not, as far as the article allows the licensing of a fast breeder reactor, two problems arise: The legal question in how far the actual controlling of standards is to be preceeded by a statement of facts given by the court of first instance, and the problem behind concerning the responsibility of decision. The Federal Constitutional Court should accept the responsibility of decision to be borne by it. (orig.) [de

  11. Nuclear power reactors: reactor safety and military and civil defence

    International Nuclear Information System (INIS)

    Hvinden, T.

    1976-01-01

    The formation of fission products and plutonium in reactors is briefly described, followed by a short general discussion of reactor safety. The interaction of reactor safety and radioactive release considerations with military and civil defence is thereafter discussed. Reactors and other nuclear plants are factors which must be taken into account in the defence of the district around the site, and as potential targets of both conventional and guerilla attacks and sabotage, requiring special defence. The radiological hazards arising from serious damage to a power reactor by conventional weapons are briefly discussed, and the benefits of underground siting evaluated. Finally the author discusses the significance of the IAEA safeguards work as a preventive factor. (JIW)

  12. Standard technical specifications for Westinghouse pressurized water reactors

    International Nuclear Information System (INIS)

    Wagner, P.C.

    1979-07-01

    This Standard Technical Specification (STS) has been structured for the broadest possible use on Westinghouse plants currently being reviewed for an Operating License. Accordingly, the document contains specifications applicable to plants with (1) either 3 or 4 loops and (2) with and without loop stop valves. In addition, four separate and discrete containment specification sections are provided for each of the following containment types: Atmospheric, Ice Condenser, Sub-Atmospheric, and Dual. Optional specifications are provided for those features and systems which may be included in individual plant designs but are not generic in their scope of application. Alternate specifications are provided in a limited number of cases to cover situations where alternate specification requirements are necessary on a generic basis because of design differences. This revision of the STS does not typically include requirements which may be added or revised as a result of the NRC staff's further review of the Three Mile Island incident

  13. MOX in reactors: present and future

    International Nuclear Information System (INIS)

    Arslan, Marc; Gros, Jean Pierre; Niquille, Aurelie; Marincic, Alexis

    2010-01-01

    In Europe, MOX fuel has been supplied by AREVA for more than 30 years, to 36 reactors: 21 in France, 10 in Germany, 3 in Switzerland, 2 in Belgium. For the present and future, recycling is compulsory in the frame of sustainable development of nuclear energy. By 2030 the overall volume of used fuel will reach about 400 000 t worldwide. Their plutonium and uranium content represents a huge resource of energy to recycle. That is the reason why, the European Utilities issued an EUR (European Utilities Requirement) demanding new builds reactors to be able of using MOX Fuel Assemblies in up to 50 % of the core. AREVA GEN3+ reactors, like EPR TM or ATMEA TM designed with MHI partnership, are designed to answer any utility need of MOX recycling. The example of the EPR TM reactor operated with 100 % MOX core optimized for MOX recycling will be presented. A standard EPR TM can be operated with 100 % MOX core using an advanced homogeneous MOX (single Pu content) with highly improved performances (burn-up and Cycle length). The adaptations needed and the main operating and safety reactor features will be presented. AREVA offers the utilities throughout the world, fuel supply (UO 2 , ERU, MOX), and reactors designed with all the needed capability for recycling. For each country and each utility, an adapted global solution, competitive and non proliferant can be proposed. (authors)

  14. Design guide for category II reactors light and heavy water cooled reactors

    International Nuclear Information System (INIS)

    Brynda, W.J.; Lobner, P.R.; Powell, R.W.; Straker, E.A.

    1978-05-01

    The Department of Energy (DOE), in the ERDA Manual, requires that all DOE-owned reactors be sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate consideration to health and safety factors. Specific guidance pertinent to the safety of DOE-owned reactors is found in Chapter 0540 of the ERDA Manual. The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification operation, maintainance, and decommissioning of DOW-owned reactors be in accordance with generally uniform standards, guide and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirements of Category II reactor structure, components, and systems

  15. In service inspection of the reactor pressure vessel coolant and moderator nozzles at Atucha 1. 1998/1999 outages

    International Nuclear Information System (INIS)

    Antonaccio, Carlos; Conde, Alberto; Fittipaldi, Andres H.; Maniotti, Jorge; Moliterno, Gabriel E.

    2000-01-01

    During the August 1998 and the August 1999 Atucha 1 outages, two areas were inspected on the Reactor Pressure Vessel: the nozzle inner radii and the nozzle shell welds on all 3 moderator nozzles and all 4 main coolant nozzles. The inspections themselves were carried out by Mitsui Babcock Energy Limited from Scotland. The coordination, maintenance assistant and mounting of the manipulator devices over the nozzles were carried out by NASA personnel. Although it was not the first time the nozzle shell welds were inspected, due to the technologies advances in the ultrasonic field and in the inspection manipulators (magnetic ones), it was possible to inspect more volume than in previous inspections. In the other hand, it was the first time NASA was able to inspect the inner radii. In this last case the mayor problems to inspect them were the nozzles geometry and the small space available to install manipulators. The result of the inspections were: 1) There were no reportable indications at any of the inner radii inspected; 2) The inspection of nozzle to shell welds in main-coolant nozzles R3 and R4 detected flaws (one in each nozzle) which were reported as exceeding the dimensions specified as the acceptance level under Table IWB 3512-1, Section XI of the ASME code. Subsequent analysis requested by NASA and performed by Mitsui Babcock, demonstrated that the flaws were over dimensioned and could be explained as due to 'point' flaws. The analysis was based on theoretical mathematic model and experimental trials. Therefore their dimension were under the acceptance level of the ASME XI code. Although the Mitsui Babcock analysis, and at the same time it was in progress, it was assumed that the flaws were as they were originally presented (exceeding the acceptance level). NASA asked SIEMENS/KWU, the designer of the plant, to perform the fracture assessment according to ASME XI App. A. The assessment shows that the expected crack growth is negligibly small and the safety

  16. Comparison between TRU burning reactors and commercial fast reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Sanda, Toshio; Ogawa, Takashi

    2001-03-01

    Research and development for stabilizing or shortening the radioactive wastes including in spent nuclear fuel are widely conducted in view point of reducing the environmental impact. Especially it is effective way to irradiate and transmute long-lived TRU by fast reactors. Two types of loading way were previously proposed. The former is loading relatively small amount of TRU in all commercial fast reactors and the latter is loading large amount of TRU in a few TRU burning reactors. This study has been intended to contribute to the feasibility studies on commercialized fast reactor cycle system. The transmutation and nuclear characteristics of TRU burning reactors were evaluated and compared with those of conventional transmutation system using commercial type fast reactor based upon the investigation of technical information about TRU burning reactors. Major results are summarized as follows. (1) Investigation of technical information about TRU burning reactors. Based on published reports and papers, technical information about TRU burning reactor concepts transmutation system using convectional commercial type fast reactors were investigated. Transmutation and nuclear characteristics or R and D issue were investigated based on these results. Homogeneously loading of about 5 wt% MAs on core fuels in the conventional commercial type fast reactor may not cause significant impact on the nuclear core characteristics. Transmutation of MAs being produced in about five fast reactors generating the same output is feasible. The helium cooled MA burning fast reactor core concept propose by JAERI attains criticality using particle type nitride fuels which contain more than 60 wt% MA. This reactor could transmute MAs being produced in more than ten 1000 MWe-LWRs. Ultra-long life core concepts attaining more than 30 years operation without refueling by utilizing MA's nuclear characteristics as burnable absorber and fertile nuclides were proposed. Those were pointed out that

  17. The breeder reactor and Europe

    International Nuclear Information System (INIS)

    Daglish, J.

    1979-01-01

    A report is given of a conference on the breeder reactor and Europe held in Lucerne, Switzerland from 14 - 17 October 1979 sponsored by the Swiss Association for Atomic Energy and the Association of European Atomic Forums. The underlying theme of the conference was the question that if nuclear power is to play a major role in meeting world energy needs in the long term, thermal reactors must in time be complemented with more advanced reactor systems that conserve uranium resources which are huge but not unlimited. This is not questioned; disagreement begins with discussion of the desirability of the breeder, and how fast and how far the introduction of such reactors should go. Aspects considered at the conference which are especially dealt with in this review are; why breed, commercial aspects, alternatives to the LMFBR, how to build a fast reactor, the breeder programmes in Europe, Britain, the Soviet Union, Japan and the United States. (U.K.)

  18. Russian seismic standards and demands for equipment and their conformity with international standards

    International Nuclear Information System (INIS)

    Kaznovsky, S.; Ostretsov, I.

    1993-01-01

    The principle regulations of standard documents concerning seismic safety of NPPs and demands for reactor equipment conformity with international standards are presented in this report. General state of NPP safety standards is reviewed, with a special emphasis on the state of seismic design standards for NPP equipment and piping. Russian standards documents on seismic resistance of NPPs and requirements are compared to international ones

  19. Development of Reactor Protection System (RPS) in Reactor Digital Instrumentation and Control System (ReDICS)

    International Nuclear Information System (INIS)

    Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat; Ridzuan Abdul Mutalib

    2013-01-01

    RTP Research Reactor are in the process upgraded from analogue control console system to a digital control console system . Upgrade process requires a statistical study to improve safety during reactor operation. RPS was developed to meet the needs of operational safety and at the same time comply with the guidelines set by the IAEA. RPS is in analog and hardware with industry standard interfaced with digital DAC (Data Acquisition and Control) and OWS (Operator Work Station). (author)

  20. Operation and maintenance of 1MW PUSPATI TRIGA reactor

    International Nuclear Information System (INIS)

    Adnan Bokhari; Mohammad Suhaimi Kassim

    2006-01-01

    The Malaysian Research Reactor, Reactor TRIGA PUSPATI (RTP) has been successfully operated for 22 years for various experiments. Since its commissioning in June 1982 until December 2004, the 1MW pool-type reactor has accumulated more than 21143 hours of operation, corresponding to cumulative thermal energy release of about 14083 MW-hours. The reactor is currently in operation and normally operates on demand, which is normally up to 6 hours a day. Presently the reactor core is made up of standard TRIAGA fuel element consists of 8.5 wt%, 12 wt% and 20 wt% types; 20%-enriched and stainless steel clad. Several measures such as routine preventive maintenance and improving the reactor support systems have been taken toward achieving this long successful operation. Besides normal routine utilization like other TRIGA reactors, new strategies are implemented for effective increase in utilization. (author)

  1. Ageing implementation and refurbishment development at the IEA-R1 nuclear research reactor: a 15 years experience

    International Nuclear Information System (INIS)

    Cardenas, Jose Patricio N.; Ricci Filho, Walter; Carvalho, Marcos R. de; Berretta, Jose Roberto; Marra Neto, Adolfo

    2011-01-01

    IPEN (Instituto de Pesquisas Energeticas e Nucleares) is a nuclear research center established into the Secretary of Science and Technology from the government of the state of Sao Paulo, and administered both technically and financially by Comissao Nacional de Energia Nuclear (CNEN), a federal government organization under the Ministry of Science and Technology. The institute is located inside the campus of the University of Sao Paulo, Sao Paulo city, Brazil. One of major nuclear facilities at IPEN is the IEA-R1 nuclear research reactor. It is the unique Brazilian research reactor with substantial power level suitable for application with research in physics, chemistry, biology and engineering, as well as radioisotope production for medical and other applications. Designed and built by Babcok-Wilcox, in accordance with technical specifications established by the Brazilian Nuclear Energy Commission, and financed by the US Atoms for Peace Program, it is a swimming pool type reactor, moderated and cooled by light water and uses graphite and beryllium as reflector elements. The first criticality was achieved on September 16, 1957 and the reactor is currently operating at 4.0 MW on a 64h per week cycle. Since 1996, an IEA-R1 reactor ageing study was established at the Research Reactor Center (CRPq) related with general deterioration of components belonging to some operational systems, as cooling towers from secondary cooling system, piping and pumps, sample irradiation devices, radiation monitoring system, fuel elements, rod drive mechanisms, nuclear and process instrumentation and safety operational system. Although basic structures are almost the same as the original design, several improvements and modifications in components, systems and structures had been made along reactor life. This work aims to show the development of the ageing program in the IEA-R1 reactor and the upgrading (modernization) that was carried out, concerning several equipment and system in the

  2. Ageing implementation and refurbishment development at the IEA-R1 nuclear research reactor: a 15 years experience

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jose Patricio N.; Ricci Filho, Walter; Carvalho, Marcos R. de; Berretta, Jose Roberto; Marra Neto, Adolfo, E-mail: ahiru@ipen.b, E-mail: wricci@ipen.b, E-mail: carvalho@ipen.b, E-mail: jrretta@ipen.b, E-mail: amneto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN (Instituto de Pesquisas Energeticas e Nucleares) is a nuclear research center established into the Secretary of Science and Technology from the government of the state of Sao Paulo, and administered both technically and financially by Comissao Nacional de Energia Nuclear (CNEN), a federal government organization under the Ministry of Science and Technology. The institute is located inside the campus of the University of Sao Paulo, Sao Paulo city, Brazil. One of major nuclear facilities at IPEN is the IEA-R1 nuclear research reactor. It is the unique Brazilian research reactor with substantial power level suitable for application with research in physics, chemistry, biology and engineering, as well as radioisotope production for medical and other applications. Designed and built by Babcok-Wilcox, in accordance with technical specifications established by the Brazilian Nuclear Energy Commission, and financed by the US Atoms for Peace Program, it is a swimming pool type reactor, moderated and cooled by light water and uses graphite and beryllium as reflector elements. The first criticality was achieved on September 16, 1957 and the reactor is currently operating at 4.0 MW on a 64h per week cycle. Since 1996, an IEA-R1 reactor ageing study was established at the Research Reactor Center (CRPq) related with general deterioration of components belonging to some operational systems, as cooling towers from secondary cooling system, piping and pumps, sample irradiation devices, radiation monitoring system, fuel elements, rod drive mechanisms, nuclear and process instrumentation and safety operational system. Although basic structures are almost the same as the original design, several improvements and modifications in components, systems and structures had been made along reactor life. This work aims to show the development of the ageing program in the IEA-R1 reactor and the upgrading (modernization) that was carried out, concerning several equipment and system in the

  3. Fuel element production at BWX technologies

    International Nuclear Information System (INIS)

    Pace, Brett

    1997-01-01

    Effective July 1, 1997, the Government Group portion of the Babcock and Wilcox company was incorporated separately to become BWX Technologies, Inc. (BWXT) a wholly-owned subsidiary of the Babcock and Wilcox Company. The names of the divisions and other business units of the former Babcock and Wilcox Government Group (Advanced Systems Operations, Naval Nuclear Fuel Division, and Nuclear Equipment Division) will remain unchanged, but they are now known as divisions or business units of BWXT. The management of all units and their reporting relationships will likewise remain unchanged. (author)

  4. Windows Calorimeter Control (WinCal) system configuration control board (SCCB) operating procedure

    International Nuclear Information System (INIS)

    Westsik, G.A.

    1997-01-01

    This document describes the operating procedure for the System Configuration Control Board (SCCB) performed in support of the Windows Calorimeter Control (WinCal) system. This board will consist of representatives from Babcock and Wilcox Hanford Company Babcock and Wilcox Protec, Inc.; and Lockheed Martin Services, Inc. In accordance with agreements for the joint use of the Babcock and Wilcox Hanford Company calorimeters located in the Hanford Site Plutonium Finishing Plant (PFP) Nondestructive Assay Laboratory, concurrence regarding changes to the WinCal system will be obtained from the International Atomic Energy Agency (IAEA). Further, changes to the WinCal software will be communicated to Los Alamos National Laboratory

  5. Radiation protection and reactor safety

    International Nuclear Information System (INIS)

    1990-03-01

    The Chernobyl reactor accident caused bewilderment, fear and anxiety among the population. How safe are reactors? Which precautions to protect lives and health have been taken? These questions are posed particularly in the areas of radiation protection, reactor safety, supply and waste management of nuclear power plants and other nuclear installations. For all these areas the present report contains an analysis of facts; it informs about political measures during the 11th legislative period of the German Bundestag, and shows prospects of future developments. (orig.) [de

  6. Fuel assembly stress and deflection analysis for loss-of-coolant accident and seismic excitation

    International Nuclear Information System (INIS)

    DeMars, R.V.; Steinke, R.R.

    1975-01-01

    Babcock and Wilcox has evaluated the capability of the fuel assemblies to withstand the effects of a loss-of-coolant accident (LOCA) blowdown, the operational basis earthquake (OBE) and design basis earthquake (DBE), and the simultaneous occurrence of the DBE and LOCA. This method of analysis is applicable to all of B and W's nuclear steam system contracts that specify the skirt-supported pressure vessel. Loads during the saturated and subcooled phases of blowdown following a loss-of-coolant accident were calculated. The maximum loads on the fuel assemblies were found to be below allowable limits, and the maximum deflections of the fuel assemblies were found to be less than those that could prevent the insertion of control rods or the flow of coolant through the core. (U.S.)

  7. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  8. Fuel Fabrication and Nuclear Reactors

    International Nuclear Information System (INIS)

    Karpius, Peter Joseph

    2017-01-01

    The uranium from the enrichment plant is still in the form of UF 6 . UF 6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF 6 is converted into UO 2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ''too-cheap to meter'' is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  9. Toward Global Standards on Peaceful uses of Space Nuclear Reactor Power Systems

    Science.gov (United States)

    El-Genk, M. S.

    Space reactor power systems are enabling to future space exploration and outposts on the Moon, Mars and other celestial bodies. They could provide for electrical propulsion, thermal propulsion and bimodal operation of thermal propulsion and electrical power generation. The much higher specific impulse of nuclear thermal and electric propulsion, compared to chemical rockets, could significantly shorten the travel time to Mars and farthest destinations, reducing the exposure of equipment and astronauts to the harmful space radiation. This article addresses safety issues relevant to the design, operation and end-of-life storage of these systems in an attempt to stimulate a discussion of the need to establish specific and globally agreed upon safety standards and guidelines for future peaceful uses.

  10. Study of reactor characteristics for the adaptation of the monoelement standard method in activation analysis. Application to impurity determination in silicon

    International Nuclear Information System (INIS)

    Benjelloun, M.

    1984-01-01

    Nuclear reactions by irradiation in a nuclear reactor are reviewed. Quantitative analysis by comparison with multielement standard is treated. Comparison methods using a monoelement standard, easier to use they require a previous study of neutronic characteristics of irradiation channels of reactors (thermal and epithermal flux ratio and eventual deviations fo epithermal neutron energy spectra from the 1/E relationship). Then analysis fo silicon polycrystals by both methods is studied and interfering reactions during irradiation are examined [fr

  11. RA reactor operation and maintenance

    International Nuclear Information System (INIS)

    Zecevic, V.

    1963-02-01

    This volume includes the final report on RA reactor operation and utilization of the experimental facilities in 1962, detailed analysis of the system for heavy water distillation and calibration of the system for measuring the activity of the air

  12. Standard deviation of local tallies in global Monte Carlo calculation of nuclear reactor core

    International Nuclear Information System (INIS)

    Ueki, Taro

    2010-01-01

    Time series methodology has been studied to assess the feasibility of statistical error estimation in the continuous space and energy Monte Carlo calculation of the three-dimensional whole reactor core. The noise propagation was examined and the fluctuation of track length tallies for local fission rate and power has been formally shown to be represented by the autoregressive moving average process of orders p and p-1 [ARMA(p,p-1)], where p is an integer larger than or equal to two. Therefore, ARMA(p,p-1) fitting was applied to the real standard deviation estimation of the power of fuel assemblies at particular heights. Numerical results indicate that straightforward ARMA(3,2) fitting is promising, but a stability issue must be resolved toward the incorporation in the distributed version of production Monte Carlo codes. The same numerical results reveal that the average performance of ARMA(3,2) fitting is equivalent to that of the batch method with a batch size larger than 100 and smaller than 200 cycles for a 1,100 MWe pressurized water reactor. (author)

  13. 76 FR 14437 - Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of...

    Science.gov (United States)

    2011-03-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0055] Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of Final Design Approval The U.S. Nuclear Regulatory Commission has issued a final design approval (FDA) to GE Hitachi Nuclear Energy (GEH) for the economic...

  14. Steam generator waterlancing at Darlington NGS (system development and field application)

    International Nuclear Information System (INIS)

    Seppala, D.; Malaugh, J.; Kiisel, E.; Kamler, F.

    1996-01-01

    From the initial steam generator (SG) inspections at Darlington Nuclear Generating Station (DNGS), the authors know that the sludge accumulations on the secondary side tubesheets have been minimal. DNGS is a fairly new station but the experience at the older Ontario Hydro plants have shown that significant accumulations will happen. A pro-active strategy has been adopted for maintaining SGs that will minimize corrosion product accumulation and the potential for component degradation. During the four year planned Unit maintenance outages, SGs will be inspected and waterlanced using a waterlance system designed and built by Babcock and Wilcox International. This automated state-of-the-art system also allows fully recorded inspections of the tubesheet/first half-lattice supports. Some of the key elements covered include results of the initial field application (May, 1995), system development and design, system qualification, cleaning performance, and lessons learned for future outages

  15. Model tests of a once-through steam generator for land-blocker assessment and THEDA code verification. Final report

    International Nuclear Information System (INIS)

    Carter, H.R.; Childerson, M.T.; Moskal, T.E.

    1983-06-01

    The Babcock and Wilcox Company (B and W) operating Once-Through Steam Generators (OTSGs) have experienced leaking tubes in a region adjacent to the untubed inspection lane. The tube leaks have been attributed to an environmentally-assisted fatigue mechanism with moisture transported up the inspection lane being a major factor in the tube-failure process. B and W has developed a hardware modification (lane blockers) to mitigate the detrimental effects of inspection lane moisture. A 30-tube Laboratory Once-through Steam Generator (Designated OTSGC) was designed, fabricated, and tested. Tests were performed with and without five flat-plate lane blockers installed on tube-support plates (TSPs) 10, 11, 12, 13, and 14. The test results were utilized to determine the effectiveness of lane blockers for eliminating moisture transport to the upper tubesheet in the inspection lanes and to benchmark the predictive capabilities of a three-dimensional steam-generator computer code, THEDA

  16. Reliability study: digital reactor protection system of Korean standard nuclear power plant

    International Nuclear Information System (INIS)

    Kang, H. G.; Jang, S. C.; Eom, H. S.; Jeong, H. S.

    2003-02-01

    Digital safety-critical systems which are now installed in Korean Standard Nuclear Power Plants (KSNPP) would be quantitatively evaluated in order to prove the safety. In this study, we quantify the safety of the digital reactor protection system in KSNPPs using PSA technology. This study also includes the detailed investigation of the target system operation. The Fault Tree (FT) models were constructed for 15 reactor trip parameters. For digital parts, because the operation data for the same type PWR was unavailable, we used the data provided by vendors. On the other hand, for the conventional analog/mechanical parts, we used experience data presented in KAERI/TR-2164/2002.The result of quantification shows that the system unavailability varies from 4.36E-5 to 8.96E-4 according to the trip parameter. Main contributor to the difference from the conventional analysis would be the difference in human failure probability estimation. Generally, the system unavailability depends on several important factors: Human failure probability, software failure probability, watchdog timer coverage, and common cause failure estimation

  17. Research reactors: design, safety requirements and applications

    International Nuclear Information System (INIS)

    Hassan, Abobaker Mohammed Rahmtalla

    2014-09-01

    There are two types of reactors: research reactors or power reactors. The difference between the research reactor and energy reactor is that the research reactor has working temperature and fuel less than the power reactor. The research reactors cooling uses light or heavy water and also research reactors need reflector of graphite or beryllium to reduce the loss of neutrons from the reactor core. Research reactors are used for research training as well as testing of materials and the production of radioisotopes for medical uses and for industrial application. The difference is also that the research reactor smaller in terms of capacity than that of power plant. Research reactors produce radioactive isotopes are not used for energy production, the power plant generates electrical energy. In the world there are more than 284 reactor research in 56 countries, operates as source of neutron for scientific research. Among the incidents related to nuclear reactors leak radiation partial reactor which took place in three mile island nuclear near pennsylvania in 1979, due to result of the loss of control of the fission reaction, which led to the explosion emitting hug amounts of radiation. However, there was control of radiation inside the building, and so no occurred then, another accident that lead to radiation leakage similar in nuclear power plant Chernobyl in Russia in 1986, has led to deaths of 4000 people and exposing hundreds of thousands to radiation, and can continue to be effect of harmful radiation to affect future generations. (author)

  18. Fast Reactors and Nuclear Nonproliferation

    International Nuclear Information System (INIS)

    Avrorina, E.N.; Chebeskovb, A.N.

    2013-01-01

    Conclusion remarks: 1. Fast reactor start-up with U-Pu fuel: – dependent on thermal reactors, – no needs in U enrichment, – needs in SNF reprocessing, – Pu is a little suitable for NED, – practically impossible gun-type NED, – difficulties for implosion-type NED: necessary tests, advanced technologies, etc. – Pu in blankets is similar to WPu by isotopic composition, – Use of blanket for production isotopes (e.g. 233 U), – Combined reprocessing of SNF: altogether blanket and core, – Blanket elimination: decrease in Pu production – No pure Pu separation. 2. Fast reactor start-up with U fuel: - Needs in both U enrichment and SNF reprocessing, - Independent of thermal reactors, - Good Pu bred in the core let alone blankets, - NED of simple gun-type design, - Increase of needs in SWU, - Increased demands in U supply. 3. Fast reactors for export: - Uranium shortage, - To replace thermal reactors in future, - No blankets (depends on the country, though), - Fuel supply and SNF take back, - International centers for rendering services of NFC. Time has come to remove from FRs and their NFC the label unfairly identifying them as the most dangerous installations of nuclear power from the standpoint of being a proliferation problem

  19. Object Individuation or Object Movement as Attractor? A Replication of the Wide-Screen/Narrow-Screen Study by Means of (a) Standard Looking Time Methodology and (b) Eye Tracking

    OpenAIRE

    Krøjgaard, Peter; Kingo, Osman S.; Staugaard, Søren R.

    2013-01-01

    We report a replication experiment of a mechanized version of the seminal wide-screen/narrow-screen design of Wilcox and Baillargeon (1998) with 9.5-month-old infants (N=80). Two different methodologies were employed simultaneously: (a) the standard looking time paradigm and (b) eye tracking. Across conditions with three different screen sizes, the results from both methodologies revealed a clear and interesting pattern: the looking times increased as a significantly linear function of reduce...

  20. Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) are compared

    International Nuclear Information System (INIS)

    Greneche, D.

    2014-01-01

    This article compares the 2 types of light water reactors that are used to produce electricity: the Pressurized Water Reactor (PWR) and the Boiling Water Reactor (BWR). Historically the BWR concept was developed after the PWR concept. Today 80% of light water reactors operating in the world are of PWR-type. This comparison is comprehensive and detailed. First the main technical features are reviewed and compared: reactor architecture, core and fuel design, reactivity control, reactor vessel, cooling systems and reactor containment. Secondly, various aspects concerning reactor operations like reactor control, fuel management, maintenance, inspections, radiation protection, waste generation and reactor reliability are presented and compared for both reactors. As for the issue of safety, it is highlighted that the accidental situations are too different for the 2 reactors to be compared. The main features of reactor safety are explained for both reactors

  1. PARR-2: reactor description and experiments

    International Nuclear Information System (INIS)

    Wyne, M.F.; Meghji, J.H.

    1990-12-01

    PARR-2 is a miniature neutron source reactor (MNSR) research reactor has been designed at the rate of 27 kW. Reactor assembly comprises of peaking characteristics with a self limiting flux. In this report reactor description with its assembly and instrumentation control system has been explained. The reactor engineering and physics experiments which can be performed on this reactor are explained in this report. PARR-2 is fueled with HEU fuel pins which are about 90% enriched in U-235. Specific requirements for the safety of the reactor, its building and the personnel, normal instrumentation as required in an industrial environment is sufficient. (A.B.)

  2. Nuclear heating reactor, an advanced and passive reactor

    International Nuclear Information System (INIS)

    Wang Dazhong; Zheng Wenxiang

    1994-01-01

    The nuclear heating reactor (NHR) is designed with a number of the advanced and innovative features, including integrated arrangement, natural circulation, self-pressurized performance, dual vessel structure, hydraulic control rod drive and passive safety systems. Being an advanced and passive reactor, the NHR can serve as a clean, safe and economic energy source. This paper describes the development status, main design and safety features of the NHR. 3 refs., 2 tabs., 5 figs

  3. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  4. Operational safety and reactor life improvements of Kyoto University Reactor

    International Nuclear Information System (INIS)

    Utsuro, M.; Fujita, Y.; Nishihara, H.

    1990-01-01

    Recent important experience in improving the operational safety and life of a reactor are described. The Kyoto University Reactor (KUR) is a 25-year-old 5 MW light water reactor provided with two thermal columns of graphite and heavy water as well as other kinds of experimental facilities. In the graphite thermal column, noticeable amounts of neutron irradiation effects had accumulated in the graphite blocks near the core. Before the possible release of the stored energy, all the graphite blocks in the column were successfully replaced with new blocks using the opportunity provided by the installation of a liquid deuterium cold neutron source in the column. At the same time, special seal mechanisms were provided for essential improvements to the problem of radioactive argon production in the column. In the heavy-water thermal column we have accomplished the successful repair of a slow leak of heavy water through a thin instrumentation tube failure. The repair work included the removal and reconstructions of the lead and graphite shielding layers and welding of the instrumentation tube under radiation fields. Several mechanical components in the reactor cooling system were also exchanged for new components with improved designs and materials. On-line data logging of almost all instrumentation signals is continuously performed with a high speed data analysis system to diagnose operational conditions of the reactor. Furthermore, through detailed investigations on critical components, operational safety during further extended reactor life will be supported by well scheduled maintenance programs

  5. Nuclear reactor philosophy and criteria

    International Nuclear Information System (INIS)

    Atchison, R.J.

    1979-07-01

    Nuclear power plant safety criteria and principles developed in Canada are directed towards minimizing the chance of failure of the fuel and preventing or reducing to an acceptably low level the escape of fission products should fuel failure occur. Safety criteria and practices are set forth in the Reactor Siting Guide, which is based upon the concept of defence in depth. The Guide specifies that design and construction shall follow the best applicable code, standard or practice; the total of all serious process system failures shall not exceed one in three years; special safety systems are to be physically and functionally separate from process systems and each other; and safety systems shall be testable, with unavailability less than 10 - 3 . Doses to the most exposed member of the public due to normal operation, serious process failures, and dual failures are specified. Licensees are also required to consider the effects of extreme conditions due to airplane crashes, explosions, turbine disintegration, pipe burst, and natural disasters. Safety requirements are changing as nuclear power plant designs evolve and in response to social and economic pressures

  6. AGR-5/6/7 LEUCO Kernel Fabrication Readiness Review

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Douglas W. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Design and Development; Bailey, Kirk W. [Idaho National Lab. (INL), Idaho Falls, ID (United States). ART Quality Assurance Engineer

    2015-02-01

    In preparation for forming low-enriched uranium carbide/oxide (LEUCO) fuel kernels for the Advanced Gas Reactor (AGR) fuel development and qualification program, Idaho National Laboratory conducted an operational readiness review of the Babcock & Wilcox Nuclear Operations Group – Lynchburg (B&W NOG-L) procedures, processes, and equipment from January 14 – January 16, 2015. The readiness review focused on requirements taken from the American Society Mechanical Engineers (ASME) Nuclear Quality Assurance Standard (NQA-1-2008, 1a-2009), a recent occurrence at the B&W NOG-L facility related to preparation of acid-deficient uranyl nitrate solution (ADUN), and a relook at concerns noted in a previous review. Topic areas open for the review were communicated to B&W NOG-L in advance of the on-site visit to facilitate the collection of objective evidences attesting to the state of readiness.

  7. Nuclear reactor PBMR and cogeneration; Reactor nuclear PBMR y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  8. Reactor accident analysis and evaluation

    International Nuclear Information System (INIS)

    Chang, J.W.

    1983-01-01

    Reactor Management Division of Korea Advanced Energy Research Institute has, so far, adopted, modified and developed quite a number of large programs for nuclear core analysis. During the course of this work, it was found necessary to employ some standard subroutines for handling data, input procedures, core memory management and search files. Many programs share lots of common subroutines and/or functions with other programs. Above all, some of them are in lack of transmittal. During the installation of big codes for CYBER computer, it has drawn our keen attention that many elementary subroutines are heavily machine-dependent and that their conversion is extremely difficult. After having collected and modified the subroutines to fit in different codes, it was finally named KINEP (KAERI Improved Nuclear Environmental Package). KINEP has been proved to be convenient even for smaller programs for general purpose. The KINEP includes about one hundred subroutines to facilitate data handling, operator communications, storage allocation, decimal input, file maintence and scratch I/O. (Author)

  9. Propose Reactor Control and Monitoring System for RTP

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Izhar Abu Hussin; Mohd Idris Taib; Mohd Khairulezwan Abdul Manan; Nurfarhana Ayuni Joha

    2011-01-01

    Reactor control and monitoring system is a one of the important features used in reactor. The control and monitoring must come together to provide safety, excellent performance and reliable in nuclear reactor technology application. Objectives of this technical paper are to design and propose reactor control system and reactor monitoring system in Research Reactor (RTP) for Reactor Upgrading Project. (author)

  10. Research reactor education and training

    International Nuclear Information System (INIS)

    Gless, B.; Chanteux, P.

    2003-01-01

    CORYS T.E.S.S. and TECHNICATOME present in this document some of the questions that can be rightfully raised concerning education and training of nuclear facilities' staffs. At first, some answers illustrate the tackled generic topics: importance of training, building of a training program, usable tools for training purposes. Afterwards, this paper deals more specifically with research reactors as an actual training tool. The pedagogical advantages they can bring are illustrated through an example consisting in the description of the AZUR facility training capabilities followed by the detailed experiences CORYS T.E.S.S. and TECHNICATOME have both gathered and keeps on gaining using research reactors for training means. The experience shows that this incomparable training material is not necessarily reserved to huge companies or organisations' numerous personnel. It offers enough flexibility to be adapted to the specific needs of a thinner audience. Thus research reactor staffs can also take advantages of this training method. (author)

  11. Research Reactors Types and Utilization

    International Nuclear Information System (INIS)

    Nasr, Nahla

    2008-01-01

    A nuclear reactor, in gross terms, is a device in which nuclear chain reactions are initiated, controlled, and sustained at a steady rate. The nuclei of fuel heavy atoms (mostly 235 U or 239 Pu), when struck by a slow neutron, may split into two or more smaller nuclei as fission products,releasing energy and neutrons in a process called nuclear fission. These newly-born fast neutrons then undergo several successive collisions with relatively low atomic mass material, the moderator, to become thermalized or slow. Normal water, heavy water, graphite and beryllium are typical moderators. These neutrons then trigger further fissions, and so on. When this nuclear chain reaction is controlled, the energy released can be used to heat water, produce steam and drive a turbine that generates electricity. The fission process, and hence the energy release, are controlled by the insertion (or extraction) of control rods through the reactor. These rods are strongly neutron absorbents, and thus only enough neutrons to sustain the chain reaction are left in the core. The energy released, mostly in the form of heat, should be continuously removed, to protect the core from damage. The most significant use of nuclear reactors is as an energy source for the generation of electrical power and for power in some military ships. This is usually accomplished by methods that involve using heat from the nuclear reaction to power steam turbines. Research reactors are used for radioisotope production and for beam experiments with free neutrons. Historically, the first use of nuclear reactors was the production of weapons grade plutonium for nuclear weapons. Currently all commercial nuclear reactors are based on nuclear fission. Fusion power is an experimental technology based on nuclear fusion instead of fission.

  12. Research reactor modernization and refurbishment

    International Nuclear Information System (INIS)

    2009-08-01

    Many recent, high profile research reactor unplanned shutdowns can be directly linked to different challenges which have evolved over time. The concept of ageing management is certainly nothing new to nuclear facilities, however, these events are highlighting the direct impact unplanned shutdowns at research reactors have on various stakeholders who depend on research reactor goods and services. Provided the demand for these goods and services remains strong, large capital projects are anticipated to continue in order to sustain future operation of many research reactors. It is within this context that the IAEA organized a Technical Workshop to launch a broader Agency activity on research reactor modernization and refurbishment (M and R). The workshop was hosted by the operating organization of the HOR Research Reactor in Delft, the Netherlands, in October 2006. Forty participants from twenty-three countries participated in the meeting: with representation from Africa, Asia Pacific, Eastern Europe, North America, South America and Western Europe. The specific objectives of this workshop were to present facility reports on completed, existing and planned M and R projects, including the project objectives, scope and main characteristics; and to specifically report on: - the project impact (planned or actual) on the primary and key supporting motivation for the M and R project; - the project impact (planned or actual) on the design basis, safety, and/or regulatory-related reports; - the project impact (planned or actual) on facility utilization; - significant lessons learned during or following the completion of M and R work. Contributions from this workshop were reviewed by experts during a consultancy meeting held in Vienna in December 2007. The experts selected final contributions for inclusion in this report. Requests were also distributed to some authors for additional detail as well as new authors for known projects not submitted during the initial 2006 workshop

  13. Reactivity requirements and safety systems for heavy water reactors

    International Nuclear Information System (INIS)

    Kati, S.L.; Rustagi, R.S.

    1977-01-01

    The natural uranium fuelled pressurised heavy water reactors are currently being installed in India. In the design of nuclear reactors, adequate attention has to be given to the safety systems. In recent years, several design modifications having bearing on safety, in the reactor processes, protective and containment systems have been made. These have resulted either from new trends in safety and reliability standards or as a result of feed-back from operating reactors of this type. The significant areas of modifications that have been introduced in the design of Indian PHWR's are: sophisticated theoretical modelling of reactor accidents, reactivity control, two independent fast acting systems, full double containment and improved post-accident depressurisation and building clean-up. This paper brings out the evolution of design of safety systems for heavy water reactors. A short review of safety systems which have been used in different heavy water reactors, of varying sizes, has been made. In particular, the safety systems selected for the latest 235 MWe twin reactor unit station in Narora, in Northern India, have been discussed in detail. Research and Development efforts made in this connection are discussed. The experience of design and operation of the systems in Rajasthan and Kalpakkam reactors has also been outlined

  14. Update on reactors and reactor instruments in Asia

    Science.gov (United States)

    Rao, K. R.

    1991-10-01

    The 1980s have seen the commissioning of several medium flux (∼10 14 neutrons/cm 2s) research reactors in Asia. The reactors are based on indigenous design and development in India and China. At Dhruva reactor (India), a variety of neutron spectrometers have been established that have provided useful data related to the structure of high- Tc materials, phonon density of states, magnetic moment distributions and micellar aggregation during the last couple of years. Polarised neutron analysis, neutron interferometry and neutron spin echo methods are some of the new techniques under development. The spectrometers and associated automaton, detectors and neutron guides have all been indigenously developed. This paper summarises the developments and on-going activities in Bangladesh, China, India, Indonesia, Korea, Malaysia, the Philippines and Thailand.

  15. Update on reactors and reactor instruments in Asia

    International Nuclear Information System (INIS)

    Rao, K.R.

    1991-01-01

    The 1980s have seen the commissioning of several medium flux (∝10 14 neutrons/cm 2 s) research reactors in Asia. The reactors are based on indigenous design and development in India and China. At Dhruva reactor (India), a variety of neutron spectrometers have been established that have provided useful data related to the structure of high-Tc materials, phonon density of states, magnetic moment distributions and micellar aggregation during the last couple of years. Polarised neutron analysis, neutron interferometry and neutron spin echo methods are some of the new techniques under development. The spectrometers and associated automaton, detectors and neutron guides have all been indigenously developed. This paper summarises the developments and on-going activities in Bangladesh, China, India, Indonesia, Korea, Malaysia, the Philippines and Thailand. (orig.)

  16. Nuclear Reactors and Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  17. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    2014-01-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100 th nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U 3 O 8 were replaced by U 3 Si 2 -based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to fulfill its mission that is

  18. Nuclear reactors; graphical symbols

    International Nuclear Information System (INIS)

    1987-11-01

    This standard contains graphical symbols that reveal the type of nuclear reactor and is used to design graphical and technical presentations. Distinguishing features for nuclear reactors are laid down in graphical symbols. (orig.) [de

  19. Design and construction of multi research reactor

    International Nuclear Information System (INIS)

    1985-05-01

    This is the report about design and construction of multi research reactor, which introduces the purpose and necessity of the project, business contents, plan of progress of project and budget for the project. There are three appendixes about status of research reactor in other country, a characteristic of research reactor, three charts about evaluation, process and budget for the multi research reactor and three drawings for the project.

  20. X-ray Analysis of Defects and Anomalies in AGR-5/6/7 TRISO Particles

    Energy Technology Data Exchange (ETDEWEB)

    Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dyer, John A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schumacher, Austin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Coated particle fuel batches J52O-16-93164, 93165, 93166, 93168, 93169, 93170, and 93172 were produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), or may be used for other tests. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture of 15.4%-enriched uranium carbide and uranium oxide (UCO), with the exception of Batch 93164, which used similar kernels from BWXT lot J52L-16-69316. The TRISO-coatings consisted of a ~50% dense carbon buffer layer with 100-μmnominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. Each coated particle batch was sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batch was designated by appending the letter A to the end of the batch number (e.g., 93164A). Secondary upgrading by sieving was performed on the upgraded batches to remove specific anomalies identified during analysis for Defective IPyC, and the upgraded batches were designated by appending the letter B to the end of the batch number (e.g., 93165B). Following this secondary upgrading, coated particle composite J52R-16-98005 was produced by BWXT as fuel for the AGR Program’s AGR-5/6/7 irradiation test in the INL ATR. This composite was comprised of coated particle fuel batches J52O-16-93165B, 93168B, 93169B, and 93170B.

  1. Acceptance Test Data for BWXT Coated Particle Batches 93172B and 93173B—Defective IPyC and Pyrocarbon Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dyer, John A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schumacher, Austin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Coated particle batches J52O-16-93172B and J52O-16-93173B were produced by Babcock and Wilcox Technologies (BWXT) as part of the production campaign for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), but were not used in the final fuel composite. However, these batches may be used as demonstration production-scale coated particle fuel for other experiments. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture of 15.5%-enriched uranium carbide and uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93172A). Secondary upgrading by sieving was performed on the A-designated batches to remove particles with missing or very-thin buffer layers that were identified during previous analysis of the individual batches for defective IPyC, as reported in the acceptance test data report for the AGR-5/6/7 production batches [Hunn et al. 2017b]. The additionally-upgraded batches were designated by appending the letter B to the end of the batch number (e.g., 93172B).

  2. In-core instrumentation and reactor assessment

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Information on the conditions in the reactor core is essential for the safe and economic operation of nuclear reactors. This book reviews the important aspects of measurement and interpretation of reactor core parameters. Contributions of industry and research laboratories on the state of the art cover measurement methods, core performance evaluation, and operating experience

  3. Reactor protection and shut-down system

    International Nuclear Information System (INIS)

    Klar

    1980-01-01

    The reactor protection system being a part of the reactor safety system. The requirements on the reactor protection system are: high safety with regard to signal processing, high availability, self-reporting of faults etc. The functional sections of the reactor protection system are the analog section, the logic section and the generating of output signals. Description of the operation characteristics and of the extension of function. (orig.)

  4. Safety of research reactors (Design and Operation)

    International Nuclear Information System (INIS)

    Dirar, H. M.

    2012-06-01

    The primary objective of this thesis is to conduct a comprehensive up-to-date literature review on the current status of safety of research reactor both in design and operation providing the future trends in safety of research reactors. Data and technical information of variety selected historical research reactors were thoroughly reviewed and evaluated, furthermore illustrations of the material of fuel, control rods, shielding, moderators and coolants used were discussed. Insight study of some historical research reactors was carried with considering sample cases such as Chicago Pile-1, F-1 reactor, Chalk River Laboratories,. The National Research Experimental Reactor and others. The current status of research reactors and their geographical distribution, reactor category and utilization is also covered. Examples of some recent advanced reactors were studied like safety barriers of HANARO of Korea including safety doors of the hall and building entrance and finger print identification which prevent the reactor from sabotage. On the basis of the results of this research, it is apparent that a high quality of safety of nuclear reactors can be attained by achieving enough robust construction, designing components of high levels of efficiency, replacing the compounds of the reactor in order to avoid corrosion and degradation with age, coupled with experienced scientists and technical staffs to operate nuclear research facilities.(Author)

  5. Panel plenary session: Status and future needs in the field of reactor safety research

    International Nuclear Information System (INIS)

    Finzi, S.; Cicognani, G.; Heusener, G.; Geijzers, H.F.G.; Alonso-Santos, A.; Holtbecker, H.F.

    1990-01-01

    Status and future needs in the field of reactor safety research. Overviews are given of the nuclear programme in France and the Netherlands. Spanish and Italian reactor safety research both current and for the future is outlined. LWR safety and the continuation of the establishment of safety standards particularly for LMFBR reactors is discussed. The new framework for the research in reactor safety by the Commission of the European Communities for 1990-1994 is outlined. The discussion which followed is reported. (UK)

  6. Operation monitoring and protection method for nuclear reactor

    International Nuclear Information System (INIS)

    Tochihara, Hiroshi.

    1995-01-01

    In an operation and monitoring method for a PWR-type reactor by using a tetra-sected neutron detector, axial off set is defined by neutron detector signals with respect to an average of the reactor core, the upper half of the reactor core, and the lower half of the reactor core. A departure from nucleate boiling (DNBR) is represented by standardized signals, and the DNBR is calculated by using the axial off set of the average of the reactor core, the upper half of the reactor core, and the lower half of the reactor core, and they are graphically displayed. In addition, a thermal flow rate-water channel coefficient is also graphically displayed, and the DNBR and the thermal flow rate-water channel coefficient are restricted based on the display, to determine an allowable operation range. As a result, it is possible to provide an operation monitoring and protection method for nuclear reactor capable of reducing labors and frequencies for the change of protection system setting in a case of using a tetra-sected neutron detector disposed at the outside and, at the same time, protecting each of DNR and the highest linear power or the thermal water coefficient channel. (N.H.)

  7. Reactor

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1976-01-01

    Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)

  8. Acceptance Test Data for the AGR-5/6/7 Irradiation Test Fuel Composite Defective IPyC Fraction and Pyrocarbon Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dyer, John A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schumacher, Austin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    Coated particle composite J52R-16-98005 was produced by Babcock and Wilcox Technologies (BWXT) as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR). This composite was comprised of four coated particle fuel batches J52O-16-93165B (26%), 93168B (26%), 93169B (24%), and 93170B (24%), chosen based on the Quality Control (QC) data acquired for each individual candidate AGR-5/6/7 batch. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT Lot J52R-16-69317 containing a mixture of 15.5%-enriched uranium carbide and uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93165A). Secondary upgrading by sieving was performed on the A-designated batches to remove particles with missing or very-thin buffer layers that were identified during previous analysis of the individual batches for defective IPyC, as reported in the acceptance test data report for the AGR-5/6/7 production batches [Hunn et al. 2017]. The additionally-upgraded batches were designated by appending the letter B to the end of the batch number (e.g., 93165B).

  9. Reactor

    International Nuclear Information System (INIS)

    Evans, R.M.

    1976-01-01

    Disclosed is a neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch. 1 claim, 16 figures

  10. Reactor physics and reactor strategy investigations into the fissionable material economy of the thorium and uranium cycle in fast breeder reactors and high temperature reactors

    International Nuclear Information System (INIS)

    Schikorr, W.M.

    In this work the properties governing the fissionable material economy of the uranium and thorium cycles are investigated for the advanced reactor types currently under development - the fast breeder reactor (FBR) and the high temperature reactor (HTR) - from the point of view of the optimum utilization of the available nuclear fuel reserves and the continuance of supply of these reserves. For this purpose, the two reactor types are first of all considered individually and are subsequently discussed as a complementary overall system

  11. The United States Advanced Reactor Technologies Research and Development Program

    International Nuclear Information System (INIS)

    O’Connor, Thomas J.

    2014-01-01

    The following aspects are addressed: • Nuclear energy mission; • Reactor research development and deployment (RD&D) programs: - Light Water Reactor Sustainability Program; - Small Modular Reactor Licensing Technical Support; - Advanced Reactor Technologies (ART)

  12. Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for designing a surveillance program for monitoring the radiation-induced changes in the mechanical properties of ferritic materials in light-water moderated nuclear power reactor vessels. This practice includes the minimum requirements for the design of a surveillance program, selection of vessel material to be included, and the initial schedule for evaluation of materials. 1.2 This practice was developed for all light-water moderated nuclear power reactor vessels for which the predicted maximum fast neutron fluence (E > 1 MeV) at the end of license (EOL) exceeds 1 × 1021 neutrons/m2 (1 × 1017 n/cm2) at the inside surface of the reactor vessel. 1.3 This practice applies only to the planning and design of surveillance programs for reactor vessels designed and built after the effective date of this practice. Previous versions of Practice E185 apply to earlier reactor vessels. 1.4 This practice does not provide specific procedures for monitoring the radiation induced cha...

  13. Standard Guide for Conducting Supplemental Surveillance Tests for Nuclear Power Reactor Vessels, E 706 (IH)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide discusses test procedures that can be used in conjunction with, but not as alternatives to, those required by Practices E185 and E2215 for the surveillance of nuclear reactor vessels. The supplemental mechanical property tests outlined permit the acquisition of additional information on radiation-induced changes in fracture toughness, notch ductility, and yield strength properties of the reactor vessel steels. 1.2 This guide provides recommendations for the preparation of test specimens for irradiation, and identifies special precautions and requirements for reactor surveillance operations and postirradiation test planning. Guidance on data reduction and computational procedures is also given. Reference is made to other ASTM test methods for the physical conduct of specimen tests and for raw data acquisition.

  14. Standard Guide for In-Service Annealing of Light-Water Moderated Nuclear Reactor Vessels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide covers the general procedures to be considered for conducting an in-service thermal anneal of a light-water moderated nuclear reactor vessel and demonstrating the effectiveness of the procedure. The purpose of this in-service annealing (heat treatment) is to improve the mechanical properties, especially fracture toughness, of the reactor vessel materials previously degraded by neutron embrittlement. The improvement in mechanical properties generally is assessed using Charpy V-notch impact test results, or alternatively, fracture toughness test results or inferred toughness property changes from tensile, hardness, indentation, or other miniature specimen testing (1). 1.2 This guide is designed to accommodate the variable response of reactor-vessel materials in post-irradiation annealing at various temperatures and different time periods. Certain inherent limiting factors must be considered in developing an annealing procedure. These factors include system-design limitations; physical constrain...

  15. Method and apparatus for stopping nuclear reactor

    International Nuclear Information System (INIS)

    Sakurai, Mikio.

    1974-01-01

    Object: To safely attain shut-down of a nuclear reactor even when control rods are not inserted into the core of the reactor and the shut-down of the reactor is incomplete. Structure: After operating the control rods in accordance with a scramble signal, the signal from an output detector is discriminated by an output discriminator, and a passage for a liquid poison is opened to allow the liquid poison to be poured from a liquid poison container through the passage into the core of the reactor when the output of the reactor exceeds the predetermined value. (Kamimura, M.)

  16. Advanced reactor concepts and safety

    International Nuclear Information System (INIS)

    Lipsett, J.J.

    1988-06-01

    The need for some consistency in the terms used to describe the evolution of methods for ensuring the safety of nuclear reactors has been identified by the IAEA. This is timely since there appears to be a danger that the precision of many valuable words is being diluted and that a new jargon may appear that will confuse rather than aid the communication of important but possibly diverse philosophies and concepts. Among the difficulties faced by the nuclear industry is promoting and gaining a widespread understanding of the risks actually posed by nuclear reactors. In view of the importance of communication to both the public and to the technical community generally, the starting point for the definition of terms must be with dictionary meanings and common technical usage. The nuclear engineering community should use such words in conformance with the whole technical world. This paper addresses many of the issues suggested in the invitation to meet and also poses some additional issues for consideration. Some examples are the role of the operator in either enhancing or degrading safety and how the meaning or interpretation of the word 'safety' can be expected to change during the next few decades. It is advantageous to use criteria against which technologies and ongoing operating performance can be judged provided that the criteria are generic and not specific to particular reactor concepts. Some thoughts are offered on the need to frame the criteria carefully so that innovative solutions and concepts are fostered, not stifled

  17. Reactor power control method and device

    International Nuclear Information System (INIS)

    Fushimi, Atsushi; Ishii, Yoshihiko; Miyamoto, Yoshiyuki; Ishii, Kazuhiko; Kiyoharu, Norihiko; Aizawa, Yuko.

    1997-01-01

    The present invention provides a method and a device suitable to rise the temperature and increase the pressure of the reactor to an aimed pressure in accordance with an aimed value for a reactor water temperature changing rate in the course of rising temperature and increasing pressure of the reactor upon start up of a BWR type power plant. Namely, neutron fluxes in the reactor and the temperature of reactor water are detected respectively. The maximum value among the detected values for the neutron fluxes is detected. The reactor water temperature changing rate is calculated based on the detected values of the reactor water temperature, from which the maximum value of the reactor water temperature changing rate is detected. An aimed value for the neutron flux is calculated in accordance with both detected maximum values and the aimed value of the reactor water temperature changing rate. The position of control rods is adjusted in accordance with the aimed value for the calculated neutron flux. Then, an aimed value for the neutron flux for realizing the aimed value for the reactor water temperature changing rate can be obtained accurately with no influence of the sensitivity of the detected values of the neutron fluxes and the time delay of the reactor water temperature changing rate. (I.S.)

  18. The profile of tuberculosis infection at the Babcock University ...

    African Journals Online (AJOL)

    2016-01-23

    Poor. Countries: Challenges and Opportunities. Clinical Microbiology Reviews 2011;24:314-350. 12. Ansari NA, Kombe AH, Kenyon. TA.Pathology and causes of death in a group of. 128 predominantly HIV-positive patients in.

  19. Nuclear reactor coolant and cover gas system

    International Nuclear Information System (INIS)

    George, J.A.; Redding, A.H.; Tower, S.N.

    1976-01-01

    A core cooling system is disclosed for a nuclear reactor of the type utilizing a liquid coolant with a cover gas above free surfaces of the coolant. The disclosed system provides for a large inventory of reactor coolant and a balanced low pressure cover gas arrangement. A flow restricting device disposed within a reactor vessel achieves a pressure of the cover gas in the reactor vessel lower than the pressure of the reactor coolant in the vessel. The low gas pressure is maintained over all free surfaces of the coolant in the cooling system including a coolant reservoir tank. Reactor coolant stored in the reservoir tank allows for the large reactor coolant inventory provided by the invention

  20. Report on design and technical standard planning of vibration controlling structure on the buildings, in the Tokai Reprocessing Facility, Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    Uryu, Mitsuru; Terada, Shuji; Shinohara, Takaharu; Yamazaki, Toshihiko; Nakayama, Kazuhiko; Kondo, Toshinari; Hosoya, Hisashi

    1997-10-01

    The Tokai reprocessing facility buildings are constituted by a lower foundation, vibration controlling layers, and upper structure. At the vibration controlling layer, a laminated rubber aiming support of the building load and extension of the eigenfrequency and a damper aiming absorption of earthquake energy are provided. Of course, the facility buildings are directly supported at the arenaceous shale (Taga Layer) of the Miocene in the Neogene confirmed to the stablest ground, as well the buildings with high vibration resistant importance in Japan. This report shows that when the vibration controlling structure is adopted for the reprocessing facility buildings where such high vibration resistance is required, reduction of input acceleration for equipments and pipings can be achieved and the earthquake resistant safety can also be maintained with sufficient tolerance and reliability. (G.K.)

  1. The profile of tuberculosis infection at the Babcock University ...

    African Journals Online (AJOL)

    Background: Tuberculosis is the leading cause of death from any single pathogen and it has consistently continued to be a major public health challenge globally. Data show that Nigeria ranks tenth among the 22 high tuberculosis burden countries. Aim: This study intends to describe the profile of tuberculosis infections in ...

  2. Development of Safety Review Guidance for Research and Training Reactors

    International Nuclear Information System (INIS)

    Oh, Kju-Myeng; Shin, Dae-Soo; Ahn, Sang-Kyu; Lee, Hoon-Joo

    2007-01-01

    The KINS already issued the safety review guidance for pressurized LWRs. But the safety review guidance for research and training reactors were not developed. So, the technical standard including safety review guidance for domestic research and training reactors has been applied mutates mutandis to those of nuclear power plants. It is often difficult for the staff to effectively perform the safety review of applications for the permit by the licensee, based on peculiar safety review guidance. The NRC and NSC provide the safety review guidance for test and research reactors and European countries refer to IAEA safety requirements and guides. The safety review guide (SRG) of research and training reactors was developed considering descriptions of the NUREG- 1537 Part 2, previous experiences of safety review and domestic regulations for related facilities. This study provided the safety review guidance for research and training reactors and surveyed the difference of major acceptance criteria or characteristics between the SRG of pressurized light water reactor and research and training reactors

  3. Radiological shielding of low power compact reactor: calculation and design

    International Nuclear Information System (INIS)

    Marino, Raul

    2004-01-01

    The development of compact reactors becoming a technology that offers great projection and innumerable use possibilities, both in electricity generation and in propulsion.One of the requirements for the operation of this type of reactor is that it must include a radiological shield that will allow for different types of configurations and that, may be moved with the reactor if it needs to be transported.The nucleus of a reactor emits radiation, mainly neutrons and gamma rays in the heat of power, and gamma radiation during the radioactive decay of fission products.This radiation must be restrained in both conditions of operation to avoid it affecting workers or the public.The combination of different materials and properties in layers results in better performance in the form of a decrease in radiation, hence causing the dosage outside the reactor, whether in operation or shut down, to fall within the allowed limits.The calculations and design of radiological shields is therefore of paramount importance in reactor design.The choice of material and the design of the shield have a strong impact on the cost and the load capacity, the latter being one of the characteristics to optimize.The imposed condition of design is that the reactor can be transported together with the decay shield in a standard container of 40 foot [es

  4. Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA

    Science.gov (United States)

    Chakraborty, Jayeeta; Varonka, Matthew S.; Orem, William H.; Finkelman, Robert B.; Manton, William

    2017-01-01

    The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.

  5. Some Movement Mechanisms and Characteristics in Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2014-01-01

    Full Text Available The pebblebed-type high temperature gas-cooled reactor is considered to be one of the promising solutions for generation IV advanced reactors, and the two-region arranged reactor core can enhance its advantages by flattening neutron flux. However, this application is held back by the existence of mixing zone between central and peripheral regions, which results from pebbles’ dispersion motions. In this study, experiments have been carried out to study the dispersion phenomenon, and the variation of dispersion region and radial distribution of pebbles in the specifically shaped flow field are shown. Most importantly, the standard deviation of pebbles’ radial positions in dispersion region, as a quantitative index to describe the size of dispersion region, is gotten through statistical analysis. Besides, discrete element method has been utilized to analyze the parameter influence on dispersion region, and this practice offers some strategies to eliminate or reduce mixing zone in practical reactors.

  6. Reactor core and control rod assembly in FBR type reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi.

    1993-01-01

    Fuel assemblies and control rod assemblies are attached respectively to reactor core support plates each in a cantilever fashion. Intermediate spacer pads are disposed to the lateral side of a wrapper tube just above the fuel rod region. Intermediate space pads are disposed to the lateral side of a control rod guide tube just above a fuel rod region. The thickness of the intermediate spacer pad for the control rod assembly is made smaller than the thickness of the intermediate spacer pad for the fuel assembly. This can prevent contact between intermediate spacer pads of the control guide tube and the fuel assembly even if the temperature of coolants is elevated to thermally expand the intermediate spacer pad, by which the radial displacement amount of the reactor core region along the direction of the height of the control guide tube is reduced substantially to zero. Accordingly, contribution of the control rod assembly to the radial expansion reactivity can be reduced to zero or negative level, by which the effect of the negative radial expansion reactivity of the reactor is increased to improve the safety upon thermal transient stage, for example, loss of coolant flow rate accident. (I.N.)

  7. Structural design of nuclear reactor machinery and equipment

    International Nuclear Information System (INIS)

    Hara, Hideki

    1992-01-01

    Since the machinery, equipment and piping which compose nuclear power station facilities are diverse, when those are designed, consideration is given sufficiently to the objective of use and the importance of the object machinery and equipment so that those can maintain the soundness over the design life. In this report, on the contents and the design standard in the design techniques for nuclear reactor machinery and equipment, the way of thinking is shown, taking an example of reactor pressure vessel which is stipulated as the vessel kind 1 in the 'Technical standard of structures and others regarding nuclear facilities for electric power generation', Notice No. 501 of the Ministry of International Trade and Industry. The reactor pressure vessel of 1350 MWe improved type BWR (ABWR) is used under the condition of 87.9 kg/cm 2 and 302 degC, and the inside diameter is about 7.2 m, the inside height is about 21 m, and the wall thickness is about 170 mm. The design standard for reactor pressure vessels and its way of thinking, breakdown prevention design and the design techniques for reactor pressure vessels are described. (K.I.)

  8. RA reactor operation and maintenance in 1992, Part 1

    International Nuclear Information System (INIS)

    Sotic, O.; Cupac, S.; Sulem, B.; Zivotic, Z.; Majstorovic, D.; Tanaskovic, M.

    1992-01-01

    During 1992 Ra reactor was not in operation. All the activities were fulfilled according to the previously adopted plan. Basic activities were concerned with revitalisation of the RA reactor and maintenance of reactor components. All the reactor personnel was busy with reconstruction and renewal of the existing reactor systems and building of the new systems, maintenance of the reactor devices. Part of the staff was trained for relevant tasks and maintenance of reactor systems [sr

  9. Reactor calculations and nuclear information

    International Nuclear Information System (INIS)

    Lang, D.W.

    1977-12-01

    The relationship of sets of nuclear parameters and the macroscopic reactor quantities that can be calculated from them is examined. The framework of the study is similar to that of Usachev and Bobkov. The analysis is generalised and some properties required by common sense are demonstrated. The form of calculation permits revision of the parameter set. It is argued that any discrepancy between a calculation and measurement of a macroscopic quantity is more useful when applied directly to prediction of other macroscopic quantities than to revision of the parameter set. The mathematical technique outlined is seen to describe common engineering practice. (Author)

  10. On the classification of structures, systems and components of nuclear research and test reactors

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel

    2009-01-01

    The classification of structures, systems and components of nuclear reactors is a relevant issue related to their design because it is directly associated with their safety functions. There is an important statement regarding quality standards and records that says Structures, systems, and components important to safety shall be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions to be performed. The definition of the codes, standards and technical requirements applied to the nuclear reactor design, fabrication, inspection and tests may be seen as the main result from this statement. There are well established guides to classify structures, systems and components for nuclear power reactors such as the Pressurized Water Reactors but one can not say the same for nuclear research and test reactors. The nuclear reactors safety functions are those required to the safe reactor operation, the safe reactor shutdown and continued safe conditions, the response to anticipated transients, the response to potential accidents and the control of radioactive material. So, it is proposed in this paper an approach to develop the classification of structures, systems and components of these reactors based on their intended safety functions in order to define the applicable set of codes, standards and technical requirements. (author)

  11. Computerized reactor monitor and control for research reactors

    International Nuclear Information System (INIS)

    Buerger, L.; Vegh, E.

    1981-09-01

    The computerized process control system developed in the Central Research Institute for Physics, Budapest, Hungary, is described together with its special applications at research reactors. The nuclear power of the Hungarian research reactor is controlled by this computerized system, too, while in Lybia many interesting reactor-hpysical calculations are built into the computerized monitor system. (author)

  12. Nuclear reactors and disarmament

    International Nuclear Information System (INIS)

    Almagro, J.C.; Estrada Oyuela, M.E.; Garcia Moritan, R.

    1987-01-01

    From a brief analysis of the perspectives of nuclear weapons arsenals reduction, a rational use of the energetic potential of the ogives and the authentic destruction of its warlike power is proposed. The fissionable material conversion contained in the nuclear fuel ogives for peaceful uses should be part of the disarmament agreements. This paper pretends to give an approximate idea on the resources re assignation implicancies. (Author)

  13. U.S. and foreign breeder reactors

    International Nuclear Information System (INIS)

    Hill, E.H.

    1977-01-01

    The running battle between Congress and the Administration over the Clinch River Breeder Reactor Plant (CRBRP) Project has provoked an increased interest in domestic and foreign breeder reactor programs. Perhaps an understanding of the history of breeders here and abroad will serve to place the CRBRP in perspective and allow some analysis of how the U.S. appears on the global canvas. Breeder reactor technology has, for the most part, settled down to concentration on the liquid metal fast breeder reactor (LMFBR). This is the result of 32 years of experience with reactors employing a fast neutron flux and even longer experience with liquid metal coolants. However, a number of U.S. utilities are sponsoring a gas cooled fast reactor program as an alternative technology to the LMFBR. This development program is supported by the U.S. Department of Energy

  14. Status of the advanced boiling water reactor and simplified boiling water reactor

    International Nuclear Information System (INIS)

    Smith, P.F.

    1992-01-01

    This paper reports that the excess of U.S. electrical generating capacity which has existed for the past 15 years is coming to an end as we enter the 1990s. Environmental and energy security issues associated with fossil fuels are kindling renewed interest in the nuclear option. The importance of these issues are underscored by the National Energy Strategy (NES) which calls for actions which are designed to ensure that the nuclear power option is available to utilities. Utilities, utility associations, and nuclear suppliers, under the leadership of the Nuclear Power Oversight Committee (NPOC), have jointly developed a 14 point strategic plan aimed at establishing a predictable regulatory environment, standardized and pre-licensed Advanced Light Water Reactor (ALWR) nuclear plants, resolving the long-term waste management issue, and other enabling conditions. GE is participating in this national effort and GE's family of advanced nuclear power plants feature two new reactor designs, developed on a common technology base, aimed at providing a new generation of nuclear plants to provide safe, clean, economical electricity to the world's utilities in the 1990s and beyond. Together, the large-size (1300 MWe) Advanced Boiling Water Reactor (ABWR) and the small-size (600 MWe) Simplified Boiling Water Reactor (SBWR) are innovative, near-term candidates for expanding electrical generating capacity in the U.S. and worldwide. Both possess the features necessary to do so safely, reliably, and economically

  15. Education and Training on ISIS Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Foulon, F.; Badeau, G.; Lescop, B.; Wohleber, X. [French Atomic Energy and Alternative Energies Commission, Paris (France)

    2013-07-01

    In the frame of academic and vocational programs the National Institute for Nuclear Science and Technology uses the ISIS research reactor as a major tool to ensure a practical and comprehensive understanding of the nuclear reactor physics, principles and operation. A large set of training courses have been developed on ISIS, optimising both the content of the courses and the pedagogical approach. Programs with duration ranging from 3 hours (introduction to reactor operation) to 24 hours (full program for the future operators of research reactors) are carried out on ISIS reactor. The reactor is operated about 350 hours/year for education and training, about 40 % of the courses being carried out in English. Thus, every year about 400 trainees attend training courses on ISIS reactor. We present here the ISIS research reactor and the practical courses that have been developed on ISIS reactor. Emphasis is given to the pedagogical method which is used to focus on the operational and safety aspects, both in normal and incidental operation. We will present the curricula of the academic and vocational courses in which the practical courses are integrated, the courses being targeted to a wide public, including operators of research reactors, engineers involved in the design and operation of nuclear reactors as well as staff of the regulatory body. We address the very positive impact of the courses on the development of the competences and skills of participants. Finally, we describe the Internet Reactor Laboratories (IRL) that are under development and will consist in broadcasting the training courses via internet to remote facilities or institutions.

  16. Education and Training on ISIS Research Reactor

    International Nuclear Information System (INIS)

    Foulon, F.; Badeau, G.; Lescop, B.; Wohleber, X.

    2013-01-01

    In the frame of academic and vocational programs the National Institute for Nuclear Science and Technology uses the ISIS research reactor as a major tool to ensure a practical and comprehensive understanding of the nuclear reactor physics, principles and operation. A large set of training courses have been developed on ISIS, optimising both the content of the courses and the pedagogical approach. Programs with duration ranging from 3 hours (introduction to reactor operation) to 24 hours (full program for the future operators of research reactors) are carried out on ISIS reactor. The reactor is operated about 350 hours/year for education and training, about 40 % of the courses being carried out in English. Thus, every year about 400 trainees attend training courses on ISIS reactor. We present here the ISIS research reactor and the practical courses that have been developed on ISIS reactor. Emphasis is given to the pedagogical method which is used to focus on the operational and safety aspects, both in normal and incidental operation. We will present the curricula of the academic and vocational courses in which the practical courses are integrated, the courses being targeted to a wide public, including operators of research reactors, engineers involved in the design and operation of nuclear reactors as well as staff of the regulatory body. We address the very positive impact of the courses on the development of the competences and skills of participants. Finally, we describe the Internet Reactor Laboratories (IRL) that are under development and will consist in broadcasting the training courses via internet to remote facilities or institutions

  17. Nuclear reactors design study and parameters calculation

    International Nuclear Information System (INIS)

    Morcos, H.N.

    2002-01-01

    the nuclear design a reactor core needs to determine a set of system parameters which will lead to safe, reliable and economical reactor operation at the rated power level over the desired core lifetime. the principal tools used in this task consist of a number of models of neutron behavior in the reactor that are implemented by a multiplicity of computer programs or codes used to simulate the nuclear behavior of the reactor core. the study of the interaction of the core power distributions with the time-dependent production or depletion of nuclei in the core is known as depletion or burn up analysis the main objective of the present thesis is to study the fuel depletion analysis under different reactor operating regimes and their influence on the build up of actinides and fission products (F P). therefore, one can estimate the optimum reactor-operating regime at which the accumulation of certain actinide isotope can reach maximum

  18. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V. [ed.; Feinberg, O.; Morozov, A. [Russian Research Centre `Kurchatov Institute`, Moscow (Russian Federation); Devell, L. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  19. Advanced nuclear reactor types and technologies

    International Nuclear Information System (INIS)

    Ignatiev, V.; Devell, L.

    1995-01-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary

  20. Space reactor fuels performance and development issues

    International Nuclear Information System (INIS)

    Wewerka, E.M.

    1984-01-01

    Three compact reactor concepts are now under consideration by the US Space Nuclear Power Program (the SP-100 Program) as candidates for the first 100-kWe-class space reactor. Each of these reactor designs puts unique constraints and requirements on the fuels system, and raises issues of fuel systems feasibility and performance. This paper presents a brief overview of the fuel requirements for the proposed space reactor designs, a delineation of the technical feasibility issues that each raises, and a description of the fuel systems development and testing program that has been established to address key technical issues

  1. RA Research reactor Annual report 1982 - Part 1, Operation, maintenance and utilization of the RA reactor

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Kozomara-Maic, S.; Cupac, S.; Radivojevic, J.; Stamenkovic, D.; Skoric, M.; Miokovic, J.

    1982-12-01

    Reactor test operation started in September 1981 at 2 MW power with 80% enriched fuel continued during 1982 according to the previous plan. The initial reactor core was made of 44 fuel channel each containing 10 fuel slugs. The first half of 1982 was used for the needed measurements and analysis of operating parameters and functioning of reactor systems and equipment under operating conditions. Program concerned with the testing operation at higher power levels was started in the second half of this year. It was found that the inherent excess reactivity and control rod worths ensure safe operation according to the IAEA safety standards. Excess reactivity is high enough to enable higher power level of 4.7 MW during 4 monthly cycles each lasting 15-20 days. Favourable conditions for cooling exist for the initial core configuration. Effects of poisoning at startup on the reactivity and power density distribution were measured as well as initial spatial distribution of the neutron flux which was 3,9 10 13 cm -2 s -1 at 2 MW power. Modification of the calibration coefficient in the system for automated power level control was determined. All the results show that all the safety criteria and limitations concerned with fuel utilization are fulfilled if reactor power would be 4.7 MW. Additional testing operation at 3, 4, and 4.7 MW power levels will be needed after obtaining the licence for operating at nominal power. Transition from the initial core with 44 fuel channels to the equilibrium lattice configuration with 72 fuel channels each containing 10 fuel slugs, would be done gradually. Reactor was not operated in September because of the secondary coolant pipes were exchanged between Danube and the horizontal sedimentary. Control and maintenance of the reactor equipment was done regularly and efficiently dependent on the availability of the spare parts. Difficulties in maintenance of the reactor instrumentation were caused by unavailability of the outdated spare parts

  2. A probabilistic safety assessment of the standard French 900MWe pressurized water reactor. Main report

    International Nuclear Information System (INIS)

    1990-04-01

    To situate the probabilistic safety assessment of standardized 900 MWe units made by the Institute for Nuclear Safety and Protection (IPSN), it is necessary to consider the importance and possible utilization of a study of this type. At the present time, the safety of nuclear installations essentially depends on the application of the defence in-depth approach. The design arrangements adopted are justified by the operating organization on the basis of deterministic studies of a limited number of conventional situations with corresponding safety margins. These conventional situations are grouped in categories by frequency, it being accepted that the greater the consequences the lesser the frequency must be. However in the framework of the analysis performed under the control of the French safety authority, the importance was rapidly recognized of setting an overall reference objective. By 1977, on the occasion of appraisal of the fundamental safety options of the standardized 1300 MWe units, the Central Service for the Safety of Nuclear Installations (SCSIN) set the following global probabilistic objective: 'Generally speaking, the design of installations including a pressurized water nuclear reactor must be such that the global probability of the nuclear unit being the origin of unacceptable consequences does not exceed 10 -6 per year...' Probabilistic analyses making reference to this global objective gradually began to supplement the deterministic approach, both for examining external hazards to be considered in the design basis and for examining the possible need for additional means of countering the failure of doubled systems in application of the deterministic single-failure criterion. A new step has been taken in France by carrying out two level 1 probabilistic safety assessments (calculation of the annual probability of core meltdown), one for the 900 MWe series by the IPSN and the other for the 1300 MWe series by Electricite de France. The objective of

  3. Reactor safety research program. A description of current and planned reactor safety research sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research

    International Nuclear Information System (INIS)

    1975-06-01

    The reactor safety research program, sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, is described in terms of its program objectives, current status, and future plans. Elements of safety research work applicable to water reactors, fast reactors, and gas cooled reactors are presented together with brief descriptions of current and planned test facilities. (U.S.)

  4. Physics and safety of advanced research reactors

    International Nuclear Information System (INIS)

    Boening, K.; Hardt, P. von der

    1987-01-01

    Advanced research reactor concepts are presently being developed in order to meet the neutron-based research needs of the nineties. Among these research reactors, which are characterized by an average power density of 1-10 MW per liter, highest priority is now generally given to the 'beam tube reactors'. These provide very high values of the thermal neutron flux (10 14 -10 16 cm -2 s -1 ) in a large volume outside of the reactor core, which can be used for sample irradiations and, in particular, for neutron scattering experiments. The paper first discusses the 'inverse flux trap concept' and the main physical aspects of the design and optimization of beam tube reactors. After that two examples of advanced research reactor projects are described which may be considered as two opposite extremes with respect to the physical optimization principle just mentioned. The present situation concerning cross section libraries and neutronic computer codes is more or less satisfactory. The safety analyses of advanced research reactors can largely be updated from those of current new designs, partially taking advantage of the immense volume of work done for power reactors. The paper indicates a few areas where generic problems for advanced research reactor safety are to be solved. (orig.)

  5. Design and construction of reactor containment systems of the prototype fast breeder reactor MONJU

    International Nuclear Information System (INIS)

    Ikeda, Makinori; Kawata, Koji; Sato, Masaki; Ito, Masashi; Hayashi, Kazutoshi; Kunishima, Shigeru.

    1991-01-01

    The MONJU reactor containment systems consist of a reactor containment vessel, reactor cavity walls and cell liners. The reactor containment vessel is strengthened by ring stiffeners for earthquake stresses. To verify its earthquake-resistant strength, vibration and buckling tests were carried out by using 1/19 scale models. The reactor cavity walls, which form biological shield and support the reactor vessel, are constructed of steel plate frames filled with concrete. The cell liner consists of liner plates and thermal insulation to moderate the effects of sodium spills, and forms a gastight cell to maintain a nitrogen atmosphere. (author)

  6. Structures and Materials of Reactor Internals for PWR in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Kim, W. S.; Kwon, S. C.; Kwon, J. H.; Kim, Y. S.; Kim, H. P.; Yoo, C. S.; Lee, S. R.; Jung, M. K.; Hwang, S. S

    2007-10-15

    Nuclear reactor types in Korea are PWR type reactor (Westinghouse, Combustion Engineering, Farmatome type) and CANDU type reactor. Structures and Materials for reactor internal of PWR type were investigated. Reactor internal was composed of lower core support structure, upper core support assembly, incore instrumentation support structure. Lower core support structure of these structures is the most important. The major material for the reactor internal is type 304 and 316 stainless steel and radial support clevis bolts are made of Inconel. The main damage mechanism for reactor internal was IASCC and the effect of IASCC on reactor internal was investigated. The accident for reactor internal was also investigate.

  7. Design and analysis of a nuclear reactor core for innovative small light water reactors

    Science.gov (United States)

    Soldatov, Alexey I.

    In order to address the energy needs of developing countries and remote communities, Oregon State University has proposed the Multi-Application Small Light Water Reactor (MASLWR) design. In order to achieve five years of operation without refueling, use of 8% enriched fuel is necessary. This dissertation is focused on core design issues related with increased fuel enrichment (8.0%) and specific MASLWR operational conditions (such as lower operational pressure and temperature, and increased leakage due to small core). Neutron physics calculations are performed with the commercial nuclear industry tools CASMO-4 and SIMULATE-3, developed by Studsvik Scandpower Inc. The first set of results are generated from infinite lattice level calculations with CASMO-4, and focus on evaluation of the principal differences between standard PWR fuel and MASLWR fuel. Chapter 4-1 covers aspects of fuel isotopic composition changes with burnup, evaluation of kinetic parameters and reactivity coefficients. Chapter 4-2 discusses gadolinium self-shielding and shadowing effects, and subsequent impacts on power generation peaking and Reactor Control System shadowing. The second aspect of the research is dedicated to core design issues, such as reflector design (chapter 4-3), burnable absorber distribution and programmed fuel burnup and fuel use strategy (chapter 4-4). This section also includes discussion of the parameters important for safety and evaluation of Reactor Control System options for the proposed core design. An evaluation of the sensitivity of the proposed design to uncertainty in calculated parameters is presented in chapter 4-5. The results presented in this dissertation cover a new area of reactor design and operational parameters, and may be applicable to other small and large pressurized water reactor designs.

  8. Development of the IAEA’s Knowledge Preservation Portals for Fast Reactors and Gas-Cooled Reactors Knowledge Preservation

    International Nuclear Information System (INIS)

    Batra, C.; Menahem, D. Beraha; Kriventsev, V.; Monti, S.; Reitsma, F.; Grosbois, J. de; Khoroshev, M.; Gladyshev, M.

    2016-01-01

    Full text: The IAEA has been carrying out a dedicated initiative on fast reactor knowledge preservation since 2003. The main objectives of the Fast Reactor Knowledge Portal (FRKP) initiative are to, a) halt the on-going loss of information related to fast reactors (FR), and b) collect, retrieve, preserve and make accessible existing data and information on FR. This portal will help in knowledge sharing, development, search and discovery, collaboration and communication of fast reactor related information. On similar lines a Gas Cooled Fast Reactor Knowledge Preservation portal project also started in 2013. Knowledge portals are capable to control and manage both publicly available as well as controlled information. The portals will not only incorporate existing set of knowledge and information, but will also provide a systemic platform for further preservation of new developments. It will include fast reactor and gas cooled reactor document repositories, project workspaces for the IAEA’s Coordinated Research Projects (CRPs), Technical Meetings (TMs), forums for discussion, etc. The portal will also integrate a taxonomy based search tool, which will help using new semantic search capabilities for improved conceptual retrieve of documents. The taxonomy complies with international web standards as defined by the W3C (World Wide Web Consortium). (author

  9. [Ophthalmology and standardization].

    Science.gov (United States)

    Heitz, R

    1989-01-01

    The standards are the references for quality and safety of materials, instruments and devices in ophtalmological use. The French standardisation association, "Association Française de Normalisation" (AFNOR), drafts his standards in connection with the concerned professionals. The ophthalmologists are concerned by standards of diagnostic and therapeutic instruments, intraocular and orbital implants, contact lenses, spectacle frames and glasses, and ocular protectors.

  10. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...

  11. Standardization and the European Standards Organisations

    Directory of Open Access Journals (Sweden)

    Marta Orviska

    2014-01-01

    Full Text Available Standardization is a relatively neglected aspect of the EU regulatory process and yet it is fundamental to that process and arguably has recently been the key vehicle in making the single market an economic reality. Yet the key standardization bodies in the EU, the ESOs, are scarcely known to the public and seldom discussed in the literature. In this article we redress this imbalance, arguing that standardization and integration are closely related concepts. We also argue that the ESOs have developed a degree of autonomy in expanding the boundaries of standardization and even in developing their own links with the rest of the world. Recent proposals put forward by the European Commission can be seen as an attempt to reduce that autonomy. These proposals emphasize the speed of, and stakeholder involvement in, standards production, which we further suggest are somewhat conflicting aims.

  12. Research reactors and alternative devices for research

    International Nuclear Information System (INIS)

    1985-01-01

    This report includes papers on research reactors and alternatives to the research reactors - radioisotopic neutron sources, cyclotrons, D-T neutron generators and small accelerators, used for radioisotope production, neutron activation analysis, material science, applied and basic research using neutron beams. A separate abstract was prepared for each of the 7 papers

  13. Exporting apocalypse: CANDU reactors and nuclear proliferation

    International Nuclear Information System (INIS)

    McKay, Paul.

    The author believes that the peaceful use of nuclear technology leads inevitably to the production of nuclear weapons, and that CANDU reactors are being bought by countries that are likely to build bombs. He states that exports of reactors and nuclear materials cannot be defended and must be stopped

  14. Regulations for RA reactor operation

    International Nuclear Information System (INIS)

    1980-09-01

    Regulations for RA reactor operation are written in accordance with the legal regulations defined by the Law about radiation protection and related legal acts, as well as technical standards according to the IAEA recommendations. The contents of this book include: fundamental data about the reactor; legal regulations for reactor operation; organizational scheme for reactor operation; general and detailed instructions for operation, behaviour in the reactor building, performing experiments; operating rules for operation under steady state and accidental conditions [sr

  15. Reactor abnormality diagnosis device and its method

    International Nuclear Information System (INIS)

    Honma, Hitoshi; Hirayama, Tatsuya.

    1992-01-01

    The present invention rapidly detects leakage of primary coolants due to rupture of heat transfer pipes of a steam generator in a PWR type reactor to diagnose the operation state of the reactor. That is, a radiation detector is disposed to a secondary main steam pipeline for supplying steams generated from the steam generator to a turbine. The radiation detector detects a dose rate or a counting rate continuously. The measured data are transferred to an calculation and processing system and compared with the standard of normal values to diagnose the presence of leaks. Alternatively, radiation detectors are disposed at the upstream and the downstream of the secondary system main steam pipeline respectively. The signals from each of the radiation detectors are processed by the calculation and processing system as the change with lapse of time. As a result, the scale of the ruptured portion of the heat transfer pipe in the steam generator is diagnosed based on the value of radioactivity concentration in the main steams. (I.S.)

  16. Media and Australia's replacement reactor project

    International Nuclear Information System (INIS)

    Keenan, Pamela

    2001-01-01

    In September 1997, the Commonwealth Government of Australia announced a proposal to build a replacement nuclear research reactor at Lucas Heights in Sydney. Extensive public consultation, parliamentary debate and independent reports were prepared to ensure that the new facility would meet strict international requirements, national safety and environmental standards, and performance specifications servicing the needs of Australia - for decades to come. On 6 June 2000, Argentine company INVAP SE was announced as the preferred tenderer. In July 2000 contracts were signed between INVAP and the Australian Nuclear Science and Technology Organisation for the construction the replacement reactor, due to be completed in 2005. In order to retain a strong local presence, INVAP undertook a joint venture with two of Australia's foremost heavy construction businesses. Briefly the new research reactor will be a replacement for the ageing Australian Reactor (HIFAR). Nuclear science and technology, in Australia, is no stranger to media controversy and misinformation. Understandably the announcement of a preferred tenderer followed by the signing of contracts, attracted significant national and international media attention. However in the minds of the media, the issue is far from resolved and is now a constant 'news story' in the Australian media. Baseless media stories have made claims that the project will cost double the original estimates; question the credibility of the contractors; and raise issues of international security. The project is currently linked with Australia's requirements for long term nuclear waste management and there has been an attempt to bring national Indigenous People's issues into play. Some of these issues have been profiled in the press internationally. So, just to set the record straight and give you an appropriate impression of what's 'really happening' I would like to highlight a few issues, how ANSTO dealt with these, and what was finally reported

  17. Fast reactor fuel design and development

    International Nuclear Information System (INIS)

    Bishop, J.F.W.; Chamberlain, A.; Holmes, J.A.G.

    1977-01-01

    Fuel design parameters for oxide and carbide fast reactor fuels are reviewed in the context of minimising the total uranium demands for a combined thermal and fast reactor system. The major physical phenomena conditioning fast reactor fuel design, with a target of high burn-up, good breeding and reliable operation, are characterised. These include neutron induced void swelling, irradiation creep, pin failure modes, sub-assembly structural behaviour, behaviour of defect fuel, behaviour of alternative fuel forms. The salient considerations in the commercial scale fabrication and reprocessing of the fuels are reviewed, leading to the delineation of possible routes for the manufacture and reprocessing of Commercial Reactor fuel. From the desiderata and restraints arising from Surveys, Performance and Manufacture, the problems posed to the Designer are considered, and a narrow range of design alternatives is proposed. The paper concludes with a consideration of the development areas and the conceptual problems for fast reactors associated with those areas

  18. TRIGA reactor owners' seminar. Papers and abstracts

    International Nuclear Information System (INIS)

    1970-01-01

    The TRIGA Reactor Owners' Conference was planned with the aim of bringing together a group of persons interested in the ownership and operation of TRIGA reactors in the hope that an interchange of viewpoints, information, and experience would prove of mutual benefit

  19. Scanning tunneling microscope assembly, reactor, and system

    Science.gov (United States)

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  20. Operational and reliability experience with reactor instrumentation

    International Nuclear Information System (INIS)

    Dixon, F.; Gow, R.S.

    1978-01-01

    In the last 15 years the CEGB has experienced progressive plant development, integration and changes in operating regime through nine nuclear (gas-cooled reactor) power stations with corresponding instrumentation advances leading towards more refined centralized control. Operation and reliability experience with reactor instrumentation is reported in this paper with reference to the progressive changes related to the early magnox, late magnox and AGR periods. Data on instrumentation reliability in terms of reactor forced outages are presented and show that the instrumentation contributions to loss of generating plant availability are small. Reactor safety circuits, neutron flux and temperature measurements, gas analysis and vibration monitoring are discussed. In reviewing the reactor instrumentation the emphasis is on reporting recent experience, particularly on AGR equipment, but overall performance and changes to magnox equipment are included so that some appreciation can be obtained of instrumentation requirements with respect to plant lifetimes. (author)

  1. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Conceptual design studies were made of fusion reactors based on the three current mirror-confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fuel for fission reactors. We have designed a large commercial hybrid and a small pilot-plant hybrid based on standard mirror confinement. Tandem mirror designs include a commercial 1000-MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single-cell pilot plant

  2. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1978-01-01

    We have carried out conceptual design studies of fusion reactors based on the three current mirror confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fission fuel for fission reactors. We have designed a large commercial hybrid based on standard mirror confinement, and also a small pilot plant hybrid. Tandem mirror designs include a commercial 1000 MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single cell pilot plant

  3. ISIS Training Reactor: A Reactor Dedicated to Education and Training for Students and Professionals

    International Nuclear Information System (INIS)

    Foulon, F.

    2014-01-01

    Conclusion: • INSTN strategy: complete theoretical courses by practical courses on the ISIS research reactor. • Training courses integrated both in Academic degree programs and continuing education. • 27 hours of training courses have been developed focusing on the practical and safety aspects of reactor operation. • The Education and Training activity became the main activity of ISIS reactor: 400 trainees/year; 360 hours/year; 40% in English. • Remote access to the Training courses: Internet Reactor Laboratory under development to be started from 2014 to broadcast training courses from ISIS reactor to guest institutions

  4. New reactors concepts and scenarios

    International Nuclear Information System (INIS)

    Gandini, A.

    2001-01-01

    In recent years an increasing interest is observed with respect to subcritical, accelerator driven systems (ADS), for their possible role in perspective future nuclear energy scenarios, as actinide (Pu and MA) incinerators, and/or claimed energy plants with potential enhanced safety characteristics. Important research programs are devoted to the various related fields of research. Extensive studies on the ADS behavior under incidental conditions are in particular made, for verifying their claimed advantage, under the safety point of view, with respect to the corresponding critical reactors. Corresponding medium and long range scenarios are being studied to cope with a number of concerns associated with the safety (power excursions. residual heat risk), as well as with the fuel flow (criticality accidents, fuel diversion, radiological risk, proliferation). In the present work we shall try to review current lines of research in this field, and comment on possible scenarios so far envisaged. (author)

  5. Possibilities of TWR and long life reactor

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Shimazu, Yoichiro; Handa, Norihiko

    2010-01-01

    Bill Gates identified the need to switch to zero-emission energy and clarified investing in Terra Power developing the TWR (Traveling Wave Reactor) in February 2010. He also visited Toshiba developing small reactor 4S (Super Safe Small and Simple). In Japan design studies of the TWR have been conducted on the CANDLE reactor without refueling and the 4S long life reactor with maintenance free. In this feature article, the state of R and D on the TWR in Japan and IAEA's activities on small reactors without online refueling were reviewed in addition to articles on impacts of Bill Gates' investment in the TWR and state of the TWR development from an interview with John Gilleland of Terra Power. (T. Tanaka)

  6. TREAT Reactor Control and Protection System

    International Nuclear Information System (INIS)

    Lipinski, W.C.; Brookshier, W.K.; Burrows, D.R.; Lenkszus, F.R.; McDowell, W.P.

    1985-01-01

    The main control algorithm of the Transient Reactor Test Facility (TREAT) Automatic Reactor Control System (ARCS) resides in Read Only Memory (ROM) and only experiment specific parameters are input via keyboard entry. Prior to executing an experiment, the software and hardware of the control computer is tested by a closed loop real-time simulation. Two computers with parallel processing are used for the reactor simulation and another computer is used for simulation of the control rod system. A monitor computer, used as a redundant diverse reactor protection channel, uses more conservative setpoints and reduces challenges to the Reactor Trip System (RTS). The RTS consists of triplicated hardwired channels with one out of three logic. The RTS is automatically tested by a digital Dedicated Microprocessor Tester (DMT) prior to the execution of an experiment. 6 refs., 5 figs., 1 tab

  7. Cyber security for remote monitoring and control of small reactors

    International Nuclear Information System (INIS)

    Trask, D.; Jung, C.; MacDonald, M.

    2014-01-01

    There is growing international interest and activity in the development of small nuclear reactor technology with a number of vendors interested in building small reactors in Canada to serve remote locations. A common theme of small reactor designs proposed for remote Canadian locations is the concept of a centrally located main control centre operating several remotely located reactors via satellite communications. This theme was echoed at a recent IAEA conference where a recommendation was made to study I&C for remotely controlled small modular reactors, including satellite links and cyber security. This paper summarizes the results of an AECL-CNSC research project to analyze satellite communication technologies used for remote monitoring and control functions in order to provide cyber security regulatory considerations. The scope of this research included a basic survey of existing satellite communications technology and its use in industrial control applications, a brief history of satellite vulnerabilities and a broad review of over 50 standards, guidelines, and regulations from recognized institutions covering safety, cyber security, and industrial communication networks including wireless communications in general. This paper concludes that satellite communications should not be arbitrarily excluded by standards or regulation from use for the remote control and monitoring of small nuclear reactors. Instead, reliance should be placed on processes that are independent of any particular technology, such as reducing risks by applying control measures and demonstrating required reliability through good design practices and testing. Ultimately, it is compliance to well-developed standards that yields the evidence to conclude whether a particular application that uses satellite communications is safe and secure. (author)

  8. RA research reactor - potentials and prospective

    International Nuclear Information System (INIS)

    Sotic, O.

    1984-01-01

    Since December 1959, the RA reactor was operated successfully, except for a few shorter periods needed for maintenance and a four longer shutdown periods caused by decrease in the heavy water quality. Accordingly, reconstruction of some reactor systems was started at the beginning of this decad, as well as increase of its experimental potential which would enable its efficient reliable operation in the future period. Reconstruction is concerned with emergency core cooling system, special ventilation system, and modernization of the reactor instrumentation. Improvement of the experimental potential is related to modifications of the neutron scattering instruments. Development of methods for isotope production is described as well. Design of the reactor experimental loop with external cooling system will be of significant importance in improvement of reactor potential in the future

  9. K-East and K-West Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — Hanford's "sister reactors", the K-East and the K-West Reactors, were built side-by-side in the early 1950's. The two reactors went operational within four months of...

  10. 75 FR 69709 - Office of New Reactors; Notice of Availability of the Final Staff Guidance; Standard Review Plan...

    Science.gov (United States)

    2010-11-15

    ... the Final Staff Guidance; Standard Review Plan, Section 13.6.6, Revision 0 on Cyber Security Plan... Reports for Nuclear Power Plants,'' Section 13.6.6, Revision 0 on ``Cyber Security Plan'' (Agencywide... reviews to amendments to licenses for operating reactors or for activities associated with review of...

  11. Power Nuclear Reactors: technology and innovation for development in future

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2009-01-01

    The conference is about some historicals task of the fission technology as well as many types of Nuclear Reactors. Enrichment of fuel, wastes, research reactors and power reactors, a brief advertisment about Uruguay electric siystem and power generation, energetic worldwide, proliferation, safety reactors, incidents, accidents, Three-Mile Island accident, Chernobil accident, damages, risks, classification and description of Power reactors steam generation, nuclear reactor cooling systems, future view

  12. The program of reactors and nuclear power plants

    International Nuclear Information System (INIS)

    Calabrese, Carlos R.

    2001-01-01

    Into de framework of the program of research reactors and nuclear power plants, the operating Argentine reactors are described. The uses of the research reactors in Argentina are summarized. The reactors installed by Argentina in other countries (Peru, Algeria, Egypt) are briefly described. The CAREM project for the design and construction of an innovator small power reactor (27 MWe) is also described in some detail. The next biennial research and development program for reactor is briefly outlined

  13. Thermal and flow design of helium-cooled reactors

    International Nuclear Information System (INIS)

    Melese, G.; Katz, R.

    1984-01-01

    This book continues the American Nuclear Society's series of monographs on nuclear science and technology. Chapters of the book include information on the first-generation gas-cooled reactors; HTGR reactor developments; reactor core heat transfer; mechanical problems related to the primary coolant circuit; HTGR design bases; core thermal design; gas turbines; process heat HTGR reactors; GCFR reactor thermal hydraulics; and gas cooling of fusion reactors

  14. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  15. Ceramic oxygen transport membrane array reactor and reforming method

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-11-08

    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.

  16. REACTOR: an expert system for diagnosis and treatment of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Nelson, W.R.

    1982-01-01

    REACTOR is an expert system under development at EG and G Idaho, Inc., that will assist operators in the diagnosis and treatment of nuclear reactor accidents. This paper covers the background of the nuclear industry and why expert system technology may prove valuable in the reactor control room. Some of the basic features of the REACTOR system are discussed, and future plans for validation and evaluation of REACTOR are presented. The concept of using both event-oriented and function-oriented strategies for accident diagnosis is discussed. The response tree concept for representing expert knowledge is also introduced

  17. MELCOR analyses of severe accident scenarios in Oconee, a B ampersand W PWR plant

    International Nuclear Information System (INIS)

    Madni, I.K.; Nimnual, S.; Foulds, R.

    1993-01-01

    This paper presents the results and insights gained from MELCOR analyses of two severe accident scenarios, a Loss of Coolant Accident (LOCA) and a Station Blackout (TMLB) in Oconee, a Babcock ampersand Wilcox (B ampersand W) designed PWR with a large dry containment, and comparisons with Source Term Code Package (STCP) calculations of the same sequences. Results include predicted timing of key events, thermal-hydraulic response in the reactor coolant system and containment, and environmental releases of fission products. The paper also explores the impact of varying concrete type, vessel failure temperature, and break location on the accident progression, containment pressurization, and environmental releases of radionuclides

  18. Advanced Demonstration and Test Reactor Options Study

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Gehin, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States); Qualls, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Croson, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power’s share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercialization of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy’s (DOE’s) broader commitment to pursuing an “all of the above” clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate “advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy

  19. Basic materials and protocols documenting of control system for temperature measurements in the reactor of the Mochovce Unit 1

    International Nuclear Information System (INIS)

    Stanc, S.; Tomik, J.; Hubinsky, B.; Vanco, P.; Repa, M.; Capuska, J.

    1998-06-01

    Analysis of accuracy in measurements by means of standard thermocouples at WWER 440 reactors at the break of seventies and eighties showed that the accuracy of standard measurements of temperatures and temperature differences does not comply fully with increasing requirements on nuclear safety, reliability, and economy of operation of these reactors. At the beginning of eighties, proposal for making the standard temperature measurements in WWER reactors were thus elaborated in the Nuclear Power Plants Research Institute Trnava, Inc. . These proposals were based on the establishment of an accurate system for measurement of reactor coolant temperatures and temperature differences. The accurate measurement system for reactor coolant temperatures and temperature differences started to be used at WWER 440 reactors at the beginning of eighties and has been upgraded gradually. Such systems have been implemented at 10 units with WWER 440 reactors

  20. Different types of power reactors and provenness

    International Nuclear Information System (INIS)

    Goodman, E.I.

    1977-01-01

    The lecture guides the potential buyer in the selection of a reactor type. Recommended criteria regarding provenness, licensability, and contractual arrangements are defined and discussed. Tabular data summarizing operating experience and commercial availability of units are presented and discussed. The status of small and medium power reactors which are of interest to many developing countries is presented. It is stressed that each prospective buyer will have to establish his own criteria based on specific conditions which will be applied to reactor selection. In all cases it will be found that selection, either pre-selection of bidders or final selection of supplier, will be a fairly complex evaluation. (orig.) [de

  1. Mechanical core coupling and reactors stability

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2006-01-01

    Structural parts of nuclear reactors are complex mechanical systems, able to vibrate with a set of proper frequencies when suitably excited. Cyclical variations in the strain state of the materials, including density perturbations, are produced. This periodic changes may affect reactor reactivity. But a variation in reactivity affects reactor thermal power, thus modifying the temperature field of the abovementiones materials. If the variation in temperature fields is fast enough, thermal-mechanical coupling may produce fast variations in strain states, and this, at its turn, modifies the reactivity, and so on. This coupling between mechanical vibrations of the structure and the materials of the core, with power oscillations of the reactor, not only may not be excluded a priori, but it seems that it has been present in some stage of the incidents or accidents that happened during the development of nuclear reactor technology. The purpose of the present communication is: (a) To review and generalize some mathematical models that were proposed in order to describe thermal-mechanical coupling in nuclear reactors. (b) To discuss some conditions in which significant instabilities could arise, including large amplitude power oscillations coupled with mechanical vibrations whose amplitudes are too small to be excluded by conventional criteria of mechanical design. Enough Certain aspects of thr physical safety of nuclear power reactors, that are objected by people that opposes to the renaissance of nucleoelectric generation, are discussed in the framework of the mathematical model proposed in this paper [es

  2. University Research Reactors: Issues and Challenges

    International Nuclear Information System (INIS)

    Bernard, John A.; Hu Linwen

    2000-01-01

    University research reactors are underutilized and, as a result, are being decommissioned. The reason for the lack of utilization is shown to be a chronic inability to generate sufficient funds to procure and maintain state-of-the-art instrumentation for prospective researchers. The role of these reactors in nuclear science/engineering education is explored and the rationale for their continued operation is presented. It is argued that base financial support for both reactor operations and the technical support staff needed to interface with experimenters is necessary if these research facilities are not to be irretrievably lost from the educational infrastructure of the United States

  3. High-temperature and breeder reactors - economic nuclear reactors of the future

    International Nuclear Information System (INIS)

    Djalilzadeh, A.M.

    1977-01-01

    The thesis begins with a review of the theory of nuclear fission and sections on the basic technology of nuclear reactors and the development of the first generation of gas-cooled reactors applied to electricity generation. It then deals in some detail with currently available and suggested types of high temperature reactor and with some related subsidiary issues such as the coupling of different reactor systems and various schemes for combining nuclear reactors with chemical processes (hydrogenation, hydrogen production, etc.), going on to discuss breeder reactors and their application. Further sections deal with questions of cost, comparison of nuclear with coal- and oil-fired stations, system analysis of reactor systems and the effect of nuclear generation on electricity supply. (C.J.O.G.)

  4. Safety of power transformers, power supplies, reactors and similar products - Part 1: General requirements and tests

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1998-01-01

    This International Standard deals with safety aspects of power transformers, power supplies, reactors and similar products such as electrical, thermal and mechanical safety. This standard covers the following types of dry-type transformers, power supplies, including switch mode power supplies, and reactors, the windings of which may be encapsulated or non-encapsulated. It has the status of a group safety publication in accordance with IEC Guide 104.

  5. Reactor and method for production of nanostructures

    Science.gov (United States)

    Sunkara, Mahendra Kumar; Kim, Jeong H.; Kumar, Vivekanand

    2017-04-25

    A reactor and method for production of nanostructures, including metal oxide nanowires or nanoparticles, are provided. The reactor includes a regulated metal powder delivery system in communication with a dielectric tube; a plasma-forming gas inlet, whereby a plasma-forming gas is delivered substantially longitudinally into the dielectric tube; a sheath gas inlet, whereby a sheath gas is delivered into the dielectric tube; and a microwave energy generator coupled to the dielectric tube, whereby microwave energy is delivered into a plasma-forming gas. The method for producing nanostructures includes providing a reactor to form nanostructures and collecting the formed nanostructures, optionally from a filter located downstream of the dielectric tube.

  6. Some questions and answers concerning fast reactors

    International Nuclear Information System (INIS)

    Marshall, W.

    1980-01-01

    The theme of the lecture is the place of the fast reactor in an evolving nuclear programme. The whole question of plutonium is first considered, ie its method of production and the ways in which it can be used in the fast reactor fuel cycle. Whether fast reactors are necessary is then discussed. Their safety is examined with particular attention to those design features which are most criticised ie high volumetric power density of the core, and the use of liquid sodium as coolant. Attention is then paid to environmental and safeguard aspects. (U.K.)

  7. University of Florida potato variety trials spotlight: 'Peter Wilcox'

    Science.gov (United States)

    'Peter Wilcox’ is a fresh market potato variety selected from progeny of a cross between B0810-1 and B0918-5, and tested under the pedigree B1816-5 by K.G. Haynes. It was jointly released by United States Department of Agriculture, North Carolina Agricultural Research Service, Agricultural Experimen...

  8. Fully integrated analysis of reactor kinetics, thermalhydraulics and the reactor control system in the MAPLE-X10 research reactor

    International Nuclear Information System (INIS)

    Shim, S.Y.; Carlson, P.A.; Baxter, D.K.

    1992-01-01

    A prototype research reactor, designated MAPLE-X10 (Multipurpose Applied Physics Lattice Experimental - X 10MW), is currently being built at AECL's Chalk River Laboratories. The CATHENA (Canadian Algorithm for Thermalhydraulic Network Analysis) two-fluid code was used in the safety analysis of the reactor to determine the adequacy of core cooling during postulated reactivity and loss-of-forced-flow transients. The system responses to a postulated transient are predicted including the feedback between reactor kinetics, thermalhydrauilcs and the reactor control systems. This paper describes the MAPLE-X10 reactor and the modelling methodology used. Sample simulations of postulated loss-of-heat-sink and loss-of-regulation transients are presented. (author)

  9. Reactor Simulator Integration and Testing

    Science.gov (United States)

    Schoenfield, M. P.; Webster, K. L.; Pearson, J. B.

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator (RxSim) test loop was designed and built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing were to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V because the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This Technical Memorandum summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained, which was lower than the predicted 750 K but 156 K higher than the cold temperature, indicating the design provided some heat regeneration. The annular linear induction pump tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  10. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, Wilcox COUNTY, AL

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  11. OrthoImagery Submission for Wilcox County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  12. Nuclear reactor safety: physics and engineering aspects

    International Nuclear Information System (INIS)

    Kinchin, G.H.

    1982-01-01

    In order to carry out the sort of probabilistic analysis referred to by Farmer (Contemp. Phys.; 22:349(1981)), it is necessary to have a good understanding of the processes involved in both normal and accident conditions in a nuclear reactor. Some of these processes, for a variety of different reactor systems, are considered in sections dealing with the neutron chain reaction, the removal of heat from the reactor, material problems, reliability of protective systems and a number of specific topics of particular interest from the point of view of physics or engineering. (author)

  13. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  14. Safety of NPP with WWER-440 and WWER-1000 reactors

    International Nuclear Information System (INIS)

    Balabanov, E.; Gledachev, J.; Angelov, D.

    1995-01-01

    The WWER-440 and WWER-1000 reactors used at the Kozloduy NPP have been analyzed in terms of safety. There are currently 4 reactors WWER-440/230 and 2 reactors WWER-1000/320. The former do not comply completely with the modern safety requirements due to the regulations acted in the sixties when they have been designed. The main features of these reactors are: low power density in the core; three levels of reactor control and protection; six primary loops; horizontal steam generators; two turbines; large number of cross-unit connections. The low thermal density in the core, the low specific thermal loading in the rods and the large coolant inventory enhance the safety, while the major deficiencies are identified as follows: insufficient capabilities for emergency core cooling; low diversification and physical separation of the safety systems; old fashioned control systems; inadequate fire protection; lack of full containment. It is pointed out that several design and operation actions have been completed in the Kozloduy NPP in order to enhance their safety. The WWER-1000 units are 320 model and feature a high safety level, complying completely with OPB-82 regulations and with all current international safety standards. 3 refs., 7 figs., 1 tab

  15. Standards and Administration.

    Science.gov (United States)

    Gross, S. P.

    1978-01-01

    Presents a literature review of water quality standards and administration, covering publications of 1976-77. Consideration is given to municipal facilities, National Pollutant Discharge Elimination Systems, regional and international water quality management, and effluent standards. A list of 99 references is also presented. (HM)

  16. Current status and prospects of research reactors

    International Nuclear Information System (INIS)

    Gabaraev, A.B.; Cherepnin, Yu.S.; Tretyakov, I.T.; Khmelshikov, V.V.; Dollezhal, N.A.

    2009-01-01

    Full text: The first nuclear research reactors (RR) appeared in the 1940s. Their initial purpose was to provide knowledge of the main processes associated with neutron-induced nuclear reactions. Later, the rang of problems addressed expanded substantially. Besides fundamental research in the properties of matter, such reactors are successfully used for dealing with problems in the fields of materials science, nuclear engineering, medicine, isotope production, education, etc. Over the whole period of RR fleet growth, more than six hundred nuclear research facilities were built in 70 countries of the world. As of the end of 2008, the number of Russian research reactors in service was about 20% of the globally operating RR fleet. This paper discusses the current status of the world's RR fleet and describes the capabilities of the experimental reactor facilities existing in Russia. In the 21st century, research reactors will remain in demand to solve scientific and technological problems for innovative development of society. The emerging renaissance of nuclear power, the expanding RR uses for production of isotopes and other applications, the increase in the number of countries willing to use nuclear technologies in energy production, industry and science - all contribute to a rebirth of interest in research reactors. One of the ways to improve the experimental capabilities lies in radical upgrading of the reactor facilities with qualitative changes in the main neutronic characteristics of the core. The associated design approaches are illustrated with the example of the IBR-2M reactor at the JNRI in Dubna. The imperative need restricting the spread of nuclear threat leads us to give up using highly enriched uranium in most research reactors. Development of RR fuel with reduced enrichment in uranium has been one of the priority objectives of NIKIET for many years. This paper presents the latest results obtained along these lines, as applied to pool-type research

  17. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process mea...... control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks....

  18. Space reactors - past, present, and future

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.

    1983-01-01

    In the 1990s and beyond, advanced-design nuclear reactors could represent the prime source of both space power and propulsion. Many sophisticated military and civilian space missions of the future will require first kilowatt and then megawatt levels of power. This paper reviews key technology developments that accompanied past US space nuclear power development efforts, describes on-going programs, and then explores reactor technologies that will satisfy megawatt power level needs and beyond

  19. Safety and environmental aspects of fusion reactors

    International Nuclear Information System (INIS)

    Kilic, H.; Jensen, B.

    1982-01-01

    This paper deals with those problems concerning safety and environmental aspects of the future fusion reactors (e.g. fuel cycle, magnetic failure, after heat disturbances, radioactive waste and magnetic field)

  20. Reactor Neutrino Experiments: Present and Future

    Science.gov (United States)

    Wen, L. J.; Cao, J.; Wang, Y. F.

    2017-10-01

    Reactor neutrinos have been an important tool for both discovery and precision measurement in the history of neutrino studies. Since the first generation of reactor neutrino experiments in the 1950s, the detector technology has advanced greatly. New ideas, new knowledge, and modern software have also enhanced the power of the experiments. The current reactor neutrino experiments, Daya Bay, Double Chooz, and RENO, have led neutrino physics into the precision era. In this article, we review these developments and advances, address the key issues in designing a state-of-the-art reactor neutrino experiment, and explain how the challenging requirements of determining the neutrino mass hierarchy with the next-generation experiment JUNO could be realized in the near future.

  1. Small and medium power reactors 1987

    International Nuclear Information System (INIS)

    1987-12-01

    This TECDOC follows the publication of TECDOC-347 Small and Medium Power Reactors Project Initiation Study - Phase I published in 1985 and TECDOC-376 Small and Medium Power Reactors 1985 published in 1986. It is mainly intended for decision makers in Developing Member States interested in embarking on a nuclear power programme. It consists of two parts: 1) Guidelines for the Introduction of Small and Medium Power Reactors in Developing Countries. These Guidelines were established during the Advisory Group Meeting held in Vienna from 11 to 15 May 1987. Their purpose is to review key aspects relating to the introduction of Small and Medium Power Reactors in developing countries; 2) Up-dated Information on SMPR Concepts Contributed by Supplier Industries. According to the recommendations of the Second Technical Committee Meeting on SMPRs held in Vienna in March 1985, this part contains the up-dated information formerly published in Annex I of the above mentioned TECDOC-347. Figs

  2. Research reactors: a tool for science and medicine

    International Nuclear Information System (INIS)

    Ordonez, Juan

    2001-01-01

    The types and uses of research reactors are reviewed. After an analysis of the world situation, the demand of new research reactors of about 20 MW is foreseen. The experience and competitiveness of INVAP S.E. as designer and constructor of research reactors is outlined and the general specifications of the reactors designed by INVAP for Egypt and Australia are given

  3. Review of current and proposed reactor upgrades

    International Nuclear Information System (INIS)

    Moon, R.M.

    1985-01-01

    In an effort to foresee the future health of neutron scattering, a survey of plans to upgrade reactors and associated experimental facilities was undertaken. The results indicate that we are now entering a period characterized by a substantial reinvestment in reactor sources and expansion in the number of neutron scattering instruments. For the group of institutions participating in this survey there will be a total investment in improved sources and experimental facilities of $500 M to $1,000 M over the next decade. This investment will result in a 30 to 40% increase in the total power of research reactors and an increase of 30 to 50% in the number of neutron scattering instruments. It is therefore reasonable to anticipate an approximate doubling in the number of reactor neutrons incident on samples in the mid 90s compared to the present

  4. Standard Weights and Measures

    Indian Academy of Sciences (India)

    The mass standard, represented by the proto- type kilogram, is the only remaining artifact, but there are promising proposals to replace that in the near future. Ever since humans started living in community settle- ments, day to day activities have required the adoption of a set of standards for weights and measures. For ex-.

  5. Gas Reactor International Cooperative Program. Interim report. Construction and operating experience of selected European Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    1978-09-01

    The construction and operating experience of selected European Gas-Cooled Reactors is summarized along with technical descriptions of the plants. Included in the report are the AVR Experimental Pebble Bed Reactor, the Dragon Reactor, AGR Reactors, and the Thorium High Temperature Reactor (THTR). The study demonstrates that the European experience has been favorable and forms a good foundation for the development of Advanced High Temperature Reactors

  6. Blankets for fusion reactors : materials and neutronics

    International Nuclear Information System (INIS)

    Carvalho, S.H. de.

    1980-03-01

    The studies about Fusion Reactors have lead to several problems for which there is no general agreement about the best solution. Nevertheless, several points seem to be well defined, at least for the first generation of reactors. The fuel, for example, should be a mixture of deuterium and tritium. Therefore, the reactor should be able to generate the tritium to be burned and also to transform kinetic energy of the fusion neutrons into heat in a process similar to the fission reactors. The best materials for the composition of the blanket were first selected and then the neutronics for the proposed system was developed. The neutron flux in the blanket was calculated using the discrete ordinates transport code, ANISN. All the nuclides cross sections came from the DLC-28/CTR library, that processed the ENDF/B data, using the SUPERTOG Program. (Author) [pt

  7. Small reactors and the 'second nuclear era'

    International Nuclear Information System (INIS)

    Egan, J.R.

    1984-01-01

    Predictions of the nuclear industry's demise are premature and distort both history and politics. The industry is reemerging in a form commensurate with the priorities of those people and nations controlling the global forces of production. The current lull in plant orders is due primarily to the world recession and to factors related specifically to reactor size. Traditional economies of scale for nuclear plants have been greatly exaggerated. Reactor vendors and governments in Great Britain, France, West Germany, Japan, the United States, Sweden, Canada, and the Soviet Union are developing small reactors for both domestic applications and export to the Third World. The prefabricated, factory-assembled plants under 500 MWe may alleviate many of the existing socioeconomic constraints on nuclear manufacturing, construction, and operation. In the industrialized world, small reactors could furnish a qualitatively new energy option for utilities. But developing nations hold the largest potential market for small reactors due to the modest size of their electrical systems. These units could double or triple the market potential for nuclear power in this century. Small reactors will both qualitatively and quantitatively change the nature of nuclear technology transfers, offering unique advantages and problems vis-a-vis conventional arrangements. (author)

  8. The fast reactor and energy supply

    International Nuclear Information System (INIS)

    1979-01-01

    The progress made with fast reactor development in many countries is summarised showing that the aim is to provide to the nation concerned an ability to instal fast reactor power stations at the end of this century or early in the next one. Accepting the importance of fast reactors as a potential independent source of energy, problems concerning economics, industrial capability, technical factors, public acceptibility and in particular plutonium management, are discussed. It is concluded that although fast reactors have reached a comparatively advanced stage of development, a number of factors make it likely that their introduction for electricity generation will be a gradual process. Nevertheless it is necessary to complete demonstration and development phases in good time. (U.K.)

  9. Gas-cooled reactors and their applications

    International Nuclear Information System (INIS)

    1987-10-01

    The purpose of the meeting was to review and discuss the current status and recent progress made in the technology and design of gas-cooled reactors and their application for electricity generation, process steam and process heat production. The meeting was attended by more than 200 participants from 25 countries and International Organizations presenting 34 papers. The technical part of the meeting was subdivided into 7 sessions: A. Overview of the Status of Gas-Cooled Reactors and Their Prospects (2 papers); B. Experience with Gas-Cooled Reactors (5 papers); C. Description of Current GCR Plant Designs (10 papers); D. Safety Aspects (4 papers); E. Gas-Cooled Reactor Applications (3 papers); F. Gas-Cooled Reactor Technology (6 papers); G. User's Perspectives on Gas-Cooled Reactors (4 papers). At the end of the meeting a round table discussion was organized in order to summarize the meeting and to make recommendations for future activities. A separate abstract was prepared for each of the 34 presentations of this meeting. Refs, figs and tabs

  10. The energy gap and the fast reactor

    International Nuclear Information System (INIS)

    Hill, J.

    1977-01-01

    The background to the development of fast reactors is summarized. In Britain, the results of the many experiments performed, the operation of the Dounreay Fast Reactor for the past 18 years and the first year's operation of the larger Prototype Fast Reactor have all been very encouraging, in that they demonstrated that the performance corresponded well with predictions, breeding is possible, and the system is exceptionally stable in operation. The next step in fast reactor engineering is to build a full-scale fast reactor power station. There would seem to be little reason to expect more trouble than could reasonably be expected in constructing any large project of this general nature. However, from an engineering point of view continuity of experience is required. If a decision to build a commercial fast reactor were taken today there would be a 14-year gap between strating this and the start of the Prototype Fast Reactor. This is already much too long. From an environmental standpoint we have to demonstrate that we can manufacture and reprocess fast reacctor fuel for a substantial programme in a way that does not lead to pollution of the environment, and that plutonium-containing fuel can be transported in the quantities required in safety and in a way that does not attract terrorists or require a private army to ensure its security. Finally, we have to find a way to allow many countries to obtain the energy they need from fast reactors, without leading to the proliferation of nuclear weapons or weapons capability. (author)

  11. Future fuel cycle and reactor strategies

    International Nuclear Information System (INIS)

    Meneley, D.A.

    1999-01-01

    Within the framework of the 1997 IAEA Symposium 'Future Fuel Cycle and Reactor Strategies Adjusting to New Realities', Working Group No.3 produced a Key Issues paper addressing the title of the symposium. The scope of the Key Issues paper included those factors that are expected to remain or become important in the time period from 2015 to 2050, considering all facets of nuclear energy utilization from ore extraction to final disposal of waste products. The paper addressed the factors influencing the choice of reactor and fuel cycle. It then addressed the quantitatively largest category of reactor types expected to be important during the period; that is, thermal reactors burning uranium and plutonium fuel. The fast reactor then was discussed both as a stand-alone technology and as might be used in combination with thermal reactors. Thorium fuel use was discussed briefly. The present paper includes of a digest of the Key Issues Paper. Some comparisons arc made between the directions suggested in that paper and those indicated by the Abstracts of this Technical Committee Meeting- Recommendations are made for work which might be undertaken in the short and medium time frames, to ensure that fuel cycle technologies and processes established by the year 2050 will support the continuation of nuclear energy applications in the long term. (author)

  12. Design of a weapons-grade plutonium assembly for optimal burnup in a standard pressurized water reactor

    Science.gov (United States)

    Alonso-Vargas, Gustavo

    We created a new MOX fuel assembly design that can be used in standard Westinghouse pressurized water reactors (PWR) to maximize the plutonium throughput while introducing the lowest perturbation possible to the control and safety systems of the reactor. Our assembly design, which is called MIX-33, appears to be a good option for the disposition of weapons-grade plutonium (WG-Pu), increasing the plutonium disposition rate by 8% compared to a previous Westinghouse design. It is based in two novel ideas: the use of both uranium and plutonium fuel pins in the same assembly, and the increase of the moderation ratio of the assembly. We replaced 8 fuel pins by water holes to increase the moderation ratio. We can transition smoothly from a full LEU core to a full MIX-33 core meeting the operational and safety regulations of a standard PWR. Given a MOX supply interruption scenario we can transition smoothly to full LEU meeting the safety regulations and using standard LEU assemblies with uniform enriched pin-wise distribution. If the MOX supply is interrupted for only one cycle, we are able to transition back to full MIX-33 core. However, in this case we probably need to de-rate the power by a few percent for a few weeks at the beginning of the cycle (BOC) to accommodate high peaking. For comparison we created another assembly design without extra water holes, which we called "MIX-25". It behaves in all the conditions analyzed in a similar way to the MIX-33 but it does present minor control problems. These can be solved by making small modifications to the control and safety systems, namely by enriching the boron-10 content of some boron absorbers. Thus, the addition of water holes replacing fuel pins helps to improve the MIX-33 performance and eliminate the difficulties seen in the MIX-25 design. We also performed a benchmarking analysis to test the code CASMO-3 to analyze WG-Pu assemblies, using the code MCNP-4A to compare. We found good agreement between CASMO-3 and

  13. Actinide recycling for reactor waste mass and radiotoxicity reduction

    International Nuclear Information System (INIS)

    Renard, A.; Maldague, T.; Pilate, S.; Journet, J.; Rome, M.; Harislur, A.; Vergnes, J.

    1994-01-01

    The long-term radiotoxicity of nuclear waste from a Light Water Reactor fuel is analyzed; it can be reduced by multiple recycling of actinides in fast reactors. The capabilities of a first recycling in the light water reactor itself are evaluated with regard to implications on reactor physics and core management. Two main options are compared with their penalties and efficiency

  14. Operation and utilizations of Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Hien, P.Z.

    1988-01-01

    The reconstructed Dalat nuclear research reactor was commissioned in March 1984 and up to September 1988 more than 6200 hours of operation at nominal power have been recorded. The major utilizations of the reactor include radioisotope production, activation analysis, nuclear data research and training. A brief review of the utilizations of the reactor is presented. Some aspects of reactor safety are also discussed. (author)

  15. History and evolution of the breeder reactor

    International Nuclear Information System (INIS)

    Carle, R.

    1989-01-01

    The concept of the breeder reactor is almost as old as the idea of the nuclear reactor itself. From the very first years following the discovery of nuclear fission, scientists and technicians tried to turn mankind's eternal dream into reality; that is, enjoy an abundant source of energy without using up our raw material reserves. Nuclear energy offered several solutions to realize this dream. One of them, fusion, seemed out of our grasp in the near future. But fission of 235 U was possible, and the Manhattan Project soon furnished ample proof of this theory. However, everyone working in this field was conscious of the fact that thermal neutron reactors make very inefficient use of the energy potential contained in natural uranium. The solution was to use in a core sufficiently rich in fissile matter, the excess neutrons to convert the 238 U, so poorly used by other types of reactors, into fissile 239 Pu. Regeneration, or 'breeding' of fuel, can multiply the energy drawn from a ton of uranium by a factor of 50 to 100. This would enable us to ward off the specter of an energy shortage and the rapid depletion of uranium mines. As early as 1945 in Los Alamos, Enrico Fermi stated: 'The country which first develops a breeder reactor will have a great competitive edge in atomic energy.' The development of the breeder reactor in the USA and around the world is discussed

  16. Reactor licensing

    International Nuclear Information System (INIS)

    Harvie, J.D.

    2002-01-01

    This presentation discusses reactor licensing and includes the legislative basis for licensing, other relevant legislation , the purpose of the Nuclear Safety and Control Act, important regulations, regulatory document, policies, and standards. It also discusses the role of the CNSC, its mandate and safety philosophy

  17. The high temperature reactor line and possibilities for its application

    International Nuclear Information System (INIS)

    Schoening, J.; Schwarz, D.

    1985-01-01

    The first stage in the development of the German high temperature reactor (HTR) was the AVR experimental reactor at Juelich with a capacity of 15 MW. The second stage is the German HTR prototype plant THTR (Thorium HTR) 300. On September 13, 1983, the reactor core of this plant attained for the first time a self-sustaining chain reaction (first criticality). Handover to the operator after a demonstration period of operation is planned for the autumn of 1985. The next stage of the introduction of the HTR into the market is the construction of the HTR 500 MW combined (two) cycle plant for electricity production with the possibility of process steam extraction. This can be erected at a cost competitive with a 1240 MW pressurized water reactor and conventional power plants. This plant will lead to standard high temperature plants in the capacity range from 100 MW to 600 MW (electrical), which can be erected according to standard designs on different sites. (orig.) [de

  18. Comparative Study on Cyber Securities between Power Reactor and Research Reactor with Bayesian Update

    International Nuclear Information System (INIS)

    Shin, Jinsoo; Heo, Gyunyoung; Son, Han Seong

    2016-01-01

    The Stuxnet has shown that nuclear facilities are no more safe from cyber-attack. Due to practical experiences and concerns on increasing of digital system application, cyber security has become the important issue in nuclear industry. Korea Institute of Nuclear Nonproliferation and control (KINAC) published a regulatory standard (KINAC/RS-015) to establish cyber security framework for nuclear facilities. However, it is difficult to research about cyber security. It is hard to quantify cyber-attack which has malicious activity which is different from existing design basis accidents (DBAs). We previously proposed a methodology on development of a cyber security risk model with BBN. However, the methodology had a limitation in which the input data as prior information was solely on expert opinions. In this study, we propose a cyber security risk model for instrumentation and control (I and C) system of nuclear facilities with some equation for quantification by using Bayesian Belief Network (BBN) in order to overcome the limitation of previous research. The proposed model has been used for comparative study on cyber securities between large-sized nuclear power plants (NPPs) and small-sized Research Reactors (RR). In this study, we proposed the cyber security risk evaluation model with BBN. It includes I and C architecture, which is a target system of cyber-attack, malicious activity, which causes cyber-attack from attacker, and mitigation measure, which mitigates the cyber-attack risk. Likelihood and consequence as prior information are evaluated by considering characteristics of I and C architecture and malicious activity. The BBN model provides posterior information with Bayesian update by adding any of assumed cyber-attack scenarios as evidence. Cyber security risk for nuclear facilities is analyzed by comparing between prior information and posterior information of each node. In this study, we conducted comparative study on cyber securities between power reactor

  19. The application of modern safety criteria to restarting and operating the USDOE K-Reactor

    International Nuclear Information System (INIS)

    Dimenna, R.A.; Taylor, G.A.; Brandyberry, M.D.

    1993-01-01

    The United States Department of Energy's (USDOE's) K-reactor, a defense production reactor located at the Savannah River Site in Aiken, South Carolina, was shut down in the summer of 1988 for safety upgrades to bring it into conformance with modern safety standards prior to restart. Over the course of the succeeding four years, all aspects of the 35-year old reactor, including hardware, operations, and analysis, were upgraded to ensure that the reactor could operate safely according to standards similar to those applied to modern nuclear reactors. This paper describes the decision making processes by which issues were identified, priorities assigned, and analysis improved to enhance reactor safety. Special emphasis is given to the probabilistic risk assessment (PRA) decision making processes used to quantify the risks and consequences of operating the K-reactor, the analytical hierarchy process (AHP) used to identify key phenomena, and modifications made to the RELAP5 computer code to make it applicable to K-reactor analysis. The success of the project was demonstrated when the K-reactor was restarted in the summer of 1992

  20. TREATMENT OF METHANOLIC WASTEWATER BY ANAEROBIC DOWN-FLOW HANGING SPONGE (ANDHS) REACTOR AND UASB REACTOR

    Science.gov (United States)

    Sumino, Haruhiko; Wada, Keiji; Syutsubo, Kazuaki; Yamaguchi, Takashi; Harada, Hideki; Ohashi, Akiyoshi

    Anaerobic down-flow hanging sponge (AnDHS) reactor and UASB reactor were operated at 30℃ for over 400 days in order to investigate the process performance and the sludge characteristics of treating methanolic wastewater (2 gCOD/L). The settings OLR of AnDHS reactor and of UASB reactor were 5.0 -10.0 kgCOD/m3/d and 5.0 kgCOD/m3/d. The average of the COD removal demonstrated by both reactors were over 90% throughout the experiment. From the results of methane producing activities and the PCR-DGGE method, most methanol was directly converted to methane in both reactors. The conversion was carried out by different methanogens: one closely related to Methanomethylovorans hollandica in the AnDHS retainted sludge and the other closely related to Methanosarcinaceae and Metanosarciales in the UASB retainted sludge.

  1. RA Research reactor, Part 1, Operation and maintenance of the RA nuclear reactor for 1986

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1986-01-01

    In order to enable future reliable operation of the RA reactor, according to new licensing regulations, three major tasks started in 1984 were fulfilled: building of the new emergency system, reconstruction of the existing ventilation system, and reconstruction of the power supply system. Simultaneously in 1985/1986 renewal of the instrumentation and reconstruction of the system for handling and storage of the spent fuel in the reactor building have started. Design projects for these tasks are almost finished and the reconstruction of both systems is expected to be finished until 1988 and mid 1989 respectively. RA reactor Safety report was finished according to the recommendations of the IAEA. Investments in 1986 were used for 8000 kg of heavy water, maintenance of reactor systems and supply of new components, reconstruction of reactor systems. This report includes 8 annexes concerning reactor operation, activities of services and financial issues [sr

  2. RA Research nuclear reactor Part 1, RA Reactor operation and maintenance in 1987

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1987-01-01

    RA research reacto was not operated due to the prohibition issued in 1984 by the Government of Serbia. Three major tasks were finished in order to fulfill the licensing regulations about safety of nuclear facilities which is the condition for obtaining permanent operation licence. These projects involved construction of the emergency cooling system, reconstruction of the existing special ventilation system, and renewal of the system for electric power supply of the reactor systems. Renewal of the RA reactor instrumentation system was initiated. Design project was done by the Russian Atomenergoeksport, and is foreseen to be completed by the end of 1988. The RA reactor safety report was finished in 1987. This annual report includes 8 annexes concerning reactor operation, activities of services and financial issues, and three special annexes: report on testing the emergency cooling system, report on renewal of the RA reactor and design specifications for reactor renewal and reconstruction [sr

  3. Molten Salt Reactor Experiment Facility (Building 7503) standards/requirements identification document adherence assessment plan at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-02-01

    This is the Phase 2 (adherence) assessment plan for the Building 7503 Molten Salt Reactor Experiment (MSRE) Facility standards/requirements identification document (S/RID). This document outlines the activities to be conducted from FY 1996 through FY 1998 to ensure that the standards and requirements identified in the MSRE S/RID are being implemented properly. This plan is required in accordance with the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 90-2, November 9, 1994, Attachment 1A. This plan addresses the major aspects of the adherence assessment and will be consistent with Energy Systems procedure QA-2. 7 ''Surveillances.''

  4. Nuclear reactor development in Korea: It's history and status

    International Nuclear Information System (INIS)

    Cheong, J.; Kim, I.; Kim, D. S.

    2007-01-01

    Currently in Korea, 20 nuclear plants are in operation, generating some 18,000 MWe of electricity which is about 30% of the national electricity supply. Further 8 reactors, including innovative light water reactors developed with 30 years' experience in construction and operation with continuous technology development, are either under construction or being planned. Executing an energetic program of nuclear development, Korea is now the world's sixth-ranked nuclear nation. In this paper, at first, history of the nuclear reactor development in Korea will be discussed including technology self-reliance efforts of the nuclear industry, and future plan and prospects will also be presented. Secondly, the OPR1000 which is a Korean standard plant will be introduced in detail including its characteristics, design approach and features. Six OPR1000's are being operated with outstanding performance and 4 more units are under construction. The APR1400, an upgraded reactor of the OPR1000 in capacity and design, has been developed as a next generation reactor, and the contracts were signed for the first 2 units' construction in August 2006. Its development process and design features will be described. Finally, Korea's efforts for future nuclear power generation will be introduced. For future reliable energy supply, Korea has been actively participating in international cooperation such as Gen IV International Forum. In summary, this paper will introduce the history and status of the Korean nuclear reactor development with its past, present and future, which might be helpful to understand the Korean nuclear industry and find a way for international cooperation especially with European countries

  5. Review of advanced reactor transient analysis capabilities and applications for Savannah River Plant reactors

    International Nuclear Information System (INIS)

    Buckner, M.R.; Hostetler, D.E.; Anderson, M.M.; Dodds, H.L.

    1977-01-01

    GRASS is a three-dimensional, coupled neutronic and engineering code for analysis of the radioisotope production reactors at the Savannah River Plant. The capabilities of GRASS are reviewed with emphasis on recent additions to model accident conditions involving the transport of molten fuel material and to accurately characterize neutronic and engineering feedback. The general application of GRASS to the Savannah River reactors is discussed, and results are presented for the analyses of severla reactor transient calculations

  6. Future view of total energy system and reactor engineering and reactor physics

    International Nuclear Information System (INIS)

    Ozawa, T.

    1974-01-01

    This paper outlines the present status of fission reactors and fusion reactors. The conversion ratio of light water reactors is 0.5, and the efficiency is 32% because of relatively low temperature. Both pressurized water reactors and boiling water reactors are technically well developed, their performances are well known, and the fuel cycle is well developed, so that both reactors have monopolized power reactor market. But the reprocessing of spent fuel and the treatment of their hazards are inevitable, and the construction and enlargement of reprocessing facilities are indispensable. In LMFBR's tight sealing is easy because they are non-pressurized, and the efficiency is 41%. But liquid sodium is strongly activated and recirculated, so that chemical obstruction due to the breakage of recirculating pumps, pipings, and heat exchangers may occur, and the hazard of plutonium is large. Regarding controlled thermo-nuclear fusion reactors, because Lawson criterion must be satisfied, two methods of plasma confinement are now experimented. One is the plasma confinement by strong magnetic field of 50 KG to 100 KG, and the other is the confinement by the implosion method with high-power laser beam. The latter has much more uncertainties than the former, but recently both methods have made much progress. (Tai, I)

  7. RELAP/SCDAPSIM Reactor System Simulator Development and Training for University and Reactor Applications

    International Nuclear Information System (INIS)

    Hohorst, J.K.; Allison, C.M.

    2010-01-01

    The RELAP/SCDAPSIM code, designed to predict the behaviour of reactor systems during normal and accident conditions, is being developed as part of an international nuclear technology development program called SDTP (SCDAP Development and Training Program). SDTP involves more than 60 organizations in 28 countries. One of the important applications of the code is for simulator training of university faculty and students, reactor analysts, and reactor operations and technical support staff. Examples of RELAP/SCDAPSIM-based system thermal hydraulic and severe accident simulator packages include the SAFSIM simulator developed by NECSA for the SAFARI research reactor in South Africa, university-developed simulators at the University of Mexico and Shanghai Jiao Tong University in China, and commercial VISA and RELSIM packages used for analyst and reactor operations staff training. This paper will briefly describe the different packages/facilities. (authors)

  8. Development of methods for monitoring and controlling power in nuclear reactors

    International Nuclear Information System (INIS)

    Mesquita, Amir Zacarias; Rezende, Hugo Cesar; Santos, Andre Augusto Campagnole dos; Silva, Vitor Vasconcelos Araujo

    2012-01-01

    Redundancy and diversity are two important criteria for power measurement in nuclear reactors. Other criteria such as accuracy, reliability and response speed are also of major concern. Power monitoring of nuclear reactors is normally done by means of neutronic instruments, i.e. by the measurement of neutron flux. The greater the number of channels for power measuring the greater is the reliability and safety of reactor operations. The aim of this research is to develop new methodologies for on-line monitoring of nuclear reactor power using other reliable processes. One method uses the temperature difference between an instrumented fuel element and the pool water below the reactor core. Another method consists of the steady-state energy balance of the primary and secondary reactor cooling loops. A further method is the calorimetric procedure whereby a constant reactor power is monitored as a function of the temperature-rise rate and the system heat capacity. Another methodology, which does not employ thermal methods, is based on measurement of Cherenkov radiation produced within and around the core. The first three procedures, fuel temperature, energy balance and calorimetric, were implemented in the IPR-R1 TRIGA nuclear research reactor at Belo Horizonte (Brazil) and are the focus of the work described here. Knowledge of the reactor thermal power is very important for precise neutron flux and fuel element burnup calculations. The burnup is linearly dependent on the reactor thermal power and its accuracy is important in the determination of the mass of burned 235 U, fission products, fuel element activity, decay heat power generation and radiotoxicity. The thermal balance method developed in this project is now the standard methodology used for IPR-R1 TRIGA reactor power calibration and the fuel temperature measuring is the most reliable way of on-line monitoring of the reactor power. This research project primarily aims at increasing the reliability and safety of

  9. Nuclear Reactor and ITS Radiological Aspects

    International Nuclear Information System (INIS)

    Suharno; Tjahyono, H.; Sugiyanto

    1996-01-01

    Nuclear Power Plant (NPP) is one of the nuclear energy utilization for electrical energy needs. The consequences on nuclear energy utilization such as NPP is the radiological impact resulting from the radioactive material releases from the plant as the fission product of uranium fuel. In normal operation and in accident conditions, there are processes of radioactive material or fission product release from the fuel element and other components the can reach the containment environment and it can release to environment of the plant. But this release is limited by implementing the safety requirement to the design in order to get the very low consequence with the environment radiation doses is still under the permissible value. The reactor operation conditions, the possibility accident occurrence that produce the heating of the fuel cladding, accident analysis for safety evaluation using deterministic and probabilistic methods are described. For conducting the environment radiological consequences, the important thing as the input data is the source term data resulting from source term analysis, mainly are the release activity and release characteristic. The process and mechanism of the release from fuel element is also described. In the frame of safety evaluation of the NPP, the results of the source term analysis and radiological consequence analysis are to be the measure of the environment radiological consequences can still limited and still in the save condition, and all the value of the calculated parameters are below the permissible value based on standard and code

  10. Status of advanced technology and design for water cooled reactors: Heavy water reactors

    International Nuclear Information System (INIS)

    1989-07-01

    In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of the IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors, has been undertaken to document the major current activities and trends of technological improvement and development for future water reactors. Part I of the report dealing with Light Water Reactors (LWRs) was published in 1988 (IAEA-TECDOC-479). Part II of the report covers Heavy Water Reactors (HWRs) and has now been prepared. This report is based largely upon submissions from Member States. It has been supplemented by material from the presentations at the IAEA Technical Committee and Workshop on Progress in Heavy Water Reactor Design and Technology held in Montreal, Canada, December 6-9, 1988. It is hoped that this part of the report, containing the status of advanced heavy water reactor technology up to 1988 and ongoing development programmes will aid in disseminating information to Member States and in stimulating international cooperation. Refs, figs and tabs

  11. NEW SOLID FUELS FROM COAL AND BIOMASS WASTE; FINAL

    International Nuclear Information System (INIS)

    Hamid Farzan

    2001-01-01

    Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable

  12. NEW SOLID FUELS FROM COAL AND BIOMASS WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Farzan

    2001-09-24

    Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable

  13. Reactor core and passive safety systems descriptions of a next generation pressure tube reactor - mechanical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M.; Gaudet, M.; Rhodes, D.; Hamilton, H.; Pencer, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Canada has been developing a channel-type supercritical water-cooled nuclear reactor concept, often called the Canadian SCWR. The objective of this reactor concept is to meet the technology goals of the Generation IV International Forum (GIF) for the next generation nuclear reactor development, which include enhanced safety features (inherent safe operation and deploying passive safety features), improved resource utilization, sustainable fuel cycle, and greater proliferation resistance than Generation III nuclear reactors. The Canadian SCWR core concept consists of a high-pressure inlet plenum, a separate low-pressure heavy water moderator contained in a calandria vessel, and 336 pressure tubes surrounded by the moderator. The reactor uses supercritical water as a coolant, and a direct steam power cycle to generate electricity. The reactor concept incorporates advanced safety features such as passive core cooling, long-term decay heat rejection to the environment and fuel melt prevention via passive moderator cooling. These features significantly reduce core damage frequency relative to existing nuclear reactors. This paper presents a description of the design concepts for the Canadian SCWR core, reactor building layout and the plant layout. Passive safety concepts are also described that address containment and core cooling following a loss-of coolant accident, as well as long term reactor heat removal at station blackout conditions. (author)

  14. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada); Hilborn, J.W. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Carlin, G.E. [Ontario Power Generation, Toronto, Ontario (Canada); Gagnon, R.; Busatta, P. [Canadian Forces (Canada)

    2014-07-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as {sup 99}Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as {sup 99}Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO{sub 2}SO{sub 4}) with 994.2 g of {sup 235}U (enrichment at 20%) providing an excess reactivity at operating temperature (40 {sup o}C) of 3.8 mk for a molality determined as 1.46 mol kg{sup -1} for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 {sup o}C. Peak temperature and power were determined as 83 {sup o}C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the

  15. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    International Nuclear Information System (INIS)

    Bonin, H.W.; Hilborn, J.W.; Carlin, G.E.; Gagnon, R.; Busatta, P.

    2014-01-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as 99 Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as 99 Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO 2 SO 4 ) with 994.2 g of 235 U (enrichment at 20%) providing an excess reactivity at operating temperature (40 o C) of 3.8 mk for a molality determined as 1.46 mol kg -1 for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 o C. Peak temperature and power were determined as 83 o C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the temperature and void coefficients are

  16. Advanced Demonstration and Test Reactor Options Study

    International Nuclear Information System (INIS)

    Petti, David Andrew; Hill, R.; Gehin, J.; Gougar, Hans David; Strydom, Gerhard; Heidet, F.; Kinsey, J.; Grandy, Christopher; Qualls, A.; Brown, Nicholas; Powers, J.; Hoffman, E.; Croson, D.

    2017-01-01

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power's share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercialization of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy's (DOE's) broader commitment to pursuing an 'all of the above' clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate 'advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear

  17. Trends and Developments for Fast Neutron Reactors and Related Fuel Cycles

    International Nuclear Information System (INIS)

    Carré, Frank

    2013-01-01

    • FR13 – A unique and dedicated framework to share updates on national programs of Fast Reactor developments, projects of new builds and plans for the future: - Near term projects of sodium and lead-alloy Fast Reactors; - Gen-IV visions of sodium-cooled and alternative types of Fast Neutron Reactors (GFR, LFR…). • FR13 – A special emphasis put on Fast Reactor Safety, Sustainability of nuclear fuel cycle and Young Generation perspective. • FR13 – A catalyst for further collaborations and alliances: - To share visions of goals and advisable options for future Fast Reactors and Nuclear Fuel Cycle; - To share cost of R&D and large demonstrations (safety, security, recycling); - To progress towards harmonized international standards; - To integrate national projects into a consistent international roadmap

  18. Standards and quality

    CERN Document Server

    El-Tawil, Anwar

    2015-01-01

    The book brings together a number of subjects of prime importance for any practicing engineer and, students of engineering. The book explains the concepts and functions of voluntary standards, mandatory technical regulations, conformity assessment (testing and measurement of products), certification, quality and quality management systems as well as other management systems such as environmental, social responsibility and food safety management systems.The book also gives a comprehensive description of the role of metrology systems that underpin conformity assessment. A description is given of typical national systems of standards, quality and metrology and how they relate directly or through regional structures to international systems. The book also covers the relation between standards and trade and explains the context and stipulations of the Technical Barriers to Trade Agreement of the World Trade Organization (WTO).

  19. The promises and challenges of future reactor system developments

    International Nuclear Information System (INIS)

    Kim, S. H.; Chang, M. H.; Kim, H. J.

    2007-01-01

    Nuclear power is an inevitable option in Korea to overcome the scarcity of national energy resources and to reduce its overseas energy dependency. During the past three decades, Korea has accomplished outstanding achievements in facilitating a nuclear power development. The share of nuclear power in electricity generation has been rapidly increasing since 1978. Nuclear power has provided Korea with a most economically and environmentally-friendly way of generating electric energy, and has contributed a lot to its national economy growth. It will continue to do so in the future. For a stable and economical supply of electricity, nationwide efforts toward achieving self-reliance in nuclear power technology have been pursued. To date, a series of nuclear technology self-reliance programs such as CANDU fuel technology, PWR fuel technology, and nuclear reactor (KSNPP) technology have been successfully completed. KSNP is a technologically advanced power plant modified by Koreas' own operating experience and domestic technology and designed by adapting several advanced technologies suitable for its national situation. The KSNP was applied to the construction of Yonggwang 5 and 6 and Ulchin 5 and 6 and is now being replicated to provide a stable, economical and reliable electric power supply. Through a comprehensive nuclear Research and Development programs, an enhancement of its indigenous nuclear technology capability is currently being pursued. The effort has focused on improving its indigenous nuclear power technology such as improvements in safety and economy of the KSNP (KSNP+), a 600 MWe class KSNP and advanced fuels, and the establishment of industrial codes and standards. In addition, a Korean Advanced Power Reactor (APR 1400) and a System integrated Modular Advanced Reactor (SMART) are currently under development. The APR 1400 with a capacity of 1,400 MWe will be characterized by its drastically enhanced safety, reliability, and operability as well as its

  20. Islam, Standards, and Technoscience

    DEFF Research Database (Denmark)

    Fischer, Johan

    Halal (literally, "permissible" or "lawful") production, trade, and standards have become essential to state-regulated Islam and to companies in contemporary Malaysia and Singapore, giving these two countries a special position in the rapidly expanding global market for halal products: in these n......Halal (literally, "permissible" or "lawful") production, trade, and standards have become essential to state-regulated Islam and to companies in contemporary Malaysia and Singapore, giving these two countries a special position in the rapidly expanding global market for halal products...

  1. Offsite dose calculation manual guidance: Standard radiological effluent controls for boiling water reactors

    International Nuclear Information System (INIS)

    Meinke, W.W.; Essig, T.H.

    1991-04-01

    This report contains guidance which may be voluntarily used by licensees who choose to implement the provision of Generic Letter 89-- 01, which allows Radiological Effluent Technical Specifications (RETS) to be removed from the main body of the Technical Specifications and placed in the Offsite Dose Calculation Manual (ODCM). Guidance is provided for Standard Effluent Controls definitions, Controls for effluent monitoring instrumentation, Controls for effluent releases, Controls for radiological environmental monitoring, and the basis for Controls. Guidance on the formulation of RETS has been available in draft form for a number of years; the current effort simply recasts those RETS into Standard Radiological Effluent Controls for application to the ODCM. 11 tabs

  2. Mirror machine reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1976-01-01

    Recent mirror reactor conceptual design studies are described. Considered in detail is the design of ''standard'' Yin-Yang fusion power reactors with classical and enhanced confinement. It is shown that to be economically competitive with estimates for other future energy sources, mirror reactors require a considerable increase in Q, or major design simplifications, or preferably both. These improvements may require a departure from the ''standard'' configuration. Two attractive possibilities, both of which would use much of the same physics and technology as the ''standard'' mirror, are the field reversed mirror and the end-stoppered mirror

  3. Review of Operation and Maintenance Support Systems for Research Reactors

    International Nuclear Information System (INIS)

    Jin, Kyungho; Heo, Gyunyoung; Park, Jaekwan

    2014-01-01

    Operation support systems do not directly control the plant but it can aid decision making itself by obtaining and analyzing large amounts of data. Recently, the demand of research reactor is growing and the need for operation support systems is increasing, but it has not been applied for research reactors. This study analyzes operation and maintenance support systems of NPPs and suggests appropriate systems for research reactors based on analysis. In this paper, operation support systems for research reactors are suggested by comparing with those of power reactors. Currently, research reactors do not cover special systems in order to improve safety and operability in comparison with power reactors. Therefore we expect to improve worth to use by introducing appropriate systems for research reactors. In further research, we will develop an appropriate system such as applications or tools that can be applied to the research reactor

  4. Open-ended fusion devices and reactors

    International Nuclear Information System (INIS)

    Kawabe, T.; Nariai, H.

    1983-01-01

    Conceptual design studies on fusion reactors based upon open-ended confinement schemes, such as the tandem mirror and rf plugged cusp, have been carried out in Japan. These studies may be classified into two categories: near-term devices (Fusion Engineering Test Facility), and long-term fusion power recators. In the first category, a two-component cusp neutron source was proposed. In the second category, the GAMMA-R, a tandem-mirror power reactor, and the RFC-R, an axisymetric mirror and cusp, reactor studies are being conducted at the University of Tsukuba and the Institute of Plasma Physics. Mirror Fusion Engineering Facility parameters and a schematic are shown. The GAMMA-R central-cell design schematic is also shown

  5. Possibility of using gamma radiation from HTR reactors for the processing of food and medical products

    International Nuclear Information System (INIS)

    Pahladsingh, R.R.

    2004-01-01

    During the fission process in most of the presently operating nuclear reactors nuclear energy is converted into thermal energy and transferred to common steam cycles for power generation. As part of the fission process also α, β and neutrons particles are released from the nucleus; the release of gamma-rays is also a part of the fission process. In present nuclear reactors α, β, neutrons particles and particularly gamma-rays are not gainfully used as a result of the reactor design and of the containment. These plants are built as required by regulations and international standards for safety. The inherently safe HTR reactor, by its physics and design, does not need a special reinforced containment and it is worth looking into the possibilities of this design feature to use the by-products, such as Gamma-rays, from nuclear fission. In the HTR Pebble Bed Reactors the α, and β particles will remain in the kernels of the pebbles. This means that only the neutron particles and gamma-rays will be available outside the reactor pressure vessel. In this report a proposal is presented to use the gamma-rays of the HTR reactor for irradiation of food and agricultural produce. For neutron shielding a reflector is placed inside the reactor while outside the reactor neutron- and thermal-shielding will be accomplished with water. The high energy gamma-rays will pass through the water-shield and could be harnessed for radiation processing of food and medical products. (author)

  6. Analysis and upgrade of instrumentation and control systems for the modernization of research reactors

    International Nuclear Information System (INIS)

    1988-01-01

    This document provides assistance in the review and planning process for the upgrade of instrumentation and control systems (I and C systems) and related safety features of the reactor protection system for research reactors. In the interest of safety a need was realized to evaluate the performance of outdated I and C systems. An advisory group was assembled to develop guidelines and to provide recommendations for the upgrade of I and C systems. The recommendations on I and C systems upgrade contained in this document were developed by the advisory group using as guidelines the established safety criteria and operating standards for research reactors. 24 refs

  7. Reactor performances and microbial communities of biogas reactors: effects of inoculum sources.

    Science.gov (United States)

    Han, Sheng; Liu, Yafeng; Zhang, Shicheng; Luo, Gang

    2016-01-01

    Anaerobic digestion is a very complex process that is mediated by various microorganisms, and the understanding of the microbial community assembly and its corresponding function is critical in order to better control the anaerobic process. The present study investigated the effect of different inocula on the microbial community assembly in biogas reactors treating cellulose with various inocula, and three parallel biogas reactors with the same inoculum were also operated in order to reveal the reproducibility of both microbial communities and functions of the biogas reactors. The results showed that the biogas production, volatile fatty acid (VFA) concentrations, and pH were different for the biogas reactors with different inocula, and different steady-state microbial community patterns were also obtained in different biogas reactors as reflected by Bray-Curtis similarity matrices and taxonomic classification. It indicated that inoculum played an important role in shaping the microbial communities of biogas reactor in the present study, and the microbial community assembly in biogas reactor did not follow the niche-based ecology theory. Furthermore, it was found that the microbial communities and reactor performances of parallel biogas reactors with the same inoculum were different, which could be explained by the neutral-based ecology theory and stochastic factors should played important roles in the microbial community assembly in the biogas reactors. The Bray-Curtis similarity matrices analysis suggested that inoculum affected more on the microbial community assembly compared to stochastic factors, since the samples with different inocula had lower similarity (10-20 %) compared to the samples from the parallel biogas reactors (30 %).

  8. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  9. Advanced reactors and future energy market needs

    International Nuclear Information System (INIS)

    Paillere, Henri; )

    2017-01-01

    Based on the results of a very well-attended international workshop on 'Advanced Reactor Systems and Future Energy Market Needs' that took place in April 2017, the NEA has embarked on a two-year study with the objective of analysing evolving energy market needs and requirements, as well as examining how well reactor technologies under development today will fit into tomorrow's low-carbon world. The NEA Expert Group on Advanced Reactor Systems and Future Energy Market Needs (ARFEM) held its first meeting on 5-6 July 2017 with experts from Canada, France, Italy, Japan, Korea, Poland, Romania, Russia and the United Kingdom. The outcome of the study will provide much needed insight into how well nuclear can fulfil its role as a key low-carbon technology, and help identify challenges related to new operational, regulatory or market requirements

  10. Thorium and Molten Salt Reactors: Essential Questions for Classroom Discussions

    Science.gov (United States)

    DiLisi, Gregory A.; Hirsch, Allison; Murray, Meredith; Rarick, Richard

    2018-04-01

    A little-known type of nuclear reactor called the "molten salt reactor" (MSR), in which nuclear fuel is dissolved in a liquid carrier salt, was proposed in the 1940s and developed at the Oak Ridge National Laboratory in the 1960s. Recently, the MSR has generated renewed interest as a remedy for the drawbacks associated with conventional uranium-fueled light-water reactors (LWRs) in use today. Particular attention has been given to the "thorium molten salt reactor" (TMSR), an MSR engineered specifically to use thorium as its fuel. The purpose of this article is to encourage the TPT community to incorporate discussions of MSRs and the thorium fuel cycle into courses such as "Physics and Society" or "Frontiers of Physics." With this in mind, we piloted a pedagogical approach with 27 teachers in which we described the underlying physics of the TMSR and posed five essential questions for classroom discussions. We assumed teachers had some preexisting knowledge of nuclear reactions, but such prior knowledge was not necessary for inclusion in the classroom discussions. Overall, our material was perceived as a real-world example of physics, fit into a standards-based curriculum, and filled a need in the teaching community for providing unbiased references of alternative energy technologies.

  11. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    International Nuclear Information System (INIS)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed

  12. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  13. Reactors

    International Nuclear Information System (INIS)

    Onuki, Koji; Sasanuma, Katsumi.

    1980-01-01

    Purpose: To make it possible to correctly measure the flow rate and temperatures of the coolants flowing through fuel assemblies. Constitution: One or more holes are formed at the side surface of the guide tube of a control rod driving mechanism thereby to reduce the flow path resistance within the guide tube of the control rod driving mechanism and to prevent the outlet coolant of the control rod guide tube from flowing into the guide tube of the mechanism as it is and also from flowing into ambient rectifying lattice guide tubes, so that the quantities and temperatures of the coolants flowing through respective fuel assemblies can be measured correctly. (Kamimura, M.)

  14. Tandem mirror and tokamak reactor maintainability comparison

    International Nuclear Information System (INIS)

    Zahn, H.S.

    1981-01-01

    The analysis proceeds through estimates of downtime and resources required for selected maintenance actions and optimization of the replacement fraction, availability and cost of electricity. Scheduled downtime estimates and availability goals provide a basis for determining allowable forced outage downtimes. These analyses have been conducted with the assumption of redundancy wherever feasible but without the impact of maintenance equipment outages. Annual maintenance cost estimates and availabilities for both reactors are found to be approximately equal. However, the tandem mirror reactor capital costs are higher. Reduction of these costs appears feasible with the trend of current design studies toward smaller and more accessible machines

  15. Islam, Standards, and Technoscience

    DEFF Research Database (Denmark)

    Fischer, Johan

    Halal (literally, "permissible" or "lawful") production, trade, and standards have become essential to state-regulated Islam and to companies in contemporary Malaysia and Singapore, giving these two countries a special position in the rapidly expanding global market for halal products: in these n......Halal (literally, "permissible" or "lawful") production, trade, and standards have become essential to state-regulated Islam and to companies in contemporary Malaysia and Singapore, giving these two countries a special position in the rapidly expanding global market for halal products......, this book provides an exploration of the role of halal production, trade, and standards. Fischer explains how the global markets for halal comprise divergent zones in which Islam, markets, regulatory institutions, and technoscience interact and diverge. Focusing on the "bigger institutional picture......" that frames everyday halal consumption, Fischer provides a multisited ethnography of the overlapping technologies and techniques of production, trade, and standards that together warrant a product as "halal," and thereby help to format the market. Exploring global halal in networks, training, laboratories...

  16. Nuclear reactor kinetics and plant control

    CERN Document Server

    Oka, Yoshiaki

    2013-01-01

    Understanding time-dependent behaviors of nuclear reactors and the methods of their control is essential to the operation and safety of nuclear power plants. This book provides graduate students, researchers, and engineers in nuclear engineering comprehensive information on both the fundamental theory of nuclear reactor kinetics and control and the state-of-the-art practice in actual plants, as well as the idea of how to bridge the two. The first part focuses on understanding fundamental nuclear kinetics. It introduces delayed neutrons, fission chain reactions, point kinetics theory, reactivit

  17. Nuclear reactor plants and control systems therefor

    International Nuclear Information System (INIS)

    de Boer, G.A.; de Hex, M.

    1976-01-01

    A nuclear reactor plant is described comprising at least two hydraulically separated but thermally interconnected heat conveying circuits, of which one is the reactor circuit filled with a non-water medium and the other one is the water-steam-circuit equipped with a steam generator, a feed water conduit controlled by a valve and a steam turbine, and a control system mainly influenced by the pressure drop caused in said feed water conduit and its control valve and having a value of at least 10 bars at full load

  18. The Traveling Wave Reactor: Design and Development

    Directory of Open Access Journals (Sweden)

    John Gilleland

    2016-03-01

    Full Text Available The traveling wave reactor (TWR is a once-through reactor that uses in situ breeding to greatly reduce the need for enrichment and reprocessing. Breeding converts incoming subcritical reload fuel into new critical fuel, allowing a breed-burn wave to propagate. The concept works on the basis that breed-burn waves and the fuel move relative to one another. Thus either the fuel or the waves may move relative to the stationary observer. The most practical embodiments of the TWR involve moving the fuel while keeping the nuclear reactions in one place−sometimes referred to as the standing wave reactor (SWR. TWRs can operate with uranium reload fuels including totally depleted uranium, natural uranium, and low-enriched fuel (e.g., 5.5% 235U and below, which ordinarily would not be critical in a fast spectrum. Spent light water reactor (LWR fuel may also serve as TWR reload fuel. In each of these cases, very efficient fuel usage and significant reduction of waste volumes are achieved without the need for reprocessing. The ultimate advantages of the TWR are realized when the reload fuel is depleted uranium, where after the startup period, no enrichment facilities are needed to sustain the first reactor and a chain of successor reactors. TerraPower's conceptual and engineering design and associated technology development activities have been underway since late 2006, with over 50 institutions working in a highly coordinated effort to place the first unit in operation by 2026. This paper summarizes the TWR technology: its development program, its progress, and an analysis of its social and economic benefits.

  19. Status of advanced technology and design for water cooled reactors: Light water reactors

    International Nuclear Information System (INIS)

    1988-10-01

    Water reactors represent a high level of performance and safety. They are mature technology and they will undoubtedly continue to be the main stream of nuclear power. There are substantial technological development programmes in Member States for further improving the technology and for the development of new concepts in water reactors. Therefore the establishment of an international forum for the exchange of information and stimulation of international co-operation in this field has emerged. In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors has been undertaken to document the major current activities and different trends of technological improvements and developments for future water reactors. Part I of the report dealing with LWRs has now been prepared and is based mainly on submissions from Member States. It is hoped that this part of the report, containing the status of advanced light water reactor design and technology of the year 1987 and early 1988 will be useful for disseminating information to Agency Member States and for stimulating international cooperation in this subject area. 93 refs, figs and tabs

  20. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    The long retention time of the active biomass in the high-rate anaerobic digesters is the key factor for the successful application of the high rate anaerobic wastewater treatment. The long solids retention time is achieved due to the specific reactor configuration and it is enhanced by the immob......The long retention time of the active biomass in the high-rate anaerobic digesters is the key factor for the successful application of the high rate anaerobic wastewater treatment. The long solids retention time is achieved due to the specific reactor configuration and it is enhanced...... by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change...

  1. Decommissioning and decontrolling the R1-reactor

    International Nuclear Information System (INIS)

    Bergman, C.; Holmberg, B.T.

    1985-01-01

    Sweden's first nuclear reactor - the research reactor R1 - situated in bedrock under the Royal Technical Institute of Stockholm, has in the period 1981-1983 been subject to a complete decommissioning. The National Institute for Radiation Protection has followed the work in detail, and has after the completion of the decommissioning performed measurements of radioactivity on site. The report gives an account of the work the Institute has done in preparation for- and during decommissioning and specifically report on the measurements for classification of the local as free for non-nuclear use. (aa)

  2. Distributed computing and nuclear reactor analysis

    International Nuclear Information System (INIS)

    Brown, F.B.; Derstine, K.L.; Blomquist, R.N.

    1994-01-01

    Large-scale scientific and engineering calculations for nuclear reactor analysis can now be carried out effectively in a distributed computing environment, at costs far lower than for traditional mainframes. The distributed computing environment must include support for traditional system services, such as a queuing system for batch work, reliable filesystem backups, and parallel processing capabilities for large jobs. All ANL computer codes for reactor analysis have been adapted successfully to a distributed system based on workstations and X-terminals. Distributed parallel processing has been demonstrated to be effective for long-running Monte Carlo calculations

  3. Neutron environmental characterization requirements for reactor fuels and materials development and surveillance programs

    International Nuclear Information System (INIS)

    McElroy, W.N.; Bennett, R.A.; Johnson, D.L.; Dudey, N.D.

    1975-01-01

    Neutron environmental characterization requirements for reactor fuels and materials development and surveillance programs for Light Water Reactors (LWRs), High Temperature Gas-Cooled Reactors (HTGRs), Fast Breeder Reactors (FBRs), and Controlled Thermonuclear Reactors (CTRs) are varied. Presently, the most demanding requirements are associated with the development of FBRs where goal accuracies in the range of 1 to 3 percent (1sigma) have been requested for the determination of fission rates, burnups, and neutron fluxes and fluences. Total fluence associated with a measured material property change in a fast test reactor can presently be determined in the 5 to 10 percent (1sigma) range, and application of improved dosimetry techniques is expected to reduce this to the 2 to 5 percent (1sigma) range. Without direct dosimetry measurements, however, uncertainties of 25 percent and more are not uncommon. International standardization, development, and application of improved dosimetry methods for reactor materials development and surveillance programs for LWRs, HTGRs, FBRs, and CTRs are essential. The discussion of requirements for neutron environmental characterization for these different reactor concepts is an important aspect of this conference. Here, these requirements are reviewed in light of currently known design, development, testing, and operation considerations for U.S. LMFBR and CTR programs. 97 references. (auth)

  4. On the research activities in reactor and neutron physics using the first egyptian research reactor

    International Nuclear Information System (INIS)

    Hassan, A.M.

    2000-01-01

    A review on the most important research activities in reactor and neutron physics using the first Egyptian Research Reactor (ET-RR-1) is given. An out look on: neutron cross-sections, neutron flux, neutron capture gamma-ray spectroscopy, neutron activation analysis, neutron diffraction and radiation shielding experiments, is presented

  5. Reactivity estimation for subcritical and critical reactors

    International Nuclear Information System (INIS)

    Benhaim A; Bellino P; Gomez A

    2012-01-01

    We developed a digital reactimeter that works in both current and pulse mode. This reactimeter will allow to estimate the reactivity of the reactor at any state. We st obtained for the measurements taken in the experimental reactor RA-1 the reactivity around the critical state without a neutron source. Measurements were made using simultaneously a compensated ionization chamber and a 3He proportional counter. The results were compared with the ones obtained from the digital reactimeter of reference with matching results within the experimental errors (author)

  6. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    International Nuclear Information System (INIS)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-01-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean/US/laboratory/university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program

  7. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    Energy Technology Data Exchange (ETDEWEB)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  8. Standard Weights and Measures

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 8. Standard Weights and Measures. Vasant Natarajan. General Article Volume 6 Issue 8 August 2001 pp 44-59. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/08/0044-0059. Author Affiliations.

  9. Decommissioning and dismantling reactors and managing waste

    International Nuclear Information System (INIS)

    Bensoussan, E.; Reicher-Fournel, N.

    2005-01-01

    In the early forties/fifties, a number of countries launched the first developments in the field of nuclear power. Some of them now have large numbers of nuclear facilities and nuclear power plants which have met, and continue to meet, the objectives for which they were designed and built. Other plants, including nuclear fuel production and enrichment plants, experimental reactors or research reactors, will have to be dismantled and demolished in the near future. These activities are handled differently in different countries as a function of specific energy policies, advanced development plants, current financial resources, the availability of qualified engineers and specialized industries able to handle projects of this kind, as well as other factors. All dismantling and demolition projects serve the purpose of returning the respective sites to green-field conditions. (orig.)

  10. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    International Nuclear Information System (INIS)

    Grover, S.B.

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  11. Fuel cycle options for light water reactors and heavy water reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1999-11-01

    In the second half of the 20th century nuclear power has evolved from the research and development environment to an industry that supplies 16% of the world's electricity. By the end of 1997, over 8500 reactor-years of operating experience had been accumulated. Global environmental change, and the continuing increase in global energy supply required to provide increasing populations with an improving standard of living, make the contribution from nuclear energy even more important for the next century. For nuclear power to achieve its full potential and make its needed contribution, it must be safe, economical, reliable and sustainable. All of these factors can be enhanced by judicious choice and development of advanced fuel cycle options. The Technical Committee Meeting (TCM) on Fuel Cycle Options for Light Water Reactors and Heavy Water Reactors was hosted by Atomic Energy of Canada Limited (AECL) on behalf of the Canadian Government and was jointly conducted within the frame of activities of the IAEA International Working Group on Advanced Technologies for Light Water Reactors (IWG-LWR) and the IAEA International Working Group on Advanced Technologies for Heavy Water Reactors (IWG-HWR). The TCM provided the opportunity to have in-depth discussions on important technical topics which were highlighted in the International Symposium on Nuclear Fuel Cycle and Reactor Strategies: Adjusting to New Realities, held in Vienna, 3-6 June 1997. The main results and conclusions of the TCM were presented as input for discussion at the first meeting of the IAEA newly formed International Working Group on Fuel Cycle Options

  12. Seclazone Reactor Modeling And Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Osinga, T. [ETH-Zuerich (Switzerland); Olalde, G. [CNRS Odeillo (France); Steinfeld, A. [PSI and ETHZ (Switzerland)

    2005-03-01

    A numerical model is formulated for the SOLZINC solar chemical reactor for the production of Zn by carbothermal reduction of ZnO. The model involves solving, by the finite-volume technique, a 1D unsteady state energy equation that couples heat transfer to the chemical kinetics for a shrinking packed bed exposed to thermal radiation. Validation is accomplished by comparison with experimentally measured temperature profiles and Zn production rates as a function of time, obtained for a 5-kW solar reactor tested at PSI's solar furnace. (author)

  13. Reactor pressure vessel aging and countermeasures

    International Nuclear Information System (INIS)

    Leitz, C.

    1987-01-01

    The considerable aging effect on reactor pressure vessels is the effect of irradiation on material properties in the core beltline region. Modern LWRs in the Federal Republic of Germany are designed such that irradiation effects are very low. Countermeasures applicable separately or in combination for plants with higher than normally expected irradiation effects are described in three steps: first, examinations and calculations to extend the formal reactor lifetime by reducing over-conservative margins; second, changes in core design to reduce future irradiation effects; third, a procedure to recover irradiation effect on material properties already sustained. (orig./HP) [de

  14. RA Research reactor Annual report 1981 - Part 1, Operation, maintenance and utilization of the RA reactor

    International Nuclear Information System (INIS)

    Sotic, O.; Milosevic, M.; Martinc, R.; Kozomara-Maic, S.; Cupac, S.; Radivojevic, J.; Stamenkovic, D.; Skoric, M.

    1981-12-01

    The RA nuclear reactor stopped operation after March 1979 campaign due to appearance of aluminium oxyhydrates deposits on the surface of fuel element claddings. Relevant decisions of the Sanitary inspection body of the Ministry of health and the Director General of the 'Boris Kidric' Institute of nuclear sciences, Vinca, banned further reactor operation until reasons caused aluminium oxyhydrates deposition are investigated and removed to enable regular reactor operation. Until the end of 1979 and during 1980, after a series of analyses and findings that caused cease of reactor operation, all the preparatory actions needed for restart were performed. Due to the fact that there is no emergency cooling system and no appropriate filtering system at the reactor, and according to the new regulations about start up of nuclear facilities, the Sanitary inspection body made a decision about temporary licence for reactor start-up meaning performance of the 'zero experiment' limiting the operating power to 1% of the nominal power. Accordingly the reactor was restarted on January 21 1981. Criticality was reached with the core made of 80% enriched fuel elements only. After the experiment was finished by the end of March a permission was demanded for operation at higher power levels at full power. Taking into account the state of the reactor components the operating licence was issued limiting the power to 2 MW until reconstruction of the ventilation system and construction of the emergency cooling system are fulfilled. Program of testing operation started on September 15 1981 increasing gradually the operating power. Thus the reactor was operated at 2 MW power for 15 days during November and December. The total production achieved in 1981 was 1698 MWh. This enabled isotopes production at the reactor during last two months. Control and maintenance of the reactor components and systems was done regularly and efficiently within limits imposed by availability of spare parts. The

  15. Hydrogen and water reactor safety: proceedings

    International Nuclear Information System (INIS)

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability

  16. Hydrogen and water reactor safety: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  17. Economic viability of innovative nuclear reactor and fuel cycle technologies

    International Nuclear Information System (INIS)

    Samejima, K.; Suzuki, Tatsujiro; Yokoyama, Hayaichi; Kurosawa, Atsushi; Tabaru, Yasuhiko

    2003-01-01

    need to incorporate such changes of electricity market; This may suggest that small, modular-type reactor could be more advantageous than large scale, conventional reactor, especially in a low-growth, small grid market. This is especially true for low-growth and small grid market. A model cash flow analysis suggests that given the low (or uncertain) growth market, modular reactors have high economic advantage, while large scale reactor can enjoy scale-merit in faster growth market: Given high growth and large grid market in Asia, large reactor design should not be excluded from advanced reactor designs. It is important to note that for fast-growing or large grid market large reactor may be more advantageous than small reactor. It is, therefore, very important to keep the large scale designs in advanced reactor programs; Uncertainty infuel cycle (back end) costs should be minimized. This may be a unique issue for Japan and for other Asian market where back end of fuel cycle program is not well developed. Institutional mechanism can help to reduce such uncertainty in fuel cycle costs, but reactor and fuel cycle design should also aim to minimize the uncertainty; Breeding capability and/or fuel efficiency criteria are not the highest priority at present, but could become important factor in high growth scenario, and after the latter half of century. Based on the global resource availability and growth potential of nuclear power, it can be concluded that breeding or recycling capability are not the highest priority at present for next generation of advanced nuclear reactor. In general, it is desirable to have a standardized reactor design all over the world, so that production scale merit can be maximized. However, it is also important to recognize that market condition and need may vary and thus criteria for reactor design may also vary. Given the high risk of development of advanced reactor designs for future generation, therefore, it is critically important to keep

  18. The application of the k0-standardization method at the TRIGA Mark II reactor, Ljubljana, Slovenia

    International Nuclear Information System (INIS)

    Jacimovic, Radojko; Benedik, Ljudmila; Stegnar, Peter; Smodis, Borut

    2002-01-01

    The k 0 -standardization method of neutron activation analysis (k 0 -NAA) was launched in the 1970s and since then continuously developed. Nowadays, k 0 -NAA became widespread as a practical analytical tool used to analyse different sample matrices. At the Jozef Stefan Institute (IJS), the KAYZERO/SOLCOI software package has been introduced for data processing after extensive testing and comparison with other available programs. In the process of validation of the software a suite of natural matrix reference materials (RMs) were used. Five certified reference materials (CRMs) from the Institute for Reference Materials and Measurements (IRMM), two standard reference materials (SRMs) from the National Institute of Standards and Technology (NIST), three RMs from the International Atomic Energy Agency (IAEA) and one RM from IJS were analysed. Altogether, results for ten elements in inorganic matrices and twenty-one elements in organic matrices, obtained by k 0 -instrumental neutron activation analysis (k 0 -INAA), were compared to certified values. The results obtained show good agreement with certified or assigned values except for Fe and U in inorganic matrices, and Al and Cr in organic matrices. (author)

  19. 77 FR 43542 - Cost Accounting Standards: Cost Accounting Standards 412 and 413-Cost Accounting Standards...

    Science.gov (United States)

    2012-07-25

    ... Accounting Standards: Cost Accounting Standards 412 and 413--Cost Accounting Standards Pension Harmonization Rule AGENCY: Cost Accounting Standards Board, Office of Federal Procurement Policy, Office of... Policy (OFPP), Cost Accounting Standards Board (Board), is publishing technical corrections to the final...

  20. Offsite dose calculation manual guidance: Standard radiological effluent controls for pressurized water reactors

    International Nuclear Information System (INIS)

    Meinke, W.W.; Essig, T.H.

    1991-04-01

    This report contains guidance which may be voluntarily used by licensees who choose to implement the provision of Generic Letter 89-01, which allows Radiological Effect Technical Specifications (RETS) to be removed from the main body of the Technical Specifications and placed in the Offsite Dose Calculation Manual (ODCM). Guidance is provided for Standard Effluent Controls definitions, Controls for effluent monitoring instrumentation, Controls for effluent releases, Controls for radiological environmental monitoring, and the basis for Controls. Guidance on the formulation of RETS has been available in draft from (NUREG-0471 and -0473) for a number of years; the current effort simply recasts those RETS into Standard Radiological Effluent Controls for application to the ODCM. Also included for completeness are: (1) radiological environmental monitoring program guidance previously which had been available as a Branch Technical Position (Rev. 1, November 1979); (2) existing ODCM guidance; and (3) a reproduction of generic Letter 89-01

  1. Present and future oscillation experiments at reactors

    International Nuclear Information System (INIS)

    Mikaehlyan, L.A.

    2001-01-01

    A report is presented on recent progress and developments (since the NANP'99 Conference) in the current and future long baseline (∼100 - 800 km) oscillation experiments at reactors. These experiments, under certain assumptions, can fully reconstruct the internal mass structure of the electron neutrino and provide a laboratory test of solar and atmospheric neutrino problems

  2. Reactor costs and maintenance, with reference to the Culham Mark II conceptual tokamak reactor design

    International Nuclear Information System (INIS)

    Hancox, R.; Mitchell, J.T.D.

    1977-01-01

    Published designs of tokamak reactors have proposed conceptual solutions for most of the technological problems encountered. Two areas which remain uncertain, however, are the capital cost of the reactor and the practicability of reactor maintenance. A cost estimate for the Culham Conceptual Tokamak Reactor (Mk I) is presented. The capital cost of a power station incorporating this reactor would be significantly higher than that of an equivalent fast breeder fission power station, mainly because of the low power density of the fusion reactor which affects both the reactor and building costs. To reduce the fusion station capital costs a new conceptual design is proposed (Mk II) which incorporates a shaped plasma cross-section to give a higher plasma pressure ratio, βsub(t) approximately 0.1. Since the higher power density implies more severe radiation damage of the blanket structure, the question of reactor maintenance assumes greater importance. With the proposed scheme for regular replacement of the blanket, a fusion power station availability around 0.9 should be achievable. (author)

  3. Current Abstracts Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bales, J.D.; Hicks, S.C. [eds.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  4. Power reactor noise studies and applications

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, V

    2002-03-01

    The present thesis deals with the neutron noise arising in power reactor systems. Generally, it can be divided into two major parts: first, neutron noise diagnostics, or more specifically, novel methods and algorithms to monitor nuclear industrial reactors; and second, contributions to neutron noise theory as applied to power reactor systems. Neutron noise diagnostics is presented by two topics. The first one is a theoretical study on the possibility to use a newly proposed current-flux (C/F) detector in Pressurised Water Reactors (PWR) for the localisation of anomalies. The second topic concerns various methods to detect guide tube impacting in Boiling Water Reactors (BWR). The significance of these problems comes from the operational experience. The thesis describes a novel method to localise vibrating control rods in a PWR by using only one C/F detector. Another novel method, based on wavelet analysis, is put forward to detect impacting guide tubes in a BWR. Neutron noise theory is developed for both Accelerator Driven Systems (ADS) and traditional reactors. By design the accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and methods that have been developed for traditional reactors and also it poses a number of new problems. As for the latter, the thesis investigates the space-dependent neutron noise caused by a fluctuating source. It is shown that the frequency-dependent spatial behaviour exhibits some new properties that are different from those known in traditional critical systems. On the other hand, various reactor physics approximations (point kinetic, adiabatic etc.) have not been defined yet for the subcritical systems. In this respect the thesis presents a systematic formulation of the above mentioned approximations as well as investigations of their properties. Another important problem in neutron noise theory is the treatment of moving boundaries. In this case one

  5. Power reactor noise studies and applications

    International Nuclear Information System (INIS)

    Arzhanov, V.

    2002-03-01

    The present thesis deals with the neutron noise arising in power reactor systems. Generally, it can be divided into two major parts: first, neutron noise diagnostics, or more specifically, novel methods and algorithms to monitor nuclear industrial reactors; and second, contributions to neutron noise theory as applied to power reactor systems. Neutron noise diagnostics is presented by two topics. The first one is a theoretical study on the possibility to use a newly proposed current-flux (C/F) detector in Pressurised Water Reactors (PWR) for the localisation of anomalies. The second topic concerns various methods to detect guide tube impacting in Boiling Water Reactors (BWR). The significance of these problems comes from the operational experience. The thesis describes a novel method to localise vibrating control rods in a PWR by using only one C/F detector. Another novel method, based on wavelet analysis, is put forward to detect impacting guide tubes in a BWR. Neutron noise theory is developed for both Accelerator Driven Systems (ADS) and traditional reactors. By design the accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and methods that have been developed for traditional reactors and also it poses a number of new problems. As for the latter, the thesis investigates the space-dependent neutron noise caused by a fluctuating source. It is shown that the frequency-dependent spatial behaviour exhibits some new properties that are different from those known in traditional critical systems. On the other hand, various reactor physics approximations (point kinetic, adiabatic etc.) have not been defined yet for the subcritical systems. In this respect the thesis presents a systematic formulation of the above mentioned approximations as well as investigations of their properties. Another important problem in neutron noise theory is the treatment of moving boundaries. In this case one

  6. Standard model and beyond

    International Nuclear Information System (INIS)

    Quigg, C.

    1984-09-01

    The SU(3)/sub c/ circle crossSU(2)/sub L/circle crossU(1)/sub Y/ gauge theory of ineractions among quarks and leptons is briefly described, and some recent notable successes of the theory are mentioned. Some shortcomings in our ability to apply the theory are noted, and the incompleteness of the standard model is exhibited. Experimental hints that Nature may be richer in structure than the minimal theory are discussed. 23 references

  7. Project and characteristics of a 5MW experimental fast reactor

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Nascimento, J.A. do.

    1986-05-01

    Characteristics of a 5 MW experimental fast reactor are reported. The reactor is designed with emphasis on fuel and materials irradiation and uses fuel assemblies of a standard structure. The reference core consist of 37 fuel assemblies, each of which contains 19 pins of metallic Pu/Zr fuel. With a core height of 17.6 cm the core volume is 11.4 liter and the central fast (E >=100 KeV) flux is 0.9 x 10 15 n/cm 2 sec. In addition to twelve control rod assemblies with a total reactivity worth of 5.5% Δk, 42 assemblies for reactivity compensation are placed in the two rings outside the core. Replacing these assemblies with driver, blanket, or refletor-shield assemblies, large reactivities can be added to make the central assembly position available for test irradiations and to assure high levels of burnup of driver assemblies. (Author) [pt

  8. Reactor power system deployment and startup

    Science.gov (United States)

    Wetch, J. R.; Nelin, C. J.; Britt, E. J.; Klein, G.

    1985-01-01

    This paper addresses issues that should receive further examination in the near-term as concept selection for development of a U.S. space reactor power system is approached. The issues include: the economics, practicality and system reliability associated with transfer of nuclear spacecraft from low earth shuttle orbits to operational orbits, via chemical propulsion versus nuclear electric propulsion; possible astronaut supervised reactor and nuclear electric propulsion startup in low altitude Shuttle orbit; potential deployment methods for nuclear powered spacecraft from Shuttle; the general public safety of low altitude startup and nuclear safe and disposal orbits; the question of preferred reactor power level; and the question of frozen versus molten alkali metal coolant during launch and deployment. These issues must be considered now because they impact the SP-100 concept selection, power level selection, weight and size limits, use of deployable radiators, reliability requirements, and economics, as well as the degree of need for and the urgency of developing space reactor power systems.

  9. Present status and future prospect of research reactors

    International Nuclear Information System (INIS)

    Takemi, Hirokatsu

    1996-01-01

    The present status of research reactors more than MW class reactor in JAERI and the Kyoto University and the small reactors in the Musashi Institute of Technology, the Rikkyo University, the Tokyo University, the Kinki University and other countries are explained in the paper. The present status of researches are reported by the topics in each field. The future researches of the beam reactor and the irradiation reactor are reviewed. On various kinds of use of research reactor and demands of neutron field of a high order, new type research reactors under investigation are explained. Recently, the reactors are used in many fields such as the basic science: the basic physics, the material science, the nuclear physics, and the nuclear chemistry and the applied science; the earth and environmental science, the biology and the medical science. (S.Y.)

  10. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    measurements are reviewed in detail. In the sequel, possible manipulated variables, such as the hydraulic retention time, the organic loading rate, the sludge retention time, temperature, pH and alkalinity are evaluated with respect to the two main reactor types: high-rate and low-rate. Finally, the different...

  11. Axial stability of VVER-1000 reactor with control with minimum standard deviation

    International Nuclear Information System (INIS)

    Afanas'ev, A.M.; Torlin, B.Z.

    1980-01-01

    Results are given of investigations on the stability of a reactor which has, in addition to an automatic controller, a height distribution regulator (HDR) based on an auxiliary control rod (CR) or a special shortened absorption rod (SAR). The HDR was controlled by using either a special ionization chamber (IC), generating an imbalance signal which sets the CR in motion, or two ionization chambers whose difference signal causes a displacement of the SAR. Since data from numerous pickups can be used to control the height field of the VVER-1000, it is of interest to analyze how this would affect the stability of the reactor. The analysis was carried out with the improved IRINA programs. 11 refs

  12. Instrumentation and control strategies for an integral pressurized water reactor

    Directory of Open Access Journals (Sweden)

    Belle R. Upadhyaya

    2015-03-01

    Full Text Available Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C strategies for a large 1,000 MWe iPWR is described. Reactor system modeling—which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum—is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.

  13. Emission- and product standards

    International Nuclear Information System (INIS)

    Jong, P. de

    1988-01-01

    This report makes part of a series of eight reports which have been drawn up in behalf of the dutch Policy Notition Radiation Standards (BNS). In this report the results are presented of an inventarization of the use of radioactive materials and ionizing-radiation emitting apparates in the Netherlands. Ch. 2 deals with the varous applications of radioactive materials in the Netherlands. Herein also the numbers and the various locations by application, and the amounts and character of the radioactive materials used, come under discussion. Besides, the various waste currents are considered separately. The use of ionizing-radiation emitting apparates is treated in ch. 3. In ch. 4 the differences and agreements of the various applications, concentrating on the emission and product standards to be drawn up, are entered further. Also on the base of these considerations, a number of starting points are formulated with regard to the way in which emission and product standards may be drawn up. Ch. 7 deals with the conclusions and indicates the most important hiates. (H.W.). 25 refs.; 5 figs.; 25 tabs

  14. Results and recommendations from the reactor chemistry and corrosion tasks of the reactor materials program

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, E.W.; Ondrejcin, R.S.

    1990-11-01

    Within the general context of extended service life, the Reactor Materials Program was initiated in 1984. This comprehensive program addressed material performance in SRS reactor tanks and the primary coolant or Process Water System (PWS) piping. Three of the eleven tasks concerned moderator quality and corrosion mitigation. Definition and control of the stainless steel aqueous environment is a key factor in corrosion mitigation. The Reactor Materials Program systematically investigated the SRS environment and its effect on crack initiation and propagation in stainless steel, with the objective of improving this environment. The purpose of this report is to summarize the contributions of Tasks 6, 7 and 10 of the Reactor Materials Program to the understanding and control of moderator quality and its relationship to mitigation of stress corrosion cracking.

  15. Results and recommendations from the reactor chemistry and corrosion tasks of the reactor materials program

    International Nuclear Information System (INIS)

    Baumann, E.W.; Ondrejcin, R.S.

    1990-11-01

    Within the general context of extended service life, the Reactor Materials Program was initiated in 1984. This comprehensive program addressed material performance in SRS reactor tanks and the primary coolant or Process Water System (PWS) piping. Three of the eleven tasks concerned moderator quality and corrosion mitigation. Definition and control of the stainless steel aqueous environment is a key factor in corrosion mitigation. The Reactor Materials Program systematically investigated the SRS environment and its effect on crack initiation and propagation in stainless steel, with the objective of improving this environment. The purpose of this report is to summarize the contributions of Tasks 6, 7 and 10 of the Reactor Materials Program to the understanding and control of moderator quality and its relationship to mitigation of stress corrosion cracking

  16. Energy labels and standards

    International Nuclear Information System (INIS)

    Newman, J.

    2000-01-01

    Improving energy efficiency at the end-use level is increasingly important as Climate Change commitments force policy makers to look for areas where greenhouse gas emissions reduction can be achieved rapidly. Indeed, although much improvement has been mode over the past 25 years, significant potential for improving energy efficiency still exists. Labelling and minimum efficiency standards for appliances and equipment have proven to be one of the most promising policy instruments. Used for many years in some IEA Member countries, they delivered tangible results. They are among the cheapest and least intrusive of policies. Policy makers cannot afford to neglect them. This book examines current and post experiences of countries using labels and standards to improve energy end-use efficiency. It identifies successful policy approaches, focusing on what works best. It also provides insight into the opportunities ahead, including the widespread use of computer chips in appliances, cars and equipment. This book should be of great help not only to administrations planning to introduce labelling schemes, but also to those in the process of strengthening their current programmes. Policy makers in developing countries will also find here all necessary justification for implementing labelling and standards in their economy. 74 refs

  17. Research reactor de-fueling and fuel shipment

    International Nuclear Information System (INIS)

    Ice, R.D.; Jawdeh, E.; Strydom, J.

    1998-01-01

    Planning for the Georgia Institute of Technology Research Reactor operations during the 1996 Summer Olympic Games began in early 1995. Before any details could be outlined, several preliminary administrative decisions had to be agreed upon by state, city, and university officials. The two major administrative decisions involving the reactor were (1) the security level and requirements and (2) the fuel status of the reactor. The Georgia Tech Research Reactor (GTRR) was a heavy-water moderated and cooled reactor, fueled with high-enriched uranium. The reactor was first licensed in 1964 with an engineered lifetime of thirty years. The reactor was intended for use in research applications and as a teaching facility for nuclear engineering students and reactor operators. Approximately one year prior to the olympics, the Georgia Tech administration decided that the GTRR fuel would be removed. In addition, a heightened, beyond regulatory requirements, security system was to be implemented. This report describes the scheduling, operations, and procedures

  18. Prometheus Reactor I and C Software Development Methodology, for Action

    International Nuclear Information System (INIS)

    T. Hamilton

    2005-01-01

    The purpose of this letter is to submit the Reactor Instrumentation and Control (I and C) software life cycle, development methodology, and programming language selections and rationale for project Prometheus to NR for approval. This letter also provides the draft Reactor I and C Software Development Process Manual and Reactor Module Software Development Plan to NR for information

  19. Temperature and Doppler Coefficients of Various Space Nuclear Reactors

    Science.gov (United States)

    Mughabghab, Said F.; Ludewig, Hans; Schmidt, Eldon

    1994-07-01

    Temperature and Doppler feedback effects for a Particle Bed Reactor (PBR) designed to operate as a propulsion reactor are investigated. Several moderator types and compositions fuel enrichments and reactor sizes are considered in this study. From this study it could be concluded that a PBR can be configured which has a negative prompt feedback, zero coolant worth, and a small positive to zero moderator worth. This reactor would put the lowest demands on the control system.

  20. Membrane assisted fluidized bed reactors: Potentials and hurdles

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Heinrich, S.; Mörl, L.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    Recent advances in the development of more stable membranes with increased permeance have significantly enhanced the possibilities for integrating membranes into catalytic reactors in order to achieve a major increase in reactor performance by process integration and process intensification. Several

  1. Gas cooled reactor experience and programs in France

    International Nuclear Information System (INIS)

    Rastoin, J.; Brisbois, J.

    1978-01-01

    After discussing the state of development of natural uranium graphite-gas cooled reactors in France, the current program focused on electricity generating high temperature reactors and the future program based on heat generating applications are presented

  2. Revision of the second basic plans of power reactor development in Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    1978-01-01

    Revision of the second basic plans concerning power reactor development in PNC (Power Reactor and Nuclear Fuel Development Corporation) is presented. (1) Fast breeder reactors: As for the experimental fast breeder reactor, after reaching the criticality, the power is raised to 50 MW thermal output within fiscal 1978. The prototype fast breeder reactor is intended for the electric output of 200 MW -- 300 MW, using mixed plutonium/uranium oxide fuel. Along the above lines, research and development will be carried out on reactor physics, sodium technology, machinery and parts, nuclear fuel, etc. (2) Advanced thermal reactor: The prototype advanced thermal reactor, with initial fuel primarily of slightly enriched uranium and heavy water moderation and boiling water cooling, of 165 MW electric output, is brought to its normal operation by the end of fiscal 1978. Along the above lines, research and development will be carried out on reactor physics, machinery and parts, nuclear fuel, etc. (Mori, K

  3. Report of scientific results 1976. Section nuclear chemistry and reactor

    International Nuclear Information System (INIS)

    1976-01-01

    The report of the section Nuclear Chemistry and Reactor presents the results of R and D in the fields of neutron scattering, radiation damage in solids, reactor chemistry, trace elements research in biomedicine, geochemistry, reactor operation, radioisotope production, and gives a survey of publications and lectures. (HK) [de

  4. Inherently safe reactors and a second nuclear era.

    Science.gov (United States)

    Weinberg, A M; Spiewak, I

    1984-06-29

    The Swedish PIUS reactor and the German-American small modular high-temperature gas-cooled reactor are inherently safe-that is, their safety relies not upon intervention of humans or of electromechanical devices but on immutable principles of physics and chemistry. A second nuclear era may require commercialization and deployment of such inherently safe reactors, even though existing light-water reactors appear to be as safe as other well-accepted sources of central electricity, particularly hydroelectric dams.

  5. Reactor D and D at Argonne National Laboratory - lessons learned

    International Nuclear Information System (INIS)

    Fellhauer, C. R.

    1998-01-01

    This paper focuses on the lessons learned during the decontamination and decommissioning (D and D) of two reactors at Argonne National Laboratory-East (ANL-E). The Experimental Boiling Water Reactor (EBWR) was a 100 MW(t), 5 MSV(e) proof-of-concept facility. The Janus Reactor was a 200 kW(t) reactor located at the Biological Irradiation Facility and was used to study the effects of neutron radiation on animals

  6. Development of supercritical water reactors in Russia and abroad

    International Nuclear Information System (INIS)

    Glebov, A.P.; Klushin, A.V.

    2014-01-01

    The results of Russian and foreign studies on the water-cooled high critical parameters reactors are analyzed. Developments on this subject are conducted in more than 15 countries. The advantages of WWER- SCP and characteristics of experimental reactor of WWER-SCP-30 are discussed. It is noted that priority task is to develop a reactor with thermal neutron spectrum with a subsequent transition to the reactor with a fast neutron spectrum [ru

  7. Plastic reactor suitable for high pressure and supercritical fluid electrochemistry

    OpenAIRE

    Branch, Jack; Alibouri, Mehrdad; Cook, David A.; Richardson, Peter; Bartlett, Philip N.; Matefi-Tempfli, Maria; Matefi-Tempfli, Stefan; Bampton, Mark; Cookson, Tamsin; Connell, Phil; Smith, David

    2017-01-01

    The paper describes a reactor suitable for high pressure, particularly supercritical fluid, electrochemistry and electrodeposition at pressures up to 30 MPa at 115°C. The reactor incorporates two key, new design concepts; a plastic reactor vessel and the use of o-ring sealed brittle electrodes. These two innovations widen what can be achieved with supercritical fluid electrodeposition. The suitability of the reactor for electroanalytical experiments is demonstrated by studies of the voltammet...

  8. Operation and Utilizations of Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Hien, P.Z.

    1988-01-01

    The reconstructed Dalat nuclear research reactor was commissioned in March 1984 and up to September 1988 more than 6200 hours of operation at nominal power have been recorded. The major utilizations of the reactor include radioisotope production, activation analysis, nuclear data research and training. A brief review of the utilization of the reactor is presented. Some aspects of reactor safety are also discussed. (author) 2 figs.; 5 refs.; 1 tab

  9. Inconsistencies of neutron flux parameters for k(0) standardization in neutron activation analysis determined with the use of Au+Zr and Au+Mo+Cr monitor sets at the LVR-15 reactor in Rez

    Czech Academy of Sciences Publication Activity Database

    Kubešová, Marie; Kučera, Jan

    2012-01-01

    Roč. 293, č. 2 (2012), s. 665-674 ISSN 0236-5731 R&D Projects: GA ČR GA202/09/0363 Institutional support: RVO:61389005 Keywords : Neutron activation analysis * K(0) standardization * Neutron flux parameters Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.467, year: 2012

  10. RA Research reactor, Part 1, Operation and maintenance of the RA nuclear reactor for 1988

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1988-01-01

    According to the action plan for 1988, operation of the RA reactor should have been restarted in October, but the operating license was not obtained. Control and maintenance of the reactor components was done regularly and efficiently dependent on the availability of the spare parts. The major difficulty was maintenance of the reactor instrumentation. Period of the reactor shutdown was used for repair of the heavy water pumps in the primary coolant loop. With the aim to ensure future safe and reliable reactor operation, action were started concerning renewal of the reactor instrumentation. Design project was done by the soviet company Atomenergoeksport. The contract for constructing this equipment was signed, and it is planned that the equipment will be delivered by the end of 1990. In order to increase the space for storage of the irradiated fuel elements and its more efficient usage, projects were started concerned with reconstruction of the existing fuel handling equipment, increase of the storage space and purification of the water in the fuel storage pools. These projects are scheduled to be finished in mid 1989. This report includes 8 annexes concerning reactor operation, activities of services and financial issues [sr

  11. The role of research reactor and its future

    International Nuclear Information System (INIS)

    Nakagome, Yoshihiro

    2005-01-01

    About a half century passed since the start of operation of research reactors. Many research reactors were stopped their operation or decommissioned. With the practical use of nuclear energy, the meaning of research reactor has been buried in oblivion in the developed countries. Furthermore, under the nuclear weapons nonproliferation policy, the use of high enriched uranium fuel in research reactors is obliged to change to the use of low enriched uranium fuel. In such severe situation, this paper refers to the role of the research reactor once more through the operation experience of university-owned research reactor KUR (Kyoto University Reactor, Japan) and describes that research reactor is indispensable for the preparation to the second coming nuclear age. (author)

  12. Reactor coolant pump seal issues and their applicability to new reactor designs

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.

    1993-01-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at U.S. operating plants during the 1970's and early 1980's raised concerns from the U.S. Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants

  13. Status of Dalat research reactor and progress of new reactor plan in Vietnam

    International Nuclear Information System (INIS)

    Dien, Nguyen Nhi; Vien, Luong Ba

    2005-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a 500-kW pool-type reactor loaded with the Soviet WWR-M2 Fuel Assemblies (FA), moderated and cooled by light water. The reactor was reconstructed from the USA 250-kW TRIGA Mark-II reactor built in early 1960s. The first criticality of the renovated reactor was achieved on 1 st November 1983, and then on 20 March 1984 the reactor was officially inaugurated and its activities restarted. During the last twenty years, the DNRR has played an important role as a large national research facility to implement researches and applications, and its utilization has been broadened in various fields of human life. However, due to the limitation of the neutron flux and power level, the out-of date design of the experimental facilities and the ageing of the reactor facilities, it cannot meet the increasing user's demands even in the existing utilization areas. In addition, the utilization demands of the Research Reactor (RR) will be increased along with the development of the nation's economy growth. In this aspect, it is necessary to have in Vietnam a new high performance multipurpose RR with a sufficient neutron flux and power level. According to the last draft of a national strategy for atomic energy development submitted to the Government for consideration and approval, it is expected that a new high power RR would be put into operation before 2020. The operation and utilization status of the DNRR is presented and some preliminary results of the national research project on new reactor plan for Vietnam are discussed in this paper

  14. Safety philosophy and safety technology of the Soviet RBMK reactors

    International Nuclear Information System (INIS)

    Zuend, H.; Jarvis, A.S.; Haennis, H.P.; Tikal, J.

    1986-01-01

    Safety requirements and control in USSR are outlined. Safety criteria and practical application in the case of the RBMK type reactor Chernobyl-4 are discussed. An overview of the Chernobyl-4 reactor accident including its causes is given. Measures to improve the safety of RBMK reactors are described

  15. Evolution patterns and family relations in G-S reactors

    NARCIS (Netherlands)

    van Swaaij, Willibrordus Petrus Maria; van der Ham, Aloysius G.J.; Kronberg, Alexandre E.

    2002-01-01

    Reactor selection strategies for gas–solid (G–S) heterogeneously catalysed processes can be based on the requirements of the desired process and the properties of the reactions and catalysts involved. Ultimately a reactor selection will nearly always be grounded on existing or emerging reactor types

  16. Scaling of reactor cavity wall loads and stresses

    International Nuclear Information System (INIS)

    Bohachevsky, I.O.

    1977-11-01

    Scalings of reactor cavity wall loads and stresses are determined by deriving an analytic expression in terms of relevant parameters for each loading induced in the reactor cavity walls by fuel pellet microexplosion and by deriving associated expressions relating resulting stresses to shell thicknesses. Also identified are problems that require additional investigations to obtain satisfactory explicit stress estimates for the reactor cavity walls

  17. How Temelin is being brought in line with Western standards. [Modifications to design of VVER type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Simerka, I. (Jaderna Elektrana, Temelin (Czechoslovakia))

    1991-03-01

    Following independence from the USSR, the two Sovient-designed VVER 1000 Pressurized Water Reactors under construction at Temelin in Czechoslovakia are being extensively modified. The recommendations of IAEA missions are being applied and the station staff are reappraising the original design to improve safety and performance. (author).

  18. QUARTERLY PROGRESS REPORT JANUARY, FEBRUARY, MARCH, 1968 REACTOR FUELS AND MATERIALS DEVELOPMENT PROGRAMS FOR FUELS AND MATERIALS BRANCH OF USAEC DIVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J.; de Halas, D. R.; Nightingale, R. E.; Worlton, D. C.

    1968-06-01

    Progress is reported in these areas: nuclear graphite; fuel development for gas-cooled reactors; HTGR graphite studies; nuclear ceramics; fast-reactor nitrides research; non-destructive testing; metallic fuels; basic swelling studies; ATR gas and water loop operation and maintenance; reactor fuels and materials; fast reactor dosimetry and damage analysis; and irradiation damage to reactor metals.

  19. Modeling and Control of a Large Nuclear Reactor A Three-Time-Scale Approach

    CERN Document Server

    Shimjith, S R; Bandyopadhyay, B

    2013-01-01

    Control analysis and design of large nuclear reactors requires a suitable mathematical model representing the steady state and dynamic behavior of the reactor with reasonable accuracy. This task is, however, quite challenging because of several complex dynamic phenomena existing in a reactor. Quite often, the models developed would be of prohibitively large order, non-linear and of complex structure not readily amenable for control studies. Moreover, the existence of simultaneously occurring dynamic variations at different speeds makes the mathematical model susceptible to numerical ill-conditioning, inhibiting direct application of standard control techniques. This monograph introduces a technique for mathematical modeling of large nuclear reactors in the framework of multi-point kinetics, to obtain a comparatively smaller order model in standard state space form thus overcoming these difficulties. It further brings in innovative methods for controller design for systems exhibiting multi-time-scale property,...

  20. The digital reactor protection system for the instrumentation and control of reactor TRIGA PUSPATI (RTP)

    International Nuclear Information System (INIS)

    Nurfarhana Ayuni Joha; Izhar Abu Hussin; Mohd Idris Taib; Zareen Khan Abdul Jalil Khan

    2010-01-01

    Reactor Protection System (RPS) is important for Reactor Instrumentation and Control System. The RPS comprises all redundant electrical devices and circuitry involved in the generation of those initiating signals associated to the trip protective function. The instrumentation system for the RPS provides automatic protection signals against unsafe and improper reactor operation. The physical separation is provided for all of the redundant instrumentation systems to preserve redundancy. The safety protection systems using circuits composed of analog instruments and relays with relay contacts is difficult to realize from various reasons. Therefore, an application of digital technology can be said a logical conclusion also in the light of its functional superiority. (author)

  1. JANUS reactor d and d project

    International Nuclear Information System (INIS)

    Fellhauer, C. R.

    1998-01-01

    Argonne National Laboratory (ANL-E) has recently completed the decontamination and decommissioning (D and D) of the JANUS Reactor Facility located in Building 202. The 200 KW reactor operated from August 1963 to March 1992. The facility was used to study the effects of both high and low doses of fission neutrons in animals. There were two exposure rooms on opposite sides of the reactor and the reactor was therefore named after the two-faced Roman god. The High Dose Room was capable of specimen exposure at a dose rate of 3,600 rads per hour. During calendar year 1996 a detailed characterization of the facility was performed by ANL-E Health Physics personnel. ANL-E Analytical Services performed the required sample analysis. An Auditable Safety Analysis and an Environmental Assessment were completed. D and D plans, procedures and procurement documents were prepared and approved. A D and D subcontractor was selected and a firm, fixed price contract awarded for the field work and final survey effort. The D and D subcontractor was mobilized to ANL-E in January 1997. Electrical isolation of all reactor equipment and control panels was accomplished and the equipment removed. A total of 207,230 pounds (94,082 Kg) of lead shielding was removed, surveyed and sampled, and free-released for recycle. All primary and secondary piping was removed, size reduced and packaged for disposal or recycled as appropriate. The reactor vessel was removed, sized reduced and packaged as radioactive waste in April. The activated graphite block reflector was removed next, followed by the bioshield concrete and steel. All of this material was packaged as low level waste. Total low level radioactive waste generation was 4002.1 cubic feet (113.3 cubic meters). Mixed waste generation was 538 cubic feet (15.2 cubic meters). The Final Release Survey was completed in September. The project field work was completed in 38 weeks without any lost-time accidents, personnel contaminations or unplanned

  2. Safety in the utilization and modification of research reactors

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide presents guidelines, approved by international consensus, for the safe utilization and modification of research reactors. While the Guide is most applicable to existing reactors, it is also recommended for use by organizations planning to put a new reactor into operation. 1 fig

  3. Development and application of reactor noise diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Joakim K.H

    1999-04-01

    A number of problems in reactor noise diagnostics have been investigated within the framework of the present thesis. The six papers presented cover three relatively different areas, namely the use of analytical calculations of the neutron noise in simple reactor models, some aspects of boiling water reactor (BWR) stability and diagnostics of core barrel motion in pressurized water reactors (PWRs). The noise induced by small vibrations of a strong absorber has been the subject of several previous investigations. For a conventional {delta}-function source model, the equations can not be linearized in the traditional manner. Thus, a new source model, which is called the {epsilon}/d model, was developed. The correct solution has been derived in the {epsilon}/d model for both 1-D and 2-D reactor models. Recently, several reactor diagnostic problems have occurred which include a control rod partially inserted into the reactor core. In order to study such problems, we have developed an analytically solvable, axially non-homogenous, 2-D reactor model. This model has also been used to study the noise induced by a rod maneuvering experiment. Comparisons of the noise with the results of different reactor kinetic approximations have yielded information on the validity of the approximations in this relatively realistic model. In case of an instability event in a BWR, the noise may consist of one or several co-existing modes of oscillation and besides the fundamental mode, a regional first azimuthal mode has been observed in e.g. the Swedish BWR Ringhals-1. In order to determine the different stability characteristics of the different modes separately, it is important to be able to decompose the noise into its mode constituents. A separation method based on factorisation of the flux has been attempted previously, but without success. The reason for the failure of the factorisation method is the presence of the local component of the noise and its axial correlation properties. In

  4. Development and application of reactor noise diagnostics

    International Nuclear Information System (INIS)

    Karlsson, Joakim K.H.

    1999-04-01

    A number of problems in reactor noise diagnostics have been investigated within the framework of the present thesis. The six papers presented cover three relatively different areas, namely the use of analytical calculations of the neutron noise in simple reactor models, some aspects of boiling water reactor (BWR) stability and diagnostics of core barrel motion in pressurized water reactors (PWRs). The noise induced by small vibrations of a strong absorber has been the subject of several previous investigations. For a conventional δ-function source model, the equations can not be linearized in the traditional manner. Thus, a new source model, which is called the ε/d model, was developed. The correct solution has been derived in the ε/d model for both 1-D and 2-D reactor models. Recently, several reactor diagnostic problems have occurred which include a control rod partially inserted into the reactor core. In order to study such problems, we have developed an analytically solvable, axially non-homogenous, 2-D reactor model. This model has also been used to study the noise induced by a rod maneuvering experiment. Comparisons of the noise with the results of different reactor kinetic approximations have yielded information on the validity of the approximations in this relatively realistic model. In case of an instability event in a BWR, the noise may consist of one or several co-existing modes of oscillation and besides the fundamental mode, a regional first azimuthal mode has been observed in e.g. the Swedish BWR Ringhals-1. In order to determine the different stability characteristics of the different modes separately, it is important to be able to decompose the noise into its mode constituents. A separation method based on factorisation of the flux has been attempted previously, but without success. The reason for the failure of the factorisation method is the presence of the local component of the noise and its axial correlation properties. In the paper

  5. Theoretical and experimental analysis of fast reactor fuel performance

    International Nuclear Information System (INIS)

    Kummerer, K.R.; Freund, D.; Steiner, H.

    1982-09-01

    In order to predict behavior, performance, and capability of prototypic fuel pins a standard operational scheme for the SNR-300 fast breeder reactor is established considering besides normal operation unscheduled power changes and shutdowns. The behavior during the whole lifetime is calculated using the updated SATURN codes and - for special conditions as power transients and skewed fuel rod power - the new TRANSIENT and TEXDIF codes. The results of these calculations are compared to experimental findings. It is demonstrated that the level of modeling and the knowledge of material properties under irradiation are sufficient for a quantitative description of the fuel pin performance under the above mentioned conditions. (orig.) [de

  6. Status of development and licensing support for advanced liquid metal reactors in the United States

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Gyorey, G.

    1991-01-01

    The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the ALMR plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the U.S. program is to produce a standard, commercial ALMR, including the associated fuel cycle. The paper addresses the status of the IFR program, the ALMR program and the interaction of the ALMR program with the regulatory environment. (author)

  7. Status of development and licensing support for advanced liquid metal reactors in the United States

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Gyorey, G.

    1991-01-01

    The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the ALMR plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the US program is to produce a standard, commercial ALMR, including the associated fuel cycle. The paper addresses the status of the IFR program, the ALMR program and the interaction of the ALMR program with the regulatory environment

  8. Standard reference material certification: contribution of NAA with a TRIGA reactor

    International Nuclear Information System (INIS)

    Orvini, E.; Speziali, M.; Salvini, A.; Herborg, C.

    2002-01-01

    Pavia has cooperative links with the major international agencies devoted to the certification of SRMs or CRMs as the Bureau Communautaire de Reference (BCR), the European Institute for Reference Materials and Measurement (IRMM), the USA National Institute of Standards and Technology (NIST) and the International Atomic Energy Agency (IAEA). During these cooperative works, a large amount of analytical data obtained with NAA has been compared, and meaningful methodological information achieved with respect to accuracy and precision in the analysis of several elements at different concentrations in various matrices. Analytical data on As, Cd, Cr, Co, Cu, Cs, Fe, Zn, K, Sc, U, Th, Al, Sb, Mn, V, Hg, Sr, Rb, Se,Pt, all the Rare Earths and halogens Br, Cl, I, have been obtained and contributed for the final certification

  9. Reactor structure and superconducting magnet system of ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Yoshida, Kiyoshi; Shibanuma, Kiyoshi; Okuno, Kiyoshi; Tsuji, Hiroshi; Shimamoto, Susumu

    1993-01-01

    Fusion Experimental Reactors are one of the major steps toward realization of the fusion energy and the key objective are to demonstrate the scientific and technological feasibility prior to the Demo Fusion Reactor. ITER (International Thermonuclear Experimental Reactor) is one of experimental reactors and the conceptual design has been completed by the united efforts of USA, USSR, EC and Japan. In parallel with the conceptual design, key technology development in various areas has being conducted. This paper describes the overall design concepts and the latest technological achievements of the ITER reactor structure and superconducting magnet system. (author)

  10. Reactor and turbine building layout of the high performance light water reactor

    International Nuclear Information System (INIS)

    Bittermann, D.

    2010-01-01

    Based on the information generated within the European funded project ''High Per-formance Light Water Reactor Phase 2'', a general plant layout has been developed. The central building is the reactor building, in which the containment and safety sys-tems are located. The reactor building is with app. 90.000 m 3 considerably smaller compared to other BWR buildings, thus providing a huge potential for cost savings. The turbine building with app 250,000 m 3 is of approximately the same size like for existing BWRs. (orig.)

  11. Advanced ultrasonic and eddy current examinations of the reactor vessel

    International Nuclear Information System (INIS)

    Cvitanovic, M.; Zado, V.

    1996-01-01

    In order to improve safety and reliability of nuclear power plant components, the existing examination methods are permanently developed as well as the new methods of examination are implemented. For the same reason, beside referent requirements, complementary NDE methods are utilized. Some examination methods techniques are not required to be used by referent safety codes and standards but they are frequently practiced as additional prevention to the component failure. This article presents the state of the art methods and techniques currently applied for examination of the reactor vessel base material, clad and weld materials. (author)

  12. Design Status and Applications of Small reactors without On-site Refuelling

    International Nuclear Information System (INIS)

    Kuznetsov, V.

    2006-01-01

    Small reactors without on-site refuelling are the reactors that can operate without reloading and shuffling of fuel for a reasonably long period, consistent with plant economy and considerations of energy security, with no fresh or spent fuel being stored at a site during reactor operation. Such reactors could simplify the implementation of safeguards and provide certain guarantees of sovereignty to those countries that would prefer to lease fuel from a foreign vendor or, perhaps, an international fuel cycle centre. About 30 concepts of such reactors are being analyzed or developed in 6 IAEA Member States. They cover all principle reactor lines: water cooled, fast gas cooled, sodium cooled, lead or lead bismuth cooled and molten salt cooled reactors. An increased refuelling interval could be achieved with reduced core power density, burnable absorbers, or high conversion ratio. The design goals for small reactors without on-site refuelling, inter alia, include: difficult unauthorized access to fuel; design provisions to facilitate the implementation of safeguards; capability to survive all postulated accident scenarios without requiring emergency response in the public domain; economic competitiveness for anticipated market conditions and applications; the capability to achieve higher manufacturing quality through factory mass production, design standardization and common basis for design certification; and a flexibility in siting and applications. Such reactors are often considered in conjunction with fuel or NPP leasing Small reactors without on-site refuelling have many common technology development issues related to the provision of lifetime core operation, economic competitiveness, high level of safety and proliferation resistance. Reestablishment of a practice of licensing by test and establishment of legal provisions and the insurance scheme for a transit of fuel loads or factory fabricated reactors through the territory of a third country are mentioned as

  13. Research on nuclear energy in the fields of fuel cycle, PWR reactors and LMFBR reactors

    International Nuclear Information System (INIS)

    Barre, B.; Camarcat, N.

    1995-01-01

    In this article we present the CEA research programs to improve the safety of the next generation of reactors, to manage the Plutonium and the wastes of the fuel cycle end and to ameliorate the competitiveness. 6 refs

  14. The Global Outlook for Small Reactors: Opportunities, Challenges and Implementation

    International Nuclear Information System (INIS)

    Hughes, A.

    2012-01-01

    The fascinating topic of small nuclear is becoming more prevalent on the nuclear agenda. The discussions are generally focused within the country of technical origin. In this presentation 'The global outlook for small reactors' Rolls-Royce along with energy business analysts Douglas-Westwood present their shared views on the global opportunities for Small Reactor deployment in the context of the wider energy market. The presentation will: provide a compressive overview of trends and dynamics relating to Small Reactors in the context of the current world energy market, identify specific Small Reactor opportunities and areas of interest, address the challenges and potential solutions for Small Reactor deployment and operation.(author).

  15. Pakistan research reactor and its utilization

    International Nuclear Information System (INIS)

    Iqbal Hussain Qureshi; Naeem Ahmad Khan.

    1983-01-01

    The 5 MW enriched uranium fuelled, light water moderated and cooled Pakistan Research reactor became critical on 21st December, 1965 and was taken to full power on 22nd June, 1966. Since then is has been operated for about 23000 hours till 30th June, 1983 without any major break down. It has been used for the studies of neutron cross-sections, nuclear structure, fission physics, structure of material, radiation damage in crystals and semiconductors, studies of geological, biological and environmental samples by neutron activation techniques, radioisotope production, neutron radiography and for training of scientists, engineers and technicians. In the paper we have described briefly the facility of Pakistan Research Reactor and the major work carried around it during the last decade. (author)

  16. Status of Fast Reactor Research and Technology Development

    International Nuclear Information System (INIS)

    2012-01-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  17. Status of Fast Reactor Research and Technology Development

    International Nuclear Information System (INIS)

    2013-01-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  18. Aging considerations for PWR [pressurized water reactor] control rod drive mechanisms and reactor internals

    International Nuclear Information System (INIS)

    Ware, A.G.

    1988-01-01

    This paper describes age-related degradation mechanisms affecting life extension of pressurized water reactor control rod drive mechanisms and reactor internals. The major sources of age-related degradation for control rod drive mechanisms are thermal transients such as plant heatups and cooldowns, latchings and unlatchings, long-term aging effects on electrical insulation, and the high temperature corrosive environment. Flow induced loads, the high-temperature corrosive environment, radiation exposure, and high tensile stresses in bolts all contribute to aging related degradation of reactor internals. Another problem has been wear and fretting of instrument guide tubes. The paper also discusses age-related failures that have occurred to date in pressurized water reactors

  19. Trends and developments in magnetic confinement fusion reactor concepts

    International Nuclear Information System (INIS)

    Baker, C.C.; Carlson, G.A.; Krakowski, R.A.

    1981-01-01

    An overview is presented of recent design trends and developments in reactor concepts for magnetic confinement fusion. The paper emphasizes the engineering and technology considerations of commercial fusion reactor concepts. Emphasis is placed on reactors that operate on the deuterium/tritium/lithium fuel cycle. Recent developments in tokamak, mirror, and Elmo Bumpy Torus reactor concepts are described, as well as a survey of recent developments on a wide variety of alternate magnetic fusion reactor concepts. The paper emphasizes recent developments of these concepts within the last two to three years

  20. Space reactors - past, present, and future

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.A.

    1983-01-01

    The successful test flights of the Space Shuttle mark the start of a new era--an era of routine manned access into cislunar space. Human technical development at the start of the next Millenium will be highlighted by the creation of Man's extraterrestrial civilization with off-planet expansion of the human resource base. In the 1990s and beyond, advanced-design nuclear reactors could represent the prime source of both space power and propulsion. Many sophisticated military and civilian space missions of the future will require first kilowatt and then megawatt levels of power. This paper reviews key technology developments that accompanied past US space nuclear power development efforts, describes on-going programs, and then explores reactor technologies that will satisfy megawatt power level needs and beyond

  1. The present status and the prospect of China research reactors

    International Nuclear Information System (INIS)

    Yongmao, Z.; Yizheng, C.

    1990-01-01

    A total of 100 reactor operation years' experience of research reactors has now been obtained in China. The type and principal parameters of China research reactors and their operating status are briefly introduced in this paper. Chinese research reactors have been playing an important role in nuclear power and nuclear weapon development, industrial and agricultural production, medicine, basic and applied science research and environmental protection, etc. The utilization scale, benefits and achievements will be given. There is a good safety record in the operation of these reactors. A general safety review is discussed. The important incidents and accidents happening during a hundred reactor operating years are described and analyzed. China has the capability of developing any type of research reactor. The prospective projects are briefly introduced

  2. Problems and solutions in application of IEEE standards at Savannah River Site, Department of Energy (DOE) nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Y.S.; Bowers, T.L.; Chopra, B.J.; Thompson, T.T.; Zimmerman, E.W.

    1993-01-01

    The Department of Energy (DOE) Nuclear Material Production Facilities at the Savannah River Site (SRS) were designed, constructed, and placed into operation in the early 1950's, based on existing industry codes/standards, design criteria, analytical procedures. Since that time, DOE has developed Orders and Polices for the planning, design and construction of DOE Nuclear Reactor Facilities which invoke or reference commercial nuclear reactor codes and standards. The application of IEEE reactor design requirements such as Equipment Qualification, Seismic Qualification, Single Failure Criteria, and Separation Requirement, to non-reactor facilities has been a problem since the IEEE reactor criteria do not directly confirm to the needs of non-reactor facilities. SRS Systems Engineering is developing a methodology for the application of IEEE Standards to non-reactor facilities at SRS

  3. Neutronics and mass transport in a chemical reactor associated with controlled thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, M.; Lazareth, O.W.; Powell, J.R.

    1976-05-01

    The formation of ozone from oxygen and the dissociation carbon dioxide to carbon monoxide and oxygen is studied in a gamma-neutron chemical process blanket associated with a controlled thermonuclear reactor. Materials used for reactor tube wall will affect the efficiency of the energy absorption by the reactants and consequently the yield of reaction products. Three kinds of materials, aluminum, stainless steel and fiber (Al 2 O 3 )-aluminium are investigated for the tube wall material in the study

  4. Emergency Management Standards and Schools

    Science.gov (United States)

    National Clearinghouse for Educational Facilities, 2009

    2009-01-01

    This publication discusses emergency management standards for school use and lists standards recommended by FEMA's National Incident Management System (NIMS). Schools are encouraged to review these standards carefully and to adopt, where applicable, those that meet their needs. The lists of standards, resources, and references contained herein…

  5. Comparison of Standard Light Water Reactor Cross-Section Libraries using the United States Nuclear Regulatory Commission Boiling Water Reactor Benchmark Problem

    Directory of Open Access Journals (Sweden)

    Kulesza Joel A.

    2016-01-01

    Full Text Available This paper describes a comparison of contemporary and historical light water reactor shielding and pressure vessel dosimetry cross-section libraries for a boiling water reactor calculational benchmark problem. The calculational benchmark problem was developed at Brookhaven National Laboratory by the request of the U. S. Nuclear Regulatory Commission. The benchmark problem was originally evaluated by Brookhaven National Laboratory using the Oak Ridge National Laboratory discrete ordinates code DORT and the BUGLE-93 cross-section library. In this paper, the Westinghouse RAPTOR-M3G three-dimensional discrete ordinates code was used. A variety of cross-section libraries were used with RAPTOR-M3G including the BUGLE93, BUGLE-96, and BUGLE-B7 cross-section libraries developed at Oak Ridge National Laboratory and ALPAN-VII.0 developed at Westinghouse. In comparing the calculated fast reaction rates using the four aforementioned cross-section libraries in the pressure vessel capsule, for six dosimetry reaction rates, a maximum relative difference of 8% was observed. As such, it is concluded that the results calculated by RAPTOR-M3G are consistent with the benchmark and further that the different vintage BUGLE cross-section libraries investigated are largely self-consistent.

  6. Reactor coolant system and containment aqueous chemistry

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    1986-01-01

    Fission products released from fuel during reactor accidents can be subject to a variety of environments that will affect their ultimate behavior. In the reactor coolant system (RCS), for example, neutral or reducing steam conditions, radiation, and surfaces could all have an effect on fission product retention and chemistry. Furthermore, if water is encountered in the RCS, the high temperature aqueous chemistry of fission products must be assessed to determine the quantity and chemical form of fission products released to the containment building. In the containment building, aqueous chemistry will determine the longer-term release of volatile fission products to the containment atmosphere. Over the past few years, the principles of physical chemistry have been rigorously applied to the various chemical conditions described above. This paper reviews the current state of knowledge and discusses the future directions of chemistry research relating to the behavior of fission products in the RCS and containment

  7. Systems engineering and the licensing of Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kulesa, T., E-mail: tkulesa@us.ibm.com [IBM, Philidelphia, Pennsylvania (United States); Soderholm, K., E-mail: Kristiina.Soderholm@fortum.com [Fortum Power (Finland); Fechtelkotter, P., E-mail: pfech@us.ibm.com [IBM, Boston, Massacheusets (United States)

    2014-07-01

    Both global warming and the need for dependable sources of energy continue to make nuclear power generation an appealing option. But a history of cost overruns, project delays, and environmental disaster has pushed the industry to innovate and design a more flexible, scalable, and safe source of nuclear energy - the small modular reactor. Innovation in generation technology creates disruption in already complex licensing and regulatory processes. This paper discusses how the application of systems engineering and requirements management can help combat confusion, rework, and efficiency problems across the engineering and compliance life cycle. The paper is based on the PhD Dissertation 'Licensing Model Development for Small Modular Reactors (SMRs) - Focusing on Finnish Regulatory Framework', approved in 2013. The result of the study gives recommendations and tools to develop and optimize the licensing process for SMRs. The most important SMR-specific feature, in terms of licensing, is the modularity of the design. Here the modularity indicates multi-module SMR designs, which creates new challenges in the licensing process. Another feature impacting licensing feasibility is the plan to build many standardized power plants in series and use factory-fabricated modules to optimize the construction costs. SMR licensing challenges are under discussion in many international forums, such as World Nuclear Association Cooperation in Reactor Design Evaluation and Licensing Small Modular Reactor group (WNA CORDEL SMR) group and IAEA INPRO regulators' forum. This paper also presents an application of the new licensing process using Systems Engineering, Requirements Management, and Project Management practices and tools. (author)

  8. Optical inspections of research reactor tanks and tank components

    International Nuclear Information System (INIS)

    Boeck, H.; Hammer, J.

    1988-01-01

    By the end of 1987 worldwide there were 326 research reactors in operation, 276 of them operating more than 10 years, and 195 of them operating more than 20 years. The majority of these reactors are swimming-pool type or tank type reactors using aluminium as structural material. Although aluminium has prooven its excellent properties for reactor application in primary system, it is however subjected to various types of corrosion if it gets into contact with other materials such as mild steel in the presence of destilled water. This paper describes various methods of research reactor tank inspections, maintenance and repair possibilities. 9 figs. (Author)

  9. Computational mathematics and physics of fusion reactors.

    Science.gov (United States)

    Garabedian, Paul R

    2003-11-25

    Theory has contributed significantly to recent advances in magnetic fusion research. New configurations have been found for a stellarator experiment by computational methods. Solutions of a free-boundary problem are applied to study the performance of the plasma and look for islands in the magnetic surfaces. Mathematical analysis and numerical calculations have been used to study equilibrium, stability, and transport of optimized fusion reactors.

  10. Reactor building assembly and method of operation

    International Nuclear Information System (INIS)

    Fennern, L.E.; Caraway, H.A.; Hsu, Li C.

    1993-01-01

    A reactor building assembly is described comprising: a reactor pressure vessel containing a reactor core for generating heat in the form of steam; a containment vessel enclosing said pressure vessel; a first enclosure surrounding said containment vessel and spaced laterally therefrom to define a first chamber there between, and having a top and a bottom; a second enclosure surrounding said first enclosure and spaced laterally therefrom to define a second chamber there between, and having a top and a bottom; a building inlet for receiving into said second chamber fresh air from outside said second enclosure; a building outlet for discharging stale air from said first chamber; a transfer duct disposed through said first enclosure selectively joining in flow communication said first and second chambers; said building inlet being disposed at said second enclosure top, said building outlet being disposed at said first enclosure top, and said transfer duct being disposed adjacent said first enclosure bottom for allowing said fresh air to flow downwardly by gravity through said second chamber and through said transfer duct into said first chamber for cooling said first chamber, said stale air flowing upwardly by natural buoyancy for discharger from said first chamber through said building outlet; an exhaust stack disposed above said building outlet and in flow communication therewith for channeling upwardly said stale air from said first chamber for discharge into the surrounding environs; and a passive first driving means for increasing flow of said stale air from said building outlet comprising: an isolation pool containing isolation water; an isolation condenser disposed in said isolation pool, and joined in flow communication with said reactor pressure vessel for receiving primary steam therefrom, said primary steam being cooled in said isolation condenser for heating said isolation water to generate secondary steam

  11. Construction of Research Reactors for Gen 3 and Gen 4 Reactors Development

    International Nuclear Information System (INIS)

    Behar, Christophe

    2014-01-01

    Christophe Behar, Director of the Nuclear Energy Division at CEA, detailed the different kind of research reactors and the issues in term of investment, use, side application such as the medical isotopes production

  12. Nuclear reactor insulation and preheat system

    International Nuclear Information System (INIS)

    Wampole, N.C.

    1978-01-01

    An insulation and preheat system is disclosed for preselected components of a fluid cooled nuclear reactor. A gas tight barrier or compartment of thermal insulation surrounds the selected components and includes devices to heat the internal atmosphere of the ocmpartment. An external surface of the compartment of enclosure is cooled, such as by a circulating fluid. The heating devices provide for preheating of the components, as well as maintenance of a temperature sufficient to ensure that the reactor coolant fluid will not solidify during shutdown. The external cooling limits the heat transferred to other plant structures, such as supporting concrete and steel. The barrier is spaced far enough from the surrounded components so as to allow access for remote or manual inspection, maintenance, and repair

  13. Safe operation and maintenance of research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Munsorn, S. [Reactor Operation Division, Office of Atomic Energy for Peace, Chatuchak, Bangkok (Thailand)

    1999-10-01

    The first Thai Research Reactor (TRR-1) was established in 1961 at the Office of Atomic Energy for Peace (OAEP), Bangkok. The reactor was light water moderated and cooled, using HEU plate-type with U{sub 3}O{sub 8}- Al fuel meat and swimming pool type. The reactor went first critical on October 27, 1962 and had been licensed to operate at 1 MW (thermal). On June 30, 1975 the reactor was shutdown for modification and the core and control system was disassemble and replaced by that of TRIGA Mark III type while the pool cooling system, irradiation facilities and other were kept. Thus the name TRR-1/M1' has been designed due to this modification the fuel has been changed from HEU plate type to Uranium Zirconium Hydride (UZrH) Low Enrichment Uranium (LEU) which include 4 Fuel Follower Control Rods and 1 Air Follower Control Rod. The TRR-1/M1 went critical on November 7, 1977 and the purpose of the operation are training, isotope production and research. Nowadays the TRR-1/M1 has been operated with core loading No.12 which released power of 1,056 MWD. (as of October 1998). The TRR-1/M1 has been operated at the power of 1.2 MW, three days a week with 34 hours per week, Shut-down on Monday for weekly maintenance and Tuesday for special experiment. The everage energy released is about 40.8 MW-hour per week. Every year, the TRR-1/M1 is shut-down about 2 months between February to March for yearly maintenance. (author)

  14. Design and analysis of pressurized water reactor systems

    International Nuclear Information System (INIS)

    Juhn, P.E.; Kim, Y.H.

    1979-01-01

    To help develop nuclear engineering technologies in local industry sectors, technical and economical data on pressurized water reactor systems and components have been collected, systematically analyzed and computerized to a certain degree. Codes and standards necessary for engineering design of PWR systems have been surveyed and clarified in terms of NSSS, turbine-generator system and BOP, then again rearranged with respect to quality classes and seismic classes. Some design manuals, criteria and guidelines regarding design, construction, test and operation of PWR plants have also been surveyed and collected. Benchmark cost calculation for the construction of a 900 MWe PWR plant, according to the standard format, was carried out, and computer model on construction costs was improved and updated by considering the local supply of labor and materials. And for the indigeneous development of PWR equipment and materials, such data as delivery schedule and manufacturers of 52 systems and 36,000 components have also been reviewed herein. (author)

  15. The experimental reactor Osiris and the nuclear fuel technology for the P.W.R. reactors

    International Nuclear Information System (INIS)

    Lestiboudois, G.; Contenson, G. de; Genthon, J.P.; Molvault, M.; Roche, M.

    1977-01-01

    The possibility of employing research reactors to study and to improve the nuclear fuel of the power reactors is presented. Measurements of temperature, pressure, stresses, thermal balance, gamma spectrometry and neutron radiography, allow the study of fuel densification, the influence of the initial filling pressure on the fission gas release and the gadolinium efficiency evolution. The solutions of the problems of failed element detection, power increase, remote handling, are presented [fr

  16. Recycling of plutonium and uranium in water reactor fuels

    International Nuclear Information System (INIS)

    1990-12-01

    The purpose of the meeting was to make a review of the present knowledge relevant to plutonium and uranium recycling, MOX fuel, on-going programmes, today's industrial capabilities and future plans for development. For countries with commitments to reprocessing, MOX fuel is attractive and will be more so as discharge burnups increase and as the time between discharge and reprocessing optimized. Fabrication experience on MOX fuel has accumulated for many years in several countries and one has been able to cope with the extension of capacities of the plants, as required by MOX fuel implementation, and with the requirements specific to massive use in power reactors. Standards fabrication processes have proven to be adaptable in large quantities and have yielded products satisfying all present specifications. A large body of irradiation experience for some time on various MOX and RepU materials. On the basis of a comparison with UO 2 , no adverse effect has been observed. Problems like isotopic homogeneity, solubility, alternative processes like gelation deserve further attention. It is encouraging to note that parameters linked to materials obtained by different fabrication routes can be taken into account by existing codes, to an extent similar to various UO 2 fuels, provided an adequate data base is available. The fabrication capacities are the limiting factor for MOX penetration in reactors, where a 30 to 50% recycling rate is therefore sufficient. The use of plutonium in 100% MOX reactors or in more advanced reactors deserves more study. The increase of plutonium inventory may influence safety and licensing analysis, but all the safety criteria can be met. On the whole, the experience reported in this meeting pointed to a general consensus of the attractiveness of recycling and the already demonstrated ability of several countries to cope with all questions raised by MOX substitution of UO 2 fuel. Refs, figs and tabs

  17. LBB application in the US operating and advanced reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wichman, K.; Tsao, J.; Mayfield, M.

    1997-04-01

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRC and the International Piping Integrity Research Group is also briefly summarized.

  18. Present and possible utilization of PUSPATI reactor

    International Nuclear Information System (INIS)

    Gui Ah Auu.

    1983-01-01

    The utilization of PUSPATI TRIGA Mark II Reactor (PTR) has increased reasonably well since its commissioning last year. PTR was used mainly for training of operators, neutron flux measurements and neutron activation analysis. However, the present utilization data indicates that further increase in PTR utilization to include teaching and the usage of the beam ports is desirable. Some possible areas of PTR applications in the future in relevance to our needs are also described in this paper. (author)

  19. Light-water reactor research and development

    International Nuclear Information System (INIS)

    1985-05-01

    This report on the national program of research and development on light water reactors is the second of two reports requested in 1982 by W. Kenneth Davis, Deputy Secretary of the Department of Energy. A first report, published in September 1983, treated the needs for safety-related R and D. In this second report, the Energy Research Advisory Board finds that, although many light water reactors are providing reliable and economic electricity, it appears unlikely that U.S. utilities will order additional reactors until the currently unacceptable economic risk, created by the regulatory climate and uncertain demand, is reduced. Thus it is unlikely that the private sector alone will fund major LWR design improvements. However, nuclear power will continue on its current course of expansion overseas. DOE participation is vitally needed to support the national interest in LWR technology. The report outlines R and D needs for a program to improve the safety, reliability, and economics of the present generation of plants; to develop evolutionary improved designs to be ready when needed; and to explore innovative longer-term concepts for deployment after the year 2000. The respective roles of government and the private sector are discussed

  20. On disruption of reactor core of the Chernobylsk-4 reactor (retrospective analysis of experiments and facts)

    International Nuclear Information System (INIS)

    Platonov, P.A.

    2007-01-01

    Fragments of graphite blocks from the damaged Chernobyl NPP, unit 4 are studied, the results are analyzed. The temperature of the graphite blocks at the moment of accident release from the reactor is evaluated. Results of studying the fragments of fuel channel and fuel dispersion are considered. The fuel heat content at the moment of the explosion is evaluated and some conclusions are made about the character of the reactor core destruction [ru